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Abstract

It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely
associated with voltage dependent Ca2+ channels. We have previously shown that exocytosis of this pool is specifically
coupled to P/Q Ca2+ current. Accordingly, in the present work we found that the Ca2+ current flowing through P/Q-type
Ca2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type
channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type
channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site
of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced
the efficiency of Ca2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via v-agatoxin-
IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the
exocytosis provoked by sustained electric or high K+ stimulation. Together, our results indicate that the synaptic protein
interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool
vesicles and P/Q-type Ca2+ channels.
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Introduction

The efficiency of transmitter release in neurons and

neuroendocrine cells is highly dependent on the localization of

vesicles with respect to the Ca2+ source [1–3]. In chromaffin

cells, the activation of voltage dependent Ca2+ channels

(VDCCs) by short depolarizations induces the fast exocytosis

of a small group of vesicles that represents 10–25% of the

readily releasable pool (RRP) and is termed the immediately

releasable pool (IRP) [2,4–6]. Classically, the IRP was defined

as a subset of readily releasable vesicles, located in close

proximity of VDCCs [5]. These vesicles will thus sense a higher

Ca2+ concentration than the rest of the RRP [4–7].

Chromaffin cells express different VDCCs subtypes (L, P/Q,

N and R), and all of them participate in dense core vesicle

exocytosis when these cells are stimulated with a train of

depolarizations, or long steady depolarizations [8,9]. It was

proposed that the colocalization between IRP vesicles and

VDCCs might result from a random distribution of RRP

vesicles and channels [7,10]. In this scenario, all VDCC

subtypes present in chromaffin cells are expected to participate

in the IRP release in proportion to their contribution to the

whole voltage dependent Ca2+ current [9]. However, there is

evidence suggesting that the different VDCC subtypes expressed

in chromaffin cells are not equally efficacious in triggering

exocytosis [11–13]. In addition, such a random distribution

cannot explain the biphasic time course of exocytosis during a

train of short depolarizations [14]. Alternatively, it is possible

that a particular Ca2+ channel subtype is specifically coupled to

IRP vesicles. In a recent study, our research group obtained

strong evidence indicating that P/Q Ca2+ channels are the

primary channels responsible for IRP release [15]. Particularly,

we have shown that IRP exocytosis was severely inhibited (i) by

the addition of v-agatoxin IVA, a P/Q channel specific toxin,

and (ii) in chromaffin cells obtained from P/Q channel

knockout mouse. In contrast, when we completely blocked the

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e54846



L Ca2+ channels, which drive the biggest proportion of voltage

activated Ca2+ currents in these cells, IRP exocytosis was not

affected at all.

A specific coupling between IRP vesicles and P/Q-type

channels suggest the existence of a physical interaction between

these two entities at the molecular level. The a1 subunit of P/Q-

type, as well as N-type, Ca2+ channels has an intracellular linker

region connecting domains II and III, which is known to interact

with proteins of the exocytic machinery such as syntaxin, SNAP-

25 and synaptotagmin [16,17]. There is clear evidence indicating

that this region, known as the synaptic protein interaction site

(synprint), maintains close physical coupling between vesicles and

channels, thus improving the stimulus-secretion response in

synaptic terminals [18,19]. Therefore, it is possible that a similar

type of interaction between dense core vesicles and Ca2+ channels

may occur for the IRP in chromaffin cells. Previous results that

show the feasibility of this hypothesis include the identification of

synprint in different splice variants of the P/Q a1A subunit in

bovine chromaffin cells; the co-immunoprecipitation of P/Q

channels and the SNARE complex with a monoclonal antibody

against SNAP-25; and the co-localization of a1A and SNAP-25 at

the membrane of intact chromaffin cells [20].

In the present work we studied the role of the synprint linker

region in the functional coupling between P/Q-type Ca2+ current

and the exocytosis of vesicles associated to IRP. Our results show

that the addition of exogenous synprint (to disrupt the normal

interaction between the P/Q Ca2+ channel and exocytic/vesicular

proteins) provoked a significant reduction in IRP exocytosis,

without affecting calcium entry. This treatment provoked a similar

effect on IRP exocytosis and on the exocytosis efficiency for short

depolarizations as the pharmacological inhibition of P/Q-type

Ca2+ current. We propose that the synprint site of a1A subunit

participates in the establishment of a physical interaction between

P/Q calcium channels and secretory vesicles, which would be

responsible of highly coupled IRP exocytosis in chromaffin cells.

To our knowledge, the present work shows for the first time that

the synprint sequence is crucial for highly coupled IRP exocytosis

in native chromaffin cells.

Materials and Methods

Mouse Adrenal Chromaffin Cell Preparation
All animal procedures were performed under protocols

approved by the Consejo Nacional de Investigaciones Cientı́ficas

y Técnicas (Argentina), and are in accordance with the National

Institute of Health Guide for the Care and Use of Laboratory

Animals (NIH publication 80-23/96), USA, and local regulations.

All efforts were made to minimize animal suffering and to reduce

the number of animals used.

Adrenal glands from two 13–18 days old mice were used in each

culture. Animals were anesthetized with an overdose of avertine,

and the glands were isolated following the procedures described by

Perez Bay et al [21]. Both glands were placed into a dish

containing Hanks solution, and cortexes were removed mechan-

ically. Adrenal medullas were digested for 25 min in Hanks

solution containing papaine (0.5–1 mg/ml) at 37uC. Subsequently,

the medullas were disrupted with a yellow tip in Dulbecco’s

modified Eagle’s medium (DMEM) low glucose, supplemented

with 5% fetal calf serum, 5 ml/ml peniciline/estreptomicine,

1.3 ml/ml gentamicine, 1 mg/ml bovine seroalbumin, and

10 mM citosine-1-b-D-arabinofuranoside. The cell suspension

was diluted with additional medium to a final volume of 600 ml

and filtered sequentially through 200 mm and 50 mm pore meshes.

Cells were cultured on small pieces of poly-L-lysine pretreated

coverslips, at 37uC, 95% O2-5% CO2.

Transfection procedure: Three hours after finishing the cell

culture, DMEM was replaced by OPTIMEM medium (Gibco,

Invitrogen Corporation. Carlsbad, CA), and the cells were

transfected alternatively with a synprint-pIRES2-EGFP or

pIRES2-EGFP plasmid (Clontech Laboratories, Takara Bio,

USA) using lipofectamine 2000 (Invitrogen). After 20 min, the

mixture OPTIMEM-lipofectamine-plasmid was replaced again by

DMEM, ending the transfection procedure. The cells were used

for experiments 24–48 hr later. The transfection treatment

provoked, on average, a reduction of Ca2+ current and exocytosis.

However, transfected cells did not show modifications in the

relative contributions of P/Q- and L-type Ca2+ currents to the

total current (see results).

Whole Cell Patch-clamp and Membrane Capacitance
Measurements

The patch-clamp set up comprised a patch-clamp amplifier

(Model EPC7, LIST-MEDICAL, D-611 Darmstadt 13. Ger-

many), a data acquisition interface (DigiData 1200 series, Axon

Instruments Inc., Foster City, CA) and a personal computer.

