1. Introduction

Modem schemes for text compression use explicit models to help them predict
what characters will come next (Bell et al., 1990). The actual next characters
are coded with respect to these predictions, resulting in compression of
information. Indeed, one of the most important advances in the theory of data
compression over the last decade is the insight, cogently expressed by
Rissanen and Langdon (1981), that the process can be split into modeling and
coding, the first assigning probabilities to symbols and the second translating
these probabilities to a sequence of bits.

Text compression models are generally formed adaptively by the encoder as it
works through the text. The model is transmitted implicitly, so that the decoder
can build and maintain an identical one that is exactly in step with the
encoder’s. Although the models involved may be very large, the method of
adaptive model formation avoids the need to transmit them explicitly. This
results in a very effective text compression strategy that outperforms others
both in theory (Cleary & Witten, 1983) and practice (Bell et al., 1990).
Adaptive modeling applies equally well to the storage of text—the bit-stream
that would have been transmitted is simply saved instead and can be read and
decoded later by an interpreter that builds its model dynamically from the text
as decoding proceeds. However, this procedure does not permit random access
to the text, for the model changes constantly and can only be reconstructed by
reading the text from the beginning. Other modeling methods must be
developed for full-text retrieval systems.

The technique that modern compression schemes use for the actual encoding
operation is called “arithmetic coding” (Witten et al., 1987). Like the older and
better-known method of Huffman coding, this takes the next character and
encodes it with respect to a probability distribution that is supplied by the
model, producing a bit-stream that can be decoded correctly by a decoder with
access to the same probability distribution. Unlike Huffman coding, it is
provably optimal for arbitrary probability distributions (whereas Huffman
coding is only optimal when the probabilities are integer powers of 1/2).
Although the best schemes for text compression use adaptive models,
arithmetic coding is suitable for use with any kind of model.

This paper explores the application of arithmetic coding to full-text retrieval
systems. These involve the storage of a large body of text, along with a lexicon
that lists the words it contains and a concordance that indicates the exact
locations at which each word can be found. A typical query might seek all
sentences that contain a particular word or combination of words. The random-
access requirement means that adaptive modeling cannot be used. Of course,
the fact that the whole text is available before compression means that a model
could be formed in advance from the text itself and then used to compress it.
However, it is uneconomic to store models created by standard adaptive
modeling techniques because of their large size.



1.1 SUMMARY OF MODELS DEVELOPED

A number of different kinds of model have been developed for different parts
of a full-text retrieval system and are presented and evaluated in this paper.
They include

+ amodel that predicts the size of compressed text from its uncompressed
size;

+ a static model that uses words as the unit to be compressed;

+ amodel for compressing sorted lists that must be searched efficiently;

+ a Bernouilli model of inter-word gaps.

The first model is used to encode pointers into the main text, and is described
in Section 4. The number of words that intervene between successive pointers
is known, and is used to predict the size of the corresponding compressed text
and hence the actual difference between pointers. The second model, which is
suitable for the main text, is described in Section 5. A key technique is the
insertion of synchronization points into the text to allow it to be accessed
randomly, and the overhead that this incurs is found to be negligible. The third
model, which is suitable for storing the lexicon, is described in Section 6. It
capitalizes upon the fact that the data is sorted, and also divides the information
into fixed-length blocks to permit binary searching. The fourth model, which
can be used to store concordance pointers efficiently, is described in Section 7.
It is an analytical model of word distribution that predicts the difference
between consecutive concordance pointers for a particular word. This is a rare
instance of the successful use of an analytical model (rather than an observed
frequency distribution) for arithmetic coding.

Section 2, which precedes these descriptions of modeling methods, contains a
brief review of salient properties of arithmetic coding—the technique used to
actually encode predictions from the models. Following that is an introduction
to the requirements and architecture of full-text retrieval systems.

1.2 THE DESIGN SPACE

The intent of this paper is to explore design trade-offs, not to promote a
particular system design. A number of new modeling techniques have been
investigated, and in fact a system that incorporates them all has been
implemented for evaluation purposes. However, implementation decisions will
depend on properties of the application envisaged—size of text, retrieval
mechanisms needed, response time requirements, processing power and
storage capacity available.

We assume that the most important factors are the storage space required for
the database, the number of disk accesses necessary for retrieval, and the
scalability of the design to ever larger databases. A number of authors (e.g.
Cichocki and Ziemer, 1988; Klein er al., 1989) argue that advances in mass
storage technology like CD-ROMs have certainly not eliminated the need for
compression, and may actually increase it because of the desirability of
accommodating huge databases on a single disk. Whether subsidiary data
structures such as the lexicon should be (a) stored uncompressed, or (b) stored
compressed but expanded when read into main memory, or (c) kept always
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compressed, is clearly a classic “store vs compute” trade-off that depends on
the circumstances of the application. We describe techniques that favor
compression over speed, on the assumption that system designers will be able
to make any necessary compromises themselves. In the future faster
processors will encourage greater compression.

2. Overview of arithmetic coding

A symbol that is expected to occur with probability p can be represented in no
less than —log p bits! on average; this is Shannon’s celebrated source coding
theorem (1948). In this manner a symbol with a high probability is coded in
few bits, while an unlikely one requires many bits. We can obtain the expected
length of a code by averaging over all possible symbols, giving the formula

- Y, pilogp;.

This value is called the entropy of the probability distribution, because it is a
measure of the amount of order (or disorder) in the symbols.

The task of representing a symbol with probability p in approximately —logp
bits is called coding. This is a narrow sense of the term—we will use
“compression” to refer to the wider activity. An encoder is given a set of
probabilities that represent the predicted distribution of the next character, and
the next character itself. It produces a stream of bits from which the actual next
character can be decoded, given the same predicted distribution that the encoder
used. The probabilities may differ from one point in the text to the next.

