
THE UNIVERSITY OF CALGARY

Learning With a Minimal Number of Queries

by

Sleiman Matar

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 1993

© Sleirnan Matar 1993

I+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

I+1

Canada

Your file Vofre r6f,6rence

Our file Notre rOférence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88572-6

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Learning With a Minimal Number

of Queries" submitted by Sleiman Matar in partial fulfillment of the requirements for

the degree of Master of Science.

[)ate

I

N. H. Bshouty,

Department of Computer Science

P

R. E. (leve,

Department of Computer Science

M. C. Stone)

Department of Mathematics and Statistics

U

Abstract

A number of efficient learning algorithms exactly identify an unknown concept taken

from some class using membership and equivalence queries. Using a standard transfor-

mation, such algorithms can easily be converted to on-line learning algorithms that

use membership queries. Under such a transformation, the number of equivalence

queries made by the query algorithm directly corresponds to the number of mistakes

made by the on-line algorithm. In this thesis we consider several of the classes known

to be learnable in this setting, and investigate the minimum number of equivalence

queries with accompanying counterexamples (or, equivalently, the minimum number

of mistakes in the on-line model) that can be made by a learning algorithm that makes

a polynomial number of membership queries and uses polynomial computation time.

We are able both to reduce the number of equivalence queries used by the previous

algorithms and often prove matching lower bounds.

111

Acknowledgments

first and foremost i want to thank you, nader, for being a great supervisor, thank you

for your help, for keeping your office door open always, and for your support during

my degree. i hope we will collaborate in the future.

i would like to thank vivian, nadera and nader for their warm hospitality and

generosity. spending the saturdays with you was always a pleasure to me.

thank you, tino (tamon), for proof reading the thesis, for the squash games, for

the cold bananas, for bob marley and santana, and for being there in the office. keep

smiling.

i thank also mark james for his valuable help concerning latex problems.

thank you, danny (jaliff), for proof reading parts of the thesis, and for your valuable

remarks.

most of the results of this thesis have appeared in a joint paper with nader bshouty,

sally goldman and torn hancock, and i want to thank you nader, sally and tom for

this collaboration.

i would like also to thank my examiners richard cleve and mike stone for serving

in my defense committee and for their remarks.

iv

Contents

Approval Sheet ii

Abstract jjj

Acknowledgments iv

Contents v

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1
1.1. Learning models 2
1.2. The oracles from a practical point of view 5
1.3. Our model 7
1.4. Boolean formulas 10
1.5. The goal of this thesis 12
1.6. Literature review and our results 13

Chapter 2. Definitions 19
2.1. Basic definitions 19
2.2. Deterministic finite automata 21
2.3. Measuring the running time 23
2.4. Miscellaneous definitions and facts 24
2.5. Exact learning definitions 24

Chapter 3. A generalization of the halving algorithm 28
3.1. The standard halving algorithm 28
3.2. Generalizing the halving algorithm 29
3.3. Applying the generalized halving algorithm to DNF formulas 32

Chapter 4. k--term DNF 35
4.1. Previous work and of our results 35
4.2. A general algorithm 36

4.2.1. The first improvement 39

4.2.1.1. A parallel greedy algorithm 39
4.2.1.2. Analysis 40
4.2.1.3. Reducing the number of equivalence queries 42
4.2.1.4. Testing the equivalence of two k-term DNF formulas 43

4.2.2. The second improvement 48
4.2.2.1. Analysis 49

4.2.3. Summary 50
4.3. A version of produce-terms based on Blum-Rudich's algorithm 50
4.4. Conclusion 50

Chapter 5. Read-k- Sat-j DNF 54
5.1. A learning algorithm 54

5.1.1. An outline of Aizenstein and Pitt's algorithm 54
5.1.2. Our refinement 56

5.2. Number of terms in a Read-k Sat-j DNF 60
5.2.1. The case k = 1 60
5.2.2. The case k> 1 61

5.3. Lower bounds 64
5.3.1. The case k> 1 64

5.3.1.1. The definition of the target class 65
5.3.1.2. The adversary 67

5.3.2. The case k = 1 71
5.3.2.1. Definition of the target class C" 71

5.4. Remarks 72

Chapter 6. Monotone DNF Formulas 73
6.1. Lower Bounds 73

The adversary 74
6.2. Upper Bounds 78

6.2.1. Preliminaries 78
6.2.2. Angluin's algorithm 80
6.2.3. Our refinement 80

Chapter 7. Horn Sentences 84
7.1. Lower Bound 84

Chapter 8. Boolean read-once formulas over various bases 91
8.1. Generating justifying assignments with a minimal number of equivalence

queries 92
8.1.1. Definitions 92
8.1.2. The standard transformation 93
8.1.3. Our refinement 94

Chapter 9. Arithmetic read-once formulas 98

vi

Chapter 10. Deterministic Finite State Automaton 100
10.1. Lower bound 100

Chapter 11. Open Problems 103

Appendix A. k--term DNF formulas, continued 105
A.I. Angluin's algorithm and our refinement 105

A.1.1. An outline of Angluin's algorithm 106
A.1.2. Our refinement 107

A.2. Summary 108

Bibliography 110

vii

List of Tables

1.1 Summary of the number of equivalence queries in our results 17
1.2 Summary of the number of membership queries of this thesis's results 18

4.1 The results obtained when using produce-terms 51
4.2 Summary of the results when using produce-terms based on Blum and

Rudich's algorithm 53

Ad The results obtained when using produce-terms based on Angluin's
algorithm 109

v111

List of Figures

1.1 The relationships among the different models 6
1.2 The formula f(m) = m2 for m E {1, 2,3,4, 5} 10
1.3 Five boolean formulas that represent the formula f(m) = m2 for m E

{1,2,3,4,5} 11

2.1 An example of a transition function 22
2.2 A graphical representation of the automaton in example 2.2 23

3.1 The standard halving algorithm 29
3.2 A generalization of the halving algorithm 30

4.1 Learning k-term DNF 37
4.2 The FORK macro 40
4.3 First improvement of learnl-k-term-dnf 41
4,4 An algorithm to test if a k--term DNF formula is a tautology 46
4.5 An algorithm to test if two k--terms formulas are logically equivalent. . 46
4.6 The second improvement of learnl-k-term-dnf 49

5.1 Learning Read-k- Sat-j DNF 56

6.1 Our refinement for learning the class of monotone DNF formulas 81

8.1 Generating justifying assignments using n/ log n equivalence queries 96

ix

I

CHAPTER 1

Introduction

One recognizes a particular concept over some domain if one has memorized a specific

description for every concept in the domain. However, a human being is able also

to identify a concept even if there is no explicit procedure in mind for doing so, or

even if the procedure is incomplete or contains too many specifications that do not

apply for that particular concept. We call the latter method for identifying concepts

"learning". It would be helpful to formalize some learning methods. If we succeed

in doing this, we can install a formal description of these methods in a machine and

expect the machine to accomplish things "skillfully".

In this thesis we are interested in finding efficient methods for learning concepts.

The following scenario informally describes the setting of the problems addressed in

this thesis. In the setting there is a class of concepts (referred to by the target class),

e.g. the set of all songs, the set of all chairs, etc. The concepts are defined over a

domain, which is the set of all instances each of which is an assignment of values to

the relevant attributes. There is also a data base that describes a specific concept

from the class (we refer to this concept by the target concept). Our, problem, as

researchers in learning, is to write an algorithm that accesses the data base and after

a reasonable length of time halts and outputs a description of the target concept. We

refer to this algorithm by the learning algorithm or the learner. If we manage to write

a learning algorithm'for a class of concepts, then we say that this class is learnable.

As an example, consider a robot moving in a building. We are interested in "teach-

2

ing" the robot to identify the room it is in at the moment. The concepts that we

have here are rooms, the target concept is the room in which the robot is, and the

data base that describes the target concept is the properties of the room as obtained

via the robot's sensors. Our task, as the people who are responsible for the robot,

is to install in the robot a program that monitors the environment using the robot's

sensors, and finds in a short time a unique description of the room.

Several questions arise here. What are the resources of the learning algorithm?

More specifically, how do we formalize the data base that describes the target con-

cept? What is the time and space allotted for the program? Also, are we asking the

algorithm to exactly identify the target concept or just to approximate it? Finally, an

important question is: for which classes of concepts can we find learning algorithms?

1.1. Learning models

The data base is represented by oracles. Each oracle answers one particular type

of query. The learning algorithm makes a query to some oracle, and receives in the

following time unit the answer for the query (note that we ignore here the time that

the oracle requires to find the answer, which justifies the name "oracle").

In his seminal paper [29], Valiant introduced the EXAMPLES oracle. This oracles

does not get an input, but rather has a button with the following functionality: When

the learning algorithm presses the button, EXAMPLES outputs an instance from the

concepts' domain, correctly classified as a positive or negative example of the target

concept. Continuing with the robot example, suppose the relevant attributes in the

domain are the color of the room, whether or not there is a piano in it, and whether

or not it has windows. The EXAMPLES oracle may output the following instances

together with their correct classification:

(room-is-red, room-has-windows, there-is-piano; no),

3

or

(room-is-green, room-has-windows, there-is-no-piano; yes).

At every request, the EXAMPLES oracle outputs an instance (together with its clas-

sification) according to some unknown probability distribution V over all instances in

the domain. That is, if the V fixes a probability a on some instance then this instance

will be output by the oracle with probability a, independently from previous requests.

This setting of learning (i.e. only the EXAMPLES oracle provides information about

the target concept) is called the probably approximately correct (PAC) model. In this

model, The learning algorithm always halts after a polynomial time, and it outputs

a description of a concept that, with high probability, is a good approximation to

the target concept. The learning algorithm is given a parameter e that determines

the degree of approximation and in what probability the output concept is a good

approximation. The running time typically depends on the number of attributes in

the domain and on the e parameter.

Observe that in the PAC model, the learning algorithm is completely passive. It

just monitors the environment (the EXAMPLES's outputs) without being able to

ask for the classification of some specific instance. Another oracle that allows the

learner some activity is the membership oracle. Here, the learner provides the oracle

with an instance, and the oracle responds by classifying the instance as a positive

or negative example of the target concept. The PAC model was proven to be weak,

in the sense that the setting it provides is not powerful enough for learning several

"basic" classes of concepts. Adding the membership oracle to the setting of the PAC

model was proven to be helpful. Many classes of concepts that are not learnable

using the EXAMPLES oracle only, are learnable using both the EXAMPLES and the

membership oracles.

Another well-studied oracle in the literature is the equivalence oracle. The learner

supplies the oracle with a conjectured concept, and is told "yes" if the given concept

is the target one, or "no" otherwise. Moreover, if the answer is "no" the oracle

4

outputs a counterexample, that is an instance that is misclassified by the conjectured

concept. The learning setting in which a membership oracle and an equivalence oracle

are provided is called the minimally adequate teacher model and it was developed by

Angluin [5]. In this model the learner is required to exactly identify the target concept.

This model is more powerful than the PAC model, in the sense that several classes

of concepts that were proven to be unlearnable in the PAC model are learnable in

the minimally adequate teacher model. There are two versions for the minimally

adequate teacher model. The first is the restricted model. In this model the concepts

given to the equivalence oracle must be from the target class. Moreover, the concept

that the learner outputs must be also from the target class. The other version is the

unrestricted model, in which the concepts given as input to the equivalence oracle and

the output concept need not be in the target class. Obviously, if a class is learnable

in the restricted model, it is learnable in the unrestricted model. The converse is not

true. In this thesis we consider both versions, but most of the learning algorithms

given here are in the restricted model.

One other model discussed in this introduction is the on-line learning model devel-

oped by Littlestone [24]. In the on-line learning model the learning session is divided

into a sequence of trials, in each of which the learner is given an instance and is asked

to predict - according to its conjecture - how the target concept classifies the given

instance. After the prediction is made, the learner is told whether the prediction is

correct and can then use a polynomial number of operations (designed to refine its

conjecture) before proceeding to the next trial. When analyzing a learning algorithm

in this model we consider the running time of the trial, and the number of mistakes

(and ignore the number of instances given to the learner). More specifically, both

must be polynomial in the number of attributes and in the complexities of the target

formula.

In the literature there are other oracles, but in this introduction we consider only

the ones mentioned above. We are interested also in the relationships among the

5

different models. Angluin [5, 4] showed that an equivalence query can be simulated

in the PAC model. Littlestone [24] showed that a learning algorithm that uses equiv-

alence queries can be transformed into an on-line algorithm. He has also shown that

an algorithm in the on-line model can be transformed into a learning algorithm in

Angluin's unrestricted model. Observe also that if a class of concepts is learnable

in some model, adding a new oracle to the model will not weaken it, so the class of

concepts is also learnable in the new model. The diagram in figure 1.1 shows the

relationships among the various models. The diagram is complete: if there are no

arrows between a model M and a model M' then M and M' are not comparable.

This means that there is a class of concepts that is learnable in one of them but not

in the other, and vice versa.

1.2. The oracles from a practical point of view

We now give an intuition behind the defined oracles.

The intuition behind the EXAMPLES and membership oracles is fairly straightfor-

ward. The EXAMPLES oracle formalizes the experiment of the learner monitoring

the environment while being completely passive. The membership query is a formal-

ization of the experiment in which the learner is given an active choice in formulating

queries. The following is a good example to help understand the intuition behind the

membership oracle and the EXAMPLES oracle. In emergency situations a particular

factory is faced with the dangerous task of extinguishing fires in labs that contain

explosive materials. The task can be performed by a human expert; however, the

factory management does not want to endanger its workers, so it decided to buy a

machine to perform the task. The management is faced with the problem of how to

"train" the machine to do the work. The purchased machine has a learning algorithm

installed. That is, the machine makes queries and it accordingly updates the descrip-

tion it has of how to handle the task. It has sensors that monitor the environment.

A call or prompt to the EXAMPLES oracle in this setting would be observing the

6

FIGURE 1.1. This diagram shows the relationships among the differ-

ent models. MQ refers to the membership oracle an EQ refers to the

equivalence oracle in the unrestricted model. An arrow from a model

M to a model M' means that if a class of concepts is learnable in M

then it is learnable in M'. The broken arrows refer to relationships that

follow from transitivity. This diagram is complete in the sense that no

other arrow can be added.

environment via the sensors, and observing the behavior of the human expert while

extinguishing the fire. A membership query occurs when the learner (the machine)

describes to the human expert some situation (that may occur while performing the

task) and asks the expert how the situation would be handled. The expert's reply is

the answer for the membership query.

An equivalence query occurs when the learner conjectures to the expert how the

task should be correctly handled. The expert either answers yes (in which case the

machine is able to replace the expert in performing the dangerous task) or gives a

counterexample to the conjecture.

7

Angluin [5] has shown that one can simulate an equivalence query by asking not

too many examples from the EXAMPLES oracle. This, on its own, is an intuition be-

hind using the equivalence query. Continuing with our example, and using Augluin's

transformation, suppose the learner (the machine) has completed a good description

of the task, and it makes an equivalence query (i.e. the learner has a conjecture and it

wants to test it). In order to do this, the learner observes the expert performing the

task. If the expert's behavior does not fit the learner's conjecture, then the learner

has a counterexample to its conjecture. Otherwise, the learner makes further queries

(for a certain time). The practical point of view of the on-line model is quite similar

to this of the equivalence oracle. After having completed some conjecture (i.e. fin-

ished a trial) the learner observes and monitors the environment, and predicts how

the expert will handle the situation. The learner, after that, observes the expert's

behavior in order to know whether the prediction is correct or not.

1.3. Our model

Our model is a variation of the minimally adequate teacher model, that is, the

oracles available to the learner are the membership and equivalence oracles. Previous

work generally made the assumption that both membership queries and equivalence

queries have an equivalent cost to the learner (namely, a constant cost). Thus there

was no reason to favor one type of query over the other. In reality, one type of query

is often significantly less expensive to implement. In particular, we are interested in

learning problems in which membership queries are relatively inexpensive to perform

(i.e. a simple experiment that can be run by the learner) whereas equivalence queries

are expensive (i.e. require a "teacher's" supervision to provide a counterexample). If

we examine the complexity of the learning algorithm under the on-line learning model,,

then reducing the number of equivalence queries directly corresponds to minimizing

the number of prediction mistakes in the on-line algorithm [24].

8

We further describe our motivation for reducing the number of equivalence queries

needed to obtain exact identification. In this work we are able to reduce (sometimes

quite dramatically) the number of equivalence queries needed to obtain exact identifi-

cation at the expense of increasing the computation time and number of membership

queries (although they remain polynomial in the number of attributes and in the

complexities of the target concept.) Being able to prove tight hounds on the number

of equivalence queries needed for exact identification is, clearly, of great theoretical

interest. We now argue that it is also of practical interest.

As one example, consider the situation in which the target concept f measures some

observable consequence of the learner's action. For example, Rivest and Schapire [28]

motivate the problem of learning an unknown deterministic finite automaton by con-

sidering the problem of a robot trying to learn to navigate in an environment described

by a finite state machine. Here a membership query represents experimentation by

the robot, followed by an observation of its perceived state after executing the exper-

iment. Thus, in this context, membership queries can be made in an unsupervised

manner by the learner interacting with the environment. On the other hand, an

equivalence query requires the intervention of a teacher to provide a counterexample.

For example, there are some states that the robot can reach only through specific

sequences of actions that it cannot stumble on through its own experimentation, and

of which it must be told by a teacher. In such settings, minimizing the number of

equivalence queries allows the learner to minimize the supervision needed.

• Another source of motivation conies from the goal of minimizing the number of

prediction mistakes in an on-line (or incremental) learning model. As we have men-

tioned, the model of learning with membership and equivalence queries is essentially

equivalent to the on-line learning model when the learner is provided with member-

ship queries [5, 24]. The conversion of an algorithm A that uses membership queries

and equivalence queries to an on-line algorithm A' works as follows. If algorithm A

wants to perform some internal computation, or perform a membership query then

9

algorithm A' will perform the same task. If A wants to make an equivalence query

with hypothesis h, then A' can just use hypothesis h to make predictions. If hypoth-

esis h is equivalent to the target no mistakes will occur and the learning session is

done. Otherwise, if algorithm A' makes a prediction mistake on instance x, then this

instance can be passed to A as a counterexample. Thus, the number of mistakes made

by A' is just one less than the total number of equivalence queries made by A. Since

the primary goal of an on-line learning algorithm is to reduce the number of mis-

takes, the learner would be willing to spend additional computation time and make

additional membership queries to reduce the number of mistakes. Thus minimizing

the number of equivalence queries is equivalent to minimizing prediction errors in an

on-line learning model.

Another situation in which we would like to minimize equivalence queries is the

case where the learning algorithm is being used to interpolate a function that is in

fact already known in some sense (e.g. we have a black box oracle, or truth table) to

obtain some desired representation (e.g. a read-once formula or equivalently a circuit

of fan-out 1). In this situation, membership queries may be readily implemeutable as

substitutions, yet implementing an equivalence query may be much more expensive.

The last source of motivation we mention is related to learning in parallel. Bshouty

and Cleve [15] have established lower bounds on the number of membership and

equivalence queries needed to learn some classes of concepts, when the learner is

given an unlimited power of computation (that is, we do not count steps that do not

involve calling the oracles). Let C be the target class of concepts. They establish the

following relation:

ME(p) ≥ Eu (C, [p log C11),

where ME(p) is the number of membership and equivalence queries needed to learn

C using p processors, and Eu ((,C), fp log IC Ii) is the number of equivalence queries

needed to learn C sequentially when number of membership queries used is [p log IC Ii

(in both settings the learner is given unlimited computational power). Therefore, the

10

M f(m)

001 00001

010 00100

011 01001

100 10000

101 11001

FIGURE 1.2. The forrnulaf(m) = m2 form E {1,2,3,4,5}, when both

the output and the input is represented in binar.y

lower bounds of this thesis on the number of equivalence queries, can be used in the

above relation to get a lower bound for parallel learning.

1.4. Boolean formulas

Most of the classes considered in this thesis are subclasses of boolean formulas.

