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Abstract 

High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective 
treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of 
DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment 
of both dystonia and Parkinson’s disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in 
urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; 
ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus 
(VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation 
power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS 
produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across 
regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. 
HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase 
synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also 
enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions 
in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency 
bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. 
This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity 
along cortico-BG-thalamic circuits underlying the therapeutic effects of GPi DBS for conditions such as PD and dystonia. 
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Introduction 

High-frequency electrical stimulation of specific brain regions, 
known as deep brain stimulation (DBS), is an effective treatment 
strategy for a number of refractory neurological conditions. DBS 
of the globus pallidus internus (GPi) provides significant symptom 
relief for both Parkinson’s disease (PD) and dystonia [1,2], 
however, despite widespread clinical use, consensus regarding 
the therapeutic mechanisms of action is lacking. 

Initial clinical reports that the effects of DBS appeared to be 
qualitatively similar to those produced by a lesion of the same 
region [3,4] led to the idea that DBS exerted its effects by creating 
a reversible ‘‘functional lesion’’ of the stimulated nucleus. A variety 
of animal studies demonstrated that DBS inhibited activity in the 
stimulated region, through either depolarization blockade, neuro­

transmitter depletion, or enhanced local GABAergic transmission 
[5–9]. However, recent evidence suggests that other mechanisms 
may also be important. Electrical brain stimulation at clinically 
effective intensities preferentially excites axons as opposed to cell 
bodies [10], such that activation of afferent and efferent axons can 
modulate neuronal activity in sites distal to the stimulated nucleus 

[11–15]. Thus, GPi DBS can both inhibit local firing [5,16,17] as 
well as activate efferent GPi axons projecting to thalamus [18–20]. 

Both dystonia and PD show evidence of pathological hypersyn­

chrony in local field potential (LFP) oscillations in the basal ganglia 
(BG) and cortex (Brown et al. 2001; Chen et al. 2006b; 
Weinberger et al. 2012), and reduction of these oscillations has 
been suggested as a potential mechanism of DBS [21]. How DBS 
affects LFP oscillations in intact animals with no obvious pathology 
is not known, and assessing the effects of DBS in normal animals is 
critical for informing the interpretation of the effects produced in 
disease states (Chiken and Nambu, 2003). This is particularly true 
when considering that PD and dystonia, both effectively treated by 
GPi DBS, are hypo- and hyper-kinetic movement disorders, 
respectively, with different pathophysiologic features [22,23]. 
Mechanistic studies have typically examined the effects of GPi 
DBS acutely over seconds [9,24–26]; however, how the immediate 
effects of stimulation relate to clinical improvement is not clear. 
Although the therapeutic effects of GPi DBS on PD symptoms 
occur very rapidly [27], maximum clinical benefit for dystonia can 
take much longer, i.e., weeks to years [28–32]. Accordingly, 
clarifying how the effects of DBS evolve over time is a high 
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priority. Furthermore, many studies have not controlled for non­

specific effects of stimulation by comparing the effects of low-

frequency (LF) to therapeutic, high frequency (HF) stimulation. LF 
DBS generally does not produce beneficial effects and in some 
cases may be deleterious [33–38]; it is therefore important to 
identify changes in neural activity that are specific to high-

frequency (i.e., therapeutic) stimulation. 
Given the evidence for circuit-wide effects of DBS, we examined 

how DBS delivered to the entopeduncular nucleus (EP; the rat 
homolog of the primate GPi) affected spontaneous and evoked 
synchronous LFP activity both within and between a number of 
regions comprising the primary motor circuit. We recorded LFP 
activity simultaneously from the dorsal striatum (STR), primary 
motor cortex, (M1), and ventroanterior thalamus (VA), while DBS 
was applied to EP for 90 minutes, with short breaks after 30 and 
60 minutes to assess activity induced by acute EP stimulation. 
Given the hypersynchrony associated with PD and dystonia, and 
the beneficial effects produced by GPi DBS, our working 
hypothesis was that the EP DBS would be globally desynchroniz­

ing. Although we saw widespread reduction in low beta 
synchronization both within and between regions, we identified 
more complex and time-dependent changes in both power within 
and functional connectivity between regions. 

Methods 

All procedures were performed in accordance with Canadian 
Council for Animal Care guidelines, and were approved by the 
Institutional Animal Care and Use Committee of the University of 
Calgary. 

