
THE UNIVERSITY OF CALGARY

Implementing the Charity Abstract Machine

by

Dale Barry Yee

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 1995

© Dale Barry Yee 1995

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Implementing the Charity Ab-

stract Machine" submitted by Dale Barry Yee in partial fulfillment of the requirements

for the degree of MASTER OF SCIENCE.

cze'.
Supervisor, Dr. R. Cockett

Department of Computer Science

Depa, aen,. pf Computer Science

Dr. C. Laflamme

Department of Mathematics & Statistics

Date 2o" S7 /99S

11

Abstract

This thesis describes a series of three abstract machines, with associated compilation

procedures, for the Charity programming language. Each machine is a refinement of

the previous, getting closer to the level of the physical machine.

The current C implementation of Charity is based on the last of these machines

and is roughly twenty times faster than the original SML implementation, which was

based on the first.

111

Acknowledgements

I would like to express my sincere gratitude to Dr. Cockett for his unlimited support,

encouragement, and patience as he guided me through the process of researching and

completing this thesis. It has been a rewarding experience working with Dr. Cockett

and learning from him.

Special thanks to the Charity group: Tom Fukushima, Marc Schroeder, Charles

Tuckey, and Peter Vesely. Their participation in the Charity project was fundamental

to the success of this thesis.

In addition, I am grateful for the support and encouragement of friends in the de-

partment, especially: Ulrich Hensel, Ying Liu, Camille Sinanan, and David Spooner.

To my family: thank you for your understanding and patience. It enabled me to

persevere and complete my thesis.

iv

Contents

Approval Sheet ii

Abstract iii

Acknowledgements iv

Contents y

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1
1.1. Structure of the Thesis 2

Chapter 2. Background 4
2.1. The)—calculus 4
2.2. Evaluation techniques 5
2.3. Implementing functional languages 8

2.3.1. SECD machine 9
2.3.2. Combinators 12
2.3.3. Other implementations 17

Chapter 3. The Charity programming language 19
3.1. Basic types and terms 20
3.2. Inductive datatypes 21

3.2.1. Booleans 21
3.2.2. Natural numbers 23
3.2.3. Lists 25
3.2.4. Success or Fail datatype 27

3.3. Coinductive datatypes 28
3.3.1. Infinite lists 28
3.3.2. Colists 30

3.4. Passing functions as parameters 31
3.5. Other examples 32

V

Chapter 4. The Charity Abstract Machine basics 33
4.1. Categorical combinators and their types 33

4.1.1. Types 34
4.1.2. Categorical combinators 34
4.1.3. Equations between combinators 36

4.2. Combinators for products 36
4.3. Translating to combinators 39

4.3.1. Resolving variable scope 40
4.4. Evaluation of categorical combinators 42
4.5. The basic Charity abstract machine. 43
4.6. Function parameters 46

Chapter 5. The Charity Abstract Machine datatypes 52
5.1. Inductive datatypes 52

5.1.1. Strong datatypes 53
5.1.2. Mapping over inductive datatypes 55
5.1.3. The fold combinator 57
5.1.4. The case combinator 59

5.2. Translation to combinators 60
5.3. Rewrite rules and machine transitions 60
5.4. Examples of inductive datatypes 61

5.4.1. Booleans 62
5.4.2. Natural numbers 64
5.4.3. Lists 65

5.5. Coinductive Datatypes 69
5.5.1. Mapping over coinductive data types 69
5.5.2. Unfold combinator 71
5.5.3. Record combinator 72

5.6. Translation to combinators 72
5.7. Rewrite rules and machine transitions 72
5.8. Examples of coinductive combinators 73

5.8.1. Streams and infinite lists 73

Chapter 6. Implementing The Charity Abstract Machine 76
6.1. Designing a new abstract machine 77

6.1.1. The abstract machine 77
6.1.2. Sharing in products 79
6.1.3. Mapping over products and the type 1 79
6.1.4. Compiling categorical combinators 80

6.2. Inductive Datatypes 80
6.2.1. Compiling inductive combinators 82
6.2.2. Partial evaluation of inductive operators 83
6.2.3. Example: Compiling the append function 84

vi

6.3. Coinductive Datatypes 85
6.3.1. Lazy coinductive datatypes 85
6.3.2. Adding sharing to coinductive datatypes 87

6.4. Adding the Natural numbers as primitive types 88
6.5. Displaying coinductive datatypes 90

Chapter 7. Linearizing the abstract machine 93
7.1. Basic combinators 94
7.2. The linear datatypes 96
7.3. Linear inductive datatypes 97
7.4. Linear coinductive datatypes 99
7.5. Linear natural numbers 101
7.6. Linear function (macro) passing 102

Chapter 8. Results and Conclusions 104

Bibliography 106

Appendix A. Formal Definition of Charity 109
A.1. Variable bases 109
A.2. Terms 109
A.3. Abstracted maps 111

Appendix B. A sample Charity program 112
B.I. Quicksort 112

vii

List of Tables

4.1 State transition rules for the calling a function 48
4.2 State transition rules for the returning from a function 49

6.1 State transition rules for the basic instructions 79
6.2 State transition rule for mapping over products 80
6.3 State transition rules for the inductive datatypes 82
6.4 Additional state transition rules for datatypes 83
6.5 State transition rules for the records 86
6.6 State transition rules for the destructors and updating a closure 88
6.7 State transition for N datatype 89
6.8 State transition for N "case" instruction 89
6.9 State transition for N "fold" instruction 90

7.1 State transition rules for the basic instructions 96
7.2 State transition rules for the inductive datatypes 99
7.3 State transition rules for the building closures 101
7.4 State transition rules for updating a closure 101
7.5 State transition for N datatype 102
7.6 State transition for linear function passing 103
7.7 State transition for linear function passing 103

vii'

List of Figures

6.1 The inductive combinator 81

7.1 A view of the induct instruction 97

ix

CHAPTER 1

Introduction

Functional programming languages promote a style of writing programs where small

functions are glued together through composition and function application to build

larger programs. This idea of building by composing is not new, as it is encouraged

through structured programming in imperative languages. However, unlike these

imperative languages, functional languages do not generally allow manipulation of

the global state of the system through commands. Rather, the ability to modify

the state has been removed, eliminating "side effects" associated with unexpected

state manipulation. This makes functions "referentially transparent". A language is

referentially transparent if, whenever a function is given the same arguments, it will

provide the same answer. In imperative languages the presence of state (eg: global

variables) destroys this transparency. Lack of referential transparency can complicate

the interaction between modules, sometimes resulting in unexpected behavior.

There has been much support and argumentation for using functional programming

languages [Bac78, Hug89] because of advantages such as:

• implicit memory management

• polymorphic datatypes and higher order functions

• referential transparency

• suitability for implementation on parallel machines

• shorter and more abstract programs

• mathematical foundations and formal semantics

1

1. INTRODUCTION 2

• pattern matching and expressive syntax

Despite these advantages, functional programming languages are still widely con-

sidered to be of academic and/or educational interest only. Traditional imperative

languages mirror more closely machine architecture and thus are able to produce pro'-

grams which are more resource efficient when compared with their functional versions.

In fact, past measurements of central processor usage, memory usage and response

times of imperative programs illustrate the superior resource usage over functional

language counterparts [Pau91].

Considerable study has been devoted to designing evaluators and compilers which

close the efficiency gap between functional languages and imperative languages. In-

deed, there is still considerably more research to be done before it will be possible

to implement a functional language whose performance is comparable to traditional

imperative languages.

Compilers for functional languages often generate code which is executed by an

abstract machine. These abstract machines simulate the basic operation of physical

machines in software. Choosing the basic operations, the strategy for evaluating the

operations, and the compilation to the operations are central issues in the implemen-

tation of functional languages.

Charity is a categorical language. This means its foundations are in category

theory, although it is similar in programming style to functional languages. Thus,

Charity faces very much the same implementation issues as conventional functional

languages. This thesis will explore the issues involved in implementing Charity by

showing its evolution from a basic high level Charity abstract machine to lower level

"linear" machine that closely mirrors the operation of a physical machine.

1.1. Structure of the Thesis

Chapter 2 surveys general background and related research in the implementation

of existing functional languages. Next, chapter 3 introduces the Charity programming

1. INTRODUCTION 3

language and explores its main features through programming examples. Chapter 4

describes a very basic Charity abstract machine containing only a few operations.

The addition of datatypes greatly expands the power of the language, and chapter 5

shows how datatypes are incorporated. Chapter 6 shows the implementation of the

"byte coded" Charity abstract machine where the code compiled for this machine is

executed in software. Optimizations to stream line the "byte coded" machine are

introduced in chapter 7. Finally, chapter 8 presents the results of the implementation

and discusses possible future work.

CHAPTER 2

Background

Traditionally, functional languages have been translated to the A—calculus before fur-

ther translation to a lower level language. The SECD machine was one of the first

abstract machines to implement the A—calculus. More importantly, the SECD ma-

chine provided a standard for specifying and reasoning about the design of an abstract

machine using state transition rules. This chapter describes the A—calculus and some

of its more common evaluation techniques. Several abstract machines which imple-

ment these techniques are discussed in detail. Beginning with the SECD machine

and leading to more recent developments such as the Categorical Abstract Machine

(CAM) and the Spineless Tagless G—machine, the evaluation techniques presented

here contribute to the development of the Charity abstract machine described in the

rest of this thesis.

2.1. The A—calculus

When implementing a functional language, it is practical to separate the high level

programming language, with all its syntactic embellishments, from the low level lan-

guage. An intermediate representation serves as an interface between the two levels,

making high level syntax and low level implementation of the language independent

of each other. By far, the most common intermediate representation for functional

programming languages is the A—calculus. The A—calculus provides a notation for

functions where all of the "syntactic sugar" associated with programs written at a

4

2. BACKGROUND 5

higher level is removed, resulting in a succinct notation with four basic syntactic

constructs:

exp ::= C constant

v variable

exp exp application

Av.exp abstraction

Examples of A—expressions

8 a constant

+ a constant primitive function

x a variable

Ax.2 + x an abstraction (add 2 to a number)

(Ax.2 + x) 3 an application

Constants are not needed in the A—calculus, as the other three constructs can be used

to represent them, but it is more convenient to include them in the language.

2.2. Evaluation techniques

Evaluation of a A—expression is done either by evaluating a constant (eg: the con-

stant primitive function +) or through the conversion rules, the fundamental one

being /3—reduction. /3—reduction will substitute all occurrences of a variable in an

abstraction with a value. For example,

(Ax.2 + x) 3 -* 2 + 3 substitution

-4 5 evaluation of +

Evaluating either a constant or an application via /3—reduction is called a reduction.

A single reduction of a A—expression is denoted by -, and when no more reductions

are possible, the expression is said to be in reduced or normal form. Evaluation of an

expression is done through an iteration of reductions until normal form is reached.

The three main reduction strategies for evaluating A—expressions are by—value, by—

2. BACKGROUND 6

name, and by—need evaluation.

by—value evaluation

The by—value strategy (also known as eager evaluation) evaluates all arguments to a

function before the function is evaluated. In the expression

)x.(Ay.y + x) 2) (z.z + 3) 3)

a by—value strategy would reduce the expression by replacing the z with 3 first:

(Ax.(Ay.y + x) 2) ((Az.z + 3) 3) - x.(Ay.y + x) 2) (3 + 3)

-+ (,\x.(Ay.y + x) 2) 6

-+ (.Ax.2+ x)6

—*2+6

—*8

by—name evaluation

A by—name strategy replaces the variables in a function with the expressions to which

they refer. That is, a function does not evaluate its argument before substitution,

but rather substitutes the body of the argument. Only when a function requires the

value of its argument does it actually evaluate it. A by—name strategy would reduce

the example in the previous section as follows:

(Ax.(Ay.y + x) 2) \z.z + 3) (Ay.y + z.z + 3)) 2)

-* 2+(z.z+3) 3)

-* 2+(3+3)

—*2+6

—*8

A drawback of this evaluation strategy is when a variable occurs multiple times in a

function. For example,

x.x+x)(2+3)

2. BACKGROUND 7

would require the argument 2+3 to be evaluated twice, as in the following reduction:

(Ax.x+x) (2+3) -* (2+3) +(2+3)

•—* 5+(2+3)

—*5+5

-* 10

by—need evaluation

A by—need evaluation strategy (also referred to as lazy evaluation) is a by—name

evaluation strategy which shares the values of arguments. That is, arguments to the

function are evaluated at most once. The evaluated argument shares its result with

the rest of the expression. For example, in the reduction below, the value of f is

shown on the right:

let = (2+3)in

(Ax.x+x)f

-* (2+3)+f

--* 5+f

—5-1-5

-4 10

f = (2+3)

f = (2+3)

f = (2+3)

f=5

f=5

f=5

Notice that the syntax has been extended to add a let statement which binds the

name f to the expression (2 + 3). Several steps in the reduction have been saved since

the value of f is only computed once and the second reference to f will return the

precomputed answer.

The choice of evaluation order has implications for the number of reductions that

must be performed. In the extreme case, the argument to a function contains an ex-

pression which reduces infinitely. This causes the entire expression never to terminate

2. BACKGROUND 8

under a by—value strategy:

-* (Ax.)y.y)((Az.zz)Xz.zz))

- (\x.Ay.y)((Az.zz)Az.zz))

-+

A by—need evaluation of the above expression is:

\x.)\y.y)()z.zz)(Az.zz)) -*

where after one reduction, the expression is in normal form. The first argument to

the leftmost lambda expression has been discarded, eliminating the infinite reduction.

A by—need evaluation strategy will always have no more (and usually less) reductions

than a by—value strategy. However there is an overhead as evaluation of arguments

must be suspended. This requires extra storage for the suspensions, or "closures". In

all casees where the reduction of an expression terminates, both the by—value and the

by—need strategy will reduce to the same result as the reduction system is confluent

(Church—Rosser [FH88]). Also, if the normal form exists, the by—need strategy is

guaranteed to find it.

2.3. Implementing functional languages

Often a functional language is implemented by defining an abstract machine that

details how the evaluation of an expression is to proceed. This abstract machine

replaces the real machine for the purpose of formally modelling, simulating, optimiz-

ing, and reasoning about an evaluation technique. An abstract machine allows the

designer to concentrate on defining how the state of the system evolves to another

state through state transition rules. This facilitates reasoning about the design of the

basic operations at an abstract, formal level.

This section introduces several different approaches to building abstract machines.

An environment based SECD machine is presented, followed by several graph reduc-

ing machines. An environment based implementation associates variables with their

2. BACKGROUND 9

values on a "lookup stack". Graph reduction schemes use directed graphs with a set

of graph reduction rules to reduce the graph to a normal form. Graph reduction im-

plements by—need (or lazy) reduction, where a portion of a graph is overwritten with

an equivalent simpler graph so that subsequent visits to that portion of the graph will

simply return an answer in normal form. The ease with which shared subexpressions

are represented graphically provides a more intuitive approach to by—need evaluation

than environment based evaluation strategies do.

2.3.1. SECD machine

The SECD machine [Lan64] provides an implementation of the)—calculus in a me-

chanical and straightforward manner. The abstract machine for Charity shall use the

same format for describing the state transitions.

The SECD machine has four stacks which determine the state of the machine.

These stacks are:

• S stack, stack of intermediate values

• E stack, the environment used for variable lookup

• C stack, the code stream

• D stack, the dump (a stack of stacks)

State transitions define how the SECD machine is to evolve from one state to the

next. The current state is given by the contents of each of the four stacks at any

given time and transitions are denoted:

S B C D - 5' B' C' D'

where the state of the machine matching the left side of the arrow is transformed to

a new state on the right side of the arrow.

The SECD machine provided an implementation of the)—calculus where applica-

tion of expression as well as abstraction and substitution of variables are implemented.

2. BACKGROUND 10

The state transitions of the SECD machine as presented in [F1188] follow. State tran-

sition 1 stops the execution in the machine when the code stack and dump stack are

empty. State transition 2 loads the machine with the stacks stored after an applica-

tion of a function to its argument has been completed. The notation . is used to push

an item onto the top of a stack (eg: 2.s is stack with 2 on top and then s). An empty

code stream is denoted with e as the C stack.

S E C D 5' E'C'D'

1

2

a.s

x.s

e

e

€

e

[]
(s,e/,cI).d - x.s'

STOP

e' c' d

In transition 3, when a variable is encountered on the code stream, a lookup into

the E stack is performed to replace the variable with its actual value. The variable

(or a primitive function such as +) is tagged with an ID and placed on the S stack.

For). abstractions tagged with LAM, the SECD machine stacks the current variables

and arguments to the abstraction onto the S stack as shown by transition 4. A

closure (tagged with CLO) holds the body of the abstraction, the variables and the

environment.

SEC D 5' E'C'D'

3 s e ID().c d -* lookup(x, e).s' e c d

4 s e LAM(vars,body).c d -+ CLO(body, vars, e).s e c d

State transition 5 and 6 shows how application is handled. The application symbol

on the code stack causes the first two arguments on top of the stack to be applied

together. In transition 5 a closure on top of the S stack causes the body of the

abstraction to be executed and the variables to be bound to its value. A primitive

function such as + on top of the S stack is applied to the next argument on the S

stack in transition 6.

S EC D 5' E' C' D'

5 CLO(body,vars,e').(ary.$) e .c d - [] (vars,arg).e' [body] (s,e,c).d

6 PRIM (f).(arg.$) e ©.c d -* f(arg).s e c d

Given an application (APP) of two expressions f a, transition 7 of the SECD machine

2. BACKGROUND 11

first evaluates a, then f and finally the application before the application © takes place.

SEC D S'E'C'

7 s e APP(fun,arg).c d -* s e arg.(ftLn.(©.c)) d

As an example of how the SECD machine reduces an expression, consider the

A—expression (Ax.x + 2) 3. The SEOD code for this expression is

A.PP(LAM(ID(x), APP(ID(+), APP(ID(2), ID(x)))), ID(3))

where the + is in infix notation.

SEC D

[] [] APP (LAM (ID (x),APP(ID(+), APP (ID (2),ID(x)))),ID(3)) [1
ID(3).(LAM(ID(x), APP(ID(+), APP(ID(2), ID(x)))).) [1

-+ [3] [} LAM(ID(x),APP(ID(+),APP(ID(2),ID(x)))).© []

Encountering a LAM instruction on the code stack causes a closure to be placed on

the S stack.