Chromaffin cells were washed in extracellular solution composed

of (in mM) 120 NaCl, 20 Hepes, 4 MgCl2, 5 CaCl2, 5 mg/ml

glucose and 1 mM tetrodotoxin (pH 7.3), and mounted on an

inverted microscope equipped with a 100 W mercury lamp and

appropriate filters to visualize EGFP fluorescence. The standard

internal solution used in the patch-clamp pipettes (3–5 MV)

contained (in mM) 95 Cs d-glutamate, 23 Hepes, 30 CsCl,

8 NaCl, 1 MgCl2, 2 Mg-ATP, 0.3 GTP and 0.5 Cs- EGTA

(pH 7.2). These solutions were designed to selectively measure

voltage dependent Ca2+ currents (ICa2+). The holding potentials

were not corrected for junction potentials. We considered that the

recorded cells were ‘‘leaky’’, and discarded, when the leak current

measured at the normal holding potential of 280 mV was bigger

than 230 pA. The cell membrane capacitance (Cm) was measured

with a software phase-sensitive detector (jClamp, Sci Soft,

Branford, CT, USA). The command voltage applied to the cell

was composed of the sum of a sinusoidal voltage (390 Hz, 80 mV

peak to peak) and a holding potential of 280 mV. The membrane

current was measured at two phase angles, IQ+0 and IQ+90, relative

to the applied sinusoidal potential [22]. The output at IQ+0

represents changes in the real part of the cell admittance, and the

output at IQ+90 reflect changes in the imaginary part of the cell

admittance, from which we can determine the changes in

membrane capacitance. The data were filtered at 3 kHz. The

experiments were carried out at room temperature (22–24uC). P/

Q Ca2+ channels were blocked by adding the specific toxin v-

agatoxin-IVA (200 nM) to the extracellular solution, and L Ca2+

channels were blocked with 10 mM nitrendipine.

Estimation of Immediately Releasable Pool
Estimations of IRP size were performed by two methodologies.

In the first we applied brief pulse depolarizations (from 280 to

+10 mV) of increasing durations (between 5 and 50 ms), and IRP

was estimated by the asymptote predicted by the fitting of

experimental results to a single exponential (Fig. 1A–ii, black line)

[4]. The second methodology is based on the application of two

pulses of 10 ms (from 280 to +10 mV, (Fig. 1B–i)) given 300 ms

apart [5,15,23]. Although the first and second Ca2+ currents

induced by this protocol were always identical (Fig. 1B–i), the DCm

exhibited a clear depression between the first and the second pulse

(Fig. 1B–ii). This methodology assumes that (i) first and second

Ca2+ currents induced by this protocol were always identical, and

Synprint Mediates IRP-P/Q Channels Coupling
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(ii) that no refilling of IRP occurs during the 300 ms interval, and

therefore the capacitance increase induced by the second pulse

should be significantly depressed with respect to the first one.

Upper (Bmax) and lower (Bmin) bounds for this pool size can be

calculated according to the equations [5,15,24]:

Bmin~DCm1zDCm2

Bmax~
DCm1 z DCm2

1 { DCm2=DCm1ð Þ2

where DCm1 and DCm2 represent the capacitance responses to the

first and second depolarizations, respectively.

To estimate the RRP we used a paired pulse protocol, but

composed by two pulses of 100 ms (from 280 to +10 mV) given

300 ms apart [5,25].

The capacitance increase caused by individual depolarizations

or by each depolarization in paired pulse stimulation was

determined as the difference between the mean capacitance

measured in a 50 ms window starting 100 ms after the depolar-

ization minus the mean pre-stimulus capacitance also measured in

a 50 ms window. The first 100 ms of the capacitance record after

depolarization was neglected to avoid non-exocytotic capacitance

effects [4,24].

Trains of depolarizations were composed of 10 pulses, 50 ms

each, delivered at 2 Hz frequency. Synchronous exocytosis is

defined as the change in capacitance during each stimulus, and

measured in a 50 ms window starting 50 ms after each depolar-

ization minus the mean pre-stimulus capacitance also measured in

a 50 ms window.

Fluorescence Measurement of Exocytosis
The styryl dye FM4-64 was used to determine the exocytosis of

secretory vesicles in response to long lasting depolarizations. This

technique provides a cumulative measurement of exocytosis

independently of endocytosis, in contrast to the measurement of

capacitance changes which result from a balance between both

processes [26]. The imaging setup comprised an inverted

fluorescence microscope (Olympus IX81) with a 60X oil

immersion objective, a cold CCD camera (Cool Snap HQ2,

Photometrics, Tucson, AZ) and a personal computer. Illumination

was achieved with a 100 Watts mercury lamp, and an

epifluorescence filter block containing a 595 nm dichroic mirror,

a 560/55 nm band pass excitation filter and a 645/75 nm

emission filter. The fluorescence images were acquired using the

software Metamorph 8.0 (Molecular Devices Inc. Sunnyvale,

California, USA). The standard solution used in these experiments

had the following composition (mM): 144 NaCl, 5.6 KCl,

10 Hepes, 1.2 MgCl2, 2 CaCl2, 10 glucose. The cells were washed

in this solution and then exposed to FM4-64 (5 mM) during

15 min. During this period the dye was incorporated into the

membrane and fluorescence reached a steady state. Exocytosis was

elicited by exchanging the standard solution to one containing

50 mM KCl (in replacement of an equimolar amount of NaCl)

and an identical concentration of FM4-64. The magnitude of

exocytosis induced by this treatment was estimated by the

fractional increased in fluorescence (measured at the end of

3 min high K+ stimulation) relative to the preceding basal

condition.

Generation of synprint expression constructs. A restric-

tion fragment encoding the Rattus norvegicus Cav2.2 synprint region

was obtained by using the enzymes XhoI and EcoRI (NEB) to digest

a sample of a pTrcHisC subclone of the synprint region [27]. The

resulting synprint fragment was run on a 0.8% agarose gel,

extracted and purified using a QIAquick Gel Extraction kit

(QIAGEN), subcloned into a pIRES2-EGFP vector (BD Biosci-

ences/clonetech) using standard procedures, and sequenced to

confirm that the resulting construct correctly encoded the R.

norvegicus synprint fragment. An EndoFree Plasmid Maxi Kit

(QIAGEN) was used to prepare a sample of the construct suitable

for transfection into cultured mammalian cells. There is .90%

homology between rat and mouse synprint (see Material S1).

Materials. Bovine serum albumin, poly-L-lysine, cytosine-1-

beta-D-arabinofuranoside, papaine, and the anti-rabbit rhoda-

mine-labeled antibody were obtained from Sigma (St Louis, MO,

USA); DMEM, fetal calf serum, gentamicin and penicillin/

streptomicin from Gibco (Carlsbad, CA, USA); nitrendipine from

Tocris Bioscience (Park Ellsville, MO, SA), v-agatoxin IVA and

the rabbit anti P/Q antibody were obtained from Alomone Labs

(Har Hotzvim Hi-Tech Park, Jerusalem, Israel); and FM4-64 from

Molecular Probes (Portland, OR).