Animals and surgery 
Male Sprague-Dawley rats (275–400 g) were anesthetized with 

urethane (1.5 g/kg, i.p.) and placed in a stereotaxic frame. Body 
temperature was maintained at 37uC with a temperature-

controlled heating pad. In all surgical preparations the scalp was 
exposed and burr holes were drilled in the skull overlying M1, 
dorsocentral striatum, VA, and over the contralateral cerebellum 
to allow for insertion of the stimulating electrode into EP at a 30 
degree angle to avoid potential damage to EP-VA connections. A 
concentric bipolar stimulating electrodes (SNEX-100; Kopf, 
Tujunga, CA) was placed in EP - anteroposterior (AP) 23.0 mm 
(from bregma), mediolateral (ML) +2.6 mm, dorsoventral (DV) 2 
8.0 mm (vertical from skull); epoxy-insulated tungsten recording 
electrodes (0.125 mm shank diameter, 0.8–2 MV impedance at 
1000 Hz, FHC, Bowdoin, ME) were slowly lowered into M1 (AP: 
+2.2 mm, ML: +2.8 mm, DV: 22.2 mm), striatum (AP: + 
1.2 mm, ML: +2.8 mm, DV: 25.0 mm) and VA (AP: 2 
1.8 mm, ML: +1.8 mm, DV: 26.0 mm). Following implantation, 
electrodes were allowed to settle for at least 20 minutes before 
recording commenced. 

Recording 
LFP signals from the recording electrodes were amplified (gain: 

1000), analog filtered (0.1–1000 Hz) by a multichannel amplifier 
(A-M Systems) and displayed on an oscilloscope (Tektronics, 
Wilsonville, OR). The data were digitized at 10 kHz using an 
Axon Digidata 1440 (Molecular Devices, Sunnyvale, CA), 
acquired using Clampex 10.2 (Molecular Devices), and stored 
for off-line analysis. LFP signals were referenced to a skull screw 
over the contralateral cerebellum. DBS was applied to separate 
groups of rats at 130 Hz (HF) or 15 Hz (LF) using parameters 
(80 mA, 0.2 ms pulse duration) that preliminary experiments 
indicated was below the threshold for evoking a motor response. 

Given the electrode surface area, the selected current intensity 
generates a charge density (20 mC/cm2/phase) that approximates 
that which is clinically effective in humans [39], and shows effects 
in various rat behavioral studies [40,41] while remaining below the 
recommended clinical safety limit of 30 mC/cm2/phase [42]. To 
control for the effects of electrode implantation and surgery, 
another group had the DBS implanted but did not receive 
stimulation (SHAM). DBS was applied for three 30 minute 
sessions for a total of 90 minutes; sessions were separated by 
6 minute intervals where spontaneous and evoked LFP data were 
sampled with DBS off. Figure 1 shows electrode placements, and a 
schematic of the recording procedure. 

We analyzed both spontaneous LFP oscillations and those 
induced by single-pulse stimulation of EP to address separate 
dimensions of neural activity. Spontaneous recordings assess the 
state of the system at rest, whereas evoked/induced activity 
provides an index of how the system responds to activation 
(analogous to an organism reacting to a stimulus). For spontaneous 
recordings, LFPs were recorded for 3 minutes at a number of 
different time points with DBS on or off (Fig. 1). We recorded 
baseline (BL) LFPs, LFPs with DBS ON during the first 5 and 
25 minutes of DBS (referred to as On5 and On25), and then with 
stimulation OFF after 30 minutes of DBS had been applied 
(Off30). This protocol was repeated twice to examine changes over 
longer time periods, giving the additional time points of On35, 
On55, Off60, On85 and Off90. During OFF periods, spontaneous 
LFP data were recorded, followed immediately by evoked data, 
after which DBS was turned ON again. For induced LFP 
responses, EP stimulation was delivered at 0.4 Hz (600 mA, 
0.2 ms pulse duration, 20 stimulation sweeps). This stimulus 
intensity was chosen based on preliminary experiments, with this 
intensity being the lowest that consistently resulted in an oscillatory 
response. LFP data were recorded for 1 s pre- and post-stimulus. 
Induced activity was reassessed following 30, 60 and 90 minutes of 
DBS. 

Histology 
At the end of each experiment, small lesions were made at the 

tip of the electrodes (250 mA, 10 sec current pulse) and visualized 
by adding potassium ferrocyanide during post-fixation. Animals 
were euthanized with an overdose of urethane and decapitated. 
The brain was removed and fixed for at least 48 h in 8% w/v 
paraformaldehyde (in PBS) and cryoprotected in 25% w/v sucrose 
(in PBS). Brains were then sectioned (50 mm coronal sections), 
placed on gelatin-chromalum-coated slides, and stained with cresyl 
violet for histochemical verification of the recording/stimulation 
electrode placements (Fig. 1C). Only animals with the cathode 
located in EP were included for analysis. This pole was also used to 
record LFP activity from EP when DBS was off. 