5 ECD

-4 CLO(APP(ID(+), APP(ID(2), ID(x)), LAM(ID(x), [])).3) [] © []

Next, the application 0 causes the evaluation of the closure where the variable x will

be replaced with 3.

SE C D

-+ [1 [(x,3)] APP(ID(+), APP(ID(2), ID(x)))
-• [1 [(x,3)] APP(ID(2), ID(x)).(ID(+).0) [({ 1 e, [])]
-• [1 [(x,3)] ID(x).(ID(2).(ID(+).©).©) [([], 6, [DI
-. [3] [(x, 3)] ID(2).((ID(+).©).©) [([I, 6, [])]
-• 2.3 [(x,3)] (ID(+).(©.©)) {([], 6 [1)]

2. BACKGROUND 12

Finally, the machine is in a position to evaluate the values stacked up on the S stack:

S E C D

- +.2.3 {(x, 3)] ©.© [([] , [1)1
-• (+ 2).3 [(x,3)] ©

-4. 5 [(x,3)]

-+ 5 [] 6 []

The SECD machine described above executes in a by—value manner, since an argu-

ment is evaluated before the expression is evaluated. There are also by—need variants

of the SECD machine that evaluate the function before the arguments. These by—

need machines actually suspend the evaluation of an argument until the argument is

needed.

Turner [Tur79] observed that the SECD machine spends considerable time looking

up variables and their actual values from the E stack to perform a substitution.

The combinator based machines described in the next section solve this problem by

eliminating free variables from an expression.

2.3.2. Combinators

One of the problems with intermediate languages such as the)—calculus revolves

around substituting variables properly. Substitution requires determining where free

variables in the)—expression occur and the impact of substituting another parameter

into the expression. For instance, expression (Ax.Ay.x + y) y 7 may appear to have

the following reduction:

(,\x.Ay.x + y) y 7 Xy.y + y) 7

- 7+7

In this expression, the y being substituted is free, but after it is substituted for the

x in the lambda abstraction, it becomes bound. The correct substitution would have

produced y + 7, if the y passed as an argument is differentiated from the y in the

2. BACKGROUND 13

expression:

x.Az.x + z) y 7 -* z.y + z) 7

—*y+7

During substitution of a variable in a A—expression, locally bound variables must be

renamed to avoid name clashes as shown above.

Combinators are closed lambda expressions that have no free variables. For ex-

ample, Ax.x is a combinator while Ax.y is not, since the x in the former expression

bound to Ax, while the y in the later expression is unbound. Combinators eliminate

free variables in a A—expression to avoid the problem with substitution.

The Miranda system [Tur85] is implemented with the Turner set [Tur79] of combi-

nators. This system contains three fixed combinators':

S = Af.Ax.Ao,(fu)(xo)

K = Ax.AcT.a

I = Ax.x

which can represent any lambda expression. There are several translation algorithms

from the A—calculus to these combinators, each differing in the number of combina-

tors generated. Typically, the environment o is created as a means of storing the

free variables of an expression before the expression is evaluated. The S combinator

evaluates each of the f and x in the environment o before applying f to X. The K

combinator eliminates the environment. The small set of combinators is amenable to

implementation on a machine, since each combinator corresponds to simple and me-

chanical instructions. Combinators eliminate the need to handle variable substitution

and the scope of variables.

The relative ease with which combinators can be implemented makes a combina-

tor based implementation desirable. Translation and evaluation are straightforward,

furthermore the efficiency of the execution can be improved by enlarging the set of

combinators. The problem of variable scope and substitution are resolved quite easily

'The I combinator can be defined in terms of S and K by I = S K K.

2. BACKGROUND 14

at the translation stage. In addition, the expensive lookup step of the SEOD machine

is avoided during execution.

S upercombinators

Hughes [Hug84] pointed out that the amount of computation performed by each

combinator is relatively small. In addition, many combinators are often needed to

represent a function. Hughes therefore proposed the introduction of supercombina-

tors in order to reduce the number of combinators required to express a function.

Supercombinators have a distinct advantage over Turner combinators in that the

granularity of each combinator is larger since each function added to the system will

create a new set of supercombinators.

In a supercombinator, free variables are eliminated from the A expression by making

all of the free variables parameters of the expression. This process of removing all free

variables from a A—expression is also known as A—lifting. Hughes extends A—lifting to

abstract whole subexpressions containing free variables. These expressions are then

used as arguments to the original expression.

The example below shows how a free variable can be eliminated by translation of

A—expression to supercombinators. In the original A—expression:

f x = (g (Ay.x xx + y) 3) +(g (Ay.x xx + y) 4)

the variable x is free in both A—abstractions.

Applying the A—lifting algorithm (chapter 6 of [Jon]) would create a new super-

combinator g' and redefine f as follows:

g'xy = Ay.xxx+y

fx = (g' x 3) + (g' x 4)

The supercombinator g' holds the entire expression where the previously free variable

x is now bound to the extra parameter x. The supercombinator f no longer contains

any free variables.

2. BACKGROUND 15

The Categorical Abstract Machine (CAM)

The Categorical Abstract Machine (CAM) is an abstract machine based on com-

binators derived from category theory: they include the composition and identity

combinators. To this system, products and exponentials are added, giving the basic

rewrite rules of the CAM machine. The evaluation of these combinators can easily

be transformed to machine instructions.

The equations below provide basic equations from category theory (juxtaposition

is application).

(A.58) (x o y) z = x (ii z)

(Fat) Fat <x,y> = x

(Snd) Snd <x,y> = y

(dpair) <x,y> z = <xz,yz>

(dA) A(x) y z = x (Y' Z)

(app) App (x, y) = x y

(quote) ('x) y

The (Ass) gives the associative equations. The equations (Est) and (Snd) are the

projections on a pair, while (dpair) is the distributive rule. Currying is accomplished

by the (dA) while an application is defined by the equation (app). The (quote) is a

constant.

The state of the abstract machine is a triple (V, C, D) with state transitions in the

form:

(V, C, D) ,' (V', C', D')

2. BACKGROUND 16

The state transitions of this machine derived from the above equations are:

V C D =V' C' DI

(vo,vi) fst.c d > vo c d

(vo,vi) snd.c d == vi c d

V 'k.c d 1c C

V A(c').c d ==' (c' v) c d

V (.c d tv c v.d

vo ,.c v.d = v c v0.d

v1 v0.d = (vo,vi) c d

(k. vo,vj) app.c d == (vo,vi) d

V d STOP

The (dpair) combinator distributes a value over a pair and is split into three opera-

tions in the CAM machine. The "(" pushes the current value v on the dump, while

the "," swaps the value of the dump with the value stack. Lastly, the ")" creates

a pair with the value stack and top of the dump stack. For example, if the current

configuration of the machine is:

VC D

v (co, c1) d

where c0 : v -+ v0 and c1 : v -+ v1. The machine would execute from this initial state

as follows:

V C D

V (CO) C-1) d

v co,ci) v.d

vo ,ci) v.d

v ci) v0.d

VI) v0.d

(vo, vi) 6 d

2. BACKGROUND 17

In the development of the Charity abstract machine in Chapters 5 to 7 we adapt

the CAM machine to evaluate a different set of categorical combinators. The above

execution of the implementation of the pair combinator is particularly interesting

since we will incorporate the same evaluation technique on products in chapter 7.

2.3.3. Other implementations

Compiled implementations attempt to reconcile the vastly different approaches of

graph reducers, stack based, and combinator implementations with current compiler

technology for imperative languages. To implement functional languages on current

machines, compiled implementations borrow heavily from their imperative counter-

parts, while trying to retain the optimizations and formal framework of the traditional

functional paradigm.

Spineless Tagless G—machine

The spineless tagless G—machine [Jon92] is a synthesis of the G—machine [Kie85]

and the TIM [FW87] machine, borrowing the best of both architectures. The aim

of this machine is to unify many of the principles of traditional compiler technology

with those of functional language compilers. The discussion of the spineless tagless

G—machine begins by introducing the G—machine and TIM machine.

The main idea behind the G—machine is to provide a compiled implementation of

some term logic into G—code. This G—code performs a linear sequence of operations

to construct, traverse and reduce the graph in the heap. The process of compiling

flattens the tree structure of the expression into G—code in a postflx form. That is,

the children of an expression are evaluated before a node. A simple example would

be the postflx evaluation of arithmetic expressions. Lazy graph reduction in this

machine is achieved by overwriting (updating) the root node after the expression has

been evaluated.

2. BACKGROUND 18

The TIM machine contains only three instructions: take, push and enter. These

three instructions build, traverse and evaluate the supercombinator expression repre-

sented as a graph. Compiling the term logic to TIM machine instructions is a process

of flattening as in the G—machine and tupling shared expressions so that common

subexpressions are only evaluated once.

The push instruction pushes an argument onto the stack. When there are enough

arguments on the stack to evaluate the expression, a take instruction takes these

arguments and builds a frame. Arguments in a frame are accessed by entering it.

The TIM machine is a spineless machine in that there is no spine to traverse. The

spine of an expression refers to the unwinding of an expression (graph) to find the next

reduction. The TIM does not require any unwinding since the compiled instructions

build and reduce the graph.

As the name implies, the spineless tagless G—machine is spineless in the sense of the

TIM machine. However, this machine is also tagless because objects in this machine

point to actual code instead of using a tag to differentiate two objects. Similar to the

G—machine, objects in this system point to the actual code to execute, avoiding the

cost of interpreting some instruction.

The implementation of the Charity abstract machine will use the techniques of

lazy graph reduction to evaluate combinators compiled to "macro code". Thus, many

techniques introduced in this section contribute to the development of the Charity

abstract machine. For example, the closure mechanism of the TIM machine is in-

corporated into the evaluation of coinductive combinators. The evaluation of these

combinators are suspended until their evaluation is forced by applying a destructor

(more on the implementation can be found in chapter 6).

CHAPTER 3

The Charity programming language

This chapter describes the programming language Charity. While the language has

foundations in category theory (see [0F92]), one does not require any knowledge of

it to write programs. Charity programs resemble those written in other functional

languages, where a collection of simple functions are combined together to produce a

program. In addition, features such as strong type checking, which resolve the types of

all functions at compile time, ensure that composed functions are compatible. This

type checking mechanism guarantees type mismatch errors can never arise at run

time.

User defined polymorphic datatypes are the building blocks of Charity programs. A

central feature of Charity is the separation of the datatypes into two classes: inductive

and coinductive. Inductive datatypes include many familiar data structures used in

computer science, such as a lists and trees. The pure inductive datatypes are finite.

Coinductive datatypes such as infinite lists are the dual of the inductive datatypes.

Coinductive datatypes such as colists and cotrees are potentially, but not necessarily,

infinite in nature.

The Charity language has a very simple syntax, with only six basic operations

for data manipulation, as well as a means of defining both datatypes and functions.

Defining a datatype in this system generates three of the six operations for manip-

ulating data. The inductive datatypes produce the operations case, fold and mapL

while the coinductive datatypes yield the operations record, unfold and mapR.

19

3. THE CHARITY PROGRAMMING LANGUAGE 20

Charity programs are strongly normalizing, in the sense that terms will always

reduce to a normal form after a finite series of reductions. General recursion, which

sometimes has been called the "goto of functional languages", is not permitted in this

language. Thus, the possibility of writing infinitely recursive functions is eliminated.

Charity promotes a disciplined style of programming where data can only be accessed

and manipulated through one of three operations delivered by datatype declarations.

Charity programs are expressed in a term logic which will be described through

examples in the remainder of this chapter.

3.1. Basic types and terms

There are two basic types in Charity:

• 1 (unit)

• x (products).

These two basic types come equipped with term formation rules. The unit type has

the term formation rule:

which allows introduction of a basic term (the 0—tuple). Given the types (or terms)

on the top line, the term on the bottom line can be inferred. The above rule says

that "from nothing, a term () can be produced which has type 1".
The term formation rules for products describe how pairs and the projections are

created:

a:A b:B x:AxB x:AxB
(a,b):AxB Po(x):A Pi(x):B

In addition, Charity provides a means of abstracting terms similar to the). ab-

straction of chapter 2. Charity abstractions are written as:

{ v => t }

3. THE CHARITY PROGRAMMING LANGUAGE 21

and have the following term formation rule:

yEA t:B
{v F-+ t} :: A -* B

where v is a variable base (a sequence of variables, see appendix A) and t is the term

being abstracted. Note that abstractions are not terms. Rather, they are first order

functions as indicated by the (::).
Evaluation of functions is done with the rule:

f::A—B t:A
f(t) : B

which, given a function f and a term t, forms a new term f(t).

3.2. Inductive datatypes

Inductive datatypes provide the classical data structures of computer science. The

syntax for inductive datatype definitions is:

data L(A)—.S= ci:Ei(A,S) -4 S

c:E(A,S) - f S.

This definition introduces a new type L and constructors c (i = 1...n). The type L

is parametric about a type variable A (which stands for a finite sequence of types).

The constructors c1 through c, are used in building elements of type L(A). They

have types:

c: E(A,L(A)) --4 L(A)

where the state variable S has been replace with L(A).

3.2.1. Booleans

One of the most basic datatypes is the boolean type. Boolean and its two constructors,

false and true, are delivered to the system by the declaration:

3. THE CHARITY PROGRAMMING LANGUAGE 22

data bool -> C = false: 1 -> C
I true : 1 -> C.

In this definition, the domain type E(_, C) equals the basic type 1 for both construc-

tors.

A function is defined in charity using the def keyword. These definitions have the

form:

def f(v) = t.

where f is a function name, v is a variable base, and t is a term. Defining a function

really defines an abstraction with a label since:

def f = { v => t }def f(v) = t

Some common functions using the boolean type are the boolean and, or, and not

defined in Charity as:

def and(x,y) = def or(x,y) = def not(x)
{ true() => y { trueo => y { true() => false
I false() => false I false() => false I falseo => true
} W. } W. } W.

These three functions introduce the case operation, the first of the three operations

used in manipulating the values of inductive datatypes. The case operation examines

the "root" of the data element to determine which action to perform. The general

form of the case construct is:

I
ci(vi) I- 4 ti

(t)

c. (V.) i-* t.

where ci is a constructor of a data type, vi is the parameter of the constructor (a

variable base, see appendix A), tj is the phrase to evaluate when the corresponding

constructor is encountered and t is the term being cased over. In the and example, a

case over x determines whether x is true or false. In the case of true, the value y

3. THE CHARITY PROGRAMMING LANGUAGE 23

is returned, otherwise, in the case of false, a false value is returned.

In general, the case term formation rule delivered to the system upon declaration

of a datatype £ is:

{e i- + Q:: E(A,L(A)) -+ C
{c(e) i, 4.}fl .. £(A) - C Z

Given a phrase for each constructor of datatype £, the case operator can be con-

structed. The function evaluation rule introduced in the last section can now be used

to apply the case to a term (an element of a datatype) to produce an answer. An

example of evaluation in Charity would be:

> and(true, false).
> false bool

3.2.2. Natural numbers

The (unary) natural numbers are delivered by the following Charity declaration:

data nat -> C = zero: 1 -> C
I succ: C -> C.

The elements of nat are zero, succ(zero), succ (succ (zero)), and so on.

To determine if a natural number is odd, one could start by returning a false

as the answer when a zero is encountered. Each subsequent application of a succ

would negate the answer until all succ's are exhausted. Fdr example, to see if the

number succ (succ (zero)) is odd, using the above algorithm, one would replace zero

by false resulting in succ (succ (false)). Upon seeing a succ the answer it holds

would be inverted arriving at succ (true). Finally, the last succ inverts the answer

one more time producing the result of false.

Transforming a natural number in this manner is done through the fold operation.

However, the fold operation does not start at the "leaf" of the datatype, or the zero

3. THE CHARITY PROGRAMMING LANGUAGE 24

when processing the natural numbers. Instead, the root is examined first, and based

on the data definition, an appropriate action is taken. In the example above, the

number succ (succ (zero)), the succ is encountered first. succ is defined recursively,

meaning the value of its argument must be examined first before inverting the answer.

Eventually, the zero constructor with a type 1 (no parameters) will return a false,

allowing the algorithm to continue as before.

In general, the fold operation contains two stages, "top down" and "bottom up".

The "top down" stage traverses through the entire data structure searching for the leaf

nodes. When the leaf nodes are found, the "bottom up" stage commences. Processing

occurs at each node, returning up towards the root.

The definition of the odd function, using the fold operation is:

def odd(n) =
{I zero: 0 => false
I succ: ans => not(ans)
I} (n).

To see if a number is even, one could first see if the number is odd, then invert this

answer.

def even(n) = not(odd(n)).

To add two natural numbers together, the zero constructor of the first number is

replaced with the second number:

def add(x,y) =

{I zero: 0 => y
I succ: n => succ(n)

11 W.

3. THE CHARITY PROGRAMMING LANGUAGE 25

As shown by the example above, the fold construct is used to manipulate both the

structure and elements of a datatype. The syntax for the fold is:

:v1 '-+ tj

(t)

i-+ •t jJ

where as in the case construct, each constructor ci of a data type with parameter vi

will execute the corresponding tj when the fold is applied to an element t. The term

formation rule describing the fold says that "given maps for each constructor of the

type L to some other type C, the fold operator can be inferred from the combinator

of these maps". The term formation rule for the fold is shown below:

f ej i-+ t} :: E(A,C) -* C

{c : ej '- p :: L(A) -+ C

3.2.3. Lists

Lists are defined in Charity by the datatype definition:

data list(A) -> C = nil : 1 -> C

I cons: A * C -> C.

The datatype list and its two constructors, nil and cons, are delivered to the

system by this definition. Elements of this datatype are generated by constructors:

nil: 1 -* list(A)

cons: A x list(A) - list(A)

The nil constructor has no parameters, as indicated by its domain type 1 (unit),

while the cons constructor has a parameter A in its domain. Thus, an element of

list would look like cons(ao, cons(ai, . . . ,nil))). This is represented by the

short hand notation [ao, a1, ...].
An example of casing over lists is the function isEmpty which tests whether a list

is empty:

3. THE CHARITY PROGRAMMING LANGUAGE 26

def isEmpty(l) =
{ nil 0 => true
I cons(a, 1') => false
} (1).