Data analysis and statistics. Images from FM4-64 exper-

iments were quantified with the software Image J (National

Institutes of Health, Bethesda, Maryland, USA) by measuring the

spatially averaged fluorescence of the whole cell at the equatorial

section, and subtracting the background fluorescence (quantified

from the surrounding field). Capacitance measurements and Ca2+

currents were analyzed with jClamp (Sci Soft, Branford, CT,

USA) and Origin (Microcal Sotware Inc, Northhampton, MA)

software. Data are expressed as mean values 6 standard error. We

used a Student’s ‘‘t’’ test for comparisons between two groups of

independent data samples, and one way ANOVA for multiple

independent data samples.

Results

Estimation of IRP in Mouse Chromaffin Cells
The exocytosis of the IRP was classically studied by measuring

the synchronous changes in whole cell membrane capacitance

(Cm) in response to brief depolarizations of increasing durations

[2,4,5,23]. In agreement with these previous studies, the Cm

augmentation increased with pulse duration (Fig. 1A), and

followed a saturation behavior for pulses #50 ms (Fig. 1A–i and

Fig. 1A–ii, black circles). This behavior was generally interpreted

as the result of the depletion of IRP, and the final asymptote was

normally used as an estimation of IRP size [2,4,5]. Applying a

mono-exponential fit (solid black line) to the experimental data

(black circles) represented in Fig. 1A–ii, we estimated an IRP size

of 3361 fF, and a time constant of 15.760.8 ms. Depolarization

pulses longer than 50 ms induced a delayed second component of

exocytosis, which deviated from simple exponential behavior,

probably because of the recruitment of vesicles from other pools

(Figure 1A–i).

Another strategy previously used to quantify the IRP in

chromaffin cells was the application of a paired pulse protocol

[5,15,24,25], composed by two square depolarizations of 10 ms

given 300 ms apart (see Methods). Figure 1B shows representative

recordings of the Ca2+ currents (ICa2+) and Cm resulting from the

application of this paired pulse protocol in control conditions. In

agreement with the assumptions of this methodology (see

Methods), the ICa2+ activated in response to both depolarizations

were identical (see Fig. 1B–i for a single experiment; while the

averages were 163613 and 160615 pA respectively (n = 14)), and

the Cm jump induced by the second depolarization (Fig. 1B–ii) was

evidently depressed (DCm1 = 2363 and DCm2 = 961 fF, n = 14,

p,0.001). Capacitance changes induced by the paired pulse

Synprint Mediates IRP-P/Q Channels Coupling
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Figure 1. IRP exocytosis is tightly coupled to Ca2+ source. A. (i) Summary of capacitance increases after stimulation with depolarizing pulses
of different lengths, between 5 and 200 ms, in control condition (with EGTA 0.5 mM in the internal solution). Note that there is a clearly defined initial
component, which saturates approximately between 30 and 50 ms pulses. (ii) The black circles in the figure on the right is an expanded
representation of this initial component (n = 116), while the gray squares represent experiments performed with BAPTA (0.5 mM) as exogenous
internal buffer (n = 53). The results obtained with EGTA were fitted with a single exponential function of the form A. (12e2t/t) (A = 3361 fF,

Synprint Mediates IRP-P/Q Channels Coupling
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protocol were used to calculate a lower (Bmin) and an upper (Bmax)

limit for IRP size (see Methods) [5,15]. The average Bmin and Bmax

values in control conditions were 3262 fF and 4163 fF respec-

tively (Fig. 1C–i, EGTA). Assuming a vesicle capacitance value of

1.3 fF [28], those values are equivalent to 25–32 vesicles. It is

important to note that both methodologies gave similar values for

the IRP size, as Bmin and Bmax bounds include the saturation value

obtained from the mono-exponential fitting (Fig. 1A–ii, black

circles).

IRP Exocytosis is Coupled to P/Q-type Calcium Channels
Intracellular Ca2+ buffering conditions severely affect the spatial

pattern of Ca2+ signals [1,29]. The rapid Ca2+ buffer BAPTA, has

a 100-fold higher calcium binding rate than EGTA, but a similar

Kd (approximately 0.2 mM) [1,14,30,31]. Therefore, BAPTA is

capable of binding the incoming Ca2+ close to the channel’s

mouth, thus reducing the fast secretory component induced by

brief depolarization pulses [1,32]. If IRP vesicles are situated close

to the calcium source (approximately 30 nm according to Klingauf

and Neher (1997) and Segura et al. (2000)), its secretion should be

more sensitive to BAPTA than to EGTA [23]. To evaluate this

hypothesis in our mouse chromaffin cell preparation, we analyzed

the effect of BAPTA on IRP exocytosis. Both buffers, BAPTA or

EGTA respectively, were added to the internal pipette solution at

identical concentrations (0.5 mM) in independent experiments.

We observed a clear inhibitory effect of BAPTA on the increase of

Cm provoked by depolarizations shorter than 50 ms (Fig. 1A–ii,

gray squares). To release approximately 50% of the IRP in the

presence of EGTA, we had to depolarize the cells for 10 ms,

whereas equivalent levels of exocytosis in the presence of BAPTA

required the application of 40 ms pulses (Fig. 1A–ii, gray dotted

line). Furthermore, when we used the paired pulse protocol to

estimate IRP, BAPTA treatment significantly reduced Bmin and

Bmax in comparison with EGTA (p,0.001) (Fig. 1C–i, and for

individual experimental examples see Material S2-A), even though

calcium current densities under both condition remained similar

(2164 pA/pF vs 2564 pA/pF, respectively).

Strong stimuli induce prominent Ca2+ entry, and consequently

provoke the exocytosis of poorly coupled vesicles [2,23]. At

distances relatively far from Ca2+ channels (.200 mm) EGTA and

BAPTA are expected to buffer Ca2+ similarly and therefore to

affect exocytosis with comparable efficacy [1]. We tested the effect

of BAPTA on the amount of vesicles released by a pair of 100 ms

pulses, given 300 ms apart (for a single experiment, see Material

S2-B), a stimulation protocol previously used to estimate the lower

and upper bounds of the RRP (see Methods) [5,15]. As expected,

in response to this stimulation protocol, cells loaded with BAPTA

showed similar values for Bmin, Bmax (Fig. 1C–ii) and ICa2+
densities compared to cells loaded with EGTA (averaged currents

were 1963 pA/pF vs 2365 pA/pF, respectively). Another way to

provoke the release of poorly coupled vesicles from the RRP is

through the application of a train of depolarizations (10 pulses,

50 ms each, delivered at 2 Hz frequency), which leads to

significant residual Ca2+ accumulation [2]. In the presence of

EGTA, the application of such a train induced a cumulative

capacitance increase of 150623 fF (Fig. 1D–i, black line). Note

that a very similar capacitance value was obtained in cells loaded

with BAPTA at the end of the train (Fig. 1D–i, gray line), and that

the current densities along the train were similar in both buffering

conditions (Fig. 1D–ii). However, BAPTA provoked a clear

decrease in exocytosis during the beginning of the train (Fig. 1D–

i, gray line), which was mostly associated with a reduction of the

syncronous exocytotic response (see methods and the legend of

Fig. 1) during the first four pulses (p,0.05) (Fig. 1D–iii). The

greatest effect occurred during the first 50 ms pulse, where most of

IRP is released (p,0.001).