Analysis 
The spectral power of LFP oscillations in each region was 

analyzed using routines from the Chronux software package 
(www.chronux.org) for Matlab (MathWorks, Natick, MA) as 
previously described [43]. As certain measures of functional 
connectivity (e.g., coherence) are impacted by volume conduction, 
we used the debiased weighted phase lag index (WPLI) which is 
both insensitive to volume conduction effects and more sensitive to 
true phase synchronization [44] using the FieldTrip software 
toolbox for Matlab [45]. Before analysis of power and WPLI, 
signals were processed to remove stimulus artifacts using an offline 
algorithm (Fig. S1). The algorithm detects stimulus artifacts by 
thresholding the first derivative of the signal and deleting a defined 
period surrounding each artifact. The missing values in the signal 
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Figure 1. Electrode placements and experimental design. A: Left: Dots show recording electrode placements in striatum (STR), primary motor 
cortex (M1), and ventroanterior thalamus (VA) and DBS electrode placements in entopeduncular nucleus (EP), and; numbers represent antero­
posterior distance from bregma. Overlapping placements have been omitted for clarity, and placements have been collapsed into the same plane 
and may be slightly anterior or posterior (6,200 mm) to the indicated distance from bregma. Right: Enlarged sections showing placements in EP and 
photomicrograph showing marked electrode location in EP. Scale bar = 1 mm. B: Outline of stimulation and recording protocol. 
doi:10.1371/journal.pone.0102576.g001 

are then reconstructed using cubic spline interpolation. To ensure 
this procedure did not introduce any spurious effects or artifacts 
due to processing, simulated artifacts were added to non-

stimulated LFPs (OFF periods and SHAM animals) and then 
removed using the same algorithm. Furthermore, spontaneous 
LFP recordings were downsampled to 500 Hz, and segmented 
(10 s window). Each segment was detrended to remove any slow 
DC components and padded with zeros to increase frequency 
resolution. 

Multitaper spectral power and WPLI were calculated for each 
segment in the following frequency bands: slow/delta (0.5–4 Hz); 
theta (4–12 Hz); low beta (12–20 Hz), high beta (20–30 Hz), low 
gamma (30–59 Hz) and high gamma (61–90 Hz). The traditional 
beta and gamma bands were subdivided as reports have suggested 
differences in generation and function in the low and high beta 
bands [46–48], as well as low and high gamma bands [49–52]. 
Data for each frequency band were then averaged over segments. 
To compare across different groups and over time, power and 
WPLI values for each animal in a group were normalized to the 

mean baseline values for that group. For induced LFP oscillations, 
power values from the 1 s post-stimulus were normalized to pre-

stimulus baseline (1 s) and averaged across stimulation sweeps for 
each time point. To compare across different groups, the values for 
each animal in a group were normalized to the mean baseline 
values for that group. 

Statistics 
Changes in spontaneous and evoked power in each region and 

WPLI between regions due to time and DBS frequency were 
analyzed using 3-way ANOVA with ‘‘stimulation frequency’’ as a 
between subjects factor; time and ‘‘frequency band’’ were within 
subject measures, followed by Bonferroni’s post-hoc test, corrected 
for multiple comparisons. If the assumption of sphericity was 
violated according to Mauchley’s test, the Greenhouse-Geisser 
correction was applied and corrected F values are reported. 
Significance was set at p,0.05. 
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Results 

While multisite LFP data were recorded from a total of 36 
animals (n = 12/group), all animals with incorrectly placed EP 
stimulating electrodes were excluded. In the remaining animals, 
exclusions were made due to incorrectly placed recording 
electrodes on a region-by-region basis, leaving final group sizes 
of 6–8 animals/group. In the LF group, DBS stimulation 
produced acute voltage deflections lasting tens to hundreds of 
milliseconds (see Figure S1) that corrupted the analysis of 
oscillations even after removal of the stimulus artifact itself. This 
did not occur in the HF group, likely due to the short latency 
between pulses. Accordingly, analysis of the LF group was 
restricted to acute-stimulus evoked responses in the OFF periods. 

Spontaneous Oscillatory Activity 
Power. Analysis of the effects of EP DBS on LFP power in 

M1 (Fig. 2) revealed that HF DBS significantly reduced low beta 
power in the first five minutes of stimulation (On5) compared to 
SHAM DBS at that time point, as well as compared to within-

subject baseline (BL) [significant main effect of time (F3.57, 

42.84 = 12.35, p,0.001) and frequency band (F2.06, 24.68 = 6.70, 
p = 0.004) and a significant time 6 stimulation frequency interac­

