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Abstract 

The progressive increase in demand for electrical energy has driven the existing 

power networks towards their operational limits, as evidenced by recent major power 

failures. Additional new generating stations and transmission lines to the current 

systems are limited due to economical and environmental constraints. Therefore, 

operating the existing systems more efficiently, while maintaining the systems relia-

bility, is of increasing relevance. Power systems optimization theory can be applied 

to improve the network operation, and is presently a topic of significant research 

interest. 

Power networks are dynamical systems that are large, complex, and nonlinear 

in nature. At certain critical load values, the behavior of the system might change 

qualitatively. Bifurcation theory describes the nature of these changes in the system, 

from a stability point of view, and it has substantial importance in the study of power 

systems operation. 

This thesis proposes the application of optimization techniques to improve the 

stability margin of power systems with respect to the occurrence of Hopf bifurca-

tions. In this regard, five optimization problems are formulated in order to compute 

the optimal values of system variables that yield the maximum system loadabil-

ity. The effectiveness of the proposed optimization problems is validated using two 

test systems, and a comparative analysis is presented based on their performance, 

initialization requirements and assumption of the loading direction. 
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Chapter 1 

Introduction 

1.1 Background 

The progressive increase in demand for electrical energy has driven the existing power 

networks towards their operational limits, as evidenced by recent major power fail-

ures [1]. Additional new generating stations and transmission lines to the current 

systems, are limited due to economical and environmental constraints [2, 3]. There-

fore, operating the existing systems more efficiently, while maintaining the systems 

reliability, is of increasing relevance. Power systems optimization theory can be ap-

plied to improve the network operation, and is presently a topic of significant research 

interest [4]. 

Power networks are dynamical systems that are large, complex, and nonlinear 

in nature. A power system must be operated at a stable equilibrium point, and 

this operating point varies smoothly with gradual changes in the system parameters. 

Normally, the parameter of interest in such analysis is the system loading level [5]. 

At certain critical load values, the behavior of the system might change qualita-

tively [5]. Bifurcation theory describes the nature of these changes in the system, 

from a stability point of view [6], and it has substantial importance in the study of 

power systems operation. 

Highly stressed power systems can thus be limited, in their generation and trans-

mission capabilities, by the occurrence of bifurcation. Therefore, network optimiza-

1 
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tion requires the incorporation of bifurcation phenomena as a limiting factor. Two 

important types of bifurcation arising in power systems are the saddle-node and Hopf 

bifurcations [7]. Saddle-node bifurcation occurs at a loading level such that no equi-

librium solution can be found with further increases in the load. Hopf bifurcation is 

characterized by the emergence of oscillatory behavior in the network when the load 

is increased beyond a critical value. 

1.2 Literature Review 

Voltage collapse and oscillatory instability problems, arising by slow variation of 

a system parameter, are inherently nonlinear phenomena that can be studied by 

bifurcation theory [8]. Voltage collapse is an instability problem associated with 

heavily loaded power systems that lead to abnormally low voltages in a significant 

part of the network and blackout [9]. Voltage instability problems can be related to 

saddle-node bifurcations [5], during which the system equilibrium disappears as the 

load is gradually increased. 

Hopf bifurcation (also known as oscillatory bifurcation) occurs when a pair of 

complex conjugate eigenvalues of the system matrix crosses the imaginary axis of 

the complex plane, causing oscillations in the system [10]. It has been observed 

that the interaction between the dynamics of induction motors and tap changing 

transformers can cause oscillatory problems related to the Hopf bifurcation in a 

power system [11]. 

Substantial research has been conducted to analyze the mechanism of occurrence 

of both saddle-node and Hopf bifurcations in power systems. In [12], the authors 
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studied qualitative changes in the behavior of a simple, three bus power network, as 

the load is increased. They reported oscillatory problems in the system prior to volt-

age collapse and observed that the approximate frequency of oscillation was related to 

the imaginary part of the largest complex eigenvalues of the system Jacobian matrix 

linearized about the operating point. In [7], an introduction to bifurcation theory 

and the application of this theory to analyze a three bus power system is presented. 

It is shown that as the power consumption of the load is varied the system experi-

ences first a Hopf bifurcation and then a saddle-node bifurcation. The authors in [13] 

provide a detailed definition, classification and analysis of voltage-collapse phenom-

ena using bifurcation theory. They showed that voltage collapse is directly related to 

the occurrence of saddle-node bifurcation in a modeled power system. Furthermore, 

they have indicated that their model can be extended by including dynamics of volt-

age control devices such as tap changing transformers to reveal other kinds of system 

instabilities including Hopf bifurcations. In [14], the qualitative behavior of power 

system dynamics as modeled by differential-algebraic equations is discussed. The 

authors have emphasized on the importance of studying Hopf bifurcations as it has 

been shown that the stability of the system equilibrium can be lost before reaching 

the point of collapse. They have concluded that Hopf bifurcation can be the initial 

event leading to a system failure. In [15], the dynamics of a general power system is 

represented by a parameter-dependent differential-algebraic model and local bifur-

cations such as Hopf and saddle-node bifurcations are discussed. In [16], the Hopf 

bifurcation theorem is used to study low frequency oscillations in a three bus power 

network. In all the mentioned papers, simple examples are used to demonstrate the 

application of bifurcation theory in power systems. However, in [17] the authors 
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present a detailed bifurcation analysis of real multiparameter power systems using 

the southern section of the Brazilian network to demonstrate that the basic concepts 

can be applied to large power networks as well. 

It is important to anticipate the development of an impending bifurcation in a 

heavily loaded power network, so that effective action can be taken to avoid system 

instability. Hence, several methods have been developed to detect and predict the 

occurrence of Hopf bifurcations. The authors in [18] have analyzed the occurrence of 

Hopf bifurcation in the July 1992 disturbance on the mid-western segment of the US 

interconnection system, and proposed an iterative algorithm for the computation of 

the Hopf bifurcation. In [19], several indices are proposed, for on-line applications, 

to detect and predict oscillatory instabilities associated with the occurrence of Hopf 

bifurcations in power systems. These indices are based on the minimum singular 

value of the modified system matrix. The distance to the closest Hopf or saddle-

node bifurcation, with respect to a slow varying system parameter (e.g. load), can 

be computed using a continuation method as shown in [20]. However, the direction of 

the load increase should be known in this method. Furthermore, this method cannot 

be used if there is more than one parameter that drives the system to bifurcation 

(e.g., several loads changing independently of each other). The authors in [21] have 

proposed an optimization based method to indicate the closest Hopf bifurcation in a 

three bus test system, assuming that the controllable network parameters are fixed 

and the multiple loads are varied independently. 

Several studies have been performed regarding the control of oscillatory problems 

in a power network. The authors in [22] have compared the application of power 

system stabilizers (PSS) and flexible AC transmission systems (FACTS) devices to 
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control system oscillations. They have shown that FACTS controllers, such as static 

Var Compensators (SVC) or shunt static synchronous compensators (STATCOM), 

have an advantage over PSS controllers, as they can increase the system stability 

margin by improving the system voltage profile. However, FACTS controllers are 

expensive solutions. Another important aspect of using FACTS controllers to effec-

tively damp system oscillation is the controllers location in power network. Although 

the authors have proposed a method based on eigenvalue analysis to identify the best 

location, the placement of the controller in those locations might not correspond to 

the increase in the system loadability. The authors in [23] proposed a method to 

determine the optimal load curtailment in order to improve the stability margin of 

the system, based on a sensitivity analysis of the distance to bifurcation. However, 

actions based on their method is not always possible, since some important loads can 

be shed only in emergency situations. In [24, 25] the author formulates an optimiza-

tion problem to compute controllable parameters of a power system such that the 

distance to a saddle-node bifurcation is maximized. However, oscillatory instabilities, 

that can occur well before a system reaches its collapse point, are neglected. 

1.3 Research Motivation and Objectives 

Theoretical studies and computational simulations of power systems have demon-

strated that the occurrence of Hopf bifurcations can lead to instability in heavily 

loaded networks. These instability problems have also been observed in practice, 

as evidenced by recent power failures, e.g., the August 1996 power outage in the 

western states of USA and south of Canada [26]. 
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The management of system oscillations in a power network is accomplished 

through a combination of planning and controlling actions: 

• Controlling measures to handle Hopf bifurcation are intended to hinder an 

imminent Hopf bifurcation, or lessen its effects on the system operation. Such 

control actions include load shedding, and employment of PSS and FACTS 

controllers. 

• Planning measures are related to the power network design. The maximization 

of the stability margin of the system is a design objective in the delineation of 

a new system, or in the optimization of an existing system's capability. 

The goal of this thesis is to investigate how to improve the system stability mar-

gin with respect to the occurrence of Hopf bifurcations, through the application of 

optimization techniques. In this regard, a proper system modeling to reveal oscilla-

tory instabilities is essential, and a complete power system model represented by a 

set of differential and algebraic equations (DAB) is employed in the thesis. 

The main objectives of the present research are as follows: 

• Development of optimal power flow formulations to directly maximize the sys-

tem loadability with respect to the occurrence of Hopf bifurcations. The con-

ditions that describe the Hopf bifurcation are added as constraints in these 

optimization formulations. 

• Development of optimal power flow formulations to maximize indices that rep-

resent an indirect measure of the distance to the occurrence of Hopf bifur-

cations. In this case, the conditions that mathematically describe the Hopf 

bifurcation are not considered as constraints of the optimization problems. 
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• Incorporation of the dynamics of transformer tap changers and fifth order in-

duction motors into the classical optimal power flow problem. 

• Implementation of the proposed formulations. Tests are conducted to eval-

uate the effectiveness of the proposed techniques in the improvement of the 

loading margin of the system, as well as to gain a better understanding of the 

limitations of the proposed methods. 

1.4 Implementation Methods 

The initial solution of the optimization problems is obtained using a sequential 

Newton-Raphson method, implemented in Matlab. All the optimization problems 

formulated in this thesis are solved using the optimization routines in the Matlab 

optimization toolkit, with the exception of the Generalized Eigenvalue Based Hopf 

Bifurcation Constrained Optimal Power Flow problem (GEHB-OPF problem, to be 

described in Section 4.1), which is implemented in AMPL [27]. 

The AMPL modeling language allows the development of optimization problems, 

and the application of optimization solver packages to search for the optimal solution 

of a given problem. The solver LOQO [28], which is based on the Nonlinear Loga-

rithmic Barrier Interior Point method [29], is employed in solving the GEHB-OPF 

problem. The AMPL language, however, does not permit the implementation of op-

timization problems that require the explicit computation of the eigenvalues or the 

singular values of the system matrix. Therefore, the remaining optimization prob-

lems are implemented in Matlab, whose solver is based on the Sequential Quadratic 

Programming method [30]. 
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A continuation method is implemented in Matlab to obtain the distance to bi-

furcation for both the original and the optimal sets of controllable parameters. Fur-

thermore, the continuation method routine provides the data for plotting bifurca-

tion diagrams and graphs depicting the eigenvalues movement in the complex plane. 

These plots are necessary for the analysis of the proposed optimization problems. 

1.5 Thesis Organization 

The thesis is organized as follows: 

Chapter 2 establishes a mathematical model suitable to perform power systems 

stability analysis with respect to the Hopf bifurcations. The dynami-

cal behavior of a power system is described by a set of differential and 

algebraic equations. These equations are formed using mathematical 

model of a fifth order induction motor, a load tap changing (LTC) 

transformer, and power flow equations. 

Chapter 3 provides concise explanation on small-disturbance system stability 

analysis of the modeled power system. The differential-algebraic 

model of the system is linearized around an operating point of in-

terest. The eigenvalues of the linearized model are used to determine 

the stability characteristic of the power system. Bifurcation theory 

along with two typical types of bifurcations (i.e. saddle-node and 

Hopf bifurcations) are briefly explained. Methods to predict and de-

tect bifurcations are subsequently presented. The application of op-

timization theory for power system stability analysis is demonstrated 
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using the traditional optimal power flow problem. 

Chapter 4 presents the research contributions of this thesis. The traditional 

optimal power flow problem is modified to incorporate the algebraic 

and differential equations of induction motors and LTC transformers, 

as well as the critical eigenvalue or singular value of the generalized 

eigenvalue problem. This modification is necessary in order to include 

the stability constraints with respect to the Hopf bifurcations in the 

OFF problem. Two approaches are proposed to increase the stability 

margin of a given power system. One approach is to directly maximize 

the system loading margin with respect to the occurrence of Hopf 

bifurcations. In this method, the mathematical conditions defining 

the bifurcation point are explicitly modeled. The other approach is 

to use an indirect measure of the distance to the Hopf bifurcation 

as the objective function to be maximized. Within these approaches 

five novel optimization problems are formulated and discussed. The 

advantage and disadvantage of each problem is presented. 

Chapter 5 presents and discusses the results obtained from applying the pro-

posed optimization problems to two test systems. A three bus test 

system is used to demonstrate the basic concepts and highlight the 

main issues. A 14 bus test system is also used to study the per-

formance of the problems when applied to larger systems. For the 

three bus test system, an exhaustive search of the optimal control-

lable parameters is performed to study the effects of these parameters 
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in increasing the loading margin. A detailed comparison of formula-

tions with respect to their performance, initialization requirements, 

effectiveness and loading direction assumption is given. 

Chapter 6 summarizes the research performed in this thesis. The main contribu-

tions of the research are highlighted. A discussion on potential future 

investigations regarding the optimization of the maximum loadability 

of power systems with respect to Hopf bifurcations is included. 



Chapter 2 

System Modeling 

2.1 Introduction 

A typical power system network is comprised of loads, generators, and various control 

devices interconnected by transmission lines. A mathematical model of a power 

system may consist of a set of differential and algebraic equations representing the 

modeling of the system's components and the balance of power among them. 