We now argue that we do not lose any generality by this restriction. The reason

is that both the input and the output of any formula (over a finite domain) can

be represented in binary. More specifically, suppose the output of the formula is

represented in binary using £ bits. This defines £ boolean formulas, one formula for

every bit in the output. We give an example to iliustrate the concept.

Example: Suppose we have the formula f(m) = m2, form E {l,2,3,4,5}. We

construct a set of boolean formulas that represent the formula f. The table in figure 1.2

shows f when both the input and the output off are represented in binary. We can

now define five boolean formulas fjj2j3j4 and f, where the formula f.j(m) (m

represented in binary) gives the ith bit, from left, of f(m). Figure 1.3 shows these

formulas.

Representing formulas by a set of boolean formulas raises the interesting question

of: how does the boolean representation of the non-boolean formula change the length

of the representation? The issue, however, is beyond the scope of this thesis.

11

m fj(m) f2 (M) f3 (M) f4 (M) f5 (m)

001 0 0 0 0 1

010 0 0 1 0 0

011 0 1 0 0 1

100 1 0 0 0 0

101 1 1 0 0 1

FIGURE 1.3. Five boolean formulas that represent the formula f(m) =

m2 form E {1,2,3,4,5}.

12

Most of the classes considered here are subclasses of DNF formulas. Suppose the

set of variables over which the formulas are defined is V = {vi,... , v,}. We denote

the negation of a variable v by 5. Also, A denotes the operator AND, and V denotes

the operator OR, so v V u and v A u denote v AND u and v OR u, respectively. The

set of literals associated with V is {vi,. . . , v, , . . . , }. A term is a conjunction of
literals, e.g. V3, A v5 A v2 and v2 A V4 A are all terms. A formula is in disjunctive

normal form (DNF) if it is a disjunction of terms, for example,

V3 V (' 1A V5 A V2) V (v2 A V4 A

is a DNF formula. A clause is a disjunction of literals. e.g. U7 V U9 V v3, and a formula

is in conjunctive normal form (CNF) if it is a conjunction of clauses, e.g.

(i Vv2)A(32VvaV 4).

Every boolean function can be represented as both a DNF formula and a CNF for-

mula. For example, the above CNF formula can be represented by the following DNF

formula

(1i A U2) V (Ul A V3) V (3i A Q V (v2 A V3) V (v2 A 34).

1.5. The goal of this thesis

Within the minimally adequate teacher model a number of interesting polynomial

time algorithms have been presented to learn target classes such as deterministic finite

automata [4], Horn sentences [7], read-once formulas [8, 16, 17], k-term DNF formu-

las [12], etc. (these classes will be defined later.) It is easy to show that membership

queries alone are not sufficient for efficient learning of these classes. Angluin devel-

oped a technique called "approximate fingerprints" to show that equivalence queries

alone are also not enough [6]. (In both cases the arguments are information theoretic,

and hold even when only the number of queries, and not the computation time, is

bounded.) Our research extends Angluin's results to establish tight bounds on how

many equivalence queries are required for a number of these classes.

13

Thus, the goal of our work is to establish tight bounds on how many equivalence

queries are required. Unless otherwise stated, in all upper bounds we restrict the

learner to an amount of time and a number of membership queries tht are both

polynomial in the the number of attributes (or variables) in the domain and in com-

plexities of the target concept. However, all of our lower bounds place no restrictions

on the computation time of the learning algorithm.

Maass and Turán have also studied upper and lower bounds on the number of equiv-

alence queries required for learning, both with and without membership queries [25].

However, they count only the total number of queries rather than the individual

number of queries of each type.

1.6. Literature review and our results

The halving algorithm [11, 24, 5] is an algorithm that learns any class C of concepts

using log ICI equivalence queries and unlimited computational power. In chapter 3

we present the standard halving algorithm and we develop a generalization of it by

giving an algorithm that uses both membership queries and equivalence queries, and

unlimited computational power. We are able to reduce the number of equivalence

queries to d1oglog ' by using 1olCl membership queries (for any constant d ≥ 1). log e

In this thesis we establish several lower bounds on the number of equivalence queries

required for learning some classes of concepts (some lower bounds are cited from the

paper by Bshouty and Cleve [15]). All these lower bounds hold even if the concepts

given to the equivalence oracle are any concepts, and provided that the learner is

given unlimited computational power.

Learning the class of disjunctive normal form (DNF) boolean formulas using mem-

bership queries and equivalence queries is still an open problem, and intensive research

is devoted to learning various subclasses of DNF. The class of k-term DNF formu-

las is the class of DNF formulas in which there are at most k terms. Blum and

Rudich [12] have given an algorithm that learns the class of k-term DNF formulas in

14

the unrestricted model in time' 20(')n(1og)O(1) using 20(')n(log)O(1) equivalence

and membership queries. We improve their results by giving two new algorithms.

The first is a learning algorithm in the unrestricted model that learns the class of

k-term DNF formulas in time 2° ('u') (log)O(1) using 20(k)mO(l)(log n) °(') mem-

bership queries and k + 1 equivalence queries (if k is known to the learner a priori,

then the number of equivalence queries is k). Note that these complexities are poly-

nomial in n for k = O(log n). The second algorithm is in the restricted model. Its

running time and the number of membership queries it uses are 20(k2)n0(1)(log)0(k) .

The number of equivalence queries is again k + 1 (here, again, if k is known to the

learner a priori, then the number of equivalence queries is k). These complexities

are polynomial in n. for k = O(\/logn). By the results of Bshouty and Cleve [15]

one cannot reduce the number of equivalence queries. That is, if k is not known, the

learner must ask at least k + 1 equivalence queries, and if it is known, the learner

must ask at least k equivalence queries.

A. DNF formula is Read-k Sat-j if every variable appears in it at most k times,

and every assignment satisfies at most j terms in it. Aizenstein and Pitt [2] have

described an algorithm that learns the class of Read-k Sat-j DNF formulas in time

m0(kj). The number of equivalence queries that their algorithm uses is also 0(ki)• In

this thesis we are able to drop the number of equivalence queries used to learn the

class of Read-k Sat-j DNF formulas to m + 1, where in is the number of terms in

the target formula (if m is known a priori, then the number of equivalence queries is

in). This is an improvement over their algorithm since we show in section 5.2 that

cannot exceed 4/jk(k - 1)n. We also show in section 5.3 matching lower bounds on

the number of equivalence queries.

A DNF formula is monotone if it does not contain negations. Angluin [5] has given

an algorithm that learns the class of monotone DNF formulas using m + 1 equivalence

'Henceforth, unless otherwise stated, n refers to the number of variables. We refer the reader to

section 2.3 for formal definitions of the notations 0, Q, and 0.

15

queries, where rn is the number of terms in the target formula. In this thesis, we find

an algorithm that uses rn - ® equivalence queries, provided that rn is

known a priori, and we prove one cannot do better than this. If m is not known a

priori then we exhibit an algorithm that uses m - c equivalence queries, for any given
constant c. This is tight for m superpolynomial in n.

The Horn sentences are a special case of the conjunctive normal form (CNF) for-

mulas. Every clause in a Horn sentence is either of the form true .' v or of the form

v, A v2 A A v -4 1, where the v's are variables, and 1 can be either a variable,

false or true. Angluin, Frazier and Pitt [7] have shown that the class of Horn sen-

tences is learnable using m(2n + 1) equivalence queries, where m is the number of

lft clauses in the target formula. We find a lower bound of S1 (iog,:og) on the number

of equivalence queries.

A formula is Read-Once if every variable appears in it at most once. The class

of boolean Read-Once formulas over the operators AND, OR and NOT, was proved

to be learnable by Angluin, Hellerstein and Karpinski [8]. The number of equiva-

lence queries use by their algorithm is 0(n). Since then Hancock and Hellerstein [21],

Bshouty, Hancock and Hellerstein [17] and Bshouty, Hancock, Hellerstein and Karpin-

ski [18] have generalized the algorithm to learn Read-Once formulas over various

bases. Bshouty, Hancock and Hellerstein [16] have also shown an algorithm for learn-

ing Arithmetic Read-Once formulas over the basis {+, -, x, -} over a field F. In

this thesis we show how to reduce the number of equivalence queries in the boolean

case to and to O('t) in the arithmetic case. In both cases, these bounds
log 71 log n

are tight, by the work Bshouty and Cleve [15].

Angluin [4] has exhibited an algorithm that learns the class of deterministic finite

automata (DFA) representing regular languages over some alphabet . The algoritlu

she explores uses n—i equivalence queries where n is the number of states in the target

automaton. We prove here a lower bound of (-) on the number of equivalence
log n

queries.

16

The number of equivalence queries of the results established in this thesis are shown

in table 1.1. As stated above, reducing the number of equivalence queries is on the

expense of using an additional polynomial number of membership queries. Table 1.2

shows the number of membership queries used in the learning algorithms that are

shown in table 1.1.

17

Representation
Class

Previous

Upper bounds
Upper
Bound

Lower
Bound

k-term DNF (k=O(logn))*

k not known
k known

n20(') logn [12] k + 1
k

k + 1 [15]
k [15]

Read-k Sat-j DNF
in not known

in known
°(ki) [2] in + 1

in
in + 1
in

Monotone DNF

in not known
in known

in + 1 [5] in - 0(1)
in — e (ogm+bogi

in - W(l)
(log n+logn \

\logn_loglogm)

("' ' t

- .iogn—log1ogm)

?? Lit

Horn Sentences
in not known

in known
in(2n + 1) [7]

logm+Iog,ij log m+logn)
Read-once formulas

over V, A,

over $k

ii [8]

n [17]

0 (" r ci 1151 log 7t
71 F ci L's] lop it

log it

0 logn
Arithmetic read-once

formulas for JFj = o(n/ log n) n [16] 0 (n log lFL I log lF\ ci
' logn

(n [15]
log)

DFA with n states
ii not known

n known log

n — 1 [4, 28]

it

For k = O(/ij) we can obtain this result using k-term DNF formulas as the hypotheses for the equivalence
queries. For the remaining cases, general DNF formulas are used for the equivalence queries.
tWith unlimited computation, for nz <2°, e < 1/2. Furthermore, we note that both this upper bound and the
matching lower bound hold for arbitrary DNF formulas.

tThis bound holds for k > 1 provided that jk = o ((!')2). Fork = 1, we have the lower bounds for learning
i-term DNF.
This lower bound holds for nz <

TABLE 1.1. This table summarizes the number of equivalence queries
in our results. All lower bounds allow the learning algorithm to use
unbounded computation time and to propose any hypothesis. Unless
stated otherwise, all upper bounds are for algorithms that use poly-
noinial computation time. For the Boolean classes n is the number of
variables and in is the number of terms/clauses. For k-term DNF, k is
the number of terms. Note that all upper bounds for an unknown size
parameter can be used when the size parameter is known. Likewise, all
lower bounds for a known size parameter apply when the size parameter
is unknown.

18

Representation

Class

Previous

Upper bounds

Our Upper

Bounds

k-term DNF

Unrestricted model

Restricted model

n22O(') log n [12]

n! [3]

n22O() log ii

n220(k2) (log)o (k)

Read-k, Sat-j DNF 0(kn+2) [2] Q(4k?+2)

Monotone DNF n(m + 1) [5] poly (m,n) t

Horn Sentences 0(m2n) [7] 0(rnn) *

Read-once formulas

over V, A,

over Bk

0(n3) [8]

0(n+3 + n6) [17]

0(n)

0(n' 5 + n8)

Arithmetic read-once

formulas for I.F1 = o(n/ log n) 0(n3) [16] 0(n5)

' Using unlimited computational power.
tThere is a tradeoff between the degree of this polynomial and the number of equivalence queries in our
upper bound: the larger the constant in the ®() expression in the corresponding entry of table 1.1, the
larger the degree of this polynomial.

TABLE 1.2. This table summarizes the number of membership queries
in our results.

19

CHAPTER 2

Definitions

2.1. Basic definitions

Let C be a class of concepts each mapping a domain X into a range Y. For most of

classes studied here C is some set of boolean formulas, n. is the number of variables,

x = {O, l}' and 3) = {O, 1}. We also use the term assignment to denote an instance

in X. We assume that the fl variables are v1, v2,... ,V,, where the value of vi is given

by the ith bit of the assignment. We use the bar over a variable to denote the operator

NOT applied to the variable, so '3 denotes "NOT v", and we call it also the negation

of v, or v negated. A literal is either a variable or its negation, thus, the set of literals

is {vj,... ,}. We say that a variable v appears negatively in a formula f

if the literal V appears in f. Dually, v appears positively in f if f contains the literal

v (obviously, a variable can appear both negatively and positively in a formula). We

use V and A to denote the operators OR and AND, respectively. A boolean formula

is said to be monotone if it can be represented using only AND/OR gates (with no

negations). A term is a conjunction of literals, so an assignment satisfies a term if

and only if it satisfies every literal in it. A formula is in disjunctive normal form

(DNF) if it is written as the disjunction of terms. We often use v1 vj to denote

the term v1 A . A vi.. A clause is a disjunction of literals. A boolean formula is in

conjunctive normal form (CNF) if it is a conjunction of clauses.

20

Example: Let

f(vi,v2,.v:3,v4,vs) = (2 A 53 A V1) V (v

Each of 32A3:3Avi, V4 A,55, and vi Av2A' 5 A34

A V (viA V2 A 705 A

is a term. The formula f is a DNF

formula, but it is not monotone, because it contains negated variables. Another way

to write f is the following

f (Vi ,v2,v3,v4,vs) = U2 U01 V v435 V v1v2'D34.

Henceforth, we deal with definitions that are specific for concepts that are formulas,

so we will use the term "formula" rather than "concept".

If for a boolean formula f and an instance x E X f(x) = 1, we say that f is true

on x, and that x satisfies f. If f(x) = 0 we say that f is false on this instance, and

that x falsifies f. For x E X and variable v, we use x[v] to denote the value assigned

to v by x. We also use xi and x[i], for 1 ≤ i ≤ n, to denote x[v]. Let £ be a literal

that corresponds to the variable v, that is £ is either vi or i3i. Then we define xV] as

follows

x[i] ifflsv

x[i] if .e is Ui.

We sometimes let the words true and false denote the constants 1 and 0, respec-

tively.

Several algorithms in this thesis involve looking at a projection of a formula. Iii-

formally, a projection is obtained from a formula f by fixing some variables in f to

some constants. Formally, let p be a vector of length n whose entries are from the set

21

{O, 1, *}. For an assignment x E X, we define the assignment pix by

X[i] if p[i]

p[i] otherwise.

The vector p is called a partial assignment, and it induces a projection. Informally,

the *'s in p indicate the variables that are not fixed. For a partial assignment p and

a formula f, we define the projection f, as follows: for every x E X, f(x) = f(plx).

2.2. Deterministic finite automata

The principal non-Boolean class considered here is the class of deterministic finite

automata (DFA). In this case n is the number of states in the target DFA, X consists

of all strings from the given alphabet and 3) is {O, 1}. A DFA is a quintuple M =

(Q, E, 6, qo, F), where

Q is a finite set of states,

is a finite set of symbols, called the alphabet,

qo € Q is the initial state,

F C Q is the set of final states,

and S is the transition function, a function from Q x E to Q. In addition, the

automaton reads aim input from the input tape. The input is some string from the set

of all finite strings over E (this set is denoted by E*). The automaton M is initially

in its initial state. The rules according to which M picks its next state are encoded

into the transition function. Thus, if M is in state q E Q and the symbol read from

the input tape is a E E, then S(q, a) E Q is the uniquely determined state to which

M passes. The definition of S is extended to the domain Q x in the standard

way, that is 6(q, .A) = q, where \ is the empty string, and for every a € E and for

every w E E*, 8(q,aw) = S(S(q,a),w). There is a convenient way to represent a

DFA, which is the graphical representation. A directed graph G(V, E) represents the

automaton M = (Q, E, 5, qo, F), if it has the following properties

22

q 0• 8(q, o-)

q0 a qo

qo b qi

qj a q1

q1 b qo

FIGURE 2.1. The transition function of the automaton in example 2.2.

(1) The set of vertices V is the set of states Q in M.

(2) An edge (u, v) E E if and only if there is o E E such that 8(u, o) = v. The

edge (u, v) will be then labeled with o.

(3) The vertex that corresponds to the initial state qo has a special sign to designate

it from all other vertices. For example, it can be designated by drawing an

arrow pointing to it.

(4) The final vertices are designated with a special sign.

Example: As an example, consider the automaton M = (Q, E, 8, qo, F), where

Q = {qo,qi},
E = {a,b},

F = {qo},

and the transition function 6 is given by the table in figure 2.1. The graph in figure 2.2

is a graphical representation of the above automaton.

We say that an automaton M = (Q, E, 6, qo, F) accepts a string w e E* if S(qo, w)

is a final state. Continuing with our example, the automaton in figure 2.2 accepts the

empty string A. It also accepts the string a, aa, and abab. The reader can verify that

the automaton in figure 2.2 accepts a string w if and only if the number of b's in w

is even.

23

b

FIGURE 2.2. A graphical representation of the automaton in example

2.2. qo is the initial state, and this is denoted by the dark arrow. The

final state (q) is denoted by a dark circle.

2.3. Measuring the running time

We often use the notations 00, OQ, Q, o() and w() to measure the various

complexities (e.g. the running time and the number of queries) of an algorithm.

Let p(n) and q(n) be two functions whose argument is the natural numbers, and

whose values are always greater than zero. Then we have the following definitions:

OQ: We write p = 0(q), if there exists a natural number no and a constant c> 0,

such that for every n > no, p(n) cq(n). Observe that if p = 0(q), then this

means that p(n) is bounded above by cq(n), for sufficiently large n's (or briefly,

p is bounded above by q). As an example, n + 5 = 0(n2), and n2 = 0(n2).

fl(): We write p = D(q), if there exists a natural number no and a constant c> 0,

such that for every n > no, p(n) ≥ cq(n). Another way to define fl(), is by

saying that p = fl(q) if and only of q = 0(p). As an example we have that

n2=fl(n+5).

0Q: p = 0(q) if both p = 0(q) and p = n(q). In other words, p = 0(q) if

there exist a natural number no and two constants co and c1 greater that zero,

such that for every n > no, coq(n) ≤ p(n) c1q(n). As an example, consider

3n = 0(n).

oft Informally, p = o(q) if p is bounded above by q and the bound is not tight*.

*A bound b(n) on p(n) is üglti if b(n) ≤ cp(n), for some constant c and for all sufficiently large

Ws.

24

Formally, p = o(q) if

urn p(n) =
?i-400 q(n)

So, for example, n + 5 = o(n2).

wQ: p = w(q) if p is bounded below by q and the bound is not tight. Formally,

p = w(q), if

urn p(n) = 00.
n-+oo q(n)

Note that if p(n) is bounded above by q(n) and the bound is not tight, then q(n)

is bounded below by p(n) and the bound is not tight, and vice versa. This yields

that p = w(q) if and only if q = o(p).

We later use the w() notation to indicate that n/(1) is not bounded by any

polynomial, or, in other words, is super-polynomial. More formally, an expression

p(m) is super-polynomial if for any constant k, p(n) > n1, for infinitely many n's.

2.4. Miscellaneous definitions and facts

Let a and b be two positive integers such that a > b. Then () = For a ≥

() is the number of possible subsets of size b out of a distinct elements. It is known
that

(a)b ≤ (a) (ea)b
where e is Euler's constant (e = 2.718281828...). The bound holds for any integer

a> 0, and any integer b such that 0 < b ≤ a.

In this thesis log denotes the logarithm base 2, and In denotes the natural logarithm.

2.5. Exact learning definitions

In this thesis we are interested in a specific learning model, namely, the minimally

adequate teacher model introduced by Angluin [4]. In this model, there are two

oracles: the membership oracle, and the equivalence oracle. Let C be the target

class of concepts, and let f E C be the target concept. The membership oracle

(representing f) gets as input an instance x E X, and answers with f(x). The

25

equivalence oracle (representing f) takes as input a concept h, and answers whether

or not h f. If they are not equivalent, the oracle also outputs a counterexample,

that is, an instance a E X on which f and h disagree. We assume that a call to an

oracle and getting its reply takes only one time unit. Observe that given access to a

membership oracle representing a concept f (that is, the oracle replies with the value

of f on the input instance), one can simulate membership queries for any projection

f, of f given the partial assignment p. This is true because f(x) = f(plx) (by

definition of fr,).

