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Abstract

Starlog, a pure logic programming language including negation is introduced. It is shown that this
language is capable of directly expressing the mutation and change of clauses within a database. This is
the problem traditionally solved in Prolog with the semantically-unsatisfactory “assert” and “retract.” The
standard, minimal-model semantics for normal logic programs is preserved in Starlog, and no extensions
are used beyond standard clausal logic. It is noted that by extending startification to a “temporal
stratification” the completion of such programs is guaranteed to be consistent. Some short, example
programs are described and used to illustrate an effective and efficient bottom-up technique for executing
the language based on connection graphs. The execution technique solves the problems of matching
generated results against goals and of efficiently and correctly dealing with negations.

1. Introduction

One of the major problems that has resisted effective solution within the logic-programming
paradigm has been the representation of change and mutation of data. For example, within a relational-
database framework, it is acceptable to directly modify the relations in the database by inserting and
deleting tuples. The most natural representation of a relational database within logic programming is as a
predicate, with individual tuples being unit clauses of the predicate. To modify this predicate, however,
requires that the program modify itself. A pragmatic solution has been to include the assert and retract
primitives within Prolog. Unfortunately, they do not have a simple, declarative semantics.

Change and mutation can be represented explicitly within pure Prolog by using a data structure,
such as a list, to represent a sequence of successive states. However, the early part of the lists cannot be
readily garbage collected, and so their size grows without bound. This problem is solved in the
Concurrent Prolog (CP) family of languages (Shapiro, 1987). Such languages are intended to be
applicable to non-terminating programs, such as operating systems. Typically, sequences of states are
represented by lists—as suggested above—but in the CP languages, the lists can be garbage collected
because the early stack frames are deleted. Thus, the lists and the stack need not grow without bound, and
non-terminating programs that execute in finite space can be implemented. Unfortunately, the semantics of
the CP languages are complicated by the need to use commitment and don’t-care non-determinism. Thus,
the standard, least-fixpoint semantics gives only a set of possible answers for the program. It can be
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difficult to tell which will in fact be generated or indeed if a program is capable of producing any of the
answers. For example, some form of delay is used in all the CP languages. Used incorrectly, such delays
can lead to deadlock and failure of the program. Such behavior is not accessible to the least-fixpoint
semantics.

Various techniques have been proposed to allow updates within deductive databases (Liu and
Cleary, 1990), (Naish et al , 1987), (Naqvi and Krishnamurthy, 1988). Again, these extend the
underlying logic with new, extra-logical primitives, thus complicating or destroying the declarative nature
of the semantics.

In this paper, a very different approach to this problem of modelling change is proposed. Time is
made explicit within the language. Change and mutation then become ideas that are directly expressible
within (the logic of) the language. For example, consider a data base with a predicate
data(Time, Key,Value) whose interpretation is that at a particular Time, the Key has a Value. The value
of the key may change with time. Suppose the key “akey” had the value “a” at time 0, and later at time 9, it

had changed to b. This can be expressed by the following pair of time-stamped tuples:
data(0, akey, a) data(9, akey,b)

(The term tuples is used here for—not necessarily ground—unit clauses, by analogy with relational
databases, Linda, and other dataspace languages.)

Space precludes us from dealing in detail with the semantics of Starlog. However, it is possible to
extend the notion of stratification for normal programs to Starlog (see (Lloyd, 1987, §14) for a description
of these semantics). Instead of stratifying the program using a static ordering based on predicate names
the execution is stratified on the time values in the predicates. A Starlog program then needs to satisfy a
number of conditions to be sure that it has a minimal model. The main condition is that the program
should be causal, that is, the time in the head is always greater than or equal to the times in the body.
Another condition is that any negation should be accompanied by a finite time advance (the condition is
actually weaker and more complex than this). Given these conditions a model can be constructed in almost
the same way as for the standard stratification.

A number of other temporal programming languages have been proposed (Galton, 1987). Starlog
differes from them in two ways. First it has a standard declarative semantics and second it uses full real
valued times (as opposed to integer values). The first is important because the tools and background of
logic programming can be brought to bear on Starlog. The second is important because it greatly extends
the expressiveness and power of the language. However, this expressiveness is only possible because of
the novel execution techniques available in Starlog and described in Section 3.

The next section introduces the language Starlog, which is an incarnation of these ideas. The
introduction is done by way of a database-update program. Section 3 demonstrates, for Starlog, an
execution model based on connection graphs. This is done by using two, different programs: one to solve
the 2,3,5 problem and another that expands on the update program of section 2. Section 4 concludes with
a discussion of the strengths of Starlog and future research directions.



