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Abstract 

This thesis describes the development of a high-quality single chip programmable digi-

tal filter. Six candidate digital filter structures are examined in terms of sensitivity to multiplier 

coefficient quantization, susceptibility to overflow, and quantization noise generation over a 

broad range of bandpass transfer functions derived from a 6hh1order elliptic analog prototype 

filter. 

Based on the non-ideal performance of the structures, the "LDI" structure is chosen for 

an actual filter implementation in CMOS gate array technology. The detailed design of the 

LDI filter is described, and measured results from the actual fabricated filter are compared 

with theoretically expected behavior. The LDI filter shows excellent agreement with theory, 

and attains a very high level of performance characterized by 16-bit input and output, free-

dom from signal overflow, quantization noise contributing less than one least significant bit 

to the output, sample rates as high as 180 kHz, programmable lowpass or bandpass filtering 

functions, and programmable passband ripple, passband edge frequencies, and stopband 

attenuation. 

III 



Acknowledgements 

The author expresses his appreciation for the guidance, advice, and constructive criticism 

offered by Dr. L. E. Turner during the course of this research. 

Also greatly appreciated are the Government of Alberta, the Natural Sciences and Engineer-

ing Research Council, and the Electrical Engineering Department, whose financial support 

respectively in the form of Ralph Steinhauer Award, Post Graduate Scholarship, and 

research and teaching assistantships allowed the author to undertake his studies. 

For the actual production of working filter chips, and provision of facilities for the simulation 

and schematic entry of the design, the author is greatly indebted to the Alberta Microelec-

tronic Centre and its staff. 

The production of Figure 6.6 was made possible by the author's father D. F. Green, who 

generously provided instruction and equipment. 

iv 



To Marie, for the hugs, 

and Dave, for the jugs, 

and all my other good friends who kept me going. 

V 



Table of Contents 

Page No. 

Table of Contents   vi 

List of Tables   viii 

List of Figures   ix 

List of Symbols   Xi 

1. INTRODUCTION   1 

1.1 Digital Filters   1 

1.2 Research Goals   5 

1.3 Overview  8 

2. FILTER STRUCTURES   9 

2.1 Direct Form Filters   9 

2.2 Wave Digital Filters   12 

2.3 Lattice Digital Filters   15 

2.4 LDI Filters   23 

3. NON-IDEAL EFFECTS   28 

3.1 Multiplier Coefficient Quantization   28 

3.2 Overflow   39 

3.3 Signal Quantization   46 

4. LIMIT CYCLES AND NOISE   49 

4.1 A General Limit Cycle Bound   49 

4.2 Second Order Sections   55 

4.3 Higher Order Sections   57 

4.4 A General Noise Bound   64 

5. SIZE ESTIMATES AND CHOICE OF STRUCTURE  67 

5.1 Representative Transfer Functions   67 

5.2 Restrictions Imposed by Coefficient Quantization and Overflow   69 

5.3 Bit-serial Architecture   75 

5.4 Bit-serial Hardware Requirements   81 

5.5 Choice of Structure for Implementation   86 

6. THE LDI IMPLEMENTATION   89 

6.1 Multiplexing the LDI Structure   89 

6.2 Testability and Interface   93 

6.3 Implementation Details   97 

6.4 Measured Results   107 

vi 



Table of Contents (continued) 

7. CONCLUSION   114 

7.1 Achievement of Research Goals   114 

7.2 Subjects for Further Study   118 

References   124 

Appendix   128 

VII 



List of Tables 

Table No. Title Page No. 

2.2 LDI Precompensated Component Values   27 

2.3 LDI Multiplier Coefficients   27 

3.1 Element Values From WDF Coefficients   32 

3.2 Element Values From LDI Coefficients   32 

4.1 Summary of bound computations   55 

4.2 iS.e for different quantizations   55 

4.3 LDI Bound Comparison   65 

5.1 Representative Parameter Values  68 

5.2 Hardware Requirement Lower Bounds  75 

5.3 Signal Word Length Requirements  83 

5.4 Structure Requirements Summary   84 

5.5 Serial Hardware Requirements   86 

5.6 Maximum Potential Throughputs   87 



List of Figures 

Figure No. Title Page No. 

1.1 Basic Digital Filter Operations   4 
1.2 Equivalent Prototype Filters   6 

1.3 Typical Bilinear Transformed Magnitude Response   7 

2.1 Direct Form Type 1   10 

2.2 Direct Form Type 2   11 

2.3 Wave Fitter Elements   13 

2.4(a) S2 Adapter   14 

2.4(b) S2 Symbol   14 

2.5(a) Si Adapter   15 

2.5(b) Si Symbol   15 

2.6(a) P2 Adapter   16 

2.6(b) P2 Symbol   16 

2.7(a) P1 Adapter   17 

2.7(b) P1 Symbol   17 

2.8 Wave Digital Fitter   19 

2.9 Lattice Filler Type 1   20 

2.10 Lattice Filler Type 2  21 

2.11 LDl Fitter Elements   25 

2.12 LDI Filler  26 

3.1 Second Order Direct Form   30 

3.2 Effect of Multiplier Coefficient Quantization   31 

3.3 Simple LCR Prototype  34 

3.4 Non-ideal Passband Responses (14 bits fractional)   37 

3.5 Effect of Internal Overflow   40 

3.6 Example Additions   42 

3.7 Overflow Propagation   44 

3.8 Effect of Signal Quantization   47 

4.1 Geometry of L(x)   56 

4.2 Projection of y Onto Cone C   63 

5.1 Low, Medium, and High Center Frequency Fitters   70 

5.2(a) Full Adder  74 

5.2(b) Half Adder   74 

5.3(a) Serial Adder  77 

5.3(b) Serial Subtracter  77 

5.4 Two's Complement Serial Multiplier   79 

5.5 Example Multiplication   80 

5.6 Coefficient Recoding   82 

6.1 LDl States and Multiplex Order  90 

ix 



List of Figures (continued) 

6.2(a) Non-multiplexed Operations   91 

6.2(b) Integrator Loop   91 

6.3 Functional Block Diagram   94 

6.4 Programming Model   96 

6.5 Filter Interface   98 

6.6(a) Filter Chip  99 

6.6(b) Two Unit Delays   99 

6.7 Unit Delay Schematic   100 

6.8 Final Serial Adder  102 

6.9 Add/Subtract Module   104' 

6.10 High Speed Test Circuit   106 
6.11 Full Frequency Range Response Comparison   108 

6.12 Passband Response Comparison   109 

6.13 sin(x)/x Corrected Response Comparison   110 

6.14 Full Frequency Range Power Spectral Density   111 

6.15 Passband Power Spectral Density   112 

7.1 Structure Performance Indices   117 

7.2 Performance Estimates for Parallel Operations  120 

7.3 Performance Estimates for Multiplexed Operations   121 

A.1 Extremes of Quantization   129 

A.2 Motion of .o with x0   131 

A.3 Geometry Defining y   132 

x 



List of Symbols 

A incident voltage wave (chapter 2) 

or filter state matrix (chapter 4) 

or number of adders (chapter 6) 

A,z) z-transformed recursion polynomial 

a1 constant coefficients 

B reflected voltage wave (chapter 2) 

or constraint bounding matrix (chapter 4) 

B1z) z-transformed recursion polynomial 

b input vector 

bi constant coefficients 

bk) critical node I response sequence to node I input 

C capacitor 

C convex cone (chapter 4) 

or number of distinct coefficients (chapter 6) 

C1 prototype capacitance 

CI equivalent prototype capacitance 

Cf precompensated capacitance 

CO—C9 multiplier coefficients 

C,z) z-transformed recursion polynomial 

c constant energy value 

c1 constant coefficients or bit values 

D number of subtracters 

D(z) z-transformed denominator polynomial 

A 



List of Symbols (continued) 

DF1 canonic direct form structure 

DF2 cascaded direct form structure 

d, constant coefficients or bit values 

E(x) quantization error function 

E(x4x) relaxed constraint quantization error function 

el jill column of the identity matrix 

ek) node I truncation error sequence 

F fractional coefficient bits 

FA full adder 

F[] non-linear quantization operation 

lower cutoff frequency 

fu upper cutoff frequency 

1br bit rate clock frequency 

port conductances 

H(z) discrete transfer function 

HA half adder 

h(k) unit sample response sequence 

h,(k) critical node i unit sample response sequence 

I port current (chapter 2) 

or identity matrix (chapter 4) 

or integer coefficient bits (chapter 6) 

1(x) intermediate error function 

II(Z) transformed intermediate error function 



List of Symbols (continued) 

j complex operator 

k sequence index 

kE constant of differentiation 

k1 lattice filter coefficients 

L inductor 

L• prototype inductance 

Li equivalent prototype inductance 

LP precompensated inductance 

LM bounding energy value 

L(x) Liapunov function 

LDI lossless discrete integrator 

LFI two multiplier lattice structure 

LF2 one multiplier lattice structure 

LSB least significant bit 

I sequence index 

M input sequence bound 

MSB most significant bit 

M1—M6 adapter multiplier values 

m integer value 

N error sequence bound 

N(z) z-transformed numerator polynomial 

n integer value 

n, constant coefficients 

xl" 



List of Symbols (continued) 

Oe(k) output error component sequence 

P1 one multiplier parallel adapter 

P2 two multiplier parallel adapter 

Pi product bit values 

Q rotation matrix 

R resistor 

R port resistance (chapter 2) 

or number of register operations (chapter 6) 

Ri input resistance 

R0 output resistance 

R1 port resistances 

Rout wave filter output resistance 

S real symmetric matrix (chapter 4) 

or signal word length (chapter 6) 

S(z) z-transformed arbitrary sequence 

Si one multiplier series adapter 

S2 two multiplier series adapter 

s continuous complex frequency variable 

Si recursion variable 

s(k) arbitrary sequence 

s(k), critical node I signal sequence 

T sample period 

or matrix of right eigenvectors (chapter 4) 

U point of maximum energy deviation 

xiv 



List of Symbols (continued) 

U(z) z-transformed input sequence 

UC constant input 

u(k) input sequence 

V port voltage (chapter 2) 

or point of maximum energy deviation (chapter 4) 

V input voltage 

V out output voltage 

V1 two multiplier lattice tap coefficients (chapter 2) 

or basis vectors (chapter 4) 

fli one multiplier lattice tap coefficients 

v1(k) output response sequence to node I input 

WDF wave digital filter 

Xl -X6 LDl filter states 

x9 equilibrium state vector under constant input 

xj fh component of state vector x 

x(k) filter ideal state vector 

(k) filter non-ideal state vector 

Y(z) z-transformed output sequence 

y transformed state vector 

Yi Ii component of transformed state vector y 

y(k) output sequence 

z discrete complex frequency variable 

or transformed state vector (chapter 4) 

z0 normalized solution vector 

xv 



List of Symbols (continued) 

constant multiplier or parameter 

constant parameter 

ideal passband ripple 

Ae energy function deviation 

Lx sign-magnitude quantization state vector error 

6 maximum sign-magnitude quantization error 

r limit cycle confinement region 

transformed state vector error 

projection of y onto C 

AA diagonal matrix of elgenvalues of A 

As diagonal matrix of elgenvalues of S 

XM maximum modulus eigenvalue 

92 discrete frequency variable 

geometric center frequency 

lower cutoff frequency (rads/sec.) 

upper cutoff frequency (rads/sec.) 

CO continuous frequency variable 

rotation angle variable 

p maximum quantization error 

0 coordinate system rotation angle 

eigenvalues of S 

Ri maximum eigenvalue of S 



CHAPTER 1 

INTRODUCTION 

In its broadest sense, digital signal processing is the production of a set of numbers 

(the "output") through the application of a well-defined computational algorithm to another 

set of numbers (the "input") [1]. With the appearance of the digital computer and its subse-

quent rapid growth in performance, digital signal processing has played an increasingly 

prominent role across a broad range of applications such as music, communication, radar, 

sonar, speech, seismic, and medical signal processing [2]. The possibility of using integrated 

circuit technology to implement entire signal processing systems with digital components has 

been recognized since the mid-1960s [2]. In particular, the continued reduction in size and 

increase in density of integrated MOS processing elements has resulted in intensive efforts 

to develop compact and sophisticated MOS VLSI signal processing systems. While the 

requirement for dealing with analog signals in such systems is likely to remain, the trend is 

towards digital processing techniques [3], which are notable for guaranteed performance 

even in the presence of variable factors of both process and environment. 

1.1. Digital Filters 

One element of many signal processing tasks is filtering, which if performed in the digi-

tal realm is digital filtering. The most general definition of digital filtering is virtually indistin-

guishable from the definition of digital signal processing presented above. Although this 

definition certainly is accurate in the sense that it encompasses all possible meanings of the 

term "digital filter", it is far too ambiguous to be useful. In the context of this thesis, a much 

more restrictive definition of digital filtering is applied: a digital filter is a well-defined compu-

tational algorithm which is applied to a sequence of numbers (the "input") which represents 

1 
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the instantaneous values of some time-varying signal at equally spaced intervals T in time 

and produces another sequence of numbers (the "output") which also represents the instan-

taneous values of a time-varying signal at intervals T. This definition is more in keeping with 

what is usually meant by the term digital filter, although the independent variable may some-

times be something other than time (e.g. space). A further restriction which is imposed here 

is that a digital filter ideally be linear and time invariant (sometimes called shift invariant) so 

that its operation can be described by the convolution summation 

y(k) = 

where (y(k)), ( u(k)), and (h(k)) respectively represent the output, input, and unit sample 

response sequences of the filter [2]. 

Convolution summationsof the form (1.1) can be conveniently dealt with using a 

mathematical tool known as the z-transform [2]. For a sequence (s(k)), its z-transform S(z) 

is given by 

k=-
S(z) = Z s(k)7. 

k = - 

(1.2) 

Two properties of the z-transform are of particular interest in the study of digital filters. First, 

under the z-transform, the convolution summation (1.1) is converted to the product 

Y(z) = U(z)H(z), (1.3) 

so that the properties of an ideal digital filter are completely characterized by H(z). Since 

H(z) relates the z-transformed output of a digital filter to its z-transformed input, it is referred 

to as the transfer function of the digital filter. A second useful property of the z-transform is 

that by substituting z = eT in the z-transform of a sequence, the frequency spectrum of the 

corresponding time-sampled signal is produced. Using this property and the bilinear 

transformation [2] given by 



3 

2(z-1)  
T(z+l)' 

(1.4) 

the transfer function of an analog filter can be converted to a z-domain transfer function 

which retains all the attenuation characteristics of the analog filter. While the attenuation 

characteristics are retained, the bilinear transformation does however distort the frequency 

scale of the analog response, since it maps the entire s=jco axis onto the unit circle in the z-

domain according to the relation 

2 
0) = T (1.5) 

where co and 92 are the analog and discrete frequency variables respectively. Relation (1.5) 

can be used to map a set of digital filter cutoff frequencies into the analog domain, where a 

suitable analog prototype filter can be designed to meet these mapped cutoff frequencies. If 

the transfer function of this prototype is then converted to a discrete transfer function using 

the bilinear transformation, the discrete transfer function has the desired cutoff frequencies. 

Compensation for the frequency warping effect of ( 1.5) can be accomplished in this fashion 

for many important types of filter transfer functions including lowpass, bandpass, and 

highpass [2]. The discrete transfer functions which result from bilinear transformation of ana-

log prototypes are typically rational polynomials of finite order. Such transfer functions 

represent digital filters which can be described by difference equations of the form 

i=m j=m 
y(k)= Eb,u(k-i)- Z ajy(k-j), 

i=O j=1 
(1.6) 

where b1 and a1 are constant coefficients. Filters which implement difference equations of 

the form (1.6) can be be constructed using only the operations of addition, subtraction, mul-

tiplication, and delay (storage). The symbols used to represent these operations are shown 

in figure 1.1. 
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OPERATION 

addition 

subtraction 

multi pi ication 

delay s(k) 

SYMBOL 

a+b 

xx 

s(k-1) 

Figure 1.1 : Basic Digital Filter Operations 
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1.2. Research Goals 

Recently, complete digital filters have been incorporated on single chips which perform 

certain fixed digital signal processing tasks [4, 5]. These filters generally implement fixed 

transfer functions, or have an extremely limited range of programmability. General purpose 

digital signal processing chips such as Texas Instruments' TMS32O and NEC's pPD7723O 

have also appeared. These devices allow a relatively broad range of digital signal process-

ing tasks to be performed at the expense of some loss of speed and suitability to any partic-

ular processing task when compared to a fully customized special-purpose device. In order 

to investigate the design of a device which compromises between the fully specialized filter 

and the general purpose processor, the goal set for the research described in this thesis 

was to design a single chip digital filter capable of implementing a single class of transfer 

function with programmable cutoff frequencies, stopband attenuation, and passband ripple. 