This chapter presents a mathematical model used to perform power systems 

stability analysis in order to study Hopf bifurcations. A brief discussion is given 

on the mathematical models of the system components, including induction motors 

and load tap changing (LTC) transformers. Power flow equations in rectangular 

coordinates are also presented. 

Throughout this work, the system variables are expressed in per unit system to 

simplify the analysis by eliminating the units. Per unit quantities are normalized by 

their base values. 

2.2 Power Flow Equations 

The study of a power systems in steady-state operation is referred to as power flow 

analysis [31]. Power flow analysis use a set of algebraic equations (power flow equa-

tions), to determine the voltages at each bus as well as the active and reactive power 

11 
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flowing into each line in a power system, under a given set of load conditions. 

Power flow equations represent the active and reactive power balance at each bus 

(or node) in the network. Let N be the total number of buses in a system, and i 

indicates a particular bus or node in that system. Then, the difference between the 

power generated at bus i and the power consumed by the load at that bus (i.e. local 

load) equals the power flow into the branches connected to the bus i, as shown in 

the following equations: 

0 = Pgen j - PI0( ) - branch(i) - 

0 = Qgcn(i) - Qload(i) - Qbranch(i) 

where: 

ek P1tc(k) 

k=1 
T 

k=1 

(2.1) 

ikQltc(k) (2.2) 

• Pgen(i) and Qgen(i) are the active and reactive power generated at bus i respec-

tively; 

• Pload(i) and Qloaci(i) are the active and reactive power absorbed by the loads 

connected at the bus i, as discussed in Section 2.2.1; 

• Pbranch(i) and Qbranch(i) are defined as the active and reactive power leaving the 

th bus, through transmission lines; 

• T is the number of the LTC transformers in the network 

• E = [e,k] is the LTC connection matrix, that describes the connection between 
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each LTC transformer and the bus to which it is attached, as follows: 

e,k = 

1, if the primary side of LTC k is connected to the bus i; 

—1, if the secondary side of LTC k is connected to the bus i; 

0, otherwise. 

• Pltc(k) and Qltc(k) are the active and reactive power being transferred from the 

primary side to the secondary side of the kth LTC transformer (assuming a 

lossless transformer). 

If there is no generator at bus i then Pgen(i) and Qgen(i) are set to zero in (2.1) and 

(2.2). Otherwise, it is assumed that Pgen (j) is a pre-specified parameter of the network 

in all generator buses, except the slack bus [31]. The slack bus is a generator bus 

where the active generated power is not scheduled. Therefore, any mismatch between 

the active generated and consumed power in the network is balanced by the active 

power of the slack bus. 

The slack bus also serves as an angle reference for the network. It is usual to 

assume that the voltage angle of the slack bus is zero. Equivalently, in rectangular 

coordinates, a zero voltage angle corresponds to fixing the imaginary component of 

the voltage at zero. 

In this work, generator dynamics are neglected, therefore, steady-state voltage 

sources are used to represent generators. 

2.2.1 Load Power 

In the present work, the loading elements of the network are categorized as follows: 
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• Constant power load: the active and reactive power consumed by the load 

are pre-specified and are not a function of frequency or voltage. The total 

active and reactive power absorbed by the constant power loads connected to 

bus i are denoted by Pc() and Q(i) respectively. 

• Induction motors: the active and reactive power consumed by the k th in-

duction motor are denoted by Pm(k) and Qm(k), respectively. These quantities 

are dependent on the amount of mechanical load connected to the motor and 

the terminal voltage, and will be discussed in greater detail in Section 2.4. 

The total power absorbed at the bus i is the sum of the power consumed by the 

constant power load and the induction motors at that bus, given by: 

M 

.Pload(i) = P() + E CjkPm(k) 

Qload(i) 

k=1 

CjkQm(k) 

(2.3) 

(2.4) 

where 

• M is the number of the induction motors in the network, and 

• C = [Cj,k] is the induction machine connection matrix, which describes the 

connection between each induction motors and the bus to which it is attached. 

It is defined as: 

Ci,k = 

1, if machine k is connected to the bus i; 

0, otherwise. 
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2.2.2 Branch Power 

It is necessary to define the notation for elements of the nodal analysis in order to 

present the branch power equations. Let Ck and Ek be the conductance and the 

susceptance between the nodes i and k, for i k. The conductance and susceptance 

between node i and the ground are denoted by Ojj and Bij, respectively. The line 

conductances and susceptances are computed as: 

2 2 rk + Xjk 

Xjk  
and Bk = + A 

ik ik 

where Tik and Xik are the resistance and reactance of the transmission line between 

the buses i and k, accordingly. If i = k, then r1 and Xjj are the resistance and 

reactance between bus i and the ground. 

For transformers, let tik be the tap setting of the fixed tap transformer placed 

in the transmission line connecting buses i and k, where i is the sending bus and 

k is the receiving bus. When there is no transformer between buses i and k, it is 

convenient to assume the existence of a transformer whose fixed tap ratio is given 

by tik = 1. In this case, bus i and k are also regarded as the sending and receiving 

buses, respectively. 

The conductance matrix G = [G k] is then given by: 

cii= 

isending 
j receiving 

Gik = tjkGjk 

s receiving 
j sending 

ik 

au 

where i E {1, 2,•• , N}, k E {1, , N}, and N is the total number of buses in 
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the system. Analogously, the susceptance matrix B = [B k] is then given by: 

Bij = 

Bik = 

+ 1: bij 
j=1 j=1 

i sending i receiving 
j receiving j sending 

tkBk , i k 

The active Power Pbranch(i) and the reactive power Qbranch(i) leaving the jth bus 

are derived as follows. Denote by VR() and Vi() the real and imaginary components 

of the voltage at bus i respectively. Define the following complex quantities, in 

rectangular coordinates: 

• V() = VR() + jVi() is the complex voltage at bus i, 

• I(i) = .tR(i) + '1(i) is the net complex current at bus i, and 

• Yik = Gk + jB k is the (i, k) element of the admittance matrix Y = G + jB. 

The vector I of complex currents can be obtained from the vector V of complex 

voltages as: 

as: 

I = IR+aIIYV 

= (G + jB) (VR + jV1) 

= (GVR - By1) + j(GVi + BVR) 

Therefore, the real and imaginary components of the current at bus i are written 

N N 

GkVR(k) - BV1 

kVI(k) + E BVR 
k=1  

k=1 

N 

(2.5) 
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The apparent power Sbranch(j) flowing into the branches connected to bus i is given 

by: 

S(i) = P() +jQ () = V()') 

= (VR (j) + jVI(j))(IR(j) - ilI(i)) 

= (VR(j) 'R(i) + Vi(j) II()) + j IR(i) - VR(j) II()) 

Substituting (2.5) in (2.6) yields the branch power equations: 

and 

Pbranch(i) = 

Qbranch(i) = 

k=1 

+ BVjV 

k=1 

k=1 

N 

k=1 

k=1 

jkVl(i)VR(k) - 

BkVR()VR(k) - 

k=1 

(2.6) 

GkVI()VI(k) (2.7) 

2.3 Load Tap Changing (LTC) Transformer 

(2.8) 

A transformer that can provide a change in tap while it is energized is called a 

load tap changing (LTC) or tap changing under load (TCUL) transformer [32]. Fig-

ure 2.la shows a one line diagram of the LTC transformer where "a" is a real quantity 

representing the continuously changing tap setting. 

The LTC transformer is modeled as an ideal machine. As illustrated in Fig-

ure 2. ib, all the complex power Sltc(k) = Pitc(k) + jQltc(k) entering the primary ter-

minals of the k th LTC transformer is transferred to its secondary terminals. This 
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primary 1:a secondary 

(a) 

primary secondary 

H 
Sftc(k) SItc(k) 

(b) 

Figure 2.1: Illustration of the power transfer through a LTC transformer. (a) LTC 
transformer model. (b) The complex terminal power, denoted by S1t(k), is transfered 
from the primary to the secondary side of the kth LTC transformer [33]. 

approach for modeling the LTC transformer allows for easy incorporation into an 

optimization based program [33]. 

A continuous model of the LTC transformer can be given as [8, 23]: 

1 
=(VreiVt) (2.9) 

where T is the transformer time constant, Vref is the reference voltage, and V is 

the controlled terminal voltage. The controlled voltage is defined as the magnitude 

of the voltage at the bus connected to the secondary side of the transformer and, in 

rectangular coordinates, it is given as: 

Vt 

VR(secondary) 

VI(secondary) 

= V(  sec dary) + (secondary) 

= aVR(prjmary) 

= aVI(primary) 

(2.10) 

where Vrt(prjmary) and VI(primary) are the real and imaginary components of the voltage 

at the bus connected to the primary side of the transformer; similarly, VR(seedary) 
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and VI(secondary) are the real and imaginary components of the voltage at the bus 

connected to the secondary side of the transformer. 

In an actual LTC transformer, the tap can be set only at discrete values: the 

continuous LTC model is not as accurate as the discrete model. However, this model 

is a valid approximation, particularly for mid to long term system stability analysis 

purposes where the time frame of interest is one to several minutes [8, 23]. 

2.4 Induction Machine 

2.4.1 Introduction 

Nicola Tesla developed the induction motor in 1887 based on a demonstration of the 

"Gramme dynamo", a machine that could be operated either as a generator or as a 

motor [34]. An induction machine is a rotational electromechanical energy converter 

that is composed of a stationary member, referred to as the stator, and a rotating 

member, the rotor. 

The main characteristics of a three-phase induction machine are: 

. Three sinusoidally distributed Y- or Li-connected stator windings, 

. Three sinusoidally distributed Y- or Z-connected rotor windings, 

. An air gap to allow relative motion. 

The induction machine has been mainly used as a motor since its invention. 

Induction motors are known as the workhorses of today's industry [32]. 

In the following sections, the operating conditions of an induction motor are 

briefly explained. The conventional machine model is then developed using the 
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traditional method of reducing a symmetrical three phase machine to a two-axis 

(d-q) coil model on both the stator and the rotor, as described in [35]. 

2.4.2 Slip and Operating Conditions 

The stator windings are excited by applying a set of balanced three-phase voltages 

drawn from an external source of electrical energy. This causes currents to flow in 

the stator winding, which in turn produces a magnetic field. The produced magnetic 

field rotates at speed W8m mechanical radians/seconds, referred to as the synchronous 

speed. This field induces voltage in the rotor windings, which produces sinusoidal 

currents in the rotor coils. The interaction between the rotor current with the stator 

field produces an electromechanical torque which spins the rotor [36]. If the devel-

oped torque is in the direction of the rotor movement, the machine is working as a 

motor. 

A fundamental characteristic of an induction motor is the slip, which is defined 

as the relative speed between the rotor spinning at a steady speed Wrm and syn-

chronously rotating stator field w [35], that is 

slip = Wsm - Wrm 

For an induction motor, if there is no relative velocity between the stator and 

rotor fields (i.e. slip = 0), the induced rotor voltage and current will be zero, and 

consequently there would be no torque. Therefore, the rotor must settle at a sub-

synchronous speed to develop a positive torque. In per unit system, the slip s is 

defined as [35]: 

- Wrm = We - W,. 

Wsm We 
(2.11) 
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where w = 2irfe is defined as the angular speed of the excitation currents and the 

relation between electrical and mechanical angular speed, for a P-pole machine, can 

be given by [35]: 

2 
Wsm = 

2 
Wrm = W1. 

2.4.3 Synchronously Rotating Reference Frame Transformation 

The voltage equations that describe the behavior of ac machines contain time vary-

ing coefficients, due to the fact that some of the machine inductances are functions 

of the rotor displacement. Therefore, a change of variables (or transformation) is 

necessary to reduce the complexity of these voltage equations, by eliminating the 

time-dependent inductances [35, 37]. The reference frame transformation accom-

plishes such complexity reduction by replacing the stator and rotor "abc" windings 

by fictitious "qdO" windings, as discussed in this section. 

The "abc" quantities are transformed into "qdO" quantities of a rotating reference 

frame with angular speed c, commonly known as synchronously rotating reference 

frame [35, 37]. In this reference frame, the "qd" variables are constant in steady-state 

machine operation. 

Figure 2.2 illustrates the relationship between the "abc" stator and rotor quan-

tities, and the corresponding "qd" quantities. The "abc" stator quantities may be 

thought of as varying along stationary axes as, bs, and cs, each displaced by 120 

electrical degrees. Similarly, the rotor "abc" quantities vary along the ar, br, and cr 

axes, each displaced by 120 electrical degrees and rotating at angular speed wv.. The 
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stator and rotor "abc" quantities can be projected into the qd orthogonal axes; the 

qd reference frame rotates with angular speed w. The "0" variables are related only 

arithmetically to the "abc" variables and are ignored in a balanced system, since 

these variables correspond to unbalanced currents and voltages. 

The angle between the as axis and the q axis is denoted by O, and is expressed 

as: 

8e(t) = we(t)dt+9e(0) 
0 

Analogously, the angle between as and ar axes is denoted by 0, and is given by: 

or (t) = fo r(t)dt + Or(0) 

The angles Oe (0) and Or (0) are the initial values of the angles Oe and Or respectively, 

at the beginning of time. 

The transformation equation from "abc" coordinates to "qdO" coordinates can be 

written as [35]: 

[fqdo] = [Tqdo(0)][fabc] (2.12) 

where vector of variables, f, may be voltages, currents, or flux linkages of the machine. 