2. The Starlog Language

Starlog is a pure, logic-programming language that allows negation in the body of clauses. Each
user-defined predicate has its first parameter reserved for a time-stamp value, e.g., see the data predicate
above. Time stamps are real numbers greater than or equal to 0.

As shown above, it is easy to express that a fact is true at a particular time, e.g.,
data(0,akey,a). However, this is not sufficient to express a notion such as “from time 0 to time 9,
akey had the value a, and from time 9 onward, it had the value b.” As we will see, it is important for the
practicality and expressiveness of the language that notions such as this can be expressed. Such notions

are expressed by “constrained tuples™
data(T,akey,a)  O<T, T<9;
data(T, akey,b) « 9<T;

The constraints that are allowed include all the ordering operators, <, <, >, and >. Such constraints
can be manipulated and used efficiently (see for example (Cleary, 1987)). For example, it is possible to
automatically transform a redundant pair such as “2<T, 9<T” into “2<T.”

A critical constraint on programs in Starlog is that they should be “causal.” That is, the time of the
head of a clause must be later than (or equal to) any goal in the body. This constraint enables programs to
be efficiently executed. A related, although slightly stricter, condition is sufficient to ensure that programs
have a well-defined minimal model.

An example of a causal rule is the following, which is a first attempt at a database-update program:
data(Tout, Key,Value) « Tout 2 Tin, add data(Tin,Key,Value); (1)

This says that from the time Tin, at which the tuple “add_data (Tin, Key, Value)” occurs, the Key will
have that value. The condition “Tout 2 Tin” ensures that the Key takes on the value only after the
“add_data” tuple occurs. This also ensures that the clause is causal. In Starlog, such an ordering
condition is added implicitly to every goal in the body of a clause, together with the condition “Tout> 0, ~
where Tout is the time in the clause’s head.

The database-update program above is incomplete. Consider what happens when the two tuples
“add_data (0, akey,a)” and “add_data (9, akey,b)” are introduced. Using bottom-up execution, they

can be matched against the “add _data” goal. This generates two constrained tuples:
data(Tout, akey,a) « Tout 2 0:
data (Tout, akey,b) « Tout = 9;

This is not the required result as at any time from 9 onward, akey has both the values a and b associated
with it If the value of akey is to be changed—rather than added to—then there should be only one
associated value, b. This problem can be resolved by noting that the real meaning when a value is changed
is “Key takes a value from add_data until the next value is assigned by add_data.” Paraphrased, this is
“Key takes a value from add_data so long as no other value is assigned by add_data.” Inlogic terms,
this gives us the more precise rule:



data (Tout, Key,Value) «
Tout 2 Tin,
add _data(Tin, Key,Value),
not (exists T add data(T,Key,_), Tout2T, T>Tin);: (2)

The use of negation in this way to limit the temporal scope of a tuple is a key technique in Starlog and
enables it to directly represent update and change. To see this in more detail, consider how the rule (2)
might be executed with the tuples “add_data (0, akey, a) ” and “add_data (9, akey, b)” as input.

Execution is bottom up so the two tuples can first be resolved against the positive goal to yield the
following two derived clauses. (The goals that have been resolved away are shown with atine-threugh
them. )

data (Tout, akey, a) «
Tout 2 0,

not (exists T add data(T,akey, ), Tout>T, T>0); (2a)

data(Tout, akey,b) «
Tout 2 9,

add-data{%,akey, b},
not (exists T add data(T,akey, ), Tout2T, T>9); (2b)

Resolving the tuples against the goal inside the negation transforms the first of these (2a) into:
data(Tout, akey,a) « Tout 2 0,
not (add—data{0,akey,a), Tout20, 0>0),
not (add—datat{9rakey, by, Tout29, 9>0);
Using the fact that 0>0 fails and 9>0 succeeds, this further transforms to:
data(Tout, akey,a) « Tout 2 0, not (Tout29);
“not (Tout29) ” is equivalent to “Tout<9”, so this can finally be transformed to the following constrained
tuple:
data (Tout, akey,a) « Tout 2 0, Tout<9;
This says that akey has the value a from time 0 up to, but not including, time 9. A similar transformation
on (2b) yields:
data(Tout, akey,b) « Tout 2 9,
not (add-data{8,akey,a), Tout20, 0>9),
not (add-data+{9,akey, b}, Tout29, 9>9);
0>9 and 9>9 both fail so this reduces to:
data(Tout, akey,b) « Tout 2 9;

which says that akey has the value b only, from time 9 onward, as we wanted.

