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Abstract 

Cancer is a leading cause of death worldwide. Genomics based approaches represent a 

dominant approach in oncological research. However, multiple processes can modify genetic 

information and impact cancer’s phenotype in a non-coding manner such as epigenetic events, 

transcription of various splice variants, expression of non-coding RNA and miRNA, and post-

translational modifications of proteins. Therefore, molecular events that are further downstream 

of the genome (perhaps reflected by the proteome or the metabolome) may better reflect the 

tumour phenotype. One feature of cancer is perturbed metabolism. Some of the aberrant 

metabolic pathways may enhance tumour viability and growth, and these perturbed pathways 

may be susceptible to pharmacologic inhibition. Thus, our overall goal is to categorize tumours 

by their metabolic features; to understand the biological implications of these metabolic 

features, and to identify pathways that could be potentially targeted with drugs. This project 

involves the development of a workflow to define the metabolic features of a tumour. The 

workflow will involve the categorization of tumours based on their metabolic features (at the 

transcriptome level), exploration of associated biological features of each metabolic subtype, and 

integration of multiple levels of molecular control (including mutation status, copy number 

variation, methylation, and metabolome). Our work began with breast cancer, which is already 

well characterized by a large cohort in The Cancer Genome Atlas (TCGA) project. Then we used 

the same principles to investigate a more complex tumour type, pancreatic cancer, which is 

characterized by a highly variable degree of stroma infiltration. 
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Chapter One: Introduction 

1.1 Overview  

     One hallmark of cancer is the reprogramming of energy metabolism. Cancer cell growth, 

proliferation, invasion and survival all require access to large amounts of energy (e.g., ATP, GTP), 

and so these processes are highly dependent on metabolic reprogramming [1-3]. It is possible 

that inhibition of the metabolic features that characterize cancer cells may also inhibit the 

manifestation of other hallmarks of cancer. 

The perturbed metabolism of cancer cells may also have effects on adjacent non-cancerous 

cells comprising the tumour stroma. It is well known that tumour cells and stroma cells 

participate in molecular and functional crosstalk [4-6]. Understanding the functional 

consequences of this crosstalk on tumour cell metabolism, function and survival may uncover 

processes that are vulnerable to therapeutic intervention. 

In order to target disordered metabolism in cancer, the metabolic features of any tumour 

must be specifically delineated. Studies on cancer metabolism have identified a number of 

different metabolic perturbations, including the Warburg effect and other alterations in 

carbohydrate metabolism, disordered lipid metabolism, altered amino acid and protein 

metabolism, and disturbances in nucleotide metabolism [7-9]. One consequence of perturbed 

metabolism is the abnormal accumulation of oncometabolites (e.g., 2-hydroxyglutarate, 

succinate, fumarate and sarcosine), small molecules that have the potential to initiate or sustain 

tumour growth and metastasis [10-12]. Importantly, these metabolic features do not appear 
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uniformly in all tumours. Rather, there is substantial heterogeneity in the metabolic 

characteristics between tumours [13,14]. 

Recent efforts by various groups have attempted to devise approaches to subtyping cancers 

according to their metabolic features [15-18]. This work has been made possible by the large and 

multidimensional molecular datasets made available by efforts such as The Cancer Genome Atlas 

and the International Cancer Genomics Consortium. In this review, we discuss potential 

approaches to identifying clinically meaningful metabolic subtypes of cancers, then identifying 

features that may be vulnerable to therapeutic attack. We discuss approaches emerging from 

gene-level data, transcriptional data and metabolomic data.  Finally, we provide a step-by-step 

transcriptome based analytical workflow which we have found provides detailed insight on the 

metabolic perturbations present in cancer. 

1.2 Diverse Metabolic Perturbations in Cancer 

     Cancer cells are known to have a multitude of metabolic features that distinguish them 

from normal cells. While it is not the intention of this research to discuss these features in detail, 

some of the more prominent features are described below. 

1.2.1 Warburg Effect 

     Glucose is the most abundant metabolite in the blood and the primary source of energy 

in the body [19]. The end product of glucose metabolism is pyruvate, which can be further 

converted into lactic acid under hypoxic conditions, or to acetyl-CoA in normoxic condition. 

However, in cancer cells, the rate of glucose uptake increases markedly, and large amounts of 

lactic acid are produced, even in normoxic conditions. In the 1920s, Otto Heinrich Warburg and 
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Seigo Minami first observed the metabolic changes in rat liver carcinoma [20]. Afterwards, 

Warburg and his colleagues tested kidney and heart tissue where they found the same increase 

in lactate production compared to control tissues (nearly 70-fold higher than healthy liver-tissue). 

Thus, Warburg proposed that, even in the presence of oxygen, cancer cells utilize glycolysis 

followed by lactic acid fermentation to produce high rates of energy [21]. This process is known 

as the "Warburg Effect." 

1.2.2 Other Perturbations in Carbohydrate Metabolism 

     Conversion of glucose is highly linked with other pathways involved in carbohydrate 

metabolism, as well as to most other metabolic pathways. Besides glycolysis and lactic acid 

fermentation, the energy derived from glucose involves oxidation to CO2 and H2O via the 

tricarboxylic acid (TCA) cycle [22]. Additionally, glucose conversion to glucose-6-phosphate (G-6-

P) can lead to the pentose phosphate pathway (PPP), which runs parallel to glycolysis. The PPP 

results in the production of NADPH as well as ribose 5-phosphate, a precursor of nucleotide 

synthesis [23].  

Some of the genetic features of cancers are directly responsible for alterations in 

carbohydrate metabolism. One example is the oncogene KRAS, which enhances glycolysis and 

also drives the non-oxidative phase of PPP. In contrast, inactivation of KRAS decreases expression 

of a number of glycolytic enzymes and reduces flux through the non-oxidative phase of PPP [26]. 

Another example is inactivation of tumour suppressor p53, which enhances glucose uptake in 

tumour cells, driving increased glycolysis and PPP [27]. The PI3K/Akt/mTOR signaling pathway is 

frequently disrupted in several different cancer types (e.g. with the oncogene PIKCA and 
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mutation of tumour suppressor PTEN). The pathway is implicated in the sensitivity of cancer cells 

to insulin and insulin growth factor 1 (IGF). 

The perturbed carbohydrate metabolism in cancer cells has other indirect effects on the 

cell and the microenvironment. For example, accelerated lactic acid production leads to the 

production of hydrogen ions which leak into the extracellular compartment, disturbing the pH 

balance of the microenvironment and disrupting the tumour-stroma interface [28]. This may 

exacerbate the tumour’s capability to invade. Altered carbohydrate metabolism results in 

perturbations in mitochondrial redox balance [32]. Accelerated glucose metabolism results in 

increased production of reactive oxygen species (ROS). The overproduction of ROS can 

subsequently lead to damage to cell structures as well as to cellular DNA, leading to increased 

autophagy in tumour cells [29-32]. 

1.2.3 Lipid Metabolism  

     Altered lipid metabolism has been observed in most cancer types. When lipid metabolism 

is perturbed, features may include increased uptake of exogenous lipids or de novo lipid synthesis 

[33]. These perturbations in lipid metabolism are generally considered beneficial to the cancer 

cell’s capability to proliferate, invade, metastasize and survive. Accumulation or increased 

production of fatty acids is essential in tumour cells for energy production and protein 

modification [34]. Disrupted fatty acid synthase (FASN) has been associated with more aggressive 

biological behaviour in various cancers such as breast, colorectal, prostate [35,36]. In a study 

focusing on colorectal cancer, it was reported that fatty acid synthase is frequently 

overexpressed in colorectal neoplasms, thus inhibiting the fatty acid synthesis by enzymatic 
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function with metabolic analogues or decreasing the expression of FASN could be useful strategy 

to treat colorectal carcinoma [37]. For this study, the expression levels of fatty acid synthase 

(FASN) was evaluated by immunohistochemistry. Further, fatty acid synthetic activity was 

quantified using metabolic labelling which showed a significantly increased activity rate (6-16 

fold) of FASN in colorectal carcinoma than the serosal fat (p = 0.01). Similarly, FASN expression 

levels were also found to be increased in different colorectal studies [38,39]. Likewise, another 

study demonstrated increased FASN expression in prostate cancer; where FASN expression was 

found significantly elevated from low grade to high grade prostatic epithelial neoplasia as well as 

invasive carcinoma [40]. Most of the critical enzymes involved in fatty acid metabolism are 

controlled by the sterol regulatory-element binding protein (SREBP) [41,42]. Increased SREBP 

induces higher FASN expression conferring a more aggressive tumour phenotype [43,44].  

ATP-citrate lyase (ACLY) is frequently increased in cancers, including glioblastoma, colorectal 

cancer, breast cancer, and hepatocellular carcinoma [45]. ACLY catalyzes the conversion of citrate 

to oxaloacetic acid and acetyl-CoA. The primary function of acetyl-CoA is to deliver the acetyl 

group to the citric acid cycle; however, it is also pivotal in fatty acid synthesis and lipogenesis 

(including the synthesis of triglycerides, steroid hormones, cholesterol and bile salts). Acetyl-CoA 

synthetases catalyze acetyl Co-A conversion from acetate, and therefore acetate is a crucial 

metabolite for lipid synthesis as well as histone acetylation. Enzymes that are involved in 

lipogenesis, including ACLY, play a significant role in cancer cell proliferation, development and 

metastasis. One of the critical regulators of the epithelial-mesenchymal transition process is 

CTNNB1 (Beta-catenin protein-1). In vitro study confirms that ACLY can promote metastasis by 
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promoting CTNNB1[46]. Further, the ACLY gene knock-out experiments in different cancer cell 

lines showed reduced lipid synthesis and poor metastatic ability. A recent study showed that the 

inhibition of ACLY suppressed tumour growth and apoptosis via increased reactive oxygen 

species (ROS) production in LNCaP cells [47]. Similarly, knockdown of ACLY expression inhibited 

tumour growth in a breast cancer study [48]. Furthermore, different studies show that inhibition 

of ACLY markedly reduces cancer cell proliferation [49,50]. ACLY contributes equally to glucose 

and lipid metabolism; thus, it is a potential target in cancer treatment. 

Cholesterol is essential for various cellular functions and cell growth. Cholesterol can be 

increased or decreased in different cancers, and the role of cholesterol in tumour biology is not 

fully understood.  In some instances, exogenous cholesterol can enhance tumour progression. 

For example, in a murine breast cancer model (MMTV-PyMT), a high cholesterol diet increases 

tumour growth and metastasis [51]. Hypercholesterolemia accelerates the growth of androgen 

receptor-negative prostate cancer xenografts [52]. Cholesterol has also been shown to activate 

mTORC1, promoting tumour cell proliferation and metastasis [53]. In hepatocellular carcinoma, 

mitochondrial cholesterol is elevated due to upregulated steroidogenic acute regulatory (STAR) 

protein expression, and STAR knockdown results in greater sensitivity to chemotherapeutic 

agents [54]. In contrast to those observations, in a recent study of pancreatic cancer patients, a 

cholesterogenic subgroup was identified which had a better survival outcome than other 

subgroups; tumours with increased glycolytic flux and low levels of cholesterol synthesis had the 

worst prognosis [55]. Given the lack of consensus in the findings, it is apparent that a better 

understanding of the impact of cholesterol metabolism on tumour biology is required. 
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Exosomes are small membrane-bound extracellular vesicles and have an intricate structure 

containing proteins, lipids, and different metabolites [56]. Different studies show that exosomes 

are secreted from different types of cells, including immune cells, mesenchymal cells, as well as 

cancer cells. Exosomes derived from cancer cells can alter the tumour microenvironment. In vitro 

experiments show that, in pancreatic and prostate cancer cell lines, the oxygen consumption is 

highly suppressed by cancer-associated fibroblast secreted exosomes [57]. Lipids, including sterol 

lipids, sphingolipids, glycerophospholipids, play a regulatory role in exosome formation and 

release to extracellular microenvironment. Exosome contains a high abundance of ceramide and, 

depending on the ceramide content, exosomes can modify metabolism in cancer cells. In vitro 

experiments on prostate cancer cell lines demonstrated that exosomes secrete insulin-like 

growth factors, which activate the PI3/Akt signalling pathway [58]. Interestingly, PI3/Akt 

activator protein kinase C is associated with ceramide proteins which are transported by the 

exosomes. Another ceramide derivative is sphingosine-1-phosphate, which is critical to tumour 

growth as it stimulates angiogenesis [59]. Additionally, a proteomic profiling study of exosomes 

showed that SW620 (a metastatic human isogenic colorectal cancer cell line) cell-derived 

exosomes were highly enriched in lipid rafts and associated components [60]. Further, these 

exosome secreted lipids and proteins that influence different metastatic factors and signalling 

molecules that are fundamental to tumour progression. Nevertheless, the role of extracellular 

vesicles in metabolism is complicated and needs to be better understood.  
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1.2.4. Amino Acid and Protein Metabolism  

        Altered amino acid metabolism may support the increased energy requirements of cancer 

cells, and it may also provide a mechanism for cancer cells to escape the immune system [61]. 

Glutamine is one of the most abundant amino acids in the body, and aside from glucose, cancer 

cells are mostly dependant on glutamine to produce energy. Several amino acids, including 

arginine, aspartic acid, alanine, serine, valine, leucine, methionine, contribute in the same 

manner as glutamine [62].  