Note that in the above example, the case operator that transforms an element of the

list datatype to an element of the bool datatype has type

isEmpty : list(A) -+ bool

and each phrase corresponding its constructor has type:

nil : 1—bool

cons : A>< list(A) - bool

To calculate the length of a list, one replaces the nil in a list with the zero

constructor and all occurrences of cons with succ. Thus, in Charity, the length

function is defined as:

def length(l) =
{I nil: 0 => zero
I cons: (a, n) => succ(n)

The input cons(ao, cons(ai, nil)) (ie: [ao, a1]) would produce succ(succ(zero))

when the length function is applied to it.

Suppose one wants to increment each number in a list of natural numbers ([5, 2,

7]) by one. This can be done through the fold construct by:

def addOne(l) =
{I nil: 0 => I
I cons:(x, 1') => cons(succ(x), 1')
I} (1).

Starting with the empty list, each element of the list is applied with succ and consed

onto the front of the result list. Since it is common to retain the structure of the

original datatype and change the parametric variable (or the elements of a value of

3. THE CHARITY PROGRAMMING LANGUAGE 27

the datatype), Charity provides a map construct to accomplish this feat. The syntax

for the map construct is:

V1 1-4 t1

Vm 1-4 tm

(t)

where m is the number of parametric type variables. An example of the map construct

would be to apply the function f to each item in a list (eg: map f [ao, a1, ...] =
[f(ao), f(ai),...]). This map operation would be written in Charity as:

list{f}([aO, al, . . .1).

In the case of the addOne example above, this function can be rewritten with the map

construct as:

def addOne'(L) = list{succ}(L).

The corresponding term formation rule for the map operation is:

:: Ai -

which says that "if the maps to transform each parametric type in L are given, then

the map over L can be inferred".

Note that the bool and nat datatypes do not have parametric types and have a

map operation which requires no arguments and so is the trivial identity function!

3.2.4. Success or Fail datatype

The success or fail datatype is useful in raising an "exception" within charity pro-

grams. The definition of success or fail is:

data sf(A) -> C = ff : 1 -> C
I ss : A -> C.

The sf datatype is often used to return answers from a function which is only partially

defined. For example, the head of a list is only defined for non—empty lists. If the

3. THE CHARITY PROGRAMMING LANGUAGE 28

list is empty, an error should be produced. Using the sf datatype, head of an empty

list will be the constructor f (fail), while the head of a non—empty list will be the

answer wrapped up in the ss (success) constructor. The Charity defintion of head is:

def head(L) =
{ nil 0 => ff()

I cons(a, => ss(a)
} (L).

3.3. Coinductive datatypes

Coinductive types provides a means of representing potentially infinite structures.

The general form of the coinductive datatype is similar to the inductive datatype

with the exception that the state variable should line up on the left side of the arrow:

data S --- R(A) = d1: S - El (A, 5)

4: S—E(A,S).

This definition delivers to the system the type R(A) and destructors d, i

An element of datatype R(A) is broken down by destructors with type:

d : R(A) - E(A,R(A))

3.3.1. Infinite lists

In Charity the infinite list datatype is delivered by:

data S -> inflist(A) = head: S -> A
I tail: S -> S.

where, given some state 5, the current state is returned by the destructor head(S)

and the next state by head (tail(s)). In contrast to inductive datatypes, coinduc-

tive datatypes deliver the unfold, record, and map operations for manipulating their

values.

3. THE CHARITY PROGRAMMING LANGUAGE 29

The unfold construct builds a data structure one state at a time in a "lazy" manner

(do only the computations needed to produce the next answer) . The unfold has the

form:

di ti

(t)

The term formation rule for the unfold is:

v i--+ ti :: S—+ E(A,S)

To produce the infinite list of natural numbers starting from 1, one would define

the following Charity function;

def nats =
(I S => head: S
I tail: succ(S)
I) (succ(zero)).

which says, given the initial state succ(zero),the head thread will return the current

state (in the first case succ(zero)), while the tail thread generates the next state.

Thus the natural number succ(zero) would be computed by head(tail 1(nats)). Of

course it would be impossible to generate the entire infinite list: the unfold will only

produce the values demanded of it.

Records are created through the record construct written as:

with the term formation rule:

)
E(A,R(A))

(d : t) :

3. THE CHARITY PROGRAMMING LANGUAGE 30

The record construct allows elements to be added to the head of a coinductive data

structure. For example, adding the number zero to the head of the flats is achieved

by:

def zeronats = (head: zero, tail: flats).

The head of the infinite list of zeronats is then zero while the tail of zeronats simply

produces the infinite list of nats as defined above.

To add a constant to each element of nats, one would use the map operation:

inflist {succ} (flats).

This map over the coinductive datatypes is similar to the map over the inductive

datatypes where the parametric parameters are transformed, but the structure of the

datatype remains the same.

3.3.2. Colists

The definition of lists could also have been given using the sf datatype as:

data list'(A) -> C = enlist: sf(A * C) -> C.

where

(enlist(ffQ)) nil()

(enlist(ss(a,c))) cons(a,c)

Colists are the dual of the inductive lists and are defined using the sf datatype:

data C -> colist (A) = delist: C -> sf (A * C).

Notice the symmetry between the domain and codomain of the inductive and coin-

ductive definitions. This symmetry justifies the dual nature of the coinductive and

the inductive datatypes.

Elements of the colist can be finite or infinite in nature. If the colist terminates, it

does so by returning a constructor ff from delist. Otherwise the next element of

the list along with the next state is wrapped up in the ss constructor. For example,

converting a list to a colist is accomplished by unfolding on the list:

3. THE CHARITY PROGRAMMING LANGUAGE 31

def 1ist2co11st(L) =
(I state => { nil 0 => ff

I cons(a, L') => ss(a, L')
} (state)

I) (L).

Applying 1ist2co1ist to [1,2,3] would produce the colist:

(delist: ss(1,
(delist:

)
)

ss(2,
(delist(ss(3,

(delist: ff0)

))

)

3.4. Passing functions as parameters

Normally in functional languages, functions may be higher—order. However, Char-

ity is a first order language and does not have any higher order functions. That is to

say, functions are not first class citizens in Charity. Combinators may, however, be

defined to pass functions (as macros) to other functions. For example, given a list

of elements, one may want to filter out certain elements. Suppose the list 1 contains

natural numbers ranging from 1 to 100 (eg. [1,2,3, ..., 100]). To retain only the odd

numbers of 1 one may write the following function in Charity:

def filterOdds(L) =
{I nil: 0> E
I cons: (x, L') => { trueo => cons(x, L')

I falseo => L'
} (odd(x)).

I} W.

Starting with the empty list as the result, each item in the list is applied with the odd

function to test if it should be kept or discarded. If the number is odd, it is consed

3. THE CHARITY PROGRAMMING LANGUAGE 32

onto the front of the result list.

To filter out the even numbers, a new function filterEvens would have to be defined

with the same structure as filterOdds, but a different predictate (replace "even" for

"odds" above). In general, when filtering out elements of the list the structure of

each function is identical with the exception of the predicate which determines the

element to retain or discard. Thus one would like a general definition of the filter

function which has a functional argument, pred. This is achieved via the definition:

def filter {pred} (L) =
{I nil:
I cons:

o => t
(x, L') => { true() => cons(x, L')

I falseo => L'
} (pred(x)).

3.5. Other examples

Many other useful datatypes can be defined in Charity. Below are some examples:

data tree(A) -> C treeLeaf: 1 -> C
I treeNode: C * (A * C) -> C.

data bush(A) -> C = bushLeaf: 1 -> C
I bushNode: list(A * C) -> C.

data S -> cotree(A) = detree: S -> sf(S * (A * s))

data S -> cobush(A) = debush: S -> sf(list(A * 5)).

Given these and other datatypes, it is possible to write programs such as quicksort

(see Appendix B), Ackermann's function (found in [CF92]), pascal's triangle, towers

of Hanoi, prime numbers generation (using the sieve of Eratosthenes), and many

others.

CHAPTER 4

The Charity Abstract Machine: basics

The evaluation strategy for Charity programs is determined by the Charity abstract

machine which is an adaptation of the Categorical Abstract Machine [CCM85]. The

foundations of both machines lie in category theory. However they differ somewhat in

their selection of rewrite rules, combinators, and the evaluation strategy. Underlying

the Charity abstract machine is a typed combinator theory in which programs, ex-

pressed as combinators, are evaluated through rewrite rules. To execute a program,

the Charity system must first translate the term logic to categorical combinator ex-

pressions, and then evaluate those expressions with the Charity abstract machine. A

set of state transition rules derived from the rewrite rules determine the exact manner

in which the combinator expression is evaluated.

This chapter will explore the combinators and rewrite rules that are used in the

formulation of the state transition rules for the Charity abstract machine. Specifically,

this chapter examines the basic combinators and the function passing mechanism of

the Charity system.

4.1. Categorical combinators and their types

A combinator theory consists of a system of types, a set of primitive combinators,

a system for building combinator expressions from the primitive combinators, and a

set of identities between combinator expressions. A categorical combinator theory

33

4. THE CHARITY ABSTRACT MACHINE: BASICS 34

is then a combinator theory where the identities between combinators are delivered

from the basic structures found in category theory.

4.1.1. Types

A system of types is generated by a given set of type constructors with a fixed arities

for example:

1:

list

tree

The arity represents the number of parameters the given type constructor accepts.

These parameters provide for a polymorphic type definition. A type expression is

then a term (in the free algebraic theory) generated by the type constructors, for

example:

tree(list(1), tree(A, list(B)))

4.1.2. Categorical combinators

Once a type is defined in the system, a computational framework is provided in

which categorical combinators manipulate the elements of a type. A categorical

combinator is a map from one type to another, which also relies on certain input

parameters. A categorical combinator system on a type system is generated from

primitive combinators of the form:

where

• c is the combinator name,

• S, S are type expressions, and

• Si - + S is a combinator type signature.

4. THE CHARITY ABSTRACT MACHINE: BASICS 35

The above combinator c accepts n input combinators with type signatures Si - + S,

to produce a combinator with type signature So -+ Si,. We may alternatively write

this as a formation rule:

When such a term formation rule is introduced, it is introduced parametrically. That

is, we really introduce a family of rules for each, one member for each possible sub-

stitution:

fi : (Si), -+ : (S) (S)
for any substitution o-

c{fi,...,fm} : (So) -+ (S)

We can specialize, or instantiate, a combinator with the term formation rule:

e: T1 -+ T2
specialization

(e)0. : (Ti) - (T2)

To test whether a combinator expression without type annotation is valid, one would

use the unification algorithm on types.

Several examples of combinators are:

maplist{A -+ B} : list(A) -+ list(B)

pair{A - B, A - f C} : A -• product (B, C)

foldlist{1 -s C, A x C -s C} : list(A) -s C

Combinator expressions are built up using the following rules:

4. THE CHARITY ABSTRACT MACHINE: BASICS

I: A - A identity

e1:T1—*T2 e2:T2—+T3

el; e2: T1 —* T3
composition

4.1.3. Equations between combinators

36

The equations' between categorical combinators provide the semantics for the system.

The identity combinator has the following inference rule:

e: T, — T2
identity

e = I; e: T, — p T2

Composition of combinators is also associative:

e1;T1—*T2 e2;T2-4T3 e3;T3-4T4

(61; 62); 63 = e; (62; 63) : T1 —+ T4
associativity

Finally, if two combinator expression are equal, then applying the substitution o

to each combinator expression will produce equal expressions.

61 = e2 : T1 —+
substitution congruence

(6)c,. = (62). : (T1) —+ (T2)

4.2. Combinators for products

An 0—ary product is called a final object and is denoted by the type 1. The

combinator! is a family of maps defined by:

!:T—*1 terminal map

with equations given by:

'We refer to identities as equations to avoid ambiguity

4. THE CHARITY ABSTRACT MACHINE: BASICS 37

f:T-1
f = ! : T - 1 uniqueness

The first formation rule establishes the existence of a map from every type in the

system to type 1 while the second equation rule states that it is unique.

An alternative graphical view of combinators and their equations is obtained

through commuting diagrams. The existence of a natural map (the ! combinator)

from every type in the system to the final unit is shown by the following diagram:

X

C

Y
!

where the domain type Y is transformed to the codomain type 1 via the map !. For

any other type X with a map c : X' - + Y, the map !x : X - 1 exists and !x =

C; !. Commuting diagrams provide a graphical means of representing the action of

combinators over the types and reasoning about them.

In addition to the above diagram, in order to secure the uniqueness of the! corn-

binator we require the following additional equality:

Suppose now f : X - p 1 then

x

commutes. Thus

!1 = Ii

f

! = = f;Ii = f

4. THE CHARITY ABSTRACT MACHINE: BASICS 38

showing uniqueness

The definition of products produces several combinators, and we introduce them

by the following formation and equality rules:

f:C—*A g:C—+B
pair{f,g} : C --+ A x B ring

A type B type
projections

po:AxB—+A pi:AxB—+B

h;po=f:C—A h;p1:C—*B
 uniqueness
h _—pair{f,g}: C —VAX B

Notice that the uniqueness rule is a two way rule meaning the equalities hold in both

directions.

Expressing products (often expressed with the infix x) with a commuting diagram

yields:

X\\X Y -

A

:(f,) g

where (f, g) is short hand for the pair{f, g}. The product diagram can be read as:

"given a type X x Y and two combinators Fo : X x Y -V X, P1 : X x

Y - Y, and any type C with combinators f: C -* X and g: C -V Y

there exists a unique combinator (f, g) such that (f, g); Po = f and

(f,g);P1 =g".

From the above equations we can derive the distributive rule for composition over

pairing:

f;(x,i) = (f;x,f;y)

4. THE CHARITY ABSTRACT MACHINE: BASICS 39

since

f;(x,y) = (f;(x,y); Po' f;(x,y);PI)
= (f;x,f;y)

In the Charity system, the unit and product types are built in along with combi-

nators:

!{} :
P0{} : XxY - X

P1{} : XxY-Y

pair{C.-4X,C--Y} : C - XxY

4.3. Translating to combinators

So far, we have introduced the basic types and combinators for the Charity system.

We now define the translation T from Charity term logic to combinators. This case-

based translation involves pattern matching over a term to produce an equivalent

combinator expression. Below, a term matching the form on the left side of the equal

sign will be translated to the combinator on the right side, recursively:

(Ti) T[v '- ()] =
(T2) T[XF-+x]=I,

(2's) T [(vo, vi) '- x] = T [v '-4 x] where i = 0' if x occurs in v0,

otherwise i = 1,

(T4) T[vE-.p(t)] =7[v-*t];p for i=0,1,

(T5) T[v-4(to,ti)]=(T[vI--> to] ,T[v-ti]),

(T6) T[v i- {w -+ t'}(t)] = (T [v i-* t],I);T[(w,v) I- t']

Abstractions are translated by the last translation (T6). This must propagate an

environment to the abstracted term. This is done using the second component of the

pair. Thus, a variable in v is in the second component of the pair composed with the

abstraction. The equivalence of the combinator expressions and the term logic, and

thus the correctness of the translation from term logic to combinators, is proven in

4. THE CHARITY ABSTRACT MACHINE: BASICS 40

[CS95].

To translate from term logic, one would mechanically pattern match the term with

the translation rules to produce a categorical combinator expression. For example, -

the Charity expression

((x,y),z) => pO(pl(x,(y,z)))

has the following translation to combinators:

T[((x,y),z) i-+ Po (Pi (x, (y, z)))]

lT4

T5

1T3

PT3

T3

T3

tT2

T3

T[((x,y),z) - .Pi(x,(y,z))};Po

T[((x,y),z) i-+ (x,(y,z))]; PI; Po

(T[((x,y),z) i- x], T [((x, y), z) i-+ (y,z)]);Pi;Po

(Po;T{(x,y) - x],T[((x,y),z) -4 (y,z)]); PI; Po

(Po; Po; T[x i-f x],T[((cc,y),z) -+ (y,z)]);Pi;Po

(Po; Po; I,T[((x,7j),z) i-+ (y,z)fl; PI; Po

(Po;Pi;I,(T[((x,y),z) —y],T[((x,y),z)i--z]); PI; Po

(Po; PI; I,(Pi;T[(x,y) i-+ y], T [((x, y), z) i-+ z])); PI; Po

(Po;Pi;I,(Po;Pi;T[y i-+ y], T [((x, y), z) i—+z])); PI; Po

(Po; PI; I,(Po;Pi;I,T[((x,y),z) i—z])); PI; Po

(Po; PI; I,(.Po; PI; I, PI; T[z—z])); PI; Po

=T2 (Po; Pi; I,c(Po; PI; I, Pi; I)); PI; Po

which is correct, but clearly rather inefficient!

4.3.1. Resolving variable scope

One of the primary reasons for choosing combinators as an intermediate representa-

tion is that the evaluation need not handle variable name clashes and variable scop-

ing problems. Access to a variable outside of the scope of a combinator is restricted

through the use of an environment.

To illustrate how the environment is used in Charity, consider the function:

T4

4. THE CHARITY ABSTRACT MACHINE: BASICS 41

def f (x) =

{ y => g(x, y) } (zero).

which contains an abstraction whose body accepts a y and calls the function g, with

x and y as input. The variable y is bound within the scope of the abstraction, but the

x is not. To access the unbound x, the abstraction is passed a pair consisting of the

actual argument for y (ie: zero), and the environment (the actual argument for x).

The translation rules take into account the extra environment for each combinator,

and select either the actual argument or environment as needed.

Consider the next Charity program and its translation which illustrates how the

environment and how scoping problems are avoided.

def f = {(x,y) => x} ({(x,y) => y} (x)).

Notice the variable x is used in more than one context. The translation rules deter-

mine the scope of a variable by creating an environment in which a term is evaluated.