The "qdo" transformation matrix is defined as: 

[Tqdo(0)I = 

Cos  Cos (9— 

sin 9 sin(9 - 

1 1 
2 2 

L) cos(O±) 

27r ) sin(O+) 
1 
2 

(2.13) 

The arbitrary angle of transformation 0 is substituted by 0e when changing the stator 

variables from "abc" to the synchronously rotating "qdO" reference frame. Likewise, 

the rotor quantities are transferred onto the same "qd" reference frame (Figure 2.2) 

using O - °r as the angle of transformation. 
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bs 

br 

Cs 

cr 

as 

Figure 2.2: Relationship between stator and rotor abc-axes and synchronously rotat-
ing "qdO" reference frame [35]. 
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2.4.4 Machine Model in the Synchronously Rotating "qdO" Reference 

Frame 

For analysis purposes, the actual physical machine is approximated by an ideal ma-

chine. The assumptions that are made to develop a mathematical model of an 

idealized machine are stated below [35]: 

• Symmetrical air gap, 

• Negligible hysteresis and eddy current losses, 

• No saturation, 

• Balanced voltage applied to the stator. 

In the idealized machine, saturation or other non-linear effects are not modeled to 

keep the analysis simple [32]. 

The stator and rotor voltage equations in the "qdO" synchronously rotating ref-

erence frame are stated below [35]: 

Vqs = rsiqs + b We qs + 1/)ds 
Wb Wb 

Vd8 = TsZds + I-'ds - We 11)qs 
Wb Wb 

Vqr =rriqr + + (W - wr) dr 

Wb Wb 

Vdr =rridr + 1 V;dr (w - wr) Pqr 

Wb Wb 

where 

• Vqs, Vds : the stator voltage along the "q" and "d" axes respectively, 

• Vqr, Vdr : the rotor voltage along the "q" and "d" axes respectively, 

(2.14) 
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• r3 the stator winding resistance, 

• r : the rotor winding resistance, 

• 2'qs, '1ds : the stator currents along the "q" and "ci" axes, 

• qr, id, : the rotor currents along the "q" and "ci" axes, 

• Wb : the base angular frequency, it is chosen to be equal to the synchronous 

speed We 

• bqs, '/ds : denotes the stator flux linkage per second along the "q" and "d" 

axes, 

• ?I)qr, '4'dr : denotes the rotor flux linkage per second along the "q" and "ci" axes, 

• /)qs, ',1qr, and i/dr : denotes the time derivative of the respective ?I.'qs, 06 7 

?bqr, and Od, quantities. 

The above set of equations, with the addition of the torque equation (to be 

presented in Section 2.4.5), form the dynamical model of the induction motor. In 

this model, the flux linkages per second ?,bqs, çbds, ?,bqr, and and the rotor angular 

speed Wr are the dynamical variables of the induction motor, and the stator terminal 

voltages Vqs, Vds are the required inputs. The windings on the rotor are assumed to 

be short-circuited, therefore Vqr = 0 and Vdr = 0. Equations corresponding to the 

"0" variables are omitted since the machine is assumed to be supplied by a balance 

external source. 
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The flux linkages per second are related to the stator and rotor currents by the 

following matrix equation: 

qs 

Ods 

qr 

'bdr 

where Xj5 and Xir are the stator 

Xis +Xm  0 XM  0 tqs 

0 Xis +Xm  0 Xm ids 
(2.15) 

Xm 0 Xlr+Xm 0 iqr 

- 0 Xm 0 Xfr + Xm - 'ld'r - 

and rotor windings leakage reactances respectively 

and Xm is the magnetizing reactance. 

In order to incorporate the induction motor dynamical equations into the differ-

ential model of the system, it is necessary to isolate 'qs, bcis, /-qr, and ?/dr in (2.14). 

Furthermore, the stator and rotor current variables in (2.14) can be substituted by 

the flux linkages per second using (2.15), for simplification. Define the auxiliary 

quantities 'cl-'mq, and XM, as follows: 

bmq XM(+) 
Xis X. 

'V)ds ?I)dr Omd =  
X15 Xj. 

1_i + + 1 1 
— ——— 

XM  Xm Xis Xlr 

(2.16) 

Then, the stator and rotor currents can be computed from (2.15) and (2.16) 

using the following equations: 

'1qs 

ids 

qr 

dr 

= ?/)qs — ?I'mq  

Xis 

= ?I'ds'V)md  

Xis 

=  - Omq  

Xir 

'Idr - ?l)md 

(2.17) 
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Substituting (2.17) into (2.14), and isolating the time derivatives of the dynamical 

variables, yields: 

'V'qs = Wb{Vqs We Ods + rs ('/-'mq - 

Wb Xis 

V;ds We = Wb{Vds + 'bqs + ('çbmd - 'bd3)} 
Wb XIS 

bqr = Wb{Vqr + Wb ?Pdr + Xlr bmq - bqr)} 

= Wb{Vdr - Wr We ?/)qr + rr Imd - Odr) 
Wb 

(2.18) 

Let VR() and VI() be the real and imaginary components of the voltage at the ith 

bus, where the machine is connected. The terminal voltage components V and Vd8 

are related to VR() and Vi() by the following equations: 

Vqs = VR() 

Vds = 

(2.19) 

Moreover, the active and reactive power consumption of the machine can be 

computed as: 

Pm = Vqsiqs + Vd8d8 

Qm= Vqsds - Vds'lqs 

(2.20) 

Equations (2.19) and (2.20) represent the coupling between the induction motor 

equations and the power flow equations. 

2.4.5 Torque Equation 

The final equation in the dynamical model of the induction motor is the swing equa-

tion, which represents Newton's second law for rotational movement: the net torque 
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applied to an object is directly proportional to the resulting angular acceleration and 

the moment of inertia of the object. Applying this concept, the motion of the rotor 

can be mathematically described as follows [35]: 

Wb 
t3r = (Tem + Tmech) (2.21) 

where H is the inertia constant, Tern is the electromechanical torque produced by 

the motor, and Tmech is the mechanical load torque. The appearance of factor Wb 

in (2.21) is a consequence of the per unit normalization. 

The produced electromechanical torque has the same direction as the rotor move-

ment, thus Tern > 0. Conversely, the mechanical load torque opposes the rotor 

movement, in an induction motor, therefore Tmech <0 

The electromechanical torque Tern is given by [35]: 

Tern = ('çbdsiqs - 'bqsids) (2.22) 

In this thesis, the mechanical load torque Tmech is considered to be directly pro-

portional to the normalized rotor speed, as proposed in [38], and is given in mathe-

matical terms as: 

rn 
1meeh = 

Wb 
(2.23) 

where the proportionality factor X is a scalar that is known as the loading parameter 

(or loading factor) associated with the mechanical load of the induction motor. It 

is assumed in this work that all the mechanical loads present the same value of the 

loading parameter. 

Equation (2.21) along with the set of equations given in (2.18) form the fifth 

order induction motor model used in this thesis. 
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2.5 Complete Model of the System 

The system components modeled separately in the previous sections are now con-

sidered together to form a power system model represented by the following set of 

differential and algebraic equations (DAE): 

x = 

0 = G(x,y;A,p). 

where 

(2.24) 

(2.25) 

• x E RD is the vector of system dynamic variables, D denotes the total number 

of the dynamic variables. These variables are also referred to as state variables, 

since they are used to describe the state of the system. Vector x contains 

?J)qs, Od,, 'Iqr, 'bdr, and Wr for each induction machine, and a for each LTC 

transformer. 

• x E R D represents the derivative of the state variables x with respect to time, 

• y E A  is the vector of steady-state algebraic variables, A is the total number 

of algebraic variables. Vector y contains Vqs, Vd8, Pm, and Qm of each induction 

motor, PIt, and Qjtc for each LTC transformer, VR and V1  at each network bus, 

Qgen of each generator bus, and Pgen of the slack bus. 

• A E 11 is the loading parameter, as shown in the previous section. 

• p E RCP is a set of controllable parameters, CP is the total number of control-

lable parameters in the system. In the proposed formulation, the controllable 
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parameters are the real component of the voltage at the slack bus, the mag-

nitude of the voltage at each generator bus, the active power injected at the 

generator buses, and the reference voltage of the LTC transformers. 

The set of differential equations (2.24) represents the induction motor model 

of (2.18) and (2.21), and the LTC transformer dynamics in (2.9). The set of algebraic 

equations (2.25) represents the power flow equations in (2.1) and (2.2), and the 

algebraic equations of induction motors and LTC transformers in (2.19), (2.20), and 

(2.10). 

2.6 Summary 

In this chapter, the following concepts are reviewed: 

• Power flow equations in rectangular coordinates; 

• A continuous model of LTC transformers; 

• A dynamical order model of induction motors, in the synchronously rotating 

reference frame. 

These elements are incorporated into a single power network differential-algebraic 

model. It will be shown in the next chapter that such model is adequate for system 

stability analysis and the study of Hopf bifurcations. 



Chapter 3 

Power System Instability and Bifurcations 

3.1 Introduction 

Today's power networks operate close to their control and operational limits, due to 

the ever increasing demand for electrical energy, and the economical and environ-

mental restrictions on power systems expansion [39]. Such highly stressed systems 

can exhibit scenarios of instability [40]. Consequently, system stability analysis is of 

major interest in the planning and operating present day power system networks. 

Generally, if one or more system parameters vary continually in a particular 

direction, a critical point may be reached where a qualitative change occurs in the 

system state. For instance, the system might change from stable equilibrium to 

unstable equilibrium or a limit cycle oscillation. This phenomenon is known as 

bifurcation. Saddle-node and Hopf bifurcations have been recognized as the main 

reasons behind system instability in power systems [7, 5]. The occurrence of saddle-

node and Hopf bifurcations is characterized by a change in the small-disturbance 

stability properties of the power system. 

Small-disturbance system stability analysis of a power system is the study of 

the system's response to small perturbations [9]. In this limited range of operation, 

the nonlinear system of differential and algebraic (D-A) equations can be linearized 

around an equilibrium point. The eigenvalues of the linearized model are then used 

to determine the stability of the linear system. 

31 
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This chapter reviews the theory of small-disturbance stability analysis of power 

systems, followed by an introduction to bifurcation analysis, with an emphasis on 

saddle-node and Hopf bifurcations. Methods to predict and detect bifurcations are 

subsequently presented. Finally, application of optimization theory for system sta-

bility analysis is introduced. 

3.2 Small-disturbance Power System Stability Analysis 

Small-disturbance system stability is defined as the system's ability to return to the 

equilibrium point under investigation when subjected to small perturbations [9]. The 

small-disturbance system stability analysis examines the eigenvalues of the linearized 

model to determine the system stability condition. 

Consider the system model presented in Section 2.5: 

* = 

o = G(x,y;A,p). 

(3.1) 

(3.2) 

where F(.) and G(.) represent the dynamic and algebraic equations, x and y are the 

dynamic and algebraic variables, A is the loading parameter and p is the vector of 

controllable parameters of the system. 

The power system model given by (3.1) and (3.2) will be linearized around an 

equilibrium point (i.e Sc = 0). Let the vector x0 and yo be the solution of the system 

at the equilibrium point for a fixed value of the loading parameter A0 and fixed vector 
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of controllable parameters Po, that is: 

F(xo, yo; Ao, po) = 

G(xo, yo; Ao, po) = 

0, (3.3) 

0. (3.4) 

The system may then be subjected to a small-disturbance, obtaining: 

X = x0+Ax, (3.5) 

Y = y0+AY, (3.6) 

where Lx and Ay denote perturbations in the dynamic and algebraic variables of 

the system respectively. Note that taking the time derivative of both sides of (3.5) 

yields: * = *o + L* = A k, since x0 is a constant value. The above expressions are 

introduced in the differential-algebraic system of equations (3.1) and (3.2), and their 

Taylor series expansion is written as: 

* = k=F[(xo+Lx),(yo+y);Ao,po] 

= F (xo, yo, A0) P0) + J1zx + J2Ly + H.O.T (3.7) 

0 = G[(xo+Lx),(yo+Ly);Ao,po] 

= G (x0, Yo, A0) P0) + J3Lx + J4zy + H.O.T (3.8) 

where H.O.T stands for the Higher Order terms, and the matrices J1, J, J3, and J4 
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are presented below: 

J1= 

J3 

8fD(.)  

- Oxi 

0XD 

- 8f1(.) 0f1(.)  

5y1 a,TA 

0f2(.) 
ay1 

fD(.) fD(.) LWD(.)  
&XD - - Y1 8YA - 

gi(.) 0gi(.) - gi(.) gi(.)  

X1 8XD -9Y1 YA 

8g2(.) 0g2(.) 0g2(.) 

8Xj 0XD -r 8Y1 OYA 
= 

OgA(.) ôgA(.)  

- ôxi 

199A G) 89A G) 

- OY1 8YA 

(3.9) 

The total number of dynamic variables is denoted by D and the total number of 

algebraic variables in the system is A. The partial derivatives in the preceding 

matrices are calculated at the equilibrium point (xo, yo, A0, P0). 

Since F(xo, yo, A0, P0) = 0 and G(xo, Yo, A0, P0) = 0, these components can be 

eliminated from (3.7) and (3.8). Furthermore, the higher order terms can be ignored 

given that the perturbation is sufficiently small. The linearized equations can then 

be written as the following: 

= J1x+J2Ly (3.10) 

0 = J3Lx + J4Ly (3.11) 

The matrices J1 E RDXD, J2 E R DxA, J3 E JAXD, and J4 E RAXA form the Jacobian 

matrix of the system (J E JR(D+A)x(D+A)) as below: 

J= 
Ji 

J3 J4 
(3.12) 
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Assuming J4 is a nonsingular matrix, then (3.11) can be solved in terms of Ay, 

yielding: 

Ay = —J 1J3Lx (3.13) 

Substituting (3.13) into (3.10) results into the following: 

Aik =  [Ji - J2J'J3]Lx 

Jreduced 

(3.14) 

where the matrix Jreduced E RD is called the reduced Jacobian or the state matrix 

of the system. 