Research already underway had generated some familiarity with digital filters which 

implemented the bilinear transformed transfer function of the equivalent analog prototypes 

shown in figure 1.2, hence this was chosen as the prototype for the digital filter to be 

designed. The prototype filter is a sixth-order elliptic bandpass filter characterized by three 

zeros of attenuation and two equal peaks of attenuation in the passband, and transmission 

zeros in each of the stopbands. A typical bilinear transformed magnitude transfer function 

for this prototype is shown in figure 1.3. The bilinear transformed transfer function of the 

prototype is given by 

H(z) = { zY+z+a5z-i-a4z4—a4z2—a5z-1 1 (1.7) 
b5z+b4z+b.z3+b2z2+b1z+b0 J.' 

which has the form 

H(z) = 4 (22-1)(z2+c1z+1)(z2-i-c0z-i-1) (22+d5z+d4) (z2+d3z+d2) (22+d1 z-i-do) 
(1.8) 

when the numerator and denominator are factored into their respective second-order terms. 
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Figure 1.2 : Equivalent Prototype Filters 
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Subject to the constraint of being able to fit a digital filter implementing transfer function 

(1.7) on a single chip, additional research goals were to accommodate 16-bit input and out-

put data, maximize filter throughput, and minimize non-ideal effects. 

1.3. Overview 

There are many digital filter structures capable of implementing the transfer function 

(1.7). These structures will differ in hardware cost and non-ideal performance, so it is desir-

able to examine a range of structures for implementing the filter in order to take advantage 

of performance and/or cost benefits which may vary between structures. In chapter two, six 

different digital filter structures are presented which are subsequently assessed for their sui-

tability with respect to the goals of the research. The non-ideal effects which are encoun-

tered in a practical digital filter implementation, and ways to reduce or eliminate them are 

discussed in chapters three and four. In chapter five, initial size and performance estimates 

are made for each of the candidate structures, and one structure is selected for detailed 

design. Facilities for fabrication of the selected structure in CMOS gate-array technology 

were made available by the Alberta Microelectronic Centre, hence the size estimates of 

chapter five are based on this technology. In chapter six, the detailed design of the selected 

filter structure is discussed, gate-array technology is briefly described, and measured results 

are presented for the fabricated digital filter. Performance indices based on the information 

gained during the detailed design and rough performance comparisons for alternative filter 

implementations are presented in chapter seven. The degree to which the research goals 

were attained is discussed, and recommendations for further research are presented. 



CHAPTER 2 

FILTER STRUCTURES 

There are an unlimited number of filter structures which will implement a given transfer 

function. Various techniques exist which allow a specified transfer function or prototype filter 

to be reduced to a particular implementing structure in a systematic manner. In this chapter 

four such techniques are presented, giving rise to six structures capable of implementing 

transfer function (1.7). The intent of the descriptions presented here is to provide only a 

brief introduction to each technique and the resultant structures. For a detailed description of 

the different techniques, the reader should consult the references indicated in each of the 

following sections. 

2.1. Direct Form Filters 

Direct form structures [6] can be determined by inspection of the desired transfer func-

tion. Figure 2.1 shows the direct form implementation of (1.7). The multiplier coefficients for 

this structure are simply the coefficients of the powers of z in the desired transfer function. 

Direct form structures of the type shown in figure 2.1 have been referred to as "canonic 

form", but are referred to here as the DF1 structure for compactness. The factored transfer 

function (1.8) can be expressed as the product of three second-order transfer functions. If 

each of these second-order transfer functions is implemented by a canonic form structure, 

the second-order sections can be cascaded to give the direct form structure shown in figure 

2.2. Structures of this type have been referred to as "cascade form" but will here be 

referred to as the DF2 structure. 

9 



Figure 2.1 : Direct Form Type 1 



input output 

Figure  2.2 : Direct  Form Type 2 
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2.2. Wave Digital Filters 

The wave digital filter structure [7, 8, 9] is derived from an analog filter prototype by 

modelling wave propagation. The wave quantity may be voltage, current, or any linear com-

bination of these, although it is often taken to be voltage. In the case of voltage waves, each 

prototype element can be considered as a one-port network [10] with a port resistance R 

and incident and reflected voltage waves A and B respectively given by 

A= V+ JR 

B= V— IR, 

(2.1) 

(2.2) 

where V and / are the port voltage and current respectively. The choice of R is arbitrary with 

the exception that two directly interconnected ports must have the same port resistance in 

order to maintain continuity of the wave quantities (equivalent to impedance matching). With 

appropriate choices for R, the wave implementation of the basic R, L, and C analog com-

ponents can be very simple as shown in figure 2.3. The relationships between the wave 

quantities for series and parallel connections of elements can be determined by using the 

defining equations (2.1) and (2.2) andKirchoff's voltage and current laws. Using these rela-

tionships, adapters can be constructed which allow series and parallel interconnections of 

the wave elements. Figures 2.4 through 2.7 show respectively the two-multiplier series 

adapter (82), the one-multiplier series adapter (Si), the two-multiplier parallel adapter (P2) 

and the one-multiplier parallel adapter (P1). For the two multiplier adapters, the port resis-

tances are independent and determine the values of the multipliers as follows: 

—2R1 

Mi - R1+R2-i-R3 (2.3) 

—2R2 
M2— R1-i-R2+R3 (2.4) 

G1.-.( G2+G3) 
M4— (2.5) 
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Analog Port Wave 
element resistance realization 

R 

B< 0 

T 
2C 

2L 
T 

Figure 2.3 : Wave Filter Elements 



(a) 

(b) 

Figure 2.4 : ( a) S2 Adapter 
(b) S2 Symbol 



(a) 

(b) 

Figure 2.5 : ( a) Si. Adapter 
(b) Si Symbol 



A 

>B2 

V 

B3 

(a) 

(b) 

Figure 2.6 : ( a) P2 Adapter 
(b) P2 Symbol 



(a) 

(b) 

Figure 2.7 : ( a) P1 Adapter 
(b) P1 Symbol 
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M5 — G2—(G1+G3) 
- G1+G2+G3 

(2.6) 

where R1 and G, are the resistance and conductance respectively of the F' port. By forcing 

the port two resistance to be a function of the port one and three resistances, the one-

multiplier adapters can be developed. For these adapters, the relationships between the 

multiplier values and port resistances or conductances are as follows: 

R2=R1+R3 (2.7) 

M3=- (2.8) 

G2=G1+G3 (2.9) 

— 
M6= G3  (2.10) 

Using the adapters and the wave elements shown in figure 2.3, the prototype filter of figure 

1.2 can be realized as shown in figure 2.8. This implementation will be referred to as the 

WDF structure. The values of the adapter multipliers are determined from the analog com-

ponent values using the equivalent port resistances of figure 2.3, equations (2.3) - (2.10), 

and the constraint that the port resistances of interconnected ports must be equal. In figure 

2.8 the adapter multiplier coefficient symbols are shown in the upper corner(s) of the 

adapters, and the adapter interconnection ports are numbered I through 7. Shown in table 

2.1 are the formulae for the adapter multiplier coefficients and interconnection port resis-

tances (conductances) R1 (G1) in terms of the prototype element values. 

2.3. Lattice Digital Filters 

Lattice digital filter structures [11], like direct form structures, implement arbitrary 

transfer functions. The two-multiplier form (each stage in the recursive section uses two mul-

tipliers) capable of implementing the transfer function (1.7) or ( 1.8) is shown in figure 2.9. 

This structure will be referred to as the LF1 structure. An alternative one-multiplier form is 

shown in figure 2.10. This structure will be referred to as the LF2 structure. The coefficients 
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Figure 2.8 : Wave Digital Filter 
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Figure 2.9 : Lattice Filter Type 1 



Figure  2.10 : Lattice Filter  Type 2 
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Co = 

Cl= 

G3z 

C2= 

05= 

04= 

CG = 

07= 

C8= 

—2Ci 

2C + T 

—T  
T+ 2G1L1 

—4CL 

+ 4CL 

2CR2 

2C— TG3 

—4CL 

72 + 4CL 

20R4 

2C— TC5 

—T  
T+ 2G6L4 

G7T— (T+ 204) 

G7T-i- T+ 2C4 

T— (G7T+ 204) 

T+ G7T+ 204 

G1= 

R2= 

G3= 

R4= 

1  
1+Co 

1 + Cl 
G1 

02  
R2(1 — 02) 

R2 

02 

04  
R4(1-04) 

G6 = 04 —;;-. 
I)4 

G6 
G7= 1+C6 

Table 2.1 : WDF Multiplier Coefficients 

k1, v1, and 91 can be determined from the desired transfer function using a straightforward 

recursion. In general, if H(z) is the desired nth order transfer function given by 

H(z)=--, (2.11) 

where N(z) and D(z) are respectively the nth order numerator and denominator polynomials 
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given by 

N(z) = n(?7!7+ n, 1f-1 + n, 2z 2+ + no (2.12) 

(2.13) 

the following recursion defines the lattice filter coefficients: 

A,z) = az'+ a,.1f 1 + a,..271 2 + + a0 (2.14a) 

k1=—a0 (2.14b) 

B1(z) = a0z'+ a1 t 1 + a27JT2 + + a1 (2.14c) 

Aj(z) + k1B,z) 
A,. 1 (z) =  z(1 - k?) (2.14d) 

C,z) = cjz'+ c1 7i 1 + CI-2z-L2 + ... + 

V1 = ci 

Sj= 
i=n 

ft(1 + kj) otherwise 

VI 
= 

Si 

C 1(z) = CXz) - v1BXz)f'. 

CO 

In this recursion, i runs from n to 0, A(z) = D(z), and C(z) = N(z). 

2.4. LDI Filters 

(2.14e) 

(2.14f) 

(2.14g) 

(2.14h) 

(2.141) 

The previous design techniques make use of the bilinear transformation either explicitly 

to obtain the transfer function (DF1, DF2, LF1, LF2) or implicitly in the development of the 

digital element realizations (WDF). It is possible to use the alternative transformation [12] 

21/2 - 

T 
(2.15) 

to define the digital elements. Transformation (2.15) leads to a digital building block which is 

called a "lossless discrete integrator", and hence it is called the LDI transformation. The LDI 
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transformation does not directly lead to stable digital filters, and does not preserve the desir-

able mapping of the entire s = JO) axis onto the unit circle in the z-domain as does the bil-

inear transformation. It does however yield digital elements with a very simple form, and 

can avoid the delay-free loop problem [13] which is encountered when analog voltage-

current signal flow graphs are converted directly to a digital structure using the bilinear 

transformation. Using a technique developed by Turner and Ramesh [14, 15], stable filters 

with exact bilinear transfer functions can be implemented using LDI digital elements. The 

technique relies on the relationship between impedances implemented with LDI elements 

and equivalent bilinear transformed impedances. This relationship is shown in figure 2.11. In 

this figure, the third column shows the bilinear transformed element which corresponds to 

the LDI implementation after impedance scaling by (z+ 1)12. To digitally realize the transfer 

function of an analog prototype filter, the prototype is first manipulated so that the negative 

capacitors of figure 2.11 are implicitly present in parallel with each inductor and resistor of 

the prototype, but are cancelled out by additional parallel positive capacitors. This results in 

a prototype with precompensated element values, which when implemented with LDI Immi-

tances will yield the desired bilinear transfer function. The prototype filter is then converted 

into a voltage-current signal flow graph which is in turn manipulated by the introduction of 

controlled sources so that it contains only resistive and integrator branches. This signal flow 

graph is then implemented directly with the LDI elements of figure 2.11. 

The LDI implementation of the prototype filter of figure 1.2 is shown in figure 2.12. The 

non-recursive input section implements a voltage source transformation which is required as 

a result of the precompensation procedure. Table 2.2 shows the formulae for the precom-

pensated component values Zr in terms of the original component values of figure 1.2, while 

table 2.3 shows the formulae for the multiplier coefficients of figure 2.12 in terms of the 

precompensated component values. 
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Analog LDI 
element implementation 

Element 
real ized 

R V(z) 

V(z) 

hR 

T/C 

T/L 

1(z) R 

V(z) 

Figure 2.11 : LDI Filter Elements 

T 
2R 



Figure 2.12 : LDI Filter 
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72 T 
= c1 + + 

_ LP I 
i-i - I-i 

4L2C22 

4LC+ 72 

2 ) 
L'=L2(1+ 72  

4L202 

72c2  
4LC+72 

L = L3 

Table 2.2 : LDI Precompensated Component Values 

CO = 03= —T 

LP Cl 4   

C2= j5 

05= 07= 
C+2C'C° 

7 Cip +G') 

C6 = 08= 
C(C+ 2Cr) 

TC 

Table 2.3 : LDI Multiplier Coefficients 



CHAPTER 3 

NON-IDEAL EFFECTS 

Under ideal conditions each of the structures presented in the previous chapter is 

capable of exactly implementing the desired prototype transfer function (1.7). Unfortunately 

the condition of ideality is not met in practice due to the finite precision arithmetic which 

must be used, and non-ideal effects influence the capabilities and attractiveness (in terms of 

hardware or computational cost) of the structures. In this chapter the non-idealities which 

are encountered in the practical implementation of a digital filter are presented and their 

effects illustrated. Practical strategies for reduction of multiplier coefficient quantization 

effects and elimination of overflow effects are also presented. 

3.1. Multiplier Coefficient Quantization 

Each structure presented in chapter two makes use of multipliers which have 

coefficients derived either from a set of design equations such as (2.3) - (2.10) or directly 

from the desired transfer function. In general these coefficients will be non-integral and pos-

sibly even irrational. In a real digital filter, these multiplier coefficients must be represented 

with a finite number of digits with a fixed base (which will be assumed here to be two). As a 

result, the actual coefficient values implemented are selected from a finite set, and in gen-

eral will not match the ideal (infinite precision) values exactly. Because floating-point arith-

metic is more costly to implement than fixed point arithmetic (in terms of hardware and com-

plexity), it is desirable to implement digital filters in fixed point arithmetic wherever possible. 

Multiplications are thus assumed to be fixed-point binary, and realizable coefficient values 

are fractions in which the denominator is an integral power of two. The result of using these 

quantized coefficients in an actual filter implementation is that the transfer function realized 
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does not exactly match the ideal transfer function. 

The filter shown in figure 3.1 has been designed with coefficients which can be exactly 

implemented by binary fixed-point coefficients (this is not the case in general) having seven 

fractional bits. With the coefficients as shown, the filter poles are inside the unit circle in the 

z-domain, so the filter is stable [9]. To illustrate the effect of multiplier coefficient quantiza-

tion, the magnitude transfer function of this filter is shown in figure 3.2 for coefficients with 

seven, six, and five fractional bits. In reducing the number of coefficient bits, two's comple-

ment truncation (described in detail in chapter four) was used. Note that the originally stable 

filter becomes unstable when five bit (fractional) coefficients are used. The transfer function 

of this filter is extremely sensitive to variations in the multiplier values. For a practical digital 

filter, this high sensitivity is undesirable because it requires that a large number of coefficient 

bits be used (increasing the hardware or computation cost) relative to a structure which has 

lower sensitivity. 

One approach to designing a digital filter with low coefficient sensitivity is to use a 

doubly-terminated analog LC filter as the prototype. These filters have well-known low sen-

sitivity properties [16, 17] with respect to component values. The low sensitivity is a result of 

the fact that at points of zero insertion loss in the passband (where maximum power is 

transferred to the output resistance) the filter attenuation is completely insensitive to 

differential changes in the L and C component values. The prototype of figure 1.2 has three 

such points of zero sensitivity. In order for a digital filter derived from such a prototype to 

share this first order zero in sensitivity, differential changes in the multiplier values must 

correspond to differential changes in the prototype element values. This can be shown to be 

the case for the WDF and LDI structures by reversing the design procedure to yield expres-

sions for the analog prototype component values in terms of the multiplier coefficients. 