The results described above confirm the presence of two

components of exocytosis with different functional coupling with

Ca2+ channels in the chromaffin cell. In a previous study [15], we

used specific Ca2+ channels blockers and Cav2.1 knockout mice to

demonstrate that the exocytosis of IRP is specifically coupled to P/

Q-type Ca2+ channels in mouse chromaffin cells. Here, we re-

evaluated this finding by application of the P/Q channel specific

blocker v-agatoxin-IVA (AGA) (200 nM) on cells stimulated with

depolarization pulse protocols specifically intended to release the

IRP (Fig. 2). We first analyzed the effect of the toxin on the

exocytosis induced by the paired-pulse protocol designed to

estimate the IRP (see above). Figure 2A shows an example of the

calcium currents and the capacitance changes measured in those

conditions. The treatment produced a moderate but significant

decrease in calcium current density (p,0.05), and resulted in an

82% reduction of IRP exocytosis (p,0.001) (Figure 2 B and C).

This result confirms our previous observation [15], but it does not

definitively prove that P/Q-type channels dominate the control of

IRP release, as it is well known that exocytosis follows a nonlinear

dependence on Ca2+ concentration [2,33]. P/Q plus L-type Ca2+

channels account for approximately 100% of the Ca2+ current in

our chromaffin cell preparation [15] (see also an example of

consecutive additions of AGA and nitrendipine (10 mM) on the

same cell, in Material S3). Indeed, in the present work, the

independent treatment with AGA reduced the ICa2+ to 68616%

and with nitrendipine (NITRE) to 3369% with respect to controls

(see next section, calculated for depolarizations to +10 mV).

Therefore, we analyzed the effect of AGA and NITRE on the

efficiency of Ca2+ entry to induce exocytosis. To perform this

analysis, we stimulated the cells with individual depolarization

pulses of variable durations (but no longer than 50 ms) and plotted

the change in Cm vs. ICa2+ integral (QCa2+) in cells maintained in

control conditions, or in cells treated with AGA, or NITRE

(10 mM), respectively (Fig. 2D). When the L-type was the

t= 1560.8 ms, R = 0.998) which is represented by the continuous black line. The black dashed lines represent the confidence intervals (95%). B. The
paired pulse protocol, composed of two 10 ms depolarization pulses separated by a 300 ms interval, which was used to calculate the IRP. The figure
represents (i) the Ca2+ currents and (ii) the membrane capacitance changes provoked by application of this protocol during one typical experiment.
The two pulses (represented in (i), from 280 to +10 mV) induced identical calcium currents, while the Cm response exhibited a clear depression
between the first (DCm1) and the second pulse (DCm2). The values of Bmin and Bmax for this particular experiment were 42 and 48 fF, respectively. C. (i)
The bar diagram summarizes the Bmin and Bmax values for the IRP obtained in presence of BAPTA (n = 14) or EGTA (n = 13) in the internal solution.
BAPTA reduced significantly the exocytosis of IRP (p,0.02) respect to EGTA. (ii) On the other hand, the exocytosis obtained in response to a stronger
stimulus (two 100 ms pulses separated by 300 ms), aimed to estimate the whole RRP [5,25], was not affected by the type of calcium buffer added to
the internal solution (EGTA, n = 11; BAPTA, n = 12). D. (i) Averaged exocytic response of chromaffin cells loaded with EGTA (n = 10, black) or BAPTA
(n = 9, gray) in response to a train of ten depolarizing pulses of 50 ms (2 Hz). Note that BAPTA induced a clear reduction of exocytosis during the first
pulses. (ii) The bar diagram represents the averaged Ca2+ currents during train stimulation. (iii) Synchronous capacitance changes along the train.
Synchronous exocytosis is defined as the change in capacitance during each stimulus, and measured in a 50 ms window starting 50 ms after each
depolarization minus the mean pre-stimulus capacitance also measured in a 50 ms window. *p,0.05; **p,0.001.
doi:10.1371/journal.pone.0054846.g001
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dominant current (i.e. in presence of AGA) there was a clear

reduction of the capacitance response in the whole curve in

comparison with control conditions. The minimum ICa2+ integral

that produced a measurable change in capacitance was right

shifted in approximately 0.4 pC with respect to controls. On the

other hand, when P/Q-type was the dominant current (i.e. in

presence of NITRE) we observed the opposite effect, as the

capacitance response was increased in the whole range of ICa2+
integrals. To numerically evaluate the efficiency of Ca2+ entry to

induce exocytosis in the three conditions considered here, we

estimated the ICa2+ integral that induces a capacitance increase of

16 fF (which represents approximately the half of the IRP). On

average, a jump in capacitance of this magnitude was provoked by

a Ca2+ entry of 5.6 pC in experiments with dominant L-type

currents (AGA), by a Ca2+ entry of 1.9 pC in control conditions,

and by a Ca2+ entry of 0.7 pC in cells with dominant P/Q-type

currents (NITRE). The efficiency of Ca2+ entry to induce

exocytosis, averaged for all Ca2+ entry values in each condition,

was also significantly (p,0.05) reduced by AGA (3.560.4 fF/pC)

and increased by NITRE (18.862.8 fF/pC), compared to the

value of 8.861.4 fF/pC obtained in control cells. This analysis

avoids the effect of non-linearity in the exocytosis-ICa2+ relation-

ship [33], confirming the presence of a specific tight coupling

between P/Q-type calcium channels and IRP vesicles. Along these

lines, we selected from our total data set of paired-pulse

experiments for IRP determination in presence of AGA,

experiments with Ca2+ currents over 20 pA/pF. This yielded an

average of 24.261.3 pA/pF which was not statistically different

from control conditions. In this situation, the estimated IRP was

almost identical to the value reported in Fig. 2C in the presence of

AGA (Material S4).

Effect of Synprint on IRP Exocytosis
We next examined the molecular basis of the specific coupling

between IRP vesicles and P/Q-type Ca2+ channels. It has been

demonstrated in neurons that the synprint sequence of the a1

subunit of P/Q- and N-type Ca2+ channels interacts with proteins

of the exocytotic machinery [18]. This is thought to contribute to

the spatial colocalization of synaptic vesicles with those channels

such that Ca2+ influx is efficiently coupled to exocytosis [18,19,34].

Here, we tested the hypothesis that the tight functional coupling

between the IRP exocytosis and the P/Q-type Ca2+ current

observed in mouse chromaffin cells might be mediated by the P/

Q-type channel synprint region. We analyzed this possibility by

transfecting mouse chromaffin cells with an IRES plasmid

encoding the synprint peptide and EGFP (see methods). We

expected that the exogenous free synprint peptide would compete

with the endogenous synprint site of the Ca2+ channel molecule,

thus disrupting the vesicle-channel interaction. We identified the

positively transfected cells (Syn+) in our cultures by EGFP

associated fluorescence (Fig. 3, see also Material S5A). The

transfection with synprint did not modify the P/Q-type channel

distribution, as assessed with anti-P/Q antibody in fixed and

permeabilized chromaffin cells (Material S5B). The values of Ca2+

currents and exocytosis measured in Syn+ cells were compared

with two types of control cells: non fluorescent cells (Syn2) chosen

from the same dishes than Syn+ cells, and EGFP positive cells

(EGFP) obtained in independent cultures transfected with an

IRES plasmid lacking the synprint sequence.