It is shown in Appendix A that the time solution of the above problem can be 

given by [32]: 
D 

Lx(t) = (315) 
i=1 

where 

(Di E CD xl is the .jth right eigenvector of Jreduced, 

E C lx D is the jth left eigenvector of Jreduced, 

Lx(0) E RD is the initial value of /x, 

jj is the jth eigenvalue of Jreduced-

The eigenvalues qi are either real, or form complex conjugate pairs, since Jreduced is 

real [41]. The eigenvalues of the system correspond to different modes, as follows [32]: 

a) A negative real eigenvalue represents a non-oscillatory exponentially decaying 

mode. 
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b) A positive real eigenvalue represents a non-oscillatory mode with exponential 

growth. 

c) A complex conjugate pair of eigenvalues represents an oscillatory mode. If 

the real part of the eigenvalue is negative, the amplitude of the oscillation 

will decay exponentially; otherwise, there will be an exponentially increasing 

amplitude in the oscillation. 

If all the eigenvalues of (3.15) have negative real parts, the system is stable. 

Otherwise, there will be a mode (oscillatory or non-oscillatory) of the system with 

exponential growth. The particular case where a real eigenvalue or a complex con-

jugate pair have zero real part will be discussed in Sections 3.3.1 and 3.3.2. 

3.3 Bifurcation Theory 

Bifurcation theory describes the possible ways in which a system can become un-

stable as a system parameter varies slowly. This theory is applied in power systems 

small-disturbance system stability analysis to identify the operating points where 

significant changes occur in the system state, as the loading parameter is changed. 

These points are referred to as bifurcation points [8]. The distance to a bifurcation 

is defined, in this thesis, as the difference between the loading parameter values at 

the bifurcation point and at the normal operating point. 

Two types of bifurcation are often associated with the instability and/or collapse 

in power systems [7, 5]: saddle-node bifurcation, and Hopf bifurcation. 



37 

3.3.1 Saddle-Node Bifurcations (SNB) 

The concept of saddle-node bifurcation can be better explained using a bifurcation 

diagram, as shown in Figure 3.1. The bifurcation diagram is a graphical display of the 

steady-state solutions of the system in the (x, y, A) space, and it generally consists 

of lines in this multidimensional space [6]. As it is shown in Figure 3.1, where z is 

typically a load bus voltage magnitude in power systems, for A < ASNB there are 

two solutions to the system equations, at A = ASNB there is only one solution and 

beyond this value of A there is no equilibrium solution for the system. In this case, 

A = ASNB is the maximum system loadability. The saddle-node bifurcation (SNB) 

is defined as a point where two branches of equilibrium points meet and there is no 

equilibrium solution beyond the point of intersection [6] 

z 

saddle-node 
bifurcation (SNB) 

110 SNB 

Figure 3.1: Example of a bifurcation diagram showing saddle-node bifurcation, where 
z is typically a load bus voltage magnitude in power systems 

At the point of SNB the following conditions are valid [6]: 

1) Saddle-node bifurcation occurs at an equilibrium point, i.e. F(x*, y*; ASNB, p*) = 
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0 and G(x*,y*;AsNB,p*) = 0, 

2) The full Jacobian matrix of the system has a simple and unique zero eigenvalue, 

implying a singular Jacobian matrix, 

3) At the saddle-node two branches of equilibria intersect and both disappear 

beyond the SNB point. 

Saddle-node bifurcations can be associated with the voltage collapse in power sys-

tems, and therefore have been throughly studied in literature, for example, [24, 42, 

43, 44, 45]. 

3.3.2 Hopf Bifurcations 

Hopf Bifurcation (HB) (or oscillatory bifurcation) is defined as a bifurcation that 

connects equilibria with periodic oscillation [6]. These types of oscillatory problems 

are encountered in power networks [46]. 

The basic theory behind the Hopf bifurcation can be explained using the DAB 

model of a power system given by (3.1) and (3.2). As the loading parameter (A) 

varies slowly, the equilibrium points (xo, yo) change and consequently the eigenvalues 

of the reduced Jacobian matrix of the system move in the complex plane. The point 

(x*, y*) )¼HB, p*) where a pair of complex conjugate eigenvalues reaches the imaginary 

axis is a Hopf bifurcation point if the following conditions are satisfied [6]: 

1) F(x*,y*; .XHB, p*) = 0 and G(x*,y*; AHB,p*) = 0, 

2) The reduced Jacobian matrix evaluated at the solution of above equations 

should have a simple pair of purely imaginary eigenvalues (known as critical 
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eigenvalues), that is q = ±j18, and no other eigenvalues with zero real parts, 

3) The rate of change of the real part of the critical eigenvalues with respect to A 

should be nonzero, that is   0. In other words, the system is changing 

its stability characteristic. 

In this event, the system is experiencing a Hopf bifurcation and the initial period of 

the limit cycle (To) can be computed as [6]: 

2ir 
Toj-

Re(i) 

(3.16) 

Figure 3.2: A complex conjugate pair of purely imaginary eigenvalues crossing the 
imaginary axis 

The above mentioned conditions imply that Hopf bifurcation corresponds to a 

system equilibrium state with a pair of purely imaginary eigenvalues crossing the 

imaginary axis as a system parameter (i.e. A) varies, yielding oscillations in the 

system. The pair of complex conjugate eigenvalues crossing the imaginary axis is 

depicted in Figure 3.2. 
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3.4 Methods to Detect Bifurcations 

The occurrence of bifurcation is a limiting factor in power systems operation. There-

fore, the ability to predict the distance to the bifurcation point is a valuable asset to 

the system operators. In this section, two different indices of proximity to bifurcation 

are presented, followed by a discussion on the continuation method, which provides 

a measure of the distance to the bifurcation point. 

3.4.1 Singular Value and Eigenvalue indices 

Eigenvalues and singular values are used in power system literature to determine 

proximity to system bifurcations [42, 19]. 

Eigenvalue Index (EVI) 

All the eigenvalues of a system at stable equilibrium have negative real part. As the 

system's loading parameter is increased, a bifurcation point can be reached. In this 

case, the system will exhibit a single zero eigenvalue (saddle-node bifurcation) or a 

single pair of complex conjugate eigenvalues with zero real part (Hopf bifurcation). 

Based on the aforementioned observation, the Eigenvalue Index (EVI) is defined 

as [6]: 

EVI = Ial (3.17) 

where a is the real part of eigenvalue with the largest real part. Such an eigenvalue 

is referred to as the critical eigenvalue of the system. 

Observe that the EVI is zero when a bifurcation point is reached. The EVI is 

an indirect measure of the distance to bifurcation, when the system is operating 

close to the bifurcation point. This index is rather insensitive to the increase of 
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the loading parameter unless the system is operating in the vicinity of a bifurcation 

point, as discussed in [5]. Therefore, the eigenvalue index cannot be used to predict 

the bifurcation well in advance [19]. 

Singular value index 

The eigenvalue problem for the critical complex eigenvalue of the system can be 

written as: 

Jreciuced [V + jvi] = (a + 0) [VR + jv1] (3.18) 

where matrix Jreciuced is the reduced Jacobian matrix of the system; a and ,@ are the 

real and imaginary components of the critical eigenvalue 77 (note that, if /3> 0, the 

conjugate is also a critical eigenvalue of Jreduced); the vectors VR and VI are the 

real and imaginary component of the eigenvector v associated with the eigenvalue 

17. After separating the real and imaginary components (3.18) can be rewritten in 

matrix form as: 

/ 

3 reduced +181n 

/3In Jreciucei 

—aI2 

C- Am 
- 

VR 

VI 

=0 (3.19) 

Matrices I, E IRDXD and '2n E 1R2Dx2D are the identity matrices of proper size, D is 

the number of state variables. 

When a = 0 the modified reduced Jacobian matrix Am becomes singular, since 

the eigenvectors are nonzero. The minimum singular value 0m1n of this modified 

matrix is used as an index to detect Hopf bifurcation, as proposed in [47], and stated 

in mathematical terms below: 

HBI1 (Jreduced, j3) = cTm in(Am ) (3.20) 
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This index is consider to be computationally expensive as it requires the calculation 

of the matrix Jreduced, which involves matrix inversion. 

3.4.2 Continuation Method 

The loading margin of a power system, for a particular operating point, is the amount 

of additional load in a specific pattern of load increase that would bring the system 

to a bifurcation point. The loading margin corresponds to the maximum system 

loadability. It is crucial for system analysis to be able to determine the amount of 

load increase that would cause instability. 

The continuation method permits the computation of the maximum system load-

ability, by computing successive equilibrium points of the system as the loading pa-

rameter is slowly varied. A continuation method can be considered mainly as a two 

step approach [8]: the predictor step and the corrector step. The predictor step 

starts with a known solution and uses a tangent predictor to estimate the next solu-

tion. This estimate is then corrected at the corrector step by computing a solution 

on the bifurcation diagram perpendicular to the predictor solution, as depicted in 

Figure 3.3. 

The algorithm starts with a known equilibrium point (xo, yo, A0, p0), and the 

controllable parameters Po are fixed. Let (xi, y,, A, P0) be the equilibrium solution 

computed at the jth step. The continuation method proceeds as follows: 
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Predictor step 

(X', Y') 

- - - Corrector step 

Figure 3.3: Bifurcation diagram obtained by continuation method 

Predictor Step:  

The equation that defines the equilibrium point (xi, y, )', P0) is given by: 

F(x,y)A,PO) 

G(x )y,A,PO) = 

0 (3.21) 

0 (3.22) 

Applying the Chain Rule to take the total derivative of both functions with 

respect to the loading parameter )., yields: 

dx dy (9F(.) dA 
J1+J2+ 5A cL\ = 

dx dy aG(.) d) 
J3+J4+ aA = 

0 (3.23) 

0 (3.24) 

where J1, J2, J3, and J4 are defined in (3.9). 

Equations (3.23) and (3.24) can be simplified and rearranged into matrix form 
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as given below: 

where J1, J2, J3, J4, 

j1 j21 dx I I 8.\ I 

[ 3 J4   J d.\ L ax ] 
S.- -';____;' '____•v_____' 

(3.25) 

3 z b 

¶, and aA are evaluated at the current equilibrium solution 

(xi, y, A1, P0). This linear system is solved in order to obtain and Ly . The change 

of system parameter can be defined as [5]: 

zAk 
IIZIIc,o 

(3.26) 

while 0 < k < 1 controls the size of the predictor step. Since the predictor vector is 

tangent to the bifurcation diagram, the variation in the state and algebraic variables 

is defined by [5]: 

Ax A dx AA 

A  LY AA 
dA 

(3.27) 

(3.28) 

A predicted solution (x, y, A, P0) for solving the system equations at the new 

load setting is obtained as: 

x = (3.29) 

Yi = yj+y (3.30) 

= A1+LA (3.31) 

Corrector Step:  

The results obtained from the predictor step are used to compute a new equilib-

rium point (x1+i, Yi+i, A1+,, PO) on the bifurcation diagram by solving the following 
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set of equations [5]: 

F(x +i) Yi-i-i, .A+1, P0) 

G(x+i, Yi+i, A+, ) P0) = 

[zxTAyT AA] 

xi+1 - x 

Yi+i - Y 

- ) 

0 

0 

(3.32) 

(3.33) 

= 0 (3.34) 

The above nonlinear system of equations is solved using a Newton-Raphson 

method, with (x, y%, A, po) as the initial solution. The first and second equations in 

(3.32) corresponds to the steady-state system equations. The third equation repre-

sents the perpendicularity between the predictor and the corrector vectors. 

3.5 Optimal Power Flow (OPF) 

Optimal power flow (OFF) problem is formulated to find the values of the system 

variables and controllable parameters that minimize some cost function of the system 

while enforcing a variety of equality and/or inequality constraints [4]. The general 

concept of a classical OPF problem can be explained as follows: 

objective function 

- Minimize (or maximize) an objective function of the power system. Ex-

amples of objective functions that have been proposed in the literature 

include: 

* active power losses 

* loadability limit of the system 
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subject to 

- Active and reactive power balance in the system. These equations are 

expressed as equality constraints in the problem. 

- The operating and/or physical limits of the system, such as limits on bus 

voltage or active and reactive power generation. The limits are expressed 

as inequality constraints. 

In mathematical terms a classical optimal power flow problem with the objective 

of maximizing the system loading margin can be written as: 

objective function: 

max 

subject to: 

G(y; AC, p) = 0 

where: 

A: critical loading parameter of the system, 

p, : lower and upper bounds for the controllable parameters, 

h, ii: lower and upper bounds for the voltage at each bus, 

h : IRA , IRN: represents the voltage magnitude at each bus. 

(3.35) 

(3.36) 

(3.37) 
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Such a formulation does not consider the limitation in the loading margin that is 

introduced by the presence of Hopf bifurcations. In Chapter 4 several strategies for 

the inclusion of Hopf bifurcation into the optimization procedure will be discussed. 

In general, OPF is a nonlinear, nonconvex optimization problem [48]. Optimiza-

tion methods that are suitable to solve the OPF problem include sequential quadratic 

programming and nonlinear interior point methods [49, 50, 48]. 

3.6 Summary 

The goal of small-disturbance system stability analysis is to investigate the stability 

of a power system at equilibrium, as the system is subjected to a small perturbation. 

In this analysis, the system model is linearized around the equilibrium point, and 

the eigenvalues of the reduced Jacobian matrix are used to determine the stability 

characteristic of the system. 

A continuous increase in the loading parameter A of the system results in the 

movement of the equilibrium point in the x, y, A space. The system may then reach 

a point where any further increase in the loading parameter will cause a change in 

the stability characteristic of the equilibrium point. This limiting point is called a 

bifurcation point. 

Bifurcation points can be classified into different types, according to the move-

ment of the system eigenvalues. The system experiences a Hopf bifurcation, if a 

pair of complex conjugate eigenvalues of the linearized system crosses the imaginary 

axis in the complex plane, from the left to the right, yielding system oscillations. 