2.1 HUFFMAN CODING

The best-known method of coding is Huffman’s algorithm (1952), which is
surveyed in detail by Lelewer and Hirschberg (1987). However, this technique
is not suitable for our purposes because it must approximate —logp with an
integer number of bits. This is particularly inappropriate when one symbol is
highly probable (which is desirable, and is often the case with sophisticated
models). The smallest code that Huffman’s method can generate is one bit, yet
we frequently wish to use less than this.

It is possible to overcome these problems by blocking symbols into large
groups, making the error relatively small when distributed over the group.
However, this introduces its own problems, since the alphabet is now
considerably larger (it is the set of all possible blocks).

2.2 ARITHMETIC CODING

An approach that is conceptually simpler and much more attractive than
blocking is a recent technique called arithmetic coding. Witten et al. (1987)
presents a full description and evaluation, and includes a complete

IThroughout this paper the base of logarithms is 2 and the unit of information is bits.
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implementation in the C language. The most important properties of arithmetic
coding are:
s it is able to code a symbol with probability p in a number of bits
arbitrarily close to —logp;
» the symbol probabilities may be different at each step;
* it requires very little memory;
« it is very fast.

With arithmetic coding a symbol may add a fractional number of bits to the
output. In practice, of course, the output has to be an integral number of bits;
what happens is that several high-probability symbols together end up adding a
single bit to the output. Symbols can be encoded with only a small number of
fixed-point arithmetic operations.

One complication of arithmetic coding is that it works with a cumulative
probability distribution, which means that some ordering should be placed on
the symbols, and the cumulative probability associated with a symbol is the
sum of the probabilities of all preceding symbols. Although many of the
models developed in this paper store plain frequency counts, they include an
efficient way of accumulating these to determine the cumulative distribution
required by the arithmetic coder.

Since arithmetic coding effectively encodes each symbol into a fractional
number of bits that corresponds to its entropy, some overhead is inevitable
when terminating the compressed form of a message. In fact, this is never
greater than two bits—in other words, a sequence of k symbols 51 57 ... s that
are encoded with probabilities p1 p7 ... px will occupy at most

k
-y logp; +2
i=1
bits. If the coded stream is padded to round out a byte, the overhead increases

by an average of half a byte to 6 bits. The small size of this overhead is crucial
to the success of the methods we describe.

2.3 COMPUTATIONAL REQUIREMENTS

Most implementations of arithmetic coding use three 16-bit registers inteally.
They perform arithmetic on 16-bit integers, and use 32-bit intermediate values.
In such implementations the frequency counts are represented as 14 bits, which
means that individual probabilities may not fall below 2-14 (see Witten et al,
1987, for further discussion). This is adequate for most, but not all, of the
encodings required in our models.

An example of where it is inadequate occurs when coding the main text. As
described more fully in Section 5, we code words individually based on their
frequency. With more than 214 different words, it is not possible to represent
their cumulative frequencies as different 14-bit values, even approximately.
Consequently it is necessary to use higher precision within the arithmetic
coder.

Using a 32-bit arithmetic coder (which involves 32-bit operations and 64-bit
intermediate values) means that counts can be represented as 30 bits. Then the
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maximum number of words that can be accommodated is 230, which is about
109. A 32-bit coder will accommodate texts that fit on a few 550 Mbyte CD-
ROMs; for larger texts it will be necessary to use greater integer precision.
Note that the use of a higher-precision arithmetic coding does not imply that
coding is less efficient. Its only drawback is increased execution time for
decoding (and also encoding, which is less important in the present context).

Our implementation uses 16-bit arithmetic coding, with 14-bit counts,
wherever possible. The implementation is a mildly-optimized version of the C
code described by Witten et al. (1987). (The nature of the optimizations are
discussed in that paper.) In cases where higher precision is required, a 31-bit
coder (not 32 for unimportant technical reasons) with 29-bit counts is used.

3. Full-text retrieval: requirements and architecture

Full-text retrieval systems divide the main text into lexical units such as book,
chapter, paragraph, and sentence. They aim to provide efficient means of
answering queries that involve retrieving all lexical units of a certain type (e.g.
all sentences) containing

» a specified word

e ... or combination of words

* ... or words within a certain distance of each other

» ... or words with a specified prefix, suffix, or stem.

While the main text includes enough information to answer such queries
without any auxiliary data structures, it is infeasible to scan it all and therefore
a concordance must be used. Moreover, since mass storage media like CD-
ROMs tend to have rather slow random access times, it is important to
minimize the use of large data structures such as text and concordance. In the
scheme we describe, the relevant lexical units are identified without ever
reading the main text, and the concordance need only be accessed once for each
word involved in the query.

3.1 THE SAMPLE TEXT

For testing, the present work uses a sample text that contains three versions of
the Bible: the King James Version, the New International Version, and the
Revised Standard Version. Together they comprise 198 books. Although this
sample is very small in comparison to large-scale full-text retrieval systems, it
is nevertheless adequate for experimentation and testing. We believe that
scaling up will not materially affect any of the design trade-offs discussed here
so long as main memory is large enough to accommodate the appropriate
indexes, in compressed form. If this is not the case some re-engineering will
be needed to reduce disk accesses, but the compression methods and models
will still be applicable.

Table 1 compares the sample with other free-text databases. Word tokens are
individual words of the text, counting duplicates; word types are lexically
distinct tokens, that is, words in the lexicon. The first column gives sizes that
are characteristic of very large document retrieval systems (Bird et al., 1978, as
reported by Bratley and Choueka, 1982). The second shows the size of the
Responsa Retrieval Project which collects a large body of running text, written
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mainly in Hebrew and Aramaic (figures are from 1981, reported by Choueka et
al., 1988). The third is for the Trésor de la Langue Frangaise, which covers the
literature, history, and science of France from the eighteenth century to the
present (Klein et al., 1989).