We applied the double pulse protocol described above to

estimate the IRP in Syn+, Syn2 and EGFP cells. Fig. 3A shows

typical examples of individual measurements of ICa2+ and Cm in

Syn+ (i) and Syn2 (ii). These examples show that the exocytotic

response to double pulse stimulation is markedly reduced in Syn+

cells, while ICa2+ was comparable between both situations. On

average, ICa2+ was similar for Syn+, Syn2 and EGFP cells (Fig. 3B–

i). In contrast, Syn+ cells presented a markedly reduced IRP in

comparison to both control conditions (Fig. 3B–ii), (p,0.005).

These data suggest that the functional coupling between IRP

vesicles and P/Q calcium channels was perturbed by the presence

of the exogenous synprint peptide, and consequently IRP

exocytosis was inhibited. Consistent with this interpretation, the

application of the specific P/Q-type channel blocker AGA on Syn+

cells (Syn++AGA) did not significantly alter residual IRP exocytosis

measured on Syn+ cells (Fig. 3B–ii). We tested also the effect of

another cytosolic portion of Ca2+ channels, which does not

interact with synaptic proteins [35]. We transfected chromaffin

cells with the proximal C-terminus of the Cav2.2 channel (residues

1706–1983) incorporated in a pIRES2-EGFP plasmid [36]. This

construct did not affect IRP exocytosis in comparison with control

measurements obtained from the same cultures (Bmax: 1263 vs.

1362, and Bmin: 1063 vs. 861; for C-terminus-1706–1983 (n = 8)

and controls (n = 8) respectively). We also tested the effect of

synprint transfection on the size of the RRP, evaluated by a paired

100 ms pulse protocol (see methods section, and Ref. [5]). The size

of the RRP estimated by this methodology was similar between

Syn2 (n = 16) and Syn+ (n = 20) cells (Bmax values were 53.966.9

and 52.568.6 fF; Bmin values were 40.964.1 and 39.166.2 fF;

and Ica2+ values were 16.361.9 and 12.360.8 fF, respectively).

Next, we analyzed the effect of synprint on the efficiency of

Ca2+ entry to induce the exocytosis of IRP. The capacitance

change provoked by depolarization pulses with durations between

5 and 50 ms was plotted versus the calcium current integral for

Syn+ and Syn2 (Fig. 3D). The exocytosis values obtained on Syn+

were reduced in the whole range of ICa2+ integrals relative to

Syn2. The amount of Ca2+ entry required to induce a capacitance

increase of 16 fF was 1.8 pC in Syn2, but was approximately

5 pC in Syn+. Moreover, the average efficiency of Ca2+ entry to

induce exocytosis was significantly (p,0.001) reduced in Syn+

(4.460.2 fF/pC) with respect to Syn2 (8.060.5 fF/pC). Interest-

ingly, while Syn2 followed a similar behavior as nontransfected

controls (continuous black line, which represents the black filled

circles of Fig. 2D), Syn+ behaved similarly as cells treated with

AGA (dashed black line, which represents the gray circles of

Fig. 2D). These results indicate that the blocking of P/Q Ca2+

channels or the disruption of P/Q-type channel-vesicle interaction

produce similar effects on IRP exocytosis.

In addition to participating in the location of vesicles near the

Ca2+ channels, the interaction between synprint and SNARE

proteins was also implicated in the modulation and targeting of

calcium channels to the plasma membrane [34,37–39]. To study

the contributions of L- and P/Q-type Ca2+ channel to the total

ICa2+ in Syn+ cells and in non transfected cells we used the specific

channel blockers NITRE (10 mM) and AGA (200 nM). The

relative contributions of calcium current subtypes to the total

current were similar between both preparations. Figure 4A shows

the current versus the applied voltage curves obtained in

transfected Syn+ cells without treatment (Syn+), incubated with

AGA (Syn++AGA) or with NITRE (Syn++NITRE). AGA signif-

icantly reduced the ICa2+ in Syn+ cells (to 64%, p,0.05, measured

at +10 mV), but a stronger effect was observed with NITRE,

which reduced ICa2+ to 41% (p,0.02). Likewise, in control

(nontransfected) cells, AGA and NITRE reduced ICa2+ to 68%

and 33%, respectively (Fig. 4B). These results confirmed that L-

type ICa2+ is the dominant Ca2+ current in our preparation

(Alvarez et al. 2008), and in addition they showed that synprint

transfection do not modify this situation.
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Effect of Synprint on Exocytosis Provoked by Strong
Stimulation

We then tested the effect of synprint transfection on chromaffin

cell exocytosis induced by strong stimuli. We intended to induce

an extensive cytosolic Ca2+ increase to trigger the fusion of a big

population of vesicles, irrespective of their colocalization with Ca2+

channels.

First, we examined the response to the application of trains

composed by 10 depolarizations (50 ms each, at 2 Hz). In control

Syn2 cells, this stimulus induced a capacitance increase of

161620 fF at the end of the train (Fig. 5A–i, black line), which

was similar in size to the RRP estimated by other authors [5,40].

On the other hand, the same stimulation procedure applied in

Syn+ (dark gray line), or in control cells incubated with AGA (light

gray line) provoked a significantly smaller cell capacitance increase

(90616 fF and 98617 fF, respectively, Fig. 5A–i). It is important

to note that approximately 50% of the difference observed

between Syn2 cells and the two other conditions (AGA and Syn+)

can be explained by the reduction of the synchronous Cm response

induced by the first pulse of the train (Fig. 5A–iii). The calcium

current densities were not significantly reduced in Syn+ cells in

comparison with Syn2 cells (Fig. 5A–ii), while the application of

AGA provoked an average reduction of 46% respect to the control

condition (p,0.05). It is interesting to note again (as was also

observed in Figure 3D) that synprint transfection produced a

similar effect on exocytosis compared to the inhibition of P/Q

Ca2+ channels by AGA, which fits with the idea that the decrease

in exocytosis in Syn+ cells is due to the uncoupling of IRP vesicles

Figure 2. IRP exocytosis is coupled to P/Q calcium channels. A. Representative example of recorded Ca2+ currents (top) and membrane
capacitance changes (bottom) induced by application of the dual 10 ms pulse protocol in presence of AGA (200 nM) in the external solution. B. The
bar diagram represents the averaged Ca2+ currents in control conditions and in the presence of AGA (n = 8). C. The bar diagram summarizes the
averaged capacitance changes obtained in response to the application of the dual 10 ms pulse protocol in control conditions and in the presence of
AGA (n = 8). The toxin reduced dramatically both Bmax and Bmin parameters associated with the exocytosis of the IRP. D. Exocytosis, measured as the
change in membrane capacitance, in response to short depolarizations (between 5 and 50 ms) was plotted against the Ca2+ entry (calculated as the
time integral of ICa2+) for cells in control conditions (n = 130), and in presence of NITRE (10 mM) (n = 45) or AGA (n = 45).
doi:10.1371/journal.pone.0054846.g002
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Figure 3. Synprint mediates the coupling of IRP with P/Q-type calcium channels. A: Examples of original records of Ca2+ currents (top) and
membrane capacitance changes (bottom) in response to the application of the dual 10 ms pulse protocol, in Syn2 (i) or Syn+ (ii) cells. B. (i) Calcium
current densities obtained in Syn2 (n = 30), EGFP (n = 7), Syn+ (n = 14), and Syn+ cells treated with 200 nM v-agatoxin-IVA (Syn++AGA) (n = 10). (ii)