This example execution has ignored two critical issues. The first is that the transformation of the
negations depended on the implicit information that there were no other “add_data” tuples in the
execution. This will not be true in more elaborate programs which may have arbitrarily complex rules
generating the add_data tuples and where there may as well be an infinite stream of them. The second
issue is that a naive implementation of the execution would match every tuple as it is generated against all
goals, which might match in the original rules and in the clauses derived from them. This would be very
inefficient, especially in large programs. Section 3 deals with both these issues.
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The properties of Starlog, exemplified above, can be summarized as:
* it is a pure, clausal, logic-programming language that allows negative goals;
» the result of a program is a set of “constrained tuples”;
+ execution is bottom up and also uses transformations to simplify negations and constraints;
« every tuple has its first parameter reserved for a time value, which is a positive real number;
» rules must be causal, that is the time in the head must be greater than or equal to the times in the
body.

3. Execution of Starlog

This section will informally describe how to execute Starlog by examining in detail two different
Starlog programs. The first example is the famous 2,3,5 problem whose main virtue is that it is simple
and straightforward. The second example is an example of how information can be updated, in this case
how a counter can be periodically incremented.

These examples should not be taken as representative of the areas where we see Starlog being
applicable. We have explored Starlog programs in a wide range of areas—meta-programming including a
meta-interpreter for Starlog; graphics including a graphical display of the execution of a Starlog program;
and search programs including interpreters for pure Prolog. An example of a combined
continuous/discrete simulation program in Starlog is described in (Cleary, 1990).

Starlog uses a variant of connection-graph theorem proving for its execution. (Kowalski,1979)
and (Bibel,1985) contain descriptions of this technique as used in general-purpose theorem proving. The
basic idea in connection-graph theorem proving is that the literals in a (general) graph can be joined by
links. Only those literals that have opposite signs and can be unified are initially linked. The main rule
used in connection-graph theorem proving is a variant of the resolution rule. Any link can be deleted by
resolving the two terms that are linked resulting in a new clause. The old link is deleted, and the new
clause inherits links from its parents.

A connection graph in Starlog is a variant of this basic idea. Links are now directional, from a goal
in a body to the head of a clause that can unify with it. Rather than a single resolution rule, a number of
more specialized rules are used to manipulate such a Starlog connection graph. The full resolution is done
only when the target of a link is a constrained tuple. The five Starlog rules are:

1. if a goal has a number of links (n) from it then the entire clause (and the links to its head and from
the other goals) can be duplicated n times;

2. if the goal and head joined by a link do not unify then the link can be deleted;

3. if a goal has no links then the entire clause can be deleted;

4. if the goal and head joined by a link do unify and the goal has only one link then the resulting
binding can be applied to the goal (and consequently to the whole clause), for example, if the goal

p(X) pointsto p(f (Y, 3)) then X can be bound to £ (Y’, 3) where Y’ is a newly introduced
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variable; it is also possible to apply constraints on values, for example, if the time in the head is
constrained to be T>6 then this same constraint can be propagated back to the goal;

5. if the only head pointed to by a goal is the head of a constrained tuple then a full resolution
between the goal and the clause is done.

The control strategy used by Starlog to apply these rules starts with the selection of (one of) the
clauses with the lowest time stamp. (Tuples having no proper goals need not be selected. The time is
determined by earliest time the clause could succeed given the constraints on its time variable. For
example, if T26, T<10 then the time 6 is used as the time.) Rule 1 or 5 is then applied to all the goals in
the selected clause, (depending on whether they point to a constrained tuple or to a proper clause). This
leads to a number of new clauses. Most goals in these new clauses point to just one head, the exception is
when a goal was linked to the head of its own clause. So rule 4 is then used to propagate bindings back to
all these goals. This will cause some links to fail (by rule 2) and allows the deletion of some of the new
clauses. It is more efficient to perform these operations in a single unified operation, however, it makes
explanation simpler to break them down in this way. The Starlog cycle continues with the selection of
another low timestamp clause until there are no more clauses. The following subsections show some
examples of the operation of this cycle.