When the target concept is a boolean formula, then we say that an example is

positive (negative) if it satisfies (falsifies) the target formula. When the target concept

is a DFA U, then an example a is a positive example if it is recognized by U, that is,

is in the regular set defined by U, and a negative example otherwise.

The size of a DNF (CNF) formula is the number of terms (clauses) in it. The size

of a DFA is the number of the states in the automaton. A read-once formula can be

represented by a tree in which the leaves contain variables and constants, and the

internal nodes contain operators (taken from some known set of operators). The size

of a read-once formula is measured in a different way: the number of nodes in the tree

representing it (it is known that a read-once formula has a unique tree representation

up to some isomorphism that preserves the size of the tree).

A class of formulas C is exactly learnable by a class of formulas C', if there exists an

algorithm A with the following property: for any f E C, given access to membership

and equivalence oracles representing f, A outputs a formula g that is logically equiv-

alent to f. Both the input formulas to the equivalence oracle and the output formula

g must be from the class C'. Also, the running time of A must be polynomial in the

number of variables n and in the size of the smallest formula in C' that is logically

equivalent to f. We refer to A as the learner or the learning algorithm. When the

target class C is not a class of formulas, then the definition may differ slightly. For

example, when C is a class of DFAs (that is, regular sets), then the restriction on the

26

running time of A is that it is polynomial in the length of the longest counterexam-

ple returned by the equivalence oracle, and in the size of the smallest concept in C'

equiyalent to the target formula.

We say a class of concepts C is exactly learnable if there exists a class of concepts C'

such that C is exactly learnable by C'. Since we are going to consider only algorithms

in the minimally adequate teacher model, we will use the terms "learnable by" and

"learnable" to stand for "exactly learnable by" and "learnable", respectively. We

may also use the term "polynomial time" without specifying the arguments of the

polynomial, when there is no ambiguity.

As mentioned in the introduction, our goal is to reduce the number of equivalence

queries used to learn the target class of concepts. We are interested in proving tight

bounds on the number of equivalence, queries needed to learn some classes of concept.

In other words, we are interested in proving lower hounds on the number of equivalence

queries needed and to show matching upper bounds.

If C is a representation class, we define 9 (C, q) to be the minimum worst case num-

ber of equivalence queries made by any polynomial time algorithm that uses at most

q membership queries to identify C. (That is, an algorithm A that exactly identifies C

and never makes more than q membership queries when doing so, must make at least

E (C, q) equivalence queries when run for some target f E C. Furthermore there is

some such A that achieves this bound when run on any target from C.) Observe that

this quantity typically decreases as q increases. We let g (C) denote the minimum

number of equivalence queries made by any polynomial time algorithm to identify C

(making a polynomial number of membership queries). Likewise, when the learner is

not restricted to use polynomial time we let Eu (C, q) denote the minimum number of

equivalence queries needed to obtain exact identification when at most q membership

queries are made. Finally, E (C) denotes the number of equivalence queries needed

to obtain exact identification using unlimited time when a polynomial number of

membership queries can be made.

27

A variation that we explore here is whether the learner is given the size of the

target concept before the learning session begins. For previous work aimed mainly at

proving tractability, this is not an important distinction, since a standard technique

allows conversion from an algorithm that knows the size of the target to one that

does not [22]. However for our precise bounds this difference can be important, and

for some classes we obtain different results depending on whether or not the size of

the target concept is known a priori.

The numbering of lines in the figures that include algorithms are merely for ease

of reference in the text.

28

CHAPTER 3

A generalization of the halving algorithm

In this section we consider a generalization of the halving algorithm [11, 24, 5] in which

we can reduce the number of equivalence queries required by allowing the learner to

make membership queries. Unlike all other positive results presented in this thesis,

in this chapter we shall not bound the computation time of the learner. However, the

learner is still limited to make a polynomial number of membership queries.

The problem with which we deal in this chapter is learning a class of concepts when

the learner is given an infinite computational power. That is, we do not count the

steps that do not involve calling the oracles; only oracle calls are counted.

3.1. The standard halving algorithm

We first present the standard halving algorithm, shown in figure 3.1. At each

iteration of the main loop in the halving algorithm, there is a set Ci of formulas one of

which is the target formula (i refers here to the index of the iteration). The algorithm

uses a majority vote function g. For an instance x let CP(x) be the set of all formulas

in Ci that are 0 on x. C(x) is defined analogously (so C9(x) U (x) = C, for every

instance x). The majority vote function g is defined as follows. For an instance x

0 if C(x)I ≥ IC(x)I,

1 otherwise.

29

halving(C)
1 initialize Co to C and ito 0.
2 while jCjj > 1
3 for all xEX
4 ifICP(x)I≥lCI(x)I
5 then g(x) +- 0.
6 else g(x) +- 1.
7 if Equiv(g) = "yes" then return
8 let a be the counterexample.
9 C•1 +_C(a)(a).

10 i'—i+1.
11 return the (unique) formula in C.

g

FIGURE 3.1. The standard halving algorithm that uses only equiva-
lence queries.

We now ask an equivalence query with g, and let a be the counterexample returned.

Suppose, without loss of generality, g(a) = 0, so f(a) = 1, where f is the target

formula. By definition of g, we know that c9(a)I ≥ lC(a)I. Since f(a) = 1, f is in

the set C(a), so we update +i to be C(a), and iterate again. We stop iterating

when we reach the stage where Ci contains only one formula, which is the target

formula. Observe that Cil is smaller than C29(a). Thus the size of is at most

half the size of Ci. We conclude that JCjj Cl (l/2)i. Solving this inequality will give
us that there are at most log ICI iterations.

This establishes the following theorem.

THEOREM 3.1. [11, 24, 5] For any concept class C, E (C, 0) log ICI,

3.2. Generalizing the halving algorithm

In this section we show how to add membership queries to the halving algorithm

in order to reduce the number of equivalence queries used.

THEOREM 3.2. For any concept class C and any q ≥ 21n JCJ,

log IC
Eu(C,q) ≤ logq — loglnC

30

generalized- halving(C, a)
1 initialize CO to C and ito 0.
2 while 1C11 >1
3 if there exists x € X such that min {IC10(x)I, IC()I} ≥ aICl
4 then
5
6 C.1 +-C().
7 else
8 for all xEX
9 if IC1'()I ≥ IC(x)I

10 then g(x) - 1.
11 else g(x) - 0.
12 if Equiv(g) = "yes"
13 then return g.
14 else let a be the counterexample.
15 C 1
16 i+-i+1.
17 return the (unique) formula in C1.

FIc4urtE 3.2. A generalization of the halving algorithm that uses mem-
bership queries to reduce the number of equivalence queries.

31

Proof: In figure 3.2 we give an algorithm to learn any class C with unlimited com-

putation time using at most log Jelllog membership queries and log Jelllog

equivalence queries for any 0 <a ≤ 1/2.

A membership query is performed if there exists an instance x E X for which both

C29 (x) and CI (x) have cardinality at least alCi Thus, each membership query allows

the learner to eliminate at least alCi of the remaining concepts. If for all x E X either

Co(x) or C(x) has cardinality less than aII then, just like in the standard halving

algorithm, the learner uses the majority vote hypothesis. However, instead of just

being assured that half of the elements of Ci are eliminated, here, at least (1 - a) led

concepts are eliminated.

Let q and p be the number of membership queries and equivalence queries, re-

spectively, used by the generalized halving algorithm. Since every membership query

eliminates at least a IC4 concepts from Ci , we obtain the following inequality

(1__a) lei ≥ 1.

Solving this inequality we get that the algorithm uses at most log ICI / log member-

ship queries. Similarly, since every equivalence query eliminates at least (1 - a) IC4

of C, we get the inequality

&ICI≥ 1,

which gives the bound p log ICI / log(1/a).
We now use the standard inequality (1 -)h1'm1 ≤ e, for every y> 0. Another way

to write this inequality is log -1 y log e. Applying this inequality in the bound on

q (for y = a) we get
log IC I < log IC

q ≤ log(1/(1 - a)) - aloge'

and hence a < = hICI Note that since a < 1 qioge q /2 we must have q 21n ICI. We
-

now use this bound on a in the bound on p to get

< log IC < log lei
- log(1/a) - log q— log 1nC

32

D

COROLLARY 3.3. For any class C, and for q = 1og1 oge lcl (d> 1),
l -

Eu (C,q) :5 log Cl
d1og1ogC

Proof: This immediately follows from the above theorem, after substituting q =

log' 1 C
loge

3.3. Applying the generalized halving algorithm to DNF formulas

We remind the reader that a DNF formula is a formula in disjunctive normal form

(that is, a disjunction of terms).

In this section we establish the following upper bound.

THEOREM 3.4. For C the class of rn-term DNF formulas,

Eu(C)= 0 (log flmmlogm)

provided that rn ≤ 2, for some f < 1/2.

Proof: In lemma 3.5 (below) we prove that the class of rn-term DNF formulas (for

M e < 1/2), is of size at least 2cmm for some constant c > 0. In lemma 3.6 we

prove that there are at most Q(3") DNF formulas withrn terms. Combining these

two bounds together, and by using corollary 3.3 we obtain for C the class of rn-term

DNF formulas we obtain the following result:

log Cl < log TIM, mm log 3 (rnn
eu(C) ≤ log log IC I

- log log 2°' log c + log rn + log n log n+ log m

Note that by duality we get a similar result for the class of rn-clause CNF formulas.

The same result applies also to rn-clause Horn sentences, since a Horn sentence is a

CNF formula.

We now prove the lower bound on the number of rn-term DNF formulas. We

obtain a lower bound by proving that the number of different monotone rn-term DNF

33

formulas (for m e < 1/2) is at least 2CmTh for some constant c > 0. Observe

that the class of monotone DNF formulas is a subclass of the general DNF formulas

class.

LEMMA 3.5. Let C be the class of monotone DNF formulas each containing exactly

in terms, where in ≤ 2' for some constant € < 1/2. Then ICI > 2cnm, for some

constant C> 0.

Proof: Let T be the set of all monotone terms each containing exactly [n/2J vari-

ables. The size of T is it (L2j). Let C' be the set of DNF formulas each having exactly

m terms from T. The size of C' is

17/J

We now use twice the inequality W≥ (n/k)', to get

(2)

(3)

(I' n)) > m
= Ln/2J (1m/2J)

M mj

17/2J 7fl

- m

(2 [/2J 7Th > ≥ ≥ (27
- m

7Th

> (2d'_) for c' = (1/2) -
(4) ≥ (20-11)",= 2cfl?Th for c = c'/2

In line 1 we used twice the inequality mentioned above. In line 2 we used the fact

that It2J ≥ 2, the fact that [n/2] ≥ (n/2) - 1, and the fact that m In line 3

we used the fact that e < 1/2 so c' = 1/2 - f is a strictly positive number. We obtain

line 4 by observing that for sufficiently large ii it is the case that c'n - 1 > i-n. This

proves the lemma. D

We now prove an upper bound on the number of rn-term DNF formulas (the bound

holds for every m).

LEMMA 3.6. The number of rn-term DNF formulas is at most 371

34

Proof: Fix a term t and a variable v. The variable v either appears negated in t,

unnegated or does not appear. For each variable there are these three possibilities,

so the number of all terms is at most 37• Another way to see this is by representing a

term t using a vector of n positions: position i, 1 ≤ i ≤ n, is either 1 (if the variable

vi appears unnegated in t), 0 (if vi appears negated in t), or * (if vi does not appear

in t). Every such vector represents a unique term, and every term is represented by

a unique vector. The number of these vectors (and, hence, the number of all possible

terms) is An rn-term DNF formula is a disjunction of a subset of rn of these

terms, so the number of all possible such formulas is at most

(3fl) ≤ (3fl)7fl 3mn

M

35

CHAPTER 4

k-term DNF

Learning DNF formulas is still an open problem, and an intensive research is devoted

to learning subclasses of the DNF formulas, e.g. monotone DNF, Read-Twice DNF,

Read-Thrice DNF, k-DNF and k-term DNF. In this chapter we consider the problem

of learning k-term DNF with membership queries and equivalence queries.

In section 4.1 we give the main known results regarding exact learning of k-term

DNF formulas. In section 4.2 we present three general techniques for learning k--

term DNF, that use a procedure (produce-terms). In section 4.3 we show a version

of produce-terms that is based on Blum and Rudich paper [12]. In section 4.4 we

summarize our results. The techniques of this chapter can be applied also to Angluin's

algorithm for learning k-term DNF formulas [3]. However, the complexities obtained

from applying our techniques to Blum and Rudich's algorithm [12] are far better, so

we have placed the improvement of Angluin's algorithm in appendix A.

4.1. Previous work and of our results

Pitt and Valiant [26] and Kearns et. al [23] have proved that k-term DNF, for

k ≥ 2, is unlearnable in the PAC model (when the output formula is also k-term

DNF) unless RP = NP. * Using Angluin's transformation from an equivalence query

*NI) is the class of all decision problems that can be solved by nondeterministic polynomial Turing

machines, and RP is the class of all decision problems that can be solved by probabilistic polynomial

Turing machines, with one-sided error [10]. Obviously, RP C NP, but it is still an open problem

whether or not the containment is proper.

36

algorithm to a PAC algorithm [5], the unlearnability of k-term DNF formulas in the

PAC model implies that k--term DNF formulas are not learnable using equivalence

queries alone. Therefore, the use of membership queries is essential in order to exactly

identify k-term DNF formulas by k-term DNF formulas.

The first algorithm in the literature for learning k-term DNF formulas in the min-

imally adequate teacher model is due to Angluin [3]. The running time, the number

of membership queries and the number of equivalence queries are each Q(k2). These

complexities are polynomial when k is constant. Angluin's algorithm is in the re-

stricted model, that is both the output formula and the formulas given as input to

the equivalence query oracle are k-term DNF formulas.

Blum and Rudich [12] have significantly refined this to a learning algorithm that

uses O(n(log n)0(1)2h) equivalence queries and membership queries. This complexity

is polynomial for k = O(log rm). However, their algorithm is in the unrestricted model.

Applying our techniques to Blum and Rudich's algorithm we reduce the number

of equivalence queries to lc + 1 (or Ic, when Ic is known a priori) while the number of

membership queries is either O(n(log)O(1)2 I) (when using unrestricted equivalence

queries) or O(n(log n)0(k)2k2) (when using restricted equivalence queries). The num-

ber of membership queries of the algorithm in the unrestricted model is polynomial

for k = O(log n), and the number of membership queries of the other algorithm is

polynomial for k = O(\/logn).

4.2. A general algorithm

In this section we present three general techniques for learning k-term DNF for-

mulas. We begin with a straightforward algorithm that formalizes both algorithms

of Angluin [3] and Blum and Rudich [12]. We then show two improvements of it.

All three algorithm use a procedure, produce-terms, that gets as an argument a

positive example x (for the target formula f), and uses only membership queries to

produèe c terms one of which is in f and is satisfied by x. Let q be an upper bound

37

learnl-k-term-dnf
1 Tf- O.
2 repeat
3 let ii be the disjunction of all terms in Y (if T = 0 then h - false).
4 a +- Equiv(h).
5 if a = "yes" then return h.
6 if a is a positive counterexample
7 then call produce-terms(a) and add the terms it returns to T.
8 else (a is a negative counterexample) T - T - {t E 'T: t(a)
9 until clone.

FIGURE 4.1. A general algorithm for learning k-term DNF in time
O(kt+nk2c2), using at most icc equivalence queries and at most kc+kq
membership queries.

on the number of membership queries that produce-terms uses. Also, let t be an

upper bound on the running time of produce-terms.

Let f(xj, . . . ,x) = tl V .. . Vt be the target k-term DNF formula, where t1, . . . ,ti

are terms. We assume that f is reduced; that is, we cannot drop any term from f or

any literal from any term without logically changing f.

The idea behind the algorithm learn l-lc-term-dnf is the following. We first ask

an equivalence query with the false concept, to get a positive counterexample a

(unless the target formula is identically false, then we are done). We call produce-

terms(a) to produce c terms t1,... ,t, one of which is in the target formula f and is

satisfied by a. We define h to be the conjunction of the terms ti... . , t, and ask an

equivalence query with it. If the counterexample a is negative (that is f(a) = 0) then

we know that there is at least one term in h that is not in f, in particular, all terms

in h that are satisfied by a. We drop these terms and ask another equivalence query.

On the other hand, if a is a positive example, then we call produce-terms(a) to get

another c terms one of which is a term t' in f. Since all terms in h are falsified by

a, and t' is satisfied by a, t' cannot be in h, so the c new terms added to h contain a

new term from f. So far, h contains two term from f. We continue in this process:

38

a negative counterexample drops "bad" terms from h and a positive counterexample

adds c terms to h one of which is a new term from f.

THEOREM 4.1. Given the procedure produce-terms described above, the algo-

rithm learnl-k-term-dnf learns the target formula in time O(kt + nk2c2), using at

most kc equivalence queries and at most kc + kq membership queries.

We first prove the next lemma.

LEMMA 4.2. The procedure produce-terms is called at most k times.

Proof: Every time learnl-k-term-dnf calls produce-terms, with the positive

counterexample a, c terms are added to T one of which is in f and is satisfied by a

(ti without loss of generality). Since h(a) = 0, all terms in T are falsified, whereas

t(a) = 1. Therefore, tj is not in T. Moreover, tj will be never deleted by a negative

counterexample. The reason is that if a is a negative counterexample then every term

in f including ti is falsified by a, so tj will not be dropped from T in step 8. After

k calls to produce-terms all the terms of f will be in T, so f h. Therefore, the

following counterexamples will all be negative. 0

Proof of theorem 4.1: By the above lemma, T will contain at most kc terms, k of

which are the terms that appear in f. Each negative counterexample drops at least

one term from T. Therefore, the number of negative counterexamples is at most kc—k,

implying that the number of equivalence queries is at most kc. Membership queries

are needed for produce-terms and for knowing the classification of a in step 6 of the

algorithm. Therefore, the number of membership queries is at most k'q+kc (recall that

q is the number of membership queries used by produce-terms). Note that it is easy

to determine (in time 0(n)) if a term is satisfied by a given assignment. To find the

running time of the algorithm, note that if a is a positive example learn l-k-term-dnf

39

spends time t in produce-terms, and when a is a negative counterexample, learn 1-

k-term-dnf spends time O(nkc) dropping "bad" terms from T. Since the number of

positive counterexamples is at most k and the number of negative counterexamples

is at most kc, the running time is O(kt + nk2c2). E

4.2.1. The first improvement. We now give an algorithm that meets the lower

hound of Bshouty and Cleve [15] regarding the number of equivalence queries needed

to identify k-term DNF formulas.

In this section, we present an algorithm for learning k-term DNF formulas in which

the running time is O(kt + nc°(')) and the number of membership queries is at most

kq+c+i. The number of equivalence queries when k is known is k, and k+1 otherwise.

Furthermore, the formulas used for the equivalence queries and the output formula

are k-term DNF formulas.

We first describe a parallel version of our algorithm in which the number of parallel

steps of equivalence queries is k + 1 and the total number of equivalence queries is

at most c. We then show how to make the algorithm sequential in such a way to

reduce the number of equivalence queries to k + 1.

4.2.1.1. A parallel greedy algorithm. We begin with an informal description of our

parallel algorithm. Let x be a positive example of f. If we call produce-terms(x),

we get c terms T(1) ,t 1)}, one of which is guaranteed to be a term in f

(without loss of generality assume that T(1) contains the term t1 from f). We now

continue performing the following step in parallel on all these terms. For each t € T(1)

make the equivalence query Equiv(t). If the counterexample x is negative then t is a

"bad" term and we quit working on it. Otherwise, f(x) = 1, call produce-terms(x)

(2' (2) (2' . to get another c terms, T' / = {t1 ,... ,t '}, one of winch is guaranteed to be a term

in f. Furthermore, since tj E it follows that some other term from f (say t2) is

40

FORK(111, 112,... , H, phase)
1 allocate c processors, and for each processor j = 1,... , c do
2 +- Equiv(H).
3 if () is "yes"
4 then return H, and we are done.
5 if x() is a negative counterexample
6 then stop working on H.
7 else
8

9

call produce-terms(x(i)), and let be the
terms returned.
FORK(H5 V H V tv,... 'Hi V t9, T)hase+1).