Synprint Mediates IRP-P/Q Channels Coupling

PLOS ONE | www.plosone.org 8 January 2013 | Volume 8 | Issue 1 | e54846



respect to P/Q-type Ca2+ current. These results also make evident

that the inhibitory effects of synprint transfection or AGA

application are mainly effective on rapid highly synchronous

exocytosis during the first pulse of the train, which by definition

depends on IRP [2,4]. On the other hand, most of the remaining

exocytosis measured during the train is probably associated with

Averaged estimations of Bmin and Bmax for the IRP, obtained in response to the application of the dual 10 ms pulse protocol under the same
conditions mentioned in (i). Please note that while Syn2, EGFP and Syn+ have almost identical ICa2+ values, a highly significant decrease (p,0.005) in
the IRP exocytosis was found between Syn+ and the other two groups of experiments. C. Confocal images of two chromaffin cells that were positive
for EGFP+synprint transfection. D. Exocytosis, measured as the change in membrane capacitance in response to short depolarizations (between 5 and
50 ms), was plotted against the Ca2+ entry (calculated as the time integral of ICa2+) for Syn2 (n = 40) and Syn+ cells (n = 30). The plot also represents
the data of cells in control conditions (continuous line) or treated with AGA (dashed line) from Fig. 2D. Note that while Syn2 followed a similar
behavior than control cells, Syn+ is superimposed almost perfectly with AGA.
doi:10.1371/journal.pone.0054846.g003

Figure 4. Synprint transfection does not modify the relative contributions of calcium current subtypes. The figures on the top show the
calcium current vs. voltage relationships for (A) Syn+ cells in control conditions (Syn+) (n = 9), Syn+ cells treated with 200 nM v-agatoxin-IVA
(Syn++AGA) (n = 9), and Syn+ cells treated with 10 mM nitrendipine (Syn++NITRE) (n = 7); and for (B) nontransfected cells in control conditions (Control)
(n = 11), nontransfected cells treated with 200 nM v-agatoxin-IVA (Control+AGA) (n = 9), and nontransfected cells treated with 10 mM nitrendipine
(Control+NITRE) (n = 9). The cells were stimulated with 50 ms square voltage pulses, from a holding potential of 280 mV to the potentials indicated
in the abscissas of panels A and B. C. Original records of Ca2+ currents obtained in response to square depolarizations to +10 mV for the same three
conditions detailed in panel A. D. Original records of Ca2+ currents obtained in response to a square depolarization to +10 mV for the same three
conditions detailed in panel B.
doi:10.1371/journal.pone.0054846.g004
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Figure 5. Effects of synprint on exocytosis provoked by strong stimulation. A. (i) Averaged exocytic response of Syn2 cells (n = 7, black
line), Syn+ (n = 6, dark gray line) and normal cells treated with AGA (n = 13, light gray line), in response to trains of ten depolarizing pulses of 50 ms
(2 Hz). The bar diagrams in (ii) and (iii) represent the averaged ICa2+ peaks and the synchronous exocytosis elicited at each depolarization in the three
conditions described in (i). B. The exocytosis was measured as the increase in fluorescence due to incorporation of the fluorophore FM4-64 into the
membrane of newly fusing vesicles. (i) Typical experiments performed on a Syn2 (n = 10) and a Syn+ (n = 9) chromaffin cells. The spatially averaged
fluorescence (F.A.U.: fluorescence arbitrary units) of the whole cell was measured at the equatorial cell section, previous subtraction of the
background fluorescence (see methods), and normalized (in %) with respect to the value obtained at the end of the FM4-64 incubation period. The
cell was stimulated for 3 min. with 50 mM K+ solution in presence of the fluorophore. Exocytosis was quantified by the increase in fluorescence above
the plateau value established previously the stimulus (dotted line). The stimulation period was terminated by changing the extracellular high K+

solution to standard solution without FM4-64 (see methods). (ii) Bar diagram showing the results obtained from the type of experiments represented
in (i). The results are expressed as the percentage increase in fluorescence induced by depolarization with respect to previous fluorescence values
(after background subtraction). No significant differences were found between these two groups.
doi:10.1371/journal.pone.0054846.g005
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the other vesicles within the RRP, which are not tightly coupled to

calcium channels [4,5]. It is also important to consider that the

time length of the train is very close to the refilling time constant of

RRP from upstream pools [2,5].

The results obtained in Syn+ cells support the hypothesis that

the synprint linker of P/Q-type Ca2+ channels is fundamental for

maintaining a tight functional coupling between these channels

and the vesicles forming the IRP. However, we cannot exclude the

possibility that Syn+ cells might have suffered a partial collapse in

their general competence to release vesicles. To evaluate this

alternative we measured the increase in FM4-64 fluorescence (see

methods) of Syn+ and Syn2 in response to the application of

50 mM K+ during 3 minutes. This type of protocol releases an

important portion of the releasable vesicles contained in chromaf-

fin cells [21]. We used this methodology because it is expected that

the exocytosis induced by such a long stimuli would be

underestimated by capacitance measurements, as a consequence

of simultaneous endocytosis. Fig. 5B–i shows an example of this

type of protocol applied on a Syn2 and a Syn+ cell. The bars of

Fig. 5B–ii represent the average increase in fluorescence (expressed

as the percentage of the cellular fluorescence before the stimulus)

induced by high potassium application. No significant differences

were found between these two groups, indicating that the

expression of synprint does not affect the general cell competence

to release vesicles.

Discussion

The application of single brief depolarization pulses, which

activate VDCCs during a short period, revealed the existence of a

small group of vesicles highly coupled to the stimulus, i.e. the IRP

[4]. Horrigan and Bookman [4] proposed two alternative

hypotheses about the nature of IRP vesicles: (1) The IRP might

reflect a population of vesicles (possibly small synaptic-like vesicles)

that are functionally distinct from the secretory granules that make

up the RRP; (2) IRP+RRP represent a homogeneous population

of equally fusion-competent vesicles (i.e. docked and primed) that

differ in their proximity to Ca2+ channels. Subsequent work clearly

favored the second hypothesis. Because the IRP was never

observed as a different kinetic component in conventional flash

photolysis experiments [5,40], it is reasonable to predict that the

IRP is not a pool of vesicles that is intrinsically faster than the

RRP. The application of brief depolarization pulses to deplete the

IRP immediately before the flash generated a reduction in the fast

component of the exocytotic burst associated with the RRP, and

this reduction was similar to the IRP size [5]. Therefore, the IRP is

commonly defined as a small group of readily releasable vesicles

located in close proximity to VDCCs [5].