Cancer cells are characterized by their reprogrammed glutamine metabolism, which may 

support cancer growth, inhibit apoptosis and induce drug resistance [63]. This may occur by 

several mechanisms. For instance, the binding of c-Myc to glutamine transporters results in 

higher glutamate production [64]. Increased glutamine uptake by cancer cells leads to increased 

glutamate production, which is converted to a-ketoglutarate, and these reactions replenishes the 

TCA cycle. Consequently, increased glutamine influx accelerates mitochondrial function, and the 

substrates produced support lipid metabolism. There are additional downstream effects of 

glutamine dependence. The amidic nitrogen of glutamine can be used in the production of 

asparagine and other metabolic intermediates such as nucleotides [65]. Moreover, glutamine 

secreted inorganic ammonia plays a role in inducing autophagy in cancer cells. Glutamate serves 

as a nitrogen donor which is essential for the synthesis of other non-essential amino acids as well 

as supports the production of NADPH.  
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 Arginine production is frequently increased in cancer cells [66]. Arginase 1 and 2 convert 

arginine into ornithine, which is essential for cancer cell proliferation [67]. The role of arginine in 

the immune system is well established as it affects lymphocyte function; however, it is not well 

understood whether increased or decreased arginine production is responsible for the alteration 

in lymphocyte function in cancer. One of the possible reasons for arginine being found altered in 

many cancer types could be due to the tumour infiltrating macrophages (TIM). TIM contains a 

higher amount of arginase; thus, it may control the arginine availability in the microenvironment 

of the tumour. Ex vivo experiment shows that circulating arginase-1 significantly increased in 

glioblastoma patients with T-cell suppression [68]. Another study demonstrates similar outcomes 

such as, in renal cell carcinoma patients, a high amount of arginase-1 observed, and limiting the 

T-cell availability [69]. On the contrary, under the arginine depletion, arginase and nitric-oxide 

synthase get modified so that there is enough accumulation of reactive oxygen species (ROS), 

which negatively regulates the immune system function [70]. Arginine is a potential therapeutic 

target based on studies of arginine supplementation and deprivation.   

           Alanine is an essential source of fuel in cancer cells, and its availability is supported by 

internal production as well as by external sources. One mechanism by which alanine production 

is increased in cancer cells is related to the PIK3CA mutation, which is associated with increased 

expression of alanine aminotransferase (GPT2). GPT2 catalyzes the conversion of glutamate to 

alanine. One example of an external source of alanine is autophagy-induced production. For 

example, in PDAC, stroma cells secrete alanine, which is taken up by tumour cells to support their 

proliferation requirements [71].  
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 Free amino acids released by protein degradation convert into glucose or ketones 

through the TCA cycle. Decomposed amino acids can also degrade to ammonia and 

hydrocarbons. High ammonia levels trigger the mTOR complex, thus the activated mTOR complex 

support tumour cells to proliferate as well as disrupt the urea cycle leading to further metabolic 

perturbations [72]. 

1.2.5. Nucleotide Metabolism  

Nucleotides, the building blocks of nucleic acids, can be synthesized by salvage synthesis 

(recycling existing nucleosides) or de novo (using amino acids to form the purine and pyrimidine 

rings). In the oxidative phase of the pentose phosphate pathway (PPP), glucose-6-phosphate 

(G6P) is oxidized to yield ribulose-5-phosphate; and in the non-oxidative phase, ribulose-5-

phosphate is converted to ribose-5-phosphate and xylulose-5-phosphate. Ribose-5-phosphate is 

necessary for nucleotide synthesis and histidine metabolism [73]. 

The molecular reprogramming that typifies cancer cells accelerates de novo nucleotide 

synthesis. C-Myc is considered a master regulator of nucleotide synthesis and it is upregulated in 

more than 50% of cancers [74]. Genes involved in nucleotide metabolism are primarily 

modulated by Myc [75]. For example, in pancreatic adenocarcinoma, the upregulation of 

transcriptional activation of ribose-5-phosphate isomerase promotes increased Myc resulting in 

increased de novo synthesis of purines and pyrimidines. Increased mTOR also promotes de novo 

nucleotide biosynthesis [76]. Similarly, highly activated PI3/AKT, ERK/MAPK pathways promote 

de novo pyrimidine biosynthesis, and mutated TP53 increases the gene transcriptions that 

enhance deoxyribonucleotide triphosphate (dNTP) synthesis [77].  
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1.2.6. Hypoxia 

Hypoxia is a common feature of the tumour microenvironment and can affect the metabolic 

features of a tumour. A primary regulator of cancer cell proliferation is hypoxia-inducible factor 

(HIF). HIFs are responsible for forming new blood vessels under hypoxic conditions. HIF has a 

structure consisting of a helix-loop-helix, which is made of a heterodimeric complex of two 

subunits -   and  [78]. Subunit  contains three isoforms: HIF-1, HIF-2 and HIF-3. HIF-1 

degradation is accelerated by oxygen and -ketoglutarate, which are the intermediates of the 

tricarboxylic acid cycle (TCA). Several studies showed that different mutations such as p53, RAS, 

BC12, succinate dehydrogenase, fumarate dehydratase and isocitrate dehydrogenase, cause the 

activation of hypoxia-inducible factors [79]. The primary functions of HIFs is to regulate 

transcription of multiple genes that enhance adaptation to hypoxic environments. In cancer, HIF 

alters various important functions such as glycolysis, nutrient uptake, angiogenesis and 

apoptosis. For example, HIF-1 induces glycolytic enzymes such as hexokinase I & II, 

phosphofructokinase-L, and lactate dehydrogenase-A, which further promotes cell survival and 

migration [80]. HIF also stimulates pyruvate dehydrogenase kinase 1, which inhibits the 

production of acetyl CoA [81]. Acetyl CoA is essential for fatty acid synthesis. Rabinowitz et al. 

found an exciting source of acetyl CoA production in a number of cancer cell lines under hypoxic 

conditions. The major source of acetyl-CoA production is glucose and glutamine; but under 

hypoxic conditions this contribution was less marked. Mass-spectrometry based 13C-tracer 

experiments revealed that in those conditions, cancer cells do not depend on amino acids or fatty 

acids; however, they use acetate to produce Acetyl-CoA (500M U-13C acetate which is 
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responsible for a 50%-86% increase in acetyl CoA labelling) [82]. Another study demonstrates 

that under hypoxic stress, the mitochondrial enzyme SHMT2 is formed. SHMT2 is crucial for 

sustaining the production of NADPH and redox balance to support tumour cell survival and 

growth [83]. Cancer cells possess diverse mechanisms to adapt to different microenvironments. 

With advanced technology such as mass spectrometry, it is now possible to determine how cells 

use different metabolic pathways to produce energy. For example – a recent study shows that 

under normal conditions, NADPH is produced mostly by the malic enzyme in mouse adipocytes, 

whereas hypoxia perturbs the metabolic pathway and switches the primary NADPH source to 

oxidative phosphorylation (OXPHOS) [83,84]. There are numerous experiments that suggest that 

HIF-1 plays a vital role in cancer metabolism as a master regulator of various proteins and 

enzymes associated with energy metabolism. 

Pyruvate kinase M2 is an essential metabolite that catalyzes the conversion of phosphoenol-

pyruvate to pyruvate by transferring the phosphate group to ADP in glycolysis. After an enormous 

amount of experiments and studies, it is well established that PKM2 plays a vital role in cancer 

cell metabolism, transcriptional regulation as well as different extracellular signaling. Expression 

of PKM2 inhibits the consumption of oxygen in cancer cells by activating the HIF-1 and leading to 

an excessive amount of lactate production. Thus, PKM2 is crucial for the Warburg effect. Not only 

that, low expression of PKM2 dimers promotes the accumulation of metabolites involved in 

glycolysis such as glucose-6-phosphate, 3-phosphoglycerate [85]. Increased glucose-6-phosphate 

leads to the pentose phosphate pathway, and 3-phosphoglycerate promotes serine synthesis. 

PKM2 also regulates the activity of different transcriptional factors, including HIF, STAT3, -
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catenin. In cancer cells, PKM2 mediates increased gene expression are required for tumour 

growth [86,87]. 

1.2.7. Autophagy 

Autophagy refers to a cell’s self-digestion process where damaged organelles, proteins, 

mitochondria, lipids, different cytoplasmic materials are isolated into vesicles for degradation 

and recycling [88]. The role of autophagy in cancer is complex and not fully understood as it can 

both promote and suppress tumour growth. The products of autophagy (amino acids, fatty acids, 

and nucleosides) can be utilized by cancer cells to support their high energy demands. Autophagy 

can be stimulated upon activation of different signaling pathways, which are activated as a result 

of energy depletion, stress, hypoxia, and limitation for insulin, growth factors or hormones [89]. 

As the pancreas is the primary source of digestive enzymes and hormones involved in glucose 

metabolism, high levels of autophagy are observed in most pancreatic tumours under basal 

conditions compared to the other epithelial cancers [90]. In such condition, autophagy may 

contribute to pancreatic tumour progression, as in vitro knockout of autophagy-related genes 

such as ATG5, ATG3 inhibits tumour growth.  

Autophagy may also suppress tumor growth in some instances. Microtubule-associated 

proteins 1A/1B light chain 3B (LC3) is an important regulator of autophagy. Increased levels of 

LC3 expression are associated with elevated levels of hypoxia markers in tumour cell lines and 

experiments on primary tumours [91]. Following nutrient deprivation, p53 maintains autophagic 

homeostasis by regulating the autophagy-related protein LC3, which supports cancer cell survival 

[92]. Another critical regulator of autophagy is beclin-1 (BECN1). BECN1 is frequently altered in 
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different cancer types, including gastric and colorectal cancer [93,94]. Studies show that 

mutation in BECN1 related protein UV-radiation resistance-associated gene (UVRAG) reduces 

autophagy leading to increased cancer cell proliferation, particularly in colorectal cancer [95]. 

However, in vitro, studies show that knockout of autophagy-related genes significantly inhibits 

tumour cell growth [96].  

1.3 Metabolic Subtypes and Phenotypes  

There appears to be considerable diversity in the metabolic features of cancers. For example, the 

Warburg effect is not universally present in all cancers. It is unknown whether this diversity is 

clonal in nature, to what degree metabolic diversity exists within a tumor, and whether metabolic 

features evolve over time. With advanced technology and computational methods, we have 

begun to appreciate the existence of different metabolic phenotypes. For instance, based on 

metabolite profiling in cancer cell lines, three distinct metabolic subtypes of pancreatic cancer 

were described: slow-proliferative, glycolytic and lipogenic [97]. The existence of various 

metabolic subtypes forms the rationale for applying different metabolic strategies for different 

tumours.  

1.4 Targeting Metabolism  

Metabolic targeting for cancer therapy is an emerging field that is currently under 

investigation to identify the small molecules that may specifically block the fundamental 

metabolic steps linked to tumour growth. Since, glycolysis plays an essential role in the 

development of cancer, attenuation or inhibition of glycolysis may be useful for the prevention 

of abnormal cell proliferation, and invasion, as well as metastasis. Several enzymes are the 
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primary drivers of glycolysis, such as hexokinase (HK), OFK, and pyruvate kinase. Hexokinase is a 

potential target for cancer metabolism as several types of cancer exhibit high levels of HK II [98]. 

For example- in lung, breast or brain cancers, the deletion of HKII is beneficial. Phospho-

fructokinase 1 was found to increase in many types of cancer. There are some clinical trials 

currently underway with small-molecule PFKFB3 inhibitors. Another critical step is when 

glycolysis derived pyruvate can either be imported into the mitochondria to be oxidized in the 

TCA cycle or converted to lactate in the cytosol. In mitochondria, pyruvate is converted to acetyl 

CoA, and the enzyme responsible for regulating this crucial junction in pyruvate metabolism is 

the pyruvate dehydrogenase complex. Pyruvate dehydrogenase kinase (PDHK) performs 

inhibitory phosphorylation, which reduces the activity of pyruvate dehydrogenase (PDH), 

resulting in a decrease in pyruvate flux and an increase in lactate production. The expression of 

PDHK in various types of cancer makes it a potential therapeutic target [99]. Lactate 

dehydrogenase complex also plays a crucial role in regulating the fate of pyruvate in cancer. 

Inhibition of LDHA by small molecule inhibitors or genetic approaches results in slowed cancer 

cell growth and increased cell death, in hepatocellular carcinoma and breast cancer [100]. Several 

early-stage clinical trials are underway to assess the efficacy of some LDH inhibitors. The pre-

clinical development of inhibitors that have more specificity for LDHA is currently ongoing [101]. 

Limiting glutamine availability is another attractive strategy. This may be accomplished by 

inhibition of glutamine transporters. Another approach is to inhibit glutamate dehydrogenase 

(GDH) to limit glutamine production. Currently, there are no small molecules available to block 
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the production of GDH, but the initiative to develop some specific GDH inhibitors may allow more 

effective targeting of glutamine flux into the TCA cycle. 

Targeting small metabolites present in the TCA has demonstrated some success. Recently 

there has been success in pre-clinical and clinical settings with novel compounds that inhibit the 

gain of function activity of mutant IDH. This mutant isocitrate dehydrogenase (IDH) was shown 

to dramatically reduce the production of 2-hudroxyglutarate (2HG) and cause cancerous cells to 

differentiate towards a normal phenotype [102]. There is an early phase trial, ongoing with the 

small inhibitor of mutant IDH2, AG-221. 
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Chapter Two: Research Hypothesis and Aims 

 

2.1 Research Hypothesis and Specific Aims  

It is apparent that there is considerable metabolic diversity in cancers. If it were possible 

to delineate the metabolic features of a cancer, then it may also be possible to identify 

therapeutic vulnerabilities based on these metabolic features. I hypothesize that there are 

metabolic subtypes of cancer, and the metabolic features of these subtypes influence their 

clinical and biological behaviour.     