3.2 LEXICAL PREPROCESSING

Although the sample text is represented as a sequence of letters, the
compression scheme and concordance are based on words. There are many
different possible ways of defining what a “word” is (Witten and Bell, 1990).
We have adopted a simple approach that splits text into words at a space or
before a punctuation mark: thus, for example, the most frequent “word” is the
comma character. It was decided to omit from the concordance words made up
of punctuation characters alone. Table 2 gives some details of the sample text,
including its size and the composition of the lexicon.

The sample has a four-level lexical hierarchy comprising version, book,
chapter, and verse; the number of each is given in the Table. Sentences are not
appropriate for this text: sometimes a verse includes several sentences, but
sometimes two or more verses span a single sentence. In fact the “verse” level
is very like the “sentence” level in most other documents. As this illustrates,
the appropriate lexical hierarchy will depend on the kind of material being
stored. Lexical units end with a special marker in the text; these count as
words.

An important lexical issue is the treatment of upper- and lower-case characters.
In many situations it is possible to predict the case of a letter. For example,
Pike (1981) presented a simple and reversible method for transposing most
upper-case characters to lower case. He inverted the case of a letter if

¢ it is the first letter in the document;

» it is the first letter after a period;

» the last two letters were upper-case;

» it is the the letter “I” flanked by spaces.

The original text can be recovered by re-applying the same rules once more—
that is why they are expressed in terms of “inverting” case rather than changing
to lower case. The transformation captures some of the rules of English
explicitly, and its potential payoff is greater compression and a smaller lexicon.

In order to decide how to treat case, some preliminary experiments were
performed on the sample. First, the compression potential was investigated.
Using a standard technique (PPMC, see below), compression of the main text
of 8.87 bit/word was reduced to 8.86 bit/word when all letters were folded to
lower case. This gain in performance is insignificant, and in practice, if case is
folded in a way that permits the original to be recovered, compression will
likely increase (for example, using Pike’s method it increases to
8.89 bit/word).

Second, the potential for reducing the size of the text’s lexicon was assessed.
About 6000 of the 24,300 words had initial capitals. However, only 1200 of
these appear in uncapitalized form—the rest were mostly proper names.
Consequently if case could be predicted perfectly, the lexicon would shrink
from about 24,300 words to about 23,100 words—a saving of only 5%. In
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fact, Pike’s method catches just over half of these 1200 words but increases
the number of mixed-case words, for a net shrinkage in the lexicon of only
1%.

Because of the small potential savings the full text was used. Capitalized words
were treated as completely different tokens from their lower-case equivalents.

4. Compressing the lexical hierarchy and disk addresses

Elements at the lowest level of the lexical hierarchy are the smallest addressable
units in the main text database. For example, in our case each verse is
addressable on disk. Consequently it is necessary to store a disk pointer for
every one. At 4 bytes each (enough to address seven 550 Mbyte CD-ROMs),
the pointers for the sample text consume 366 Kbyte. Access will be quicker if
they can be kept in main store, and so we now study how to compress them.,

It is also advantageous to keep a tree structure showing the word number at
which each level of the lexical hierarchy begins. This makes it simple to
convert a position in the text which is expressed as word number, or distance
in words from the start of the text, to one expressed as a coordinate in the
lexical hierarchy—in our case, version number, book-within-version, chapter-
within-book, and verse-within-chapter. Again, the data structure involved may
be quite large—3 bytes for each of 94,000 verses gives 274 Kbyte for the
sample text. Again, however, it can be compressed—and in fact, as we shall
see, it helps considerably in representing the disk pointers.

4.1 THE LEXICAL HIERARCHY

Figure 1 illustrates a suitable structure to record the lexical hierarchy of the
sample text. Compression is only worthwhile for the lowest level because the
exponential growth in index sizes makes gains at higher levels relatively
insignificant.

For each unit at the lowest level of the lexical hierarchy, two quantities are
stored:

« the number of words in it;
« the number of bytes it occupies on disk.

Naturally these are highly correlated, and we take advantage of this. In effect it
means that, since disk pointers are needed anyway, little further storage is
required for the lexical hierarchy.

If the number of words in a unit is stored literally, allowance must be made for
the largest unit. Choueka et al. (1988) cite a situation where a “sentence”
occupies 676 words, and in our case the longest verse is 90 words: thus 10
and 7 bits respectively would be needed to represent unit lengths. However,
storage requirements can be reduced by creating a model which gives, for each
length that occurs, the number of units that share that length, and coding the
individual lengths with respect to the model. For the sample text this yields an
entropy of only 5.37 bit/verse. To store the model requires just a few bytes for
each length that occurs.



4.2 DISK ADDRESSES

The number of bytes a unit occupies on disk can be predicted from the number
of words in it. In our case the average figure is 1.34 byte/word (taken over the
2,272,697 “real” words—i.e. excluding those comprising punctuation alone).
Using this to predict the space occupied, and representing differences from the
predicted value with respect to their empirically-observed distribution, leads to
very economical storage. For the sample text it represents the number of bytes
in only 3.77 bit/verse on average (compare with the 4 bytes mentioned above
for uncompressed storage of disk pointers). In fact, the predicted size is
accurate to within one byte in 37% of cases, and the prediction error assumes
only 44 different values ranging from —24 to +21 bytes. Again, storing the
model consumes just a few bytes for each of these 44 values.