In fact, translations T3 and T6 work in conjunction by first building the context (a

variable base) in transition T6, and then accessing the variable in the context with

transition T3. The translation of the above function f is shown below:

i-4 {(x,y) i- x}({(x,y) i- y}(x))]

(T [x i- {(x,y) i- y}(x)],I);T[((x,y),x) i-4 x]

r-* x],I);T[((x,y),x) i-+ y] ,I);T[((x,y),x) t-* x]

((I, I); T [((x, y), x) -+ y], I); T [((x, y), x) i-+ x]
((I,I); Po; T[(x,y) i- p y],I);T[((x,y),x) i-+ x]

T4 ((I,I); PO; Pi; T[y I" y],I);T[((x,y),x) [x]

T2

T4

7T2

((I,I); PO; PI; I,I);T[((x,y),x) 1-4 x]

((I, I); PO; F1; I, I); PO; T[(x, y) i x]

((I,J); PO; PI; I,I); PO; PO; T[x i-+ x]

((I,I); PO; PI; I,I); PO; PO; I

The code generated from the translation is unreadable, and is analogous to an assem-

4. THE CHARITY ABSTRACT MACHINE: BASICS 42

bly language. However, the point of the translation was to remove all variables from

the resultant combinator expression, which has been successfully accomplished. The

translated expression above creates a few parameter/environment pairs, then projects

out the value needed.

In general, if an environment is required, a pair is constructed with the second

component used as the previous environment. To access a particular environment

nested down several layers, one must continuously project out the second component

until the desired environment is located.

4.4. Evaluation of categorical combinators

After a type and the combinators that act on that type are declared, the system

must describe the behavior as rewrite rules for each combinator. These are determined

by the equations between combinators by imposing a direction on the equality. The

equations for products are read as "the left side of the equal sign implies the right

side of the equal sign". As a result, the rewrite rules defined for the basic combinators

are:

(R1) z;!

(R2) (x,y);Po

(R3) (x,y);Pi

(R4) z; (x, y)

(R5)

(R6) I;x

X

X

Rewrite rule R1 reiterates the point that the ! combinator will take any type to 1.

Rules R2 through R4 describe the action of the product combinators. Specifically, R2

and R3 are the projections of a product while R4 is the distributive law for products

(see [Wal9l] for more details). Identity equations are handled by the rewrite rules R5

and R6.

As an example of a reduction using the above rewrite rules, suppose a; : C -+

4. THE CHARITY ABSTRACT MACHINE: BASICS 43

y: C -* Y, and z: C --> Z are combinator expressions, and E = (x, (y, z)); P1; P0

C -+ Y. Then the reduction of this expression E is:

(x,(y,z)); PI; Po tR3 (y,z);Po

4R2 Y

The part of the expression that is being rewritten by a rewrite rule is underlined.

Another example of evaluation of the function f (0, (1, 2)) = 1 (from the pre-

vious section):

(0, (1,2)); ((I, I); Po; Fi; I, I); F0; F0 I

=R ((O,(1,2));(I,I); Po; PI; I,(O,(1,2));I); Po; Po; I

=R4 (((0, (1,2)); I, (0, (1,2)); I); Po; PI; I, (0, (1,2)); I); Po; Po; I

R5 (((O,(1,2)),(0,(1,2));I); Po; PI; I,(O,(l,2));I); Po; Po; I

R5 (((0,(l,2)),(O,(1,2))); Po; PI; I,(O,(1,2));I); Po; Po; I

((O,(1,2));Pi;I,(O,(l,2));I); Po; Po; I

R3 ((1)2);I,(O,(1,2));I); Po; Po; I

7R5 ((1,2),(0,(l,2));I); Po; Po; I

=i (1,2); Po; I

'R2 11

1

Once again, notice that the resultant combinator expression derived from the transla-

tion is quite unreadable but is variable free. Evaluation of the expression above using

the rewrite rules does produce the correct result (however inefficient the combinator

expression is).

4.5. The basic Charity abstract machine

Evaluation of a combinator expression to normal form is accomplished through

state transitions in the Charity abstract machine. The state of the Charity abstract

4. THE CHARITY ABSTRACT MACHINE: BASICS 44

machine consists of the tuple

(v) c, d, f)

where

• v is the value stack holding intermediate values of a computation,

• c is the code stack listing the remaining sequence of instructions to execute

• d is the dump stack thats holds continuations so that the abstract machine

can execute instructions sequentially

• f is the function stack holding a list of functions passed through definitions.

Computation begins at an initial state where the value, dump, and function stacks

are empty, and the code stack contains the combinator expression. When the machine

has completed computation (ie. reached normal form), the value stack holds the result

while both the dump and code stacks are empty. A transition in the machine is written

as:

dlf - v' c' d'If

where the "before state" of the machine is given by v, c, d, and f, while the "after

state" is given by v', c', d' and f. State transition rules examine the contents of

the "before states" and describe how (deterministically, in our abstract machine) the

system is to evolve to the next state of the machine. For most of the state transition

rules, the function stack is not utilized and the listing for this stack is omitted from

the tables.

The state transitions for the primitive combinators listed below are derived directly

from their rewrite rules:

4. THE CHARITY ABSTRACT MACHINE: BASICS 45

V c dlf c' d'If'

1 v !.c d -* c d

2 (vo,vi) Po.c d - i vo c d

3 (vo,vi) P1.c d v1 c d

4 v (co,ci).c d -+ v Co Pro (v)ci,c).d

5 v0 C pro(v)ci,c),d -* v Cl pr1(vo,c).d

6 v, e pr1(vo,c).d -+ (vo,v1) c d

7 v c cont(c).d -+ v c d

8 v e [] - STOP

Transitions 1 to 3 correspond closely to the rewrite rules. Transition 1 is the terminal

combinator, and provides a starting point for all computations. Transitions 2 and

3 are the projections for products. To implement the distributive rule, transition 4

saves c1 and a copy of v on the dump, then executes e0 with v. Once a result v0 has

been computed, v is composed with ej (transition 5), resulting in v1. Finally, the

pair (vo, vi) is formed and left on the v stack. Transition 7 allows the machine to

continue computation from some earlier suspension and transition 8 indicates that

computation is complete, and that the value is in normal form.

4. THE CHARITY ABSTRACT MACHINE: BASICS 46

An example of reducing the combinator expression (x, (y, z)).P1.Po to normal form

using the abstract machine follows:

v c d

[1 (x,(y,z))..Pi.Po [I
= 4 [] x pr0([},(y,z),Pi.Po)

>* x'6 pr0([],(y,z),P1.Po)

5 [1 (Y' Z) pr1(x',Pi.Po)

4 [1 y pr0([],z,).pr1(x',Pi.Po)

.* y'C pr0([],z,e).pr1(x',Pj.Po)

== [] z pr1(y',).pr1(x',P1.Po)

.* z'6 pr1(y', 6).pr1(x', P1. Po)

6 (y',z ') 6 pr1(xPi.PO)

'6 (x',(j',z')) P1.Po [1

3 (y',Z') Po [1

2 Y' e [1
STOP

The * in the above evaluation represents a series of state transitions executed by the

machine before arriving at the given state. The specific state transitions have been

omitted to aide in reading and understanding the operation of the machine.

Notice that the basic types x and 1 are evaluated in an eager fashion. Each

component of the pair is evaluated by the machine before the pair is constructed.

4.6. Function parameters

Charity does not have higher order functions, but functions can still be passed as

parameters and must be treated with care in the abstract machine. Passing functions

amounts to passing the name of a function which will be expanded to combinators

when needed at run time. The first step in passing a function involves keeping track

4. THE CHARITY ABSTRACT MACHINE: BASICS 47

of the scope of the parameters. The method employed in this machine is similar to

function parameter passing in traditional imperative languages [ASU85]: an activa-

tion record is created to hold the state of the machine (also referred to as the context)

before a function call. After the function call has been completed, the state of the

machine is restored. The machine must save the context so that the calling function

will continue as expected after the return form the callee.

The Charity abstract machine uses a special f stack to hold a set of functions

passed as parameters to another function. A set of functions passed from a calling

function to a callee function is known as a frame. These frames are pushed onto the

f stack when a function is called and popped off when the called function completes

execution.

To facilitate function passing, two new instructions need to be introduced: call and

self }j. The call combinator calls a function, pushing the frame of functions onto the

f stack. The .sel combinator selects a function from the current frame on the top of

the f stack.

The translation from term logic to combinators follows:

(2?7)
(T [v i- t] , I); call(f, (T [(v1, v) i-4 ti] , ..., T [(va, v) i_*

(T8) T [v i- f(t)] = (T [v i-p t] , T [v '-+ o]); call(f, (3)
(T9) T[v i-+ fi(t)] f1 f = (T [v i- t],T[v i- o]);sel

A call to a function can appear in two different forms: calling with function parameters

and without function parameters. Translation T7 calls the function f, which has

function parameters. Notice that each functional parameter has access to the variable

base v, as the function may require access to the environment. The extra o- is a special

variable used to access the external environment variables, those variables outside the

scope of the function passed as a parameter. For example, in the call

f (x) = V {g(x)}O.

4. THE CHARITY ABSTRACT MACHINE: BASICS 48

where f' accepts one function parameter, but the variable x is outside the scope of V.

To access this variable, translation T7 creates an environment which the code in f'

can now refer to. Translation T8 calls the function f, but does not pass any functions

as parameters. Translation T9 selects the appropriate function parameter when it is

encountered in the code.

Function definitions also have two forms, with function parameters and without and

function parameters. Function parameters passed to a function may require access to

the variables of the calling functions as described above. To solve this variable scope

problem, the calling function uses the special variable o as the external environment.

For example, a function containing several function parameters:

def foo{f, g, hi (v) = t

will begin the translation process as:

T [(v, o) i-+

Notice that the translation assumes t will be passed a pair, with the second component

o providing access to the external environment.

The state transitions make use of the f stack to load the functions that are being

passed by a call. The .sel combinator selects the proper function and reloads the scope

this function acts in.

C dlf - v' c' d'If'

10 v call{c',(ci,...,c)}.c d

f

-+ v c' RET{c}.d

arg{ci,...,c}.f

11 v sel{i}.c d

arg{c1,...,c}.f

-* v ci reload(arg{ci, ...,

f

c,2}).cont(c).d

TABLE 4.1. State transition rules for the calling a function

4. THE CHARITY ABSTRACT MACHINE: BASICS 49

V C df — V1 C1 d'f'

12

13

v c reIoad(arg{ci,...,c}).d v e d

f arg{ci,...,c}.f

v e ret(c).d —* v c d

arg{c1,..,,c}.f I

TABLE 4.2. State transition rules for the returning from a function

In transition 10, the f stack is loaded with the functions passed to c'. These

functions form a frame. Essentially, the machine pushes a frame onto the f stack

only when passing functions to another function. When one of the functions ci is

encountered in c', the appropriate function from the current frame in the f stack is

loaded into the code stack and evaluated. At this point, the machine must load up

the previous frame of c, so that this function can executed with the proper f stack.

When ci has completed evaluation, the frame for c' must be reloaded into the f stack

by transition 12. Finally, when returning from a function call, the current frame on

the f stack must be popped off.

To illustrate how passing functions work in this machine, consider the following

two Charity functions and their translation to combinator expressions. The function

foo' simply applies a macro to x. The interesting thing about this function is that

since foo' accepts a macro, it expects that it will be passed the value for x along

with the environment of the calling function. In foo' the environment is discarded

with the Po instruction and the macro is applied directly to the value of x.

def too' {f} (x) = f(x).

foo': T [(x, o) '—* = (T [(x, o) '—p , T {(x, o) i—* oj); sd 0

=- (Po;T[x],T[(x,o)-3.o-]);Selo

= (Po;I,T[(,o) i—+ 0-1); Selo

= (Po;I, Pi; T[o-i-+o]);Selo

- (Po;I,Pi;I);Selo

4. THE CHARITY ABSTRACT MACHINE: BASICS 50

The too function passes an abstraction to foo'. The abstraction refers to the

variable y, which is outside its scope. Thus, the environment of too must be passed

along with the abstraction.

def foo(y) = foo'{x => (x,y)}(y).

foo T [y i- + foo'{a i-* (x, y)}(y)] = (T [y i-* y] , I); call(foo' , T [(, y) i- (x, y)])

= (I, I); call(foo' , (T [(x, y) i-+ (, y)]))
= (I, I); call(foo' , ((T [(x, y) -+ x], T [(s, y)

(I,I);call(foo',((Po;T[n— x],T[(x,y) -. y])))

(I,I);call(foo',((Po;I,T[(x,y) '-+y])))

= (I,I);call(foo',((Po;I,Pi;T[y i-i yfl))

(I, I); call(foo' , ((Po; I, F1; I)))

The execution of foo(8) by the abstract machine is shown below:

v c dif

[1 8; (I, I); call(foo', ((po; 1, pi; I))) []
8 (I,I);call(foo',((po;I,pi;I))) []

* (8,8) call(foo',((po;I, pi; I))) [1

The call to foo' sets up the return from foo' by pushing the empty code stream on

the dump (the code after the call combinator) and pushing the function arguments

onto the f stack.
V c dlf

= (8,8) (Po;I,Pi;I);selo ret(e)

ary((po; I,pi; I)

= (8,8) sd 0 [1
arg((po; I,pi; I)

4. THE CHARITY ABSTRACT MACHINE: BASICS 51

A selo instruction will load the code from the f stack onto the code stack.

v c djf

(8,8) (Po;I, Po; I) arg((po;I, pi; I)).ret(E)

= (8,8) 6 arg((po;I, pi; I)).ret(c)

= (8,8) € ret(€)

arg((po; 1, pi; I))

= (8,8) e []
STOP

As expected, the computation results in (8,8) being left on top the of v stack.

CHAPTER 5

The Charity Abstract Machine: datatypes

The Charity system can be customized by adding datatypes. These are divided into

the inductive datatypes and their dual, the coinductive datatypes. Immediately fol-

lowing a datatype declaration, three combinators (map, fold/unfold, case/record)

for manipulating the datatypes are delivered to the system. Similarly to the basic

combinators; those associated with the datatypes access variables in an environment

similar to the basic combinators. This chapter shows how the inductive and coinduc-

tive datatypes and the combinators that manipulate their elements are added to the

basic Charity system.

5.1. Inductive datatypes

When an inductive datatype L is declared, constructors for building elements of the

datatype, along with three combinators (for the case, fold, and map), are immediately

deliveredto the system. Recall the definition of an inductive datatype is of the form:

data L(A) —iS = C1: E1(A,S)

I c:E(A,S)

-i S

S.

In each constructor ci of L, the domain type expression E(A, S) is a type where

• A is the parametric variable,

• S is the state variable,

52

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 53

such that

E(A, 8) ::= A parametric variable

I S state variable

1 unit (basic type)

I E(A, S) x E(A, S) product (basic type)

I L(E(A, 8), ..., E(A, S)) other datatype (user defined type)

5.1.1. Strong datatypes

Adding strength to datatypes provides a means of accessing global values outside the

scope of a data structure. In this scheme, the environment is distributed uniformly

over the structure of the datatype. This means distributing the environment over the

constructors of a data structure. However, constructors are simply combinators with

types:

c : E(A,L(A)) -+ L(A)

For example, the cons constructor from the list datatype is:

eons : A x list(A) - list(A)

Hence, distributing the environment into the local context of a constructor is viewed

as distributing the environment over a combinator.

To "strengthen" a combinator by distributing the environment into its local context,

three maps (also combinators) are provided. These maps distribute the environment

into a single level of the combinator and are not recursive in nature. The parametric

component of a constructor's type expression E(A, S) is strengthened with the map':

E1(A,S) x o - E(A x o,,S)

'The subscripted —iR refers to the nonrecursive parametric component.

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 54

while the state component is strengthened with':

E(A, 3) x o —* E(A, S x o)

or in case both components are strengthened, we use:

E1(A,S) x o7 — E(A X cT,S x cr)

As in the last chapter, the environment is represented by u. In short, adding strength

to a component of a type expression will pair up each occurrence of the component

in the current level of a data structure with a copy of the environment. For example,

suppose list is a type of arity 1, and A, .8 are parametric variables, and S the state

variable in the type expression

E(A, 5) = A x list(B x 5)

Then applying the above three maps would have the following actions:

((E): (Ax list(B xS))xo - (Axo)xlist((BXCT)xS)

O(E): (A x list(B x S)) x a - A x list(B x (S >< cr))

OE(E) : (Ax list(B xS))xcr —4 (Axcr)xlist((Bxci)x(Sxcr))

Notice that when a datatype is encountered in the type expression (such as the list

in the above example), the parameters passed into the datatype are also paired with

the environment in the same way.

To apply a function to the parametric component or the state component of a term,

the following combinator is used:

E{f,g} : E(A,S) — E(A',S')

where f : A — A' and g : S — S. The E{} combinator should not be confused

with the type EQ. Combinators acting over a data structure require an environment.

2The subscripted ft refers to the recursive state component.

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 55

Therefore, the system is supplied with another combinator:

mapEi{f,g} = OEi ;Ej{f,g}

For example, given the constructor Cj : E(A, S), f : A —f A', and g : S — f S', the

map'i combinator will be:

mapEi{f,g} : E(A,S) x u -+ E(A',S')

where each component of the term Ej is strengthened, then transformed.

5.1.2. Mapping over inductive datatypes

The map combinator is important to Charity programming. Given an element of

a datatype such as the list [ao, ..., aJ, the map operation on the list would apply a

function f to every element, eg:

map {f} [ao, ..., a,] = [f(ao), ..., f(a,)]

In general, applying a map over an inductive datatype in Charity requires that the

term for each constructor of the datatype be "mapped" with the mapEi combinator.

Given a datatype L, a map combinator for L has type:

map"{ Ai x o ' A, ..., Am X 0) A} : L(A1, ..., Am) X o - L(A, ..., A'm)

where m is the number of parametric types of L. The map combinator is then:

where OLrecursively strengthens the entire data structure of L, and then L{gj, ..., gn}

applies a map function over L as described earlier in this section.

The commuting diagram for the map combinator below shows how the environment

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 56

is distributed over the entire datatype:

cjxl
E(A,L(A)) x a L(A) x or

E(A,L(A) x cr) x or I0L

I I

E{I,O'-} X I, I

+ +

E(A, L(A xo))xcr E• E(Axo, L(A xa)) L(A xo-)
C2

Note that a x b is shorthand for (Po; a, F1; b). Hence,

011i f T, OLI X = (Fo; OEi{i3OL},p1; I)

The above diagram shows how the environment is distributed into the entire data

structure in two ways. Following the top and left path provides the abstract, general

view of distributing the environment with the combinator 0". The abstract view can

be rewritten in a step wise manner as follows:

(1) strengthen the state component and propagate the environment,

(2) recursively apply the environment distribution combinator 0' to the recursive

component and propagate the environment,

(3) strengthen the parametric component,

(4) apply the constructor combinator Cj to build a strengthened data structure

L(A x,7).