FIGURE 4.2. A macro that the main routine, learn2-k-terin-dnf; uses

We now work in parallel on all formulas of the form ')Vt?) for 1 ≤ i, j ≤ c making

an equivalence query for each one. As before, if the counterexample is negative we

stop working on that formula. Otherwise we give the counterexample as input to

produce-terms and get another c terms one of which is a new term in f. After k

such parallel phases we will have a set of k--term DNF formulas, one of which is the

target formula. Finally, we use equivalence queries to find which formula is the target

formula. To summarize, there are k phases and in phase i there are at most e i-term

DNF formulas, one of which contains i terms from f. In addition, note that we get

these formulas independently, in the sense that getting some i-term DNF formula

does not depend on getting other i-term DNF formulas. Figure 4.2 formalizes the

above discussion, and figure 4.3 shows learn2-k-term-dnf.

4.2.1.2. Analysis. We now analyze the complexity of this parallel algorithm. There

are at most k phases. In phase i, 1 ≤ i ≤ k, learn2-k-term-dnf asks at most c2

equivalence queries. Therefore, the total number of equivalence queries made is at

most 1 + c (we need one equivalence query before calling FORK). Also,

in phase i, 1 ≤ i ≤ k, learn 2-k-term-dnf calls produce-terms at most 6i times.

Therefore, the total number of membership queries is q + qc ≤ qc 1 (here,

41

1earn-k-term-dnf
1 x - Equiv(false).
2 if x is "yes"
3 then return ±alse) and we are done.
4 call produce-terms(x), and let ,t be the terms returned.
5 FORIC(t,... ,t,1).

FIGURE 4.3. An algorithm for learning k-term DNF formulas in time
O(kt+nc°(')) using at most kq+c 1 membership queries and k equiv-
alence queries (or k + 1, if k- is not known a priori)

42

again, we call produce-terms before calling FORK), and the sequential running

time is tcO(k).

4.2.1.3. Reducing the number of equivalence queries. Our idea in reducing the

number of equivalence queries is the following. Suppose we have two i-term DNF

formulas h and h', and we want to run an equivalence query for both. Instead, we

test whether h h'. If this is the case then we can drop one of them. Otherwise, we

find an assignment y for which (without loss of generality) h(y) = 0 and h'(y) = 1.

We then perform a membership query to see if y is a negative or a positive example

(of f). If y is a negative example then h' can be discarded because h'(y) = 1 implies

that h' contains a term not in f. In this case we ask an equivalence query with h.

Otherwise y is a positive counterexample for h and we perform an equivalence query

for Y.

Using this idea we reduce the number of equivalence queries in phase i from to

1 (the last i-term DNF formula has no other i-term DNF formula to be compared

with, so we ask an equivalence query with it). On the other hand, the number of

membership queries is increased by c - 1. If k is known then there is no need to

ask an equivalence query in the kth phase, because the formula to pass the last test

is guaranteed to be the target formula. Otherwise, we need an equivalence query for

the kth phase as well, and then the number of equivalence queries is k+1.

All that remains now is to give a procedure that tests if two i-term DNF formulas

are logically equivalent. In the next subsection we show a procedure, are-equivalent,

that handles this task in time O(ni3 + 20(i)). Having this procedure with the claimed

running time we can now prove the next theorem.

THEOREM 4.3. Given produce-terms as described above, learn2-k-term-dnf

exactly identifies an unknown ic-term DNF formula in time O(lct + ncO(h)) using at

most kq + membership queries and ic equivalence queries (or ic + 1, if k is not

43

given as an input to the algorithm). Moreover, the learning is in Angluin 's restricted

model.

Proof: We need only find the running time and the number of membership queries.

The sequential version of learn2-k-term-dnf (i.e. after dropping the number of

i-term DNF formulas in phase i to 1) calls produce-terms k times, once in each

phase. The procedure are-equivalent is used c - 1 times in phase i, so it is called

at most c 1 times. Therefore, the time spent for dropping the intermediate formulas

is O((nk3 + 2k+1)c11) = nc0(k), and the total time is O(kt + nco(k)).

The number of membership queries is at most kq + c1', where the first factor is

due to calling produce-terms k times and the second is due to the dropping of the

intermediate DNF formulas in the k stages. 0

4.2.1.4. Testing the equivalence of two k-term DNF formulas. All that remains

now is to give a function that tests whether two k-term DNF formulas are equivalent.

We first give few lemmas that will establish the correctness of are-equivalent which

takes two k-term DNF formulas and returns true if and only if they are logically

equivalent.

Let t be a term (not equivalent to false or true) and let h be a DNF formula.

We define the partial assignment pt E {O, 1, *} as follows:

PIN =

1 if vi appears unnegated in t

o if vi appears negated in t

* if vi does not appear in t,

for every i = 1,... , n. Note that, no matter how the *'s in p1 are fixed, pt satisfies t.

This partial assignment induces a projection hp, defined as: for every assignment a,

44

h(a) = h(ptla). We remind the reader that the assignment ptla is defined as follows:

(pt la)[i] {if Pt [i]
a *

[i] if pt [i] =

for every i = 1,... , n. For ease of notation we let ht to denote h.t . A boolean

function h is a tautology if h(a) = 1 for every assignment a.

We first establish few lemmas that will be used to prove the correctness of are-

equivalent.

LEMMA 4.4. Let h be a DNF formula and t a term. Then t h if and only if h

is a tautology.

Proof: The term t h if and only if t(a) = 1 implies h(a) = 1, for every assignment.

This means that t h if and only if h(a) = 1, for every assignment a that assign 1

to all literals in t. By definition of Pt, pt assigns 1 to all literals in t, so t h if and

only if h(ptla) = 1, for every assignment a. Using the fact that h(ptla) = ht(a), we

get the claim of the lemma. E

LEMMA 4.5. Let h = tj V V tj and t V ... V t, be DNF formulas. Then

h h' if and only if t h' and t, h, for each 1 < i ≤ § and 1 ≤ ' ≤

Proof: We have the following straightforward implications:

hh' < > hth' and h'=,h

>

t h',... , tj h', h,... , and t, h (a simple fact from logic)

th' and t1th, for each 1<i<j and l<i'<j'.

0

45

LEMMA 4.6. Let h be a DNF formula that does not contain any term equivalent

to true. If h is a tautology then there exists some variable v such that both v and

appear in h.

Proof: Sipose this is not the case. For a variable v, we say it appears positively in

h if v appears unnegated in h, and we say v appears negatively if v appears negated

in h. Since we assumed that no variable appears both negated and unnegated in h, a

variable appears in h either positively or negatively, but not both. Therefore, we can

define the following assignment y

0 if vi appears positively in h
y[i]=

1 if v appears negatively in h.

Note that, no matter what are the values in y of the variables that do not appear in h,

y falsifies every literal in h, and therefore it falsifies every term in h (by assumption,

h does not contain a term that is equivalent to true). It follows that h(y) = 0, which

contradicts the fact that h is a tautology. fl

LEMMA 4.7. Let h be a DNF formula, and let v be any variable in h. Then h is a

tautology if and only if h and are tautologies.

Proof: It is clear that if h is a tautology, then every projection of h is a tautology

too, in particular h and h, for every variable v.

Suppose h and hV are tautologies, for some variable v. The function h can be

represented by h = (v A h) V (U A h). Since both h and ku are tautologies we get
that h = v V U = true. This proves the other direction. U

THEOREM 4.8. Given an i-term DNF formula h, the procedure is-tautology re-

turns true if and only if h is a tautology. The running time of is-tautology is

O(i2n + 2i).

Proof: If h contains no variables (i.e. only constants) then it is straightforward to

find if h 1. This is done in step 1 in is-tautology. Suppose that h does contain

46

is-tautology(h)
1 if h contains no variables
2 then
3 ifhl
4 then return true.
5 else return false.
6 if no variables appear in h both negated and unnegated
7 then return false.
8 let vi be a variable that appears in It both negated and imnegated.
9 if is-tautology(h) = false or is-tautology(hv,) = false

10 then return false.
11 return true.

FIGURE 4.4. An algorithin to test if h is a tautology.

are-equivalent (h, h')
1 let h = t1 V• • V tk and h' = t' V . . V t.
2 for each i=1, ... ,kdo
3 if is-tautology(hs) = false
4 then return false.
5 for each i=1, ... ,kdo
6 if is-tautology(h) = false
7 then return false.
8 return true.

FIGURE 4.5. An algorithm to test if two k-terms formulas are logically equivalent.

47

variables. Then, we check if it contains some variable both negated and unnegated. If

not, then by lemma 4.6 h is not a tautology, so is-tautology returns false in step 7.

If h contains some variable (say v) both negated and unnegated, then, by lemma 4.7,

h is a tautology if and only if both hv and hu are tautologies. This is done in step 9.

In order to analyze the running time of is-tautology, note that if v appears both

positively and negatively in h then the number of terms in each of h and h is strictly

less than the number of terms in h. The reason is that when fixing the value of v to 1

in h to get h, we eliminate the term in which T appears. Similarly with h: fixing the

value of T to 0 in h to get hu eliminates the term in which v appears. Observe that the

size of h is at most 0(m), since it contains i terms each containing at most n literals.

Therefore, the time spent in steps 6 and 8 is 0(m). The following recurrence gives a

bound on the running time of is-tautology when given an i-term DNF formula.

constant if i = 0
T(i)=

2T(i - 1) + 0(m) otherwise.

Solving this recurrence gives T(i) = 0(i2n + 2i). 0

We now prove the correctness of are-equivalent.

THEOREM 4.9. Given two k-term DNF formulas h and h', the procedure are-

equivalent returns true if and only if h and h' are logically equivalent. The running

time of are-equivalent is 0(k3 + 2°(')).

Proof: Let h = t1 V... V tj and h' = t V . V t. According to lemma 4.5, h and h'

are logically equivalent if and only if t h' and t h, for each 1 ≤ i ≤ k. Using

lemma 4.4, h and h' are logically equivalent if and only if and h. are tautologies

for every i = 1,. . . , k. This is performed in steps 2 and 5.

We now analyze the running time of are-equivalent. The procedure is-tautology

is called at most 2k times, each time with a k-term DNF formula. Therefore, the total

running time of are-equivalent is 0(2k(k2n + 2k)) = 0(k3n + 20(k)).

48

4.2.2. The second improvement. In this section we present another improve-

ment of the algorithm learn l-k-term-dnf that reduces the number of equivalence

queries to k (or k + 1) if k is not known a priori). The result presented here is in

Angluin's unrestricted model. We start with an informal discussion.

Suppose we call pro duce-terms(x), for a positive counterexample x, and let I' =

{t,... ,t} be the terms returned. Our goal is to drop the terms in T' that do

not imply the target formula f. If we succeed with our task, then when we add

those terms that imply f to h and ask Equiv(h), we are guaranteed to get a positive

counterexample.

In a previous section we presented a criterion (is-tautology) for testing if a

term DNF formula is a tautology. We now present another criterion for testing if a

k-term DNF formula is a tautology. Recall that an (n, k)—universal set is a set of

assignments {b1,... , bt 19 {0, 1}' such that every subset of k variables assumes all

of its 2' possible assignments in the b's.

We have the following lemma:

LEMMA 4.10. Let S be an (n, k)—universal set, and let f be a k-term DNF formula.

Then

f is a tautology if and only if f(a) = 1, for every a in S.

Proof: If f is a tautology then it is satisfied by all assignments, in particular by

those in the (n, k)—universal set.

It is known that every k-term DNF formula is a k-CNF formula, So let h be a

(JNF formula equivalent to f. Suppose h is not a tautology, so there is an assignment

a that falsifies h. Let C be a clause in h falsified by a. Since h is a k-CNF formula, the

number of literals in C is at most k. Therefore, by definition of an (n, k)— universal

set, there exists an assignment b in the (n, k)—universal set 5, that assigns to the

variables of C the values that a assigns. This assignment b falsifies h. D

Based on the above lemma and lemma 4.4, we show how to drop the terms in T'

that do not imply f. Let t be a term in V. By lemma 4.4, t f if and only if ft is a

49

learn3-k-term-dnf
1 let x be a positive example of f.
2 h - false.
3 repeat
4 call produce-terms(x), and let ' = {t..... . t} be the terms returned.
5 add to It those terms in T' that imply f.
6 x - Equiv(h).
7 if x is "yes"
8 then we are done.
9 until done.

FIGURE 4.6. An algorithm that learns k-term DNF in time O(kt +
c20 (') log n) using k + 1 equivalence queries if k is not known, and k if
it is known, and at most kq + c20(k) log n.

tautology. Since f is a k-term DNF formula, any projection of it cannot contain more

than k terms, so ft is a k-term DNF formula too. By lemma 4.10, ft is a tautology if

and only if ft(a) = 1 for every assignment a in an (n., k)—universal set S. It is easy to

simulate a membership query for f, since, by definition of f, ft (a) = I (pt la), where
Pt is defined as follows

(pt)[i] =

1 if vi appears positively in t

0 if vi appears negatively in t

* if vi does not appear in t.

The number of membership queries to check if a term t implies f is ko(1)22Ic log n

which is the size of the (n, k)—universal set mentioned in lemma 4.10 [12, 19]. Fig-

ure 4.6 describes the algorithm.

4.2.2.1. Analysis. Since the terms in h imply f, in each iteration of 1earn3-k-

term-dnf h implies f. After k calls to produce-terms h will contain all terms

of f, therefore f implies h, so h f. If k is known then there is no need for the

(k + 1)st equivalence query. The running time is O(kt + c20(k) log mm), where O(U)

50

is the time of k calls to produce-terms, and O(c2° (') log n) is the time spent on

applying lemma 4.10 for kc terms. The number of membership queries that learn3-

k-term-dnf uses is at most kq + c20(k) log n. Here, again, kq membership queries

are needed for k calls to produce-terms, and c20 (k) log n membership queries are

needed to apply lemma 4.10 to kc terms.

We thus have proved the following theorem.

THEOREM 4.11. Given produce-terms as described above, learn3-k-term-dnf

exactly identifies the unknown k-term DNF formula in time O(kt + c20 (k) log n) using

at most kq + c20(k) log n membership queries and k + 1 equivalence queries if is not

known, and k if it is known.

4.2.3. Summary. Table 4.1 summarizes the results of the above section.

4.3. A version of produce-terms based on Blum-Rudich's algorithm

Blum and Rudich's [12] algorithm is essentially learn l-k-term-dnf. In this section

we briefly describe the version of produce-terms that is based on their paper.

The original algorithm is quite involved. We, therefore, merely give a general

outline of it. The procedure produce-terms is divided into two parts. Given a

positive example x, the first part produces a collection of Q(20(k) (log n)2) assignments

one of which, z, satisfies exactly one term in f (that is also satisfied by x). The second

part, takes these assignments and produces O(20(k)(log n)3) terms one of which is in

f, and is satisfied by z. Both the running time and the number of membership queries
used are o(n 220 (k)(logn)3).

4.4. Conclusion

Using the techniques of the section 4.2 and the version of produce-terms presented

in 4.3 we get the results shown in the table 4.2.

Note that the complexities of 1earn3-k-term-dnf shown in figure 4.2 are polyno-

mial for k = O(log n). Moreover, the number of equivalence queries that it uses is

51

Running

Time

Membership

Queries

Equivalence

Queries

learnl-k-term-dnf O(kt + nk2c2) kq + Ice Icc

learn 2-k-term-dnf O(kt + mc0(k)) kq + c 1 Ic or Ic + 1

1earn3-k-term-dnf O(kt + c2°(') log n) Icq + e2°(") log n Ic or Ic + 1

TABLE 4.1. Summary of results for learning Ic-term DNF using a gen-

eral procedure produce-terms. c is the number of terms produced by

produce-terms, q is the number of membership queries it uses, andt

is a bound on its running time.

52

optimal (by the result of Bshouty and Cleve [15]). The result, however, is in Angluin's

unrestricted model.

The complexities of learn2-k-term-dnf shown in figure 4.2 are polynomial for

k = O('/1og n), and the result is in Angluin's restricted model. Moreover, the number

of equivalence queries is optimal.

Both results of learn 2-k-term-dnf and learn3-k-term-dnf are the best known

results for learning k--term DNF formulas in the corresponding model (either the

restrictive or the unrestrictive).

53

Running

Time

Membership

Queries

Equivalence

Queries

learn l-k-term-dnf

[12]

n2(log n)O(1)2O(J) (log n)O(1)2O(c) (log n)0(1)20(k)

learn 2-k-term-dnf m2(log n)0(k)20(1c2) n2(log n)0 (k)20 (k2) lc or k + 1

learn3-k-term-dnf n2(log n)0(1)20(k) n2(log n)0(1)20 (k) lc or lc +I

TABLE 4.2. Summary of results when using the second version of

produce-terms based on Blum-Rudich 's algorithm. The first line

states the results of Blum and Rudich, and the other two lines state

our results.

54

CHAPTER 5

Read-k Sat-j DNF

A DNF formula is Read-k- if every variable appears in it at most k times, and it is

Sat-j if every assignment satisfies at most j terms in it. We say that a DNF formula is

Read-k- Sat-j if it is both Read-k and Sat-j. The class of Read-k Sat-j DNF formulas

was proven to be learnable by Aizenstein and Pitt [2]. The running time of their

algorithm is Q(4ki+2i+2) and it uses at most k(ni+2 + ni+l) membership queries

and at most kn2hj+j+1 equivalence queries. In section 5.1 we give an outline of their

algorithm and we show how to reduce the number of equivalence queries to m (the

number of terms in the target formula), if m is given a priori to the learner, or to m+1

if m is not known. This a dramatic improvement over the algorithm of Aizenstein

and Pitt, since we prove in section 5.2 that rn cannot exceed 4jk(k - 1)n. Both the

running time and the number of membership queries in our algorithm are e(1)

section 5.3 we establish lower bounds that match the stated upper bounds.

5.1. A learning algorithm

5.1.1. An outline of Aizenstein and Pitt's algorithm. The algorithm of

Aizenstein and Pitt [2] is essentially learnl-k-term-dnf. The algorithm (shown in

figure 5.1) maintains a set T of terms (initialized to the empty set). At the beginning

of the main loop, the algorithm makes an equivalence query with the hypothesis h

that is a disjunction of the terms in T. If the counterexample a is positive, produce-

terms is called with the input a, and the terms it returns are added to T. If the

55

counterexample is negative, then it is used to eliminate bad terms from T. This 1001)

is repeated until the equivalence query oracle returns "yes".

We need now to describe the procedure produce-terms that encapsulates Aizen-

stems and Pitt's technique for producing terms. We start with a few definitions. A

term t is almost satisfied by an assignment a with respect to a literal x if x is the only

literal in t assigned 0 by a. We denote an assignment a with the literal x fixed to be

0 (respectively 1) by ao (respectively, a i). The sensitive set of a is defined by

sensitive(a) = {literal x I a assigns 1 to x and f(a) 0 f(a o)}

Thus, if x E sensitive(a), flipping x in a will cause the value of f to change. Let S

and 8' be sets of literals and let i be an integer. We say that 8' is an i-variant of S if

S 8' and 8' - S ≤ i. An assignment a' is said to be an i-variant of an assignment

a if the number of bits on which a and a' disagree is at most i. For a term t, let lits(t)

denote the set of literals in t.

The following theorem (lemma 8 in the original paper [2]) suggests a way to im-

plement produce-terms.

THEOREM 5.1. If a is a satisfying assignment for the target Read-k, Sat-j DNF

formula f satisfying the set of terms T {t1, t2,... ,tq} in f, then there exists an

assignment a' which is a j-variant of a such that for some term t in T lits(t) is a

2kj -variant of sensitive(a').