Specific aims for this research are –  

1. An effective analytical workflow will be developed to identify different metabolic 

subtypes in cancer based on transcriptome 

2. A method will be established to identify different metabolic subtypes in Breast cancer 

using the bulk tumour 

3. A systemic approach will be developed to identify aberrant metabolic pathways within 

the tumour and stroma compartments focusing on PDAC 

 

To test the hypothesis, I focus on two different types of cancer, including breast cancer 

(BRCA) and pancreatic ductal adenocarcinoma (PDAC). I present an effective analytical workflow 

that can be applied to any tumour type to identify metabolic subtypes and their biological 

features based on the transcriptional features [Chapter Three]. I first apply the analytical 

workflow to breast cancer using principal component analysis to identify metabolic subgroups 

on the bulk RNA-Seq data [Chapter Four]. I then apply the workflow to deconvolved RNA-Seq 

data from pancreatic cancer patients, which enabled me to determine the relative contributions 
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of tumour and stroma to phenotype. For this, I used the non-negative matrix factorization (NMF) 

method to identify metabolic subgroups [Chapter Five].  
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Chapter Three: An Analytical Workflow for The Characterization of Metabolic Subtypes of 

Cancer 

3.1 Introduction  

The quintessential metabolic feature of cancer is encapsulated by the Warburg effect, 

which is the preferential breakdown of glucose using anaerobic pathways, even in normoxic 

conditions. However, cancers have a wide variety of metabolic features that may correlate with 

other biological functions. In our efforts to identify metabolic subtypes of cancer, we have 

devised a bioinformatic analytical workflow that can be used to explore the metabolic features 

of a particular cancer type. Initially, our approach involves a focused analysis of the 

transcriptome. Metabolic subtypes of cancer are identified using unsupervised clustering 

methods. The metabolic subgroups so identified are then used to inform subsequent supervised 

analyses, including gene set enrichment analysis and pathway analysis (to delineate biological 

functions), linkage to clinical outcomes, as well as data deconvolution to determine the 

contribution of various cell types comprising the tumour microenvironment. Other molecular 

features can be explored based on the metabolic subtypes identified, including mutations, copy 

number variations, methylation and noncoding RNA. Finally, metabolomic features can be 

explored based on the metabolic subtypes initially identified. Evaluation of actual metabolites is 

essential for understanding the net result of the various upstream molecular events. This step-

by-step analytical workflow provides detailed insight into the metabolic perturbations. It is 

possible that identifying the metabolic features that characterize a particular tumour will provide 

insight into biological pathways that are vulnerable to treatment. 
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3.2 Metabolic Subtypes and Phenotypes  

The various metabolic perturbations described above have been variably described in 

diverse cancer types. However, not all metabolic features are similarly operative in a uniform 

fashion. Instead, what has become apparent is that there is considerable diversity in the 

predominant metabolic features of any particular tumour. In some instances, the metabolic 

features of tumours are linked with alterations in their biology and clinical behaviour. To derive 

clinical relevance from our knowledge of the range of metabolic derangements that can occur in 

cancer, it will be imperative to identify metabolic subtypes and to identify mechanisms by which 

those variants emerge. Metabolic subtypes that confer aggressive biological and clinical 

behaviour are particularly interesting, since inhibiting metabolic features that correlate with 

biological aggressivity would most likely have therapeutic benefit. Only when this detailed 

analysis has been performed will we be able to target the appropriate metabolic derangements 

in a personalized fashion.  

Recently, it has become possible to comprehensively characterize tumours based on their 

genome, epigenome, transcriptome, proteome, and metabolome. Examples of each have been 

previously published [103-107]. Each level of biological information contributes to metabolic 

phenotype. However, the problem is that the phenotype is not a result of linear biological 

information flow (i.e., from the genome to transcriptome, to proteome, and metabolome). 

Instead, the metabolic phenotype is a culmination of multiple upstream molecular events that 

may occur in parallel. In many circumstances, the metabolic phenotype may be the net effect of 

opposing metabolic features.  
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The question is, therefore, how best to define metabolic subtypes to ensure that the 

subtypes accurately reflect the phenotype. Moreover, what approach would provide the greatest 

insight on pathways that represent vulnerabilities that can be targeted therapeutically? Several 

approaches have been taken to delineate metabolic subtypes, and these will be described below. 

3.2.1 Genome-based Subtyping  

 One approach to identifying tumour subtypes is to classify based on alterations at the 

genome level, including mutations and copy number variations. There are several examples of 

mutations and gene fusions involving genes that have a primary metabolic function, including 

mutations in genes encoding metabolic enzymes such as SDH and IDH1/2 [108,109]. Mutations 

in classical oncogenes may also have metabolic effects. Examples include KRAS, BRAF and Myc, 

which cause secondary alterations in the expression of multiple genes with a direct role in 

metabolism [110]. There are several problems with a genome-based approach to metabolic 

subtyping. Most importantly, this approach does not take into account the multiple layers of 

control that affect gene expression, including epigenetic control mechanisms, miRNA, long 

noncoding RNA and circular RNA. In addition to alterations at the protein level, genome-based 

subtyping is unlikely to reflect the metabolic phenotype. Another problem with this approach is 

that mutations and copy number variations in each gene with a significant metabolic function 

(such as genes encoding metabolic enzymes) are not that prevalent. Finally, multiple 

combinations of gene alterations are possible. These latter two problems make it extremely 

difficult to categorize tumours based on metabolic features. One interesting approach that was 

recently described was reported by Sinkala et al., who dichotomized tumours based on the 



 

22 

frequency of mutations and copy number variations in metabolic genes [111]. That approach 

enabled the identification of a subgroup of cancers that were associated with a high rate of 

mutations in metabolic genes, which was sometimes associated with clinical aggressivity. This 

approach also suggested that tumours with a high frequency of gene alterations were more 

sensitive to (which drugs). 

3.2.2 Transcriptome- based Subtyping  

The transcriptome, like the genome, is subject to modification. Therefore, there can be a 

discrepancy between mRNA levels and corresponding proteins. However, this discrepancy is not 

universal (i.e., the correlation between mRNA and protein levels varies). Despite the imperfect 

correlation of transcription and translation, the pattern of gene expression as a whole can paint 

an accurate picture of the metabolic processes that are perturbed. Several groups have compiled 

lists of genes that function to modulate metabolism, including genes that have secondary 

metabolic effects [15,111,112] By interrogating gene sets with specific metabolic functions, it 

may be possible to subclassify tumours according to their predominant metabolic features. This 

approach has been used to identify metabolic subtypes of tumours with biologically distinct 

features [15].  

In the context of cancer, glucose metabolism has been most studied, as it has a direct or 

indirect connection to all other metabolic pathways in the body. Variations in glycolytic subtypes 

have been described. Follia et al. found four distinct metabolic subtypes of pancreatic ductal 

adenocarcinoma by focusing their classification on core glycolytic genes (high glycolytic, very high 

glycolytic, low glycolytic and very low glycolytic) (total patients, n = 275) [113]. They used the 



 

23 

RNA-Seq data from publicly available datasets; they also used metabolomic data of pancreatic 

cancer cell lines to determine the metabolites that are produced by the identified metabolic 

subtypes. Further, metabolic proteins were measured in patients before and after chemotherapy 

using Q-TOF mass spectrometry. The high and very high glycolytic subtypes had a significantly 

worse prognosis and contained relatively little immune infiltrate. Higher expression levels of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), triosephosphate isomerase 1 (TPI1), 

Forkhead Box M1 (FOXM1) were observed in the worst subtypes.  

Karasinska et al. recently identified four distinct metabolic subtypes of pancreatic ductal 

adenocarcinoma (quiescent, glycolytic, cholesterogenic and mixed), focusing on glycolytic and 

cholesterogenic genes [55]. They utilized the genomic, transcriptomic and survival data of 325 

resectable and non-resectable PDAC tumours. The glycolytic subtype was associated with the 

shortest median survival, and the cholesterogenic group had the best overall survival.  

Bidkhori et al. identified three distinct metabolic subtypes of hepatocellular carcinoma 

(HCC) based on the genome-scale metabolic networks [114]. Metabolic subtypes were identified 

using transcriptomic data, genome-scale metabolic networks and network controllability 

analysis. Significant differences in overall survival were observed across the identified subtypes. 

The study highlights some of the critical pathways that were significantly altered in identified 

subtypes such as kynurenine metabolism, lipid metabolism, WNT/Beta-catenin signalling as well 

as PI3/AKT/mTOR signalling pathway.   
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Recently Peng et al. classified almost 10,000 tumors from 33 cancer types based on the 

pattern of expression of genes involved in metabolism [15]. Metabolic genes were organized into 

seven major metabolic pathways, and potential master regulators were identified.  

3.2.3 Metabolome-based subtyping 

 The metabolome is the net product of many parallel and competing metabolic pathways. 

It has been suggested that the metabolome is the closest representation of the metabolic 

phenotype, as it represents the final manifestation of the many co-mingled transcriptional and 

translational modifications that characterize a particular tumour. Therefore, it may be argued 

that achieving a valid metabolic classification of tumours would be better achieved by focussing 

on metabolites as opposed to transcripts. 

One example of using the metabolome to classify tumours was reported by Daemen et 

al. [97], who identified three distinct subtypes of pancreas cancer based on metabolite profiling 

(slow-proliferative, glycolytic and lipogenic). These subtypes strongly correlated with previously 

described pancreatic cancer subtypes (epithelial and mesenchymal variants). From the findings, 

they provided the essential predictive utility of different metabolic inhibitors that are currently 

under clinical trials. Similarly, based on metabolite profiling, Haukass et al. identified three 

distinct metabolic subtypes of breast cancer (Mc1, Mc2 and Mc3) [115]. Metabolic subtypes 

identified by this approach had distinct upstream molecular features including differences in 

proteins and genes that are related to the extracellular matrix as well as metabolic pathways.  

Recently, Li et al. demonstrated the metabolic diversity of cancer based on metabolite 

profiling of well characterized cancer cell lines [116]. There were significant links between the 
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metabolome and genomic alterations such as mutations, copy number variations, and epigenetic 

features. For instance, one cancer subtype was distinguished by increased kynurenine secretion 

resulting from the degradation of tryptophan, an essential amino acid. Kynurenine governs 

inflammation, sustaining immune escape in cancer cells [117]. 

          One challenge with using the metabolome to subtype cancers is related to the limitations 

of studying the metabolomic variations in tissue. To obtain an accurate description of the 

intracellular metabolome in cell lines, a quenching step is critical to halt the metabolic activities 

within a cell without affecting cell membrane integrity [118]. The methods for studying the 

metabolome in tissue extracts have been well described (119), although the low abundance of 

metabolites and low sample volumes make the analysis difficult [120,121]. The problem with 

doing this in tumours is the cellular heterogeneity inherent in whole tumours. That is, a tumour 

is comprised of cancer cells and multiple stromal elements. Studying whole tumour extracts will 

not delineate the cellular origin of metabolic processes, which may vary quite widely. To address 

this, advances in single-cell metabolomics will be required [122], which will also require the 

development of improved methods of extracting cells from whole tissues in a manner that will 

not disturb the fundamental metabolic processes. In contrast, methods for single-cell 

transcriptomic analysis are well established. Moreover, even in whole tissues, the contribution 

of specific cell compartments can be studied using deconvolution methods [123,124]. 

 There are additional challenges with using metabolomic data to subclassify tumors. First, 

there is the lack of granularity in metabolomic datasets. No matter what analytical platform is 

used, it is impossible to fully annotate the metabolome. Even the many features detectable on 
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mass spectrometry-based platforms are not entirely identifiable as distinct metabolites. With the 

exception of NMR spectroscopy, metabolomics data are semiquantitative. Often, the differences 

in abundance of individual metabolites are quite subtle. Because of these technical limitations, 

we are less enthusiastic about defining metabolic subtypes of tumours using metabolomic data. 

Rather, we prefer to focus initially on the transcriptome.  

3.3 Identification of Subtypes   

Unsupervised analysis is the most common initial approach to identifying subtypes based on 

patterns of molecular features. The subject has been previously been reviewed in detail [125]. In 

brief, there are multiple clustering methods available. Partitioning methods may be used to 

divide a dataset into non-overlapping subsets [126]. Hierarchical clustering is one of the 

partitioning methods that organizes the clusters as a classification tree [127]. Another clustering 

method, density-based clustering, uses a non-parametric algorithm to group the data points 

together that are close to eachother and highlights the outliers that lie alone in a low-density 

area [128]. The choice of clustering method depends to a degree on the type and format of the 

dataset. Ultimately, whatever method is required, a predictive model will need to be constructed 

to validate the approach on an external dataset.  

One of the most common approaches to identifying clusters involves principal component 

analysis (PCA)-based hierarchical clustering. PCA reduces the number of variations in a dataset 

while containing the most information [129]. This approach was taken to classify breast cancer 

molecular subtypes [130]. Non-negative matrix factorization (NMF), partitioning clustering 
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method, is another common approach [131]. The NMF method enabled identification of three 

distinct molecular subtypes of pancreatic cancer (classical, exocrine, quasi-mesenchymal) [106].  