4.3 EFFICIENT CONVERSION

The data structure of Figure 1 permits efficient conversion from the coordinates
of a word to its actual word number. It is also necessary to be able to convert
word numbers efficiently to hierarchical coordinate specifications, and to disk
addresses. A binary search on word number can be performed on the lowest
uncompressed index in the lexical hierarchy (the chapter index in Figure 1).
Once the appropriate unit at that level (chapter) is found, the corresponding
block at the lowest level (verse) can be decompressed and scanned linearly to
find the unit (verse) containing the target word.

Our text has an average of 26.3 verses per chapter, so only 13 entries in the
verse table need to be decoded on average. The longest chapter contains 176
verses, although this is an outlier (next longest is 89 verses); if it were
necessary to limit worst case access time these large chapters should be further
subdivided in the chapter index.

The structure of Figure 1 has the further advantage that if the lowest lexical
index (verse) is so large that it must be stored on disk, the price paid can be
reduced to just one disk access by a slight reorganization—namely, moving the
word number of the first verse of each chapter from the verse index to the
chapter index.

5. Compressing the main text

The main text is the principal data structure and it is important that it is
compressed effectively and can be decoded efficiently. It is also necessary that
individual elements at the lowest unit of the lexical hierarchy can be accessed
independently.

5.1 COMPRESSION BY DIFFERENT METHODS

Using a modern adaptive coding method such as PPMC (Moffat, 1988; Bell et
al., 1990), the sample can be compressed to occupy an average of 8.87
bit/word. However, it can then only be read sequentially by a decoder that
constructs its model adaptively from the text decoded. The alternative of
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storing the model explicitly is rather expensive. PPMC is designed to use a
maximum of 500 Kbyte of memory, and when this is exhausted it clears the
model, primes it from the last few hundred characters and continues coding.
When compressing the sample text it will certainly have made use of the full
allocation. Amortized over the words in the text, this corresponds to an
additional 1.51 bit/word.

Instead, we have investigated the use of schemes that parse the text into words
for encoding. For these “word models” a lexicon must be stored, but this
presents little additional overhead since full-text retrieval systems require a
lexicon anyway. A “zero-order” model encodes each word individually
according to its frequency. If the model is “static” the word frequencies are
precomputed and stored rather than being accumulated on the fly.

The entropy of the sample text using a static zero-order word model is
8.75 bit/word—slightly less than with the state-of-the-art adaptive encoder
PPMC. For a fair comparison the size of the model should be added. Using a
straightforward method of representing the words in the lexicon (storing them
as character strings), when amortized over the words in the text, contributes an
overhead of 0.60 bit/word, while storage of the word counts (3 byte/count)
accounts for a further 0.21 bit/word. This brings the entropy of the word
model to considerably more than that of PPMC. However, compressing the
lexicon as described in the next section reduces the overhead considerably, to
0.20 bit/word (0.16 bits for the words themselves and 0.04 bits for the
counts), bringing the total to 8.95 bit/word—competitive with PPMC. These
figures are summarized in Table 3. Moreover, for a full-text retrieval system
only the space for the counts should be charged against the compression
scheme because the words in the lexicon need to be stored anyway.

First-order word models, which condition each word’s probability on its
predecessor, were investigated too. Not including the lexicon, a first-order
static model consumes only 5.76 bit/word on average. The lexicon will be
considerably larger than for a zero-order model, since it must store the
frequency of each consecutive pair of words that occur. Effective compression
of a first-order model’s lexicon in a way that permits decoding to take place
reasonably efficiently involves an intricate trade-off between space and speed.
Consequently the efficient implementation of first-order models has not been
investigated in detail, and the zero-order word model is assumed in the
remainder of the paper.

For interest, Table 3 also shows the performance of adaptive word models,
both zero- and first-order. These are considerably inferior to the corresponding
static models, even (in the zero-order case) when lexicon storage is taken into
account. It is reassuring to find that the opportunity presented by static
modeling to pre-scan the whole text yields an appreciable advantage in
compression performance.

5.2 SYNCHRONIZATION POINTS

The zero-order word model calculates the probability of each word and passes
this distribution, along with the actual next word, to an arithmetic coder which
produces a continuous stream of bits for storage. In order to provide random
access to lexical units of the text it is necessary to terminate the arithmetic
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coding process at the end of each unit and begin it again for the next. We call
this process “synchronization.”

Each synchronization point incurs a termination overhead. There is a trade-off
between synchronizing on small units (e.g. verses) and larger ones (e.g.
chapters): at the expense of processing time a large unit can be completely
decoded to provide access to its individual constituents. We assume that the
text is synchronized according to the smallest indexed unit (verse).

Terminating arithmetic coding incurs a 2-bit overhead. However, further
overhead may occur because of the resolution of disk addressing. In general,
lower resolution gives smaller pointers but more wasted space on disk. If bit
addressing is used, there is no further overhead—but disk pointers are 3 bits
larger than they would otherwise be. On the other hand, byte addressing incurs
an additional byte-padding overhead of 4 bits on average. Despite its 1-bit
disadvantage, byte addressing is preferred on grounds of simplicity. Then each
synchronization unit involves a 6-bit overhead on average.

Verses in the sample text average 259.5 bits each in compressed form, and so
synchronization imposes a 2.3% overhead on the compressed text.

6. Compressing the lexicon

The lexicon serves a dual purpose: through it the main text is decoded and the
concordance is accessed. It contains an entry for every word type which
records

« the word itself;
« the word’s occurrence count;
* apointer to its concordance entry.

When decoding the main text, the lexicon is accessed via the occurrence count.
Each arithmetic decoding operation yields the cumulative probability of the next
word, and the word with that probability is sought in the lexicon. When
responding to user requests to locate all occurrences of a particular word, the
lexicon is accessed via the word itself to locate its entry in the concordance,
which is then decoded and the appropriate units of text read off.