The rewrite rule for the map combinator distributes the environment before apply-

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 57

ing the mapped function. This rewrite rule is derived in [CF92] and shown below:

ci x I;mapL{gj,...,g} ci x I; 0L; L{f}

(Oj,Pi);E{I,O'} x I;O;c;L{f}

(Of , Pi); OJ; E{I, O"}; c; L{f}

0'i; E{ I, 0L}; c; L{f}

0Ei; E{ I, 0L }; E{f, L{f}}; c

0E. E{ f• 0L; L{f}}; c

mapEi{f, mapL{f}}; cj

This rewrite rule can be interpreted as "at the current level in a data structure tree,

apply f to the parametric components of the structure and recursively apply the

map" combinator to every state component of the structure".

Mapping over types 1 and product

To map over the basic types 1 and products, two new combinators are introduced

into the system:

map'{} : X x o - X

map'<{Xxo-4X',Yxcr--4Y"} : (XxY)xcr-4X'xY'

Since the type 1 does not have any input parameters, the map over 1 simply eliminates

the strength. The map over the product type strengthens each component of the pair

(by distributing the environment) before applying the mapped functions to the two

parametric values in the pair combinator.

5.1.3. The fold combinator

The purpose of the fold combinator is to provide a mechanism for transforming an

element of one user defined datatype to an element of another user defined datatype.

The fold combinator has type:

foldL{El(A,C) xcT+ C,...,En(A,C) xo) C} : L(A)xo—+C

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 58

where the input combinators need to be strengthened with the environment o- in the

same way as the map combinator.

The following commuting diagram derived in [Spe93] defines the action of the fold

combinator:

ci X I
E(A,L(A)) x a L(A) x a

(9i ,pi)

E(A,L(A) x a) x a foldL

E{I,fold"} X I

+

E(A,Y)xa gi

where each g : E(A, Y) x a -* Y is a user defined phrase used for transforming

elements of type L to elements of y.

For the above fold diagram, following the path of the diagram starting from the

top left via the upper right side, this can be rewritten as the bottom left path. This

rewriting gives the defining rule of the fold combinator. The above diagram can be

thought of as:

Applying the constructor ci to the type Ej will build an element of the

datatype L. Applying fold to L will transform the element of L to an

element of Y. However, this can be regarded as first distributing the

environment into the recursive (state) component of Ej by applying 0,

then applying the fold combinator to each recursive component of E.

Finally, the phrase gj will transform the expression into a value of type

Y.

=

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 59

The rewrite rule for the fold combinator can be derived from the diagram as follows:

ci x I;fo1d"{gi,...,g}

= X I;g

(O',Pi);(Po;E{I,fold"{gi,...,g}}, Pi; I);g

(O; E{I,foldL{g1, ...,g}}, (O, .P1); F1; I); gi

(O; E{I,fold"{g1, ...,gn}}, F1; I); gi

(O;Ej{I,foldL{ gi, ...,g IT, Fj);gj

(OEi ;Ej{ Po, I};Ej{I,fold'{gi,...,gn}}, PQ; gj

(OEi ;Ej{ PO; I,I;fold{gi ,..., gn}},Fj);gj

(OEi ;Ej{Fo,I;foldL{gj ,..., gn}},Pi);gj

(OF;Ej{ PO, foldL{ gi, .,.,gn}},Pj);gj

(mapEi{Po,f01d11{gi, ...)g}},Pj);g

The fold combinator is a tail recursive function applied to all state components of a

term before the phrase 9j is applied.

5.1.4. The case combinator

The case operation is a special instance of the fold, where the maps are only applied

to the "head" value of the data structure (ie. it is non—recursive). The combinator

for the case combinator is:

case"{Ei(A,L(A)) x o - C, ...,E(A,L(A)) x o -* C} : L(A) x o - C

The rewrite rule for the case combinator is:

ci x u; case{hi, ..., h} -* hi

where h : E(A,L(A)) x o -* C.

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 60

5.2. Translation to combinators

After the translation from term logic to combinators extended below, all free vari-

ables are eliminated from the resultant combinator expression. The environment

passing mechanism for the inductive combinators is the same as that for abstrac-

tions. Before the inductive combinator is called, a pair is created, where the first

component is the input, while the second component is the environment.

(T10) T [v - c(t)] = T [v i-+ t];ci where cis a constructor,

(T11) T

(Ti2)

V I-+

T[v

{

(Ti3) T vi-+L

ci(vi) i- + tj

Cl : vi

c, : v,

Vl '-4

Vm

.ti

tn

ti

tM

= (T[v F_.t],I);caseL{ T[(vj,v)

T[(v,v) i-*.ln] },

(T [v - t] , I); fold'{ T [(vi, v) 1],

T[(v,v) -+t,] },

(T[v-*t],I);map1"{ T[(vi,v)i-.#ti],...,

T[(vm,v) I+tm] },

where n is the number of constructions and m is the number of parametric variables.

5.3. Rewrite rules and machine transitions

The rewrite rules for the basic types as described in section 5.1.2 are as follows:

(R7) (vo,vi);map1{} vo

(R3) ((vo,vi),o);map >< {f,g} ==' ((vo,o-),(vi,o));f xg

These rules produce the corresponding state transitions for the abstract machine:

v c dlf v' c' d'If'

14 (v, o-) map'{}.c d -+ v c d

15 ((vo,vi),0) map'<{f,g}.c d -* (vo,o) f pr0((vi,o-),g,c).d

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 61

Notice that the state transition for the map'< combinator maps f over the first com-

ponent and saves g on the dump so that it can be mapped over the second component

of the pair. In addition, each component of the pair is strengthened with the envi-

ronment cr.

Listed below is a summary of the rewrite rules associated with inductive datatypes

(case, fold and map).

(R9) (ci; v, o);case"{fi, ..., f,} (v, 0); f

(R10) (c;v,o);fold'{gi,...,g} =. (v,o);(mapEi{Po,foldI{gi,...,g}},Fj);gj

(Rn) (cj;v,cr);map1'{hi,...,hm} (v,o);map'{hi,...,hm,

map"{hi,...,hm }};cj

For the above rules, the pair on the value stack holds the data structure in the first

component, and environment in the second component.

The corresponding state transitions derived directly from the above rewrite rules

are:

v c dlf V/ c d'lf'

16 (c.v,o) casc"{fi,...,f}.c d —+ (V, 0-) fi cont(c).d

17 (c.v, o) fold"{gi, ..., g}.c d - (v, o) (mapli {Po, fold'{gi, ..., g,}}, cont(c).d

18 (cj.v,c) map"{hi,...,hm}.c d i (v, a) mapEi{hi,...,hm,

map"{hi, ..., hm }}.Cj

cont(c).d

19 v u.c d n.y c d

An additional state transition, 19, stacks constructors onto the value stack. This

transition also applies to coinductive combinators described in section 5.5.

5.4. Examples of inductive datatypes

This section provides a number of examples of how defining inductive datatypes

will deliver the case, fold and map combinators to the system. In addition, they

illustrate the translation from term logic to combinators for each of the inductive

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 62

operations.

5.4.1. Booleans

Recall the definition of the boolean datatype:

data bool -> C = true : 1 -> C
I false: 1 -> C.

which says that the inductive datatype bool with no parametric variables and a state

variable C has constructors with domain types:

true : Etrue(_, C) = 1

false : Efalse(_, C) = 1

true x I false x I
bool x I

where h = fold{fT,fF}.

Since the definition of bool does not contain state variables, the fold diagram is

not recursive. Hence, the case combinator and the fold combinator perform the same

action. In addition, the fact that there is no parametric variables means the the map

combinator acts in the same manner as the identity function.

Consider a simple example using the and function:

def and(x,y) =
{ true 0 => y
I falseo => false

} (x).

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 63

This will result in the following translation:

I T y) true() i-+ y I
(xi—+ fal.se() F- false()

>T8

PT3

>T3

?T3

==-> T,

7T6

(T [(x, y) i- + x], I); case boot {T [(Q, (x, y)) '-f y] , T [(ft (x, y)) i-+ falseO]}
(.Po;T[x +x],I);caseb00l{T[(Q,(x,y)) i-* y] ,T[(Q, (x, y)) -+ falseQ]}

(Po; 1,1); case1'°°1{T [(O (x, y)) i-p y], T [(Op (x, y)) i-+ falseO]}
(Po; I, I); caseP00l{Pi; T [(x, y) '-• y], T [(Op (x, y)) i-* falseQ]}
(Pa; I, I); case boot {.Pi; F1; T [y i-p y], T [(ft (x, y)) i-* false,()]}
(Pa; I, I); case6001{Pi; Pi; I, T [(ft (x, y)) i-* falseQ]}

(Pa; I, I); casel)001{Pi; F1; I, T [(Q, (x, y)) i- ()}; false}
T1 (Pa; 1,1); case 6°°'{Pi; F1 1,!; false}

The rewrite rules for bool are:

(ci; v, 0); case'°°1{fT, fF} (v, o'); fi

(ci; v, o); f 01db00{fT, IF) == (v, o); (map'{}, PI); f

(ci; v, o-); mapb00 {} (v, o); rnap'{}; c

where i E bool. Hence the state transitions produced by these rules are:

V C dlf V1 C1 d'If'

(c.v, o) case00i{fT, fF}.c d .- 3 (v, u) f cont(c).d

(c;v,o) f01db001{fT,fF}.c d —* (v,u) (map'{},P1);f1 cont(c).d

(cj;v,o) mapb001 {} .c d —* (v,cr) rnap'{}.cj cont(c).d

When the abstract machine evaluates the case boot combinator, the appropriate phrase

is selected and evaluated, depending on the input constructor. The case over bools

provides the if-then-else construct for providing conditional control.

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 64

5.4.2. Natural numbers

The natural numbers are defined as:

data natO -> C = zero: 1 -> C
1 succ: C -> C.

similarly to the bool datatype, there are no parametric variables. However, the

domain type of the the succ constructor contains a state variable, yielding a recursive

definition. The fold diagram shows how recursion is handled:

zero xl succ xl
1xo .natxcr" natx

\\>\\\J I
foldt{f,.g} (:foldmat{f, g} , p,)

+
4 Yxcr

g

The rewrite rules for the fold over the natural numbers are:

zero (zero; v, I); foldnat{f, }

=t (zero; v, I); (mapE2e0{ Po, foldt{f,g},Pi); f

= (zero;v,I); (map'{},Pi);f

succ (succ; v, I); foldnat g}

(succ; V, 1); (mapE8{ Po, foldt{f, g},Fi);g

(succ;v,I); (foldt{f, g},Fi);g

where f and g are user defined phrases. In the succ case, tail recursion is performed

until the zero constructor is encountered and the zero phrase is executed. Then the

change propagates upwards, executing the succ phrase at each stage of the return.

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 65

The state transitions generated for the abstract machine are:

v c d v' c'

(zero.v)cr) fold°{f,g}.c d -* (v,o) (map'{},Pi).f cont(c).d

(succ.v,o t{f, g}.c d -4 (i7x&v1) (foldt{f, g},Pi).g cont(c).d

The function which adds two numbers together is defined as:

def add(x,y) =

{I zero: 0 => y
I succ: n => succ(n)
I} W.

The translation of add follows:

y) zero:() i- y
(x,F—

succ: m -+ succ(m)

tT9 (T [(x, y) i-+ x], I); fold't{T [(Q, (x, y)) i-p y] , T [(n, (x, y)) succ(n)]}

 >2'3 (Fo; T [x i-* x], I); fold' t{T [(Q, (x, y)) i- y] , T {(n, (x, y)) i-* .succ(m)]}

T2 (P0 I, I); fOld t{T [(0 (x, y)) '-+ y],T [(n, (x, y)) i- succ(n)}}

>T3 (P0 I, I); foldt{Pi; T [(x, Y) '-4 y],T [(72, (x, y)) '- p succ(n)]}

tT3 (Po; I, I); fold t{Pi; F1; T [y '- y], T [(n, (x, y)) '-+ succ(n)]}

tT2 (PO; I, I); foldmai{Fi; F1; I, T [(m, (x, y)) i- succ(n)]}

==T6 (Fo;I,I);fold°{Pi;Pi;I,T[(n,(x,y)) '-* n];succ}

tT3 (Po; I,I) ;foldt{Fi; PI; I, Po; T[n i-+ n];.succ}

>1'3 (FO 1, 1); fold70t{P1 P1 I,Fo; I; succ}

5.4.3. Lists

Lists are defined in Charity as;

data list(A) -> C = nil : 1 -> C
I cons: A * C -> C.

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 66

lists provide a more complex datatype example where both type parameters and

recursive definitions are present. The fold diagram for lists is:,

nil Xi cons
1 x ist(A) x fA x list(A)) x

f01d1i8i{f, g}

g

The maps for each constructor are:

(O;1 x foldhist{f, g},PI)

(A x Y) x u

mapl(fA,fa) = map'{}

map 8(fA,fc) = map'<{fA,fa}

The rewrite rules generated for the case, fold, and map are:

case

(ci; v, o); case'{fo, fi} ==. (v,o);f

fold
r (nil; v, o); foldlist 1g, g03} = (v, 0); (mapEi {P0, foldh25t{g, 9cons }}, PI); g,jj

= (v,o);(Po,P1);gj

(cons; v, o-); foldl5t {gz, g05 } == (v, a); (mapEi {P0, foidl25t{g1, y}}, .Pi); g-

(v, o-); (Map' {P0, I 01d125t { gnil, ycons}}, Pi);

map

(nil; v, o); maphist{f} '. (v, a); map'{f, maphi5t{f}; nil

,. (v,o);map'{};nil

(cons; v, o); map1t8t {f} (v, o); map0 {f, maphi5t{f} ; cons

= (v, o); map>< {f, maphi5t{f}}; cons

These rewrite rules deliver the following state transition rules to the machine:

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 67

V c dlf v' c' d'If'

(cj.v, o-) case1i82{fo, fi}.c d

(c.v, o) fold1 t{yo, gi}.c d

(c-v, o) map"&t{f} c d

- V fi cont(c).d

(v, o) (mapEi {Po, fold"" {go, gi}}, Pj).gj contc.d

(v, cr) (mapi {P0, map' {go, g }}, Fi) .c, contc.d

An example of a case combinator determining if a list is empty follows:

def isEmpty(L) =
{ nil 0 => true
I cons(x, 1') => false
} (L).

This program is translated to the combinator expression: (I, I); casehist{!; true, !; false}.

The expression isEmpty ([zero]) is evaluated as follows:

v a d

[] (zero, nil); cons; (I, I); casehi8t{!; true, !; false) []

[] zero pr0([], nil, cons; (I, I);
caseU8t{!; true, !; false})

zero c Pro([], nil, cons; (I, I);
case list true,!; false))

The first component of the pair has been processed and now the machine must pop

the code for the second component off the dump and evaluate it:

v ad

= [] nil pr1(zero, cons; (I, I); case1 {!; true,!; false})

= nil e pr1(zero,cons;(I,I);case1 {!;true,!;false})

Components of the pair have now been evaluated, and the resultant pair must be

created on the value stack:

V c d

(zero, nil) cons; (I, I); case" "J!; true,!; false) [1
(zero, nil) .cons (I, I); case' {!; true,!; false) [1

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 68

The pair on the value stack is now distributed over the pair combinator in the code

stream:

v c

(zero, nil) .cons e pro ((zero, nil) .cons, [],case't{!; true, !; false})

(zero, nil) .cons e pr((zero, nil) .cons, casehi3t {!;true, !; false})

Finally, the evaluation of the case combinator strips off the nil constructor and

executes the nil phrase of the case. The result of the evaluation is !.false, as expected:

V C d

=' ((zero, nil) .cons, (zero, nil) .cons) case' {!; true, !; false} []
='- ((e,nil).cons,(zero,nil).cons) !;false ret(E)

= ! false ret(e)

= !.false 6 ret(f)

= !.false e [1
STOP

For the next example, consider appending one list to the end of another as is done

with the following Charity function:

def append(L1, 1.2) =

{I nil : U => L2

I cons: (x, L) => cons(x, L)
I} (Li).

The append function is translated, via the translation rules, to:

(P0, I); fold1t{PI; F1, (Po; Po, Po; P1 ; cons}

Notice that append folds over Li. The pair in front of the fold combinator binds it

together with the environment. We would expect a product of two lists to be passed

to the append function, but the first list is the folded argument. The second list,

however, is present in the environment. When the first list is empty, the rewritings

5. THE CHARITY ABSTRACT MACHINE: DATATYPES

for the nil phrase are initiated:

(v)o);(Po,Pi);gi == (v,o);(Po, PO; PI; Pi

== (v,o);I; Pi; Pi

- (v,o); Pi; Pi

= U; P,

69

This means that given the original two lists passed into the append function (in the

form of a product), select the second component (ie: L2).

When a list being folded over is not empty, the following rewrite rule applies:

=

(v) o); (map'< {P0, foldlt8i{gi, flcons}}, PI); 9cons

(v, cr); (map >< {Po, fold"" .Pi); (Po; Po, Po; Pi); cons

5.5. Coinductive Datatypes

Coinductive datatypes are the dual of the inductive datatypes. Computation begins

at some initial state with destructors acting on the state to generate a new one. Recall

a coinductive definition of the form:

data S —p R(A) = d1 : S —* E1 (A, S)

I d,:S —p E(A,S).

where the state variable lines up on the domain and the codomain contains the type

expression. Along with the destructors, three other combinators (record, unfold,

map R) are immediately delivered to the system.

5.5.1. Mapping over coinductive data types

A map over a coinductive datatype has type:

map RJAI

The map diagram is shown below:

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 70

R(A) x o-
dx1 R____ P) E(A,R(A)) x E(A x a,R(A)) x or

aEj
yR

E(A x cr,R(A) o)

E{I, OR}

R(Ax di x x

The combinator OR strengthens the type R in the same way 0" strengthens £ by prop-

agating the environment through the coinductive data structure. This environment

distribution, as shown above, starts from the top left and following the left, bottom

path is broken down into the following steps:

(1) apply the destructor di to get a term, and propagate the environment,

(2) strengthen the parametric component and propagate the environment,

(3) strengthen the state component,

(4) apply the environment distribution combinator OR recursively down the state

component.