Saddle-node bifurcation occurs if an eigenvalue of the system matrix becomes purely 
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real and equals to zero with all other eigenvalues having nonzero real parts. 

Several methods to detect saddle-node and Hopf bifurcations have been discussed 

in this chapter. The optimal power flow problem is formulated and discussed as a 

means to obtain the maximum system loadability. It is noticed that the classical 

formulation of the OPF problem does not include any constraints with respect to 

the occurrence of any type of bifurcations in the system. 



Chapter 4 

Optimal Power Flow with Hopf Bifurcation 

Constraints 

4.1 Introduction 

A major aspect of power systems operation is to increase the system security margin 

by readjusting the network control configuration. As presented in Section 3.5, the 

classical optimal power flow (OFF) problem does not incorporate the dynamics of 

the system, and consequently is not an appropriate tool to maximize the system 

loadability with respect to the occurrence of Hopf bifurcations. 

The study of oscillatory problems (such as Hopf bifurcations) in a power network 

requires the consideration of the dynamics of the system [11, 13, 51]. In this regard, 

the algebraic and differential equations of voltage dependent loads (induction mo-

tors) and continuous control devices (LTC transformers) are incorporated into the 

classical optimization problem, since the interaction of LTC transformer with the 

load significantly affects the development of the Hopf bifurcation [52]. 

The goal of this research is to improve the small-disturbance stability margin of 

a power system, through optimal setting of the system's controllable parameters. 

The system differential-algebraic equations (DAE) are modeled to account for the 

possibility of occurrence of Hopf bifurcation. In order to achieve this goal, two 

approaches are proposed and investigated: 

49 
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1. Maximize the system loadability with respect to the Hopf Bifurcation (HB) 

point: the mathematical conditions that define the HB point are explicitly 

modeled. The optimization goal is to compute the maximum system load-

ability (MSL) related to Hopf bifurcations. Three optimization problems are 

defined within this category: Generalized Eigenvalue Based Hopf Bifurcation 

Constrained OPF (GEHB-OPF), Critical Eigenvalue Based Hopf Bifurcation 

Constrained OPF (CEHB-OPF), and Stability Constrained OPF (S-OPF); 

2. Maximize a Hopf bifurcation index: an indirect measure of the distance to 

the Hopf bifurcation point is used as the objective function to be maximized. 

Using this strategy, two optimization problems are proposed: Eigenvalue Index 

(EVI) and Singular Value Index (SVI) optimization. 

The mathematical formulation of each optimization problem is presented in this 

chapter, preceded by a discussion on the generalized eigenvalue problem, which forms 

the basis of all the proposed optimization problems. 

4.2 Generalized Eigenvalue Problem 

A generalized eigenvalue (GE) problem [41] is presented in this section and it is 

shown that the eigenvalues of this problem are identical to the eigenvalues of the 

reduced Jacobian matrix, Jreduced. 

As explained in Section 3.2, the small-disturbance stability of a differential-

algebraic system can be determined by the eigenvalues of the reduced Jacobian 

matrix: 
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'Treduced 3 - J2J1J3 

where the symbols J, J2, J3 and 34, as defined in Section 3.2, are: 

(4.1) 

• D and A are the number of the differential (or state) and algebraic variables 

in the system respectively, 

Ji E R' is the partial derivative of the system differential equations with 

respect to the dynamic (or state) variables, i.e. Ti 0F(x,y;A,p)  
49X 2 J, 

J2 E ]RDxA is the partial derivative of the system differential equations with 

respect to the algebraic variables, i.e. J2 =   
ay , 

33 E ]RAXD is the partial derivative of the system algebraic equations with 

respect to the dynamic (or state) variables, i.e. 33 =   

34 E jAxA is the partial derivative of the system algebraic equations with 

respect to the algebraic variables, i.e. 34 = ao(x,y;A,p)  
8y' 

Consider the following generalized eigenvalue problem: 

Ji 321 [j 0 
Iv17I V 

J3 J4 L 10 0 
(4.2) 

where J is the full Jacobian matrix of the system, q E C is an eigenvalue of this 

generalized eigenproblem, and v E CD+A is the right eigenvector associated with the 

DXD . eigenvalue i. Matrix I is an identity matrix of proper size, I E R 
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The characteristic equation of (4.2) is given by: 

[j  _ ?7I J21 
det[ jo 

33 J4 
(4.3) 

Applying Schur's determinant identity [8], the previous expression can be written 

as: 

det J4 det [(Jr -  J2J'J3) - 771] = 0 (4.4) 

where 34 is assumed nonsingular. Substituting (4.1) in the preceding equation yields: 

det [3reciuced - 771] = 0 (4.5) 

Therefore, is an eigenvalue of the generalized eigenvalue problem if and only if 

77 is an eigenvalue of 3reduced, proving the equivalence of the two problems. 

Using the matrix 3 over the reduced Jacobian matrix (Jreduced) in the stability 

analysis has the advantage of being computationally less expensive and more stable 

numerically, as it does not require the inverse of matrix 34 [41]. 

4.3 Optimization of the Maximum System Loadability (MSL) 

with Respect to Hopf Bifurcations 

The optimization problems presented in this section are formulated based on the 

classical optimal power flow problem, while adding the characteristics that define 

the occurrence of Hopf bifurcation as constraints to the problem. 

Within this section, three formulations are proposed: 

• Generalized Eigenvalue Based Hopf Bifurcation Constrained Optimal Power 

Flow (GEHB-OPF) problem; 
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. Critical Eigenvalue Based Hopf Bifurcation Constrained Optimal Power Flow 

(CEHB-OPF) problem; 

Stability Constrained Optimal Power Flow (S-OPF) problem. 

All the proposed optimization problems are based on the assumption that the 

loading pattern of the system is fixed, that is, all the induction motor loads are varied 

equally, as explained in Section 2.4.5. Hence, the loading parameter A E R represents 

the incremental load changes. In this case, maximizing the system loadability is 

equivalent to the maximizing the loading parameter A. 

The general concept of the proposed optimization problem formulations, within 

the MSL category, may be described as follows: 

• Objective: 

- Maximize the loading parameter A. 

• Constraints: 

- System equations at equilibrium: power flow equations, steady-state dy-

namical model; 

- Operational limits: lower and upper bounds on the bus voltage magni-

tudes; 

- Controllable parameters limits: lower and upper bounds on the generated 

active power, as well as the reference voltage of each LTC transformer; 

- HB condition: the system is experiencing a Hopf bifurcation at the max-

imum A. 
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The HE condition is valid for the GEHB-OPF and CEHB-OPF problems. In 

these cases, the maximum loading parameter is designated by AHB, to emphasize 

that the maximum loadability of the system corresponds to the occurrence of a Hopf 

bifurcation. 

However, in the S-OPF problem, the HB condition is replaced by a less restrictive 

inequality constraint, as follows: 

- Stability constraint: the critical eigenvalue of the system at the maximum 

loading parameter has a zero or negative real part. Note that, if the 

optimization program converges to an optimal solution with negative value 

of a, then the system is not exhibiting a Hopf or a saddle-node bifurcation. 

The mathematical formulation as well as discussion on each problem are presented 

in the following sections. 

4.3.1 Generalized Eigenvalue Based Hopf Bifurcation Constrained Op-

timal Power Flow (GEHB-OPF) Problem 

The GEHB-OPF includes the generalized eigenvalue problem as an equality con-

straint. It is necessary to separate the real and imaginary parts of (4.2), prior to 

the inclusion of the generalized eigenproblem into the GEHB-OPF problem. Define 

a E R and ,B E JR as the real and imaginary components of the eigenvalue 77, i.e. 

77 = a+j,i3, and 

v= 

where 

V1R + jV1I 

- V2R+jV2I 
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• V1R E RD is the the real portion of the eigenvector v that corresponds to the 

state variables, 

• V,1 E iiP is the the imaginary portion of the eigenvector v that corresponds 

to the state variables, 

• V2R E IRA is the the real portion of the eigenvector v that corresponds to the 

algebraic variables, 

• v21 E IRA is the the imaginary portion of the eigenvector v that corresponds 

to the algebraic variables. 

Therefore, (4.2) can be rearranged as: 

Ji 12 V1R+3V1I V1R+3V1I 
= (a + .2,8) (4.6) 

J3 J4 V2R +jV2I 0 

Separating the real and imaginary components and rearranging (4.6) yields: 

Ji 

J3 

Ji 

33 

J2 VIR 

34 V2R 

3 2 Vu 

J4_ V21 

—a 

—a 

ViR 

0 

Vu' 

0 

01 10 

= 0 (4.7) 

= 0 (4.8) 

The GEFIB-OPF problem can then be formulated as follows: 

objective function: 

max AHB 
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subject to: 

J 

J 

[ 
[ 
Vir 

V2r 

Vii 

—a 

—a 

Vir ] 
0 

Vii 

0 I 

F(x, y; AHB, P) 

G(x, y; AHB, P) 

Vii 
+ 

—'3 

0 

Vir 

0 

V1r 

V2r 

V11 

12 

2 
2 

= 0 (4.9) 

= 0 (4.10) 

= 0 (4.11) 

=0 

=1 

(4.12) 

(4.13) 

= 1 (4.14) 

2 

a = 0 (4.15) 

'32 > 0 (4.16) 

i≤p (4.17) 

i ≤ h(y) ≤ i (4.18) 

where 

• AHB: loading parameter at the Hopf bifurcation point, 

• x E JRD: vector of state variables (rotor and stator flux linkage per second 

along the "d" and "q" axis, and speed of the rotor for each induction motor, 

the tap setting for each LTC transformer), 

• y E RA: vector of algebraic variables, including real and imaginary components 
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of bus voltages, stator terminal voltage of the induction motors, active and 

reactive power consumed by the motors, active and reactive power transferred 

by the LTC transformers, reactive power generation in the system and the 

active power of the slack bus, 

• p E lCP: vector of controllable parameters. In this experiment, the con-

trollable parameters are magnitude of the voltage at the generator buses, real 

voltage of the slack bus (the imaginary component of the slack bus voltage 

is set to zero, thus corresponding to the reference angle equal to zero), refer-

ence voltage of each LTC transformer, and the active generated power at the 

generator buses, 

• p, : lower and upper bounds for the controllable parameters, 

• h, Ti: lower and upper bounds for the voltage magnitude at each bus 

• h : , R" represents the voltage magnitude at each uncontrolled voltage 

buses where L is the total number of the uncontrolled voltage buses. 

and the constraints 

• (4.9): represents the dynamic equations of the system set to zero to find the 

equilibrium point, 

• (4.10): represents the power flow equations at each bus, and the algebraic 

equations that links the induction motors and LTC transformers in the system 

to the power flow equations, 

• (4.11) and (4.12): represent the generalized eigenvalue problem, 
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• (4.13) and (4.14): enforce the nonzero condition on the eigenvector associated 

with the eigenvalue q, 

• (4.15) and (4.16): enforce the Hopf point conditions, 

• (4.17): represents the minimum and maximum limits on the controllable pa-

rameters, 

• (4.18): represents the lower and upper limits on the magnitude of the voltage 

at each bus 

The GEHB-OPF optimization problem is smooth, that is, the objective function 

and all the constraints of the problem are continuous and differentiable with respect 

to the optimization variables. 

A drawback of this formulation is that the criticality of the eigenvalue under 

consideration in this optimization problem is not enforced. It is expected that, by 

initializing the optimization method with a good initial solution, the optimal solution 

will model an eigenvalue variable that represents the critical eigenvalue of the system. 

Therefore, this method is effectively a heuristic method, since there is no guarantee 

that the maximum obtained by the optimization procedure is the actual maximum. 

4.3.2 Critical Eigenvalue Based Hopf Bifurcation Constrained Optimal 

Power Flow (CEHB-OPF) Problem 

The CEHB-OPF problem differs from the GEHB-OPF problem in that the CEHB-

OPF problem utilizes the critical eigenvalue of the reduced Jacobian matrix (i.e. the 

rightmost eigenvalue of the system) in order to define the Hopf bifurcation point. 
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The critical eigenvalue of the generalized eigenvalue problem is a complex valued 

function of the optimization variables, denoted by (x, y, A1 , p), and it is computed 

as follows: 

1. The full Jacobian matrix J of the system is computed; 

2. The generalized eigenvalue problem is solved, that is, all the eigenvalues of the 

system are obtained; 

3. The complex value returned by the function i(x, y, .XHB, p) is the eigenvalue 

with the largest real part. 

The mathematical formulation of the CEHB-OPF problem is given below: 

objective function: 

max AHB 

subject to: 

F(x,y;)HB,p) = 0 (4.19) 

G(x,y;AI-jB,p) = 0 (4.20) 

Ref (x,y;AHB,p)} = 0 (4.21) 

> 0 (4.22) 

i≤p ≤ (4.23) 

h ≤ h(y) ≤ E (4.24) 

where the real and imaginary components of the function q(.) are employed in equa-

tions (4.21) and (4.22) to define the Hopf bifurcation condition. It should be noted 
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that the real part of the critical eigenvalue is not a smooth function of the optimiza-

tion variables, thus the CEHB-OPF problem is not smooth [53]. 

4.3.3 Stability Constrained Optimal Power Flow (S-OPF) Problem 

In the previous optimization problems (GEHB-OPF and CEHB-OPF), the system 

at the maximum loading parameter is necessarily experiencing a Hopf bifurcation. 

If there is no possibility of a Hopf bifurcation in the system (e.g., when the only 

dynamical element of the power network is a LTC transformer), it is not possible 

to achieve feasibility in the GEHB-OPF and CEHB-OPF problems. The S-OPF 

formulation circumvents this problem by softening the Hopf bifurcation condition, 

as shown in this section. 

As in the CEHB-OPF problem, let (x, y, ), p) be the critical eigenvalue of the 

system as a function of the optimization variables, where A is the maximum value 

of the loading parameter. 