These expressions are shown in table 3.1 and table 3.2 respectively. In table 3.1, G, and R1 

are as defined in table 2.1. Note that for the WDF structure the output resistance R0 
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input output 

Figure  3.1: Second Order Direct  Form 



University of Calgary, Department of Electrical Engineering 

Figure 3.2 : Effect of Mu ltiplier Coefficient Quantization 
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becomes a function of the coefficient values, and for the LDl filter it is assumed that equal 

infinite precision coefficients remain equal when quantized. Inspection of the expressions 

for the prototype element values reveals that they are differentiable with respect to all multi-

plier coefficients provided that 

—TCO  
2(CO+l) 

—G3Tc3 

2 

—G5TC5 

2 

L1 - 

L = 

L 

—7(1 + Cl)  
2G1 Cl 

T  
2G3(l + G3) 

T  
2G5(1 + C5) 

C4  TG77+  L —7(1 + C6)  
' 2(l+C7) 2G8C6 

Rout — 1 + C7  
G7(1-i-CS) 

Table 3.1 : Element Values From WDF Coefficients 

C1— C4— T{ I  C1-i-G3 I 
- - C5+CG 4 - 

L, L4 T 
Cl+G3 

—4T  
C9(4+C9G2) 

- 1(4+C9C2)2  
L2— 4C2 

I C6  G3  C2  
C3=T122• 4 4+C9C2 

L3 = - —T 

Table 3.2 : Element Values From LDI Coefficients 
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Ci# —1, 1=0, 1, 3,5, 6, 7,8 (3.1 a) 

Ci•1, 1=2,4 (3.1 b) 

C1xG6:A0 (3.1 c) 

for the WDF structure and 

IC5I#IG6I (3.2a) 

C2xC9#-4 (3.2b) 

C1:;6—G3 (3.2c) 

C2xG3xC9#0 (3.2d) 

for the LDI structure. Violation of any of these conditions represents a singular point at 

which the topology of the analog prototype changes. For prototype filters with finite non-

zero prototype element values conditions (3.1) and (3.2) are satisfied and the prototype ele-

ment values are differentiable functions of the multiplier coefficients in some neighborhood 

of the ideal coefficient values. Consequently, a differential change of the multiplier 

coefficients corresponds to a differential change in the prototype element values, and the 

low sensitivity property of the prototype filter is retained by the WDF and LDI structures. 

If a similar analysis is attempted for the direct form structures, the expression of the 

prototype element values as functions of the direct form multiplier coefficients requires the 

simultaneous solution of a set of non-linear equations. No solution of this problem has been 

attempted due to its complexity, however it is possible to gain some insight by examining 

the much simpler prototype of figure 3.3. For this circuit, the transfer function H(s) is given 

by 

H(s)=  a2s2 + a0 
s2+ b1s-f- t 

(3.3) 

where the coefficients a2, a0, b1, and bb are related to the prototype element values as fol-

lows: 



Vin 

V 

17 

Figure 3.3 : Simple LCR Prototype 
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R0 
a2— R0+R, (3.4a) 

a2 
(3.4b) 

R 0a2 
b1 = L (3.4c) 

b0=- 5 . (3.4d) 

From these expressions it can be seen that 

a0 = b0a2 (3.5) 

must hold in order for the transfer function (3.3) to represent the circuit of figure 3.3. Using 

the bilinear transformation the equivalent digital transfer function H(z) is found to be 

H(z) =   
22+C1z+1 

22+diz+doj' 
(3.6) 

where a, c1 , b1, and b0 are determined by a2, a0, bl, b0 , and the sample period T. By 

lengthy manipulation of the non-linear relationships between the digital and analog transfer 

function coefficients, it is possible to show that (3.5) implies 

= 1 + d0 

2d1 
(3.7) 

Since c1, d1, and d0 are the ideal values of three of the multiplier coefficients in a direct form 

implementation of the circuit of figure 3.3, a differential change in these coefficients must 

obey (3.7) in order to correspond to a differential change in the analog element values. It is 

quite possible for a differential change of c1, d1, and d0 to result in the violation of (3.7), 

which means that a differential change in the multiplier coefficients of the direct form imple-

mentation may correspond to a change in the topology or element types of the prototype. 

Although this property has been shown only for the circuit of figure 3.3, since there was 

nothing particularly unique about this circuit it is likely that the coefficients of any transfer 

function derived using the bilinear transformation from an analog LCR prototype will need to 
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obey non-linear constraints such as (3.7), and a direct form filter which implements such a 

transfer function will share this property. Since the argument for the low sensitivity of the 

analog prototype requires that neither the type of elements nor the topology varies, this 

implies that the DF1 and DF2 structures are unlikely to preserve the low sensitivity property 

of the analog prototype. The lattice filter coefficients are derived from the direct form 

coefficients, hence low sensitivity is also not expected in the LFI and LF2 structures. 

Simulations of the different digital structures support the conclusion that the WDF and 

LDI structures are less sensitive to coefficient variations than the direct form and lattice 

structures, and other work [18] has determined by different methods that this is the case for 

the WDF structure. Figure 3.4 shows typical passband magnitude transfer functions for the 

WDF, LDI, DF2, and LF2 structures with coefficients quantized to 14 fractional bits. As 

would be expected from the preceding analysis the LDI and WDF structure transfer func-

tions depart from the ideal transfer function less than the DF2 and LF2 transfer functions. 

On the scale of figure 3.4 the ideal transfer function is virtually indistinguishable from the LDI 

transfer function. Note that the LDI structure retains three points of true zero attenuation. 

This is expected as a result of the fact that a change in the coefficient values does not 

correspond to a change in the termination resistances which alone determine the peak gain. 

The most apparent deviation in the LDI transfer function is a departure from the equi-ripple 

passband attenuation which is characteristic of the prototype of figure 1.2. In the low end of 

the passband, the attenuation slightly exceeds the ideal attenuation of 0.011 dB, while in the 

high end of the passband, the maximum attenuation is slightly less than the ideal value. The 

WDF structure departs from the ideal response with a frequency-independent attenuation of 

approximately 0.0025 dB, while the equi-ripple characteristic is essentially undisturbed. This 

is consistent with the change in effective output resistance which can accompany a change 

in coefficient values of the WDF structure. For both the direct form and lattice structures, 

the three local minima of attenuation are unequal, and there is a large maximum deviation 

from the ideal transfer function. This change is similar to what would happen to the ideal 
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Figure 3.4 : Non— ideal Passband Responses ( 14 bits fractional) 
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transfer function if the output resistance was changed and dissipative elements (e.g. resis-

tors) were added to the originally tossless LO section. The appearance of dissipation 

represents something other than a simple change of prototype element values, so this 

behavior supports the conjecture that differential changes in the direct form and lattice 

coefficient values can correspond to changes in the element types or topology of the proto-

type. For the DF1 and LF1 structures with 14-bit coefficients, the passband responses devi-

ate from the ideal so much that they cannot be plotted on the same scale as in figure 3.4. 

In practice, regardless of the structure chosen, the multiplier coefficients must be 

determined so that the realized transfer function meets some desired specification. Some 

researchers have successfully used optimization techniques to arrive at coefficient values 

which result in an acceptable transfer function with a minimum total number of coefficient 

bits [4]. While this is a useful technique for a filter which is to have fixed coefficients, it is 

less useful for a programmable filter in which the exact coefficient values are not known. In 

addition, these optimization techniques are time-consuming and complicate the filter design 

process. An alternative strategy is simply to determine by simulation the minimum number of 

coefficient bits required to implement a transfer function to within a desired accuracy. In 

either case, it is necessary to establish what amount of deviation from the ideal transfer 

function is acceptable. Orchard has pointed out [17] that it is less difficult to compensate for 

a frequency independent deviation (such as in figure 3.4 for the WDF structure) than it is to 

compensate for a frequency dependent deviation such as increased passband ripple 

because in the former case, only a single compensating gain stage is required. In addition, a 

passband attenuation which is less than the ideal attenuation will usually still meet the • 

required filter specification. With this in mind, a useful criterion for acceptability of a non-

ideal transfer function is Crochiere's "relative passband error' [19] given by 
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 x100, { relative error (0/0 =) A 
A jçA j > A 

otherwise 

(3.8) 

Here, Ama, and Amin are respectively the maximum and minimum passband attenuations (in 

dB) of the non-ideal transfer function and A is the difference between the maximum and 

minimum passband attenuations (in dB) of the ideal transfer function. Using this criterion, if 

the ideal transfer function has the maximum acceptable passband ripple, the required 

number of coefficient bits is the minimum number which yields a relative passband error of 

zero. 

3.2. Overflow 

Just as the multiplier coefficients of a real digital filter must be represented in a finite 

number of bits, so must the signal values. When a signal value occurs which is too large (in 

magnitude) to be represented in the number of bits available, a condition of overflow arises. 

Since overflow results in the loss of information in the most significant end of the signal, it 

can lead to large amplitude errors (with respect to the signal values encountered in the 

corresponding ideal filter). To illustrate the effect of overflow, figure 3.5 shows two 

responses of the filter in figure 3.1 to the driving sequence u(k) given by: 

u(k)= f, 27,80,0,-127,-127,---40,60,40,20,0 k=0,1,2,",9. (3.9) 

The solid response is for the filter implemented with 20-bit (integer) signal values where no 

signal overflow occurs. The dashed response is for the filter implemented with 8-bit (integer) 

signal values. In this case even though the ideal output values are all representable in 8-

bits, internal overflow leads to large deviations from the ideal output. 

Due to the large magnitude of the errors introduced by overflow, it must be prevented 

during the normal operation of an actual digital filter. In order to eliminate overflow errors, 

careful consideration must be given to their origins. Since floating-point systems are 
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Figure 3.5 : Effect of Internal Overflow 
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prohibitive in terms of the amount of hardware required for their implementation (for the pur-

poses of this research), it is assumed here that all signals are represented in a fixed-point 

binary format. In a filter implemented using delays, two-input adders, and fixed-point multi-

pliers, overflow can occur in two ways. Firstly, the addition of two signal values can result in 

a sum which requires one more bit to represent than the largest (magnitude) operand. If the 

largest operand already requires the full available word length for its expression, this can 

lead to overflow in the sum if no extra bits are available for its expression. Secondly, the 

multiplication operation can always be considered equivalent to multiplying an rn-bit integer 

signal value with an n-bit integer coefficient to form an m+n-bit product with an implicit 

binary point at some bit position. If the signal operand requires the full available word length 

for its expression, then the multiplication can lead to overflow if extra bits are not made 

available for the resulting product. One way to avoid overflow is thus to provide the poten-

tially necessary extra bits at the output of each addition or multiplication operation. While 

this is possible for a non-recursive filter, it is not possible for a recursive structure. In the 

latter case, there exists some path from the output of an adder or multiplier back to its input. 

Attempting to accommodate all possible bit growth in such a loop would require an infinite 

number of signal bits. Instead, at some point in the loop, the increased number of bits must 

be truncated down to the number of bits in the input to the "first" operation in the loop (of 

course the choice of which operation is the "first" is arbitrary). At the point of truncation, 

overflow is again possible. 

In a digital filter, the result of an operation which results in overflow may be passed, 

possibly through a series of delays and/or truncations, to the input of an adder, to the input 

of a multiplier, or to the filter output. In a properly designed filter enough signal word bits are 

present at the output to represent the signal levels expected under normal operating condi-

tions, thus if no interior overflow occurs, overflow at the output is not a problem. The effect 

of overflow in the interior of a digital filter depends strongly on the type of arithmetic used in 

the filter. Figure 3.6 compares the addition of six values in a three bit sign-and-magnitude 
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data 

Sign- and-Magnitude 
result interpretation 

001 1 1 
+010 = 011 3 +2 
+ 0 11 = 0 10 2 (overflow) +3 
+ 0 10 = 0 00 0 (overflow) +2 
+111 = 111 -3 -3 

+ 1 10 1 01 -1 (overflow) -2 

data 
Two's Complement 
result interpretation 

001 
+010 
+011 
+010 
+101 
+110 

=011 

1 1 
011 3 +2 

= 110 -2 (overflow) +3 

000 0 +2 
= 101 -3 -3 
= 011 3 (overflow) -2 

=3 

Figure 3.6 : Example Additions 
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arithmetic system with the same addition in a three bit two's complement [20] arithmetic sys-

tem. Note that truncation to three bits results in intermediate overflows in both systems, but 

that only the two's complement system determines the correct result, namely: 

1+2+3+2-3-2=3, (3.10) 

which is representable without overflow in both arithmetic systems. It is a property of two's 

complement arithmetic that the addition of values which would ideally yield a result 

representable without overflow will yield the correct result irrespective of any intermediate 

overflows [21]. The only requirement for this to hold is that the result must be truncated to 

the smallest number of bits in which any addend is represented. Consequently, overflow at 

the input to an adder is not a problem in a two's complement system since it can tolerate an 

arbitrary number of intermediate addition overflows, but it can lead to errors in a sign-and-

magnitude system. 

In both two's complement and sign-and-magnitude systems, overflow at the input to a 

multiplier will result in large magnitude errors as shown in figure 3.7. In this figure asterisks 

represent bits lost due to the assumed overflow of the rn-bit input data, and the n-bit multi-

plier coefficient is assumed to be non-integral with an implied decimal point between the 

second and third bits (for definiteness). The information lost due to overflow in the input data 

propagates into the most significant n bits of the result of the multiplication. In a sign-and-

magnitude system, this error can never be tolerated, since any subsequent operation which 

relies on the result of the multiplication (including the output operation) may be in error. In a 

two's complement system, the only way that this error can be tolerated is in the unlikely 

event that the result is used as one input to a sequence of additions in which the sum is 

both free from overflow and truncated below the propagated error from the multiplication. 

For all multipliers which have a signal path from their output back to their input this condition 

will not be met because the result of the multiplication will somewhere have to be truncated 

to exactly the same format as the input. This results in inclusion of overflow error in the trun-
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truncate 

rn-bit product t*i*iPmt iP3i 

Figure 3.7 : Overflow Propagation 
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cated product whenever the multiplier coefficient is non-integral as shown in the last line of 

figure 3.7. For all practical purposes, overflow must therefore be prevented from occurring at 

the inputs to multipliers for both two's complement and sign-and-magnitude systems. 

Having identified the points in a digital structure for which overflow must be avoided 

(the output and multiplier inputs for two's complement and sign-and-magnitude systems, and 

adder inputs for sign-and-magnitude systems), a method is required for establishing a sys-

tem word length which will prevent the overflow. Such a method can be developed by con-

sidering the operation of a filter when overflow is not encountered. When overflow is avoided 

at the critical points, the operations of addition and multiplication proceed without error and 

the only deviation from ideal operation is the errors introduced in the least significant end of 

the signal by truncation operations. These errors are bounded however (the bounding value 

depending on the type of truncation used), so the operation of the digital structure without 

overflow can be modelled by an ideal linear digital filter which matches the actual structure 

with the truncation operations replaced by bounded error inputs. If there are n truncation 

operations, and m critical nodes at which overflow must be prevented, the signals s(k)1 at 

each of these nodes can be expressed by the convolution summations: 

k n  

s(K)j= hXk-j)tJU) + Eb1i(k-Oe,(,) /= 1,2,3, 
160 1iO 

(3.11) 

where u(k) is the input sequence, h1(k) is the response sequence at critical node ito a unit 

sample input, b11(k) is the response sequence at critical node / to a unit sample input at trun-

cation node I, and e4(k) is the error input sequence at truncation node L If the input 

sequence is bounded by M and the n error sequences are bounded by N, then using (3.11) 

the maximum potential signal values at the critical nodes can be determined as: 

Is(k)11≤MIh,{j)I+IVIb,XI /= 1,2,3,,m (3.12) 
1=0 

for any value of k. For stable digital filters, the unit sample responses h,k) and b1Xk) will be 
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absolutely convergent, and signal bounds for the critical nodes can be practically determined 

by computing the sums in (3.12) to some number of terms where the incremental change 

becomes acceptably small. If the actual digital structure is built with enough bits at each crit-

ical node to accommodate the largest possible signal values thus determined, overflow 

errors will be prevented. 