Since the lexicon is used for every word decoded, it is essential that access be
fast. For this reason entries are divided into fixed-length blocks of compressed
information, so that a binary search can be used to locate the block that
contains the target word or occurrence count. Once found, the block is decoded
and searched linearly for the target word or count. If enough main memory
were available to allow the entire lexicon to be decoded before being searched
access time would be reduced further, for the linear search could be avoided.

We first describe the coding of each of the three components of a word’s entry
in the lexicon, and then outline the data structure in which the blocks are
represented. Finally we describe the storage of a permuted lexicon which
allows partial word matches to be sought.
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6.1 WORDS

The sample text’s lexicon comprises 24,323 words, with an average of 7.37
characters each (8.37 if a terminator is included). Uncompressed, these
consume a total of 199 Kbyte. The result of compressing them by several
different methods is shown in the first part of Table 4.

The benchmark method PPMC yields substantial compression, although being
adaptive it is certainly not appropriate for the lexicon since it does not permit
random access. Also, the lexicon is sorted into alphabetic order, and PPMC
does not take advantage of this. A method called “front compression” is based
on the observation that most words in a sorted list share the same initial letters
as their predecessor. The repeated letters are simply replaced with a number
representing the size of this common prefix. Figure 2 shows part of a lexicon
and its front compression coding.

Front coding eliminates prefix repetition but does not otherwise compress the
words. That considerable opportunity remains for further compression is
shown by applying PPMC to the front-coded list. Since this is inappropriate for
random-access data structures a simpler method is used. Separate models are
made of prefix length, suffix length (to avoid the need for a terminator), and
characters in the lexicon, and each component is coded with respect to the
appropriate model. This produces a figure of 17.7 bit/word which
corresponds to 2.12 bit/character—excellent performance considering the
simplicity of the models used.

The models themselves, for prefix length, suffix length, and characters,
consume negligible storage. Twenty different prefix lengths occur in the
sample text, and if the occurrence frequency of each is stored as a 4-byte
number the prefix-length model consumes 80 bytes. The suffix-length model is
similar. For the character model, assuming 128 different characters (in fact,
only 81 actually occur in the text) and 4-byte occurrence counts, around
0.5 Kbyte is required.

6.2 COUNTS

In the sample text’s lexicon, counts range from 1 (for hapax legomena, or
words that only occur once) to 175,513 (for the “word” comprising the comma
character—the next most frequent word was “the”, with 172,946 occurrences).
However, for arithmetic coding cumulative counts are required, and the total
cumulative count is, of course, the number of words in the sample text, namely
2,717,553. Literal storage would need 22 bit/count (middle section of
Table 4).

It is obviously more economical to store actual rather than cumulative counts,
and rely on the data structure for the lexicon to provide a reasonably efficient
way of determining cumulative values (see below, Section 6.4). This reduces
the storage requirement to 18 bit/count.

Elias (1975) has developed several ways of representing variable-length
integers, one of which—the y code—is particularly suitable. This represents
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the number i as |_log i] zeros followed by the shortest binary code for i (which
begins with a 1). This code gives an average of 5.5 bit/count.

Although the largest count is 175,513, the number of different counts is quite
small—891 in fact. Consequently is is feasible to make an exact model by
storing the values of 891 different counts, along with the number of times each
occurs. This gives an average of 5.0 bit/count. Although only slightly better
than the Elias code this representation is preferred since it involves arithmetic
coding and this enables different kinds of lexicon data (words, counts,
concordance pointers) to be coded in a single stream, without having to
terminate and re-start the arithmetic coding process. The greatest number of
times a count occurs is 6,452, the number of hapax legomena in the text.
Allowing 4 bytes for each (clearly lavish!) gives a model size of around
7 Kbyte.

6.3 LOCATING CONCORDANCE ENTRIES

Almost all words in the lexicon have a corresponding entry in the concordance,
which is pointed to from the lexicon. Since the concordance is a large data
structure, it is worth considering how best to represent these pointers.

The difference between successive concordance pointers is the size of a word’s
concordance entry, in bytes. The simplest model would record a distribution of
the size of concordance entries and code each one with respect to the
distribution. Using this method for the sample text, concordance entries would
be coded in 5.55 bits each. However, we can do even better.

Not surprisingly, the size of the concordance entry for a word is correlated
with its occurrence count, and so the latter can be used as a predictor by
measuring the average ratio of concordance entry size to occurrence count.
Testing this on the sample text, the concordance entry size is predicted to
within one byte from the occurrence count in 63% of cases. It is only
necessary to store the discrepancy between the actual size of a word’s
concordance entry and that predicted from its occurrence count. Recording all
these discrepancies, with their frequencies, provides a model according to
which they can be coded.

Using this method on the sample text gives an average of 3.89 bits for each
concordance entry. The discrepancy assumes 831 different values—the largest
is 349,732, occurring once only, while the most frequent is the value —1,
occurring 12,020 times. Allowing four bytes to store each number (again,
lavish) gives a storage requirement of around 6 Kbyte for the model.

6.4 DATA STRUCTURE

The average size of a lexicon entry, which comprises the word itself, its
occurrence count and concordance pointer, is 17.7+5.0+3.9=26.6 bits, giving
a total size for 24,323 words of 79 Kbyte. The size of the models involved is
approximately 14 Kbyte. Of course they could be compressed dramatically (by
modeling the models!) if this were thought worthwhile.

The lexicon data structure is sketched in Figure 3. It is divided into fixed-
length blocks: 256 bytes is a suitable size. Larger blocks would increase access
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time because more words would have to be decoded and checked once the
relevant block was found by a binary search. Smaller ones would increase the
overhead of the block header and the dead space at the end of each block.