The rewrite rule for the map combinator as derived below also applies the mapped

functions to the parametric variables, as well as performing the environment distri-

bution:

map'{f}; d 0R; R{f}; d

di x, I;

di x I;O;E{I,O'};E If, R{f}}

di x I;OEi ;E1{f, OR; R{f}}

di x I;map{f,map'{f}}

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 71

5.5.2. Unfold combinator

The unfold combinator has type:

unfoldR{S x u—Ei(A,S),...,Sx o---->E(A,S)}: S x o'—* R(A)

The diagram below shows its recursive nature:

Sxcr

unfold

R(A)

(gi, F1)
E(A,S)xcr

di

yEj

E(A,S x o)

E{1, unfoldR}

+

E(A, R(A))

An unfold combinator followed by a destructor on the left, bottom path of the diagram

transforms the state S to a new state with the type expected of the destructor. This

can be rewritten by following the top, right path as:

(1) Apply the phrase gj and propagate the environment,

(2) strengthen the state component,

(3) recursively apply the unfold to the state component.

The rewrite rule for the unfold derived from diagram above is:

unfold'{gi, ...,g}; d == (g,F1); Ox'; E{I,unfold'{gi, •,gn}

= (g,Fi);E1{Fo,I}; Bill, unfold'{gi, ...,g}

 > (gj,Pi);Ej{Fo; I,I;unfoldR{gi ,..., g }}

= (gi, Fi); E{F0, unf oldR{gi, ...,g}}

5. THE CHARITY ABSTRACT MACHINE: DATATYPES

5.5.3. Record combinator

The record combinator has type:

recordR{ cr -+ E(A,R(A))} : cr -4 R(A)

72

It allows elements to be added to the head of a coinductive data structure (and it is

a non-recursive unfold).

5.6. Translation to combinators

The translation must propagate an environment to the unfold and record combi-

nators. The phrases passed into the unfold and record assume they will have access

to it. The translation for the coinductive map operation is exactly the same as over

the inductive version.

(T14) Tv

L

(T15) T vi-

\ dm

 tj

(t)
d1 (T [v I.' t], 1); unfoldR{ T [(w, v) ,

d :t) T[(w,v)

= record'{T [v -* ti],..., T[v i_+ tm]}

5.7. Rewrite rules and machine transitions

The co-inductive combinators have the following rewrite rules:

(R12) map'{fi,...,fm };dj djx1;mapEi If, , ... , fm) mapJ{ fl, ... ,fm }}

(R13) unfold'{gi, ..., gm}; d1 > (gi, Pi); mapEi{Po, unfold'{ g1, •.., gn}}

(R14) record'{h1,...,h};d = h

The corresponding state transitions are:

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 73

V c djf v' c' d'If'

22 map'{fi,...,fm }.v d.c d -* v (Po. di, Pi).mapli { fl, ...,fm ,

map jJl,".,Jm

cont(c).d

20 unfold'{gi, ...,gn}.v d.c d v (gj ,Pi). mapEi{Po,

unfold'{gi, ...,y}}

cont(c).d

21 record '{hl, ..., h,}.v d.c d v hi cont(c).d

5.8. Examples of coinductive combinators

This section provides an example of how coinductive combinators are added to the

system.

5.8.1. Streams and infinite lists

A stream is an infinite lists of values, defined as:

data C —> stream(A) = head : C —> A
I tail : C —> C.

The unfold diagram for the stream datatype is:

Cxcr (f, P1) (g, PI) 4 Yxcr

E

C x a unfold

E{I,unfo1d1}

.stream(A) .stream(A)
tail

Ax 01

aEi

A

E{ I, unfoldR}

head

+
A

5. THE CHARITY ABSTRACT MACHINE: DATATYPES

The corresponding rewrite rules are:

unfold'{f, g}; head = (f, Fi); map {F0, unfold'{f, g} }

(f,Fi);Fo

74

unfoldR{f, g}; tail (g, Fi); map{Fo, unf oldR{f, g}}

(g, F1); unfoldR{f, g}

The head will project out the current state, while the tail will produce the next state,

recursively.

The state transitions delivered by the above rewrite rules are:

V dif' V' C' dif

unfold8tTrn{f, g}.v head.c d - v (f,Pi);Fo cont(c).d

unfold8tm{f, g}.v tail.c d —+ v (g,Pi);unfold8tm{f,g} cont(c).d

Colists

Colists have the following definition:

data S -> colist(A) = dQlist: S -> sf(A * S).

The unfold diagram for colists is:

(f,P1) sf(AxY)x

y Ei

u11f0 1dc01i8i{f} sf(A x (Y >< o))
I I

: lis

I I

E{I, unfoldc0i{f}}
I I

+ +

colist(A) ' delist sf(Ax Y)

This diagram delivers the rewrite rule for the unfold, where

mapEl {P0, unf01dc01i8t {f} } = O; E {I, unfoldc0lt U} }

5. THE CHARITY ABSTRACT MACHINE: DATATYPES 75

is:

unfoldc0hi8t{f} ; delist == (f, Pi); mapEi{Po, unf01dc01i8i{f}}

== (f, F1); mapsf {map '< {P0, unf01dc01i3t {f} } }

Notice that the combinator map generates a map over the datatype sf.

Using the equation for map R, the mapc01ist combinator is defined as:

mapc01i8t{f}; delist = (deli.st, I); mapEi{f, mapc0lt{f}}

> (dlist, I); map1{map'< {f, mapc01ist{f}}}

The state transition rules are:

V C dlf' V1 C dif'

un101dc01i3t {f} .v delist.c d —* v (f, Fi); map {map < {P0, cont(c) .d

mapcohisi {f}.v delist.c d

unf oldcol'st {f} } }
__> v (f, I); map{f, mapc01i8t{f}} cont(c).d

recordc0hi{f}.v delist.c d —* v f cont(c).d

Both the unfold and map operations over colists must perform a map over the in-

ductive sf datatype to generate the next state. If the f constructor is returned, the

computation finishes, while a ss causes a recursion to generate the next state.

CHAPTER 6

Implementing The Charity Abstract Machine

The by—value Charity Abstract Machine described in the last section is a prototype

machine focusing on simplicity and correctness rather than efficient use of computer

resources. An improved implementation of this abstract machine should aim to im-

prove its execution speed and memory usage, while retaining its correctness. The first

part of this chapter highlights those drawbacks of the basic version which influenced

the design of a new abstract machine and compiler stage.

The Charity Abstract Machine presented in the last chapter has several shortcom-

ings:

• There is no sharing of subexpressions through lazy graph reduction. Subex-

pressions may be referenced more than once, but with no sharing mechanism,

the code for the expression is duplicated and may be evaluated multiple times.

• Code is generated at run time. Similar to a simple template instantiation

machine, the template for a function must be traversed at run time and argu-

ments substituted within in the body of the function. For example, the mapEi

combinator must generate code for an operation on a datatype, forcing the

machine to suspend execution while this code is created.

76

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 77

6.1. Designing a new abstract machine

The new abstract machine will not execute combinators directly. Instead a sim-

ple macro-code language, closer to a physical machine instruction set is used. The

categorical combinators are compiled to this macro-code language. The compiler

presented in this chapter deals more with efficient code generation, rather than op-

timization and partial evaluation of the combinators. The resultant machine code

instructions are simple and mechanical macro instructions. Much of the pattern

matching associated with the by-value machine is replaced with more straight for-

ward assembly-like instructions. Furthermore, a more uniform representation of data

has been adopted.

6.1.1. The abstract machine

The target abstract machine is described in tables similar to the original machine.

The macro machine contains four stacks as before:

• v value stack,

• c code stack (contains macro instructions),

• d dump stack, and

• f function stack

In addition, this machine contains a heap store h where a large storage space is set

aside to hold uniform data values generated by the abstract machine. Each heap item

is tagged with a value to distinguish heap items from each other. The only permissible

values in the heap are:

• Q: an object of type 1.

• a product 00, hi)

• a constructor CONS{i}

• a record (ro,...,r)

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 78

where h0, h1, r0, and r,, are heap values. The layout of the state transition tables

is slightly different from the machine in the previous chapters. The main difference

is that an item listed on the value stack is really a pointer to one heap location (the

root of a tree structure in the heap). Such a pointer is a primary pointer into the

heap. Other references to heap items are listed below the primary pointer as v : x

which says "a pointer v points to a heap location with contents x". For example, the

state transition:

vlh c dif - v'Ih' c' d'If'

11 v : (vo,vi)

V0 :

INDUCT{f}.1.c d -* v' : (v, vi) fi cont(c).d

is read as "v is a pointer to a heap item (vo, vi), and the v0 is also a pointer to a

constructor ci also located in the heap". If the pointer does not point to anything of

relevance for that state transition, the just pointer appears as the variable name.

The basic state transitions listed in table 6.1 describe the formation of pairs, pro-

jection on pairs and cases where the code stack is empty. These transitions are

essentially the same as the state transitions for the basic combinators in the Char-

ity abstract machine of chapter 4. The main difference lies in the evaluation of the

pair combinator. Instead of evaluating pairs starting with the first component, then

doing second component, the macro machine evaluates the second component before

the first. The machine optimistically assumes that the second component of a pair

just reproduces environment (eg: contains only a single identity combinator). In this

case, the environment is distributed to the second component and no combinator

code needs to be executed. The reason for the choice in evaluation of a product will

become apparent with the introduction of the datatypes.

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 79

vlh c dif -+ v'Ih' c' d'If'

1 !.c d C

2 v : (vo,vi) .P0.c d vo c d

3 v: (v0, v1) .P1.c d -* v1 c d

4 v (co,ci).c d - v c1 pr0(v, co, c).d

5 v1 6 pro (v) co, c).d -* v co pr1(vi,c).d

6 v0 f pr1(vi,c).d v : (vo,vi) c d

7 v e cont(c).d -+ v c d

8 v e [J HALT

TABLE 6.1. State transition rules for the basic instructions

6.1.2. Sharing in products

When a value is distributed over a product, the value distributed is shared among

the components of the product. This is in direct contrast to the by—value machine

where a shared combinator is copied, then distributed to the components. Sharing

in this machine is accomplished by using pointers to reference shared values, instead

of copying the entire structure. For products, the pointer v in state transition 4

is pushed onto the dump and reloaded onto the value stack by transition 5. Thus

both state transition rules use the distributed value, but no copying is required. For

example, consider the diagonal x; (I, I). Distributing x over the pair should rewrite

to (x; I, x; I) = (x, x). What really happens is the pointer x is reproduced and not

the value x points to.

6.1.3. Mapping over products and the type 1

Mapping over the basic type 1 has the same action as the Po macro instruction,

and so will produce the same code as the P0. However mapping over products (x)

requires a new macro instruction with the state transition as shown in table 6.2. The

map >< instruction performs the same function as the map < combinator described in

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 80

vlh c dlf -+ v'Ih' c' dl If'

9 v : (V', V2)

(vo,vi)

MAP>{f,g}.c d -+ v" : (vi,v2)

(vo,v2)

g pr0(v,f,c).d

TABLE 6.2. State transition rule for mapping over products

the previous chapter.

6.1.4. Compiling categorical combinators

straightforward compilation from categorical combinators to macro-instructions is

given by:

(Ci) C[!] =1,

(C2) C[(f,g)] = (C[f],C[g]),

(C3) C[f;g] = C[f]-C[g],

(C4) C[p1] = Pi, where i = 0, 1,

(C5) C[l] = e, where e is the empty code stream

(C6) C[map>< If, g}] = MAP ' {C[f], C[g] }
(C7) C[map'{}]=Po

Composition of combinators in C3 is compiled into a sequence of code for f followed

by code for g. The identity combinator in C5 does not produce any code.

6.2. Inductive Datatypes

Datatypes in the new machine are handled in a more uniform, simple manner than

in the original machine. Inductive datatypes with their corresponding fold, map and

case combinators are generalized into a single INDUCT instruction. This INDUCT

instruction holds pointers to the compiled code for each constructor in the datatype

as shown in figure 6.1. The c1 to c represent the compiled code for each constructor

of the datatype, and applying a constructor to an INDUCT instruction will simply

choose the appropriate code to execute.

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 81

induct

ci

cn

FIGURE 6.1. The inductive combinator

Thus this generalized INDUCT instruction provides a more uniform representation

and more mechanical instruction processing leading to considerable simplification of

the machine. Evaluating a inductive operator amounts to chasing a pointer to some

compiled code that inherently knows what operation it is. The complexity of the

machine is reduced (as it should be) at the cost of slightly increasing the complexity

of the compiler.

A further benefit of creating a generic macro combinator for the inductive datatype

operations is that it enables the elimination of the code generation required by the

mapEi combinator at run time. Instead, the compiler is given the responsibility for

producing code for any application of the induct combinator to a constructor.

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 82

6.2.1. Compiling inductive combinators

Constructors and the inductive combinators fold, case and map are compiled with:

(Cs) C[c] = CONS{i},

(C9) C[case'{fi, ..., f}] = INDUCT{f}.1

where f :=

(C10) C[foldL{gi, ...,g}] = INDUCT{g} 1

where g := (C[map{po, induct{g%} 1}], Pi).C[g],

(Cii) C[mapL{hi, ..., = INDUCT{h} 1

where h := C[mapEi{hi, ...,hm,induct{h}i}].CONS{i}

%A new combinator induct{h}.1 is introduced to temporarily hold the inductive

instructions. The Compilation of this instruction produces the INDUCT macro in-

struction:

(012) C[induet{h}?.1] = INDUCT{h}.1

At run time, the induct combinator does not know what constructor it will en-

counter, and therefore must assume that any constructor of the datatype could be

encountered. The code for each constructor applied to the induct combinator is com-

piled and stored as an offset in the induct combinator itself. An application of the

ith constructor will cause the ith compiled code to be loaded and executed.

Finally, the state transitions of the inductive combinators follows:

vlh c dlf - v'IIi' c' d'If'

10 v CONS{i}.c d - u: cons{i}.v c d

11 v : (vo, 0)

v0 : cons{i}.vG

INDUCTL{c} 1.c d -* v': (vt,, o) c cont(c).d

TABLE 6.3. State transition rules for the inductive datatypes

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 83

6.2.2. Partial evaluation of inductive operators

Upon reexamining the execution of the fold combinator, partial evaluation can be

applied to the expression. Since the fold produces a pair, reproducing the environment

in the second component, the machine could avoid evaluating the second component

and reproduce the environment explicitly. To achieve this short cut, the machine uses

the instruction PR. Normally, propagating the environment in a fold is accomplished

with the following rewrite:

(V) U); (f, PI) —+ ((v,o);f,or)

which distributes (u, o) over the second pair and passes along the environment. The

rewrite could be improved by replacing the pairing instruction with the PR instruc-

tion, eg:

(v,o);(f,PI) (v,o');PR{f}

As a result of this instruction, the fold combinator is compiled slightly differently

to take advantage of this optimization.

. n (C 0) C[foldL{gi,...,gn}] = INDUCT{g ,jj...1

where g% := PR{C[mapEi {Po, INDUCT{g}...1 }J}.C[g],

The state transition for the PR instruction is:

vlh c dif - v'Ih' c' d'If'

12 v : (vo,o) PR{c'}.c d -+ v : (v0,o) c' pr1(o,c).d

TABLE 6.4. Additional state transition rules for datatypes

When the environment only needs to be duplicated (or passed on as in the fold

instruction), there is no code to execute in the second component. Instead, the

environment being distributed over the pair is pushed onto the dump and the first

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 84

component of the pair evaluated. When evaluation of the first component reaches

normal form, a pair is constructed on the heap (by state transition 5), with v pointing

to the newly constructed value.

6.2.3. Example: Compiling the append function

The append function is translated to the following combinator expression:

(p0, I); f01d115t {pi; P1, (po; P0) Po pi); cons}

To compile this combinator expression,'we use the C compilation scheme.

C[(po, I); foldhist {pi; p1, (p0; p0, po;pi); cons}]

C[(po, I)] .C[foldlt {P1; pi, (po; pa, P0; p'); cons}]

(C[poj, C[I]).C[fol dust {pi; p', (po; po) po; pi); cons}]

(Po, C[I]) .C[fo1d115t{pi; P1, (po; P0, po; pi); cons}]

(Pa, e) .C[fol dust {p; P1, (Pa; Pa, po; p1); cons}]

(P0, e),INDUCT{g} 1

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 85

where

91 PR{C[mapE1 {po, induct{g }=i }] } .C[pi; pu

PR{C[map'{}}]}.C[pu;pi]

= PFt{Po}.C[pu;pu]

PFt{Po}.C[pu].C[pu]

= PR{Po}.Pu.C[pu]

=. PR{Po}.Pi.Pi

g'2 := PR{C[mapE2 {Po, C [induct{g} 1]}]}.C[(po; p0, p0; p1); cons]

= PR{MAP>< {C[po], C [induct{g}..1]}}.C[(po; P0, p0; P1); cons]

PR{MAP >< {Po, C[induct{g} 1]}}.C[(po; P0, p0; p1); cons]

= PR{MAP< {Po, INDUCT{g} 1}}.C[(po; P0, P0; Pu); cons]

= PR{MAP'< {Po, INDUCT{g} 1}}.C[(po; Pa, Pa; pi)] .C[cons]

PR{MAP>< {Po, INDUCT{g}..1}). (C[po; p0], C[po; Pu]) .C[cons]

PR{MAP> {Po, INDUCT{g }.1}}.(C[po] .C[po], C[po; pu) .C[cons]

= PR{MAP< {Po, INDUCT{g }..1}}.(C[po] .C[po], C[po] .C[pi]) .C[cons]

= PR{MAP'< {Po, INDUCT{g}..1}}.(Po.Po, Pa .P1) .C[cons]

PR{MAP < {Po, INDUCT{g}.1}}. (Po.Po, Po.P1) .CONS(2)

6.3. Coinductive Datatypes

Similar to inductive datatypes, coinductive datatypes with their unfold, map, and

record combinators are generalized into the RECORD instruction which holds point-

ers to code for each destructor in the datatype. An application of a destructor to the

coinduct datatype loads and executes the proper code.