The procedure produce-terms des the following. Given a positive example a, it

produces all j-variant assignments of a, and for each such one a', it produces all terms

t such that lits(t) is a 2kj-variant of sensitivc(a'). The procedure produce-terms

returns all the terms produced. The above theorem guarantees that at least one of

the terms returned appears in the target formula and is satisfied by a, which fulfills

the requirement from produce-terms.

56

learn- read- k-sat-j-.dnf
1 Y - Ø.
2 repeat
3 let ii be the disjunction of all terms in '1 (if '1 = 0 then ii - false).
4 a - Equiv(h).
5 if a = "yes" then return h.
6 if a is a positive counterexample
7 then call produce-terms(a) and add the terms it returns to T.
8 else (a is a negative counterexample) I - I - {t E 'T I t(a)
9 until (lone.

FIGURE 5.1. An algorithm for learning Read-k Sat-j DNF

We now analyze the running time of produce-terms and find the number of

membership queries it uses. There are (7) j-variants of a. For each one we find

the sensitive set, each of which requires n + 1 membership queries. Therefore the

number of membership queries of produce-terms is (n + 1) () < ?,i+1. For each
j-variant of a produce-terms produces at most () terms, so the number of terms
produce-terms returns is at most () (7) k

2j • The running time is 0(ki) •

5.1.2. Our refinement. Let in be the number of terms in the target Read-k

Sat-j DNF formula. In this section we show how to refine the algorithm of Aizenstein

and Pitt by reducing the number of equivalence queries to m if m is known a priori

or to m + 1 otherwise.

Our refinement is essentially learn3-k-term-dnf, that is, in step 7 of learn-read-

k-sat-j-dnf (figure 5.1) we add to T only those terms that imply the target formula.

If we accomplish this task, the counterexamples that we get will be all positive. After

at most m calls to produce-terms, h contains all terms of f so f h. Since we

add to T only terms that imply f, we have that h f in each iteration of the main

loop. Therefore, after adding all m terms of f to T, we get that f h and h f

which implies that h f. If m is known then there is no need to ask the (m + 1)st

equivalence query (which will return the answer "yes"). Otherwise, we do not know

57

when to stop and the (m + 1)st is needed.

We now show how to find if a term t f. We remind the reader, that given a term

t (not equivalent to false or true) the partial assignment pt is defined as follows:

1 if vi appears unnegated in t

o if vi appears negated in t

* if vi does not appear in t,

for every i = 1,... , n. This partial assignment induces a projection hP, defined by:

for every assignment a, h(a) = h(ptla), where pta is defined by:

(pt la)[i] =
Pt[i] if pt[i] 0 *

a[i] if pt[i]= *,

for every i = 1,... , n. For ease of notation we let ht to denote hp,. A boolean

function h is a tautology if h(a) = 1 for every assignment a.

Let t be a term and let f be the target Read-k Sat-j DNF formula. By lemma 4.4

t f if and only if ft is a tautology. The next lemma shows that ft is also a Read-k

Sat-j DNF formula.

LEMMA 5.2. Let f be a Read-k- Sat-j DNF formula and let t be a term. Then ft

is a Read-k- Sat-j DNF formula.

Proof: It is clear that ft is Read-k- because we do not add literals to the f in order

to get ft. We show it is Sat-j. Let = tV• •Vt,, then ft would be t V.• •t, where

every t is the projection (t) (the terns of ft are not necessarily distinct, and, more-

over, some of the terms ti,... , t/ may be equivalent to true of false). Let a be an

assignment that satisfies some term t. Since t is (t) it is true that t(a) = t(ptIa),

so the assignment ptla satisfies the term ti. The formula f is Sat-j so the assignment

58

ptla satisfies at most j terms, and thus, a satisfies at most j term in ft. D

Thus, our problem is reduced to testing whether a Read-k- Sat-j DNF formula is a

tautology.

LEMMA 5.3. Let f be a Read-k- Sat-j DNF formula and let a be any assignment.

Then f is a tautology if f(a') = 1 for every 2(k + 1)j-variant a' of a.

In order to prove this lemma, we will use lemma 7 in [2].

LEMMA 5.4. Let a be any assignment satisfying a Read-k Sat-j DNF formula f,

then there are at most 2kj literals y such that there is a term in f that is almost

satisfied by a with respect to p.

The following lemma handles the case when a falsifies f.

LEMMA 5.5. Let a be any assignment falsifying a Read-k Sat-j DNF formula f,

then there are at most 2(k- + 1)j literals y such that there is a term in f that is almost

satisfied by a with respect to 7.

Proof: Let t be a term that contains n literals defined as follows. If a[i] = 1 then

the literal vi appears in t, otherwise (a[i] = 0) the literal Ui appears in t. Observe

that t is satisfied only by the assignment a. Also let f = f V t. Note that f is

Read-(k + 1) since f is Read-k and by adding t we added one occurrence for every

variable. Also note that f'.is Sat-j. This follows from two facts: The first is that if

an assignment satisfies t, this assignment must be the above a, and we know that a

does not satisfy any other term in f (otherwise, a would be a satisfying assignment

for f). The second fact is that if an assignment a' satisfies other terms in f then

it satisfies the same terms in f, so it satisfies at most j terms. In both cases, every

assignment satisfies at most j terms in f', so f is Sat-j. Using lemma 5.4, we get

that there are at most 2(k + l)j literal y such that there exists a term hi f that is

almost satisfied by a with respect to P.

59

Define the following:

Y'(a) = {literal y I there is a term in f' that is almost satisfied by a with respect to 91.

In the above paragraph, we have proved that IY'(a)l ≤ 2(k + 1)j. Let y be a literal

such that there is term in f that is almost satisfied by a with respect to y. The terms

in f that are almost satisfied by a with respect to Y are also in f', therefore y E Y'(a).

Since IY'(a)I ≤ 2(k + 1), we get that the number of such y's is at most 2(k + l)j,

which proves the lemma. E

Proof of lemma 5.3: We consider the two directions of the claim.

() This direction is trivial, for if f is a tautology then its value is 1 on every

assignment.

() Suppose f in not a tautology. We show a 2(k + i)j-variant of a that falsifies f.

Since f is not a tautology, there is an assignment w for which f(w) = 0. If w is a

2(k + 1)j-variant of a then we are done. So assume that w is not a 2kj-variant of a.

We will use the following definitions.

Y(w) = {literal y I there is a term in f that is almost satisfied by w with respect to v}.
D(a,w) = {literal y I w assigns ito y and a assigns 0 to it}.

By lemma 5.5 we have that IY(w)I ≤ 2(lc + 1)j, and by our assumption that w

is not a 2(k + 1)j-variant of a, ID(a,w)I > 2(k + i)j. Therefore, there exists a

literal j € D(a, w) - Y(w). Since w falsifies all terms in f and since y ' Y(w),

the assignment w' = wy,o still falsifies f. Moreover, by lemma 5.5, we know that

IY('w')I ≤ 2(k + 1)j, and ID(a,W')I = ID(a,w)I - 1, since w' and a both assign

0 to y. If ID(a,W')I > 2(k + 1)j, we can repeat the same process: find a literal

y e D(a, w') - Y(w'), flip it in w' to get a new assignment w" that falsifies f. For

the new w " we know that IY('w")I ≤ 2(k + 1)j and ID(a, W")I = ID(a, w')l - 1. This

process can be repeated until we get an assignment a' that falsifies f and for which

D(a,a')I 2(k+1)j. This a' is a 2(k+1)j-variant of (since ID(a,a')I ≤ 2(k+i)j),

and it falsifies f, so we are done. E

60

To summarize, in step 7 we add to T only those terms that imply the target formula.

In order to test if a terms t implies f, we check if ft(a) = 1 for every 2(k+ 1)j-variant

a' of any assignment a (e.g. a is all 0's). The number of membership queries needed

for every test is (2(k1)j) ≤ n 2(k+1)j The procedure produce-terms is called m ≤ kn

times (rn is the number of terms in f), and every time it returns at most (2'Jj) terms.

Therefore, the number of additional membership queries needed in step 7 is at most

n2(k+1)i7m2ki = 74/i+2i The additional running time is clearly n ®(ki)

We thus have proved the following theorem.

THEOREM 5.6. The class of Read-k Sat-j DNF formulas is learnable using rn equiv-

alence queries, if m is known a priori, or m + 1 otherwise, where m is the number of

terms in the target formula. Both the running time and the number of membership

queries are n O(ak)

5.2. Number of terms in a Read-k Sat-j DNF

In this section we show that the number of terms in a Read-k Sat-j DNF formula

(k> 1) cannot exceed 4/jk(k - 1)n. Fork = 1, the number of terms cannot exceed j.

We use the following definition. A disjoiner between two terms t and t' is a literal

that appears positively in one of them but negatively in the other. If a literal £ is a

disjoiner between t and t', then we say that £ disjoins t and t'. Obviously, if there

is a disjoiner between two terms, there cannot be an assignment that satisfies both.

Conversely, if there is no disjoiner between any two terms of a set S of terms, then

there is an assignment that satisfies all the terms in the set S.

5.2.1. The case k = 1. Observe that since the Read-Once Sat-j DNF formula

f is Read-Once, there cannot be a disjoiner between any two terms in f. Otherwise,

this would mean that a variable appears twice, which contradicts the fact that f is

Read-Once. Therefore, there cannot be more than j terms. For, if there are more

than j terms in f, we can find an assignment that satisfies all of them, since there

61

are no disjoiners between any two terms in f. This would contradict the fact that f

is Sat-j. We thus have proved the following theorem.

THEOREM 5.7. The number of terms in a Read-Once Sat-j DNF formula is at

most j.

5.2.2. The case k > 1. In this section we prove that the number of terms in a

Read-k- Sat-j I)NF formula (k> 1) is at most 4./jk(k - 1)n.

Let Gf = (V, E) be the graph, induced by f, defined as follows. V is the set of

terms in f, and (u, v) E E, u 0 v, if and only if the terms u and v share some variable.

An edge (u, v) E E is labeled with the set of variables that is shared by u and v. A

graph is simple if it does not contain an edge of the form (u, u), and any two vertices

are connected by at most one edge. Observe that Gf is simple.

LEMMA 5.8. G1 has the property that any j + 1 distinct vertices in Gf contain a

pair of vertices that are connected by an edge.

Proof: Suppose the claim is not true. This means that there are j + 1 terms in f for

which no two share a variable. Therefore we can define an assignment that satisfies

all of these j + 1 terms, contradicting the fact that f is Sat-j. 0

We are interested in bounding from below the number of edges in Gf (i.e. tEl), For

this purpose we look at the complement graph of Gf, j = (V,). Let Ki denote the

clique on i vertices, that is, a simple graph with i vertices in which there is an edge

between any two vertices. By lemma 5.8 we obtain that Gf does not contain K+,.

If we find an upper hound on the , we can find a lower bound on JEJ, i.e. the

number of edges in G.

A graph is i-partite if its vertices can be partitioned into i subsets so that no edge

has both ends in any one subset (we refer to the subsets as partitions). A graph

is complete i-partite if it is simple, i-partite and if every vertex in any partition is

connected to all vertices outside the partition. Let Ti,p denote the complete i-partite

62

graph on p vertices in which each partition has either Lp/j or p/1 vertices. For a

graph C, we use f(G) to denote the number of edges in C.

We use the following lemmas. The first lemma is theorem 7.9 in [13]. The second

lenima is exercise 1.2.9 in the same reference.

LEMMA 5.9. If a graph C is simple and contains no K+i, then (C)

where m is the number of vertices in C.

LEMMA 5.10.

-

= 2) + (j —1) (h 1)

where h- tm/i].

We are now ready to find an upper bound on the number of edges in Of.

LEMMA 5.11.

- m(m+2)(j-1)
(G1) ≤ 2j

Proof: By lemma 5.8, Uf does not contain a clique Kj+i,

and lemma 5.10 to bound () as follows.

(5) e(f) < (m_h h + 1)
2) + (i — 1) (2

tm/i]) +(i l)(Lm/iJ
2 - 2)

(m - Lm/ii)(m - [rn/j] —1)
+(j-1)

2

(m—(m/j)+1)(m--(m/j)) +(j-1)
2

so we can use lemma 5.9

([rn/i] + 1)(tm/i])
2

(m/j) + 1)(m/j)

2

((jm—m+j)(jm—m)) + ((i — 1)(M + j)M
2j2 2j2

m(j-1) ((3 . .

2j2 m—m+3)+(m-i-))

m(j-1) (Jm .

2j2 +23)

m(m+2)(j-1)

2j

63

Inequality 5 follows immediately from lemmas 5.9 and lemma 5.10. In line 6 we

just substitute the value of h. Equality 7 follows from the fact that () = a(a-4) We

get line 8 using the fact that ≥ ≥ $ - 1. We multiplied both numerator and

denominator of the fractions in 8 to get 9. The rest of the equalities are straightfor-

ward.

We are now ready to get a lower bound on (Gf).

LEMMA 5.12.

,. m(m-3j+2)
Gf\ ≥ 2j

Proof: Recall that the number of vertices in G1 is m. Since Gj is the complement

graph of Of, it is the case that (Gf) + e() = ('). Using the upper bound on

() from lemma 5.11 we obtain
(m) m(rn+2)(j-1)

e(G.r) ≥ 2j

rn
= -.(j(rn-1)—(m+2)(j-1))

41
?72 (m - 3j + 2)

2j

0

The next lemma gives an upper bound on (G), and together with the previous

lemma, it provides an upper bound on m.

LEMMA 5.13. (Gf) <

Proof: Every variable appears in at most k terms (and consequently, in at most k

vertices in the graph Gf). Together with the fact that in a simple graph of k vertices

there can be at most () edges, this implies that every variable appears in at most
(22) labels. Therefore the total number of labels does not exceed () n, which proves
the claim. E

64

THEOREM 5.14. Let m be the number of terms in a Read-k- Sat-j DNF formula f

(k> 1), then m < 4/jk(k - 1)n.

Proof: By lemma 5.12 (G) ≥ ?n(rn—j+2) 21 and by lemma 5.13 E((,f) < ()n. Com-

bining these two inequalities yields

(10).

m(m-3j+2)
2j

m(m-3j)

- 3j +

m—j

(k'\
≤

≤ jk(k-1)n

< jk(k_1)n +j2

≤ k(k_1)fl+j2

M ≤ /jk(k_1)n+j2+j

≤ •jk(k - 1)n + jkn + jkn

≤ jk(k - 1)n + jk(k - 1)n + jk(k - i)n

≤ /4jk(k— 1)m+/jk(k— 1)n

≤ 4/jk(k-1)n.

Line 11 follows from line 10 since j < m, and m cannot exceed the number of

literals in the formula. The number of literals is at most kn, because the formula is

read-k. U

5.3. Lower bounds

In this section we prove lower bounds on the number of equivalence queries needed

to identify the target Read-k Sat-j DNF formula. We separate between two cases.

The first case is Read-k Sat-j DNF, when k > 1, and the second case is Read-Once

Sat-j DNF.

5.3.1. The case k > 1. We remind the reader that the variables over which the

formulas are defined are v1,... , v,. We use v9 to denote v, and we use v to denote

65

'j. Thus v1 is v, if cj = 0 and is ij if cj = 1. If a variable is negated then we say its

sign is 1, otherwise its sign is 0. Also, recall that a disjoiner between two terms is a

variable that appears positively in one of them but negatively in the other.

We define a subclass C' of Read-k Sat-j I)NF formulas (k> 1) and prove that the

learner must ask at least /j(k - 1)n/2 equivalence queries to learn C'.

5.3.1.1. The definition of the target class. Let s = L\/2i(IL k_1)]' and let m' = 1 +
(k - 1) s. A formula f E C' is of the form 1(x) = fi(x) V f2 (x) V V f(x), where

each fi is a Read-k- Sat-Once DNF formula. We refer to every f as a subformula. A

variable cannot appear in more than one subformula. In every subformula there are

m' terms. Since we want every subformula fi to be Sat-Once, every term in fj must

contain a literal that disjoins it from every other term in f. We first describe f. The

other subformnulas are defined similarly using a different set of variables.

Every term t in f is of two parts: the necessary part and the new part. The

necessary part contains only disjoiners, i.e. literals that disjoin t from other terms in

fl. The new part contains s literals none of which appears in the new part of any

other term. Let t1,... , t, be the terms in fl. We use the letter fl to refer to the

newpart of the term. More specifically, Ili is the new part of term t, and it is

is

fli= A v,
j(i—i)s+i

for some c(j_1)s+j E {0, 1}, j = 1......s. The term ti contains, besides ll, literals

that disjoins it from all the terms that precede it (i.e. t, 1 ≤ i < i). The first literal

in H (i.e. v?) is used to disjoin ti from the next consecutive k - 1 terms. Then

we cannot use this variable anymore because it has appeared k times (once in the

new part of t, that is fl, and k—i other times as a disjoiner in k — i terms). In order

to disjoin ti from the following k - 1 terms we use the second literal in H, that is

and then we use the third literal, etc. For ease of notation we let fli' denote

the negation of the pth literal in II.

66

To summarize, the terms in fl are:

tl=nI

= flAil2

t3 =HAflAH:3

Ill A JT1 A 11k-2 A ilk-I

tk = 112 A H A '1 k-2 A LIL1 A ilk

=

tm' - A il A A A
- lii

Note that every literal in t1 appears in t1 and in other k - 1 terms. So the number of

terms is 1+ (k— 1)s which is m'. Note also that there is no assignment that can satisfy

any two of the above terms, because each two are disjoined by a disjoiner. Therefore,

fl is indeed Sat-Once, f1 is Read-k- because no variable appears more than k times

(once in the new part of some term, and at most k - 1 other times as a disjoiner).

Finally, observe that the number of variables appearing in fl is sm'.

The other subformulas (f2,... , f) are defined similarly to fl but with a distinct

set of variables. More specifically, fl is defined over the variables v1,... , v', f2 is

defined over the next consecutive sm' variables, that is vi+i,. .. , v2 , etc.

Observe that since each subformula is Sat-Once, f = fl V ... V fj is Sat-j. Also,

since each subforinula is defined over a distinct set of variables, and since every one

is Read-k, it is the case that f is Read-k. Finally, the number of variables used in f

67

is

ism, = j,s(1 + (k - 1)s) = is + j(k - 1)s2

≤ 2j(1) +j(k-1) (
In n

Ti

2j(k-1)

= V 2(k - 1) + —2

For k > 2 it is true that V ?t 2(k_1) < therefore the number of variables used

in f is less than n, so f is well-defined.

Observe also that the number of terms in f is

M = jm'=j(l+(lc—l)s)

= (1+(k_ 1) 2 .(: l))

> j(k - 1)\/2.(1) = - 1)n/2.

Example: Let n = 100, j = 2 and k = 3. We have s = 3 and m' = 7. We show

some formula f = fj V f2 in C' (for the mentioned parameters). The fl's of fi

follows.

rII = VlV2v3, 112 = V4V5V(3, 113 = V7V5V9, 114 = V10V11V12,

115 = V13V14v15, 11 = v1 517318, and 117 = v19v20v21.

Therefore, f is:

are as

fl = lii V v1112 V v1v4113 V v2v4v7114 V v25v710115 V v3i35531ov13fl6 V v3v6v8'J11v1516H7.

The subformula f2 is defined over the variables v22 ,... , v42.

5.3.1.2. The adversary. The lower bound here holds for jlc = o(n/(logn)2). We

establish this bound using the techniques of Bshouty and Cleve [15].

68

THEOREM 5.15. For jk- = o(n/(log n)2) , k> . 1, and m < \/j(k - 1)n/2,

Su (Read-k Sat-3 DNFTh ,,Z) ≥

Su (Read-k Sat-j DNF,,) ≥ m + 1.

Proof: We prove that the lower bound holds for the class C' defined above, by

showing that the learner must ask at least m equivalence queries (or m + 1 if m is

not known a priori). (If m is less than the number of terms in the formulas in C', we

delete all the extra terms from each formula,)

Let f be the target formula in C. The goal of the adversary is to ensure that each

equivalence query (accompanied with a polynomial number of membership query)

will only help the learner to know at most one term in f.