Because both counts and concordance pointers are coded differentially, their
initial values for a block are given literally at the beginning of the block. Since
words are front coded, and also to expedite searching by words, the first word
of each block is also stored unencoded in the block header. Following the
header is a sequence of lexicon entries, arithmetically coded as a single unit.

Each lexicon entry contains the prefix length, suffix length, suffix characters,
occurrence count, and concordance pointer, encoded as described above.

In fact, given the data structure used, the lexicon turns out to occupy 85 Kbyte.
This represents a 7% overhead on the 79 Kbyte calculated above, which
corresponds to approximately 15 bytes of header and 2 bytes of wastage in
each 256-byte block. This is the price paid for random access to the
compressed lexicon.

6.5 ALLOWING PARTIAL WORD MATCHES

It is frequently desirable to retrieve units of a text based on incomplete word
matches, such as prefix, suffix, and word stem matches. Bratley and Choueka
(1982) describe an elegant method for finding query terms of the forms X, X*,
*X, *X*, X*Y where X and Y are specified strings of characters and *
matches any string. It employs a permuted dictionary in which each word
appears in all possible rotated positions. For example, the word “hello” will
appear four times, as “o/hell”, “lo/hel”, “llo/he”, and “ello/h”. Because the
permuted dictionary is used as an adjunct to, and not a replacement for, the
lexicon, the form “/hello” is not stored in it.

It is a remarkable fact that all query terms of the forms above can be expanded
very efficiently using this method. As an example, Figure 4 shows a permuted
version of the lexicon of Figure 2. Just as all words of the form abas* can be
found easily from the sorted list at the left of Figure 2, all words of the form
*on* (i.e. “abalone” and “abandon”) can be found by seeking entries
beginning with the pattern “on” in Figure 4 (middle of third column), and all
words containing “s” (i.e. abacus, abase and abash) appear together under “s”.
Nothing further need be stored since once the words are obtained their
concordance entries can be retrieved from the lexicon. For further details, see
Bratley and Choueka (1982).

The number of words in the permuted dictionary can be calculated as the
number of words in the lexicon times the average length of each minus 1. For
the sample text this is 24,196 x 6.40 = 154,948. The average length of each is
9.27 (10.27 if a terminating character is included)—greater than the average
length of lexicon entries since long words have more permutations—and
1.5 Mbyte is needed for uncompressed storage.

The final block of Table 4 shows the effect of the various compression
techniques used for the words of the lexicon. Their performance appears worse
because of the longer average word; when normalized for this it is similar.
Using front coding with models of prefix length, suffix length and characters,
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yields a total size of permuted index for our sample text of 25.6 X 154,948
bits, or 484 Kbyte. As before, the size of the models involved is negligible.

Like the lexicon, the permuted dictionary must be efficiently searchable. Using
a block structure similar to that of Figure 3 but without counts and concordance
pointers increases the size of the permuted index by 4% to 503 Kbyte.

7. Compressing the concordance

The concordance contains, for each word type appearing in the text, a list of
pointers to all occurrences or “tokens” of that word. Since it includes a pointer
for every token in the text, it will consume about as much space as the text
itself. Indeed, when both text and concordance are compressed the latter can
even be larger, because the pointers are all different whereas words are chosen
from a restricted vocabulary.

For example, the concordance for the sample text contains 2,272,697 entries,
each pointing to a particular word in the text. Since the full text contains that
number of words, 22 bits are needed to specify a particular position, and if this
is rounded to 3 bytes the uncompressed concordance occupies 6.5 Mbyte. The
space can be reduced somewhat if concordance entries indicate the beginning
of a higher lexical unit rather than the word itself; but this will compromise
performance on queries such as finding occurrences of words within a certain
distance of each other, since the main text will have to be consulted to
determine the exact distance between words from different lexical units.
Consequently this section addresses the design of a concordance that holds full
word pointers.

7.1 REPRESENTING THE CONCORDANCE

The most pressing design issue for the concordance is whether to store
pointers as the distance in words from the start of the text or as coordinates
with a component for each level in the lexical hierarchy.

Choueka et al. (1988) use hierarchical coordinates and compress them with an
ad hoc compression scheme. In their corpus of 38 x 100 words a plain word
number requires 26 bits, while its coordinates, when compressed by their best
method, occupy only 24 bits on average. Klein et al. (1989) also use
compressed hierarchical coordinates. Moreover, their concordance is reduced
by eliminating references to the 100 most frequent words. Although this
decreases concordance size by half, it affects performance since some queries
are no longer possible—and although it is rare to encounter a query that
contains only very frequent words, it does happen (Klein et al., 1989).

In our case it is possible to convert between word numbers and coordinates
using the data structure described in Section 4 and illustrated in Figure 1, and
so the penalty for using word numbers in the concordance need not be large.

The crucial factor that favors the use of word pointers for the concordance is
that an excellent, and tractable, model is available for encoding them. Since the
concordance accounts for about half the space occupied by a full-text retrieval
system, an efficient representation is of paramount importance. The model
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roughly halves the storage required for the concordance, at the cost of
increased computation time to convert word numbers to hierarchical
coordinates (if these are indeed required). The increase in computation time is
fairly small since only a few binary searches are involved—one for each level
of the hierarchy.

7.2 A BERNOUILLI MODEL FOR INTER-WORD GAPS

For each word in the lexicon, pointers in the concordance record successive
occurrences in the text. The difference between one pointer and the next is
conveniently modelled by a geometric distribution of word occurrence.