6.3.1. Lazy coinductive datatypes

Coinductive datatypes are evaluated in a by—need manner as opposed to the by—value

mechanism used in the original machine. Lazy evaluation adopts the philosophy of

"do the minimum amount of work possible" in an attempt to eliminate unnecessary

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 86

computation. Lazy evaluation in the Charity abstract machine means that a coin-

ductive operator (unfold, map or record) is not evaluated until a destructor is applied

to the operator. The abstract machine of the previous chapter simply pushed the

unfold, map, or record combinator onto the value stack and continued processing

the sequence of code. Destructors applied to this operator execute a piece of code

stored in the RECORD instruction.

The new machine requires additional machinery to deal with the lazy evaluation.

Specifically, a record is created to hold closures. A closure holds a piece of code that

is potentially unevaluated. It is represented by the pair

where v is the value acted on by some code c. A record structure holds the list of

closures for each destructor of a èoinductive datatype, and is defined as:

u : rec{clo[i] : (v, c)}..1

where u points to the record in the heap and clo[i] is an index into the ith of n

closures. Applying a destructor to a record will load, or enter the closure to be

evaluated. Upon exit of the closure, the value has been computed and can be used

in a later computation. The state transition (13) for the record combinator simply

creates a record of closures on the value stack:

vlh c dlf -
v'jli' c' d'If'

13 v RECORD{f1} 1.c d - v': rec{clo[i]}?...i

C10[i] : (v, fi)

c d

TABLE 6.5. State transition rules for the records

All coinductive operators are compiled into the RECORD instruction. The differ-

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 87

ence lies in the code generated for each destructor phrase of the record.

(C13) C[unfoldR{fi, ..., f}] = RECORD{f1} i

where f' = (C[f1], Pi).0 [mapBj {po, record{fj'}.1}J,

(C14) C[record'{g1, ...,gn}] = RECOB,D{C[g1], ...,

(C15) C[map'{hi, ..., h,,}] = RECORD{h}}1 1

where h = (Po.DESTR{i}, Fi)

.C[mapE1{hi, ..., hm, record{h}%..1}]

As with compiling of the inductive operations, a intermediate combinator record

is used for recursive calls. Compiling this combinator is done by the following:

(C16) C[record{gi, ..., = RECORD 1

6.3.2. Adding sharing to coinductive datatypes

When evaluating coinductive combinators, lazy evaluation guarantees the machine

will not perform unnecessary computation. For example, a destructor may be applied

to a record, resulting in an entry into a closure to produce an answer. Now consider

the consequence of applying the same destructor to the same record, which then

results in the evaluation of the same closure. Thus, one computes the same answer as

in the previous application. However, unnecessary computation has been eliminated

since only the answer is returned and the code is not executed twice.

To ensure that the code in a closure is executed at most once, a sharing mechanism

needs to be incorporated into the machine. The prime component of the sharing

mechanism is the updating of closures with their results, as they exit. The machine

pushes an update marker on top of the dump stack to tag the closure that must

be updated. When the machine exits the closure, the top of the dump marks the

closure that must be overwritten and updated with the result. The code portion of

this closure is also overwritten with an empty sequence of code (c), such that future

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 88

entries into this closure will simply return the value previously computed. Thus,

the resultant value of entering a closure is shared among multiple references to that

closure.

State transition 14 applies a destructor to the record, while state transition 15

updates a closure upon exit. To update a closure, state transition 15 overwrites the

vlh c dlf -+ v'h' c' d' If'

14 v : rec{v[i]}.1

clo[i] : (vi, f)

DESTR{i}.c d - Vi fi update(clo[i]).

cont(c).d

15 v C update(clo[i]).d -+ v e d

C10[i] : (vi, f) C10[i] (v, e)

TABLE 6.6. State transition rules for the destructors and updating a closure

closure node in the heap with the value computed, along with an empty code stream

for the code in the closure.

Similar to the fold on inductive datatypes, the compilation for the unfold and map

combinators on coinductive datatypes can take advantage of environment passing

using the PR instruction:

(C 3) C[unfold'{fi, ..., f}] = RECORD{fl}

where f' = PR{C[f] } .C[mapE1 {P0, record{f(}}]

(C 5) C[maplr{hi, ..., hm}] = RECORD{ h}

where h = PR{Po.DESTR{i}}.C[mapEi{hi, ..., hm, record{ h}}]

6.4. Adding the Natural numbers as primitive types

Since considerable processing in Charity is done using some bounded computation,

natural numbers are added as a primitive type to improve performance. The tail

recursion associated with a fold on the natural numbers can be replaced with a "for"

loop construct. In addition, the storage requirements of the primitive natural numbers

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 89

is considerably reduced. There is no longer a need to create a linked list of boxed

unary constructors. Instead, a natural number object is introduced to hold the integer

value of the natural number.

State transition 16 puts a natural number object in the heap. The natural number

object stores numbers between 0 and n. The instruction "NAT{n}" builds a single

natural number heap item as shown by 6tate transition 16. Adding one to a natural

number simply increases the value of the natural number item in the heap by one.

State transition 17 shows how the instruction "SNAT" adds one to a natural number

heap item. Notice that only one heap item is required to represent a natural number

vlh c dif -+ v'Ih' c' d'If'
16 v NAT{n}.c d - v' : nat{n}.v c d

17 nat{n} SNAT.c d -+ nat{n + 1} c d

TABLE 6.7. State transition for H datatype

with value n instead of n heap items as required in a unary representation.

The CASE-NAT instruction over the natural numbers acts in the same manner as a

CASE instruction on any datatype as shown by state transitions 18 and 19. However,

the case over natural numbers must be careful to act on the special natural number

element in the heap.

vh c dlf -+ v'Ih' c' d'If'

18 v : (v0, o)

nat{z}.v

CASE_NAT{f,f6}.c d -+ v': (v, o-) f cont(c).d

19 v (vo, o)

v0 : nat{s(n)}.v

CASE_NAT{fZ, f8}.c d -+ v': (vs, o) f3 cont(c).d

TABLE 6.8. State transition for H "case" instruction

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 90

The fold over the natural numbers removes tail recursion by transforming the fold

combinator into a "for" loop as in:

initialize loop

or i := 1 to n do

Loop setup occurs by executing the "zero" phrase to set the initial value. Next, an

iteration occurs where the "succ" phrase is repeated n times. A new dump item loop is

the loop counter, beginning at the number n. In addition, loop holds the environment

cr and the "succ" phrase to be executed at each iteration. State transition 20 initializes

the machine in preparation for the loop. A test of whether to iterate or terminate

the loop is made in state transitions 21 and 22.

v!h c dlf -+ c' d'If'

20

21

22

v: (vo,0) FOLD_NAT{f,f8}.c d - v': (v', o-) f2 loop(n,o,f8).

vO : nat{n}.v cont(c).d

v e loop(s(n),o,f3).d -+ v' : (V, V2) f8 loop(n,o,f3).d

v e loop(z,o,f3).d - (V, 0-) c d

TABLE 6.9. State transition for Al "fold" instruction

6.5. Displaying coinductive datatypes

When displaying a record the result of a computation, only one level of the record

is displayed, as the record may be infinite. For example, the infinite list of natural

numbers is the record:

(head : 0, tail : (head: 1, tail : (head: 2, tail :

The infinite nature of the tail component makes it impossible to show the entire

record. Instead, only one level of the infinite list is displayed at one time. In the

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 91

example above, the record

(head: ...,tail: ...)

would be displayed, until prompted for the next tail item to produce:

(head: 0, tail: ...)

then one could prompt again:

(head: O,tail: (head: ...,tail: ...))

until the user quits from what is called the "coinductive display mode". This mode

is useful for viewing portions of an element of a coinductive datatype incrementally.

To implement the coinductive display, the machine is initially loaded (as usual)

with the code that builds the record. When computation has completed, the value

stack will be in head normal form, holding a record.

vlh c dlf

v : rec{clo[i]}t1 C []
clo[i] : (v, c)

To generate the next value (ie: to look one level down), we would apply each destruc-

tor for R to the record: -

vh c dlf

v : rec{clo[i]} 1 d [1
The consequence of this action is that each closure in the record is entered (and eval-

uated) by loading the machine with the value and code of each closure in succession.

For example, to enter the ith closure, the machine state will start as:

vlh c dlf

Vi ci update(rec,i).d

When the record completes computation, the original closure is updated with the

6. IMPLEMENTING THE CHARITY ABSTRACT MACHINE 92

value and an empty code stream, leaving the state of the machine as:

vlh c djf

VI

rec{clo[i] }=
C10[i] : (v,)

CHAPTER 7

Linearizing the abstract machine

Optimizations of the machine can be realized by making the state transitions linear.

That is, take out the places where the machine must examine the top of each stack

to make a decision about the code to execute. Instead, the instruction on the code

stream determines the state transition of the machine. The sequence of code then

executes in a more linear fashion, where execution starts from an actual "beginning"

and continues to the "end". This linear set of instructions is more amenable to

translation down to native machine code.

The design philosophy of the linear abstract machine consists of the following prin-

ciples:

(1) Like the previous machines, code is never stored in the value stack. But

unlike the previous machines, the code stack is never temporarily empty. The

machine will never have to inspect the dump stack for more code once the

code stack empties itself. That is, the dump stack may contain pointers to

code, but the machine never executes the code in the dump directly. Rather, a

"jump" is initiated to load the program counter with the appropriate pointer

to the next piece of code to execute.

(2) Macro instructions of the previous machine are replaced with even smaller lin-

ear micro instructions. Instead of having one macro instruction perform many

small tasks, we choose to split macro instruction into several smaller instruc-

tions that, in combination, carry out the work of the macro instruction. An

93

7. LINEARIZING THE ABSTRACT MACHINE 94

example is the contrast between how pairs are built in the previous machine,

versus in the new machine.

7.1. Basic combinators

The basic combinators in this machine are composition, terminal map, identity

and pairs. The identity combinator does not generate any code, while the ! combi-

nator generates the micro instruction !. Composition of combinators is reduced to

generating a sequence of code in a linear order. Now we come to our first lineariza-

tion combinators for products. This linearization is basically the that of Curien's

Categorical Abstract Machine [Cur86]. Distributing a value over pair combinator

with

v.(f,g) = (v.f,v.g)

is divided into three instructions: SAVE, SWAP and a new PAIR instruction. SAVE

simply pushes the v on the value stack to be distributed onto the dump. SWAP

reloads the saved v by swapping the current value of v and the value pushed onto

the dump. Finally, the PAIR instruction constructs a pair on the value stack. To

evaluate the first and second component of a pair, we simply compile the code for the

second component between the SAVE and SWAP instructions, and compile the first

component between the SWAP and PAIR instructions. Note that in compiling a pair

we choose to compile (and evaluate) the second component ahead of the first. Like

the previous machine, the compiler performs some partial evaluation where the ma-

chine optimistically assumes that the environment is in the second component. Thus

when the environment needs to be replicated, the machine uses the PR instruction

to automatically project it out and push it onto the stack.

7. LINEARIZING THE ABSTRACT MACHINE 95

The compilation scheme for these combinators are:

(Cl) C[co; ci] = C[co].C[ci],

(C2) C[!] = !,

(C3) C[1] =e where e is the empty code stream,

(C4) C[p2]=P2 for i=O,1,

(C5) C[(co, c1)] = SAVE.C[ci].SWAP.C[co].PAIR,

(C6) C{map'{}] = F0,

(C7) C[map> {f, g}] = MAPX .C[f] .SWAP.C[g] .PAIR

The sequence in which a pair combinator will execute as follows:

(1) copy a value onto the dump for distribution over a pair,

(2) execute the compiled code associated with the second component of the pair,

(3) swap the resulting value with the dump,

(4) execute the compiled code associated with the first component of the pair,

(5) recombine the item on the top of the dump stack with the current item on the

value stack to create a pair combinator to be left on the value stack.

The state transition rules of table 7.1 show how the first three transitions retain

the same operation as in the previous machine. However, transitions 4 to 6 work

in conjunction to perform the task of the pair combinator. Transition 7 is the map

over products, while the PR instruction in transition 8 allows for the environment to

be reproduced with minimal waste in instructions. An explicit HALT instruction in

transition 9 stops the machine. This is in contrast to checking the code and dump

stacks to make sure they are both empty before halting. The jump transition (10) is

analogous to a subroutine call where the machine "jumps" to the a piece of code and

continues execution there. When a RET (transition 11) instruction is encountered, the

suspended sequence of code pushed onto the dump stack is popped off and execution

resumes as before. Finally, the machine can execute an unconditional goto to execute

some other piece of code, as in transition 12.

7. LINEARIZING THE ABSTRACT MACHINE 96

vlh c dlf - v'h' c' d'If'

1 v LC d ! c d

2 v (vo,vi) P0.c d -* vo c d

3 v: (vo,vl) P1.c d -+ v1 c d

4 v SAVE.c d - v c pr0(v).d

5 vj SWAP.c pr0(v).d - p v c p1(vi).d

6 vo PAIR.c pr1(v1).d -+ v : (vo,vi) c d

7 v (v', o-) MAP<.c d -* v" (vi, o-) c pro ((vo,o-)).d

V/ : (vo,vj)

8 v (vo,v1) PR.c d - v : (vo,vi) c pr1(v1).d

9 v HALT I - STOP

10 v JUMP{c'}.c d -* v c' cont (c).d

11 v RET cont(c).d v c d

12 v GOTO{c} d - v c d

TABLE 7.1. State transition rules for the basic instructions

7.2. The linear datatypes

Moving towards a linear machine makes the overall operation of the machine much

simpler. The combinators for the datatypes benefit from this linear machine by a

more efficient and uniform code representation. All instructions contain at most one

operand. This operand is either a pointer to some code, a pointer to an offset table,

or an integer value. Applying a constructor to an inductive combinator simply enters

the code associated with that constructor.

In making the datatypes linear, we must reexamine the combinators generated

by the inductive and coinductive datatypes. The INDUCT, RECORD and DESTR

combinators that performed many tasks in the previous machine now are modified

to perform at most one task. By task, we mean a single simple stack operation or

reference. The design philosophy is to make the machine less abstract and more

concrete. Instructions are now similar to physical machine instructions, making the

7. LINEARIZING THE ABSTRACT MACHINE 97

gap between abstract machine and machine code generation a small leap.

To achieve speeds comparable to imperative languages, functional languages are

compiled to native machine code. Whether this compilation is the result of compiling

to some high level then to machine code, or directly to machine code, the goal of

most implementations is to choose an appropriate intermediate language.

7.3. Linear inductive datatypes

The INDUCT combinator of the last chapter is modified into a linear instruction

where this combinator points to the start of a code table. Each entry in this table

is a goto instruction that points to code compiled for one of the inductive operators

(case, fold, or map), one GOTO for each constructor. For example, if the INDUCT

FIGURE 7.1. A view of the induct instruction

combinator is a fold, then a constructor CONS{i} applied to this INDUCT combi-

nator would select the ith code to execute from the offset table. The code for the

7. LINEARIZING THE ABSTRACT MACHINE 98

case under CONS{i} has been compiled to the appropriate linear instructions. The

INDUCT instruction is, in essence, a conditional indirection pointer and points to a

table of GOTO instructions. The compiler is given the task of compiling the map,

fold, or case combinator and must take into account the effect of each constructor on

the inductive datatype. The net effect is that the induct combinator no longer needs

to know about a particular fold, map, or case combinator.

The translition C from the categorical combinators is described as follows:

(Cs) C[c]

(C9) C[case'{fo, ..., fn}]

= CONS(i),
= x:= INDUCT{y}

where y = GOTO{yo} + ... + GOTO{y}

where yj := C[11].RET,

(Co) C[foldL{yo ,..., gn}] = x :=INDUCT{y}

where y = GOTO{yo} + ... + GOTO{y}

where yj PR.C[mapEi{Po,.qoto{c}}].PAIR

• C[g]

• RET,

(Cii) C[map"{ho, ..., hm}] = : INDUCT{y}

where y = GOTO{yo} + ... + GOTO{ym}

where yj := C[mapE{C[hi], ...,C[hm],goto{r}}]

CONS{i}.RET,

A new combinator goto is used to handle recursive calls. The compilation of this

combinator is:

(C12) C[goto{x}] = GOTO{a}

where x is the pointer to the beginning of a sequence of macro code.

Consider the following example of a compilation from the f01d115t combinator to

macro instructions:

C[f01d115t{f1, f2}] = INDUCT{x}

where x = GOTO{xi} + ... + GOTO{x2}

7. LINEARIZING THE ABSTRACT MACHINE 99

where x, = (C[mapE1{po, goto{}}], Pi).C[fi]

= (C[map'{}], Pi).C[fi]

(Po,Pi).C[fi]

where = (C[napE2{po, goto{a}}], P1).C[f2]

= (C[map'< {po, goto{z,}}], F1) .C[f2]

= (MAP >< {C[po], C[goto{c}]}, P1).C[f2]

= (MAP {P0, C[goto{}] }, .P1) .C[f2]

= (MAP'<{Po, GOTO{x}}, P1).C[f2]

The state transitions 13 and 14 show how constructors are stacked on the v stack

and how the INDUCT instruction "jumps" to the beginning of some code. In fact, the

INDUCT instruction can be thought of as a conditional branch were the constructor in

the v stack determines the offset into the table point&l to by the INDUCT instruction.

vlh c dif - v'Ih' c' d'jf'

13 v CONS{i}.c d -+ tz cons{i}.v c d

14 v : (vo,0)

cons .v

INDUCT{c} 1.c d -* v': (v', o-) c cont(c).d

TABLE 7.2. State transition rules for the inductive datatypes

7.4. Linear coinductive. datatypes

The record cornbinator in the previous machine created a record on the value

stack with the appropriate closures for each destructor. The linear machine splits

this instruction into three separate instructions that build a record with closures on

the value stack. The ALLOC instruction allocates n consecutive items in the heap so

7. LINEARIZING THE ABSTRACT MACHINE 100

that the closure instruction will load the ith heap item with the environment (current

value stack) and code pair to form a closure for the ith destructor. This consecutive

space, with closures, is what the RECORD instruction points to, via a rec node

on the value stack. Before each destructor that enters a closure is encountered, a

BLDUPDATE instruction pushes the closure the machine is about to enter onto the

dump. On exiting the closure, an UPDATE instruction grabs the closure location

from the dump and updates it with the computed value and an empty code stream

for its code. Subsequent accesses to this closure will immediately load the computed

value onto the value stack and exit the closure without updating.