tion (F3.57, 42.84 = 2.98, p = 0.036); no effects of stimulation 
frequency, and no other interactions (F,1.47, NS)]. Of note, this 
effect was not evident in any other frequency band, including high 
beta, and was transient – these group differences were not present at 
the next time point (On25). Although this reduction in low beta 
power was only significant at On5, when data are pooled according 
to relative time point (i.e., ‘‘OFF’’ = BL, On30, Off60; ‘‘ON+ 
5’’ = On5, On35, On55; and ‘‘ON+25’’ – On25, On55, On85) the 
effect remains (Fig. 2D) – low beta power is significantly reduced in 
the ‘‘ON+5’’ period in the HF group compared to ‘‘OFF’’ and 
‘‘ON+25’’, and compared to SHAM [(main effect of time, 
F2,80 = 5.451, p = 0.006; no effect of stimulation frequency and no 
interactions (F,1.04, NS)]. In addition, high gamma power was 
elevated significantly in the HF group compared to baseline at 
selected later time points (i.e., Off30, Off60, On85 and Off90). 
There were no significant within-subject differences in the SHAM 
group at any time point in any frequency band. 

The effects on LFP activity produced by EP DBS in STR were 
qualitatively similar to those observed in M1 (Fig. 2A, B), with low 
beta power significantly reduced in the HF group at ON5 
compared to BL, and compared to SHAM at On5 [significant 
main effect of time (F3.54, 42.50 = 11.97, p,0.001) and frequency 
band (F1.97, 23.66 = 5.07, p = 0.015), and a significant time 6 
stimulation frequency interaction (F3.54, 42.50 = 3.54, p = 0.020); no 
effect of stimulation frequency and no other interactions (F,1.75, 
NS)]. As with M1, this effect was transient and frequency band-

specific, and no other significant differences were present between 
HF and SHAM groups. Furthermore, pooled data showed similar 
effects as in M1; low beta power was significantly reduced in the 
HF group compared to SHAM at ‘‘ON+5’’, and also compared to 
BL [main effects of time (F2,80 = 12.158, p,0.001) and a 
time6stimulation frequency interaction (F2,80 = 8.017, p,0.001); 
no effect of stimulation frequency (F,0.91, NS)]. However, unlike 
in M1, theta power in STR was significantly increased in the HF 
group at Off60 and Off90 compared to BL. There were no other 
significant within-subject effects in the HF group, and no within-

subjects differences in the SHAM group. 
By contrast with M1 and STR, analysis of the effects of EP DBS 

in LFP power in VA (Fig. 2A, B) indicated no significant 
differences between HF and SHAM groups in any frequency band 
at any time point [significant effect of time (F2.67, 31.99 = 13.56, p, 

0.001) and frequency band (F1.10, 28.09 = 4.43, p = 0.017); no effect 
of stimulation frequency and no interactions (F,1.86, NS)]. 
However, in the HF group, theta power was significantly 
enhanced at Off60 compared to BL. Furthermore, low beta 
power was significantly elevated compared to BL at Off30, On85, 
Off90, whereas high beta power was significantly elevated 
compared to BL at Off30 and Off90. There were no significant 
within-subject differences in the SHAM group at any time point in 
any frequency band. 

Due to the size of EP, it was only possible to record EP LFP 
activity through one pole of the stimulating electrode during OFF 
periods. During the OFF periods, there were no significant effects 
on EP oscillation power in any region or band (data not shown). 

Thus, HF DBS produced an early and transient reduction in 
low beta power compared to SHAM in M1 and STR, but not VA. 
Furthermore, HF DBS produced time-dependent enhancements 
in fast oscillation power that were region- and frequency-band 
specific and not present in the SHAM group. 

Functional connectivity. EP DBS also produced widespread 
changes in functional connectivity along the circuit, as assessed 
using WPLI (Fig. 3). M1-STR WPLI was significantly increased in 
the HF group compared to SHAM in the delta (at On5, On25, 
and Off60) and low gamma bands (at On5, On25, and On35); and 
significantly decreased in the theta (at ON5), low beta (all time 
points) and high beta (at Off30, On35, Off60, and Off90) 
[significant frequency band 6 stimulation frequency interaction 
(F2.84, 34.08 = 7.803, p = 0.001); no other main effects or interac­

tions (F,2.09, NS)]. There were no within-subject effects in either 
group. 

EP DBS also produced effects on M1-VA connectivity (Fig. 3A, 
B). Low beta band WPLI was significantly decreased in the HF 
group compared to SHAM at Off30, Off60, On65, On85, and 
Off90 [significant frequency band 6 stimulation frequency 
interaction (F2.53, 30.38 = 2.75, p = 0.042); no other main effects 
or interactions (F,1.96, NS)]. In addition, WPLI in the low 
gamma band was significantly higher in the HF group than the 
SHAM group at On5, On25, On35, and On65. In SHAM 
animals, there was a general enhancement of synchronization in 
the low beta band relative to baseline and other frequency bands, 
but this effect did not reach significance; there were no within-

subject effects in either group. 
Analysis of the effects of EP DBS on STR-VA connectivity 

(Fig. 3A, B) indicated that HF DBS produced significant increases 
in WPLI in the high beta (at On5 and On65), low gamma (at On5, 
On25, On35, On65, and Off85) and high gamma (at On5, On85) 
bands, and a significant decrease in low beta synchronization at 
Off60. [significant frequency band 6stimulation frequency 6time 
interaction (F5.64, 67.69 = 2.46, p = 0.025); no effects of time or 
frequency band, and no other interactions (F,1.30, NS)]. There 
were no within-subject effects in either group. 