Consider the occurrences of a particular word. Their number is known: it is
just the occurrence count in the word’s lexicon entry. Dividing this by the size
of the text gives the word’s occurrence probability p. Model the occurrences as
a Bernouilli process with probability p. The chance of an inter-word gap of
size k is the probability of having k non-occurrences followed by one
occurrence, or (1-p)kp, for k = 0, 1, 2, ... . This is called the “geometric”
distribution.

The cumulative probabilities required by arithmetic coding can easily be
calculated by summing this distribution, and the probability of having up to &
non-occurrences followed by one occurrence is simply 1 — (1-p)*+1. This can
be used directly by an arithmetic encoder and decoder to represent inter-word
gaps.

Now consider the question of precision in the arithmetic coder. Problems will
arise when the difference between two cumulative probabilities drops below
the minimum non-zero frequency that can be represented by a count. With the
31-bit coder used, this occurs when the inter-word gap k is so large that
(1-p)kp < 2-29. For example, the most frequent word indexed in our
concordance is “the,” which occurs 172,946 times (p=0.071). When £ is 221
or greater, the geometric distribution gives a probability of less than 2-29.
Clearly the chance of a gap of more than 221 words between successive
occurrences of “the” is very small, but it does happen (15 times in the sample
text).

Fortunately, the solution is simple. When the inter-word gap exceeds the
maximum value that can be accommodated, it is split into two parts (or more if
necessary), one with probability corresponding to the maximum gap that can
be represented by the 29-bit count, and the other representing the balance.
These parts are coded in two separate arithmetic encoding operations, and the
probability associated with the second is automatically scaled into the range
given by the tail of the geometric distribution. This ensures that no bits are
wasted (actually this is not a significant advantage since the two-part encoding
scheme is rarely necessary—0.7% of cases for the sample text). Although it
sounds complicated, the implementation is straightforward (a few lines of C).

The cumulative probability formula 1 — (1-p)**! must be inverted when
decoding to determine &, and inverted exactly in order for the decoder to
proceed correctly. Inversion gives a floating-point approximation to &; the true
value is found by testing the rounded-down version and, if it fails, rounding it
up instead.
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7.3 PERFORMANCE OF THE BERNOUILLI MODEL

Table 5 shows the number of bits occupied by each entry in the concordance
using various different compression methods. The exact distribution of inter-
word gaps, which would occupy a great deal of storage since there are
122,847 different gap lengths ranging from 1 to 2,270,586, has an entropy of
10.47 bits. The geometric distribution gives an entropy of 10.58 bits. Some
wastage occurs when each concordance block—and there are 24,192 of them,
one for each different word indexed—is terminated and padded to the nearest
byte. In practice the actual space occupied by the concordance averages
10.63 bits per pointer.

The difference between this value and the theoretical one of 10.58 bits is
surprisingly low and deserves elaboration. The expected amount of wasted
space is 6 bits per block, and a block appears for each word indexed. Thus the
expected wastage is only 18 Kbyte in a concordance of compressed size
2.9 Mbyte (2,272,697 pointers at 10.58 bits each). This wastage of 0.6%
corresponds to the difference between the actual and theoretical values.

It is interesting that the common words, which are often omitted from
concordances because of the inordinate number of pointers associated with
them, contribute little to the size of the compressed concordance. The word
“the” occurs 172946 times (7.6% of all concordance entries) but only
contributes 10,304 bytes (0.34% of total concordance size)}—an average of
0.48 bits per pointer! A hapax legomena, on the other hand, will contribute
24 bits: its probability is (1-p)p where k indicates the word’s position in the
text (between 0 and 2,272,696) and p = 1/2,272,697, the negative logarithm of
this lies between 21.1 and 22.6 bits, and byte-padding brings it up to 3 bytes.

Consequently the payoff for omitting common words from the concordance is
smaller than might be expected. For example, the 100 most common words in
the sample account for 76% of references in the concordance but only 44% of
its compressed size. However, they include many words that one might
reasonably wish to index on (e.g. Lord, God, Israel). The 15 most common
words are more obvious candidates for omission, but although they account
for 43% of concordance entries they occupy only 19% of its compressed size.

8. Speed

With the data structures discussed above, the procedure of finding and printing
all verses in the sample text that contain a given word is shown in Figure 6.

The time to perform this procedure is dominated by the process of searching
the compressed lexicon (steps 1 and 3c). Each 256-byte block contains about
72 entries. On average, half of these entries must be decoded to find a given
word (step 1b) or cumulative count (step 3c(ii)). Taking into account prefix
and suffix lengths, suffix characters, count, and concordance pointer, each
word decoded requires an average of 6.8 arithmetic decoding operations (the
mean number of suffix characters is 2.8). Thus every word presented on the
screen involves about 245 arithmetic decodes.
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Witten et al. (1987) report an arithmetic decoding time of 58 ps for an
optimized assembly language implementation on a SUN-3/75. However, this
figure includes an adaptive model update, which is not needed in the present
case. From it a presentation time of 14 ms/word can be calculated, ignoring
everything except the arithmetic decoding operations in step 3c.

The actual implementation has been timed on a much faster SUN
SPARCstation, and (coincidentally) runs at 15 ms/word, or 68 word/s, which
corresponds to a character rate of 570 char/s—a little faster than a 4800 baud
line. Hardware arithmetic decoding (e.g. Mitchell and Pennebaker, 1987;
Langdon et al., 1988) could of course speed things up greatly, as could storing
the lexicon in uncompressed form. For example, when the lexicon in stored
uncompressed, avoiding the linear decode-and-search of steps 1b and 3c(ii),
speed increased by an order of magnitude to 50 Kbit/s. No doubt these figures
could be improved considerably by optimizing the code. They could also be
improved (at the expense of space) by using smaller blocks.