3.4 Step-by-Step Analytical Workflow for Metabolic Subtyping   

3.4.1 Unsupervised Analysis Focussing on Metabolic Genes 

If the goal is to identify metabolic subtypes, then classification should be based on a 

focussed gene set consisting of genes that have a known function in metabolism. These genes 

have been annotated in the Reactome and KEGG pathway databases.  

The filtration process is an essential step in analyzing the dataset as it allows a more 

focussed analysis of a smaller, more parsimonious analysis of a smaller gene set that is more 

likely to contain valuable information. Removing uninformative genes reduces noise. The 

metabolic gene list can be filtered using various statistical approaches, such as median absolute 

deviation, which excludes less variable genes from a large dataset. 

3.4.2. Define Significant Clusters 

To define the significance of clusters, it is important to find out how good the model fits 

in the given dataset and its predictability. One possible way to determine the best-fit model could 

be calculating the coefficient determination (R2). R2 closer to 0 means that the dependent 

variable can not be predicted from an independent variable; and R2 closer to 1 means that the 

dependant variable can be predicted by the independent variable (perfect fit and reliable model). 

To test the predictability of identified clusters, the Silhouette algorithm could be used, which 

validates the consistency within clusters. This method determines how similar an object is to its 
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cluster comparing other clusters, for example, a higher silhouette score (closer to 1) means that 

the object is well-matched to its cluster.  

Once clusters have been identified, they can be visualized using a heatmap. Two things 

need to be considered carefully to create heatmap – distance metric selection and linkage 

method selection [132]. The distance metric is a function that calculates the distance between 

different groups, basically measuring how close the groups are — examples of distance metric 

including Pearson, Spearman-rank Correlation, Manhattan, Euclidean.Manhattan Distance: 

Measuring the distances between two different points as a grid-like path- 

d1≡dSAD:(x,y)↦‖x−y‖1=∑i=1n|xi−yi| [133] 

Euclidean Distance: Most common methods out of all, it measures the distances between two 

data points in a plane-  

 [134] 

 

Linkage clustering methods available include average, complete and single linkage 

clustering. Average linkage clustering uses the average distance between different clusters. The 

complete linkage refers to the longest distance between two points in each cluster, while the 

single linkage clustering refers to the shortest distance [135]. As mentioned earlier, due to 

variances in the different datasets, it is challenging to say which method is more suitable. 

However, any of the distance metric and the linkage method could be used to define the 

significance of the clusters. We tried all of the approaches, and for our particular dataset, 

Manhattan distance metric and complete linkage clustering turned out to be the best fit. 
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3.4.3. Determine Clinical Significance  

Once the metabolic subtypes have been identified, it is essential to verify clinical 

relevance. Perhaps the most obvious approach to detect clinically significant biological 

differences is to determine if the clusters differ in clinical outcomes such as overall survival (OS) 

and progression-free survival (PFS). Depending on the tumor type, OS and PFS may reflect 

different outcomes. For example, in tumor types where chemotherapy is administered, PFS may 

reflect sensitivity or resistance to chemotherapy. 

3.4.4. Interrogate Biological Significance  

The biological significance of identified subtypes can also be evaluated using supervised 

analyses, such as gene set enrichment analysis. Gene set enrichment analysis (GSEA) provides 

positively and negatively core enriched genes involved in specific pathways. Pathways that are 

highly perturbed in each identified subtype can be further investigated using literature-based 

informative pathway analysis such as Ingenuity Pathway Analysis (IPA) and KEGG pathways. 

Additionally, other molecular features such as mutation frequency, copy number variations 

(CNVs) and methylation patterns, can be assessed for each metabolic subtype.  

3.4.5 Validation wth External Datasets 

The predictiveness of a model must be tested by validating across a broad set of clinical 

settings and in different populations. There are many public resources available for validation, 

including The Cancer Genome Atlas Project (TCGA), International Cancer Genome Consortium 

(ICGC).  
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3.4.6 Evaluating the contribution of various cell types  

Heterogeneity is one of the most challenging features of a cancer tissue. Bulk tumour 

RNA-Seq data include RNA from a variety of cell types, including tumour cells and stroma cells. 

So, the outcome of the analysis may not be accurate as it is a mixed result of cancer and non-

cancerous cells. With advanced deconvolution techniques recently developed, it is possible to 

evaluate the contribution of various cell subsets. DeMixT or Cibersort can perform a three-

component deconvolution which provides the expression metrices of tumour, stromal and 

immune compartments [124,125]. Thus, the identified subtype method can be used on different 

compartments of a bulk sample, which eventually represents the broad spectrum of different cell 

functions.    
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Figure 3.1: Step-by-step analytical workflow based on metabolic gene expressions  

3.5 Workflow Overview/ Discussion    

Our approach involves a focused analysis of the transcriptome, as methods for whole 

transcriptome analysis are well established, the data are easily normalized, and the features are 

sufficiently rich to detect patterns. Our approach involves several steps: unsupervised analysis to 

identify metabolic subgroups; refinement of the classification by optimizing the number of 

clusters; verification of clinical and biological relevance; and validation. Validated subgroups can 

be further characterized by identifying associated mutations, copy number variations, and 

epigenomic events.  
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3.6.1 The problem of heterogeneity 

        One constant feature of cancer is cellular heterogeneity within a given tumour. 

Heterogeneity could be a result of different genetic, transcriptomic and/or metabolic changes. 

Metabolic heterogeneity is crucial as it profoundly influences therapeutic susceptibilities. One of 

the prominent features of cancer cell metabolism is increased glucose consumption and acid 

production resulting in an acidic microenvironment. Adaption to the changes enables cancer cells 

to drastically change their behavior, which depends on variations in the tumour cell phenotypes 

and their non-uniform distribution within the tumour. Previously, in vitro experiments on breast 

cancer cells show that it is possible to revert the cancer cells to healthy cells phenotype only 

based on the influence of extracellular conditions [136]. The variety of carbon substrates that 

drive neoplastic cells suggests metabolic heterogeneity, even in tumours that share the same 

clinical diagnosis. For example, using liquid biopsy-based single-cell metabolic phenotyping on 32 

lung adenocarcinoma patients shows diverse heterogeneity of tumour cells that are highly 

associated with glycolysis and mitochondrial oxidation [137]. There are different subsets of 

melanoma that found to be more dependent on oxidative phosphorylation than glycolysis [148]. 

Regulators of the cell cycle promote the metabolism of oxidative phosphorylation, and OXPHOS 

metabolism supports cancer cells to migrate and invade. 

Furthermore, ROS produced by cancer cells has a massive impact on cancer-associated 

fibroblasts (CAFs) as they provide fuel to tumour cells supporting their growth and survival. 

Rewiring of energy metabolism system is not only limited to tumour cells but also immune cells, 

CAFs. Besides glucose, there is increasing evidence that nutrient sources that support malignant 
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cell functions have a profound effect on the tumour microenvironment. Different cell types 

within the bulk tumour promote resistance to treatments. Thus, the biology of different stroma 

cells, as well as the crosstalk between the stroma cells and tumour cells, need to be better 

understood for the right selection of treatment procedure. Therefore, single-cell analysis could 

be a potential approach to explore the role of different cells present within the tumour 

microenvironment.  
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Chapter Four: Identification of metabolic subtypes in breast cancer (BRCA) 

4.1 Introduction  

 Breast cancer is the second leading cause of cancer-related deaths in women 

[139]. The mortality rate is worst for locally advanced and metastatic breast cancer.  For most of 

the last decade, hormone receptor status and the expression of surface molecules have 

dominated treatment options. Previously, in breast cancer, several different subtypes have been 

proposed based on the clinical, histology and molecular heterogeneity [140-143]. Recent 

advances have led to the development of therapeutics, including chemotherapy and radiation 

therapy, that target each of these molecular subtypes. However, not all individuals respond to 

current treatments and the development of new treatments requires a deeper understanding of 

breast cancer heterogeneity. In cells, the level of hormones, including estrogen, progesterone 

and androgen, affect various energy transporters and the expression of multiple metabolic 

enzymes. The rewiring of energy metabolism is one of the hallmarks of cancer and suggests that 

there is a connection between disrupted metabolism and drug resistance. This connection means 

that one possible therapeutic route could be targeting metabolic machinery of different 

malignant cells. This approach requires a better understanding of the specific metabolic 

characteristics in any individual. 

Over the past two decades, highly dimensional datasets have been generated that have 

demonstrated the existence of multiple molecular subgroups of breast cancer. For example, 

Perou et al. identified five molecular subtypes of breast carcinoma based on gene expressions 

including basal-like, Luminal A, Luminal B, HER2 enriched and normal-like [140]. The identified 
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molecular subtypes are highly prognostic and represent excellent biological diversity. All these 

subtypes present different clinical features and therapeutic responses and may utilize metabolic 

pathways differently to maintain their activity. Thus, some researchers have taken the approach 

to identify metabolic alterations associated with the molecular subtypes, while others have tried 

to identify metabolic subtypes based solely on metabolic gene expressions [144-149]. 

 In 2013, Kim et al. explored the role of glutamine related proteins in the molecular 

subtypes of breast cancer [149]. The study was focused on tissue microarray of 702 breast cancer 

patients. Using immunohistochemical staining, they found an HER2 enriched molecular subtype 

that has higher expression of glutamate dehydrogenase (GDH), and amino acid transporter-2 

(ASCT) comparing to other molecular subtypes. Overall, the study shows differential expressions 

of glutamine metabolism-related proteins among the molecular subtypes of breast cancer. 

Similarly, a mass spectrometry-based study showed alteration in glutamine and beta-alanine 

metabolism in estrogen receptor-positive (ER+) and negative (ER-) breast cancer [150]. In 2013, 

Budczies et al. investigated 204 ER+ and 67 ER- breast cancer tissue samples and conducted GC-

TOFMS based metabolomics experiment where they found enriched glutamate and reduced 

glutamine in ER- tumor tissue samples compared to ER+ and healthy breast tissues. This finding 

suggests that glutaminase inhibitors could be potential targets in ER- breast cancer patients. 

Furthermore, their analysis highlights a strong correlation between beta-alanine and 4-

aminobutyrate aminotransferase (ABAT); low ABAT expression is associated with shortened 

recurrence-free survival in both ER-positive and negative breast cancer. Another study based on 

ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) experiment 
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comprising 267 human breast cancer tissue samples revealed increased palmitate containing 

phosphatidylcholines in breast tumour samples [151]. Palmitate is a critical metabolite that is 

produced by fatty acid synthesis and found to be up-regulated early in the tumour progression 

[152-155]. Similarly, in 2016, Haukass et al. revealed three distinct subtypes (Mc1, Mc2, and Mc3) 

in breast cancer patients based on metabolic profiling [156]. Identified subtypes show differences 

in breast cancer-associated proteins and genes that are related to the extracellular matrix as well 

as metabolic pathways. A combination of the metabolic, transcriptomic and proteomic profiles 

of breast cancer provide a bigger picture of heterogeneity and reveals metabolic pathways that 

are susceptible to different metabolically targeted drugs.  

Previous studies have described several genes that are expressed differently in breast 

cancer as well as several transcriptional dysregulations of different metabolic genes [157,158]. 

Since gene expression has a convincing association between the oncogenic drivers and metabolic 

phenotypes, it is essential to look into the gene expression profile of different cancer patients to 

get a better understanding of cancer metabolism. However, distinguishing these significantly 

expressed genes is challenging.  For example, classification of patients based on their significant 

metabolic gene expressions more precisely is questionable. To address this issue, we determined 

whether there were systematic differences in expression of genes that were involved in breast 

cancer metabolism.  
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4.2 Materials and Methods  

4.2.1 Patient samples and gene list 

For this analysis, normalized gene expression data (RSEM RNA-Seq) of breast cancer 

patients (n= 1,192) were downloaded from The Cancer Genome Atlas Project (TCGA). Male 

patients (n=12) were omitted for the analysis. Overall, 1081 tumour and 111 matched healthy 

adjacent breast tissue was identified. The metabolic gene list (1,847 genes) was aggregated from 

the Reactome pathway database.  The RNA-Seq dataset was composed of 14,375 genes in total 

and 1,439 metabolic genes.  

4.2.2 RNA-Seq data Normalization  

TCGA RNA-Seq data was normalized using winscaling. Winscaling is a normalization 

method where the data set is auto scaled with a trimmed standard deviation and a trimmed 

mean. The winscaling method involves identifying the distribution and calculating mean and 

standard deviation (SD) based on the mid 95 percentile of values.  

4.2.3 Metabolic Subgrouping  

Principal component analysis based hierarchical clustering was performed on the 

metabolic genes. Three distinct metabolic subtypes were identified based on the method. 

Metabolic clusters were defined using the agglomerative clustering algorithm and average 

linkage used for the hierarchical clustering of the genes. The heatmap was derived using 

Qlucore software. The linkage criterion determines the distance between sets of samples 

(variables) as a function of the pairwise distances between variables. If the objects or clusters 

just merged are indexed by i and j, and if k is any other object or cluster, and if s (i) denotes the 
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number of elements in cluster i, then the linkage criteria available in Qlucore Omics Explorer for 

computing the distance d between I + j and k defined as follows.  

Average-linkage 

d(i+j,k) = (s(i)*d(i,k) + s(j)*d(j,k)) / (s(i) + s(j)) 

4.2.4 Survival Analysis 

To determine the clinical relevance of identified subtypes, Kaplan-Meier plots were 

generated for both overall survival and five-year progression-free survival. PRISM version 8.0.1 

was used to perform the survival analysis. 