The S-OPF optimization problem is formulated as follows: 

objective function: 

max 

subject to: 

F(x,y;.A,p) - 

G(x,y;A,p) = 

Re{77(x,y;A,p)} ≤ 

p≤ 

0 

0 

0 

P p 

i≤h(y)≤ h 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
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Let a = Re{(x,y;A,p)} and 3 = Im{i(x,y;A,p)}. As shown in equa-

tion (4.27), a is constrained to be less or equal to zero, implying an optimal system 

that presents one of the following situations, at the maximum loading parameter: 

a) The system is stable and away from bifurcation, if the optimizer converges to 

a solution where a < 0. 

b) The system is at the point of Hopf bifurcation, if the optimizer converges to a 

solution where a = 0 and /3 54 0. 

c) The system is at the point of saddle-node bifurcation, if the optimizer converges 

to a solution where a = 0 and /3 = 0; 

Observe that the S-OFF problem is more general than the GEHB-OPF and the 

GEHB-OPF problems, since the S-OFF problem incorporates the possible solutions 

of the GEHB-OPF and CEHB-OPF problems as the subcase (b) in the above listing. 

4.4 Optimization of a Hopf Bifurcation Index 

The optimization of the maximum system loadability assumes that all the loads 

change simultaneously, and at the same rate, i.e., a fixed loading direction is given. 

However, in reality, the different loads in the system can be independent. Thus, a 

better assumption to the maximum loadability problem would be to employ a vector 

of loading parameters to describe each load separately, rather than a single value. 

Such approach implies an increase in the dimensionality of the system, and the added 

computational cost might render this formulation unattractive. 
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The increase in the dimensionality of the optimization problem can be avoided 

by the adoption of an indirect measure of the distance to bifurcation. In the work 

presented in [19], the authors proposed the utilization of several indices to detect 

and predict instabilities associated with Hopf and saddle-node bifurcations. These 

indices can be perceived as an indirect measure of the distance to bifurcation. 

In this section, the usage of two indices to bifurcation - the Eigenvalue Index 

(EVI) and the Singular Value Index (SVI) - as cost functions in optimal power 

flow problems is proposed. The EVI and SVI have been previously introduced in 

Section 3.4.1 

4.4.1 Eigenvalue Index Optimization problem 

The EVI optimization problem is formulated as follows: 

objective function: 

max - Re{(x, y; A0, p)} 

subject to: 

F(x,y;Ao,p) = 

G(x,y;Ao,p) = 

0 

0 

i≤P ≤ 15 

h< h(y)≤ Ti 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

where (x, y; A0, p) is the critical eigenvalue of the system and A0 represents the value 

of A at the normal operating point. Observe that, in contrary to the optimum system 

loadability approaches, the loading parameter A is not an optimization variable in 

this mathematical formulation. 
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The motivation for the proposal of the EVI optimization problem comes from the 

fact that the real part of the critical eigenvalue (denoted by a) can be considered as a 

measure of the small-disturbance stability of the power network, since it dictates the 

asymptotic exponential rate of decay of perturbations in the system. It is implicitly 

hypothesized that a larger stability (i.e., a smaller a) corresponds to a larger loading 

margin. 

4.4.2 Singular Value Index Optimization problem 

The minimum singular value of the modified reduced Jacobian matrix (Jreduced) can 

be used as an index to detect Hopf bifurcations, as shown in Section 3.4.1. However, 

this method requires an inverse matrix computation. Such expensive computation 

can be avoided by using the minimum singular value of a modified full Jacobian 

matrix as proposed in [19] and explained below. 

Consider the generalized eigenvalue problem separated into real and imaginary 

components as given by (4.7) and (4.8) and restated below: 

J1 J2 

_J3 J4 

Ji 12 

J3 J4 

V1R 
—a 

V2R 

V1R 

0 

V11 Vu 

—a 
V21 0 

— 13 Vi ] 
0 

- 0 (4.34) 

= 0 (4.35) 
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Combining the two equations (4.34) and (4.35) yields: 

/ 
1i 32 PL, 0 I000 

33 34 00 0000 
—a 

—/9I0 3 1 3 2 00Ifl 0 

- 0 0 33 34 0 0 0 0 

\ 3m I 

V1R 

V2R 

V11 

V21 

= 0 (4.36) 

where 3m is the modified full Jacobian matrix of the system. Notice that at the 

Hopf bifurcation point the real component of the critical eigenvalue becomes zero, 

i.e. a = 0. Therefore, matrix 'Tm becomes singular since the eigenvectors are nonzero. 

In this case, the minimum singular value of matrix 'Tm is zero. 

In the SVI optimization problem, the objective is to maximize the minimum 

singular value 0min of the modified Jacobian matrix, as presented below: 

objective function: 

subject to: 

Max 0 m1n (3m) 

F(x,y;Ao,p) = 0 

G(x,y; AO, p) = 0 

P  ; 

i ≤ h(y) 

p 

h 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

This problem is less direct than the EVI optimization, but is considered more 

robust and well behaved, since singular values are less sensitive to small imprecision 

in the matrix 'Tm [41]. 
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4.5 Summary 

In this chapter the following optimization problems are proposed to maximize the 

system loading margin with respect to the occurrence of Hopf bifurcation: 

1- Generalized Eigenvalue Based Hopf Bifurcation Constrained Optimal Power 

Flow (GEHB-OPF) problem, 

2- Critical Eigenvalue Based Hopf Bifurcation Constrained Optimal Power Flow 

(CEHB-OPF) problem, 

3- Stability Constrained Optimal Power Flow (S-OPF) problem, 

4- Eigenvalue Index Optimization (EVI) problem 

5- Singular Value Index optimization (EVI) problem, 

In the first three problems, the system loadability is directly maximized, whereas in 

the last two problems it is attempted to improve the system maximum loadability 

through maximization of an indirect measure of the distance to the bifurcation point. 

The advantage and disadvantage of each method is briefly mentioned below: 

• GEHB.-OPF problem: the optimization problem is smooth; however, the criti-

cality of the eigenvalue modeled in the problem is not enforced, which renders 

the method an heuristic approach. The Hopf bifurcation point is implicitly 

modeled and a loading direction is assumed. 

• CEHB-OPF problem: the criticality of the modeled eigenvalue is enforced. 

However, the critical eigenvalue is not a smooth function of the optimization 
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variables. The Hopf bifurcation point is implicitly modeled and a loading 

direction is assumed. 

• S-OPF problem: the Hopf bifurcation constraint is softened to increase the 

feasibility region. A loading direction is assumed. 

• EVI optimization problem: no loading direction is required. The optimal so-

lution does not guarantee an effectively improved loading margin. It is worth 

mentioning that the eigenvalues of the system are highly sensitive to matrix 

perturbations when the Jacobian matrix of the system is a poorly conditioned 

matrix [41]. 

• SVI optimization problem: no loading direction is required. The singular values 

of a matrix are more robust to matrix perturbations as compared to the eigen-

values [41]. The optimal solution does not guarantee an effectively improved 

loading margin. 



Chapter 5 

Numerical Analysis 

5.1 Introduction 

This chapter presents the numerical results of the proposed optimization problems 

described in Chapter 4. The following test systems are employed to demonstrate the 

characteristics of the proposed problems: 

• A 3-bus test system with an infinite bus and a LTC transformer connected to 

an induction motor, depicted in Figure 5.1 

Figure 5.1: Schematic diagram of the 3-bus test system 

• A 14-bus test system based on IEEE 14-bus test system. The IEEE standard 

67 
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14 bus test case is modified to employ a LTC transformer between the buses 5 

and 6 as shown in Figure 5.2. Furthermore, an induction motor is connected 

to bus 13. The modified network contains 2 generators and 2 synchronous 

condensers. 

THREE WINDING 
TRANSFORMER EQUIVALENT 

9 
GENERATORS 

© SYNCHRONOUS 
CONDENSERS 

Figure 5.2: Schematic diagram of 14-bus test system [54] 

In all cases, a continuation method is used to trace the voltage profiles of the 

systems under investigation for the initial and optimal values of the controllable 

parameters. 

5.2 Effect of the Controllable Parameters in the Loading 

Margin of the 3-Bus Test System 

The 3-bus test system has only two controllable parameters: the reference voltage 

of the LTC transformer (Vref), and the voltage magnitude at the slack bus (Vslack). 
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In such a simple system, it is possible to perform an exhaustive investigation of the 

maximum A as a function of Vref and Vslack, which provides the true optimal solution 

of this system. The true optimal serves as the basis for comparison of the solution 

of each proposed optimization problem, giving the opportunity for a better analysis 

of the obtained results. 

Figure 5.3 shows the value of A as a function of Vref and Vslack, within the oper-

ational limits of the controllable parameters. It is noticed that the maximum A is 

achieved at Vref = 1.1 and Vslack = 1.1. It is also observed that A is more sensitive to 

variations in Vref than Vslack. This can be explained by the fact that the induction 

machine is connected to the secondary of the LTC transformer, thus being directly 

affected by the LTC's reference voltage, and on a lesser scale by the slack bus voltage. 

The development of bifurcation in the system is a consequence of the interaction 

between the dynamics of the induction machine and that of the LTC transformer. 

Therefore, 4,3f has more impact in the occurrence of bifurcation than Vslack, as men-

tioned before. Figure 5.4 illustrates the effect of changing Vslack when Vrd is kept 

fixed at 1.0 p.u., and it is seen that A does not change significantly. In contrary, 

Figure 5.5 shows that a large variation in A is obtained when Vref is altered and Vslack 

is kept at 1 P.U. 

It should be noted that these results cannot be directly generalized to larger 

systems. Nevertheless, the insight obtained from the discussion on this simple test 

system is useful in the comprehension of more complex systems. 
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Figure 5.3: The maximum loading parameter A as a function of the voltage reference 
of the LTC transformer (Vref) and the slack bus voltage (Vslack) for the 3-bus' test 
system. 
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Figure 5.4: The maximum loading parameter A as a function of the slack bus voltage 
(V1ack) for the '3-bus' test system. The reference voltage of the LTC transformer is 
fixed at 1.0 P.U. 
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Figure 5.5: The maximum loading parameter A as a function of the voltage reference 
of the LTC transformer (Vref) for the '3-bus' test system. The slack bus voltage is 
fixed at 1.0 P.U. 
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5.3 Results of the Optimization Problems 

5.3.1 Generalized Eigenvalue Based HB Constrained OPF (GEHB-OPF) 

Problem 

The GEHB-OPF problem, presented in Section 4.3.1, is formulated as the maxi-

mization of the loading parameter AHB at the HB point, satisfying the following 

conditions: system state equations at rest (or equilibrium); algebraic equations; sys-

tem limits; the generalized eigenvalue problem; and the stability condition imposed 

on a complex eigenvalue a + jf3 of the mentioned generalized eigenvalue problem, 

that is, a = 0 and ,82 > 0. 

A valid optimal solution, in terms of the stability of the power system under 

investigation, is a solution where all the eigenvalues of the reduced Jacobian matrix 

(or equivalently, the eigenvalues of the generalized eigenvalue problem) are in the left 

half-plane of the complex plane, except for the pair of complex conjugate eigenvalues 

that are placed on the imaginary axis, characterizing the occurrence of Hopf bifur-

cation. Therefore, the system eigenvalue (a + j,8) that appears in the GEHB-OPF 

problem and its complex conjugate (a - j/3) must be the right most eigenvalue of 

the system in order to obtain a valid solution. 

However, in the GEHB-OPF problem, the referred criticality condition of the 

eigenvalue is not enforced. The heuristic approach to maintain the validity of the 

optimization results is to initialize the eigenvalue variables as the critical eigenvalue 

of the reduced Jacobian matrix, at the HB point, with the initial set of controllable 

parameters. As the solver evolves, we expect the validity of the solution to be 

conserved, although such assertion cannot be guaranteed. 
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The optimization formulation is implemented in the AMPL package. The solver 

LOQO, which is based on the logarithmic barrier interior point method, is employed 

to find the optimal solution of the problem. The optimization procedure is initialized 

at the HB point, with the initial set of controllable parameters. This initial HB point 

is obtained by a sequential Newton-Raphson (SNR) search, that is, the Newton-

Raphson method is used to find the equilibrium point of the system for successive 

values of A until the HB point is detected. It is worth mentioning that the sequential 

Newton-Raphson search method is a computationally expensive procedure for large 

systems, if thought of as a part of an online system stability analysis tool. Since the 

optimization problems discussed in this thesis are offline methods to investigate the 

system stability, the computational cost of the SNR search method does not pose a 

disadvantage in the present work. 

3-Bus Test System 

The results of the optimization procedure are described using Table 5.1, and Fig-

ures 5.6 and 5.7. The solver finds a solution in 22 iterations. At maximum AHB the 

solver returns a = 0 and 3 = 0.43, indicating a HB point. The eigenvalues of the 

reduced Jacobian matrix of the system are computed in Matlab. It is verified that 

the optimization eigenvalue variable is indeed representing the critical eigenvalue of 

the system. 

It was observed experimentally that the convergence of this model is highly sen-

sitive to the initialization of optimization variables, which is a major disadvantage 

of the GEHB-OPF problem. 

Table 5.1 shows that in the optimal solution the generator bus voltage and the 
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reference voltage of the LTC transformer are pushed to their maximum limit in the 

optimal system. These results agree with the expected optimal results from the 

exhaustive search, described in Section 5.2. The loading margin is increased by 21% 

of its original value, indicating a substantial improvement. The enhancement in the 

loading margin is also exemplified in the voltage profile of bus number 2, shown in 

Figure 5.6. The lower curve indicates the loading margin of the original system and 

the upper curve shows the loading margin for the optimal system. 