3.3. Signal Quantization 

As discussed in section 3.2, once overflow is prevented at the critical nodes a digital 

filter behaves as an ideal linear filter with multiple error inputs. The errors are the result of 

truncating the signal values within the filter. This truncation essentially quantizes the internal 

signal resolution so that the smallest representable signal change is some finite (as opposed 

to infinitesimal) value. Although this signal granularity does not give rise to gross distortion 

as does overflow, it can lead to low-level effects which are troublesome. Figure 3.8 shows 

two output responses of the filter of figure 3.1 to an input sequence u(k) given by 

u(k)= —8,6,O,O,O,",O k=O,1,2,",1OO. (3.13) 

The solid response results from unquantized internal signals, while the dashed response 

results from the internal signals being quantized to integers. The truncation in this case was 

applied immediately following each multiplication operation, and was of the two's comple-

ment type. Instead of asymptotically approaching zero as the unquantized response does, 

the quantized response becomes a stable periodic oscillation with a constant offset. This 

type of oscillation is known as a zero-input limit cycle. The error sources which model signal 

quantization are sometimes crudely treated as independent noise sources, and their effects 

are summarized by some noise power spectral density at the filter output [22]. This 

approach does not adequately describe effects such as limit cycles, which result from corre-

lation between the signal and the error sequences. Substantial efforts have been devoted to 

determining bounds on the amplitude of limit cycle oscillations which can occur in digital 
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Figure 3.8 : Effect of Signal Quantization 
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filters; such bounds and practical approaches to reducing the effects of signal quantization 

are the subject of the next chapter. 



CHAPTER 4 

LIMIT CYCLES AND NOISE 

Signal quantization in a digital filter leads to small magnitude output deviations (with 

respect to a continuous signal filter) which deteriorate the quality of the filtering by introduc-

ing digital "noise". It is desirable to have techniques for bounding the magnitude of this digi-

tal noise so that signal levels can be set above it. One particularly troublesome type of 

"noise" is a limit cycle, in which the output of a filter oscillates indefinitely after the input sig-

nal has gone to zero or some constant level. In this chapter techniques for bounding limit 

cycles and noise are presented. For the analysis presented in this chapter, it is useful to use 

the state representation of a digital filter. The state representation reduces the single n1h 

order difference equation (1.6) which describes an ideal filter to a set of m coupled first-

order equations. Under zero input conditions the state representation allows the ideal filter 

operation to be described by the single compact matrix expression 

x(k-i-1) = Ax(k), (4.1) 

where x(k) is the (m x 1) state vector describing the system at sampling instant k, and A is 

the (m x m) constant state matrix describing the system under zero input conditions. 

4.1. A General Limit Cycle Bound 

Considerable work has been done with the aim of determining reasonable bounds for 

the amplitude of limit cycles ([23] - [27]), but many of the proposed bounds are difficult to 

apply to high-order filters ([23], [25]), or apply only to certain filter structures ([25], [26]). 

Here, a method is presented for computing limit cycle bounds which is applicable to any 

filter whose zero input operation can be expressed by the non-linear difference equation 

49 
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.(k+1) = F[AR(k)], (4.2) 

where the ^ indicates the fact that non-idealities are present. F[.] is a non-linear quantiza-

tion operation, which reflects the effects of internal signal quantization. Although the deriva-

tion of the bound is developed for systems under zero input conditions, the results are ident-

ical for a system operated under constant input conditions when a simple translation of the 

state coordinates is introduced. The general bound developed in this section establishes the 

framework for tighter bounds presented in sections 4.1 and 4.2, although these bounds are 

applicable only under zero input conditions to systems operated under a particular quantiza-

tion scheme. 

It is assumed that the infinite precision autonomous discrete filter 

x(k-i-l)=Ax(k) (4.3) 

is stable (i.e. the eigenvalues of A all have moduli less than one), and that a linearly 

independent set of right eigenvectors of A exists (a requirement which is usually met for 

practical filters). A Liapunov function [28] L(x) for the infinite precision system can then be 

defined as: 

L(x) = DT 1xII, (4.4) 

where 'll denotes the Euclidean norm, and T is the matrix of normalized right elgenvectors 

of A. Clearly L(x) is positive definite, and it is a Liapunov function as follows: 

L(x(k+1)) = L(Ax(k)) = IIr1ATr1x(k)II (4.5a) 

= IIAAT 1x(k)II (4.5b) 

≤ IIAAII DT1x(k)II = IA L(x(k)) (4.5c) 

(4.5d) 

where AA is the diagonal matrix of eigenvalues of A, and XM is the eigenvalue of A with 

maximum modulus. Under infinite precision operation, Liapunov stability theory thus assures 

asymptotic stability to the origin under zero input conditions and to the equilibrium state 
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under constant input (as expected for a stable linear system). The same is not true for the 

finite precision non-linear system. However if the relations 

L((k+1)) < L(g(k)) , for all k(k) 4 F (4.6a) 

(k+1) E F, for all (k) € F (4.6b) 

hold, where r' is some region in the state-space, this is sufficient to ensure asymptotic sta-

bility to the region r under zero input conditions, and any zero input limit cycles must there-

fore lie within F. Alternatively stated, (4.6a) forces trajectories which start outside r into the 

region r, and (4.6b) insists that once a trajectory has entered r, it is confined there. 

In order to determine the region r, it is assumed that F[x] has the property 

L(F[x]) ≤ L(x) + Le (4.7) 

for some constant M. Then 

L((k+1)) = L(F[Af?(k)]) ≤ L(A(k)) + Le (4.8a) 

≤ PI L((k)) + Le 

where (4.5) has been utilized. If the constraint 

I?M L((k)) + Ae < L((k)) 

is imposed so that (4.6a) is satisfied, it is found that 

L((k))> Ae 

and any limit cycles must therefore be confined to the region bounded by 

L(x)=  Ae  
1 lAM 

(4.8b) 

(4.9) 

(4.10) 

(4.11) 

since (4.8) ensures that (4.6b) is also satisfied by this choice of boundary. It remains to be 

shown only that (4.7) is valid for some types of quantization. In fact, this relation holds for 

any non-linearity which maps its argument into some bounded region enclosing the argu-

ment. In particular, for any non-linearity F[.] with the property that 
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IIFEx1—xll≤p (4.12) 

where p is some constant, (4.7) holds. This can be seen most clearly by expressing L(x) in 

a new coordinate system. Note that 

L2(x) = xTr1'r 1x = XTSX (4.13) 

where S T' r' is a real symmetric matrix and the superscript ' denotes complex conju-

gate transpose. Thus S can be decomposed as follows [29]: 

S= QASQT (4.14) 

where Q is an orthogonal norm-preserving real matrix (i.e. IIQxII = IIxJl, for all x and 

QTQ = of the normalized eigenvectors of S and As is the diagonal matrix of ( real) eigen-

values of S. A new coordinate system is defined as 

so that 

y= QTX (4.15) 

L2(x) = XTSX = xTQAsQTx = yTAsy (4.16a) 

= l.Ljy+JL2ji + • (4.16b) 

where p1, 42, ,lIn are the eigenvalues of S. The level surfaces of L(x) are thus n-

dimensional hyper-ellipses, whose axes lie along the y coordinate axes, i.e. Q is a rotation 

matrix which rotates the x system into alignment with the axes of L(x). The maximum rate of 

increase of L(x) is thus equal to a constant '.Jji in a direction along the yj axis corresponding 

to the largest eigenvalue gj of S. If property (4.12) holds, a suitable choice for Ac is thus 

given by 

Ae=Vjip. (4.17) 

The property (4.12) is valid for three commonly used quantizations: 

I) rounding quantization 
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F[x]1 = round(x1) 

ii) two's complement quantization 

F[x]i= floor(xi) 

p=-Fn 

iii) sign-magnitude quantization 

Ffxj, = sign (x1) floor( x4) 

p=Th 

where n is the system order and the floor(.) and sign(.) functions are defined as 

floor(x1) = greatest integer :5 x1 

•_11 
,sign(x1) = x1≥0 
, xi< 0 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24a) 

(4.24b) 

It is important to note that these quantizations refer only to the nature of the non-linearity 

involved, and do not imply any particular arithmetic system. (The two's complement and 

sign-magnitude quantizations described above are so named because they are the non-

linearities resulting respectively from the truncation of the fractional portion of a value 

represented in binary two's complement or sign and magnitude form.) 

The region described by (4.11) implies absolute bounds on the individual states x, as 

can be seen by introducing yet another coordinate transformation 

Z=y=VAQTX (4.25) 

where 4A-s represents the matrix resulting from taking the positive square root of each ele-

ment of A. In this coordinate system 

L(x) = JXTQ\/ASTTKQTX= IIzjI (4.26) 

and the absolute bounds on the individual states can be determined by solving for max(x1) 
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subject to 

(4.27) 

However, since x1 is simply the dot product of z with row i of QjAs 1 (i.e. x,— [QJXT1z]), 

the solution to this maximization problem can be determined by inspection as setting z equal 

to Ae  times the normalized row i of QJAj1. The absolute bounds on the states x1 are 
1—17MI 

then given by 

IxiI ≤ 
1—I2 

Ae'feTQA QTe. 
(4.28) 

where e1 is the /h column of the identity matrix, and the quantity under the square-root is 

simply the square of the norm of row lot Q'j'. Table 4.1 summarizes the computations 

required to determine the absolute amplitude bounds on the states, and table 4.2 shows 

values of ixe for typical quantizations. 

If the system is operated under constant input uc so that it is described by 

x(k-i-1) = Ax(k) + bu 

then a simple coordinate translation given by 

= X -  Xe 

will transform the system to 

(4.29) 

(4.30a) 

Xe  Axe + bUc (4.30b) 

y(k+1) = Ay(k) (4.31) 

which is exactly the same form as (4.3). The results developed for systems operating under 

zero input conditions are therefore applicable to the constant input case by simply consider-

ing the origin to be the new equilibrium point Xe. 
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(k+1) = F[A(k)J 

AA = r1AT I2"MI = max,tAA ui) 

S= 7-1 7-1 

= QTSQ gm= maxXtAsj,]) 

L(x) = llT 1xtI L(F[x]) ≤ L(x)-i-Lie 

Vt < 
Ae\JeTQA QTe. 

- 

Table 4.1 : Summary of bound computations. 

QUANTIZATION M 

rounding 

two's complement 

sign-magnitude 

2 

n = system order 

Table 4.2 : Lxe for different quantizations. 

4.2. Second Order Sections 

For second order filters operating under sign-magnitude quantization, the correlation of 

quantization with signal sign can be used to reduce the bound (4.28) with Ae = JjI5 by 

reducing the value substituted for ike. Figure 4.1 shows a constant energy ellipse L(x) = c, 

the state (x) coordinate axes, and the y coordinate axes (as defined by (4.15)) which are 

aligned with the ellipse. It can be shown (see Appendix) that the maximum value of L() 

attainable through sign-magnitude quantization of x to R occurs when k is either point U or 

V, and that Lxe in (4.7) is therefore bounded by 



Figure  4.1: Geometry of L(x) 
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where 

Ae < max 
(0=0,90-0) [ji2cos2(4) + j.11sin2(4)] 112 

6 1 - IJ2tPi  

- cot() + hL2IiL1 tan(4) 

(4.32) 

(4.33) 

t1 ≥ t2 are the eigenvalues of S, and 8 = cos 1(Q11 ) (with Q and S as defined by (4.13) and 

(4.14)). Thus for the second order system under sign-magnitude quantization, the bound 

(4.28) is replaced by 

&'Jt1ji2eTQA QTe, 

x,1 (1 - PiI)[i12cos2() + 
(4.34) 

where 6 and 4 are as defined by (4.32) and (4.33). It is worth noting that as j.t2/p.1 

approaches unity, or as 8 approaches 00 or 90°, 6 approaches zero, and the region in which 

limit cycles may exist becomes vanishingly small. In the limiting cases, the Liapunov function 

L(x) as defined by (4.4) simply becomes the Euclidean norm (or a weighted form of it) of the 

states, so that effectively L(x) = IIxII. Under sign-magnitude quantization, II ≤ IIxU so the 

infinite precision Liapunov function is also a Liapunov function for the non-linear system in 

these limits. Filters with normal state matrices [30] (i.e. ATA = AAT) such as the second 

order coupled form satisfy both of these limits, and so are free of zero input limit cycles 

under sign magnitude quantization. 

4.3. Higher Order Sections 

Substantial work has been done in the exact design of high-order low sensitivity digital 

filters both as all-pole ladder structures [31]-[33] and elliptic filters such as the LDI and WDF 

structures designed directly from doubly terminated analog LC ladder prototypes. These 

filters are not always possible to consider as simply a collection of second-order sections, 

and consequently limit cycle bounds for filters of order higher than two are of considerable 
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interest. The substantial bound reduction achieved for second order sections suggests a 

similar technique might be successfully applied for higher order sections operated under 

sign-magnitude quantization. Unfortunately, analytic expressions analogous to (4.32) and 

(4.33) have not been determined due to the difficulty of applying geometric interpretations in 

higher order spaces. Nonetheless, the basic idea of using the correlation of quantization 

with signal sign to reduce the value substituted for Ae in (4.7) remains valid for sections of 

arbitrary order. In this section a computational bound based on this concept is presented. 

For the computational procedure the problem is formulated in terms of L2(x) rather 

than L(x) so equations (4.7) - (4.11) are no longer valid. However a similar set of equations. 

can be derived by assuming that F[x] has the property 

L2[F[x]J ≤ L2(x) + aL(x) + 3 

for some positive constants c and P. Then 

L2[(k+1)] ≤ L2[x(k+1)]+aL[x(k+1)]--f3 

and if the relation 

(4.35) 

(4.36) 

L2[x(k-i-1)] + aL[x(k+1)] + 0 < L2[5(k] (4.37) 

can be satisfied, this implies 

L2[(k+1)] < L[(k)] (4.38) 

and similarly to (4.6), zero input limit cycles are again confined to some region. Noting that 

(4.5) implies 

L2[x(k+1)] ≤ L2[f(k)} (4.39) 

relation (4.37) will hold provided 

(I? Ml2 - l)L2[.k(k)] + aI1L[.k(k)] + P < 0 (4.40) 

is valid. Since I2 2 - 1 < 0 by the stability assumption, (4.40) will hold for all L(.(k)) greater 
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than the largest solution to 

(RMI2 - 1)L2[(k)] + ccl 1L[(k)] + 0 = 0 (4.41) 

which will be denoted as LM. Zero input limit cycles must then be confined to the region 

bounded by 

L(x) = LM. (4.42) 

The problem is thus reduced to one of finding constants cc and P such that (4.35) is 

satisfied. 

For filters operated under sign-magnitude quantization, the problem of determining cx 

and P can be approached by attempting to maximize the quantization error function 

E(x) = (x + LX)TS(X + Ax) - XTSX (4.43) 

subject to the constraints 

x4x1≤O (4.44) 

L2(x) = XTSX= c (4.45) 

1Ax11 < 1 (4.46) 

x,1 <lxil (4.47) 

where c is an arbitrary positive constant, and Ax is the error vector defined by 

Ax = F[x] - x. (4.48) 

The numerous inequality constraints and the non-linear nature of (4.44) make this problem 

very difficult to approach from either an analytic or computational standpoint, so a solution to 

the problem is attempted with constraint (4.47) removed and Ax considered to be indepen-

dent of x (essentially removing constraint (4.48)). The removal of constraints does not 

decrease the maximum of (4.43), so using the solution of the problem with fewer constraints 

to determine a and P merely adds some pessimism to the limit cycle bounds. 
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Even with the constraints removed, an analytic solution of the maximization problem 

does not seem likely. However, certain features of the problem can be used to reduce the 

number of possible solutions to a finite set over which E(x) (which, under the removal of the 

constraints as discussed above, actually becomes E(x4x)) can be computed. The absolute 

maximum can then be determined by comparing the values at each of the potential solution 

points. The main simplifying property of the problem is that Ax must lie entirely on the con-

straint boundary implied by (4.44) and (4.46). This can be seen by differentiating E(x4x) 

with respect to the elements of Ax: 

DE - k+ 2S1 x1 
DAXI 

a2E 
= 2S11> 0 

(4.49a) 

(4.49b) 

where S is as defined by (4.13) and has positive diagonal entries, and kE is a constant. 