As mentioned above, it was only possible to record EP LFP 
activity (and WPLI between EP and the other regions) during OFF 
periods. In the HF group, EP-M1 WPLI was significantly reduced 
compared to SHAM in the delta band (at Off30, Off60, and 
Off90) as well as the low beta band at Off60 and Off90 [significant 
main effect of stimulation frequency (F1.22, 14.65 = 4.386, 
p = 0.048)], and a significant time 6 frequency band interaction 
(F3.89, 46.73 = 2.101, p = 0.025); no effect of time, frequency band, 
and no other interactions (F,1.32, NS)]. There were no within-

subject effects in either group. 
EP-STR coherence was also affected by EP DBS [significant 

band 6 stimulation frequency (F1.41, 16.96 = 1.922, p = 0.039) 
interaction, no other significant main effect or other interactions 
(F,1.29, NS)]. Post-hoc analysis showed a significant reduction in 
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Figure 2. High-frequency (HF) EP DBS produces frequency band-specific and time-dependent increases and decreases in LFP 
oscillation power in primary motor cortex (M1), striatum (STR) and ventroanterior thalamus (VA). A. Color plots showing effects of 
high-frequency (HF; top) or SHAM (bottom) EP DBS on normalized LFP power in M1, STR, and VA according to frequency band and time point. 
* = significantly different from SHAM; # significantly different from within-group BL (p,0.05). * = significantly different from SHAM; # significantly 
different from within-group BL (p,0.05). B. Representative power spectra from a rat receiving HF EP DBS at BL, in the first five minutes of stimulation 
(On5), and after 90 minutes of stimulation (Off90). Shaded area represents 95% confidence interval generated using ‘‘leave one out’’ jackknife 
statistics. C. Effects of HF and SHAM EP DBS on normalized M1 low beta (top) and high gamma (bottom) power over time. Error bars represent S.E.M. 
D. Effects of EP DBS on M1 low beta power, pooled according to relative stimulation time point. OFF = pooled average of BL, Off30, Off60; ‘‘ON+ 
5’’ = pooled average of On5, On35, On 65; ‘‘ON+25’’ = average of On25, On55, On85. * = significantly different from SHAM; # = significantly different 
from within-group BL (p,0.05). 
doi:10.1371/journal.pone.0102576.g002 

WPLI in the HF group compared to SHAM in the theta (at Off30) 
and low beta (at Off60) bands. There were no within-subject 
effects in either group. 

With respect to EP-VA connectivity, there was a significant 
stimulation frequency 6 time 6 frequency band interaction (F5.81, 

46.73 = 2.170, p = 0.029); WPLI was significantly reduced in the HF 
group compared to SHAM in both the delta and low beta bands 
(at Off 30 and Off 90). 

Thus, the predominant effect of HF EP-DBS on functional 
connectivity was desynchronization in the low beta band, initially 
only between M1 and STR, but between all other regions with 
sustained stimulation, and enhanced synchronization in the low 
gamma band that was most prominent between VA and other 
regions along the circuit. Interestingly, enhanced gamma connec­

tivity was only observed when stimulation was on; beta desyn­

chronization persisted into OFF periods. 

Stimulus-induced Oscillations 
Acute EP stimulation often resulted in induced oscillations (i.e., 

not time-locked to the stimulus; see Fig. 4A) at all recording sites. 
Changes in induced oscillations as a function of time and 
stimulation frequency were quantified by examining the spectral 
power within regions and coherence between regions in the 1 s 
following stimulation, normalized to activity in the 1 s prior to 
stimulation during the four OFF periods. 

Induced Power. In M1, EP DBS had a number of effects on 
induced LFP power (Fig. 4). Induced low and high beta power 
were both significantly reduced in the HF group compared to both 
SHAM and LF groups at all three OFF time points (Off30, Off60, 
Off90) [significant main effects of stimulation frequency (F2, 

19 = 3.633, p = 0.046), time (F1.96, 37.28 = 3.559, p = 0.039), and 
frequency band (F2.09, 39.76 = 3.466, p = 0.039), as well as a 
significant stimulation frequency 6 frequency band interaction 
(F4.19, 39.76 = 8.040, p,0.001); but no other interactions (F,2.01, 
NS)]. There were no significant between-group differences in any 
other frequency bands at any other time points. In addition, 
induced power in the low and high beta bands was significantly 
reduced in the HF group at all time points compared to BL. No 
significant within-subject effects were observed in the other groups 
at any time point. 