The 2.3.5 Problem

The 2,3,5 problem is to generate all numbers that are products of powers of 2, 3 and 5. The list
should be in order and contain no duplicates. The list is, in order, 1,2,3,4,5,6,8,9,10,12,15,16,18,20,

The Starlog program for this generates the numbers in “time” order in the tuple v235 (). The
program is as follows:

v235(1);
v235(N) « v235(M), M21, m(X), multiply(M,X,N);

m(2); m(3); m(5);

The first line starts the sequence by saying that 1 is part of the sequence. The next rule says that if M is
part of the sequence and X is one of 2, 3, or 5 then M*X is also in the sequence. The predicate m () is used
to hold the allowed multipliers. The diagram below shows the initial links for the program. The goal
m (X) has three links (to each of the m () unit clauses) and v235 (M) has two (to the unit clause and to the
head of its own clause).

v235(N) « v235(M), M21, m(X), multiply (M,X,N).

e

v235(1 (2); m(3); m(5);
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There is only one clause which can be selected and after applying rules 1 and 5 to the two proper goals, 6
new clauses replace the original. Rule 4 is then used to propagate all the bindings. No clauses need be
deleted and the new connection graph is shown below. (Constraints that have been satisfied and goals
deleted by rule 5 are shown with a strike-through).

- V235(2) «— 7 3 77 i
L v235(3) « - 7 3 ~33%;
H— v235(5) « w235 r—m{S—muttipty375:5);
-

> v235(N) « V23 (rg, a2y M21, N2, multiply(M,2,N);

- v235(N) « y235(M), 33 M>1, N23, multiply (M, 3,N);

= v235(N) « v235(M), #4535 M21, N5, multiply(M, 5,N);

v235(1); m(2); m(3); m(5);

The 6 new clauses include three tuples v235(1), v235(2), v235(5). The tuple v235 (1) and the three
tuples for the m () predicate do not take part in any further computation because they are not linked to
anything. Note that this is like compiling out the references tom () : that is these clauses do not need to be
looked at again and specialized clauses have been generated for each case. In the new state the 6 new
clauses are each pointed at by the 3 v235 (M) goals giving a total of 18 links.

On the next step the clause “v235(N) « v235(M), M>1, N22, multiply (M, 2,N)”isselected
because its earliest time stamp is 2. In fact it generates the tuples v235(4),v235(6) and v235(10)
immediately and others later. As execution continues in this way some answers are generated more than
once. For example, v235(6) is generated two different ways because 6 = 2*3 and 3*2. Starlog ensures
that only one copy of v235 (6) is actually used to generate further answers (if this deletion of duplicates
was not done the program could grow exponentially faster than it needs to). This deletion of duplicates
can be done efficiently by keeping pseudo links between the heads of clauses that can possibly be
duplicates of each other. Space precludes us from giving full details of how to efficiently delete
duplicates.

Counting

The 2,3,5 program above does not address the problem of negation nor does it use Starlog’s ability
to represent the updating of information. One simple problem that does this is to count the number of
solutions for an infinite sequence such as the 2,3,5 sequence. In the interests of a simple example the
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sequence we will count is the multiples of 2. This will be done using a tuple count (Time, N) which says

that at Time there will have been N solutions before that time. The correct set of constrained tuples is:
count (0,0) ;
count (T,1) « T>0, T<2; count(T,2) « T>2, T<4;

count (T, 3) « T>4, T<6;

The multiples of 2 will be generated in the tuples 12 (N) using the following two program clauses:
i2(0) «
i2(N) « i2(M), add(2,M,N);

The program to generate count uses a negation construct almost identical to the update example given
earlier. In this instance the arrival of a new i 2 value acts analogously to the arrival of the add_data tuple.

The old value of count is then retrieved and incremented to form its next value.
count (0,0); %Initialize the counting
count (Tout,N) « Tout > Tin,
count (Tin,M), add(1,M,N), %get the old value and add 1
i2(Tin), %and do it when the value arrives
%and it remains in effect until the next i2 value arrives
not (exists T i2(T), Tout>T, T>Tin):

Starlog uses a variant of the negation by failure rule to deal with negated goals such as these. The
rules can correctly deal with a wider range of negation calls than SLDNF which can only deal correctly
with ground negated goals. A subset of the negation rules used are:

N1. if any goal inside a negation has no links then the entire negation can be deleted from the
clause.

N2. if a goal inside a negation has more than one link then multiple copies (of the negation) can be
generated where each of the copies has a goal with a single link;

N3. if there is an empty goal inside a negation then the whole clause can be deleted;

N4. if a negated goal consists of just constraints then it is possible in some cases to rewrite the
negation, for example “not (T>9)” can be rewritten as “T<9”;

This set of rules is not exhaustive, a complete and more detailed list can be found in (Kaushik,1991).