Parameter Original System Optimal System 

Abifurcation 0.2849 0.344709 
V1 I (slack bus) 1 1.1 
Vref (LTC 1) 1 1.1 

Table 5.1: Optimization results for the '3-bus' test system, when solving the 
GEH33-OPF problem 

The movement of the eigenvalues in the complex plane is depicted in Figure 5.7 for 

the optimal system. All eigenvalues remain in the left half-plane of the complex plane, 

except for the critical complex conjugate eigenvalue pair that cross the imaginary 

axis, indicating the occurrence of Hopf bifurcation. This is shown more clearly in 

Figure 5.8 by enlarging the region where the bifurcation occurs. The initial period 

of the limit cycle oscillation can be computed as To = and for this system is equal 13 

to 14.61 seconds. 

The non-critical eigenvalues are associated with rapid exponential decay, since 

these eigenvalues present real components that are negative, and large in magnitude. 

Therefore, the transient behavior associated with the non-critical eigenvalues has 

short duration, and does not impact in the stability analysis of the system. 
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Figure 5.6: Voltage profile of bus 2 in the 3-bus test system, when solving the 
GEHB-OPF problem. The lower curve indicates the original system and the upper 
curve represents the optimal system. Bifurcation points are shown for each profile 
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Figure 5.8: Enlargement of the RB region, '3-bus' test system, when solving the 
GEHB-OPFs 

14-bus Test System 

It was not possible to achieve convergence of the optimization procedure with the 

14-bus test system, in this formulation. This fact highlights the main drawback of 

the approach which is the inability to incorporate the constraints on the critical 

eigenvalue. In the previous test system, the heuristic method was sufficient to have 

the solution converge. However, as can be noted in this case, when dealing with even 

moderately complex systems, the numerical convergence of the GEHB-OPF problem 

fails. 
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5.3.2 Critical Eigenvalue Based HB Constrained OPF Problem (CEHB-

OPF) 

The CEHB-OPF problem, introduced in Section 4.3.2, is formulated as the max-

imization of the loading parameter AHB at the HB point, satisfying the following 

conditions: system state equations at rest; algebraic equations; system limits and 

the HB condition imposed on the critical eigenvalue a + j/3 of the reduced Jaco-

bian matrix, that is, a = 0 and > 0. The problem is solved using the Matlab 

optimization toolkit, whose solver is based on a sequential quadratic programming 

method. 

The optimization procedure is initialized at the HB point, with the initial set of 

controllable parameters, as in the GEHB-OPF problem of Section 5.3.1. Likewise, 

the initial HB point is obtained by a Sequential Newton-Raphson (SNR) search, 

implemented in Matlab. 

3-Bus Test System 

The obtained results, shown in Table 5.2, are equal to the results of the GEHB-OPF 

problem (Section 5.3.1), and agree with the expected optimal results obtained in the 

exhaustive optimal search of Section 5.2. The method took 6 iterations to find the 

optimal solution. The critical eigenvalue at the bifurcation point for the optimal 

system is given by a = 0 and ,B = 0.43, indicating a HB point. The initial period of 

the limit cycle oscillation is To = = 14.61 seconds. The voltage profile of bus 2 

and eigenvalue movement obtained in the CEHB-OPF problem coincides with that 

of the GEHB-OPF problem. 
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Parameter Original System Optimal System 

Abifurcation 0.284913 0.344709 
Vu (slack bus) 1.000000 1.100000 
Vref (LTC 1) 1.000000 1.100000 

Table 5.2: Optimization results for the '3-bus' test system, when solving the 
CEHB-OPF problem 

14-bus Test System 

For the 14-bus test system 13 iterations were required to find the optimal solution. 

The real and imaginary components of the critical eigenvalue for maximum AHB are: 

a = 0 and 3 = 0.24. The initial period of the limit cycle oscillation is To = = 26.18 

seconds. 

The results are described in Table 5.3. It can be noted that the generator bus 

voltages and the reference voltage of the LTC transformer are pushed to their max-

imum limit in the optimal system. This fact is a consequence of the increase in the 

power consumption of the induction machine, as the loading parameter increases: a 

larger generated voltage implies a greater availability of power to the load elements 

of the network. It is also observed in Table 5.3 that the generated power in bus 2 

increases, as a response to the larger consumption of power by the induction machine. 

The loading margin is improved by 20% of its original value, as depicted in 

Table 5.3, and illustrated by the voltage profiles of bus 13 with the initial and the 

optimal set of parameters in Figure 5.9. The voltage profiles are drawn up to the 

first saddle-node bifurcation (SNB) point. The dynamics of the system past the first 

SNB point is not of interest for this discussion, and is therefore suppressed for greater 

clarity. Figure 5.10 represents the movement of the critical pair of eigenvalue in the 

vicinity of the Hopf bifurcation. 
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Parameter Original System Optimal System 

)'bifurcation 0.253507 0.305062 
Vii (slack bus) 1.060000 1.100000 

IV2I 1.045000 1.100000 
1V31 1.010000 1.100000 

V8I 1.090000 1.100000 
Vref (LTC 1) 1.000000 1.100000 
Pgen (bus 2) 0.400000 0.443671 

Table 5.3: Optimization results for 'IEEE14bus test system, when solving the 
CEHB-OPF problem 
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Figure 5.9: Voltage profile of bus 13 in the 'IEEE14bus' test system, when solving 
the CEHB-OPF problem. The lower curve indicates the original system and the 
upper curve represents the optimal system 
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Figure 5.10: Enlargement of the HB region, 'IEEE14bus' test system, when solving 
the CEHB-OPF problem 

5.3.3 Stability Constrained OPF Problem (S-OPF) 

The S-OFF problem, presented in Section 4.3.3, is formulated as the maximization 

of the loading parameter A at the system critical point, satisfying the following 

conditions: system state equations at rest; algebraic equations; system limits; the 

stability condition imposed on the critical eigenvalue a +j/3 of the reduced Jacobian 

matrix, that is, a < 0. It is worth mentioning that the feasible space in this problem 

encompasses the feasible space of the GEHB-OPF and the CEHB-OPF problems. 

Therefore, it is possible to find an optimal solution of the S-OFF problem that results 

in a better loading margin than that of the GEHB-OPF and CEHB-OPF problems, 

by exploring the set of solutions in which the maximum loading is restricted by the 

operational limits of the system, but not by the Hopf bifurcation condition. The 
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S-OPF problem is solved using the Matlab optimization toolkit, as in the case of 

CEHB-OPF problem. 

The optimization procedure is initialized at the HB point, with the initial set of 

controllable parameters. The initial HB point is obtained by a sequential Newton-

Raphson (SNR) search as discussed for other models. It was observed that it is also 

possible to initialize the optimization procedure at the initial normal operating point, 

obtaining the same optimal parameters. This indicates that the problem is not very 

sensitive to the initial guess. The robustness to initialization is an advantage of the 

S-OFF problem over the GEHB-OPF and CEHB-OPF problems. 

3-Bus Test System 

The optimization solution for the objective function and the controllable parameters 

are shown in Table 5.4. The results obtained for the 3-bus test system agree with the 

exhaustive search results in Section 5.2. The loading margin is improved by 21% as 

compared to the original system. The eigenvalue movement in the complex plane is 

the same as what is observed for the previous problems. The optimization procedure 

took 6 iterations to converge. 

Parameter Original System Optimal System 

bifurcation 0.284913 0.344709 
Vii (slack bus) 1.000000 1.100000 
Vreç (LTC 1) 1.000000 1.100000 

Table 5.4: Optimization results for the '3-bus' test system, when solving the S-OFF 
problem 
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14-bus Test System 

The results obtained for S-OFF problem with the 14-bus test system are equal to 

those obtained for the CEHB-OPF problem with the same test system, as shown 

in Table 5.5. The loading margin is improved by 20%. The optimization procedure 

took 11 iterations to converge. 

The real and imaginary components of the critical eigenvalue at the Hopf bifur-

cation point for the optimal system are: a = 0 and /3 = 0.23, giving an initial period 

of oscillation of To = = 26.18 seconds. The voltage profile of bus 13 and the 

eigenvalue movements in the complex plane is the same as the CEHB-OPF problem. 

Parameter Original System Optimal System 

).bifurcation 0.253507 0.305047 
Vii (slack bus) 1.060000 1.100000 

IV2l 1.045000 1.099420 

1 V3 1.010000 1.100000 

1 V8 1.090000 1.100000 

Vref (LTC 1) 1.000000 1.100000 
Pgen (bus 2) 0.400000 0.443783 

Table 5.5: Optimization results for the 'IEEE14bus' test system, when solving the 
S-OFF problem 

5.3.4 EVI Optimization Problem 

The EVI optimization problem is formulated as the minimization of a, the real 

component of the critical eigenvalue of the reduced Jacobian matrix, as defined in 

Section 4.4, satisfying the following conditions: system state equations; algebraic 

equations; system limits. The loading parameter is set to its normal operating value, 

rather than the critical value in the previous approaches. The problem is solved 

using the Matlab optimization toolkit. 
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The optimization procedure is initialized at the normal operating point, with the 

initial set of controllable parameters, and with a loading parameter of A = 0.1. The 

initial equilibrium point for the given value of A is computed by a Newton-Raphson 

(NR) method implemented in Matlab. 

3-Bus Test System 

In the normal operating conditions, the 3-bus test system is stable, that is, all the 

eigenvalues of the reduced Jacobian matrix of the system have negative real parts. 

The eigenvalue with the largest real part is a purely real number, given by a = —0.2. 

The optimization procedure took four iterations to converge, and the results are 

shown in Table 5.6. The value of a at the normal operating point is optimized to 

a = —0.22. A continuation method is used to obtain the maximum loading param-

eters AHB of the system for the normal and the optimal values of the controllable 

parameters. The results are shown in Table 5.7, which also indicates the critical 

eigenvalue for the maximum loading parameters. It can be noted that, in both 

cases, the critical eigenvalues are purely imaginary, characterizing the occurrence of 

Hopf bifurcation at the maximum loading in each case. 

As it can be noted in Table 5.7, the maximum loading parameter did not show a 

significant improvement. An intuitive comprehension of this phenomenon is obtained 

through the analysis of the eigenvalues movement of the reduced Jacobian matrix 

for this test system, with respect to the increase in the loading factor, shown in 

Figure 5.11. As the loading factor increases, the critical eigenvalue of the system is 

pushed to the left, up to the point where it collides with another real eigenvalue. A 

pair of complex conjugate eigenvalues is then formed, which moves to the right with 
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further increases in the loading factor, up to the point where the pair of eigenvalues 

crosses the imaginary axis at the Hopf bifurcation point. Therefore, this test system 

exemplifies the fact that a larger EVI does not necessarily correspond to a larger 

stability margin. 

Furthermore, it can be noted that the improvement in the voltage magnitude at 

the slack bus does not appreciably affect the loading margin of the system when the 

reference voltage of the LTC transformer remains almost unchanged, Figure 5.12. 

The observed results agrees with the discussion provided in Section 5.2. 

Parameter Original System Optimal System 

Ce -0.2 -0.22 
Vii (slack bus) 1.000000 1.100000 
Vref (LTC 1) 1.000000 1.000544 

Table 5.6: Optimization results for the '3-bus' test system, when solving the EVI 
optimization problem 

Parameter Original System Optimal System 

A}IB 0.284951 0.285940 
critical eigenvalue 0 + j 0.38 0 + j 0.34 

Table 5.7: Maximum loadability of the system and the corresponding critical eigen-
value, '3-bus' test system, when solving the EVI optimization problem, 

14-bus Test System 

The results of the optimization procedure are shown through Tables 5.8-5.9 and 

Figures 5.13-5.14. As stated in the previous section for the loading parameter A = 

0.1, the system is in normal operational state and all the eigenvalues of the reduced 

Jacobian matrix are in the left half-plane of the complex plane (i.e. they have 
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Figure 5.11: Enlargement of the HB region, '3-bus' test system, when solving the 
EVI optimization problem. Arrows indicate the movement of the two purely real 
eigenvalues which eventually collide and form a complex conjugate pair. As the 
value of ), increases the pair move towards the imaginary axis. The point where the 
complex conjugate pair reach the imaginary axis is shown by circles 
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negative real parts). The largest eigenvalue for this system is a purely real number, 

given by a = —0.11. 

The optimization procedure took 10 iterations to converge. Table 5.8 shows the 

maximum loading parameter for the original and optimal system. As it is shown 

by the critical eigenvalues both systems experience Hopf bifurcations. However, it 

was observed that for A > 0.101518 the voltage of bus number 13 drops below the 

acceptable operational limit for the system with optimal values of the controllable 

parameters. This is due to the fact that although the magnitude of the voltage 

at each generator bus is increased for the optimal system, the reference voltage of 

the LTC transformer is actually decreased, as shown in Table 5.9. Consequently, 

the magnitude of the voltage at bus 13 drops to 0.9 P.U. for the optimal system. 

The decrease in the stability margin of the system is illustrated by voltage profile of 

bus 13 (Figure 5.13). The dotted line in the figure shows the intersection between 

the lower voltage limit and the voltage profile of bus 13 for the optimal system. 

Figure 5.14 shows that the movement of system eigenvalues, with respect to the 

loading parameter, presents a similar behavior as in the 3-bus test system. Hence, 

the same reasoning applies when explaining the reduction in the distance to the Hopf 

bifurcation point, that is, a greater EVI corresponds, in this particular test system, 

to a smaller loading margin. 