Since (4.49) implies that any local extrema in E(x4x) due to Ax are minima, the maximum 

value of E(x4x) must therefore lie on a constraint in Ax. Potential solutions to the problem 

then have the property that Ax1 is one of 0, 1, or -1, and the maximum can be determined by 

maximizing E(x4x) in x for each candidate Ax, then comparing the resulting values of 

E(x4x). The problem is thus reduced at each stage to one of maximizing the intermediate 

function (which is the only variable term of E(x4x) when Ax is considered constant) 

1(x) = 2AxTSx (4.50) 

subject to (4.45) and 

±x1≤0 (4.51) 

with the ± determined by the signs of the constants Ax1. 

If the foregoing problem is re-stated in the z coordinate system as defined by (4.25), 

the constraint (4.45) becomes simply 
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and 1(x) is given by 

where ' is given by 

Constraint (4.51) becomes 

where 

L(x)= 11211= C 

1(x) = I'(z) = TTZ 

= 2QLX. 

[-Bz],≥ 0 

B=±QJX 1 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

with the ± indicating that the rows of Q'/7 -' are multiplied through by the sign of Lx1, or set 

to zero if Lx1= 0. 

Examining (4.53), it is evident that maximizing P(z) is a matter of minimizing the angle 

between the constant vector y and the fixed length vector z, subject to constraint (4.55). The 

direction of the solution vector will be independent of the arbitrary constant c, so that if we 

denote by z0 the solution with c = 1, the solution for any c is given by z = cz0. Clearly then, 

the maximum value of P(z) is proportional to c through the proportionality factor Ih'TzoII, and 

for fixed Ax 

L2(F[x]) - L2(x) ≤ E(x4x) ≤ IIyTz0 llc +, TSAx 

Comparing (4.57) with (4.35), a suitable choice for a and P is 

a= IITTzoII 

= ixTStx 

(4.57) 

(4.58a) 

(4.58b) 

where y is given by (4.54). The procedure for determining the region in which limit cycles 

must be confined has thus been reduced to one of computing z0 for every candidate Lx, 
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then using (4.58) to determine the maximum solution of (4.41). The maximum of these solu-

tions over all candidate Ax becomes the LM of (4.42) and determines the region in which 

limit cycles must lie. The only remaining problem is the determination of z0 given Ax. 

Interpreted geometrically, constraint (4.55) requires that z lie in or on a convex cone C 

bounded by the hyper-planes passing through the origin which are described by the rows of 

-B. Equations (4.54) and (4.56) imply [-By]1 ≤ 0 so that y must lie outside C for any non-

zero Ax (since ' cannot satisfy (4.55)). Minimizing the angle between z and T (in order to 

maximize !'(z)) thus constrains the solution z0 to lie on the surface of C, hence z0 will simply 

be the normalized projection of 'y onto a hyper-plane bounding C or the intersection of two or 

more such hyper-planes. Figure 4.2 shows an example of this geometry in three dimen-

sions. Since removal of constraints in a maximization problem will not reduce the maximum, 

z0 can be determined by projecting y first onto each hyper-plane bounding C, then projecting 

onto the intersection of each distinct pair of hyper-planes bounding C, then the intersection 

of each distinct triple of hyper-planes and so on until a result which satisfies (4.55) is 

obtained. If the maximum of !'(z) is positive (i.e. the angle between y and C is less than 900 

at some point), this procedure will produce the solution. If the maximum of P(z) is negative, 

the above procedure will continue until y is being projected onto a zero space (i.e. the inter-

section of n distinct hyper-planes where n is the system size), yielding the zero vector as 

the solution. In this case, the actual solution must lie along an extremal ray of C [34] which 

is described by the intersection of n-i distinct hyper-planes bounding C. Since there are 

only n such extremal rays, the solution which maximizes !'(z) can be determined by compar-

ing the values obtained along each ray. 

To actually compute the projection of y (denoted by y') onto the intersection of a sub-

set of the hyper-planes bounding C, it is just necessary to note that each row of -B is nor-

mal to one of the bounding hyper-planes, hence the intersection of m hyper-planes bounding 

C is the orthogonal complement of the vector space V spanned by the corresponding m 
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Figure 4.2 : Projection of - Onto Cone C 
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rows of —B. These rows may be reduced by a standard procedure such as Gram-Schmidt 

orthogonalization to yield an orthonormal basis (v1, v2, -, Vm) of V, at which pointy' can 

be computed as 

mv,T1 
I =  

1=1 U 
(4.59) 

The preceding discussion completely describes a computational procedure for deter-

mining the value LM which defines the region in which zero input limit cycles must lie for sys-

tems operated under sign-magnitude quantization. By comparison to (4.11) and (4.28), 

(4.42) determines absolute amplitude bounds on the individual states as given by 

Ix,1 ≤ Lm4eTQA7d QT01 

where e1 is again the /17 column of the identity matrix. 

(4.60) 

4.4. A General Noise Bound 

While the limit cycle bounds presented in the preceding sections provide useful and in 

some cases quite tight bounds on the amplitude of limit cycles, they suffer from two 

shortcomings. Firstly, the bounds apply only to limit cycles under prescribed input conditions 

and hence do not provide any information about how far the filter output can deviate from 

that of an ideal continuous filter under arbitrary input conditions. Secondly, they require that 

truncation occur only at the input to the delay (state) elements. Depending on the filter struc-

ture, this condition can be difficult to achieve in practice. In addition, the bounds which rely 

on sign-magnitude truncation characteristics suffer from the disadvantage that for particular 

filter architectures (discussed in detail in chapter five) it is quite difficult to implement sign-

magnitude truncation. 

A useful bound which overcomes the foregoing limitations can be determined by con-

sidering equation (3.11). If the output of the filter is considered to be a critical node, (3.11) 

shows that the component Oe(k) of the output due to the truncation operations is given by: 
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n  

00(k) = vk—j)e(j) (4.61). 
1=11=0 

where v,(k) is the response sequence at the output to a unit sample input at truncation node 

I, and e,(k) is again the error input sequence at truncation node I. Using the bounded nature 

of the error sequences, an absolute bound on the noise component of the output is found to 

be: 

I0e(k)I ≤ NZIv,(i)I 
/=11=0 

(4.62) 

for any value of k, where N is the bound on the error sequences. The bound (4.62) applies 

to a digital filter under arbitrary input conditions, requiring only that the filter be free of inter-

nal overflow so that (3.11) remains valid. While (4.62) is more pessimistic than other noise 

bounds which are typically applied [24], it has the advantage of being an absolute bound, 

and is in fact less pessimistic in some cases than the bound described in section 4.3, which 

is itself less pessimistic than previously reported bounds applicable to filters of order higher 

than two [35]. To illustrate this point, table 4.3 compares the bound (4.62) with the bound 

described in section 4.3 when applied to the 6th-order LDI bandpass structure considered in 

[35]. 

Bound ound 
expression (4.62) section 4.3 

xl 22 29 
x2 14 27 
x3 20 30 
x4 29 32 
x5 22 29 
x6 14 27 

Table 4.3 : LDI Bound Comparison 
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Just as the overflow bound (3.12) can be practically approximated for stable filters, so 

can the noise bound (4.62). Once the output noise level is bounded, an actual digital filter 

implementation can guarantee that any required level of noise will not be exceeded simply 

by scaling the input signal up by a factor a and the output signal down by the reciprocal fac-

tor 1/a. The overall transfer function is not changed by these scaling operations, but the out-

put noise is reduced by the factor 1/a. When the input is scaled up it is of course necessary 

to increase the internal signal word length correspondingly at the critical nodes in order to 

ensure that overflow is prevented. 



CHAPTER 5 

SIZE ESTIMATES AND CHOICE OF STRUCTURE 

In chapters three and four, techniques were described which allow non-ideal effects to 

be eliminated (in the case of overflow) or reduced to acceptable levels (coefficient and sig-

nal quantization). Before these techniques can be applied however, a particular filter struc-

ture must be chosen. In selecting a structure from those presented in chapter two, there is 

no single best choice since each structure has different non-ideal performance which 

depends on the desired transfer function. Since the goal of this research was to produce a 

filter with a programmable transfer function, no single transfer function could reasonably be 

chosen as a basis for the comparison of non-ideal effects within the structures. Instead, a 

set of transfer functions was determined which represented a range over which it was felt 

that a practical programmable filter should operate (this range is of course subjective). In 

order to compare the non-ideal performance of the structures, it was required that each be 

capable of implementing all transfer functions of the representative set with zero relative 

passband error, freedom from overflow with 16-bit input, and output noise less than one 

least-significant bit. In order to meet the foregoing requirements, each structure requires a 

certain minimum number of coefficient and signal bits. In this êhapter these minimum 

requirements are used to make initial estimates of the hardware cost of each structure. 

Based on these estimates and other qualitative factors a structure is chosen for the filter 

implementation. 

5.1. Representative Transfer Functions 

In determining the representative transfer functions, three parameters were considered 

to be of interest: relative bandwidth, center frequency, and passband ripple. The set of 

67 
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representative transfer functions is composed of the 27 possible combinations in which 

these parameters range over three values deemed to be "high", "medium", and "low". For 

each representative transfer function the minimum stopband attenuation is 30 dB. Relative 

bandwidth is defined as 

relative bandwidth (%) = Pu - 921) x100 (5.1) 

where f,, ≤h and ≤Z are respectively the upper, lower, and geometric center frequencies of 

the passband as given by 

Q u = f<2ir (5.2) 

ci= fp<2ic (5.3) 

(5.4) 

Here, fu and f1 are respectively the upper and lower passband edge frequencies, where the 

attenuation just exceeds the maximum passband attenuation. The "low", "medium", and 

"high" values of the parameters for the representative transfer functions are shown in table 

5.1. For a sample frequency of 40 kHz the low, medium and high center frequencies are 

600 Hz, 2400 Hz, and 10000 Hz respectively. These frequencies were chosen so that using 

the high value for relative bandwidth the audio frequency range is roughly partitioned into 

Parameter Low Medium High 

relative bandwidth 

cT 

passband ripple 

6% 

0.037c rads 

0.011 dB 

24% 

0.l2it rads 

0.098 dB 

96% 

0.5ic rads 

1.25 dB 

Table 5.1 : Representative Parameter Values 
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logarithmic thirds as shown in figure 5.1. The low, medium and high values for relative 

bandwidth were determined by requiring that the medium-to-low and high-to-medium ratios 

be approximately four as for the center frequency parameter, as well as by insisting that the 

low value for relative bandwidth be on the order of a few percent, which is the typical limit 

for conventional LC filters [36]. The ratio of medium-to-low and high-to-medium for the 

passband ripple parameter was selected to be roughly ten to give a relatively large range of 

ripple values. The actual ripple values were chosen to correspond to those used in tables of 

normalized lowpass filter component values in [36]. The component values of the prototype 

of figure 1.2 which correspond to each representative transfer function were therefore deter-

mined simply by using a lowpass to bandpass transformation [37] on a normalized lowpass 

prototype with component values determined from tables. The prototype element values 

thus determined were used in conjunction with the expressions shown in tables 2.1, 2.2 and 

2.3 to determine the multiplier values for the corresponding WDF and LDI structures. In 

order to determine the z-domain transfer function coefficients required to compute the multi-

plier values for the DFI, DF2, LFI, and LF2 structures, the LDI filters were analyzed with a 

digital filter simulation program [38]. 

5.2. Restrictions Imposed by Coefficient Quantization and Overflow 

The lowpass to bandpass transformation used to generate the prototype element 

values and the LDI filter analysis were performed using double-precision floating point arith-

metic on a VAX-1 1/750. The factoring of the representative transfer functions to determine 

the DF2 coefficients and the implementation of recursion (2.14) to determine the lattice 

coefficients were also performed in this manner. Since the double-precision format of the 

VAX allows a 56-bit mantissa (corresponding to a resolution of roughly one part in 1017), the 

multiplier values determined were considered to be essentially ideal. Using the filter simula-

tion program, each structure was analyzed over each of the representative transfer functions 

to determine the smallest number of fractional multiplier coefficient bits required to imple-
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ment the complete set of transfer functions with zero relative passband error as defined by 

(3.8). For each transfer function the ideal coefficient values were quantized using rounding 

truncation uniformly on all multipliers, starting with 30 fractional bits and proceeding down-

ward one bit at a time. The total number of coefficient bits required for each structure is the 

minimum number of fractional bits plus however many coefficient bits are required for the 

integer portion of the coefficient values, plus one sign bit. For all except the WDF and LDI 

structures, it was found that 30 fractional bits were insufficient to achieve zero relative 

passband error for some transfer functions. While this can be explained in part by the sensi-

tivity properties discussed in chapter three, it was noted that in some cases the simulated 

filters failed to meet the zero relative passband error criterion even when simulated in full 

double-precision floating point arithmetic (this was especially prevalent for the low center fre-

quency, low relative bandwidth transfer functions). 

Close examination of the simulation results revealed that in some cases the simulator 

was not determining the transfer function of the simulated filter as accurately as might be 

expected from the arithmetic precision. As a specific example, the low center frequency, low 

relative bandwidth, high passband ripple transfer function as determined from simulation of 

the LDI structure met the zero relative passband error criterion, but the DFI structure 

derived from it did not, even with full precision simulation. The transfer function coefficients 

determined by simulation of the DFI structure differed from those in the LDI transfer func-

tion in the ninth decimal place, indicating an accuracy of only one part in IO (roughly 30 

binary bits). A direct calculation using the DF1 multiplier coefficients yielded a transfer func-

tion which was accurate to at least 13 decimal places in all coefficients. No attempt was 

made to investigate the source of this inaccuracy in the simulator, as this would be outside 

the scope of this investigation due to the complexity of the program. A possible explanation 

however is that the high sensitivity of the direct form and lattice structures reappears in the 

form of numerical ill-conditioning in the simulator. This explanation is consistent with the 

results that the simulations of both the LDI and WDF structures always achieved the zero 
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relative passband error criterion. In addition, the transfer functions for which the inaccuracies 

appeared had closely clustered poles, which is a condition that typically results in problems 

which are difficult to deal with numerically [39]. In any case, it was felt that the less accurate 

simulator results should not be used to eliminate the direct form and lattice filters from con-

sideration. For comparisons involving the required number of coefficient bits it is therefore 

assumed that the direct form and lattice structures require some number of fractional 

coefficient bits greater than 30 to meet the zero relative passband error criterion. 

By simulating each structure with the multiplier coefficients quantized to the minimum 

number of bits (or 30 fractional bits for the direct form and lattice structures), a lower bound 

can be placed on the required signal word length. This can be seen by recalling that • in 

chapter three it was shown that overflow must be prevented at the inputs of multipliers for 

systems implemented in either two's complement or sign-and-magnitude arithmetic. Thus, 

regardless of the arithmetic chosen for an actual filter implementation, a minimum set of crit-

ical nodes with regard to expressions (3.11) and (3.12) is the set consisting of just the inputs 

to each multiplier. Without assuming anything about signal truncation within the structure, 

the first term of expression (3.12) can be evaluated over the minimum set of critical nodes 

to determine a lower bound on the signal word length required to prevent overflow. 