The complete program above has the following initial connection graph.

count (Tout,N) & Tout > Tin,
count (Tin,M), add(i,M,N),
12 (Tin),
ot eexists T 12(T), Tout>T, T>Tin);

-

i2(0) « ; 12(N) « i2(M), add(2,M,N);

A A

The count clause will be chosen for expansion first. The i2() and count() goals have two links each and so
a total of 4 clauses will be generated. However, two of these fail because of incompatible bindings leaving
the following two new clauses:

count (0,0) &
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count (Tout,1) & Tout > 0,
count (0,0), add(1,0,1),
12{0)
not (exists T 12(T), Tout>T, T>0); (3a)

count (Tout,N) & Tout > Tin,
count (Tin,M), add(1,M,N),
i2(Tin), Tin22,
not (exists T i2(T), Tout>T, T>Tin); (3b)

At this point the negations have not been expanded but using rule N2 the following version is obtained

from (3a) by expanding the two links from the negated 12 () goal:
count (Tout, 1) « Tout > 0,
not (£246}+ Tout>0, 0>0),
not (exists T i2(T), T22, Tout>T, T>0);

The goal 0>0 fails allowing this to be simplified to:
count (Tout,1l) « Tout > 0,
not (exists T i2(T), T22, Tout>T, T>0): (4a)

Note the constraint T>2 introduced into the negation, this was obtained by using rule 4 to propagate it from
the 12 clause. This clause is the one that will shortly generate the constrained tuple that says the count is
one from time 0 to 2. At this point however it only “knows” that the count is 1 after time 0 and has not yet
“found out” when the next increments to be done.

Similarly (3b) generates the following clause after expanding both the positive and negated goals:
count (Tout,N) « Tout > Tin,
count (Tin,M), add(l,M,N),
i2(Tin), Tin22,
not (246} Tout>0, 0>Tin),
not (exists T i12(T), T22, Tout>T, T>Tin): (4b)

The two constraints Tin>2 and 0>Tin are contradictory so the first negation can be eliminated.

The next clause selected will be the 12 clause which will generate the new tuple 12 (2) and a new
instance of the generating clause. Combining (4a) and (4b) with the new state of 12 gives the following
new connection graph (the tuple 12 (0) has no links and has been omitted):

count (Tout,1) « Tout > 0,
not (exists T i2(T), T22, Tout>T, T>0);

ountAToydt,N) « Tout > Tin,

unt (Tin,M), add(1,M,N),

i2(Tin), Tin22,

nt (exists T 12(T), T=22, Tout>T, T>Tin);

i2(2) « ; 1i2(N) « i2(M), add(2,M,N);

At this point the negation within the first count clause will be expanded yielding the new clause:
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count (Tout,1l) « Tout > Q,
not (242} 222, Tout>2, 2>0),
not (i2(T), T22, Tout>T, T>0):;

222 and 2>0 succeed so the first negation is simplified to not (Tout>2) and then to Tout<2. This
constraint together with the constraints T22 and Tout>T inside the negation are contradictory so that the

second negation can be eliminated. The result of all this is the constrained tuple:
count (Tout,1) « Tout>0, Tout<2;

which is the expected first new value for the count. The intelligent propagation of arithmetic constraints
and detection of the contradictions between them was crucial to this successful execution. More details of
how this can be done are to be found in (Cleary,1987).

5. Conclusions

This paper has shown how Starlog can deal directly and logically with updating information. It
has also shown by way of example how such programs can be executed efficiently. This capability of
Starlog depends on two critical execution techniques: connection graphs and an intelligent arithmetic
constraint system. However, we do not see Starlog as having significance only because it solves this
problem. Initial programming has shown it to be able to contribute concise and effective programs in a
wide range of areas from simulations, graphics, meta-execution, etc.

The language is basically an OR-parallel logic programming language and so has potential for
parallel execution. The connection graph technique lends itself well to parallel execution and can be seen
as a refinement and improvement upon the tuple matching algorithms used to implement dataspace
languages such as Linda (Carriero and Gelernter,1989). Many of the programming techniques of such
dataspace languages are applicable to Starlog. As well, many of the well known features of logic
programming, such as “built-in” relational databases, are available within Starlog.

It is also important that Starlog preserves a pure declarative semantics. This means that the large
body of techniques such as program transformation, partial execution, algorithmic debugging, type
induction etc. which have been developed for logic programs are applicable to Starlog. Combined with the
fact that it does not need to step outside logic to be applicable in “real world” problems makes it a powerful
potential tool for many difficult programming tasks.
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