The effects of EP DBS on induced oscillatory activity in STR 
were largely similar to those observed in M1 (Fig. 4). Induced theta 
power was significantly reduced in the HF group compared to 
both SHAM and LF at Off90, whereas induced low and high beta 
were both significantly reduced compared to SHAM (but not LF) 
at Off30 and Off60, and significantly reduced compared to both 
LF and SHAM at Off90 [significant main effect of time (F2.08, 

39.48 = 6.44, p = 0.003), and a significant stimulation intensity 6 
frequency band interaction (F4.47, 42.43 = 4.196, p = 0.005); no 
effect of stimulation frequency or frequency band, and no other 
interactions (F,2.39, NS)]. In the HF group, compared to BL 
there was significant reduction in low beta power at Off30 and 
Off90, a significant reduction in high beta power at all 3 time 

points, and a significant reduction in low gamma power at Off90. 
No within subject effects were observed in the LF and SHAM 
groups. 

Analysis of the effects of EP DBS on induced LFP activity in VA 
(Fig. 4) revealed that induced low beta power was significantly 
attenuated compared to LF and SHAM at OFF60 and OFF90 
[significant main effects of time (F3, 57 = 7.651, p,0.001), and 
frequency band (F2.23, 42.28 = 3.855, p = 0.025); no effect of 
stimulation frequency and no interactions (F,2.23, NS)]. 
Furthermore, induced high beta power was reduced compared 
to SHAM but not LF at Off60. With respect to within-subject 
effects, in the HF group there was a significant decrease in both 
induced low and high beta at all time points compared to BL. In 
the LF group, there was a significant reduction in induced high 
beta at Off90 compared to BL, and in induced high gamma at 
Off30 compared to BL. There were no significant within-subject 
effects in the SHAM group. 

Thus, compared to SHAM and LF, HF EP DBS produced a 
robust decrease in evoked oscillatory activity that was predomi­

nantly confined to the beta band (both low and high). While small 
differences were apparent, these effects were for the most part 
similar in all recorded areas. LF stimulation produced effects that 
were either similar in direction as the changes produced by HF 
stimulation (i.e., in VA) or not different from SHAM or LF BL (i.e, 
in M1 and STR). 

Discussion 

EP DBS delivered for 90 minutes generated widespread 
alterations in spontaneous and stimulus-induced LFP oscillations 
along a motor cortical-basal ganglia-thalamic circuit known to 
exhibit pathological activity in PD and dystonia (summarized in 
Table 1). The most prominent effect was a reduction in beta 
synchronization and enhancement of gamma synchronization; 
however, although some effects appeared similar across regions, 
others occurred in a region- and frequency band-specific manner, 
and importantly, many evolved over time. We also observed a 
dissociation of the effects of DBS on power within a region and 
functional connectivity between regions. Although EP DBS 
produced an initial transient reduction in power in the low beta 
band in M1 and STR, synchronization between these two regions 
in this band was dramatically reduced at all time points, and EP 
DBS markedly suppressed the ability of acute EP stimulation to 
induce beta oscillations in all regions along the circuit. These 
stimulus-induced effects were specific to HF DBS and were not 
present with LF (i.e. non-therapeutic) DBS. Gamma synchroniza­

tion between regions along the circuit was enhanced when DBS 
was on, and with time, sustained DBS enhanced power in the 
faster frequency bands. 

Neural circuitry 
The aim of this study was to assess the effects of EP DBS 

simultaneously in a number of regions that comprise a primary 
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Figure 3. High-frequency (HF) EP DBS produces region- and frequency band-specific effects on functional connectivity. A. Color 
plots showing effects of high-frequency (top) or SHAM (bottom) EP DBS on debiased weighted phase lag index (WPLI) between regions according to 
frequency band and time point. * = significantly different from SHAM (p,0.05). B. Representative WPLI plots from a rat receiving HF stimulation at 
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baseline (BL), in the first five minutes of stimulation (On5), and after 90 minutes of stimulation (Off90). Shaded area represents 95% confidence 
interval generated using jackknife statistics. C. Effects of HF and SHAM EP DBS on M1-STR WPLI over time. Error bars represent S.E.M. * = significantly 
different from SHAM (p,0.05). 
doi:10.1371/journal.pone.0102576.g003 

motor circuit. The direct efferent pathway from the striatum consistent with activation of GPi axons [19,20], and modulates 
projects directly to the entopeduncular nucleus [53,54], which in neuronal firing in M1 [62]. The present work allowed us to 
turn projects to the VA/VL thalamus [55,56]. Thalamocortical examine how circuit-wide changes in neural activity evolve over 
projections to primary motor cortex have been well-studied (Jones, time and allowed comparison to human DBS studies that report 
2005) as have projections from M1 to the striatum [57,58]. changes in LFP oscillations. 
Together, these regions are proposed to create a functional 
segregated motor processing loop [59]. In rats and pigs, LFP oscillations, movement disorders and DBS 
respectively, EP DBS produced changes in immediate early gene Accumulating evidence suggests that DBS may exert beneficial 
expression [60] and BOLD imaging [61] in all regions along this effects by reducing pathological beta synchronization. Thus, 
circuit; GPi DBS in primates has been shown to produce effects 