4.2.5 Clinical Data Analysis 

All the clinical information was obtained from the TCGA official site. This included age, 

race, T stage, N stage and M stage. To test if the identified subtypes have any significant 

association with the following clinical features, individual enrichment tests were performed using 

IBM SPSS version 24.  

4.2.6 Mutation Analysis  

Mutation data were collected for all the patients from cBioPortal. For each metabolic 

subtype, topmost mutated genes were tested using R - Maftools package. 

4.2.7 Gene set enrichment analysis and pathway analysis  

To investigate the different pathways that were dysregulated in the identified metabolic 

subtypes, gene set enrichment analysis and literature-based informative pathway analysis was 

conducted. For the GSEA, seven major metabolic pathways (carbohydrate, TCA cycle, amino acid, 

nucleotide, energy, vitamin & cofactor, and lipid metabolism) and seven hallmarks of cancer 
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(angiogenesis, apoptosis, G2M checkpoint, inflammatory response, DNA repair, invasion & 

metastasis and EMT) were explored. Furthermore, different functions, including cancer hallmark 

associated functions and canonical pathways, were investigated across the metabolic subtypes. 

For the canonical pathway analysis, Ingenuity Pathway Analysis (IPA) 2018 was used. 

Figure 4.1: Gene set enrichment analysis workflow.  

Metabolic genes were used to explore major metabolic pathways and the entire gene set was 

utilized to investigate seven hallmarks of cancer and 50 hallmark functions. Pathways were 

considered significantly enriched based on the FDR <0.25 for each metabolic subtype (B1, B2 and 

B4) compared to the healthy group (B3). 
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Figure 4.2: Literature-based pathway analysis workflow.  

The entire gene set was filtered based on a two-tail t-test and corrected for multiple comparisons 

(FDR). FDR value and expression fold-changes were used to investigate the functional state of 

each pathway.  Canonical pathways and cellular and molecular functions were explored using 

Ingenuity Pathway Analysis (IPA). Gene expression fold changes of filtered genes were used for 

the KEGG pathway analysis (Pathview software). Pathways were considered significantly enriched 

based on the FDR < 0.25 for each metabolic subtype (B1, B2 and B4) compared to healthy breast 

tissue group (B3). 
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4.3 Results  

4.3.1 Metabolic gene expression of BRCA patients reveals three distinct subtypes  

To identify metabolic subtypes, we utilized the RNA-Seq data from resectable BRCA 

patients to look at metabolic gene expression. The resectable dataset included 1,081 female 

patients and 14371 genes.  The metabolic genes list was aggregated from different metabolic 

pathways identified in the Reactome pathway database, including carbohydrate (n=292), lipid 

(n= 777), amino acid (n= 324), TCA cycle (n= 164), nucleotide (n= 94), energy (n= 88) and vitamin 

and co-factor (n= 108). We performed an unsupervised analysis to identify different metabolic 

subgroups of BRCA. Principle component analysis based agglomerative clustering algorithm 

shows three distinct BRCA metabolic subtypes (B1, B2 and B4); the normal breast tissue group 

was labelled B3 (n=117). Metabolic gene expressions across the metabolic subtypes are 

visualized in Figure 4.3. 
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Figure 4.3: Metabolic subtypes of breast cancer.  

Heatmap derived using Qlucore software, showing metabolic subtypes identified with principal 

component analysis (PCA) using Simca software. X-axis represents BRCA patients (n= 1,192) at 

the top and y-axis represents metabolic genes (n= 1,375). Dendrogram symbolizes four groups; 

B1 in red, B2 in blue, B3 (normal breast) in green, and B4 in yellow. B1 (n= 81) and B2 (n= 129) 

mostly comprised basal-like subtypes, and B4 (n= 865) contains higher proportion of luminal A 

subtypes. 

Normal 
Breast

B1 

B2 

B3 

B4                             
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Overall survival and five years progression-free survival of samples belonging to each 

subtype are not statistically significant (OS; Log-rank (Mantel-cox) test p=0.4206 and PFS; p= 

0.2453) [Figure4.4and4.5]  

     

Figure 4.4: Overall survival analysis of breast cancer metabolic subtypes.  

Kaplan-Meier plot generated using Prism version 8.0.1. The X-axis represents survival time in 

months, and the y-axis represents the percentage (%) of patients in each cohort surviving. B1 

subtype (n= 81) has the worst prognosis (red curve), B2 subtype (n= 129) has the best prognosis 

(blue curve), and B4 subtype (n=865) has the second worst subtype (yellow curve). 
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Figure 4.5: Progression-free survival analysis of breast cancer metabolic subtypes.  

Kaplan-Meier plot generated using Prism version 8.0.1. The X-axis represents survival in months, 

and the y-axis represents survival in percentage (%). B1 subtype (n= 81)  has the worst prognosis 

(red curve), B2 subtype (n= 129) has the best prognosis (blue curve), and B4 subtype (n=865) has 

the second worst subtype (yellow curve). 

 

Identified metabolic subtypes were statistically significant with different clinical features; 

subtypes vs age (p=.002), subtypes vs race (<.001), subtypes vs T stage (.009), subtypes vs N stage 

(.007) [Table 3.1]. However, there was no statistical significance observed with the identified 

subtypes and the metastatic stage (p= .879) [Table 3.1]. Furthermore, our metabolic subtypes 

were highly associated with the previously identified molecular subtypes of BRCA (PAM50).  
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Metabolic subtype B1 and B2 show higher relevance with the basal-like subtype where metabolic 

subtypes B4 shows higher enrichment with the LumA subtypes (Chi-square test, p value < 0.001). 

Table 4.1: Clinical features of BRCA metabolic subtypes 

 

 

Oncogenic mutations have been found to be associated with altered metabolic activity in 

different types of cancer, including breast cancer. However, our analysis shows no significant 

mutations when comparing breast cancer metabolic subtypes B1, B2 and B4 to normal breast 

subtype B3 after correcting for multiple comparisons, except subtype B1 (12 events) and B2 (7 

events) were different with regards to gene PI3KCA (p=0.0027, p-value adjusted= 0.02) [Figure 

4.6 & 4.7]. 

Characteristic B1 B4B2 P-value*

Mean Age (SD)                        58.99± 14.02        55.68± 12.04        59.68± 13.17                             .002 

Race >.001
- White                                       40(50.0%)        78(64.5%)       619(79.9%)
- Asian                                        1 (1.3%)             7 (5.8%)           53 (6.8%) 
- Black                                        39 (48.8%)        36(29.8%)       103(13.3%)
T Stage                                                                                                                      .009
- I                                                16(19.8%)        24(18.8%)        237(27.6%)
- II                                           49(60.5%)        92(71.9%)        477(55.5%)
- III                                           14(17.3%)         7(5.5%)           113(13.2%)
- Iv                                           2(2.5%)             5(3.9%)              32(3.7%)
N Stage                                                                                                                      .007
- 0                                            44(55.7%)       80(62.0%)        381(45.2%)
- I                                             20(25.3%)       35(27.1%)        298(35.3%)
- II                                            7(8.9%)             10(7.8%)         101(12.0%)
- III                                           8(10.1%)          4(3.1%)              63(7.5%)
M Stage                                                                                                                      .879
- 0                                           50(98.0%)        115(98.3%)        724(97.6%)
- I                                              1(2.0%)            2(1.7%)              18(2.4%)
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Figure 4.6: Mutational analysis of breast cancer metabolic subtype 1 (B1).  

Oncoplot illustrating top ten mutated genes sorted and ordered by decreasing frequency in B1 

subtype. Different mutations are represented by different colours in the x-axis including green as 

missense mutation, orange as splice site, brown as frame deletion, black as multiple hit and red 

as nonsense mutation. Y-axis represents the percentage of a specific mutation of the selected 

genes. Analysis and visualisation of the mutations was conducted using the Maftools software. 

PIK3CA found to be the most frequently mutated gene in this subgroup.  
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Figure 4.7: Mutational analysis of breast cancer metabolic subtype 2 (B2).  

Oncoplot illustrating top ten mutated genes sorted and ordered by decreasing frequency in B2 

subtype. Different mutations are represented by different colours in the x-axis including green as 

missense mutation, orange as splice site, brown as frame deletion, black as multiple hit and red 

as nonsense mutation. Y-axis represents the percentage of a specific mutation of the selected 

genes. Analysis and visualisation of the mutations was conducted using the Maftools software. 

CACNA1E and PIK3CA found to be the most frequently mutated genes in this subgroup.  

 

4.3.2 Characterization of metabolic and biological features of BRCA metabolic subtypes  

To understand the complex biological features behind the identified metabolic subtypes 

of BRCA, we performed a supervised analysis, including gene set enrichment analysis and 

literature-based informative pathway analysis (IPA).  First, we used gene set enrichment analysis 

(GSEA), which involves testing curated gene sets corresponding to selected biological functions. 
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We used seven major metabolic pathways including carbohydrate metabolism (n = 286 genes), 

TCA cycle (n = 148 genes), amino acid metabolism (n = 348 genes), nucleotide metabolism (n = 

90 genes), energy metabolism (n = 110 genes), vitamin & cofactor (n = 168 genes) and lipid 

metabolism (n = 766 genes). Likewise, we performed the hallmark function analysis using seven 

primary cancer hallmark functions including invasion & metastasis (n = 472 genes), angiogenesis 

(n = 36 genes), apoptosis (n = 161 genes), G2M checkpoint (n = 200 genes), DNA repair (n = 150 

genes), inflammatory responses (n = 200 genes), and epithelial-mesenchymal transition (n = 200 

genes). There were only a few overlapping genes between the gene sets which were primarily 

comprised of unique genes. All the genes represented primary metabolic and hallmark functions. 

Pathways were considered significantly enriched based on the FDR < 0.25. 

GSEA demonstrated that breast cancer subtype B1 is positively enriched in energy 

metabolism (ES -0.39; FDR 0.154), lipid (ES -0.31; FDR 0.19), amino acid (ES 0.36; FDR 0.144), 

nucleotide (ES 0.44; FDR 0.097) and TCA cycle (ES 0.52; FDR 0.076). Similarly, GSEA hallmark 

analysis displays a higher number of genes that were positively enriched in G2M checkpoint (ES 

0.5; FDR 0.093) and DNA repair (ES 0.52; FDR 0.076). Metabolic subtype B1 exhibits the most 

metabolic perturbations compared to other subtypes (B2, and B4). Most of the genes in B2 

metabolic subtype were positively enriched in nucleotide (ES 0.44; FDR 0.148), G2M checkpoint 

(ES 0.75; FDR 0.007), and DNA repair (ES 0.45; FDR 0.062), but negatively enriched in energy 

metabolism (ES -0.41; FDR 0.155). In the B4 subtype, nucleotide metabolism (ES 0.44; FDR 0.054), 

G2M checkpoint (ES 0.59; FDR 0.06), and energy metabolism (ES -0.35; FDR 0.251) were found to 

be highly perturbed. Metabolic and seven hallmark analysis illustrated in figure 4.8. 
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Figure 4.8: Gene set enrichment analysis of identified metabolic subtypes (B1, B2 and B4). 

As described in the methods section this analysis was conducted using major metabolic pathways 

and seven hallmarks of cancer. The X-axis represents enrichment score (ES), and Y-axis embodies 

major pathways.  Red, blue and yellow represent subtype B1, B2 and B4, respectively. Enrichment 

of nucleotide, energy metabolism and G2M checkpoint observed across all metabolic subtypes.  

  

Further, we identified enriched functions within the identified metabolic subtypes 

utilizing 50-hallmark functions from the broad institute. 50 hallmark function analysis is a 

representation of specific biological processes and display of coherent expression. Oxidative 

phosphorylation (p-value 0.027), DNA repair (p-value 0.010), MYC targets (p-value0.024) and TGF 

beta signalling (p-value 0.006) found to be significantly enriched in metabolic subtype B1. 

Likewise, we observed metabolic subtype B2 has enriched functions including E2F targets (p-
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value < 0.001), G2M checkpoint (p-value 0.008), mitotic spindle (p-value 0.010) and estrogen 

response (p-value 0.008). The common function that observed across all identified metabolic 

subtype is UV response. All of the analyses summarized in figure 4.9. Further, we did a literature-

based informative pathway analysis to determine the signalling pathways that may cause the 

above alterations.  

 

Figure 4.9: 50 hallmark functions analysis of BRCA subtypes (n = 1,192 samples and n = 14,735 

genes) 

The x-axis represents enrichment score, and the y-axis signifies the altered functions. The legend’s 

different colour code shows the significance level of enrichment. Each metabolic subtype was 

compared with the healthy breast tissue group. Most of the functions found altered in metabolic 

subtypes B1 (circle shape) and B2 (triangle shape). Alterations in UV response is the shared 

feature found across all metabolic subtypes.   
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Further, we investigated perturbed canonical pathways in each subtype that may provide 

a better explanation of different metabolic and cellular perturbations. In B1 subtypes, most of 

the genes are poorly expressed, resulting in the down-regulation of the PTEN signalling (B-H p-

value = 0.039) pathway. Further analysis reveals highly activated protein synthesis (B-H p-value 

= 2.39E-06) and RNA post-transcriptional modification (B-H p-value = 5.05E-06) [Figure 4.10]. 

 

Figure 4.10: Perturbed canonical pathways and functions in B1. 