Once the number of coefficient bits and minimum number of signal bits are known, a 

lower bound on the hardware cost for implementing each structure can be determined by 

adding the hardware cost of one multiplier (assuming that one multiplier can be multiplexed 

to perform all the required multiplications) to the hardware costs of coefficient storage and 

signal storage (delay elements). By examining typical strategies for performing parallel multi-

plication [40] it can be seen that in order to multiply an rn-bit data value by an n-bit 

coefficient, the minimum hardware required is rnn two-input AND gates to form each partial 

product (the products of the data value with each of the individual coefficient bits) and 

(m-1)(n--1)-1 full adders and n half adders to accumulate the partial products. The minimum 
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hardware cost of a parallel multiplier is thus given by: 

hardware cost = mnAND + (mn-m-n)FA + nHA (5.5) 

where AND, FA, and HA respectively represent the hardware cost of a two-input AND gate, 

a full adder, and a half adder. Note that the choice of which multiplication operand is the 

data and which is the coefficient is arbitrary, so that the smaller of the two should be chosen 

as the coefficient to minimize the hardware cost as shown by (5.5). The schematics of full 

and half adders implemented with gate array elements are shown in figure 5.2. In this 

figure, the numbers indicate the number of "gate equivalents" (roughly the area required for 

four transistors) required for each logic operation. A full adder requires 10 gate equivalents, 

and a half adder requires 5. Two-input AND gates are formed using a two-input NAND gate 

followed by an inverter, each of which requires 1 gate equivalent. Each bit of coefficient or 

signal storage will require at least one bit of memory, which requires 4 gate equivalents. 

Table 5.2 shows the minimum coefficient and signal bit requirements for each structure and 

the corresponding lower bounds of the hardware cost (in gate equivalents). It is important to 

note that the figures in table 5.2 assume that a single multiplier can be multiplexed over all 

the required multiplications, and no allowance has been included for timing/control, steering, 

interface, or test circuitry. Inevitably in the detailed design of a circuit, unforeseen factors are 

encountered which impose additional hardware requirements. All of these additional require-

ments indicate that the bounds presented in table 5.2 are likely to be very optimistic. 

Using the fabrication facilities made available by the Alberta Microelectronic Centre, 

the largest die size available for the filter implementation has a capacity of roughly 10000 

gate equivalents. In order to ensure routability however, the maximum array area usage 

recommended is 80% [41], so that in effect the maximum number of gate equivalents avail-

able for the filter implementation is roughly 8000. From table 5.2 it is clear that none of the 

structures can be implemented in 8000 gates or less if parallel multipliers are used and all 

the desired performance criteria are met. Since floating point multipliers are even more 
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Hardware 
Requirements 

WDF LDI DF1 DF2 LF1 LF2 

minimum bits 25 29 >36 >32 >31 >40 
Coefficients number 9 10 11 9 13 13 

gate equiv. 900 1160 >1584 >1152 >1612 >2080 
minimum bits 23 23 45 28 51 22 

Signal delays 8 7 6 6 6 6 
gate equiv. 736 644 1080 672 1224 528 

Multiplier 
(gate equiv.) 

6535 7599 >18810 >10292 >18307 >1 0050 

Total 
(gate equiv.) 

8171 9403 >21474 >12116 >21143 >12658 

Table 5.2 : Hardware Requirement Lower Bounds 

costly in terms of hardware than parallel multipliers, the possibility of using floating point 

arithmetic in the filter implementation is also precluded. In order to successfully implement a 

complete filter within the available hardware and without compromising on performance, it is 

clear that filter elements much smaller than the parallel multiplier must be used. 

5.3. Bit-serial Architecture 

An alternative to the large parallel multiplier is a bit-serial multiplier, which has the 

advantage of requiring much less hardware for given data and coefficient lengths than the 

corresponding parallel multiplier. The general principle of bit-serial architectures is that arith-

metic operations are performed bit-by-bit on the operands to produce the result bit-by-bit 

[42]. Since a single wire can carry a signal (or operand) of arbitrary length, bit-serial 

hardware systems tend to be an improvement over parallel systems both in terms of the 

routing complexity (or area required for routing) and the hardware requirements. Because 

the results of bit-serial operations must be generated one bit at a time, it is important to 

choose an arithmetic in which the result of operations on the current bit do not influence pre-

vious bits in the result. Two's complement arithmetic meets this requirement provided that 
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operands and results are propagated from the least significant bit (LSB) to the most 

significant bit (MSB). Sign-and-magnitude arithmetic does not meet this requirement as can 

be understood by considering the addition of two values. If the values are propagated from 

LSB to MSB, the entire result remains undetermined until the last bits (which determine the 

sign of the result) are presented. If instead the values are propagated from MSB to LSB, the 

entire result remains undetermined until the last bits are presented and the effect of carrys 

can be determined. Short of performing a serial-to-parallel conversion of the operands and a 

parallel-to-serial conversion of the result (which eliminates the hardware savings), there is 

no effective way of implementing sign-and-magnitude arithmetic in a bit-serial architecture, 

hence the subsequent discussions will consider only two's complement arithmetic. 

The basic digital filtering operations of addition (or subtraction) and delay have a very 

simple form in a bit-serial architecture, while the operation of multiplication is somewhat 

more complex (as is also the case for parallel architectures). A bit-serial adder can be made 

by connecting the carry out of the full adder shown in figure 5.2 back to its carry in through 

a unit (one bit) delay. A control bit applied simultaneously with the LSBs of the operands 

sets the carry feedback delay output to zero at the beginning of each sum. In practice, the 

adder will usually have a one-bit output delay to facilitate pipelining of operations, and the 

control signal will be propagated along with the result to simplify the distribution of control 

signals. Figure 5.3 shows implementations of pipelined bit-serial adders and subtracters 

using gate-array elements. As in figure 5.2, the numbers represent the number of gate 

equivalents required for each logic operation. A delay element in a digital filter can be con-

sidered to be simply a register or memory element. Consequently, in a bit-serial architec-

ture the delay operation is a cascade of as many unit delays (one-bit memories) as required 

to accommodate the signal. Bit delays which are introduced for pipelining (as in the adder) 

are also one-bit memories, and effectively serve to distribute part of the filter delay opera-

tions to the arithmetic processing elements. 
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In a bit-serial multiplier, the basic technique of forming and summing the partial pro-

ducts is employed [43]. In contrast to the parallel multiplier however, the partial products and 

their sum are formed in a serial fashion. Figure 5.4 shows the functional diagram of a basic 

four-bit two's complement serial multiplier. In this multiplier data and coefficients propagate 

through stages which form the successive partial products and accumulate them to form the 

final product. In order to achieve a high throughput, each adder has a one-bit delay so that 

the maximum bit clock rate is limited only by the time required to perform a single bit pipe-

lined addition. A control signal is propagated along with the LSB of the data to reset the 

adder carry circuits and latch the coefficient bits. In this multiplier, all but the last stage 

replaces the LSB of the accumulated sum with a sign extension of the previous accumulated 

sum. In this way, only the most significant bits of the product are actually presented at the 

output, and the multiplier can operate continuously on rn-bit data values to produce rn-bit 

products which are the two's complement truncated version of the full product. This opera-

tion is illustrated in figure 5.5. Since the weighting of the MSB of a two's complement value 

is negative, the last stage of the multiplier must subtract the final partial product rather than 

add it as in the previous stages. It should also be noted that the data value must contain a 

sign repetition in order for the sign bit of the accumulated partial products to be correctly 

determined and extended at each stage. 

There are two potential drawbacks to a multiplier of the type illustrated in figure 5.4. 

First, it can be seen that the latency (time, between the appearance of the first data bit at the 

input and the appearance of the first product bit at the output) of the operation is twice the 

coefficient length times the bit clock period. As discussed above, the latency of a serial 

operation represents distribution of the filter delay operation. Consequently for long 

coefficients, the latency of the multiplication illustrated could conceivably be greater than the 

desired amount of filter delay. This would require that the filter delay be increased (or 

equivalently the data length be increased) with a corresponding decrease in the filter 

throughput. The second potential drawback of the illustrated multiplication method is that the 
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effective range of coefficients lies between -1 and 1 since the most significant bits of the 

product are always produced. This drawback could be overcome by following the multiplier 

by a left shift operation, but this cannot recover the less significant bits of the product, and 

hence results in unacceptably large truncation errors. 

The latency and coefficient range problems can be respectively reduced and elim-

inated by modifying the basic multiplier of figure 5.4. The first modification is to introduce cir-

cuitry which recodes the coefficient and allows each stage to add ±2, ±1, or 0 times the data 

into the accumulated partial products. This five-level recoding results in a multiplier which 

has only one stage for every two coefficient bits. Each stage has a latency of 3 bits, so the 

overall latency of the recoded multiplier is reduced in comparison to the basic multiplier. The 

method of recoding the coefficient is illustrated in figure 5.6. To allow coefficient values of 

magnitude greater than one, the circuitry is further modified so that one or more of the final 

stages can inject zero bits into the least significant end of its partial product (at the epense 

of neglecting an equal number of bits at the most significant end of the partial product), and 

begin computation of the accumulated partial products early. The number of zero injection 

stages required is the integer portion of half the number of integer coefficient bits. An added 

benefit of the modification to allow coefficients with magnitude greater than one is that the 

multiplier latency is reduced by the number of integer coefficient bits times the bit clock 

period. A modified multiplier was designed and verified using simulation software [44] in 

order to determine the hardware requirements for the stages as well as to confirm correct 

functionality. 

5.4. Bit-serial Hardware Requirements 

The bit-serial multiplier produces a result which is two's complement truncated to the 

same number of bits as the input data, so in a filter implemented with bit-serial multipliers 

the location and type of the truncation operations are fixed. In addition, the choice of a bit-

serial architecture dictates that two's complement arithmetic be used, hence overflow need 
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only be prevented at the input to the multiplications. This information along with the desired 

noise performance is sufficient to allow the computation of the bounds (3.12) and (4.62) for 

each structure over each representative transfer function. For each filter and for each 

representative transfer function, the bound (4.62) is computed based on truncation error 

sources located immediately following each multiplier, and bounded by 1 (the maximum 

error a two's complement truncation can cause). This determines an upper bound on the 

noise component of the filter output. This bound in turn determines the output scaling factor 

required to ensure that the output noise is less than one LSB, and this scaling factor in turn 

determines the bound on the reciprocally scaled input signal. With the input bound known, 

the overflow bound (3.12) can be computed to determine the required internal signal word 

length. Table 5.3 lists the worst-case noise bound and signal word length requirements 

which were determined in this manner for each structure. An input signal length of 16 bits 

was assumed in each case, and the required sign repetition bit is included in the signal word 

length requirement. 

Once the coefficient and signal word length requirements for each structure are 

known, it is a relatively straightforward task to determine lower bounds for the amount of 

hardware required to implement each of the structures with a bit-serial architecture. Table 

5.4 summarizes each structure's requirements in terms of the various parameters which 

Structure 
Noise Bound 

(bits) 
Signal Word Length 

(bits) 
LDI 12 36 
WDF 14 37 
DF1 20 66 
DF2 14 43 
LF1 5 56 
LF2 19 42 

Table 5.3 : Signal Word Length Requirements 



Parameter Symbol Structure Requirements 
LDI WDF OF1 DF2 LF1 LF2 

Integer coefficient bits I 6 0 5 1 0 10 

Fractional coefficient bits F 24 24 >30 >30 >30 >30 

Number of distinct coefficients c 6 9 9 9 13 13 

Signal word length S 36 37 66 43 56 42 

Number of register (delay) operations R 7 8 6 6 6 6 

Number of adders A 14 20 9 7 12 18 

Number of subtracters D 4 14 2 4 6 6 

Table 5.4 : Structure Requirements Summary 
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influence hardware requirements. Each register (delay) operation requires S unit delays. 

Since the multiplier coefficients must be delivered serially to the multiplier, it is assumed that 

coefficient storage will also be in unit delays. Each distinct coefficient therefore requires 

li-Ft-i unit delays (the 1 is for the sign bit), and the total number of unit delays required for 

signal and coefficient storage can be estimated by: 

storage unit delays = RS+ C(I+F+l). (5.6) 

Each unit delay requires at least 5 gate equivalents, so the minimum storage requirement is 

given by: 

storage requirement = 5RS-i. 5C(I+Fi-i) (5.7) 

where it is understood that the unit of hardware requirement is the gate equivalent. Similarly, 

the requirement for adders and subtracters is given by: 

add/subtract requirement = 20A + 21 D (5.8) 

where the requirement for individual adders and subtracters has been determined from 

figure 5.3. Note that the output unit delays were not included in this determination as it is 

assumed that they will form part of the (already counted) delay registers. From the serial 

multiplier designed for verification, it was found that each fractional stage required 117 gate 

equivalents, and each integer stage required 122 gate equivalents. The multiplier hardware 

requirement can therefore be expressed by: 

multiplier requirement = 122f100r(f ) + 1171 i-It-i) floor(f)F (5.9) 
2 

where it is assumed that I4FZt1 is even. Since the recoded multiplier always incorporates an 

even number of coefficient bits, if this sum is odd it must be increased by one for the com-

putation of hardware requirements. The sum of the storage, add/subtract and multiplier 

requirements provide a lower bound on the hardware required to implement each structure 

in a bit-serial architecture. Table 5.5 shows the lower bounds determined for each structure. 
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Structure 
Requirement 

Storage 
(gate equiv.) 

Add/Subtract 
(gate equiv.) 

Multiplier 
(gate equiv.) 

Total 
(gate equiv.) 

LDI 
WDF 
DFI 
DF2 
LF1 
LF2 

2220 
2650 
>3600 
>2730 
>3760 
>3990 

364 
695 
222 
224 
366 
486 

1887 
1521 
>2116 
>1872 
>1872 
>2482 

4471 
4866 
>5938 
>4826 
>5998 
>6958 

Table 5.5 Serial Hardware Requirements 

Recalling that roughly 8000 gate equivalents are available for the filter implementation, it is 

conceivable that any of the structures could be implemented based on the values in table 

5.5. It is important to remember however that these figures are lower bounds only because 

they do not include hardware requirements for timing and control, testing, interlace, multi-

plexing, or unforeseen circuitry. The hardware requirements for this additional circuitry can-

not be known with any accuracy until a detailed design is attempted. The choice of which 

structure for which to attempt a detailed design is therefore determined more by qualitative 

issues than quantitative ones. 

5.5. Choice of Structure for Implementation 

It has already been seen that in some cases it is difficult to accurately determine the 

multiplier coefficients for the direct form and lattice filters. From the standpoint of the filter 

user, this makes these structures less attractive because the effort required to implement a 

desired transfer function is increased. Even in the cases where the coefficients can be 

determined without accuracy problems, the procedures for determining them require simula-

tion, factorization, and a complex recursion as opposed to the relatively straightforward 

application of a few equations as for computation of the LDI and WDF structure coefficients. 

In addition, the longer signal word lengths required for the direct form and lattice filters result 

in potentially lower throughput for these structures than for the WDF and LDI structures. For 
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a filter which multiplexes a single serial multiplier over all the required multiplications, the 

potential maximum throughput is limited by the time required to perform all the multiplica-

tions, which is proportional to the product of the signal word length with the number of multi-

plication operations. Because of the greater system word lengths, this product is larger for 

the direct form and lattice structures than it is for the LDI and WDF structures, and the 

potential maximum throughput rates are therefore lower for the direct form and lattice struc-

tures than for the WDF and LDI structures as shown in table 5.6. Finally, for the DR, LF1, 

and LF2 structures the relatively small margin between the lower bound on hardware 

requirements and the maximum available hardware may be insufficient to accommodate the 

required timing, interface, testing, and multiplexing circuitry. All of these factors favor the 

Structure 
Throughput 

Limit 

LDI 

WDF 

DF1 

DF2 

LFI 

LF2 

fbr 

360 

fbr 

333 

fbr 

726 

fbr 

387 

fbr 

1064 

fbr 

546 

fbr = bit-rate clock frequency 

Table 5.6 : Maximum Potential Throughputs 
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LDI and WDF structures over the direct form and lattice structures, which were therefore 

eliminated as candidates for the filter implementation. 