Let m denote the number of terms in f. The learner's task is to find the signs of

the variables in each of the formula's Ms. Once this is done, the learner will be able

to exactly identify the formula. Recall that the size of every II is s
Suppose the order of the literals in every H is fixed. A vector w E {O, 1} is the sign

vector of II if the ith bit of w gives the sign of the ith literal in II. As stated above,

the learner's task is to learn the sign vectors of the H's.

Henceforth, we number the E's of the target formula: Hi,... , IT,,,. Let Pj C {O, 1}

be the set of sign vectors each of which is a candidate for being the sign vector of

fl. In other words, every vector in 'Pi is consistent with the adversary's replies so

far. At the beginning of the learning session the learner does not know the sign of

any variable in any H, so T-j = {O, 1}, for i = 1,... , m. Lemma 5.16 (follows after

this proof) shows that the initial size of every ?j, i = 1, . . . ,m, is super polynomial,

provided that jk = o(n/(log n)2) . Later we will show that every membership query

decreases the size of every Pi by at most 1. These two facts imply that a polynomial

number of membership queries cannot decrease the size of any ?j to 1. In other

words, a polynomial number of membership queries does not suffice to determine the

sign vector of any II.

69

The adversary's strategy in answering the membership and equivalence queries will

be such that after e equivalence queries the learner knows only ITT,... , H but has

gained no information about 11e+1, • •

Let e be the number of equivalence queries that have been answered so far in the

learning session. The adversary maintains the following invariants:

(1) For 1 < £ ≤ e, P contains exactly one element (th'e sign vector of Ile, as known

to the learner). In addition, ?, 1 <£ ≤ e, does not change in the future (so

the adversary remains consistent).

(2) For £> e, P is super-polynomial.

Let g(x) be the disjunction of the first (known) e terms in the target formula f.

Answering membership queries: Suppose the learner asks MQ(a). The adver-

sary answers as follows.

MQ1: g(a) = 1.

In this case, since g(a) = 1, it is the case that f(a) = 1, so the adversary

answers 1. The learner has gained no information by this reply.

MQ2: g(a) = 0.

In this case the adversary answers 0, and updates the candidate sets 2e+1,•• 'Pm

as follows. Recall that the length of the sign vector of each II is .5. Let

e < i < m be the ith block of size .s in a. Note that a satisfies some

if and only if the sign vector of Ili is the complement vector of the block b.

Therefore, in order to ensure that a falsifies all H, e <i < m, we eliminate

the complement of bi from Pi. Thus, we eliminate at most one element from

each 'Pd, e < i < m.

Answering equivalence queries: For each equivalence query Equiv(h), the ad-

versary answers as follows.

EQ1: g h, that is, there exists an assignment a such that h(a) = 0 and

g(a) = 1.

70

In this case the adversary returns "no" accompanied with the counterexam-

ple a. The learner has gained no information because of this reply. (This

case is similar to case MQ1.)

In order to maintain the invariants, the adversary picks an arbitrary element

ir in 2, and updates Pi to he exactly {ir}.

EQ2: h # g, that is, there exists an assignment a such that h(a) = I and

g(a) = 0.

In this case the adversary answers "no" accompanied with a as a counterex-

ample. In order to be consistent in future replies, the adversary updates the

e < i ≤ m, as in case MQ2.

In addition, in order to maintain the invariants, the adversary picks an

arbitrary element ir in P, and updates 2e+1 to be exactly fir}.

EQ3:gEh.

In this case, the adversary discloses a new term as follows. The adversary

picks some element ir E 2e+1, and returns the answer "no" accompanied

with the counterexample a built in the following manner. The ith block,

1 ≤ i ≤ e is chosen to be the (unique) element in P. The (e + 1)st block

is ir, and the other blocks are fixed arbitrarily. The adversary updates

by setting it to be the complement of 7r. Observe that, by the way it was

constructed, a falsifies g, so it falsifies h. However, the adversary disclosed

the (e + l)st term and it is satisfied by a, so it satisfies the target formula.

Observe that an equivalence query discloses exactly one term from the target for-

mula, so the first invariant is maintained. Observe also that as a result of a mem-

bership query or an equivalence query, the size of every Pi, e + 1 <i < m, decreases

by at most 1. Since the initial size of every Tj is super-polynomial, and since the

learner is allowed only a polynomial number of membership queries (and of course

equivalence queries) the size of 2, e + 1 < i < m, remain super-polynomial. So, the

71

second invariant is maintained as well. D

LEMMA 5.16. The initial size of every Pi is super polynomial in n, provided that

jk = o(n/(Iog n)2). That is, if the initial size of 'Pi is expressed by 8(n), then

8(n) = nw(1)

Proof: We know that s > We have the following implications:

jk>
282

1
(12) 72 . = ° (lo n gn)2

w(logn).

Line 12 follows from the preceding line, by the fact that jk = o(n/(logn)2) (the

greater-than sign in the preceding line is implicit in the oQ notation).

We have thus proved that 5(n) = 2w(logn) This quantity is super-polynomial in n.

An easy way to see this is by comparing w(logn) to (log m)w(1). Then we get that

5(n) = = r (1) which is super-polynomial (the power of n is greater than

any constant). 0

5.3.2. The case k = I. By theorem 5.7, the number of terms in a Read-Once

Sat-j DNF formula is at most j terms. We display a class C" of Read-Once Sat-j

DNF formulas, and show that the learner must ask at least j equivalence queries in

order to identify the target formula. This bound holds for j = o(n/ log n).

5.3.2.1. Definition of the target class C". A formula f E C" contains exactly j

terms, each of sizes = []. The ith term t, 1 ≤ i < j, is

ti= x
p=(i—i)s+1

for some signs c(j_l)s+l)cis E {O, 1}.

72

Here, as in the previous lower bound, the learner's task is to identify the sign vector

of every term. The adversary replies to the learner are the same as those in the lower

bound for the case k > 1. Note that since j = o(n/ log n), the initial size of every

candidate set is 2s = 21'1uJ = (b0g?) which is super polynomial as claimed above.

We have thus proved:

THEOREM 5.17. For = o(n/ log n),

'u (Read- Once Sat-j DNF) = j.

5.4. Remarks

We have found the upper bound m ≤ .Jjk(k - 1)n on the number of terms in

a Read-k Sat-j DNF formula. The lower bound that we established assumes that

m ≤ /j(k - 1)n/2, so there is a gap of a factor between the bounds. However,

the algorithm of Aizenstein and Pitt [2] and our refinement are polynomial only for

j and k constants. Therefore the gap between the presented bounds is a constant.

To conclude, we have presented upper bounds that are polynomial when j and k

are constants. Also, we have presented lower bounds that match the upper bounds

(within a constant factor) when j and k are constant.

73

CHAPTER 6

Monotone DNF Formulas

In this section we let Monotone DNF,, represent the class of monotone DNF formulas

on n variables, and we let Monotone DNF,,,,,, be the subset of those formulas that

have at most rn terms. A learning algorithm is allowed time and membership queries

polynomial in m and m (although for the former class m is not known to the learner

a priori). We are able to prove a tight bound on the number of equivalence queries

needed to exactly identify the target monotone DNF formula. We, first, prove two

lower bounds, one for the case when the number of terms in the target formula m is

known a priori, and the other case is when m is not known a priori. Later, we show

two upper bounds, one for every case.

6.1. Lower Bounds

To prove lower bounds on the number of equivalence queries required to learn

monotone DNF formulas, we prove the following key lemma demonstrating a trade off

between membership and equivalence queries. The proof uses an adversary argument

to show that for a certain subclass of monotone DNF formulas, membership queries

reveal relatively little information.

LEMMA 6.1.

S (Monotone DNF ,,,,V, q) ≥ m - d

for any 0 <d < n satisfying (II), >q + mm - d.

74

Proof: For ease of exposition we consider the case where d divides n evenly. We

prove the result holds for the following subclass of monotone DNF formulas. The

target formula includes the following d terms (which we call the "fixed" terms, since

we give them to the learner in advance).

tl = VlV2 ... V.

t2 = v+.1v+2 V2

td = Vi+i • • Vfl.

The remaining terms td+1,... , t, will each include all but one of the variables from

each fixed term, that is from each ti with i < d (so each such term contains n - d

variables). All the monotone DNF formulas obtained in this fashion represent distinct

functions. The task of the learnerI then, is to decide whether each of the possible

(mid)" terms of the specified form are in the target formula. Let T denote the set of

unknown terms td+j, • I tfl.

The adversary. The adversary's replies to the learner are such that every mem-

bership query eliminates at most one term from T, and every equivalence query either

eliminates at most one term from T or discloses at most one unknown term from the

target formula. The target formula contains up to m - d initially unknown terms.

The membership queries may eliminate up to q of the possible terms, but there are at

least (n/d)'1 - q > m - d (by the choice of d) remaining terms about which the learner

has no information. And m - d of these terms may appear in f in any combination.

The following is the adversary's reply to the learner. Let g be a disjunction of the

fixed terms and the known terms from I, i.e.

g(x) = tl V V td V td+1 V V td+j,

where the terms td+1,. . ,tj are already known to the learner.

75

Answering membership queries: Suppose the learner has asked MQ(a), for

some assignment a. There are two cases.

MQ1: g(a) = 1.

In this case, since all the terms of g appear in the target formula f, it is the

case that f(a) = 1 independent of the other unknown terms. The adversary

answers 1, and the learner has gained no information.

MQ2: g(a) = 0.

a contains at least d 0's (if it contains less than d 0's, then there would be

some fixed term that is satisfied by a). If a contains exactly d 0's then a

satisfies exactly one term t from T. The adversary answers 0 and eliminates

t from T. If a contains more than d U's, then all terms in 7 are falsified by

a, so by answering 0 to the learner, we do not eliminate any term from T.

Answering equivalence queries: Suppose the learner has asked Equiv(h). Here

again we have multiple cases.

EQ1: g # h, that is, there exists an assignment a such that g(a) = 1 and

h(a) = 0. The adversary, answers "no" accompanied with the assignment a.

Like case MQ1 the learner has gained no information from this counterex-

ample.

EQ2: h # g, that is, there exists an assignment a such that h(a) = 1 and

g(a) = 0. This case is similar to case MQ2. The adversary answers "no"

with the counterexample a. It updates the set of candidates 7 as in case

MQ2, that is, by eliminating at most one term from T.

EQ3:gh.

In this case the adversary discloses a new unknown term t from 7, and

it outputs as a counterexample the assignment a that fixes 1 on all the

variables in t but 0 elsewhere (so a falsifies both the fixed terms and any

other term in g). Since g is logically equivalent to h, and since a falsifies

y, it falsifies h, whereas it satisfies the disclosed term t, so it serves as a

76

counterexample.

We apply this lemma to prove lower bounds for both cases where m is known or

unknown. We first consider the case in which m is a known input parameter for the

learner.

THEOREM 6.2. For m <2V' ,

(log
E (Monotone DNF) ≥ logrn+logn

m - 0 n —log llogm

Proof: Let the number of membership queries used by the learner be q < (mn)k for

some constant k. The condition for applying lemma 6.1 is that the chosen d satisfies

d
(14) (n) +d > m+q.

We will choose d such that it satisfies the condition

"
(15) (n)'i > (.n).

Such d will obviously satisfy the primary condition 14, since q < (mm)', m < mn,

and d> 0. By taking the logarithm of both sides of 15, we get that d must satisfy:

d(logr& - logd) > (k+ 1)(logm+ logn).

By dividing both sides by log n. - log d, we get that the condition on d is

d > (k+1) (log rn+ log n)
(logn — logd)

Choose d to be

d— 2(k + 1) (log m + log n)
- (log m-2 log log m)

(Note that since m < 2, log - 2 log log m > 0, so d> 0). We show that this d

satisfies condition 16, for m < We need to verify that

2(lc + 1) (log m + log n.) (k + 1) (log m + log n)

(log n-2 log log m) (logm — logd)

77

By cancelling similar factors and terms we get that we need to verify that

(17) log < log + log log m.

Taking the logarithm of d we obtain that

(18) log = 1 + log(k + 1) + log(logm + log n) - log(logn - 2 log log m).

For a, b ≥ 2, we have that a + b ≤ ab, so log(a + b) ≤ log(ab) = log a + log b. Applying

this to log(log m + log n), we get that log(log m + log n) log log m + log log n, when

log m ≥ 2, and log n > 2. For log m < 2 (that is, m < 4) it is the case that

log(log m + log n) ≤ log(2 + log n) log(2 log n) = 1 + log log n. So, for sufficiently

large n it is true that

log (log m + log n) ≤ 1 + log logrn + log log n ≤ log log m+ log

Also, since m < 2", it is true that 10gm < and that loglogm <

Therefore log n - log log m> 1, for n ≥ 4. This implies that log(log m - log log mm) > 0,

for n ≥ 4. In addition, since k is a constant, for sufficiently large n we have that

1 + log(k + 1) < I21 • Combining all this together in 18 we obtain that

logd = 1 + log(k + 1) + log(logm + logn) - log(logn - loglogm)

log logn
4 + log log m+ 4

log
= 2 + log log m,

for sufficiently large mm. This proves that d does satisfy condition 17, and thus it

satisfies condition 14. E

Note that we have not attempted to choose d such that (m/d)'1 is superpolynornial

in n and m. What we showed in the above theorem is that for any polynomial p(n, m),

there exists a constant c such that for

(19) d = c(logm + log mm)
log - log logm'

78

the quantity (m/d)'1 is greater that p(n, m). A calculation similar to the one above

shows that for any constant c, and for the d in 19, the quantity (n/d)d is bounded by

some polynomial. We will use this to establish an upper bound later.

In the case where the learning algorithm is not given an a priori upper bound on

the number of terms, we may prove a slightly stronger result.

THEOREM 6.3. For any 0 < k < n - w(logn) with k = w(1), and n sufficiently

large

E (Monotone DNF,,) > m -

Proof: Pick d = k. If at any point after having made e equivalence queries the

algorithm has made a number of membership queries superpolynomial in m and e

(answered by the strategy above), the adversary decides there is only one more term

in f, which means the algorithm has made superpolynomial number of membership

queries. Thus the algorithm can only ever make a number of membership queries

polynomial in n. The result follows since (n/k,) grows sup erp olynomi ally in m. 0

6.2. Upper Bounds

In this section we describe an algorithm that matches the above lower bounds.

We begin by briefly describing Angluin's algorithm [5] for learning a monotone DNF

formula using at most rn + 1 equivalence queries (or m equivalence queries, if m is

known a priori).

6.2.1. Preliminaries. A prime implicant of a boolean formula f is a conjunc-

tion t (not containing contradictory literals) such that t implies f, but no proper

subterm of t implies f. For general DNF formulas the number of prime implicants

may be exponentially larger than the number of terms. However, the next two lem-

mas establish that if f is a monotone DNF formula then the number of its prime

implicants is at most m, where m is the number of terms in f, and that every prime

79

implicant of f contains no negated variables. For two assignments a and a', we say

that a ≤ a' if and only if a[i] ≤ a'[i], where we assume that 0 ≤ 1.

LEMMA 6.4. A prime implicant t of a monotone DNF formula f contains no negated

variables.

Proof: Assume for contradiction that t does contain a negated variable j, and let t'

be a term that is obtained from t by dropping Uj. We prove that ' implies f, which

contradicts the fact that t is a prime implicant of f. Let a' be an assignment that

satisfies t', we show that it satisfies f. If a' assigns 0 to vi then a' assigns 1 to Uj, so

t(a') = 1 implying f(a') = 1 (because t f). Otherwise, a' assigns 1 to v. Consider

the assignment a obtained from a' by flipping bit i in a' (so a[i] = 0). The assignment

a satisfies t, so f(a) = 1. But, since a ≤ a' and f is monotone, it must be that

f(a') = 1. We thus have showed that t' f.

The following lemma is the key lemma behind Angluin's algorithm.

LEMMA 6.5. Let f be a monotone DNF formula with m terms. Then the number

of prime implicants of f is at most M.

Proof: Assume for contradiction that the number of prime implicants of f is greater

that m, so there is some prime implicant T that does not appear in f. By definition

of a prime implicant T f. This implies, by lemma 4.4, that f is a tautology,

where PT is defined by: pT[ij is 1 if the variable vi appears in T, and * otherwise (from

the previous lemma, T does not contain a negated variables, so PT does not contain

0's). We now show an assignment that falsifies fpT. This implies that our primary

assumption, that the number of prime implicants of f is greater than the number of

the terms in f, is incorrect.

Let f = t1 V V t, so f. = t V V t, where is the projection of t induced

by PT (that is, t% (ti)p,). None of the Cs is equivalently true, because this would

mean that PT assigns l's to all the variables of some tj in f implying that tj is a

subterm of T. ti cannot be equal to T since we have assumed that T is not a term

80

in f. Therefore, if ti is a subterm, it must be a proper subterm. But this contradicts

the fact that T is a prime implicant (because ti implies f and it is a proper subterm

of T). We conclude that every term in fPT is not equivalent to true. Also, since f

is monotone, none of the terms in fPT contains a negated variable. Now consider the

value of fPT on the assignment a that is all 0's (that is a = 0,). The assignment a

falsifies every term in f7. because every term in f. contains an unnegated variable.

Therefore, fPT (a) = 0, contradicting the fact that f7, is a tautology. 0

6.2.2. Angluin's algorithm. Given lemma 6.5, there is a fairly straightforward

exact identification algorithm due to Angluin [5] (based on a previous PAC learning

algorithm of Valiant [29]). We use each equivalence query to find a prime implicant of

the target formula f. Our current hypothesis h is the disjunction of all known prime

implicants (initially the always false hypothesis). Then each counterexample a can be

used to find a new prime implicant by walking towards the all zeros example (using

membership queries to decide which variables should be set in the counterexample

to 0). Let a' be the assignment that we get from a by walking it towards O, (while

preserving the condition that we do not flip a 1 in a unless the new assignment keeps

satisfying f). It is easy to see that the resulting example a' will satisfy exactly the

variables of some new prime implicant. So the disjunction of the variables set to 1

in a' gives a prime implicant t of f (that is satisfied by a'). The new implicant t

is not found in h, because h(a') = 0 (this follows from the facts that a' ≤ a, h is

monotone and h(a) = 0). This technique requires m + 1 equivalence queries and mn

membership queries.

6.2.3. Our refinement. A simple optimization allows us to find the first prime

implicant without making an equivalence query. Monotonicity implies that if the

target formula is not identically 0 then f(1,,) = 1 (1, is the all l's example). This

can be used to find the first term, reducing our equivalence query requirement to m.

That observation gives us the special case (for k = 0) of an algorithm we present

81

learn- monotone-dnf(m, k)
1 let h be identically Lalse.
2 repeat
3 find a positive counterexample a as follows.
4 if ii. contains at most k terms
5 then search exhaustively for an a with at most k bits set to 0

such that h(a) = 0 and f(a) = 1 (return h if none is found).
6 else (h contains more than k terms)
7 a - Equiv(h).
8 if a is "yes" then return h.
9 walk a towards 0, while preserving f(a) = 1.

10 let t be the the conjunction of all variables in a set to 1.
11 h — hvt.
12 until done.

FIGURE 6.1. An algorit hm to learn monotone DNF with m - k equiv-
alence queries and (k + mu) membership queries.

82

in figure 6.1. This new algorithm can reduce the number of equivalence queries by

an arbitrary number Ic. This savings is at a cost of time and membership queries

exponential in Ic, but this will be enough to show that our previous lower bounds are

tight.

LEMMA 6.6. There is an exact identification algorithm for monotone DNF formulas

that takes as input n and a non-negative integer Ic < m, and learns the target formula

using m - Ic equivalence queries and 0 (() + mu) time and membership queries.