The analysis was performed using filtered gene set and compared B1 subtype (n = 81 samples) to 

the healthy breast tissue (B3) (n = 117 samples). The X-axis in the bar chart denotes pathways and 

functions, and Y-axis is the p-value. Benjamini-Hochberg test (B-H) was performed to correct the 

multiple comparisons. This analysis shows that substantial downregulation of PTEN signalling is 

highly associated with the disrupted protein synthesis and RNA post-transcriptional modification 

in the B1 breast cancer metabolic subtype. 
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In the B2 subtype, highly activated mitotic roles of polo-like kinase signalling pathway (B-

H p-value 0.01) were found. Moreover, altered polo-like kinase signalling was found to affect 

some major functions within the subtype. For example, cell cycle (B-H p-value 1.85E-06) and DNA 

replication (B-H p-value 6.83E-06) processes were identified to be significantly increased in B2 

along with decreased cell death (B-H p-value 2.42E-07) [Figure 4.11]. 

 

Figure 4.11: Perturbed canonical pathways and functions in B2. 

The analysis was performed using a filtered gene set and compared B2 subtype (n = 129 samples) 

to the healthy breast tissue (B3) (n = 117 samples). The X-axis in the bar chart denotes pathways 

and functions, and Y-axis is the p-value. Benjamini-Hochberg test (B-H) was performed to correct 

the multiple comparisons. This analysis shows that significantly altered polo-like kinase signalling 

affects the cell cycle, DNA replication and cell survival in B2 breast cancer metabolic subtype. 
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canonical pathways included Integrin signalling (B-H p-value 0.01), P-21 activated kinases (PAK) 

signalling pathway (B-H p-value 0.02), and Fibroblast growth factor signalling (FGF) signalling 

pathway (B-H p-value 0.05). All the down-regulated signalling was associated with decreased cell 

to cell interaction (B-H p-value 2.97E-05), cellular growth and proliferation (B-H p-value 2.26E-

06) [Figure 4.12].   

 

Figure 4.12: Perturbed canonical pathways and functions in B4. 

The analysis was performed using filtered gene set and compared subtype B4 (n = 865 samples) 

to the healthy breast tissue (B3) (n = 117 samples). The X-axis in the bar chart denotes pathways 

and functions, and Y-axis is the p-value. Benjamini-Hochberg test (B-H) was performed to correct 

the multiple comparisons. This analysis shows that there is increased integrin signalling, PAK 

signalling, FGF signalling highly affects cell to cell interaction and cellular growth and proliferation 

in the B4 breast cancer metabolic subtype. 
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4.4 Discussion  

One of the critical hallmarks of cancer is the reprogramming of the energy system. A well-

established cancer cell metabolic abnormality is the Warburg effect which is the elevation of 

glycolysis in the presence of oxygen [24]. Over the years, scientists have discovered that besides 

the Warburg effect, other crucial metabolic alterations help tumour cells to proliferate and 

survive. However, metabolism is a complex process that is not fully characterized. It is important 

for the field of cancer research that the metabolic alterations of cancer cells are better 

understood and defined. Based on our TCGA breast cancer patient cohort’s transcriptomic data 

profiling, we found that differential metabolic gene expression predominantly reflects crucial 

metabolic activities within the cancer cells and biological functions within the patients.  

One of the main aims of this study was to identify meaningful metabolic subtypes. Thus, 

we focused on metabolic gene expressions to classify breast cancer patients and explored 

different biochemical and biological functions associated with these identified subtypes, 

combining gene set enrichment analysis and informative pathway analysis. One of the 

advantages of this systemic approach is that it gives a better understanding of the functional 

state of different activities (both metabolic and biological functions), showing whether they are 

up-regulated, down-regulated, and/or affected/neutral. Throughout our approach, we found 

that metabolic gene expression subtypes correlated with each other. For instance, nucleotide 

and energy metabolic perturbations were observed more frequently in all the identified subtypes 
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compared to the normal breast tissue group. Focusing on identified subtypes, we also showed 

that it is possible to investigate different oncogenic mutations and copy number variations that 

might be associated with the alterations affecting metabolism. 

In this study, we demonstrated potential clinical features that significantly correspond 

with identified BRCA subtypes. The identified metabolic subtypes highly correspond with the age, 

race, T stage and N stage of the tumour. Furthermore, we observed that identified metabolic 

subtypes show distinct patterns. For example, increased nucleotide metabolism, particularly 

purine metabolism, was found to be highly associated with the bad prognosis and decreased 

pyrimidine and carbohydrate metabolism was found to be mostly associated with better 

prognosis. Likewise, we demonstrated that the underlying biological consequences are 

associated with the altered metabolic activity across the metabolic subtypes. Our result suggests 

that both positively and negatively enriched nucleotide metabolism highly affects the G2/M 

checkpoint, thus affecting the cell cycle. This indicates that metabolic status has the potential to 

help inform treatment selection.  

There are well-established studies that show dysregulated metabolic functions helps 

cancer cell to proliferate abnormally and survive, which suggest that inhibiting the altered 

metabolic functions may pose an advantage in preventing abnormal cancer cell proliferation. 

Recently, researchers have made efforts to understand cancer cell metabolism and its 

effectiveness in terms of therapy. While there has been limited success looking at this aspect up 

until this point, our systemic based approach presents a promising standard therapeutic strategy. 

For instance, in bad prognosis subtypes, up-regulated functions may indicate susceptibility to 
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therapy that targets their regulatory factors. Identifying the key regulatory factors in specific 

subtypes may reverse the functional state of a particular activity, changing up-regulated subtypes 

to down-regulated subtypes. The impact that this systemic approach could have on treatment 

decisions could provide a potential survival benefit and improvement in health condition to 

patients 

It is clear that the discovery of metabolic subtypes in breast cancer could have major 

implications in cancer research. Even though there are no measurable changes in survival 

between metabolic subtypes, the existence of metabolic subtypes may provide new therapeutic 

targets. That is, it may be possible to affect cell viability by targeting the specific metabolic 

features of cancer. The existence of these metabolic subtypes and their relationship to clinical 

outcomes will have to be validated in other large datasets. 
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Chapter Five: Different Metabolic Subtypes of Pancreatic Ductal Adenocarcinoma 

 

5.1 Introduction  

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and it is the fourth leading cause 

of cancer death [159]. The five-year overall survival rate is less than 7% [160,161]. Only about 

20% of patients are eligible for surgery [162]. Even after resection, the disease recurs in up to 

80% [163,164]. The aggressive tumour biology as well as the involvement of non-cancerous cells 

in PDAC make it challenging to treat, and it is resistant to all currently available therapies such as 

chemotherapy and radiotherapy [165-167]. There is a need for novel therapeutic targets in PDAC. 

Furthermore, the biology of the tumour and stromal cells needs to be better understood to 

design more effective subtype-specific treatment. 

 Changes in oncogenes and tumour suppressors highly affect gene expression levels, which 

subsequently cause metabolic reprogramming in cells [168-172]. Various groups have made 

efforts to devise approaches to subtyping cancers according to their metabolic features [8,173-

175]. Large and multidimensional molecular datasets like those developed by The Cancer 

Genome Atlas and the International Cancer Genomics Compendium have made this work 

possible. These studies focused on metabolic subtyping and show a broad transcriptional 

disruption of metabolic genes. However, the main challenge is how to categorize cancer patients 

more effectively into different subtypes based on the metabolic gene expressions as well as their 

utilization in clinical practice. To address those challenges, we developed a systematic 
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transcriptome-based bioinformatics approach to identify and characterize different metabolic 

subtypes in PDAC patients.  

5.2 Methods    

5.2.1 Overview  

 We downloaded normalized RSEM RNA-Seq patient (n=137) data from the TCGA portal. 

The dataset contained 13,218 genes, including 1240 metabolic genes. Metabolic genes 

identification, dataset normalization, was performed in the same way as described in chapter 

four. 

5.2.2. Deconvolution of the original PDAC RNA-Seq dataset   

 Dr. Wenyi Wang’s team at the MD Anderson Cancer Centre performed the deconvolution 

of the dataset. They developed a two-component deconvolution method termed as DeMixT. This 

algorithm separates the tumour cells and stroma cells from bulk tumour tissue. DeMixT 

reconstitutes the expression profile for all the components for each gene and each sample as 

well as estimates all distribution parameters and cellular properties. 
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5.2.3 Metabolic Subgrouping  

 We applied the non-negative matrix factorization (NMF) method to our metabolic gene 

set to identify the metabolic subtypes. NMF method factorizes a data matrix (V) into two matrices 

(W and H), and no negative value exists in all three matrices . 

V W x H 

Based on this approach, a four-cluster model was identified as the best fit for the given 

dataset. We then performed the hierarchical analysis using the Manhattan distance metric and 

complete-linkage clustering to visualize the metabolic subtypes. The complete linkage covers the 

longest distance between two points in each cluster and Manhattan distance measures distances 

between two different points as a grid-like path as follows –  

d1≡dSAD:(x,y)↦‖x−y‖1=∑i=1n|xi−yi| 

 

Tumour                                                                    Stroma  

DeMixT Algorithm 
Deconvolution 
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5.2.4 Survival Analysis  

   For the overall survival analysis, we generated a Kaplan-Meier plot using PRISM version 

8.0.1. For all the downstream analyses, each metabolic subtype was compared to the best 

prognosis group (M3). 

5.2.5 Clinical Data Analysis  

 All the additional clinical data including age, race, pathologic tumour stage, histological 

grade was downloaded from the cBioportal. We performed descriptive statistics comparing 

identified metabolic subtypes and age and used a Pearson chi-square test to determine the 

significance between metabolic subtypes and other clinical characteristics. All of  the analyses 

were performed using IBM SPSS version 24. 

 5.2.6 Mutation and Copy Number Variations Analysis  

 All mutational and CNV data of the TCGA patients were derived from the cBioPortal.  We 

performed Kruskal Wallis Test to determine the significance of different mutations and copy 

number alterations in identified metabolic subtypes. 

5.2.7 Gene Set Enrichment Analysis and Ingenuity pathway analysis  

 Gene set enrichment analysis, and pathway analysis was performed the same as 

described in chapter four. 
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5.3 Results  

5.3.1 Metabolic gene expressions identify four distinct subtypes of PDAC  

We have established four distinct metabolic subtypes (M1, M2, M3 and M4) of PDAC 

based on patterns of 1,240 metabolic gene expression using the same method described in 

chapter two to identify genes. The study was conducted using 137 PDAC TCGA patients. We used 

a non-negative matrix factorization (NMF) and hierarchical clustering (HCL) method to identify 

the distinct subtypes. M3 subtype was = the largest group (n = 43, 0.31%), followed by the M2 

subtype (n = 42, 0.30%), M1 Subtype (n = 29, 0.21%) and M4 subtype (n = 23, 0.16%) [Figure 5.1]. 
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Figure 5.1: Metabolic subtypes of pancreatic ductal adenocarcinoma (PDAC).  

Four distinct metabolic subtypes identified based on the non-negative matrix factorization (NMF) 

method. The heatmap created using Manhattan distance and complete linkage clustering 

algorithm. Colour bars at the top (x-axis) represent the groups of patients: M1 is red, M2 is blue, 

M3 is red, and M4 is yellow. Y-axis symbolises metabolic genes (n= 1240). 

 

The patient outcomes for each metabolic subtype have significant clinical relevance (p-

value < 0.001) [Figure 5.2]. The Kaplan-Meier plot shows M1 is the worst prognosis group with a 

median survival of 10.7 months, followed by the intermediate group, M4 with an average survival 
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of 15.7 months. Subtype M3 and M2 are the best prognosis groups, with an average survival of 

24.6 and 23.4 months, respectively. 

 

 

Figure 5.2:  Overall survival analysis of identified metabolic subtypes (n = 137 patients).  

Kaplan-Meier plot generated for the overall survival analysis. The X-axis symbolizes the overall 

survival of patients in months, and the y-axis indicates survival in percentage (%). The different 

colours indicate different subtypes: M1 is green, M2 is blue, M3 is red and M4 is yellow. Overall 

survival is statistically significant across identified metabolic subtypes (p-value < 0.001). Based on 

the analysis, M1 is the worst, followed by M4, and M3 is the best, followed by M2. 

 

 

 

 

Overall Survival Analysis 
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5.3.2 Association of metabolic subtypes with known PDAC molecular and immune subtypes  

In 2011, Collisson et al. identified three molecular subtypes in PDAC based on 62 gene 

signatures (Basal-like, exocrine and quasi-mesenchymal). In 2015, Moffit et al. identified two 

tumour subtypes basal, classical and two stroma subtypes as normal and activated. In both 

studies, the authors found the basal-like subtype is associated with poor survival outcomes.  To 

explore whether the identified metabolic expression patterns across the identified subtypes 

could underline the differences between previously identified molecular subtypes, we 

determined the previously identified PDAC subtypes for each sample and investigated their 

degree of overlap with the metabolic phenotypes. Statistical analysis shows significant 

correlation between identified metabolic subtypes and Collisson subtypes (p-value < 0.001); 

however, we found no significant correlation found the Moffit subtypes (p-value = 0.158). From 

the enrichment analysis, we found that the basal-like subtype highly corresponds with the M2 

subtype (64.3%), exocrine subtype with M3 (58.1%), and quasi-mesenchymal subtype with the 

worst metabolic subtype, M1 (44.8%) [Figure 5.3]. 
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Figure 5.3: Enrichment analysis between metabolic subtypes and previously identified 

molecular subtypes.  