Parameter Original System Optimal System 

0.253596 0.218038 
critical eigenvalue 0 + j 0.23 0 + j 0.23 

Table 5.8: Maximum loadability of the system and the corresponding critical eigen-
value, 'IEEE14bus' test system, when solving the EVI optimization problem 
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Figure 5.12: Voltage profile of bus 2 in the '3-bus' test system, when solving the EVI 
optimization problem, 

Parameter Original System Optimal System 

a - 0.11 - 0.16 
Vi I (slack bus) 1.060000 1.100000 

I V2 1.045000 1.100000 

IV3 1.010000 1.100000 

IV8 1.090000 1.100000 
Vref (LTC 1) 1.000000 0.916708 

Pgen (bus 2) 0.400000 0.432082 

Table 5.9: Optimization results for the 'IEEE14bus' test system, when solving the 
EVI optimization problem 
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Figure 5.13: Voltage profile of bus 13 in the 'IEEE14bus' test system, when solving 
the EVI optimization problem. The lower profile represents the system with the 
optimal values of the controllable parameters and the upper profile is for the original 
system. The dashed line is used to show the lower voltage limit 
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Figure 5.14: Enlargement of the HB region, 'IEEE14bus' test system, when solving 
the EVI optimization problem. Arrows indicate the movement of the two purely real 
eigenvalues which eventually crosses the imaginary axis as the value of A increases 

5.3.5 SVI Optimization Problem 

The SVI optimization problem is formulated a. the maximization of the minimum 

singular value of the modified Jacobian matrix, as defined in Section 4.4.2, satisfying 

the following conditions: system state equations at rest; algebraic equations; system 

limits. 

The problem is solved using the Matlab optimization toolkit.The optimization 

procedure is initialized at the normal operating point, with the initial set of con-

trollable parameters, and A = 0.1, as in the EVI optimization approach. The 

equilibrium point for given value of A is found using the NR method. The mini-

mum singular value of the modified Jacobian matrix (3m) at this point is given by 
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Umin = 0.0201. 

3-Bus Test System 

The optimization procedure took 4 iterations to converge. The minimum singular 

value of matrix Jm is optimized to 0.0273. The results are shown in Tables 5.11-5.10 

and Figure 5.15. 

Table 5.10 shows the improvement of loading margin for optimal system as com-

pared to the original system. Critical eigenvalues indicate that both systems expe-

rience Hopf bifurcations at the maximum value of the loading parameter. It can be 

noted that although the optimal solution of the voltage at the slack bus does not 

reach the maximum operating limit, the loading margin has improved by 20.7 %. 

The increase in the loading margin is exemplified by the voltage profile of bus 2 

for the optimal and original system as shown in Figure 5.15. The movement of the 

eigenvalues in the complex plane is very similar to what was observed for the other 

problems. 

Parameter Original System Optimal System 

0.2849 0.343931 
critical eigenvalue 0 + j 0.38 0 + j 0.45 

Table 5.10: Maximum loadability of the system with the corresponding critical eigen-
value, '3-bus' test system, when solving the SVI optimization problem, 

Parameter Original System Optimal System 

Umin 0.201 0.0273 
Vu I (slack bus) 1.000000 1.030195 
Vref (LTC 1) 1.000000 1.100000 

Table 5.11: Optimization results for the '3-bus' test system, when solving the SVI 
optimization problem 
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14-bus Test System 

The optimization procedure took 9 iterations to find the optimal solution. Table 5.13 

shows the results of the optimization procedure: it is observed that all voltages are 

increased in a similar manner to that of the CEHB-OPF and S-OPF problems. A 

continuation method is used to find the maximum loadability of the system for the 

optimal and original system, which are shown in Table 5.12. An improvement of 

about 20 % is obtained in the maximum loading parameter of the optimal system 

compared to the original system. The increase of the loading margin is exemplified 

using the voltage profile at bus 13, as shown in Figure 5.16. The critical eigenvalue 

at the maximum ,\ indicates the occurrence of Hopf bifurcations in both original and 

optimal systems. 

Parameter Original System Optimal System 

0.253596 0.304075 
critical eigenvalue 0 + j 0.232054 0 + j 0.218029 

Table 5.12: Maximum loadability of the system with the corresponding critical eigen-
value, 'IEEE14bus' test system, when solving the SVI optimization problem 

Parameter Original System Optimal System 

omjn 0.01953 0.0262 
Vu I (slack bus) 1.060000 1.100000 

V21 1.045000 1.085185 

1 V3 1.010000 1.053287 

1 V8 1.090000 1.100000 
Vref (LTC 1) 1.000000 1.100000 

Pgen (bus 2) 0.400000 0.394286 

Table 5.13: Optimization results for 'IEEE14bus' test system , when solving the SVI 
optimization problem 
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Figure 5.15: Voltage profile of bus 2 in the '3-bus' test system, when solving the SVI 
optimization problem, 

Figure 5.16: Voltage profile of bus 13 in the 'IEEE14bus' test system, when solving 
the SVI optimization problem, the lower curve indicates the original system and the 
upper curve represents the optimal system 
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5.4 Comparison of Formulations 

In this section all the proposed optimization problems are compared based on their 

performance, initialization requirements, the possibility of eliminating Hopf bifurca-

tion, and the assumption of a loading direction. 

Performance comparison: The GEHB-OPF and the EVI optimization prob-

lems could not reliably optimize the test systems, as indicated by the following 

observations: 

• The GEHB-OPF problem does not converge for the 14-bus test system. In the 

3-bus test system experiment, convergence was achieved to the correct solution 

(as given by the exhaustive search in Section 5.2), but with a large number 

of iterations (as compared to the CEHB-OPF, S-OFF, and SVI optimization 

problems). 

• The EVI optimization problem did not effectively improve the stability margin 

of the 3-bus test system, and the 14-bus test system was made worse than its 

initial condition. 

Therefore, the GEHB-OPF and the EVI optimization problems will be excluded 

from further comparisons. The remaining optimization problems (CEHB-OPF, S-

OFF, and SVI optimization) yield virtually the same performance, as shown in 

Tables 5.14 and 5.15. The improvement in the maximum system loadability pro-

moted by each optimization problem is approximately the same, and all of the three 

optimization problems converge in just a few iterations. 
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Initialization requirements: It was noted that the CEHB-OPF problem re-

quires initialization at a bifurcation point. Conversely, the S-OFF and the SVI 

optimization problems can be initialized at any feasible point. 

Eliminating Hopf bifurcation: The CEHB-OPF problem has the theoretical 

disadvantage that it enforces the existence of a Hopf bifurcation at the point of max-

imum system loadability. In fact, when the operational limits of the system are met 

before the occurrence of Hopf or saddle-node bifurcation (with respect to the increase 

in the loading parameter), it is not possible to properly initialize the CEHB-OPF 

problem: either the operational limit constraints or the Hopf bifurcation constraints 

would be violated. It must be noted that the S-OFF and the SVI optimization prob-

lems do not have this limitation, therefore it is possible to avoid the occurrence of 

Hopf bifurcation at the maximum loading parameter of the system. 

Loading direction assumption: Observe that the CEHB-OPF and the S-OFF 

problems adopt a particular loading direction, namely that of an equal increase in the 

loading of each machine, given by the loading parameter A. The SVI optimization 

problem is less restrictive: since the loading parameter is fixed, there is no assumption 

of a certain loading direction. 

Parameter GEHB- CEHB- S-OPF EVI SVI 
OPF OPF 

0.344709 0.344709 0.344709 0.28594 0.34393 
loading margin 
improvement 

21% 21% 21% 0.37% 20.7% 

iterations 22 6 6 4 4 

Table 5.14: Comparison of maximum loading parameter, loading margin improve-
ment, and number of iterations to converge, in all five optimization problem formu-
lations. The test system used is the 3-bus test system. 
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Parameter GEHB- CEHB- S-OPF EVI SVI 
OPF OPF 

- 0.305062 0.305047 0.101518 0.304075 
loading margin 
improvement 

- 20% 20% -60% 20% 

iterations - 13 11 10 9 

Table 5.15: Comparison of maximum loading parameter, loading margin improve-
ment, and humber of iterations to converge, in all five optimization problem formu-
lations. The test system used is the 14-bus test system. No results' were obtained 
for the GEHB-OPF, since the optimization procedure did not converge. 

5.5 Summary 

In this chapter all the proposed optimization problems are tested using two test 

systems: a three bus test system, and a 14 bus test system based on IEEE 14 bus 

standard test case. 

It was observed that the GEHB-OPF and EVI optimization problems are not 

reliable in terms of enhancing the system maximum loadability. The CEHB-OPF, 5-

OFF and SVI optimization problems showed very similar performance in increasing 

the system loading margin. Among these methods, the S-OFF and SVI optimization 

problems are the preferred strategies for maximizing the system loadability, and the 

choice of which method to apply in a given situation is context dependent. If it is 

necessary to guarantee the improvement in the loading margin for a given loading 

direction, the S-OFF problem is preferred. However, if loading direction is not 

known, the SVI optimization problem can be applied. 



Chapter 6 

Conclusion 

This thesis proposes the application of optimization techniques to improve the stabil-

ity margin of power systems with respect to the occurrence of Hopf bifurcations. In 

this regard, five optimization problems are formulated in order to compute the opti-

mal values of system variables that yield the maximum system loadability. The effec-

tiveness of the proposed optimization problems is validated using two test systems, 

and a comparative analysis is presented based on their performance, initialization 

requirements and assumption of the loading direction. 

In Chapter 2, the differential-algebraic model of a power system is presented. The 

dynamical model of LTC transformers together with a fifth order model of induction 

motors form the set of differential equations of the system. The algebraic model of 

the system is formed by the power flow equations and the equations used to connect 

the induction motors and LTC transformers to the grid. 

In Chapter 3, small-disturbance stability analysis is reviewed. Concepts of bifur-

cation theory are presented, and two types of bifurcations that are often encountered 

in power system studies are shown: saddle-node and Hopf bifurcations. A discussion 

on two methods to detect bifurcation in power systems is provided: the usage of 

indices to predict the occurrence of bifurcation, and the continuation method. The 

application of optimization theory for system stability analysis is demonstrated by 

a classical optimal power flow (OPF) problem. 

In Chapter 4, five optimization problems are formulated to increase the system 
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maximum loadability, based on the classical OFF problem, and considering limiting 

factors such as Hopf bifurcations and operational limits. The OFF problem is mod-

ified to incorporate the differential and algebraic equations of induction motors and 

LTC transformers. The mathematical conditions that define the Hopf bifurcation 

point are explicitly modeled in the GEHB-OPF, CEHB-OPF, and S-OFF problems, 

and implicitly modeled in the EVI and SVI optimization problems. The potential 

advantages and disadvantages of each method are discussed. 

In Chapter 5, the proposed optimization problems are tested to assess the validity 

of the presented formulations. The problems are compared based on their effective-

ness to increase the loading margin, initialization and loading direction requirements. 

The main contributions of this thesis can be summarized as follows: 

Development of Hopf bifurcation constrained optimal power flow formulations 

to maximize the system loadability with respect to the Hopf bifurcation (HB) 

point. The mathematical conditions that define the HB point are included in 

the OPF problem as constraints. It is assumed that the loading pattern of the 

system is known. The following optimization problems are proposed: 

1. Generalized Eigenvalue Based Hopf Bifurcation Constrained Optimal Power 

Flow (GEHB-OPF) problem, 

2. Critical Eigenvalue Based Hopf Bifurcation Constrained Optimal Power 

Flow (CEHB-OPF) problem, 

3. Stability Constrained Optimal Power Flow (S-OPF) problem. 

• Development of optimal power flow problems to maximize an indirect measure 

of the distance to the Hopf bifurcation point. In this case, the optimal solution 
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does not guarantee an effective improvement of the system loading margin in a 

particular direction. The following optimization problems are proposed in this 

regard: 

1. Eigenvalue Index (EVI) optimization problem, 

2. Singular Value Index (SVI) optimization problem. 

Comparative analysis of the proposed models based on the results obtained 

from the test cases. Furthermore, a discussion of potential advantages and 

limitations of each method is provided. 

It was determined that the S-OPF and the SVI optimization problems yield the 

best combination of performance and robustness with respect to the initial con-

ditions. The S-OFF problem directly maximizes the distance to bifurcation for a 

predefined loading direction. The SVI optimization method aims to indirectly en-

hance the stability margin of the system, through the optimization of the Singular 

Value Index. Therefore, a loading direction is not required, but the improvement in 

the loading margin is not guaranteed for all loading directions. 

Future directions for the present research include: 

• Development of optimization solvers that are specialized for problems with 

eigenvalue objectives and constraints. Such optimization techniques are a re-

cent and promising research topic in optimization theory [53]. 

• Extension of the system model to include generator dynamics and other non-

linear load models. 



Appendix A 

Solution of Linear Ordinary Differential Equations 

with Constant Coefficients 

Let 77i C be the jth eigenvalue of 3reduced, and E C<' and W E Cl><D be 

respectively the right and left eigenvectors of Jreduced associated with rj, that is: 

reducedi = 77i (Pi 

'ireduced = 

where the following relationship holds: 

= 

1 fori=j, 

0 otherwise. 

(A.1) 

(A.2) 

Define the matrix A as a diagonal matrix, whose diagonal elements are the eigen-

values of Jreduced. Also define the right and left eigenvector matrices as: 

D] 

r 
= tFT QT PT 

Notice that = I, therefore [' '. Equations (A.1) and (A.2) can be 

rewritten in term of matrices 4, SI', and A as: 

Jreciuced = 

Jreduced = AJ 
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Consider the linearized dynamical system equations as follows: 

LX JreducedX (A.3) 

Now define an auxiliary vector z as: 

Ax = <Dz (A.4) 

which implies: 

z=x (A.5) 

Observe that (A.4) implies: 

Zx = 
i=1 

(A.6) 

Substituting (A.4) in (A.3), yields: 

JreducedZ Z = 1JreducedZ 

Using the fact that 1Jreduced = A, the previous equation can be written as 

Az, which yields: 

z(t) = z (0) e?hit 

The initial condition z(0) can be obtained using (A.5) as: 

z(0) iI'/.x(0) z(0) 

Combining (A.6), (A.7), and (A.8) gives the time solution of (A.3): 

D 

i=1 

(A.7) 

(A.8) 
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