The comparisons and estimates described to this point indicate very little difference 

between the LDI and WDF structures. While the LDI structure has the advantage that it 

preserves true attenuation zeros in the passband even with coefficient deviations, the WDF 

structure has the advantage that the required coefficients are always less than one in mag-

nitude. The WDF structure has a higher potential throughput than the LDI structure, but the 

LDI structure has a smaller lower bound on hardware requirements. Ultimately, the LDI 

structure was chosen for implementation because an elegant scheme for multiplexing the 

multiplication operation became apparent from the regularity of the structure. No similar 

regularity was observed in the WDF structure, so the only method determined to multiplex 

the multiplier in it is to adopt a general architecture in which the multiplication operands are 

fetched from a set of addressable registers and the resulting product is stored back to some 

addressed register. This type of multiplexing would likely require a substantial overhead in 

terms of both hardware and throughput because of the required storage and recall of inter-

mediate results. Although there may in fact be some elegant way to multiplex the multiplier 

in the WDF structure, the absence of any significant performance superiority favors the LDI 

structure with its known multiplexing scheme for the filter implementation. 



CHAPTER 6 

THE LDI IMPLEMENTATION 

As discussed in the previous chapter, the LDI structure was ultimately selected for the 

filter implementation because a practical way of multiplexing the multiplication operation was 

determined. In this chapter, this multiplexing scheme is described along with various details 

of the actual implementation. The test setup for the fabricated filter is briefly described, and 

measured results are compared to those determined by simulation. 

6.1. Multiplexing the LDI Structure 

Figure 6.1 shows the signal flow graph for the LDI structure. In this figure the states in 

the recursive section are identified as Xl through X6, and the multiplication operations are 

numbered according to the order in which they are multiplexed. Referring to the figure, it 

can be seen that the output of every multiplication operation feeds directly into a digital 

"integrator" loop of the form associated with either state Xl or X2. Further inspection of the 

figure reveals that the state values can be updated in a particularly elegant manner: the next 

values for states X2, X4, and X6 can be computed from the current values of Xl, X3, and 

X5, and the next values for states Xl, X3, and X5 can then be computed from the updated 

X2, X4, and X6 values (as well as the value presented from the non-recursive input stage). 

This is equivalent to converting' all the integrator loops to the type associated with state Xl 

(in which the delay element is in the forward path), and clocking the upward and downward 

directed branches alternately. With the integrator loops made identical in this fashion, the 

filter operations can be decomposed as shown in figure 6.2. In this figure the non-

multiplexed addition operations are introduced at the outputs of a set of identical integrator 

loops (Xl through X6) so that the input values for the multiplication operations are 

89 
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continuously generated as shown in part (a) of the figure. Part (b) shows the detail of the 

integrator loops, with the numbers representing the distribution of the 36-bit system word 

length through the various components of the loop. 

When the filter operations are partitioned in the manner described above, a simple 

multiplexing strategy is to select in turn each multiplier input value and route the products to 

the appropriate integrator loop, effecting the alternate clocking by the order of operations. In 

order for this multiplexing technique to be possible, the order of the operations must be 

chosen so that the products fed into the integrator loops do not alter any state values which 

are still required for generating multiplication input values. The latency of the serial multiplier 

and the integrator loops are useful in this regard because they provide some delay between 

when a multiplication input is used and when the effect of the product appears at the output 

of the integrator loops. Depending on the order of the multiplications however, this latency 

also sometimes requires idle cycles to be introduced during which the multiplier is not com-

puting a useful result and the results of earlier operations are propagating to the outputs of 

the integrator loops. The numbers adjacent to the multiplication operations in figure 6.1 indi-

cate one order in which the operations can be performed with no idle time. Although this has 

not been proven, it is suspected that the order of operations shown in figure 6.1 is one of 

only two possible orders which do not require idle time, yet still implement the correct filter-

ing algorithm. 

In order for this sequence of operations to implement the filter correctly, the multiplica-

tion operation must have a latency equal to twice the system word length minus two so that 

the products summed into the "down" integrators X2, X4, and X6 have propagated through 

the integrator loops in time to be used in the computations for the "up" loops Xl, X3, and 

X5. As a specific example, multiplication operation 3 updates state X4, the value of which is 

used in multiplication operation 6 three system word length times later, after the result of 

multiplication 3 has propagated through the multiplier, the X4 integrator loop, and two addi-
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lion operations. In order to achieve the required latency, the recoded multiplier was padded 

with an appropriate number of unit delays. The functional block diagram for the multiplexed 

LDI structure is shown in figure 6.3. In this figure, the multiplexing is represented by rotary 

switches controlled by modulo ten counters. Note that although only six distinct coefficients 

are required to implement the filter corresponding to the prototype of figure 1.2, it was 

decided to allow all the coefficients to be distinct in case this could provide more flexibil ity in 

the types of transfer functions which could be implemented. 

6.2., Testability and Interface 

The bulk of the circuitry for the filter implementation is required to perform the basic 

filtering algorithm. Substantial circuitry requirements however remain for interface and testing 

circuitry. It is important to incorporate testability into any design intended for integration so 

that devices can be rejected by automatic testing prior to packaging if they are faulty. Since 

the package is often the most expensive part of an integrated device, it is desirable to 

detect as many types of faults as possible with reasonable amounts of test circuitry and if 

possible using only a small number of test vectors. For the LDI filter implementation testabil-

ity is incorporated by including multiplexers to inject test signals, and test points on various 

data paths as shown in figure 6.3. In test mode the input data pins are used as test signal 

inputs, and the output data pins are connected to the test points. This arrangement allows 

the multiplier, coefficient storage/selection circuitry, state circuitry (including the non-

multiplexed operations), and timing/control circuitry to be independently tested. Because of 

the bit-serial nature of the implementation, it is possible to get a very high degree of fault 

coverage with a small amount of test circuitry and a relatively small number of test vectors 

[45]. 

As well as test circuitry, interface circuitry is required in order to allow loading of the 

coefficients, generation of input and output data timing signals, and external control of the 

filter. In addition, because the boundary between interface and other circuitry is not clear-
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cut, the term interlace circuitry here includes the circuitry required to implement the non-

recursive input section of the filter as well as the timing circuitry for the filter. It was desired 

to keep the filter interlace requirements as simple as possible for ease of use. Basic control 

of the filter including loading of coefficients is accomplished through 8 register data lines and 

3 control lines as shown in figure 6.4. A register address counter allows sequential access 

to the coefficient address register, the control register, and the four coefficient byte registers 

which are loaded to 'form a single multiplier coefficient. The three control lines RAR, RAI, 

and RLD respectively reset the register address to zero, increment the register address (or 

wrap it back to zero), and cause the value on the register data lines to be loaded into the 

addressed register. 

The most significant four bits of the value loaded into the control register cause the 

actions indicated in figure 6.4 to be performed if the corresponding bit is set, while the least 

significant four bits of the control value specify a shift value which determines the position of 

the 16-bit input and output values within the 36-bit internal word. If the specified shift value 

is x, the LSB of the input/output data is aligned with bit x+4 in the internal word (where the 

internal bit numbers range from 0 to 35), so that the maximum shift value of 15 places the 

input/output data as high as possible in the internal word while still leaving room for the sign 

duplication bit required for proper multiplication. Increasing the shift value reduces the 

amount of quantization noise at the output while increasing the likelihood of internal 

overflow. The reset operation causes the filter to reset the internal timing circuitry and clear 

all the states and coefficients. The states and coefficients can be independently cleared with 

the clear states and clear coefficients bits in the control register. Setting the coefficient write 

bit in the control register causes the coefficient value in registers 0 through 3 to be loaded 

into the filter coefficient whose number is in register 4. The coefficient write operation is syn-

chronized so that the filter coefficients are not altered in the middle of a multiplication opera-

tion. (Note that the control register bits do not have to be explicitly reset - the actions are 

performed only once for each load of the control register). 
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The complete filter interlace is shown in figure 6.5. Input and output data is in parallel 

format, and synchronized with the convert signals CNVT and CNVTL (active high and active 

low respectively) so that input data is loaded when the convert signal is active, and output 

data is valid at that time. Input pins 101, 102, 001, and 002 allow the filter input and output 

data formats to be independently selected from the set shown in figure 6.5. Input pins TSTO 

and TST1 select the filter test modes. The TST output is used for input voltage threshold 

characterization, and the two clock connections CLKI and OLKO allow clock generation 

using a single crystal. Alternatively, the CLKI input can be driven directly with a clock signal 

if desired. Finally, the TCLK input is used for high-speed testing as discussed in the follow-

ing section. 

The final filter implementation including all circuitry required for testability and interlace 

required 7816 gate equivalents, and occupies an area of approximately 1 cm 2. Figure 6.6 

shows a photograph of a complete fabricated filter die, and an enlarged view of a small 

region on the die. The filter circuit is produced by depositing two layers of metal interconnec-

tions on a predefined arrangement of transistors. The transistors are arranged on the die in 

31 columns separated by wiring channels. The wiring channels can be seen as the dark 

vertical bands in figure 6.6 (a). Gate level modules are formed by interconnections of 

transistors within the transistor columns, while gate interconnections to form the final circuit 

are placed in the wiring channels. The small section of the die shown in figure 6.6 (b) has 

been configured to form two unit delays, which are formed by the blocks of interconnection 

wiring (white in the figure) over the pink transistor gates on either side of the wiring channel 

(the vertical grey band). The schematic diagram of a unit delay is shown in figure 6.7. 

6.3. Implementation Details 

The detailed design of the filter was undertaken with the aid of a gate-level simulator 

tailored to the particular gate array series in which the filter was to be implemented [44]. The 

primary use made of this simulator was to verify the gross functionality of the filter design 
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and to indicate potential timing violations for the individual gates in the design. It was 

claimed by the producers of the simulator that a device which simulated successfully could 

be fabricated to perform to at least the level simulated. With the aid of the simulator the 

detailed design of the filter was enhanced to the point that the bit-rate clock frequency could 

be as high as 40 MHz. Attaining this high clock rate required subtle modifications to the ini-

tial design in order to prevent gate timing violations. The serial adder circuit shown in figure 

6.8 is one example of such a modification. (Note that figures 6.8, 6.9, and 6.10 are repro-

duced directly from the development software and show the exact form in which the circuit 

is specified.) Comparing this final form of the serial adder with the original form presented in 

figure 5.3 it can be seen that the circuit has been modified to include a gate in the carry pro-

pagation path (U7) to clear the carry bit rather than using the asynchronous clear as in 

figure 5.3, and that an inverting buffer (U6) has been added to the carry feedback path. The 

modification to the carry clear circuitry is required due to the difficulty of generating a clear 

carry signal which is shorter than one period of the bit-rate clock. The clear carry signal 

must be derived from the timing circuitry which generates the bit-rate clock, and hence typi-

cally lags the leading edge of the clock by a few nanoseconds. When the clear carry signal 

is the same length as one period of the bit-rate clock, but applied asynchronously as in 

figure 5.3 and skewed late as described, it will cause the carry bit to be incorrectly cleared 

for one additional bit period. This is because the skewed clear carry signal will overlap the 

rising edge of the bit-rate clock for the second bit in the sum. This problem might be over-

come by appropriately delaying the bit-rate clock distributed to the serial adders, but this 

leaves the potential for a similar problem during computation of the most-significant bit of the 

sum. In any case, such a solution depends critically on the delays in individual gates, and 

will be extremely sensitive to process variations. 

A much better solution is the one adopted in the circuit of figure 6.8, in which the carry 

bit is cleared prior to the carry storage element, so that an overlap of the clear carry signal 

beyond the bit-rate clock edge can be tolerated. By adding a gate in the carry propagation 
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path however, the propagation delay around the loop was increased enough that the desired 

40 MHz clock rate could not be achieved. One factor contributing to this situation is that the 

carry storage element (Ui) has a fairly low output drive capability, and the exclusive OR 

input to which it feeds (U4) is a high load input. This problem is solved by introducing the 

inverting buffer (U6), which has a high drive output, but a low load input. Although the inclu-

sion of this buffer actually adds one gate to the carry propagation path, the change in load-

ings and drive capabilities results in a net reduction of the propagation time for the carry sig-

nal so that the 40 MHz bit rate is attainable. 

A similar problem arose in the add/subtract modules of the serial multiplier. The final 

circuit for this module is shown in figure 6.9. In this case, in order to allow sign extension, 

the sum/difference storage element ( U4) has a two-input multiplexer for its input. This addi-

tional input circuitry increases the required setup time for the element to the point where two 

cascaded exclusive OR gates cannot be used to form the sum/difference. Instead, a three 

input exclusive OR gate is used (UO), but this gate has such a high input loading that an 

additional stage of buffering is required in the carry path. This buffering is included in Ui, 

which is actually the cascade of two inverting buffers, the second with more output drive 

than the first. In addition, to select whether the sum or difference will be formed, the 

exclusive OR gate U3 is added to the basic adder form. This gate has a high enough input 

loading that fast enough propagation of the sum/difference from the previous stage through 

the carry generation circuitry requires that the stages generate the sum/difference output at 

two points. The inverting buffer U7 allows the output sum/difference to be generated faster 

than it could be if only the non-inverting output of U4 was used. The reasons for this are 

twofold: by including U7, the total load that the non-inverting output of U4 drives is reduced 

which improves the speed of this output, while the inverting output which drives U7 changes 

before the non-inverting output by the amount of delay introduced by one inversion internal 

to U4. In this way, the time critical but relatively light load carry path of the subsequent 

add/subtract stage is driven by the output of U7 slightly faster than the heavier load but less 
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time critical sum/difference forming circuitry driven by the non-inverting output of U4, and the 

40 MHz bit rate is attainable. 

Because the final filter design successfully simulated at bit-rate clock speeds as high 

as 40 MHz, it was expected that the fabricated filter would perform at that speed. Unfor-

tunately however, the automated tester used for testing the fabricated chips is not capable 

of applying a continuous clock at frequencies above 10 MHz. The tester does however have 

the capability to apply single pulses as narrow as 8 ns, and this capability was used to per-

form limited automatic testing of the circuit speed. During the design and simulation of the 

filter, it became apparent that the most time critical module is the add/subtract stage shown 

in figure 6.9. This module was therefore embedded in the test circuit shown in figure 6.10, 

which was included in the final filter implementation as a separate circuit section. 

In this circuit the single clock input (CLK) is buffered through a series of inverters so 

that the input values (on the lines entering from the left) are clocked in on the rising edge of 

CLK, while the output values (on the lines exiting to the right) are latched on the falling edge 

of OLK. The input circuitry is configured in exactly the same form as the circuitry which 

drives the critical add/subtract modules in the multiplier. Using this configuration test pat-

terns can be set up on the input to the test circuit, a narrow pulse applied to the CLK input, 

and the output values examined to verify correct computation. By setting the 'pulse width to 

be the smallest clock period which does not violate any gate timings in simulation, the high 

speed performance of the test circuit can be evaluated by the automatic tester. The CLK 

input to the test circuit is connected to the TOLK input of figure 6.5, and the inputs/outputs 

can be applied/examined when the filter is in test mode. 

Various other modifications were required to ensure that the 40 MHz bit rate could be 

attained, including the pipelining of some originally non-pipelined operations. Perhaps the 

greatest difficulty associated with the high clock rate however was the distribution of the bit-

rate clock to all of the clocked gates in the filter. In order to minimize clock skew, the clock 
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distribution lines (which can be seen in figure 6.6) were laid out manually in wide metal in 

every second wiring channel. The vertical clock distribution lines were connected horizontally 

at the top and bottom of the die (also in wide metal), and these horizontal busses were con-

nected to 14 high drive clock buffers distributed across the top and bottom of the array in 

the input/output region (the bright band encircling the array). In figure 6.6 (b) a section of a 

vertical clock distribution line can be seen in the center of the figure. Because the clock lines 

were manually placed, each cell which required a clock connection was manually connected 

to the clock distribution lines before the remainder of the circuitry could be automatically 

routed. This manual placement and connection was a very time consuming process. 

6.4. Measured Results 

A simple facility for testing the packaged filters was built which included a sample/hold, 

analog-to-dig ital converter, and digital-to-analog converter, and allowed the filter to be pro-

grammed and exercised under the control of a Motorola 6809 microprocessor. A software 

package was developed for the test facility which allowed the user to individually program 

the filter coefficients, exercise the filter control functions, select the input/output formats, and 

sequence through sets of filter coefficients. Using a Hewlett-Packard Structural Dynamics 

Analyzer (SDA) the transfer function of the filter under test was measured. 