9. Conclusions

This paper has shown how to use a variety of different models to address the
problem of compression in full-text retrieval systems. The overall result for the
sample text is summarized in Table 6, which shows the compression achieved
on the main data structures required. The miscellaneous minor data structures,
which are mostly models for compression, are summarized in Table 7: they
could easily be compressed further but account for only 0.4% of space
occupied. The total compressed size of 6151 Kbytes is less than half the size of
the original text alone.

This is a considerable improvement on earlier work. For example, Klein et al.
(1989) report a total compressed size to 72% of the original text (503 Mbyte
compressed, 700 uncompressed). They achieve compression to 35%, 40%,
and 60% (expressed in the terms of Table 6) on text, dictionary, and
concordance respectively—but is it not clear that these figures are directly
comparable because of possibly different ways of measuring the original size,
and of their omission of the 100 most common words from the concordance.

There are several opportunities for further improvement. The prime targets are
the main text and concordance, between them accounting for almost 90% of
space occupied. As noted in Table 3, a first-order model for the main text has
the potential to reduce storage requirements substantially, from 8.75 to
5.76 bit/word, at the cost of a dictionary of word pairs and some additional
complexity.

Turning to the concordance, the Bernouilli model of inter-word gaps could be
improved. Although Table S shows that it leads to an entropy which is close to
that for the exact distribution of gap lengths, it should be possible to do much
better because, unlike the exact distribution, the model is sensitive to the
frequency of the word whose gaps are being considered. One source of
inaccuracy is that the model gives the highest probability to a gap of 0, whereas
consecutive appearances of the same word are rare. While this could be fixed,
a potentially more productive approach is to take account of the recency
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effect—the fact that occurrences of a particular word tend to be clustered rather
than evenly distributed throughout the text.
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Bird et al., RRP TLF sample text
1978 (Choueka et (Klein et
al., 1988) al., 1989)
Number of 1 000 000 37 500 2 600 200
documents
Number of 2000x 106f 38x 106 112x 106 | 2.7 x 106
word-tokens
Number of 500 000 ? 360 000 22 000
word-types

Table 1 Size of some free text databases




Tokens (number of words) 2717 553
Types (size of lexicon) 24 323
Concordanced words 24192 99.5%
all lower case 15258 62.7%
capitalized lower-case 1228 5.0%
other capitalized word 4761 19.6%
all upper case 42 0.2%
other mixed-case 1 0.0%
all numeric 258 1.1%
other mixed characters 2644 10.9%
Unconcordanced words 131 0.5%
all punctuation 127  0.5%
hierarchy markers 4 0.0%
Lexical hierarchy
versions 3
books 198
chapters 3567
verses 93 654

Table 2 Particulars of the sample text used for experiments



bityword

Zero-order static word modeling

Text with respect to model 8.75
Model uncompressed  compressed
storage of words 0.60 0.16
storage of counts 0.21 0.04
Total 9.56 8.95
Other methods, for comparison
PPMC 8.87
PPMC, accounting for model storage 10.34
First-order static word modeling 5.76
Zero-order adaptive word modeling 10.98
First-order adaptive word modeling 9.33

Table 3 Performance of different modeling techniques on the main text



For the words 8 bit/char 67.0 bit/word

PPMC 24.4 bityword
front coding 38.8 bit/word
front coding with PPMC 13.9 bit/word

front coding, individual models 17.7 bit/word

For the counts cumulative counts 22 bit/count
non-cumulative counts 18  bit/count
Elias y code 5.5 bit/count
exact model of counts 5.0 bit/count
For permuted words 8 bit/char 82.2 bityword
PPMC 27.7 bit/word
front coding 49.7 biyyword
front coding with PPMC 21.1 bit/word
front coding, individual models 25.6 bit/word

Table 4 Compression of words and counts in lexicon and permuted dictionary



bits

Without compression 22

Exact distribution of gap lengths 10.47
Entropy of geometric distribution 10.58
Actal space using geometric distribution 10.63

Table 5 Space occupied by pointers in the concordance




Full size  Compressed Compression
(Kbyte)  size (Kbyte)
Text 12 570 2967 24%
Lexicon 199 85 43%
Permuted dictionary 1554 503 32%
Concordance 6 658 2949 44%
Word number/disk address 640 104 16%
for smallest lexical unit
Miscellaneous —_— 27
Total 6151

Table 6 Overall compression of the sample text




bytes see section

Top levels of lexical hierarchy 4.1

version to book number 9
book to chapter number 507
chapter number to verse 10 512

Models for verse information 4.1,4.2
words in verse 360
prediction error for 200
bytes occupied
Models for lexicon 6.1,6.2, 63
prefix lengths 120
suffix lengths 120
characters 1024
counts 7136
concordance pointers 6 656
Models for permuted dictionary 6.5
prefix lengths 120
suffix lengths 120
characters 1024
Model for concordance 7.2
geometric model 0

Total 27 Kbyte

Table 7 Miscellaneous storage requirements for the sample text
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Find word in lexicon
a. Binary search (on word) to find block
b. Decode block until word is found (linear search)
(Fail on encountering
* lexicographically greater word
» end of block)
Result: pointer to the concordance entries for the given word

Decode the concordance entries

For each concordance entry, print the verse containing it
a. Translate word number into the verse’s disk address
(i) Binary search to find block of verse table
(i) Decode block to find verse (linear search)
b. Binary search chapter, book, version tables for hierarchical
coordinate (for display only)
c. Read, decode, and print words to the end-of-verse marker.
Decoding each word involves finding it in the lexicon:
() Binary search (on cumulative count) to find block
(i) Decode block for word with appropriate count (linear
search).

Figure 6