Proof: This algorithm (shown in figure 6.1) finds Ic + 1 prime implicants of f before

making any equivalence queries. The key observation is that as long as we have

discovered at most Ic prime implicants, then if there is any counterexample there will

be one that has only k variables set to 0 (and we can exhaustively test all possible

such counterexamples, of which there are at most () = O((m/k)')). This is because
any positive counterexample fails to satisfy our Ic prime implicants. Given that such

a counterexample exists, there is some set of Ic or fewer variables covering our prime

implicants that are set to 0 in the counterexample, and given that those variables

are 0 in some positive counterexample, the example that has only those variables set

to 0 will still be both a positive example and a counterexample. Thus for the first

Ic + 1 terms, we use brute force enumeration to find counterexamples. After this we

use m - Ic equivalence queries to learn the remaining m - Ic - 1 terms in the standard

manner. 0

Based on this technique we prove two upper bounds for learning monotone DNF

formulas. In the case where m is not known, the learner needs m - (1) equivalence

queries. When m is known, we prove that the number of queries is reduced to m -

e(1073. Note that these bounds differ only when m is superpolynomnial in n.
 oglThey both follow from lemma 6.6 by substituting the appropriate quantities for Ic.

83

THEOREM 6.7. For any constant c> 0,

(Monotone DNF,) <m - c.

Proof: Choose k to be c. Obviously c(n/c)c is polynomial for every constant c. 0

THEOREM 6.8. For any constant c> 0,

(log '\g (Monotone DNF,W logm+logn
) ≤ rn - c n —log log in)

Proof: For any constant c set k to be

k - (log login + 10gm n—Ioglogm

An argument similar to that in the proof of theorem 6.2 shows that k(n/k)' is bounded

by some polynomial. 0

84

CHAPTER 7

Horn Sentences

We remind the reader that a Horn sentence* is a CNF formula in which every clause

is either of the form true —* v or of the form v1v2 • —* £, where v, v1,... , vj

are variables and £ is either a variable, false, or true (we refer to clause in either

of these two forms by Horn clause). The left part of a Horn clause is called the

antecedent and the right part is called the consequent. A Horn clause is falsified by

an assignment a if and only if a satisfies its antecedent and falsifies its consequent.

In this chapter we let Horn Sentence,, represent the set of Horn sentences over n

variables, and we let Horn Sentence?,?fl be the subset of those formulas that have at

most m clauses. We show a lower bound of (iognogn) on the number of equivalence

queries needed to identify the target Horn sentence.

7.1. Lower Bound

In this section we prove our lower bound by showing that it holds for the following

subclass of Horn Sentences. Suppose there is an algorithm that learns the class of Horn

sentences in time less than (mn)c. Let d = f(c + 1) (log n + log rn)] and q = [n/2d].

Divide the 2dq variables v1,... , V2dq into q blocks each of which contains 2d variables.

Specifically, for 1 ≤ i ≤ q, block Bi contains variables V2d(i_1)+1,... , v2 . Given a

*We could equivalently use the term "formula" rather than "sentence", however, the notion "Horn

sentence" is more common in the literature.

85

vector x we use x[B] to denote the portion of x that corresponds to block B. That

is, x[B] is (x2d(j__1)+1, • • • ,

For each of the q blocks of variables we construct a Horn sentence in the following

manner. Let m,... , Y2,1 be the 2d variables in block H. We define
d

Pi = A(Y2j-1Y2j Y(2j+1)mod2d) A (Y25-1Y2j Y(2j+2)mod2d)
j=1

So for example if d = 3 we have

= (yly2 "Y3)(Y1Y2 "Y4) (y5y(3 —* y)(ysye Y2).

OBSERVATION 7.1. For 1 ≤ j < q, Pi has the property that if both variables in any

pair Y2j-1 ,Y2 are 1 then it will be false unless all 2d variables are 1.

Proof: Fix 1 ≤ i ≤ q. Suppose for some pair Y2jo—1,Y2jo, 1 ≤ jo ≤ d, both variables

are assigned 1 by some assignment a, and P1(a) = 1. We prove that a assigns 1 to all

2d variables. Since F(a) = 1, ll its clauses are satisfied by a, including the clauses

Y2jo-1Y2jo Y(2j0+1)mod2d and Y2jo-1Y2jo) Y(2j0+2)mod2d. Since both Y2jo-1, and Y2jo

are assigned 1 by a, then Y(2j0+1)inod2d and Y(2j0+2)mod2d must be also assigned 1 by a.

We now look at the clauses

Y(2j0 +1)m0d2d1"Y(2j0+2)mod2d Y(2j0+3) mod2d, and Y(2â0 +1) mod2dAY(2j0 +2)mod2d Y(2j0 +4)mod2d,

and similarly prove that the next pair of variables (that is Y(2j0+3)niod2d and Y(2j0+4)mod2d)

are assigned 1 by a. We continue this inductively, showing that all variables are as-

signed 1 by a. D

Let (dq) c {o, 1}2dq be the set of bit strings for which each consecutive pair consists

of a 1 and 0. That is: ()92dq) I (82j1, .s2) is (0,1) or (1,0) for 1 ≤ j < dq}.

For any vector S E S(') define I(s) = {j I sj = 1}, and for each s E S(') let

R8= (A vjI 0.
.iEI(s)

tAlthough P is a formula defined over the 21 variables in block B, we use Pi(x) to denote
P(x[B]).

86

OBSERVATION 7.2. For any E {o, 1}2dq and s E 8(dq) R3(x) = 0 if and only if

Xj = 1 for all j E I(s).

Finally, for i E (dq) (t will be determined later), let

= P1 A A .F'q A R3, A A R8,

and let

C = {F31 ,... st are in 8(dtq) and are distinct }.

(I"?,THEOREM 7.3. For m - n = i(m), E (Horn Sentences,,,fl) =

Proof: We prove that the above lower bound holds for the class C defined above.

Since the number of clauses in each P is 2d, there are 2dq < n clauses in P1 A ... A Pq

so fix t = m - 2dq, to get that in every F31 ,...,3, in C, the number of clauses is at most

M. Since

tq = (m - 2dq)q ≥ (m - n)q = n (log n + log m) mn '

the desired result will follow if the adversary can force the learner to make tq equiv-

alence queries before obtaining exact identification.

Let f be the target function. Observe that the learner knows P1 A•• . A Pq before the

learning session begins. The goal of the adversary is to ensure that each equivalence

query (combined with a polynomial number of membership queries) will only help the

learner to determine one block of some .s (i.e. one of .s[B1].....si[Bq]). Since there

are tq such blocks, once this goal is achieved the result will follow.

For ease of exposition, we further divide sis each into q blocks each containing

2d bits. We denote these blocks by b1, . . . , b, bq+i, . . . , b(t_i q, b(t-1)q+1, . . . , biq. The

adversary's strategy in answering the membership and equivalence queries will be

such that after e equivalence queries the learner will know only b1,... , b but has

gained no information about b 1,... , b. We say that b is known if £ ≤ e and

unknown if £ > e.

87

Let denote the values for lit that are consistent with all examples seen by the

learner after e equivalence queries have been answered. During the proof we will often

focus on the elements of that are in block i of some .s. Thus for 1 ≤ i < q, let

Bi = {D 11= (j- 1)q+ifor 1 ≤j ≤t}.

Note that for all j and before asking any membership query, D ° = SO and thus

I I = 2d (rnn) 1 at the beginning of the learning session.

Let e be the number of equivalence queries that have been answered so far in the

learning session. The adversary will maintain the following invariants.

(1) For 1 ≤ £ ≤ e, D() = {bt}. That is, b1,... ,be are known.

(2) For 1 ≤ £j <€2 e, fl D = 0. That is, b1,... , b are distinct.

(3) For £ > e, (D) u ... U D)) n D(e)= 0. That is, b1,... , be are not included

in the set of candidates for b+1,... , btq.

(4) For D1, D2 E V such that IDil > 1 and ID2 I> 1, D1 = D2. That is, all

unknown values in a given block have the same set of candidates remaining.

(5) For any £, if I DJ = 1 then D = for w > e. That is, once lit is known

Vt does not change.

(6) Let Q be the number of membership and equivalence queries asked by the

learner up to (and including) the eth equivalence query. Then

ID I ≥ (mn)1 - Q for £> e.

Notice that since the running time is assumed to be less than (mn)c, we have that

Qe < (mn)c, it follows that ID I ≥ (mn)c for £> e. We now define the strategy that

will be used by the adversary to respond to the queries. Each query will enable the

learner to determine only one of the tq blocks b1,... , btq and further can eliminate at

most one element from each for £> e. Thus adversary can force tq equivalence

queries as desired.

After e equivalence queries have been answered, r = [e/qj is the largest j such that

88

sj is completely known, and p = e - qr is the index of the last known block within

•9r+1• Let 'e be the indices of the elements of 8r+1 that are known to be 1. That is

Ic = {j I i E I(.Sr+i[Bi]) for 1 ≤ i < p.} Now let

R = (Avj) A
.,E1,

/ 2dq
(Av
\j=2dp+1

- 0.

Thus R contains all variables whose corresponding indices in Sr+1 are known to be

1 and all variables corresponding to the unknown elements in 8r+,•

OBSERVATION 7.4. The antecedent of R is a superset of the antecedent of R&r+i

and thus R(x) = 0 implies that R&r+i (x) = 0.

Let g,, (X) = Pi(x) A Pq(x) A R31 (x) A A R,.(x) A R* (x). Applying Obser-

vation 7.4 it follows that for any 1 ≤ e ≤ tq, if ge(s) = 0 then f(s) = 0.

Answering a membership query: For each membership query, MQ(a), the ad-

versary responds as follows.

Case MQ].: ge(a) = 0.

In this case the adversary replies 0. Since g, (a) = 0 implies f(a) = 0 no

information is given to the learner by this answer.

Case MQ2: ge(a) = 1 and there exists i E {1,... , dq} such that (a2j_i, a2) =

(0,0).

In this case the adversary returns 1. Since (a2_1, a2) = (0,0) it follows that

R8(a) = 1 for any .s, and thus no information is given to the learner by this

answer.

Case MQ3: ge(a) = 1 and for all i E {1,... , dq}, (a21, a2) =A (0, 0).

Since P(a[B]) = 1 for all blocks i, by observation 7.1 we know that a[Bj] is

either all l's or an element ofS(O. If a[B] contained all is for all 1 < i < q, it

would follow that R(a) = 0. Thus, there exists an i0 such that a[B 0] E

The adversary returns 1 and removes a[B 0] from the set of candidates for all

blocks bz that are not known and correspond to B0. That is for all D E

89

such that IDI > 1, update D - 1) \ a[B 0}. Note that after this update if

each unknown rj is selected from its associated D then we are assured that

ge(x) = 1 for all vectors x.

Answering the (e + 1)st equivalence query: For each equivalence query, Equiv(h),

the adversary responds as follows.

Case EQ1: h # g.

That is, there exists a vector a such that h(a) = 1 and ge(a) = 0.

The adversary will handle this situation' just as it did in case MQ1 where the

learner asked the membership query MQ(a) for which ge(a) = 0. Finally,

to maintain the invariants, the adversary selects an arbitrary u E D 1 and

sets D 1 u. Let p = (e + 1) - q[e/qJ. For each E such that

IDI > 1, the adversary sets Dr1 - D$ \ {u}. Also e is incremented in

all other

Case EQ2: g h.

That is, there exists a vector a such that h(a) = 0 and ge(a) = 1.

The adversary will handle this situation just as it did in cases MQ2 and MQ3

where the learner asked the membership query MQ(a) for which ge(a) = 1.

As in case EQ1, the adversary then updates the candidate sets to maintain

the invariants.

Case EQ3: h g.

In this case we will take advantage of the fact for all £, satisfies the

invariants. Observe that all updates made in the above cases preserve these

invariants. By invariant 4 it follows that for all D1, D2 E DB('p) for which

JD11 > 1 and ID21 > 1, D1 = D2 where p is the block number of be+i.

That is, be+i corresponds to 8r+1 [Br] where r = [(e + 1)/q]. For any such

D E vb for which IDI > 1 select some u € D and set Sr+l [8 p] U.

Consider the example x in which x[B] = '2d for 10 p and x[B] = u. By

Invariant 3, u 0 D for j < e, and thus it follows that h(x) = 1. Since

90

(x) = 0 it follows that ge+i (x) = 0 and thus x can be returned as

the counterexample. Finally, as in case EQ1, the adversary updates the

candidate sets to maintain the invariants. 0

91

CHAPTER 8

Boolean read-once formulas over various bases

In this chapter we prove an upper bound on the number of equivalence queries needed

to identify read-once formulas. This is achieved as a consequence of a more general

result, showing that an algorithm that makes use of equivalence queries only to gen-

erate justifying assignments (defined below) needs to make only O(n/ log n) queries.

This is an improvement from a previous technique that uses n queries [8, 18], and

immediately gives us improved upper bounds for various classes of read-once formulas

and non-monotone switch configurations. These upper bounds are tight by the work

of Bshouty and Cleve [15].

In this chapter we consider the following classes of read-once formulas. Let ROF,(B)

denote the set of read once-formulas whose gates are labeled with functions from B

(the "basis"). Let Bk denote the basis of all boolean functions over k inputs, for a

constant k. A switch configuration can be informally described as a black box with

n electrical switches. The invisible part of the black box is an arbitrary interconnec-

tion of the switches in the box. The learner tries to learn this interconnection or an

"equivalent" one using switch operations. A switch operation consists of setting an

individual switch to either ON or OFF, and observing the output of the black box as

displayed by a lamp: if the lamp lights up then the output of the box is 1, otherwise

it is 0. The learner is required to return an interconnection I of the switches that has

the property that a set of ON switches causes the lamp to light up in the black box

if and only if the corresponding set of switches does so in the interconnection I.

92

Raghavan and Schach [27] have shown how to represent a switch configuration

by a monotone boolean formula, so the class of switch configurations is a (proper)

subset of monotone hoolean formulas. They have also proved that every monotone

read-once formula can be represented by a switch configuration. They have shown an

algorithm that uses only membership queries and learns switch configurations. When

the parity of the switches is not known then the switch configuration corresponds

to a non-monotone hoolean read-once formula. These switch configurations can be

learned using membership queries and equivalence queries. The equivalence queries

are needed only to find justifying assignments for the variables.

Let Switch Configurations,, denote the set of n element switch configurations (in

the general non-monotone case where the parity of each switch is not known a priori).

It follows from the work of Bsliouty and Cleve [15] that

E(ROFTh(AND, OR, NOT)) = l (_
\log ml

E(ROF9(Bk)) = (
log n)

(Switch Configurations) = Q(logn)
8.1. Generating justifying assignments with a minimal number of

equivalence queries

In this section we describe a technique of generating justifying assignments with

O(m/ log n) equivalence queries that can then be used to get algorithms that match

the above lower bounds.

8.1.1. Definitions. We start with few definitions. A class C is closed under

zero projection if for any function f E C, fixing some variables of f to 0 produces a

function still in C. A justifying assignment for a variable v is an assignment whose

classification changes if the value of the variable v is changed. Among other things,

the justifying assignment is a witness to the fact that the given variable is relevant.

93

?fl

Define the vector 1m to be (,l where 1 E {O, l,*}. For an input vector x =

(x1,... , x?) and a set of variables V = {v1,... , v.}, we denote x(V) = (x1,... ,

Recall that a partial assignment is an input setting that assigns * to some of the

variables (to indicate the variable is unassigned). For a partial assignment p and

an assignment a, pla denotes the assignment that replaces the stars of p with the
corresponding values in a. For a partial assignment p and a boolean function f, fp is

the projection of f induced by p and is defined by f(a) = f(pla). For an assignment

a and a variable v the assignment b = a_ is the assignment that satisfies b[v] = -la[v]

and b[v'] = a[v'] for any variable v' 54 v.

Given two assignments a and b such that f(a) 54 f(b), the procedure walk(a,b) is

a procedure that continues to flip bits in a that are different from b, while keeping

1(a) 0 1(b). It works as follows. It keeps scanning a attempting to flip bits on which

a and b disagree, while keeping 1(a) 0 f(b), until it can no longer do so, and then

it returns the new a. Every time walk(a,b) scans a, it succeeds in flipping some

bit in a. Since there are at most n bits on which a and b disagree, walk scans a

at most n times. In each scan it attempts to flip at most n bits (for each flipping

it asks a membership query to see if the flipping is successful or not). The number

of membership queries and the running time are, therefore, 0(n2). The procedure

generates a new assignment a' such that for any variable v, if a'(v) =A b(v) then

f (a,) 54 f(a'), so a' is a justifying assignment for v.

8.1.2. The standard transformation. We now describe the standard trans-

formation to produce a set of justifying assignments using n equivalence queries. We

assume that we are given a procedure that learns the class C using only member-

ship queries and justifying assignments for the variables in the target formula (such

a procedure exists for all the classes mentioned above [8, 16, 18, 27]).

Suppose we have justifying assignments for some subset Y of the variables (initially

empty), and suppose those justifying assignments all agree on setting the variables

94

in V \ Y to 0. Then if p is the partial assignment that sets * to all variables in Y

and 0 to all variables in V \ Y, we can use the membership and justifying assignment

algorithm for C to learn a hypothesis h equivalent to f (the condition that C is closed

under zero projections implies that f, is in C). We make an equivalence query on h.

If we get a counterexample y then h(y) f(y), but h f, so f(y) 0 1(y). By

definition of h it is true that f(y) = f(I) 0 f(y) so we can use wa1k(y,py) to

find a justifying assignment for one or more new variables. We then repeat with a p

that assigns values (i.e. 0's) to strictly fewer variables, and when p = *, we are done.

8.1.3. Our refinement. We now present an improved transformation that finds

at least (log n) new variables with each equivalence query. Recall that an (rm, k)—universal

set is a set {b1,... , bg} c {0, l}Th such that every subset of k variables assumes all
of its 2 possible assignments in the b's. Cohen and Zémor [19] have shown how to

build an (n, k)—universal set of size k-0 (1)21k log n.

THEOREM 8.1. Let C be a class of boolean formulas that is closed under zero

projections. If C is learnable in polynomial time from M(n) membership queries,

given justifying assignments for all the relevant variables, then for any e > 0 there is

a q = O(n1 M(n) + n3) such that

E(C,q) ≤ [(E/4) log nf

Proof: The algorithm for this reduction is shown in figure 8.1. As before, there is a

main loop where each iteration begins by running the membership query and justify-

ing assignment subroutine to learn an h f, for the p that assigns 0 to the variables

in V \ Y, using known justifying assignments A for the variables in Y. But before

we ask the equivalence query h f, we also learn a family of fm 's determined by an

(n, [(/4) log n])—universal set of size t = ([(€/4) log nj)0 (1) 21(26/4)10gflJ log n ≤ n.

We define f (for i = 1 to t) to be the partial assignment that sets the variables

in V \ Y as in the i'th element of the universal set. In other words, every possible

assignment of values to some subset of [(€14) log nj variables from V \ Y is realized

95

by some f. To learn each f, we test whether f(x) = f(x) for all justifying

assignments in A and for all the membership queries made by the justifying assign-

ment algorithm when learning f. If this is the case then the justifying assignments

algorithm outputs the same hypothesis for both target functions, and the correctness

of the algorithm implies that f f. If however we find some f(x) 0 f(x) this

implies (by definition) that f(plx) f(px), and since those examples agree on all

variables in Y, using walk we can find a new justifying assignment without making

any equivalence queries.

Now we argue that if all f 's are equivalent to f, and we make an equivalence

query on h, then we are able to find fl(log n) new justifying assignments from the

counterexample. Let y be the counterexample returned by the equivalence oracle and

let y' be y (we need to keep y unchanged, so we will do all our work on y'). We start

by walking our counterexample y towards ply, to give us at least one new justifying
assignment. After this walk y' satisfies f(y') 0 f(y), and y' is a justifying assignment

for all the variables Y1 C V \ Y on which y' differs from ply. If IY1I ≥ L(/4) log rm],
we are done. If not, then there is some pi that agrees with y' on all the variables

in Y1. But we know f1, f, so fpi = f(y) and f(y') 0 fvi We now call

walk(y',pIy), and we are guaranteed that we find justifying assignments for variables

in V \ (Y U Yr). Call these variables Y. If lyl l + 1Y21 ≥ (/4) log n], again, we are

done. If not we can repeat with a different pi that agrees with y' on Y1 U Y, and so

To establish the bound on the number of membership queries stated in the theorem,

observe that the main loop in the algorithm find-justifying-assignments has at

most L(6/4) log nj iterations, since every iteration finds justifying assignments for at

least [(E/4) log ii] new variables. So the number of equivalence queries is at most

 Step 5 uses M(n) membership queries to learn fr,. Another t(M(rm) + n) < L(/) lognj

nc(M(n) + n) membership queries are needed in step 9, to test every h1 on at most

M(n) + n assignments. There are at most 7
v 1/41ogmj iterations, so the total number

96

find.-justifying-assignments(n)
1 initialize Y = 0, A = 0.
2 let {b1,... , b} be an (n, L(/) log nj)—universal set of size t ≤ ne.
3 repeat
4 let p the partial assignment that assigns *'s to all variables in Y and

U's to all other variables.
5 learn a hypothesis h f (using membership queries and the justi-

fying assignments A for the relevant variables Y).
6 fori=l tot do
7 define the partial assignment pi as follows:

8 Piul{* vjEY

b[j] otherwise.