Figure 4. High-frequency (HF) EP DBS suppresses acute EP-induced beta oscillations in all recorded regions. A. Representative raw 
(black) and filtered (6–30 Hz; red) voltage traces from M1 (calibration: 200 ms, 0.2 mV) and time-frequency spectrograms showing effects of acute EP 
stimulation before (left) and after (right) 90 minutes of high-frequency (HF) EP DBS. B. Changes in induced oscillation power according to region and 
time point. Low-frequency (LF) EP DBS does not suppressed induced oscillations as HF DBS does. Error bars represent S.E.M. * = significantly different 
from SHAM and LF (p,0.05). 
doi:10.1371/journal.pone.0102576.g004 
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prominent oscillatory activity in the beta band throughout the 
basal ganglia and motor cortex is reported in PD patients off 
dopaminergic medications [63–66], as well as animal models of 
PD that involve destruction of dopamine neurons [67–70]. 
Moreover, L-DOPA administration reduces beta oscillation power 
concomitantly with movement facilitation [46,63,71], and beta 
desynchronization is associated with movement initiation [72–74]. 
While beta oscillations are associated with akinesia/bradykinesia, 
gamma oscillations are generally associated with movement, with 
movement-related gamma synchronization found in a number of 
regions [75–77]. Furthermore, in PD patients the prokinetic effects 
of levopoda are accompanied by increases in gamma power 
[63,64,78,79]. 

The relationship between synchronization in BG and dystonia is 
less clear. LFPs recorded from the BG of dystonia patients display 
oscillation peaks at a lower frequency than PD patients, typically at 
4–10 Hz [80–84]. In dystonia there is also less coherence between 
LFP oscillation and single neuron firing than in PD patients [85]. 
These oscillations are coherent with [86] and thought to drive [87] 
EMG oscillation in the affected muscle groups; using a sensory 
trick to alleviate dystonic contractions is associated with desyn­

chronization in this frequency band [83]. 
DBS of the subthalamic nucleus (STN) has been shown to 

reduce BG beta oscillations in PD patients either during 
stimulation or in the period immediately following stimulation, 
while therapeutic effects persist [88–94]. Although the effects of 
GPi DBS on oscillatory activity are not well studied, GPi DBS 
suppresses oscillatory activity in the beta range in MPTP-treated 
macaques [95]. 

EP DBS and LFP oscillations 
Based on this literature, we hypothesized that EP DBS would 

promote desynchronization, particularly in the lower frequency 
bands. While this was indeed the case, the effects we observed 
were more complex, including enhancements in gamma synchro­

nization, and dissociations between changes in power within a 
region and synchronization between regions. While DBS pro­

duced an initial reduction in low beta power in both M1 and STR, 
this effect was transient and did not persist over sustained 
stimulation. However, synchronization in this band between these 
two regions was profoundly suppressed at all time points. DBS also 
enhanced low gamma synchronization between regions through­

out the circuit, particularly between VA and other regions, and 
with longer stimulation, DBS enhanced oscillation power in the 
faster frequency bands within both M1 and VA. The SHAM 
group displayed a gradual non-significant enhanced broadband 
power over time. This effect may be due to changes in network 
activity stemming tissue damage during electrode insertion, or is a 
side effect of urethane anesthesia. We believe the latter is more 
probable, as urethane has a variety of effects on neural activity that 
could contribute to the observed power changes, including effects 
on catecholamine levels and ion channel function [96,97] (Maggi 
and Mello, 1986; Hara and Harris, 2002). The reduction in low 
beta power and functional connectivity that we observed is 
consistent with the ability of therapeutic DBS to reduce 
pathological beta oscillations in PD patients. The fact that 
significant changes occurred in the low beta band only is also 
consistent with specific reduction in this band following L-DOPA 
administration and associated with movement facilitation [46–48]. 
Spontaneous measures represent the general activity state of the 
system; stimulated responses provide an index of how the system 
responds to activation. We saw a pronounced effect of HF DBS 
but not LF DBS on the ability of acute stimulation of the EP to 
induce beta oscillation in all recorded regions. This effect is 

consistent with the desynchronization of spontaneous beta 
oscillations and connectivity seen with DBS. 