Comparison to simulated results showed excellent agreement as can be seen from the 

example in figures 6.11 and 6.12. In figure 6.11, the "droop" of the measured response at 

high frequencies is due to the sin(x)/x roll-off introduced by the sample-and-hold operation. 

This can be seen from figure 6.13, in which the simulated results have been adjusted to 

include this roll-off. Figures 6.14 and 6.15 respectively show the power spectral density as 

measured by the SDA over the full frequency range and in the passband for the example 

filter function of figure 6.11. In both cases the filter was excited with a maximum amplitude 

sinusoidal signal within the passband, and in both cases the signal-to-noise ratio is at least 

as great as the 72 dB which can be expected from the 12-bit converters used. Unfortunately 
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Figure 6.12 : Passband Response Comparison 
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Figure 6.13 : sin(x)/x Corrected Response Comparison 
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no suitable 16-bit converters were available for testing the filter. Of the 19 filters which 

passed the automated testing, only 3 failed to meet the 40 MHz design goal (one of these 

may have been damaged by abusive input clocking), and 12 operated at bit-rate clock fre-

quencies greater than 60 MHz. 



CHAPTER 7 

CONCLUSION 

By the production of a functional single-chip programmable digital filter, the major goal 

of the research described in this thesis was achieved. During the development of the filter, 

various concepts and possibilities for alternative designs were recognized as candidates for 

further study. Both the degree of fulfillment of secondary research goals and topics for 

further study are discussed in this chapter. 

7.1. Achievement of Research Goals 

In addition to simply accommodating a digital filter on a single chip, stated goals of the 

research were to allow 16-bit input and output data, maximize filter throughput, and minimize 

non-ideal effects. Capability for 16-bit input and output was incorporated into the basic filter 

design once it became apparent that this would not preclude the possibility of successfully 

integrating the filter on a single chip. Efforts were made to maximize the throughput by pipe-

lining the entire design and by making subtle circuit enhancements (chapter six) which 

allowed successful simulation at internal bit-clock rates as high as 40 MHz. These efforts 

were clearly very effective with the result that some of the units fabricated operated at inter-

nal clock rates as high as 65 MHz. The resulting 16-bit sample rate in excess of 180 kHz is 

more than adequate for high-quality audio range filtering maintaining ten or more samples 

per cycle at band edges up to 18 kHz. In fact it is difficult to find true 16-bit analog-to-digital 

converters which are capable of operating at frequencies as high as 180 kHz. 

By compromising between a completely dedicated design implementing only one fixed 

transfer function and a general purpose digital signal processor as the TMS32O [46], the 

programmable digital filter gains a substantial speed advantage over the TMS32O, while still 

114 
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retaining the capability of implementing multiple transfer functions. Although the TMS32O 

does not have sufficient internal word length to completely duplicate the operation of the 

filter, it can be programmed to implement the sixth order elliptic bandpass filter with some-

what degraded non-ideal performance (compared to the filter developed in this research). 

When programmed in this fashion, the TMS32O is capable of a maximum sample rate of 75 

kHz - roughly one half the speed attainable with the single-chip filter. In terms of program-

ming flexibility, the range of bandpass functions which the programmable filter can imple-

ment is limited only by the non-ideal effects of multiplier coefficient quantization, signal 

overflow, and signal quantization. 

The goal of minimizing non-ideal effects in the single-chip filter was achieved through 

three features of the design. Firstly, 32-bit multiplier coefficients were incorporated into the 

design allowing sufficient accuracy to implement all of the representative transfer functions 

with zero relative error. Secondly, the design incorporates a 36-bit internal word length so 

that internal overflow is avoided. Thirdly, programmable placement of the 16-bit input/output 

within the 36-bit internal word length assures that noise resulting from internal signal quanti-

zation contributes less than one LSB of noise at the filter output. Although the level of free-

dom from non-ideal effects described above cannot be guaranteed for all transfer functions 

which could possibly be implemented with the filter, a broad enough range of transfer func-

tions was included in the representative set that non-ideal effects should not be significant 

for practical applications of the filter. 

In addition to the explicitly targeted features described above, other positive aspects of 

the final filter implementation are comprehensive testability and a simple interface, as well 

as a capability to implement both lowpass and bandpass type transfer functions through the 

appropriate choice of multiplier coefficients. As mentioned in chapter six, the bit-serial nature 

of the filter architecture allowed simple and effective test circuitry to be introduced. This 

enabled the filter to be rapidly and completely tested by an automatic tester. The filter digital 
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data interface accommodates common converter codes with no additional hardware, and the 

filter is easily controlled using a pair of 8-bit parallel unidirectional interfaces. Also for ease 

of interface, the filter clock can be provided either by directly driving the clock input, or by 

simply connecting a suitable crystal between the two filter pins CLKI and CLKO. Finally, by 

retaining the capability to independently set all ten multiplier coefficients (where the analog 

prototype of figure 1.2 dictates that only six unique coefficients are required), additional filter-

ing functions may also be available [47]. 

The choice of which structure to use for the filter implementation was made largely on 

qualitative grounds as discussed in chapter 5. Using detailed information from the actual 

implementation, it is possible to make more accurate estimates of the hardware cost of each 

of the candidate structures. This was done by determining the hardware overhead for 

control/interface, steering, and testing circuitry in the actual implementation, and adding this 

overhead to the hardware requirements of table 5.6. Since the multiplexing scheme for the 

LDI structure is very straightforward and the minimum interface requirements for each struc-

ture would be comparable, the figures determined in this manner are reasonable lower 

bounds on the true hardware requirements for each structure. Using these figures and the 

maximum potential throughput values shown in table 5.7, a figure of merit was computed for 

each structure. This figure of merit is proportional to the maximum potential throughput 

divided by the hardware requirement (in gate equivalents) and is shown for each structure in 

figure 7.1. From the figure it can be seen that the WDF structure has the highest figure of 

merit, followed closely by the LDI structure. The remaining structures have substantially 

lower figures of merit. Since these figures of merit represent upper bounds for all but the 

LDI structure (which is an actual value), they support the choice of either the LDI or WDF 

structures for the implementation. However , a simple multiplexing scheme has not been 

determined for the WDF structure, hence it is quite possible that any multiplexing scheme 

would require multiplier idle time, in which case the figure of merit for the WDF structure 

could easily be reduced below that of the LDI structure. Whether or not this is the case falls 
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under the more general algorithm partitioning problem discussed in the following section. In 

any case, it is important to note that the LDI structure is favored by a number of factors: 

The LDI structure has the smallest lower bound hardware requirement of all the struc-

tures, hence is the best candidate for implementation within the fixed hardware capa-

city imposed by the implementation technology, based on the fact that many 

hardware requirements will inevitably remain unrecognized until the final detailed 

design of a filter is complete. 

A known compact and efficient multiplexing scheme exists for the LOl structure based 

on a clear regularity and modularity of the structure. 

The LDI structure has the highest potential throughput of all but the WDF structures. 

The LDI structure does not exhibit the numerical difficulties that the DFI, DF2, LF1, 

and LF2 structures do with respect to computation of multiplier coefficients for some 

of the representative transfer functions. 

7.2. Subjects for Further Study 

The single greatest difficulty revealed by the research described in this thesis is that of 

determining which of a multitude of possible implementations for a filter is "best". It has 

become clear to the researchers that there is no way to make this determination in general - 

it depends too much on the particular requirements of a given application. For example, 

although the TMS32O is slower and has worse non-ideal performance than the filter 

developed in this research, it would clearly be superior for an application in which speed 

was not critical and bandpass filtering was only a small part of the signal processing task. In 

addition, differences in the technology of implementation make it difficult to compare filters 

or processors on a performance per unit area basis. What is clear however is that for any 

particular filtering task, tradeoffs exist between the silicon area used and the way in which 

the filtering algorithm is partitioned (this in turn influences the potential speed of the imple-
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mentation). At one extreme, all the arithmetic operations for a filter may be carried out in 

parallel, and at the other, a single arithmetic unit may be multiplexed over all the filter opera-

tions. Between these two extremes lie intermediate possibilities such as performing in paral-

lel the operations required to update each filter state, but updating the states sequentially. 

The range of possibilities is potentially endless, and the performance achieved and hardware 

required for a particular partitioning of the filtering algorithm is highly dependent upon the 

structure chosen. Simply defining partitions of the algorithm is difficult to do in many 

instances. For example, the WDF structure considered in this research would b6 very com-

petitive with the LDI filter developed if a simple and efficient way to multiplex the multiplica-

tion operations could be determined, yet repeated examination has revealed no such 

efficient scheme. 

While the implementation technology made available for this research largely made the 

foregoing problems of no consequence (the size limitation essentially forced the method of 

partitioning the filter algorithm), different technologies and potential improvements in integra-

tion densities make the problem of how to partition filter algorithms an important one. Prelim-

inary work has been performed on this problem directed towards eventually being able to 

efficiently reduce a filter specification directly to a functional circuit within the constraints of 

size and speed dictated by the particular application [381. From the results of this work it 

was possible to produce estimates for the size and speed of the candidate structures if they 

were implemented in gate array technology with no multiplier multiplexing (i.e. all the filter 

operations occur in parallel). These estimates are shown in figure 7.2. For comparison, 

speed and size of the multiplexed structures are presented in the same format in figure 7.3. 

In both these figures, it is assumed that the technology of implementation is gate array, and 

that the maximum bit-clock rate is 40 MHz (the nominal design speed for the programmable 

filter). Further study in this area holds the promise of a more formalized and consistent 

method of determining and implementing suitable partitions of filtering algorithms. 
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In addition to the problem of partitioning filter algorithms, an outstanding problem is 

that of quantitatively comparing potential filter implementations both within and across algo-

rithm partitions. As mentioned above, this is likely to be nearly impossible without at least 

keeping the technology of implementation as a constant. Even with this constraint, it is 

difficult to arrive at a figure of merit which adequately describes the various benefits and/or 

shortcomings of different potential implementations. There are many important factors which 

are inherently qualitative such as degree of programmability, ease of cascading or expan-

sion, and regularity of structure (which is important from the design and simulation stand-

point). In addition, important quantitative factors such as non-ideal performance seem to 

defy succinct description when the application for the filter or processor is not strictly defined 

(such as for the programmable filter developed in this research). Further study attempting to 

characterize and quantify the nature and structural dependence of non-ideal effects is war-

ranted for this reason. 

As pointed out in chapter 5, the final decision between candidate structures was made 

on the basis of the existence of an elegant multiplexing scheme. This scheme is largely sug-

gested by the form of the LDl integrators. Preliminary research based on lattice analog pro-

totypes (as distinct from lattice digital structures) indicates that there is a relationship 

between the LDI transformation and wave filter concepts. Initial investigation in this area has 

shown that the particular prototype filter used for this research can be converted into a lat-

tice prototype which leads to an LDI filter implementation which has only six multiplication 

operations. This implementation requires the same number of coefficient and signal bits as 

the existing filter in order to implement all of the representative transfer functions with the 

same level of non-ideal effects, and also retains the elegant multiplexing scheme of its 

predecessor. Using this implementation, a speed improvement of 67% could immediately 

be realized along with a substantial reduction in hardware cost and inclusion of a simultane-

ous complementary (band-rejecllhighpass) filtering function. Because a large percentage of 

the elements required for bit serial filter implementations are registers (flip-flops), the 
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combination of compact implementations such as the one described above with full or semi-

custom design in which the static registers of the gate-array technology could be replaced 

by smaller dynamic elements holds the potential for extremely compact high-performance 

digital filters. 
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Appendix 

Determination of te for Second Order Sign-magnitude Sections 

In two dimensions, a geometric interpretation of the form of L(x) can be used to deter-

mine a bound on Le for systems operated under sign-magnitude quantization. Figure A.1 

shows an ellipse L(x) = c on which an infinite precision point x0 is assumed to lie, the state 

('c) coordinate axes, and the y coordinate axes (aligned with the ellipse). The boxes at 

points A, B, C, and D indicate the direction and maximum distance sign-magnitude quantiza-

tion will move an infinite precision point x0 in each of the four state quadrants. We wish to 

determine a bound on the maximum increase in L(x) which can be induced by sign-

magnitude quantization of x0 to the finite precision point .. Clearly, in the second and fourth 

state quadrants, .k must lie inside or on the curve L(x) = c so that these quadrants need not 

be considered. By symmetry, the maximum possible increase of L(x) must be the same in 

quadrants one and three, hence only quadrant one will be considered here. If 4 lies on the 

portion of the ellipse bounding the shaded region, any change in the x2 component due to 

quantization moves the result towards the interior of the ellipse (smaller values of L(x)), and 

any change in the x1 component due to quantization moves the result towards the exterior of 

the ellipse (larger values of L(x)). In this region, the maximum increase of L(x) must there-

fore be bounded by the case where the change in the x2 component is zero and the change 

in the x1 component is one. With the bounding deviation determined in this region, the initial 

point x0 which gives rise to the maximum increase in L(x) with this deviation must be deter-

mined. 

In the y coordinate system, the ellipses L(x) = k for constant parameter k can be 

expressed parametrically as 
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Figure A.1 : Extremes of Quantization 



Yi = ---cos('r) 
49-7 

Y2 = - sin('t) 

where r is an angular parameter ranging from zero to 2ir as the ellipse is traversed in the 

counter-clockwise direction from the Yi axis. The slope of the ellipses in the y coordinate 

system can be determined by differentiating (A.1) to yield 

= -'fJI1/J.I2COt(t) (A.2) 

which is independent of the arbitrary constant k and monotonically increasing with 'r in the 

range zero to ir. If & is the bounding point determined from x0 as discussed above, then it 

represents a larger value of the angular parameter ' than the point x0 does. Thus for any x0 

on the ellipse bounding the shaded region of figure A.1, the slope of the ellipse at x0 is 

smaller than the slope of the ellipse L(x) = L( 0) at .. Motion of the point x0 clockwise must 

thus decrease the value of L(20), and counter-clockwise motion of x0 must increase the 

value of L( 0). This situation is illustrated in figure A.2. The same argument can be applied 

when x0 is assumed to lie on the ellipse in the unshaded region of the first quadrant, except 

here the maximum increase in L(x) is bounded by the value obtained when the x1 com-

ponent remains unchanged and the x2 component changes by one, and the value of L(k0) 

increases as x0 moves clockwise around the ellipse. Points U and V in figure A.1 represent 

the extremes of counter-clockwise or clockwise motion of x0 in the first quadrant, and thus 

either L(L. or L(') bounds the maximum value of L(R0) when x0 lies on the ellipse L(x) = c. 

From figure A.1 it can be seen that L(U) < L(L!). The point U' can be determined by 

simple geometry it the angle c is known. Figure A.3 shows an expanded view of the 

geometry defining V and i in the following equations. Since V is simply the inverse tangent 

of the slope of the ellipse (in the y coordinate system) where it crosses the x2 axis, (A.2) 

immediately gives 
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motion of 
R. as x0 
moves 

Counter-
clockwise 

L  = L( 

2 motion of 
R. as x0 
moves 

clockwise 

L  = C 

Figure 11.2 : Motion of R with x2, 



F i gure A.3 : Geometry Def i n I ng 'i' 



133 

= tan 1(—fj7jItan(9O+O)) = tarr1(Jl124L1cot(0)) (A.3) 

from which the distance between points U' and W (denoted A) can be expressed as 

=  1  - 1—tan(G)tan(V)  
tan(O-i-iif) tan(0)-i-tan(ic) (A.4a) 

- 1 Jt2/t1  

tan(0)-i-Jji24t1cot(0) 41 

However using (A.1) we find 

A2=  [L( L!)—L( t4')]2c052(90-i-O) + [L( lf)—L( W)]2s1n2(90-i-O) (A.5a) 

l-i 92 

+ Cos 2(0) (A.5b) 

Li 92  

which gives 

L(V)—L( -  92  
[p 1cos2(0)+j.t2sin2(0)1 112 

(A.6) 

Exactly the same analysis can be performed at V, the only difference being that 0 is 

replaced by 90-0 so that 

where 

1L(.ko)—L(xo) < max AJji 
(=O,9O-O) icos2() + 2sin2()1h12 

A - tan(4) + t2/pcot(4) 

1 - VP24L1 

(A.7) 

(A.8) 