9 test fri on all justifying assignments in A and on all the mem-
bership queries made by the algorithm to learn f

10 if on some point x, f(x) 0 f,(x)
11 then
12 call wa1k(pIx,pIx) to find one or more new justi-

fying assignments.
13 update Y and A, and iterate, that is goto step 3a

(having made no equivalence queries).
14 y - Equiv(h).
15 if y is "yes" then return h and halt.
16 let y' be y.
17 repeat
18 pick an i for which pi and y' agree on all the new variables

added so far.
19 call wa1k(y',pIy) to find new justifying assignments.
20 update Y and A.
21 till this loop has added [log n] new variables to Y.
22 until done.

FIGURE 8.1. An algorithm to use only n/ log n equivalence queries to
generate justifying assignments.

97

of membership queries used in these two steps is at most

(L(f/4og j) (mc(M(n) + n) + M(m)) ≤ n (n(M(n) + n) + M(n))

= o(nh+CM(n)+n2).

Membership queries are also needed in the walk procedure in steps 12 and 19. But

every call to walk finds a justifying assignment for at least one new variables, so these

step are performed at most n times. The total number of membership queries needed

for these two steps is therefore 0(n3). Adding this to the number of membership

queries used in the other steps, we get that the total number is as claimed in the

theorem. 0

Applying the above technique to previous algorithms [8, 16, 18, 27] we obtain the

following result.

THEOREM 8.2. The quantities 6 (ROF(AND, OR, NOT)), 6 (ROF(Bk)), and

E (Switch Con figurations) are all O(n/ log n).

In all these cases the transformation adds a factor of Q(nl+6) membership queries

and running time to the original algorithm and saves a factor of L(e/4) log nj equiva-
lence queries.

98

CHAPTER 9

Arithmetic read-once formulas

Let AROF(-F)(+, x, /, -) denote the class of n variable arithmetic read-once formulas
over the basis of addition, subtraction, multiplication, and division over a field F.

The inputs are constants from F, and the output is a value in F U {oo, O/O}.

There is a polynomial time identification algorithm for this class that uses mem-

bership queries and n equivalence queries [16]. When the size of the field is at

least 2n + 5 then the algorithm does not use equivalence queries at all (however, the

algorithm is randomized in this case). The lower bound, established by Bshouty and

Cleve [15], of (n log J.FJ /log n) on the number of equivalence queries holds when

the size of F is o(n/ log n). It is an open problem whether equivalence queries are

essential when the size of F falls in the gap between e(n) and O(n/ log n).

In this chapter we show an upper bound that meets the above lower bound. The

tight bound on the number of equivalence queries proved here is when the size of

is o(n/log). The algorithm uses equivalence queries only to generate justifying

assignments, but it is not immediately obvious that we can apply the techniques we

used for the boolean case, because of the difficulty of non-boolean variables.

We need to make only a slight change in our algorithm find-justifying-assignments

to make it work for arithmetic read-once formulas. In step 2 we want the universal

set to be over all values in F. That is, every subset of k variables assumes all its

values in the universal set. Having made this change, the algorithm find-justifying-

assignments learns the target arithmetic read-once formula.

99

Instead of dealing with a universal set that contains values from F, we work with a

universal set that contains only U's and l's, in which the values of .' are represented

in binary. Since we want the universal set to contain all values in T, we need log

bits to represent every value. We look at the columns of the set as being grouped into

blocks of log IFI columns each, each block corresponds to a value in F. The number

of columns needed in the universal set is therefore nlog I.F1. We want that every

subset of size k of the variables assumes all its possible field values, so we require that

every k log I columns in the universal set assume all the possible (binary) values.
Thus, the universal set needed is an (n log I.F1 , k log J.Fj)—universal set, and, by the

work of Cohen and Zémor [19] , its size is

(k, log II)0(1) 22/loI log(n log ID.

We want this quantity to be polynomial in n, so:

(k, log)O(1) 22/lo'I log(n log j)

for some constant c. Taking the logarithm of both size, and canceling small terms,

we get that k must satisfy:
, clog 71

log'

Using this k, every iteration of the find-justifying-assignments finds justifying

assignments for lc new variables. The number of iterations (or, equivalently, the

number of equivalence queries) is at most

n n log F

k - clogn

which matches the lower bound.

One last remark is that after building the (n log I.F1 , k log)—universal set in

step 2, we go over the set, translating the strings in every block to values of .F (this

would make the rest of the algorithm cleaner).

THEOREM 9.1. For any field .F, S (AROF)(+, x,/,_)) is 0(n log / log n).

100

CHAPTER 10

Deterministic Finite State Automaton

In this section we present a lower bound on the number of equivalence queries needed

to learn DFAs. Recall that n denotes the number of states in the target DFA, and

let k = El, where E is the alphabet of the target DFA. To distinguish between the

situations in which n is known or unknown to the learner, let DFA,,E denote the

case when n is known and DFAE denote the case in which n is not known.

Given that there is a polynomial-time algorithm that can determine if two DFAs

are equivalent and in addition output a minimum length counterexample if they are

not equivalent, it seems reasonable to assume that the equivalence oracle uses such

an example. Thus the results presented here all assume that the counterexamples

returned by the equivalence oracle have length at most n. These results can easily be

generalized to have the complexity depend on the length of the longest counterexample

received by the learner.

10.1. Lower bound

In this section we present our lower bound. Observe that this bound holds even

if the learner knows n a priori. Also there is no restriction on the time used by the

algorithm, just on the number of membership queries and counterexamples.

THEOREM 10.1. For any constant c ≥ 1,

— E(DFA?,E,nc_ 1) ≥ n 2
clogn

101

Proof Sketch: Let T be an arbitrary string of n - 2 elements from E. We shall let

T[i] denote the ith element of T. For ease of exposition when defining the tran-

sition function, let T[n - 1] denote some special symbol that is not in E. Let

A C {1, 2,... , gk. The adversary will select T and A as the learning session

progresses. The target DFA, U, will be defined as follows.

• The state set, Q = {0,...n - 1},
• the initial state qo = 1,
• the accepting state set F = {i clogn + 11 i E Al,
• the transition function S is defined as follows:

- 5(0, o) = 0, for all o- E E (so state 0 is a dead state)
- 6(q, o-) = 0, for all q E and o 0 T[q]
- S(q,o)=q+1 forallqEQ and o=T[q].

At the beginning both T and A are empty. T is appended by a block of s = c logk. n

symbols at a time. Let g(i) ç Es , i = 1, . . , z, be the set of strings each of which

is candidate to be the ith block in T of size s. Initially, before asking any query,

SW = E8 for every i = 1,... ,

The adversary replies to queries as follows. Suppose the learner has already asked

i - 1 equivalence queries (so the first i - 1 blocks of T has been fixed).

Answering membership queries: Let a be the instance with which the learner

asked a membership query. The adversary replies "no". In order to be consistent,

the adversary looks at the ith block in a (let it be the string) and eliminates
i from SO. This guarantees (together with the adversary's reply to equivalence

queries) that whenever the ith block of T is determined, U will reject a.

Answering equivalence queries: Suppose the adversary has asked the ith equiv-

alence query with the hypothesis H. Observe that the size of g(i) is initially

= C Since the number of membership queries is at most C - 1 and since

every membership query eliminates at most one element from 3(i), there must be

at least one element in 8(i) Let t be an element in Choose the ith block of

T to be t. This choice is consistent with the membership queries. The adversary

answers "no" to the learner, and outputs the prefix of i blocks from T as the

102

counterexample. However, we need to guarantee that this string (call it T') is

really a counterexample. If H rejects T', then we want T' to be accepted by U,

so we place the index i in the set A. Otherwise, if H accepts T', we want U to

.reject T', so we do not put i in A. Observe that U is designed so that on input

T' it ends in state qj 1 + is and qj is in the final states set F if and only if i is

in A.

The above argument applies as long as i < (m - 2)n/s, which establishes the lower

bound

103

CHAPTER 11

Open Problems

This work has established some sharp bounds for a variety of the most basic classes for

which exact identification algorithms are known. It is perhaps surprising that we had

such great success in proving matching lower and upper bounds, particularly since

the lower bounds hold under the most favorable conditions for learning (arbitrary

hypotheses and superpolynomial time), while the upper bounds holds under the most

restrictive (hypotheses must be in the class to be learned, polynomial time is required).

We conclude this thesis by pointing out open problems.

Horn sentences and DFAs: There are two exceptions to the sharp bounds es-

tablished in this thesis. The first is the case of Horn sentences. The lower bound

established here is The learning algorithm of Angluin, Frazier,

and Pitt [7] learns the class of Horn sentences using ®(mn) equivalence queries.

So there is a gap of (log n + log m) between the two. The other exception to the

sharp bounds is the case of DFAs. The class of DFAs was proven to be learnable

by Angluin [4] using n - 1 equivalence queries, where n is the number of states

in the target DFA. The lower bound established here is So there is a

gap of a log n factor. An open problem is to close these two gaps.

Read-Twice DNF: The class of Read-Twice DNF formulas was proven to be

learnable by Aizenstein and Pitt [1]. The number of equivalence queries used by

their algorithm is 0(n2). Can one apply our techniques to their algorithm and

prove a sharp bound?

104

k-DNF and lc-CNF: Another interesting problem is how much the use of mem-

bership queries can reduce the number of equivalence queries needed to learn

classes that can in fact be learned with equivalence queries alone, such as lc-DNF

and k-CNF. For k-DNF, Littlestone's algorithm uses O(km log n) equivalence

queries where m is the number of terms [24]. A lower bound is n log ii. The

gap is still large, even using membership queries (though if m is known, our

generalized halving algorithm uses 0 (d(1og: log n)) queries).

105

APPENDIX A

k-term DNF formulas, continued

In this appendix we exhibit a version of produce-terms that can be used to learn

k-term DNF formulas. The version is based on Angluin's algorithm [3].

A.I. Angluin's algorithm and our refinement

We begin with a few definitions. For an assignment a and a set of literals L, we

define aLo to be

if £E L
aL.o[t] =

a[t] otherwise.

for every literal £. For L that is a singleton we will use the shorthand a_0 to denote

a{t}o, where L = {L}. For a positive example a we define the sensitive set of a,

.$ensitive(a), to be the set of literals £ for which a 0 is a negative example. Note

that we need only n + 1 membership queries to find the sensitive set of an assignment.

For each i the literals £i and 1i are called complementary. A k-term DNF function f

is called reduced if we cannot drop any term from f or any literal from any term in

f and get a function equivalent to f. Let k ≥ 1 and define the set

Ik={(i,j)1≤i 54 j<k}.

A discriminant of a reduced k-term DNF function f = tj V ... V t, is an indexed

collection of literals for (i,)') E Ik, such that

106

(1) For every (i,j) E Ik', is a literal in ti and not in t.

(2) If tj and tj contain a complementary pair of literals, then iij, and 4 are a

complementary pair of literals.

(3) For each i = 1,... , k, the set f I j i} does not contain a complementary

pair.

Let L,,i denote the set {4 I for every j 54 i}. Similarly, let Li,, denote the set

for every ji}.

A.I.I. An outline of Angluin's algorithm. We now give an outline of An-

gluin's algorithm [3] for learning k-term DNF formulas by k-term DNF formulas.

Let f = ti V . Vtj, be a reduced representation of the target formula. The original

paper proves that f has a discriminant, so let ljj, (i,j) E Ik be a discriminant of f.

Angluin's algorithm is based on the following lemma.

LEMMA A.1. Let f = t1 V . t, k ≥ 1, be a k-term DNF formula and let ljj for

(i, j) E Ik, be a discriminant for f. If a satisfies a terin ti in f then the literals of t

are exactly those in the set Li. U sensitive(aL1o).

The following is an outline of Angluin's algorithm. Assume for now that a discrim-

inant of the target formula f is known, and let l, (i,j) E Ik be this discriminant.

Let h be identically false. Suppose we make an equivalence query with h and let a

be the positive counterexample returned (unless f is identically false, in which case

we are done). We know that a satisfies some term t0 in f, but we do not know which

one. However, if for every i, we produce the term whose set of literals is exactly the

set Li. U scnsitive(aLo), then the above lemma A.l guarantees that t0 is one of

these k terms. We add these terms to h and execute the same process again, making

an equivalence query. If the counterexample a' is positive then we add k terms to h

one of which is in f and is satisfid by a'. If a' is a negative counterexample, then we

know that there is some term in h that does not exist in f (in particular any term

in h that is satisfied by a') so we drop it. Every positive counterexample adds a new

107

term to h that is in f, so there can be at most k positive counterexamples. Every

positive counterexample acids at most k terms to h, so there can be at most 1c2 terms

in h. Since every negative counterexample drops at least one term from h, there can

be at most k2 - k negative counterexamples. Summing up the number of negative

counterexamples and the number of positive counterexamples, we see that the num-

ber of equivalence queries needed to learn f (assuming we know a discriminant for

f) is at most V. We need at most k(n + 1) membership queries, because whenever

we get a positive counterexample, we find the set of literals Li, U sensitive(aL1o),

which involves finding the sensitive set of aL10 (as stated above, this requires n + 1

membership queries). Getting a negative counterexample, does not involve making

membership queries. There are at most k positive counterexamples, so the total

number of membership queries needed (assuming we know a discriminant) is at most

k(n+1).

The problem now is to find a discriminant for f. Note that any suitable discriminant

for f is a collection of k(k - 1) literals. What Angluin's algorithm does, in order to

find a discriminant, is to try all possible collections of literals of size lc(k - 1). Since

there are 2n literals, the number of such collections is at most (k(1)) ≤ (2n)k(1) =

Q(k2) Then, the algorithm tries to learn f for every possible collection. We thus

have the following lemma.

LEMMA A.2. Angluin 's algorithm [3] learns k-term DNF formulas in time 0(n P

using at most n Q(k'2) membership queries and equivalence queries.

A.1.2. Our refinement. Using lemma A.1 and the fact that for each i both

and L,,i are of size less that k, we describe the following version of produce-terms.

Let £ be the set of all nonempty subsets of literals of size less than or equal to

108

k - 1. The size of £ is

/ 2n \
(2n) + () + + k-1) ≤ _(2n)

(2n)k.1

2n-1

=

Note that £ contains both Li,, and L,j for every i = 1,... , k.

Suppose now that produce-terms is given a positive example a of f, and suppose

a satisfies tj in f. produce-terms outputs, for each L, L' E £, the term whose

literals are exactly L' U .$enstve(a,o). In particular for L' = Li,, and £ = thus

produce-terms outputs t.

The number of membership queries that produce-terms uses and its running time

are both ICI2n = Q(2k+i). The number of terms that produce-terms outputs is

I.2 = Q(2k)

A.2. Summary

Using the version of produce-terms presented above with our techniques pre-

sented in 4.2, we obtain the results shown in table A.1. The complexities shown in

the table are polynomial for k constant.

109

TAB

Running

Time

Membership

Queries

Equivalence

Queries

learn l-k-term-dnf no (k) n O(k) O(k)

learn2-k-term-dnf ' n O'k2 /TI / k or k+1

learn3-k-term-dnf 0(k) o(k) k or k + 1

LE A.1. Summary of resnit.s when iinp' the vr.cinn of nrod

terms based on Angluin 's algorithm above.

1 uce-

Bibliography

[1] Howard Aizenstein and Leonard Pitt. Exact learning of read-twice DNF formulas.
In 3,nd Annual Symposium on Foundations of Computer Science, pages 170-179,
October 1991.

[2] Howard Aizenstein and Leonard Pitt. Exact learning of read-k disjoint DNF and
not-so-disjoint DNF. In Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory, pages 71-76, July 1992.

[3] Dana Angluin. Learning k-term DNF formulas using queries and counterexamples.
Technical Report YALEU/D (JS/RR-559, Yale University, August 1987.

[4] Dana Angluin. Learning regular sets from queries and counterexamples. Informa-
tion and Computation, 75:87-106, November 1987.

[5] Dana Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
[6] Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121-

150, 1990.
[7] Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of horn

clauses. Machine Learning, 9:147-164, 1992.
[8] Dana Angluin, Lisa Hellerstein, and Marek Karpiuski. Learning read-once formu-

las with queries. J. ACM, Volume 40, Number 1, 185-210, January, 199:3.
[9] Dana Angluin and Michael Kharitonov. When won't membership queries help? In

Proceedings of the 23rd annual ACM Symposium on Theory of Computing, pages
444-454, ACM, May 1991.

[10] .José Luis Balczar, Josep Diáz, and Joaquim Gabarr. Structural complexity I.
Springer-Verlag, Germany, 1988.

[11] Ian Martynovich Barzdin and RTisi4s Freivalds. On the prediction of general
recursive functions. Soviet Mathematics Dokiady, 13:1224-1228, 1972.

[12] Avrim Blum and Steven Rudich. Fast learning of k-term DNF formulas with
queries. In Proceedings of the Twenty Fourth Annual ACM Symposium on Theory
of Computing, pages 382-389, May 1992.

[13] John A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan,
London, 1977, c1976.

110

111

[14] Nader H. Bshouty. Exact learning. In 31th Annual Symposium on Foundations
of Computer Science, October 1993.

[15] Nader H. Bshouty and Richard Cleve. On the exact learning of formulas in par-
allel. In Proceedings of the 33rd Symposium on Foundations of computer Science,
pages 513-522, October 1992.

[16] Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arith-
metic read-once formulas. In Proceedings of the Twenty Fourth Annual ACM Sym-
posium on Theory of computing, pages 370-381, May 1992.

[17] Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning Boolean
read-once formulas with arbitrary symmetric and constant fan-in gates. In Proceed-
ings of the Fifth Annual Workshop on Computational Learning Theory, pages 1-15,
August 1992.

[18] Nader H. Bshouty, Thomas R. Hancock, Lisa Hellerstein, and Marek Karpinski.
Read-once threshold formulas, justifying assignments, and transformations. Tech-
nical report, International Computer Science Institute TR-92-020, 1991.

[19] Gerard D. Cohen and Gilles Zémnor. Intersecting codes and independent families.
Draft.

[20] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
algorithms. The MIT press, 1990.

[21] Thomas R. Hancock and Lisa Hellerstein. Learning read-once formulas over fields
and extended bases. In Proceedings of the 1991 Workshop on Computational Learn-
ing Theory, pages 326-336, Morgan Kaufmann, 1991.

[22] David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmnutli.
Equivalence of models for polynomial learnability. In Proceedings of the 1988 Work-
shop on Computational Learning Theory, pages 42-55, Morgan Kaufmann, August
1988.

[23] Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. On the learnability
of boolean formulae. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, pages 285-295, ACM, 1987.

[24] Nick Littlestone. Learning when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

[25] Wolfgang Maass and György Turin. Lower bound methods and separation results
for on-line learning models. Machine Learning, 9:107-145, 1992.

[26] Leonard Pitt and Leslie Valiant. Computational limitations on learning from
examples. J. ACM, 35:965-984, 1988.

[27] Vijay Raghavan and Stephen R. Schach. Learning Switch Configurations. In Pro-
ceedings of the 1990 Workshop on Computational Learning Theory, pages 38-51,
Morgan Kaufmann, August 1990.

[28] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using
homing sequences. In Proceedings of the Twenty First Annual ACM Symposium on
Theory of computing, pages 411-420, May 1989.

112

[29] Leslie Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