LF stimulation of the STN is reported to worsen movement 
performance on a variety of tasks [33–35]. We expected LF EP 
DBS to produce effects opposite in direction to those produced by 
HF EP DBS, however, LF stimulation either produced no 
significant effects, or in the same direction as HF DBS but 
reduced in magnitude. This may have occurred because we 
applied the same amplitude of DBS for both LF and HF, resulting 
in overall lower current injection into the tissue with LF [98]. 

Time-dependent effects of EP DBS 
Our most notable finding is the differential time course of the 

observed changes in LFP activity (i.e., early vs. late). To our 
knowledge, virtually all studies examining the effects of DBS on 
neuronal firing or LFP oscillations have focused on the short-term 
effects of stimulation, on a time scale ranging from seconds to a 
few minutes. While understanding the initial effects of stimulation 
is essential, DBS is applied chronically over years, and the effects 
of DBS may evolve over time. For example, in PD patients, 
although therapeutic effects are seen within minutes of DBS 
application [27], not all symptoms respond equally quickly to DBS 
[1] and DBS for dystonia can take months to years to achieve 
maximum benefit [28–30]. The early low beta desynchronization 
in (and between) M1 and STR we report here ma-y be similar to 
changes seen immediately in PD patients and together with 
enhanced gamma connectivity may be sufficient for facilitating 
voluntary movement. The more slowly developing beta desyn­

chronization between the other regions and enhancement of faster 
oscillation power along the circuit may represent the early stages of 
the plastic reorganization that relate to the therapeutic effects of 
GPi DBS in dystonia [32]. The enhanced fast oscillatory 
synchronization we observed throughout this motor circuit may 
act as a stabilizing influence, promoting coordinated physiological 
information flow throughout the circuit, and dampening the effects 
of pathological synchronization in lower frequency bands. 

There are several limitations to this study. One is that our 
‘‘extended’’ stimulation remains considerably less than days or 
weeks; however, the time-dependent changes observed here may 
represent the initial stages of a plastic or compensatory response to 
the hyperacute effects of DBS. Two other limitations are the use 
anesthesia and normal intact animals. Even with anesthetics like 
urethane that are thought to preserve many aspects physiological 
responses, neuronal activity and the synchronization thereof are 
likely to be differently regulated in the awake and anesthetized 
states (Hara and Harris, 2002). Several studies support the 
relevance of our data. Dopamine-depleted rats show prominent 
spontaneous cortical and subcortical beta oscillations in both 
awake and anesthetized states (Mallet et al., 2008a, Mallet et al., 
2008b). Furthermore, Ahrens and Freeman (2001) reported 
similar profiles of electrically-evoked entorhinal cortex LFP 
activity in awake and anesthetized rats. In normal animals it can 
be different to ensure the stimulation applied is in the appropriate 
therapeutic range. Preliminary work showed that the stimulation 
parameters used caused no motor side effects in normal animals, 
produce a charge density approximating what is clinically effective 
in humans (Fakhar et al., 2013), and produced effects in various rat 
behavioral studies (Creed et al., 2011, Creed et al., 2012a), 
suggesting our parameters are consistent with those used in the 
preclinical and clinical literature. The question remains as to 
whether the effects on synchronization that we observe in normal 
animals are relevant and generalizable to disease states. Given that 
the effects of EP/GPi DBS on oscillatory activity have not been 
characterized in intact animals, and that GPi DBS is clinically 
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effective for both dystonia and PD, diseases with unique 
pathological profiles, the findings reported here will help identify 
how responses to DBS may vary under different physiological and 
pathological conditions. Furthermore, the reduction and enhance­

ment beta and gamma synchronization, respectively, is consistent 
with what is observed in the clinic with DBS for PD (Wingeier et 
al., 2006, Kuhn et al., 2008, Bronte-Stewart et al., 2009, Eusebio 
et al., 2011, Giannicola et al., 2012). 

Implications 
The effects of DBS on LFP activity are not static, but rather 

reflect an evolving pattern of effects that vary by time, frequency 
band, and region. In addition, the widespread and specific 
alterations in oscillatory activity provide further evidence that 
DBS can modulate neural activity distant to the stimulated 
nucleus; indeed, our results point to a constellation of changes 
across the entire cortico-BG-thalamic circuit. The time-dependent 

effects DBS are likely to be most relevant for conditions that show 
a more gradual response to stimulation, and suggest that studies of 
therapeutic mechanisms should examine the effects of both short-

duration and more extended stimulation. 

Supporting Information 

Figure S1 Representative voltage traces and power 
spectrum during HF (left) and LF (right) DBS, before 
(top) and after (bottom) stimulus artifact removal. Note 
the acute responses to stimulation in the LF trace that contaminate 
the power spectrum even after artifact removal. 
(EPS) 
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