The use of specific toxins and pharmacological agents

demonstrated that chomaffin cells have a heterogeneous popula-

tion of VDCCs [8,41–43]. For instance, in mouse chromaffin cells,

P/Q-, N- and L-type Ca2+ channels may contribute to the ICa2+,

but show some variations in their contribution depending on the

biological preparation (cell culture or slices) and the patch-clamp

configuration used [8,44,45]. In the same cell type, some

contribution of R-type Ca2+ channels to ICa2+ [8], which seems

to be more prominent in adrenal gland slices compared to isolated

cells [45], was also found. Partial contributions of P/Q-, N- and L-

type channels to the total ICa2+ were also demonstrated in bovine

[11,42,46] and rat [47,48] chromaffin cells. In the rat, b-

adrenergic stimulation recruits low voltage activated T-type Ca2+

currents in addition to P/Q-, N- and L-type currents [49],

provoking an increase in the cellular secretory response [50]. We

observed consistently along several years that L-type and P/Q-

type are the dominant Ca2+ currents in our chromaffin cell

preparation [15].

Our research group [15] obtained strong evidence indicating

that IRP vesicles are specifically coupled to P/Q-type Ca2+

channels in voltage-clamped mouse chromaffin cells. In that

previous study, we showed that IRP was dramatically inhibited by

blocking or knocking-out P/Q-type Ca2+ channels. However, it is

necessary to consider that secretion has a strong nonlinear

relationship with Ca2+ entry [2,33]. In the present work we thus

analyzed the efficiency of secretion at identical Ca2+ current

amplitudes mobilized through different Ca2+ channels, during the

application of stimuli that specifically releases IRP vesicles. We

estimated that while 5.6 pC of charge have to flow through L-type

channels to release the equivalent of 50% of IRP (16 fF), only

0.7 pC have to enter through P/Q-type channels to provoke the

same exocytotic response (Fig. 2D). The ratio between these two

current values is 8, thus offering insights into the different

exocytotic efficiency of these two Ca2+ sources. This scenario

suggests the existence of some type of specific physical interaction

between IRP vesicles and P/Q-type channels. There is substantial

evidence indicating that the synprint linker serves to maintain a

close physical coupling between vesicles and P/Q-type or N-type

Ca2+ channels in synaptic terminals, which enhances the stimulus-

secretion response [18,19]. In this work we tested the hypothesis

that synprint helps the functional coupling between IRP associated

dense core vesicles and P/Q-type Ca2+ channels in chromaffin

cells.

The IRP size in this work was evaluated by two methodologies.

First, we studied the increase in capacitance provoked by single

short depolarizations of variable duration. The exocytotic response

to square depolarizations #50 ms grew exponentially with the

duration of the stimulus [2,4], giving a saturation value of

3361 fF, and a time constant (t) of 15.760.8 ms, which

corresponds to an exocytotic rate (1/t) of 64 s21. These kinetic

values fall in between the values reported by Horrigan and

Bookman [4] in bovine chromaffin cells and Voets et al [5] in

mouse adrenal slices. Depolarizations longer than 50 ms induced

additional exocytosis that deviated from the exponential behavior

(see Fig. 1A–i). This delayed exocytotic component may be

associated with RRP vesicles that are not closely coupled with

VDCC, and/or with the refilling of mature releasable pools with

immature vesicles [5]. As a second methodology to estimate IRP

we used the conventional dual-pulse protocol (see Methods, and

Fig. 1B and C–i) [5,23]. We obtained values of 3262 fF and

4163 fF for lower and upper IRP limits, respectively, in control

conditions. The estimations obtained by both methodologies are

consistent with each other, as the asymptote value estimated by the

former method falls between Bmin and Bmax obtained by the latter

analysis. These values are similar to those reported by Voets et al

[5] in adrenal slices and by Horrigan and Bookman [4] in bovine

cell cultures. If we consider an average value of 1.3 fF for a single

vesicle [28], we can conclude that the IRP in our experimental

conditions is composed of 25–32 vesicles.

To evaluate if the pool estimated by us is compatible with the

basic characteristics that define IRP (i.e. a group of vesicles closely

associated with VDCC) we compared the effect of slow vs. fast

Ca2+ buffers on IRP exocytosis. The rapid exogenous buffer

BAPTA has approximately 100 times higher calcium binding rate

than EGTA with similar Kd [1,14,30,31], and therefore only the

former buffer is expected to affect the exocytosis of vesicles located

close to Ca2+ channels. Our experiments revealed that BAPTA

reduced markedly the efficiency of Ca2+ entry to induce IRP

exocytosis, in comparison to EGTA (Fig. 1 A and C). On the other

hand, no inhibitory effect of BAPTA on exocytosis was observed
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when longer depolarizations were applied: first, the efficiency of

Ca2+ entry to induce exocytosis in BAPTA approximates that in

EGTA containing solutions when depolarization pulses became

longer (Fig. 1A–ii); and second, BAPTA was not effective when a

paired 100 ms pulse protocol (to release the whole RRP) was

applied. Finally, while the synchronous exocytosis induced by the

first pulse of a train was severely affected by BAPTA, this fast

buffer had no effect on the total exocytosis at the end of the train

(Fig. 1 D). These results are in agreement with a scenario in which

there is just a small group of ready releasable vesicles that are

highly coupled with VDCCs. How close to the mouth of Ca2+

channels are located the vesicles of IRP? We cannot answer this

question, but it is possible to estimate a distance range, based on

the characteristics of Ca2+ buffers. It was estimated that at more

than 200 nm from the Ca2+ channel the incoming Ca2+ is in

equilibrium with the buffers [1] and therefore BAPTA and EGTA

are expected to produce similar effects. On the other hand,

BAPTA presents a length constant, i.e. the average distance a Ca2+

ion will diffuse before it is capture by the buffer, of approximately

30 nm [51]. This, together with our results suggests that IRP

vesicles are located no more than a few tens of nanometers away

from the mouth of the channels.