(C13) C[d] = DESTR{i}

(C14) C[recordR{fo, f,}] = ALLOC{n}.BLDCLO{1, x}.....BLDCLO{n, c}

where x := BLDUPDATE

C[f1]

TJPDATE{i}

RET,

(C15) C[unholdR{go, ..., g}] = := ALLOC{n}.BLDCLO{1, r1}.....BLDCLO{n, z,}

where xi BLDUPDATE

• PR.C[g] .PAIR

• C[mapEi {Po, goto{cc}}]

TJPDATE{i}

RET,

(C16) C[map'{ho, ..., h}] = x := ALLOC{n}.BLDCLO{1, x1}.....BLDCLO{m, xm}

where x := BLDUPDATE

PR.P0 .DESTR{i} .PAIR

C[mapEi{hi, ..., hm, goto{x}}]

UPDATE{i}

RET,

The state transitions below show the allocation of heap space for closures, and the

instruction which builds a closure in the heap.

Once a closure has been entered and evaluated, it must be updated with the result

7. LINEARIZING THE ABSTRACT MACHINE 101

vlh c dlf - + VIh' c' dl If'

15 v ALLOC{n}.c d -* v.rec{clo[i] : (e,f)} 1 c d

16 v.rec{clo[i] : (e, e)}}2 BLDCLO{i, c}.c d v.rec{clo[i] (v, c)}.1 c d

TABLE 7.3. State transition rules for the building closures

in order avoid recomputation. Transition 17 the pushes the closure on the dump to

make it accessible when performing an update to the closure. Transition 18 explicitly

updates the value component of a closure to hold the result of the computation and

updates the code portion to have an empty code stream. Future references to this

closure will return the already computed value.

vjh c d!f -+ v'Ih' c' d'If'

17 v : reef v[i] : (vj,c)} 1 DESTR{i}.c d -* Vi ci update(v[i]).cont(c).d

18 v

'a rec{u[i] (vi, c)}}.1

TJPDATE{i}.c update(u).d -* v c

'a : reef

d

(v, E)}L1

TABLE 7.4. State transition rules for updating a closure

7.5. Linear natural numbers

The natural number optimizations of the last chapter also need to be reworked

into the linear setting. Like the previous machine, a nat object is used to store a

number in the heap eg: succ(succ(zero)) is represented as nat{2}. Transitions 19 and

20 operate on this natural number object in the heap. The linear natural numbers

are divided into the those instructions that deal with the case and those that deal

with the fold. Transitions 21 and 22 are the zero and succ cases over nats. The last

three transitions deal with folding over a natural number. Loop initialization (the

7. LINEARIZING THE ABSTRACT MACHINE 102

zero phrase) is performed by transition 23. Transition 24 and 25 determine if the

machine should continue iteration or exit the loop.

vlh c dlf -* v'Ilz' c' d'If'

19 v NAT{n}.c d - p v': nat{n}.v c d

20 nat{n} SNAT.c d -* nat{s(n)} c d

21 v : (vo, o-) CASE_NAT{fZ,1S}

v0 : nat{z}.v6

d - v': (v6,o) f d

22 v: (vo, cr) CASE_NAT{fZ, f8}

vo nat{s(n)}.v(

d - v': (vs, 0-) f

VO : nat{n}.v'

d

23

24

v (vo,o) LOOPINIT.c

v0 : nat{n}.v,

v LOOP(c').c

d

state(s(n),o).d

-+ v': (V/, 0-)

v': (V, V2)

c

c

state(n,o).d

state(n,o).d

25 v LOOP(c').c state(z,o-).d v c' d

TABLE 7.5. State transition for H datatype

The translations below show how the combinators are compiled to linear natural

number instructions.

(C17) C[fold'{f,f3}] = LOOPINIT.C[f2].a := LOOP(b)

.C[f3].GOTO{a} .b :=

(C18) C[case{f,f8}] = CASE_NAT{yo,yi}

where Yo := C[f].RET,

yj C[f8].RET

7.6. Linear function (macro) passing

Each function passed as a macro must be individually onto the f stack. A collection

of these macros passed to a function form a frame. Transition 26 loads a frame on the

f stack while transition 27 invokes a call to a function. When the call to a function

is finished, transition 28 unloads the frame from the f stack.

7. LINEARIZING THE ABSTRACT MACHINE 103

vlh c dlf v'Ih' c' d'If'

26 v LDPARM{parm{p[i] c} 1}.c d

f

v c d

parm{p[i] c1}.1.f

27 v CALL{c'}.c d -+ v c' cont(c).d

28 v UNLOAD.c d

parm{p[i]

-*

cj}?1.f

v c d

f

TABLE 7.6. State transition for linear function passing

The compilation of the call combinator from the original machine is:

(C19) C[call{c',(ci, ...,c)}] = LDPARM 1. CALL {c'}.UNLOAD

When the called function reaches a macro, it selects the code from the current

(top) frame of the f stack with transition 29. When a macro is invoked, the machine
must push the current f frame onto the dump, effectively restoring the f stack to the

environment the macro must operate in. After the macro has completed computation,

transition 30 returns from the call and restore the f stack to its former state. This is

accomplished by popping the frame of the dump and pushing it onto the f stack.

vlh c dlf -* v'h' c' d'If'

29 v PARM(j).c d

parm{p[i] : c}L1.f

v c5 reload(parm{p[i] : c1}...1).d

f

30 v RELOAD.c parm{p[i] c} 1.d

f

v c d

reload(parm{p[i] : c} 1).f

TABLE 7.7. State transition for linear function passing

The compilation of the sel combinator from the original machine is:

((C2o)) C[scl{i] = PARM{i}.RELOAD

CHAPTER 8

Results and Conclusions

This thesis shows how the Charity Abstract Machine can be successively refined to

levels closely approximating a physical machine. The third machine described (the

linear abstract machine) is roughly 20 times faster than the original (first) machine,

which was programmed in SML. Furthermore, as the new machine implements shar-

ing, on some programs the gain one can expect is considerably greater than this.

Interestingly, when the third machine was first implemented, it was about 5% to

10% slower than the second machine. Since the overhead of interpreting each in-

struction is constant, but size of the code generated in the linear machine is larger,

the overall interpreting cost becomes a more significant factor in the execution time.

The decrease in speed is, thus, an indication that the cost of interpreting instructions

in the third machine has outweighed the gains from better approximating the phys-

ical machine. Thus, a threshold was reached in attaining speed gain through this

refinement process.

Despite this, the linear machine has been used in preference to the second machine

because, not only is it more amenable to "peephole" optimizations, but it would

also be easier to compile down to actual machine instructions (thus removing the

interpreting overhead).

Implementing the Charity Abstract Machine in the C language yielded not only a

faster, but also a more portable implementation. However, at a cost: the development

time was considerably longer than that required for the original SML version.

104

8. RESULTS AND CONCLUSIONS 105

The contributions of this thesis are:

• Completion and correction of the design of the basic Charity Abstract Machine

initiated by M. Hermann (CHARM) [Her92].

• Specification of the macro passing.

• Design of the linear abstract machine.

• Development of compilation routines into the instructions for these machines.

• The reimplementation of CHARM in C.

Possible future work with the Charity abstract machine could involve:

• Optimizing the translation from term logic to combinators. Improving this

translation would reduce the generation of unnecessary combinators. Specifi-

cally, the abstraction, inductive and coinductive terms should check to see if

there are any free variables within their body before generating the code to

create the environment;

• Compiling code directly to native machine code to eliminate the cost associated

with interpreting in the "byte-code". Instead of interpreting each instruction,

actual machine instructions could be generated and executed;

• Providing direct access to variables rather that looking up values by projecting

the environment;

• Adding built-in types such as integers and strings, along with primitive oper-

ations that act on these types.

• Proving the correctness the machines and their compilation procedures.

• Optimizing combinator to macro instruction compilation (for example, peep-

hole optimization).

Bibliography

[A5U85] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, Massachusetts, 1985.

[Bac78] J. W. Backus. Can programming be liberated from the von Neumann style?

A functional style and its algebra of programs. Communications of the

ACM, 21(8):613-641, August 1978.

[BW88] Richard Bird and Phillip Wadler. Introduction to Functional Programming.

Series in Computer Science (C. A. R. Hoare ed.). Prentice-Hall, London,

1988.

[CCM85] G. Cousineau, P. L. Curien, and M. Mauny. "The Categorical Abstract

Machine". In G. goos and J. Hartmanis, editors, Functional Programming

Languages and Computer Archite cture, volume 201 of Lecture Notes in

Computer Science, pages 50-64. Springer-Verlag, September 1985.

[CF92] R. Cockett and T. Fukushima. About Charity. Research Report 92/480/18,

Department of Computer Science, University of Calgary, Calgary, Alberta,

CANADA T2N-1N4, June 1992.

[Coc] R. Cockett. Lecture notes in applied mathematics: Seminar on category

theory.

[C595] R. Cockett and D. Spencer. Strong categorical datatypes ii: A term logic

for categorical programming. tcs, 139:69-113, 1995.

106

BIBLIOGRAPHY 107

[Cur86] P-L Curien. Categorical Combinators, Sequential Algorithms and Func-

tional Programming. John Wiley & Sons, Inc, New York, 1986.

[F1188] A. J. Field and P. G. Harrison. Functional programming. Addison-Wesley,

New York, 1988.

[Fuk91] T. Fukushima. Charity User Manual. Draft, Department of Computer Sci-

ence, University of Calgary, Calgary, Alberta, CANADA T2N-1N4, Novem-

ber 24 1991.

[FW87] Jon Fairbairn and Stuart C. Wray. TIM: A simple, lazy abstract machine to

execute supercombinators. In Proceedings of the Conference on Functional

Programming and Computer Architecture, number 274 in Lecture Notes in

Computer Science, pages 34-45, Portland, OR, September 1987. Springer-

Verlag.

[Gor88] M. J. C. Gordon. Programming Language Theory and its Implementation.

Prentice Hall International Series in Computer Science. Prentice Hall, 1988.

[Han91] J. Hannan. "Making Abstract Machine Less Abstract". In J. Hughes, editor,

Functional Programming Languages and Computer Archite cture, volume

523 of Lecture Notes in Computer Science, pages 618-635. Springer-Verlag,

August 1991.

[Hen80] P. Henderson. Functional Programming - Applications and Implementation.

Prentice-Hall, London, 1980.

[Her92] Mike Hermann. A lazy graph reduction machine for charity: Charity ab-

stract reduction machine (CHARM). Research report, Department of Com-

puter Science, University of Calgary, Calgary, Alberta, CANADA T2N-1N4,

July 4 1992.

[Hug84] R. Hughes. The design and implementation of programming languages. PhD

thesis, University of Oxford, 1984.

[Hug89] R. J. M. Hughes. Why functional programming matters. The Computer

Journal, 32(2):98-107, 1989.

BIBLIOGRAPHY 108

[Jon] S. Peyton Jones. Functional languages implementation tutorial.

[Jon92] S. L. Peyton Jones. "Implementing lazy functional languages on stock h

ardware: the Spineless Tagless G—machine". In et al J. Hughes, P. Hu-

dak, editor, Journal of Functional Programming, volume 2, pages 127-202.

Cambridge University Press, April 1992.

[Kie85] Richard B. Kieburtz. The G-machine: A fast, graph-reduction evaluator.

In Conference on Functional Programming Language and Computer Archi-

tecture, pages 400-413, Nancy, France, 1985. IFIP.

[Lan64] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,

6(4):308-320, 1964.

[Pau9l] L. Paulson. Functional Programming - Applications and Implementation.

Cambridge University Press, Cambridge, 1991.

[Set89] R. Sethi. Programming Languages Concepts and Constructs. Addison—

Wesley, Murry Hill, New Jersey, 1989.

[Spe93] D. Spencer. Categorical Programming with Functorial Strength. PhD thesis,

Oregon Graduate Institute, 1993.

[Tur79] D. A. Turner. A new implementation technique for applicative languages.

In Software - Practice and Experience, volume 9, pages 31-49. John Wiley

and Sons, September 1979.

[Tur85] D. Turner. "Miranda - a non—strict functional language with polymorphic

types". In G. goos and J. Hartmanis, editors, Functional Programming Lan-

guages and Computer Archite cture, volume 201 of Lecture Notes in Com-

puter Science, pages 1-16. Springer—Verlag, September 1985.

[Wal91] R. F. C. Walters. Categories and Computer Science. Number 2 in Un-

dergraduate Lecture Notes in Mathematics. Carslaw Publications, Sydney,

Australia, 1991.

[Yee] B. Yee. The charm project: A back end to the charity interpreter.

APPENDIX A

Formal Definition of Charity

The formal definition of Charity originally appeared in [CF92].

A.I. Variable bases

For each type we have a set of {w, y, z, ...} variables (in fact, the type is inferred).

A variable base is then defined follows:

• () is a variable base of type 1,
• If x is a variable, then x is a variable base with type type(x),

• If v0 and v1 are variable bases with no variables in common, then (vo, vi) is a

variable base where

tjpe((vo,vi)) = type(vo) >< type(vi).

A.2. Terms

A term is defined as follows:

• () is a term of type 1,
• If t is a term where type(t) = X x Y, then po(t) and pi(t) are terms, where

type(po(t)) = X and type(pi(t)) =

• If to and t1 are terms, then (t0, t1) is a term, where type((to, t1)) = type(to) x

type(ti),

109

A. FORMAL DEFINITION OF CHARITY 110

• If w is a variable base, and t is a term, where type(w) = type(t), then

{w i-4 t'}(t)

is a term of type type(t'), and the variables in w are bound in V.

• If t1, ..., t, are terms where type(t) = E(A, L(A)) then ci(ti), ..., c(t) are

terms where type(c(t)) = L(A).

• If t is a term where type(t) = L(A) and v1, ..., v,,, are variable bases where

type(v) = E(A, L(A)) and t1, ..., t are terms where type(ti)

type(t) = B then

{
ci(vi) '-4 ti

c(v) I> tTh

is a term (the case expression) of type B. The variables in v1, ..., v, are bound

in t1, ..., respectively.

• If t is a term where type(t) = L(A) and v1, ..., vn are variable bases where

type(v) = E(A, X) and t1, ..., t are terms where type(ti) = ... = type(t) =

X then

c1 :v1 -4

c : v,, tn

(t)

is a term (the fold) of type X. The variables in v1, ..., v,,, are bound in t, ..., tn

respectively.

• If t is a term where type(t) = L(A,, ..., Am) and v1, ... Vm are variable bases

where type(v) = Aj and C1, ...,tm are terms where type(t) = Bj then

V1 I—*

Vm I,'

A. FORMAL DEFINITION OF CHARITY 111

is a term (the map expression) of type L(B1, ..., B). The variables in v1, ..., V.

are bound in t1, ..., t respectively.

• If t is a term where type(t) = S and v is a variable base where type(v) = S

and ti, ..., t are terms where type(t) = Fj(A, 5) then

d1 : tj

V (t)

is a term (the unfold) of type R(A). The variables in v are bound in t, ...,

respectively.

• If t1, ..., t are terms where type (t) = Fj(A, R(A)) then

11 . .,.

(hi . L'j

4

is a term (the record) of type R(A).

A.3. Abstracted maps

tn

A program is not a term, but an abstracted map. This is a pair

{v4t}

where v is a variable base containing all the free variables of the term t.

APPENDIX B

A sample Charity program

B.I. Quicksort

The quicksort program for sorting elements can be defined in Charity. Recall that

the quicksort algorithm first splits a list into a tree, then performs an inorder traversal

of to tree to collect the result.

The data definition required to hold the values in a tree is the coBTree data type.

data C -> coBTree(A) = deStree: C -> sf(A * (C * C)).

Leaves are labeled with the f constructor, while nodes containing values along with

their left and right children are labeled with ss.

The first function required is split which takes a list and separates it into two

lists, based on some predicate P.

def split {P} (a, L) =

{I nil: 0 =>
I cons: (b, (Li, L2)) => { trueo => (cons(b, Li), L2)

I falseo => (Li, cons(b, L2))

}(P(b,a))

l}(L).

From split, the function pivot will separate the pivot from those elements "less

than" the pivot, and "greater than" the pivot.

112

B. A SAMPLE CHARITY PROGRAM 113

def pivot {P} (L) =
-C nil() => ff()
I cons(a, L) => ss(a, split-CPI (a, L))

With unfold over the original list, a coBtree is created where the root of the tree is

the first element in the list.

def pivots-CPI(L) = (I x => deBTree: pivot{P}(x) I)(L).

To collect the values in to the nodes of the cotree, an inorder traversal the coBTree

is required. The function collect performs the traversal by taking the tree apart

from the root down, until a leaf is encountered. The right side of the cotree and the

current node, starting from the root node, is stacked onto a dump so that the left

side to the coBtree can be processed first. When a leaf on the left on the left side of

the tree is encountered, the value of the node is appended to the result and the ride

side of the node is popped off the dump using the pop function. The collect function

continues collecting values down the right side of the tree, until all nodes have been

collected.

def pop(acc,dump) = { nil() => (acc,((deBTree:ffO),[]))
I cons((a,t) ,dump') => (cons(a,acc),(t,thuup'))
}(dump).

def collect(tree, bnd) =

-CI zero:()

I succ: (acc, ((deBTree:ff 0), dump))
I (acc,((deBTree:ss(a, (tl,tr))

I}(bnd).

> (D,(tree,ED)

> pop(acc,dump)

> (acc, (tl,cons((a,tr) ,dump)))

Finally the quicksort function first generates the coBtree, then performs a traversal

of the tree, collecting all of the values into a list. Notice that the upper bound of

the traversal is 2 x n-+ 1, since each node must be visited twice during the inorder

traversal.

def quick_sort-CP}(L)

{len => pO(collect(pivots{P}(L),succ(add(len,len))} (length(L)).