Based on the chi-square test, identified metabolic subtypes highly correspond to the Collisson 

subtypes: basal-like, exocrine and quasi-mesenchyme (p-value < 0.001). No statistical significance 

was observed with Moffit subtypes: basal-like and classical (p-value 0.158). The different colours 

indicate our identified subtypes: M1 is green, M2 is blue, M3 is red and M4 is yellow. 

 

A recent paper published in Immunity on almost 10,000 cases of 33 cancer types 

described six patterns of immune response (C1, C2, C3, C4, C5 and C6) [108].C1 had higher 

expression of angiogenic genes with increased cell proliferation, C2 had the highest M1/M2 

macrophage polarization and the most T cell receptor diversity, C3 had elevated T helper 17 and 

1 genes and low to moderate cell proliferation, C4 showed Th1 suppressed and high M2 response, 

Metabolic Subtypes Vs. Collisson 

Subtypes 

 

Metabolic Subtypes Vs. Moffit 
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C5 had the lowest lymphocyte and highest macrophage responses, and finally, C6 showed the 

highest TGF- signatures. To investigate whether any significance exists between the identified 

metabolic subtypes and immune subtypes, we performed an enrichment test. The analysis shows 

only four immune subtypes (C1, C2, C3 and C6) out of six correspond highly with the identified 

metabolic subtypes. We found that the worst subtype M1 has a high correlation with C1 (65.5%), 

while the best subtype M3 corresponds with the C3 (46.5%). Interestingly, the immune subtype 

C3 was the only immune group that had low to moderate tumour cell proliferation [Figure 5.4]. 

Furthermore, the crosstabulation test supports the classification of M1 as the worse prognosis 

group, as it is linked with the higher cell proliferative group (C1).      

        

Figure 5.4: Enrichment test between metabolic subtypes and immune subtypes.  

Metabolic subtypes (M1, M2, M3 and M4) are labelled on the x-axis and the proportion of the 

immune subtypes is labelled on the y-axis as a percentage (%). This enrichment test demonstrates 

that the metabolic subtypes are highly correlated with the immune subtypes (Pearson chi-square 

< 0.001). It shows that the worst metabolic subtype (M1) highly corresponds with immune subtype 
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C1 (worst immune subtype) and the best prognosis group (M3) corresponds with immune subtype 

C3 (good immune subtype). 

 

5.3.3 Deconvolved tumour metabolic expressions reveals diverse functional alterations   

To determine the biochemical and biological relevance of metabolic subtypes, we 

inspected various pathways by gene set enrichment analysis (GSEA) based on the RNA expression 

(p-value < 0.05 and FDR < 0.25). The analysis included seven major metabolic pathways 

(carbohydrate, TCA cycle, lipid, amino acid, nucleotide, energy, vitamin & cofactor) and seven 

functional cancer hallmarks (apoptosis, angiogenesis, epithelial-mesenchymal transition, G2M 

checkpoint, inflammatory response, DNA repair, invasion & metastasis). From the analysis, we 

found that each of the metabolic subtypes has an extensive pathway-level functional effect. The 

GSEA analysis reveals the worst metabolic subtype has perturbed carbohydrate metabolism (p-

value 0.012; FDR 0.068), which results alterations in G2M checkpoint (p-value 0.024; FDR 0.03) 

and invasion & metastasis (p-value 0.024; FDR 0.157) [Figure 5.5]. Further pathway analysis 

confirmed that the worst M1 subtype is highly dependent on glycolysis to produce the energy 

supporting cell proliferation, showing elevated expression of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), fructose-bisphosphate A (ALDOA), enolase 1(ENO1), phosphoglycerate 

kinase 1 (PGK1). From the 50 hallmarks analysis, we found that most of the critical functions are 

positively enriched, including glycolysis, TGF beta signalling, NOTCH signalling, MTORC1 signalling 

etc. across all identified metabolic subtypes. The worst metabolic subtype M1 exhibits the most 

perturbed functions [Figure 5.6].    
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Figure 5.5: Gene set enrichment analysis of the deconvolved tumour M1.  

The green bar represents enrichment score (ES), the purple colour indicates p-value, and grey 

colour signifies FDR value. GSEA shows that a positively enriched carbohydrate metabolic 

pathway is significantly associated with a positively enriched G2M checkpoint and Invasion & 

metastasis. 
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Figure 5.6: 50 hallmark functions analysis of PDAC deconvolved tumour. 

The x-axis represents enrichment score, and the y-axis signifies the altered functions. Different 

colour code shows the significance level of enrichment. All the functions found positively enriched 

in the tumour compartment.  
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Most of the primary functions including cell survival (p-value 2.62E-07), post translational 

modification (p-value 2.36E-06) , protein synthesis (p-value 5.24E-05), DNA repair (p-value 7.61E-

05)  and cell cycle (p-value 6.58E-03) were found to be significantly up-regulated in M1. 

Additionally, most critical pathways, such as insulin-like growth factors receptor signalling (p-

value 8.29E-07), interleukin-2 signalling (p-value 8.01E-06),  and nuclear factor kappa B signalling 

(p-value 2.45E-04),  were observed to be highly increased in M1 subtype, while p53 signalling (p-

value 9.99E-06), and PTEN signalling (p-value 1.3E-03) were decreased [Figure 5.7]. 

 

Figure 5.7:  Altered canonical pathways and functional analysis of deconvolved tumour M1.  

The x-axis in the bar chart denotes pathways and functions, and the y-axis represents p-value. We 

performed the analysis by comparing each subtype with the best prognosis group (M3).  Most of 

the critical signalling pathways in the worst subtype were highly perturbed, resulting in 

alterations in major cellular and molecular functions including cell survival, protein synthesis and 

DNA repair. 
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In contrast, the intermediate group (M4) appeared to be dependent on amino acid 

metabolism for energy production. GSEA shows altered amino acid (p-value 0.002; FDR 0.001), 

and TCA cycle (p-value 0.00; FDR 0.008) effecting angiogenesis (p-value 0.004; FDR 0.031), and 

DNA repair process (p-value 0.025; FDR 0.067) [Figure 5.8]. Further analysis revealed up-

regulation in glycine and serine metabolism, and notably increased 3-phosphate hydroxy 

pyruvate to serine conversion and sarcosine to glycine and glycine to 2-amino acetate conversion. 

Impaired mTOR complex and elevated LC3, ATG3, ATG2, ATG5, VPS34 indicates upregulated 

autophagy in M4.  

 

Figure 5.8: Gene set enrichment analysis of deconvolved tumour M4.  

The green bar represents enrichment score (ES), purple indicates p-value and grey signifies FDR 

value. Enriched pathways include amino acid, TCA cycle, autophagy, angiogenesis and DNA 

repair.  
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We identified post-translational modification (p-value < 0.001), protein synthesis (p-value 

0.001) and cell cycle (p-value 0.019) functions as significantly increased in subtype M4. Altered 

pathways in this subtype include Sirtuin signalling (p-value < 0.001), AMP-activated protein 

kinase signalling (p-value 0.001), endothelial nitric oxide synthase (p-value 0.003), and Tec kinase 

signalling (p-value 0.014) [Figure 5.9]. 

 

 

Figure 5.9: Altered canonical pathways and functional analysis of deconvolved tumour M4. 

The X-axis in the bar chart denotes pathways and functions, and Y-axis represents p-value. We 

performed the analysis by comparing each subtype with the best prognosis group (M3). Most of 

the critical signalling pathways were highly perturbed in the worst subtype, resulting in 

alterations in major cellular and molecular functions including cell cycle and protein synthesis. 
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PI3/Akt signalling (p-value 0.007) and increased insulin receptor (p-value < 0.001) and ERK/MAPK 

(p-value < 0.001) signalling pathways [Figure 5.11]. Overall, the results show how these subtypes 

are metabolically diverse and have a strong correlation with vital hallmarks of cancer, as well as 

hallmark related functions. 

 

 

 

 

Figure 5.10: Gene set enrichment analysis of deconvolved tumour M2.  

The green bar represents enrichment score (ES); purple indicates p-value and grey signifies FDR 

value. Lipid and Nucleotide metabolic pathways were significantly enriched in M2. No hallmark 

function was enriched. 
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Figure 5.11: Altered canonical pathways and functional analysis of deconvolved tumour M2. 

The X-axis in the bar chart denotes pathways and functions, and the Y-axis signifies p-value. We 

performed the analysis by comparing each subtype with the best prognosis group (M3). Protein 

synthesis was affected in this subgroup.  

 

In the worst subtypes (M1 & M4), most of the critical signalling pathways were highly 

perturbed, resulting in alterations in major cellular and molecular functions.  

5.3.4 Association of identified metabolic subtypes with tumour genomic profile  

 One of the potent drivers of tumour initiation is mutant KRAS oncogene. In PDAC, KRAS 

mutation is frequently observed. Likewise, mutations in different tumour suppressor genes, 

including Tp53, SMAD4, CDKN2A, are normal in PDAC. Evidence suggests that all these mutations 

cause aggressive PDAC tumour growth. To investigate different oncogenic events, we 

determined the mutation and copy number alteration frequency across the identified metabolic 
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subtypes. From the mutation analysis, we found significant enrichment of KRAS mutation (p-

value 4.62E-08, q-value 4.509E-04) among the metabolic subtypes [Figure 5.12]; however, the 

copy number alteration frequency was not significant [Figure 5.13]. Our finding, significant KRAS 

mutation in the worst metabolic subtype, is compatible with different studies that show KRAS 

drive tumour metabolism in the direction of glycolysis in PDAC. Furthermore, this has been 

supported by our pathway analysis, where we found that the M1 subtype has increased 

glycolysis. Thus, PDAC tumours with KRAS mutation are dependent on glucose utilization and 

vulnerable to the glycolytic inhibition. 

 

 

Figure 5.12: Mutational analysis of identified PDAC metabolic subtypes.  

The bar chart represents the most common mutant genes in PDAC. Colour bars at the x-axis 

represent the groups of patients: M1 is red, M2 is blue, M3 is red, and M4 is yellow. Y-axis 
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represents percentage of mutations in each metabolic group. Kruskal-Wallis test shows that 

mutant KRAS is significantly enriched across identified metabolic subtypes of PDAC. 

 

Figure 5.13: Copy number alteration analysis of identified PDAC metabolic subtypes. 

The bar chart represents the most common CNV frequency in PDAC. Colour bars at the x-axis 

represent the groups of patients: M1 is red, M2 is blue, M3 is red, and M4 is yellow. Y-axis 

represents percentage of alterations in each metabolic group. No significant alteration observed 

across identified metabolic subtypes. 
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5.3.5 Metabolic expression subtypes are informative to understand the role of stroma cells in 

PDAC  

 Dense stroma is one of the prominent features of PDAC. The stroma is composed of 

different extracellular matrix proteins, immune cells, stellate cells, endothelial cells, fibroblasts, 

but the biology of stroma cells is not clearly understood. To address this, we investigated the role 

of stroma in the identified subtypes in a similar way as we assessed the tumour compartment. 

From the analysis, no significant metabolic activity and major hallmarks of cancer were altered. 

The exception was an increase in fatty acid metabolism (p-value 0.006; FDR 0.134), particularly 

beta-oxidation process, in the worst subtype (M1). However, we looked at the 50 hallmark 

functions and found positively enriched functions, including G2M checkpoint (p-value < 0.001), 

E2F signalling (p-value 0.006), MTORC1 signalling (p-value 0.006) and Glycolysis (p-value 0.045) 

in the worst metabolic subtype, M1. In the intermediate group M4, we found similar altered 

functions. However, in the good prognosis group M2 we observed enriched G2M checkpoint (p-
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value 0.008), myogenesis (p-value 0.016) and JAK/STAT signalling (p-value 0.033) [Figure 5.14].  

 

Figure 5.14: 50 hallmark functions analysis of PDAC deconvolved stroma.  

The x-axis represents enrichment score, and the y-axis signifies the altered functions. Different 

colour code shows the significance level of enrichment. Metabolic subtypes M1 and M4 shared 

similar alterations (positively enriched) except glycolysis, while metabolic subtype M2 has 

negatively enriched JAK/STAT signalling and myogenesis.  

 

Furthermore, we found different signalling pathways disrupted in the stroma 

compartment of all metabolic subtypes. In M1, there was elevated JAK/Stat (p-value 0.013), 

telomerase (p-value 0.01), integrin (p-value 0.04) and micropinocytosis (p-value 0.05) signalling, 

but decreased p53 (p-value 0.03) and death receptor (p-value 0.05) signalling [Figure 5.15]. Genes 
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including receptor tyrosine kinases (RTK), heat shock protein 70 & 72 (HSP70 & 72), transforming 

growth factor-beta receptor (TGFR) were found to highly expressed in the stroma compartment 

of the worst subtype.  From previous studies, it is well established that integrins are crucial for 

the remodelling of the extracellular matrix. Similarly, JAK/STAT signalling pathways found to play 

an important role in the functional regulation of pancreatic stellate cells (PSC). Our study 

demonstrates similar signalling alterations in the stroma compartment. Our results indicate that 

in subtype M1, stroma cells behave more aggressively compared to other subtypes, which could 

contribute to its classification as the worst prognostic group. 

 

 

Figure 5.15: Pathway analysis of deconvolved stroma M1.  

Bar chart representing most perturbed canonical pathways and associated altered 

function in M1 PDAC metabolic subtype compared to the best prognosis group (M3). The X-axis 

in the bar chart denotes pathways and functions, and the Y-axis represents p-value. Identified 
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dysregulated canonical pathways in stroma cells result in significant disruption in the cell cycle 

process, DNA repair process and cellular survival in the worst metabolic subtype. 