To study the molecular basis of the functional coupling

observed between IRP and P/Q-type Ca2+ channels in mouse

chromaffin cells we transfected our preparation with a plasmid

containing the synprint sequence. It has been previously shown

that the synprint peptide that we used to affect IRP exocytosis has

two syntaxin interaction sites [52]. We expected that the ‘‘free’’

synprint peptide expressed from that plasmid competed with the

synprint site contained within native P/Q-type Ca2+ channels for

the binding of proteins directly or indirectly associated to vesicles

[19]. This would be expected to disrupt the coupling between IRP

vesicles and P/Q-type calcium channels, thereby interfering with

IRP exocytosis. It is known that the synprint site is present in N-

and P/Q-type channels, but it is absent in L-type calcium channels

[16,19,34,53,54]. Because we did not find significant N-type ICa2+
in our preparation [15], it is reasonable to expect that the effect of

the free synprint peptide should occur exclusively via P/Q-type

Ca2+ channels. We found that the efficiency of Ca2+ current to

promote exocytosis was drastically reduced in Syn+ chromaffin

cells to a similar level as that obtained when P/Q-type channels

were blocked with AGA (Fig. 3D). Additionally, the exocytotic

response to the first pulse of a train of depolarizations was reduced

in Syn+ cells, similarly to the levels seen in the presence of AGA

(Fig. 5A). More importantly, the size of IRP exocytosis was

markedly reduced in Syn+ cells in comparison with both control

conditions (Fig. 3B). These results are in agreement with previous

findings in synaptic terminals, where synprint helps the establish-

ment of the tight functional coupling between vesicles and Ca2+

channels, thus improving the efficiency of synaptic transmission

[18,19]. They are also consistent with the results of Harkins and

colleagues [55] in the mouse pheochromocytoma cell line MPC 9/

3L, which contains vesicles and many of the proteins involved in

vesicle fusion, but which does not express endogenous Ca2+

channels. These authors found that MPC 9/3L cells transfected

with channels with a deleted synprint site had lower exocytotic

efficiency than cells transfected with wild type channels [55]. It

should be noted that these authors induced exocytosis through

relatively strong stimulation (i.e. trains of 200 ms depolarizations),

and thus they did not specifically address the exocytosis of highly

coupled vesicles. In summary, although it was shown previously

that synprint is important in the establishment of Ca2+ channel-

vesicle coupling in the mammalian presynapse and in reconstitut-

ed neurosecretory systems, to our knowledge we are the first to

report that synprint sequence is critical for highly coupled IRP

exocytosis in native chromaffin cells.

Although the synprint sequence is also present in N-type Ca2+

channels, we showed in a previous study [15] that our chromaffin

cell preparation lacks N-type channels and hence our observed

effects cannot be attributed to this channel type. Our work does

not exclude the possibility that N-type Ca2+ channels can

contribute to IRP in other chromaffin cell preparations. Moreover,

our data do not exclude that Ca2+ channels lacking synprint

sequence may participate in highly coupled exocytosis in

chromaffin cells. Albillos et al [45] found in perforated patch

experiments a Ca2+ current, apparently mediated by R-type

channels, which was a highly efficient trigger of exocytosis.

In addition to synprint, the C-termini of P/Q- and N-type Ca2+-

channels have also been implicated in targeting Ca2+-channels to

the synaptic active zone [56]. Bezprozvanny and collaborators

demonstrated by ‘‘in vitro’’ and ‘‘in vivo’’ assays a specific

association of the cytosolic carboxyl terminus of the long splice

variants of N- and Q- type Ca2+ channel pore-forming a1B and

a1A subunits with the synaptic modular adaptor proteins Mint1-1

and CASK [35,57]. This molecular association might recruit these

Ca2+ channels to a macromolecular signaling complex assembled

at synaptic junctions. In fact, the synaptic targeting of these Ca2+

channels depends on neuronal contacts and synapse formation

[35]. Similarly, Südhof and collaborators using yeast two-hybrid

screens identified a direct interaction of the central PDZ-domain

of the active-zone protein Rim with the C-termini of presynaptic

N- and P/Q-type Ca2+-channels [58]. The knockout of Rim

strongly reduced neurotransmitter release in hippocampal neurons

and in the calyx of Held, revealing a reduction in the size of the

readily releasable pool, and a decrease in the presynaptic

localization of Ca2+-channels [58,59]. The addition of Rim1 to

permeabilized chromaffin cells increased secretion apparently

through a mechanism involving Rab3a and/or a 14-3-3 protein

[60,61]. In addition there is data suggesting that the disruption of

Mint1-Munc18-1 binding decreases secretion in chromaffin cells

[62]. However there is not to our knowledge any data that

demonstrate a role of CASK, Rim or Mint1 in channel

localization or channel-vesicle coupling in chromaffin cells.

From our results we can also conclude that massive exocytosis

provoked by sustained stimuli is not significantly affected by

synprint associated vesicle-channel interactions (Fig. 5B). This is

reasonable, because prolonged depolarizations provoke global

Ca2+ increases in the cytosol, which are expected to affect vesicle

exocytosis independently of their localization respect to Ca2+

sources [2,29].

In conclusion, our results strongly suggest that synprint is a

crucial factor for the establishment of the functional coupling

between IRP vesicles and P/Q-type Ca2+ channels in mouse

chromafin cells. Therefore, synprint appears to be essential for

highly synchronized secretion in chromaffin cells, like in the

presynapse [17,19].

Supporting Information

Material S1 Rat versus mouse synprint homology analysis.

Based on the comparison, these segments of the synprint region

are 93% identical and 94.7% similar between rat and mouse, with

eight gaps in alignment due to the rat synprint isoform in question

being longer.

(PDF)

Material S2 A. Examples of original capacitance records

obtained in response to the application of a 10 ms dual pulse

protocol for the estimation of the IRP in cells dialyzed with (i)
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0.5 mM EGTA or (ii) 0.5 mM BAPTA. B. Original capacitance

records obtained in response to the application of a 100 ms dual

pulse protocol for the estimation of the RRP in cells dialyzed with

(i) 0.5 mM EGTA and (ii) 0.5 mM BAPTA.

(PDF)

Material S3 Examples of ICa2+ induced by 50 ms depolariza-

tions (from 280 to +10 mV) obtained on the same cell in control

conditions (black), and with consecutive additions of 200 nM AGA

(gray), and AGA +10 mM Nitre (light gray).

(PDF)

Material S4 A. The bar diagram compares the averaged Ca2+

currents densities in control conditions and in the presence of

AGA (replications of Fig. 2B) with a group of experiments with

high Ca2+ current densities in presence of AGA (we selected 3 cells

from the experiments represented in Fig. 2B and C, and added 4

new cells, all with currents higher than 20 pA/pF (n = 7)). The

currents were induced by application of a 10 ms square

depolarization (the first of the pair). The Ca2+ current density

obtained in AGA with high ICa2+ was not different than the

control. B. The IRP size estimated by the dual pulse protocol was

markedly smaller in AGA with high ICa2+ than in control

conditions (p,0.001), and almost identical to the values obtained

for the regular population of experiments performed with AGA.

Control and AGA represent the same experiments shown in

Fig. 2B and C.

(PDF)

Material S5 A. Examples of DIC Nomarsky images and

associated confocal EGFP fluorescence images of two fixed

chromaffin cells transfected with the synprint-pIRES2-EGFP

plasmid. B. Examples of cellular P/Q-type channel distribution

for control and Syn+ cells. The cells were fixed in 2%

paraformaldehyde and permeabilized with 0.5% Tween 20.

Subsequently, the cells were incubated overnight with a rabbit

anti P/Q antibody (1:200), and an anti rabbit second antibody

labeled with rhodamine (1:1000) was applied. The images were

obtained in an Olympus FV-300 confocal microscope with a 606
(1.4) oil immersion objective.

(PDF)
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