 

In intermediate group (M4), most of the signalling pathways were significantly down-

regulated: NF-kB (p-value 0.002), BMP (p-value 0.02), Integrin (p-value 0.022), PI3/AKT (p-value 

0.03), ATM (P-value 0.034), PDGF (p-value 0.04), ceramide (p-value 0.039), and mTOR (p-value 

0.048) signalling. All these perturbations lead to abnormal cell cycle progression (p-value 0.001), 

DNA repair process (p-value < 0.001) and apoptosis (p-value 0.01) [Figure 5.16]. The alteration of 

the functions is well explained from the gene expression levels, such as increased TSC complex 

subunit 2 (TSC2), splicing factor 3B (SF3B), Aquarius intron-binding spliceosomal factor (AQR), 

chemokine ligand 27 (CCL27), and decreased G-protein coupled receptor (GPCR), 

serine/threonine kinase 11 ( LKB1), TSC complex subunit 1 (TSC1), bone morphogenetic protein 

6 &15 (BMP 6 & 15), interferon-alpha and beta receptor subunit 2 (IFNAR2).  Interestingly, 

subtype M1 and M4 dysregulate pathways with similar functions, like cell progression, DNA 

repair process, and cell death, but exhibit opposite signalling alterations with few exceptions. All 

the canonical pathways found in subtype M1 are significantly up-regulated except two down-

regulated pathways, but in subtype M4, all the pathways found to be down-regulated. Thus, our 

result demonstrates how stroma cells perturb major functions within cells by exploiting different 

signalling pathways resulting in a more aggressive disease phenotype.      
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Figure 5.16: Pathway analysis of deconvolved stroma M4. 

Bar chart representing most perturbed canonical pathways and associated altered function in 

intermediate group (M4) PDAC metabolic subtype compared to the best prognosis group (M3). 

The X-axis in the bar chart denotes pathways and functions, and the Y-axis indicates p-value. 

Major Identified dysregulated canonical pathways in stroma cells result in significant disruption 

in the cell cycle process, DNA repair process and cellular survival in the intermediate metabolic 

subtype. 

 

Lastly, in the good prognosis group, there were no significant changes observed in the 

major canonical pathways. However, the RNA post-transcriptional modification (p-value < 0.001) 

was affected. The source of these changes in the RNA modification remains unclear in our 

analysis.  
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However, stroma compartment of each PDAC metabolic subtype reveals diverse 

biological alterations. Our results show that stroma cells in PDAC possess a unique mechanism of 

affecting most of the significant signalling cascades.  

5.4 Discussion  

 We developed a systematic approach to identify metabolic subtypes in PDAC that will 

help us to determine associated aberrant biochemical and biological functions. Potentially these 

subtypes could instruct on novel therapeutic targets. Our approach has unveiled diverse 

metabolic activity in different cell compartments (tumour and stroma). The main objective of this 

study was the identification and characterization of meaningful metabolic subtypes in PDAC. One 

of the main advantages of this study is the classification of metabolic subtypes that allows 

investigating functions in different compartments of a bulk tumour as well as their functional 

state, for example, upregulation or downregulation of a specific pathway.  

The identified metabolic subtypes in this study have potential clinical implications. From 

our analysis, we found that increased carbohydrate metabolism and amino acid metabolism are 

associated with the worst prognosis, where perturbations in lipid metabolism were associated 

with the opposite outcome. We found that the worst subtype relies on glycolysis in tumour cells 

and fatty acid beta-oxidation in stroma cells to produce energy. Immune subtype correlation 

analysis indicates the worst metabolic subtype has an increased tumour cell proliferation rate 

(due to elevated angiogenic gene expressions). The normal functions of immune cells is highly 

impeded within the worst subtype, which is further supported by the pathway analysis. 

Interestingly, the intermediate group shows a different metabolic dependency of tumour cells 
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involving high levels of amino acid secretion in association with autophagy, as well as increased 

TCA cycle. Conversely, tumour cells in the good prognosis group exhibit dependency on lipid 

metabolism. Most of the previous studies (e.g. Follia et al., Karasinska et al.,) done in PDAC were 

focused on a specific alteration such as carbohydrate or lipid metabolism. This study provides a 

more comprehensive picture.  

PDAC is a stroma rich cancer, and one of the aims of this study was to explore the 

functions of stroma cells in the identified metabolic subtypes. The metabolic activity of stroma 

cells remains unclear; however, we did identify perturbed signalling pathways in the stroma in 

association with the metabolic subtypes. These pathways affect cellular proliferation, 

differentiation and survival. For example, in vivo study shows that STAT signalling significantly 

upregulated in stroma cells which eventually help stroma cells to change their shape/structure 

and form tumour [176]. Likewise, p53 and PTEN signalling are crucial to controlling the abnormal 

cell proliferation. Our study displayed increased JAK/STAT and decreased p53 and PTEN signalling 

which is a clear indication that stroma cells contribute to the progression of PDAC. For instance, 

in the worst metabolic subtype (M1), stroma cells manage to inhibit tumour suppressing 

signalling pathways, which indicates that stroma cells are contributing to abnormal cell 

proliferation, thus affecting the cell cycle process. Furthermore, in our study we also found higher 

expression levels of genes involved in integrin and transforming growth factor beta signalling 

resulting in remodelling of the extracellular matrix. One of the interesting observations of the 

stroma cells is their distinct activity across the metabolic subtypes. In one subtype, they altered 

the signalling pathways by both activating and inhibiting them, while in the other subtype, they 



 

84 

nearly shut down the signalling pathways by inhibiting them from maintaining their functions. 

Our results suggest that the stroma cells maintain a distinctive mechanism of altering signalling 

pathways in PDAC.   

Overall, our study shows that PDAC is metabolically diverse. Each metabolic subtype is 

dependent on different metabolic and signalling pathways to maintain their activities. Focusing 

on the clinical outcome, it is clear that some of downstream effects of the pathways are less 

harmful compared to others. Thus, identification of the metabolic subtypes provides a better 

insight into different biological pathways that are vulnerable to treatment. 
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Chapter Six: Concluding Remarks 

In patients with cancer, chemotherapy is an essential mainstay of treatment. However, 

chemotherapy is toxic, and it is never known whether chemotherapy will be effective on any 

individual. Since only a proportion of individuals respond to chemotherapy, that means that a 

proportion of patients must endure the toxicities of chemotherapy without seeing any benefits. 

It is for this reason that substantial effort is being made to individualize treatments for cancer. 

In recent years, it has become possible to perform whole-genome sequencing of a 

tumour, making it possible to identify all of the mutations contained within a tumour. Many 

groups have utilized this information to predict the types of drugs that might be effective in an 

individual. Indeed, some notable successes observed using this approach. However, this 

approach is not helpful for all individuals.  

Given the link between metabolism and clinical progression, we hypothesize that 

metabolic features dictate the clinical and biological behaviour in different types of cancer, 

particularly in pancreatic ductal adenocarcinoma and breast cancer. We aimed to develop a 

systemic approach using the transcriptome to better understand the specific metabolic 

characteristics of individuals with these two cancer types. Thus, we developed a practical 

systemic approach, which is transcriptional based analytical workflow (Chapter three); then, we 

applied that approach to the two different types of cancer to test the effectiveness of it. First, we 

applied the workflow using a PCA based clustering method on a bulk tumour focusing breast 

cancer on identifying meaningful metabolic subtypes (Chapter four); then, we used the workflow 

using a different clustering method, NMF, for the identification of metabolic subtypes in PDAC 



 

86 

(Chapter five). We also explored the metabolic and biological functions of both tumour and 

stroma cells in identified metabolic subtypes (compartmental analysis; Chapter five). Our result 

suggests that the NMF clustering method is more powerful and useful in identifying metabolic 

subgroups compared to PCA. The proposed step-by-step analytical workflow provides detailed 

insight into the metabolic perturbations. Through this approach, we were able to determine the 

diverse signalling alterations that occur within tumour and stroma cells and how they affect the 

critical cellular and molecular functions. Not only that, but based on this approach, it is possible 

to determine critical mutations, copy number alterations, and different epigenetic events. 

Identifying the metabolic features that characterize a particular tumour provides insight into 

biological pathways that are vulnerable to treatment. This novel approach to enhance clinical 

decisions using molecular information may alter the way we individualize cancer care in the 

future, minimizing drug exposure to patients who will not benefit and enhancing the likelihood 

that they will benefit from any particular drug. 

There are several interesting future directions to follow up on this research: 

1.  Validation - use a different, larger cohort of patients.  

2.  Single-cell analysis - to determine whether the identified metabolic subtypes appear uniformly 

throughout the tumour or there is a strong presence of heterogeneity. 

3. Metabolic profiling – identify candidate proteins that may be targets of systemic therapy using 

liquid-chromatography-mass spectrometry (LC-MS) in conjunction with the transcriptomic 

information. 
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Appendix 

Introduction  

 Bulk tumour contains many different malignant cells; however, it also consists of non-

malignant cells known as stroma cells. A vast proportion of stroma contains fibroblasts, immune 

cells, endothelial cells, stellate cells, and cancer-associated fibroblasts (CAFs). One of the 

prominent features of pancreatic cancer is dense stroma. Previously, different studies show that 

cancer-associated fibroblasts help tumour cells to grow and spread, resulting in the aggressive 

disease phenotype. However, the role of stroma cells in pancreatic cancer is complicated and 

needs to be better understood. Earlier, we demonstrated different biological features of stroma 

cells in our identified metabolic subtypes of PDAC (Chapter Five). However, we found that 

identified metabolic subtypes are primarily dominated by the tumour cell metabolism and there 

was no stroma metabolic activity observed except fatty acid beta oxidation process. To 

investigate the stroma metabolism, we executed a supervised analysis known as orthogonal 

partial least square discriminant analysis (OPLS-DA) to identify particular stroma subtypes that 

correspond with the original metabolic subtypes. Additionally, to identify some potential 

therapeutic targets in identified metabolic subtypes, we used pancreatic cancer cell line data. We 

took the same supervised approach to categorize the cell lines into identified metabolic subtypes. 
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Methods 

i. Data Normalisation  

Data normalization performed in the same manner described in chapter four.  

ii. Prediction Model 

We performed OPLS-DA using SIMCA software to categorize deconvolved stroma 

into identified original metabolic subtypes. OPLSA-DA is a powerful statistical tool 

– it’s a prediction and regression method.   

iii. CCLE Samples and Dataset 

All the cell line RNA-Seq data was derived from the Cancer Cell Line Encyclopaedia 

(CCLE). A total of 41 pancreatic cell lines were used for the analysis. 

iv. Batch Correction  

The batch correction was performed on the original PDAC RNA-seq data and 

CCLE cell line data. Combat tools in gene patterns used for the batch correction. 
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Results 

 We performed a supervised analysis to identify stroma subtypes that relate to the 

original metabolic subtypes. Only metabolic genes were used for this analysis. We found two 

distinct stroma metabolic subtypes that highly correlate with the original subtypes. The model 

is statistically significant (p-value 1.11208e-35) and the given dataset fits the model well, based 

on R2Y value (0.606). We identified one distinct stroma metabolic subtype that significantly 

correlates with the worst original metabolic subtype (M1) and another stroma metabolic 

subtype that correlates with the best prognostic metabolic subtype (M3) [Figure 7.1]. 

 

 

 

Figure 7.1: OPLS-DA score plot of different stroma metabolic subtypes.  

 Further, we looked at the functional features of stroma subtypes in same way as 

described in chapter four and five. Stroma subtypes that correspond with the worst original 

metabolic subtype show increased lipid (p-value 5.03E-20), carbohydrate (p-value 5.03E-20) and 

nucleotide metabolism (7.04E-05) [Figure 6.2] compared to the best prognostic predicted stroma 
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subtype. Amino acid metabolism was significantly affected (p-value 5.52E-16) in this subtype; 

however, we were not able to determine its functional state [Figure 7.2]. Our result demonstrates 

that even though the stroma compartment does not exhibit any metabolic activity within the 

identified metabolic subtypes, it is possible that some independent stroma subtypes might exist 

that utilise metabolic pathways in a different manner.  

 

Figure 7.2: Altered metabolic pathways in stroma subtype 1. 

 Further, we tried to categorize the cell lines into identified metabolic subtypes. Both 

datasets were combined for the batch correction. After the batch correction, the dataset was 

normalized using the winscaling method. To categorize the cell lines, we performed the same 

supervised analysis. Interestingly, all cell lines clustered as one group in the middle of the OPLS-

DA score plot [Figure 7.3]. Though the score plot was significant based on the p-value 0, the R2Y 

(0.388) and Q2 (0.306) values were relatively weak, indicating that the identified model may not 

be the best model for the given dataset.   
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Figure 7.3: OPLS-DA score of CCLE pancreatic cell lines.  

Green represents the worst prognostic group (M1), blue is the good prognostic group (M2), red is 

the best prognostic group (M3), yellow is the second worst prognostic group (M4), and violet 

represents 41 pancreatic cell lines. 

 Based on our CCLE analysis, the tumour cell lines cannot be categorized into our identified 

metabolic subtypes. We were not able to definitively determine why, but one possible reason 

could be the lack of stromal influence in the cell lines. To test the hypothesis, different types of 

analysis, like single-cell analysis, need to be done. 

 

  

 

 


