
UNIVERSITY OF CALGARY

Model-Based Detection of Emergent Behavior in Distributed and Multi-Agent

Systems from a Component Level Perspective

by

Mohammad Moshirpour

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JANUARY, 2011

0 Mohammad Moshirpour 2011

UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Model-Based Detection of Emergent Behavior In

Distributed and Multi-Agent Systems from a component level perspective" submitted by

Mohammad Moshirpour in partial fulfilment of the requirements of the degree of Master of

Science.

Supervisor, Dr. Behrouz H. Far
Department of Electrical and Computer Engineering

J49-_
Dr. Diwakar Krisllnamurthy

Department ofElectrical & Computer Engineering

Dr. Armin Eberlein
Department ofElectrical and Computer Engineering

Dr. RedaAlhajj
Department of Computer Science

0M ;•5,/ ;?-0 11
Date

Abstract

Requirement elicitation is one of the most challenging and critical phases of the software

development lifecycle. Many faults are introduced into the system as the result of

incomplete requirements. An effective approach for the design of software systems is to

describe system requirements using scenarios. A scenario, commonly expressed using a

message sequence chart or a sequence diagram, is a temporal sequence of messages sent

between system components. However despite their simplicity and expressive power,

scenario-based specifications are prone to subtle deficiencies with respect to analysis and

validation known as incompleteness and partial description. These deficiencies in

scenario-based specifications are the prime cause of emergent behavior. Emergent

behavior, also known as implied scenarios are behavior that the system exhibits but are

not explicitly defined in its requirements.

Emergent behavior is an important issue in the design of software systems; particularly

ones with the lack of central control such as distributed and multi-agent systems.

Detecting and removing emergent behavior during the design phase will lead to huge

savings in deployment costs of such systems. In this thesis, a method for detecting

emergent behavior in system requirements described using scenario-based specifications

is proposed. The use of this methodology for a variety of different software systems such

as distributed and multi-agent systems (MAS) is demonstrated. Furthermore this research

contains methodologies for verifying the lack of existence of a particular emergent

behavior in the software system. These methodologies have been demonstrated using

various case studies such as distributed systems for a mine-sweeping robot and an online

commerce application and •a multi-agent system for a manufacturing system.

11

Furthermore as this research aims to develop these methodologies into a software tool,

the requirement and design documents as well as the prototype of this tool are presented

in this thesis.

111

Acknowledgements

I would like to express my deepest appreciation and gratitude to my supervisor Dr.

Behrouz H. Far for his support and guidance throughout this work. I attribute much of

the success of this work to his technical knowledge, patience in teaching me the ways of

research and his tendency to provide me with the freedom to be creative.

I am grateful to Dr. Reda Alhajj, Dr. Diwakar Krishnamurthy and Dr. Armin Eberlein,

my thesis committee members for reviewing this work and providing helpful guidance

and feedback.

Finally I would like to express my most sincere gratitude to my parents, Hossein and

Mahnaz and my sisters Mojgan and Mahtab for their unconditional suport, unlimited

kindness and constant encouragements. I am confident that without their help and

support this would not have been possible. I would also like to extend my appreciation to

Mahtab for her assistance in editing this work.

iv

To My Grandmother who would have wanted to See this

V

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Figures x

List of Tables xii

List of Abbreviations xiii

CHAPTER ONE: INTRODUCTION 1

1.1 Motivation 1

1.2 Objectives 3

1.3 Approach and Methodologies 4

1.3.1 Behavior Modeling 4

1.3.2 Emergent Behavior 5

1.4 Contributions 6

1.5 Structure of Thesis 9

1.6 Summary 10

CHAPTER TWO: RELATED WORK AND BACKGROUND 11

2.1 Scenario-Based Specifications ii

Vi

2.2 Distributed Systems

2.2,1 Client-Server Arciiitecture

2.2.2 Model-View-Controller Architecture

14

14

15

2.3 Multi-Agent Systems and Agent Oriented Software. Engineering (AOSE) 16

2.3.1 Agent Orientation Software Engineering Methodology: MaSE 17

2.3.2 MaSE in Research and Industry 18

2.3.3 Comparing MaSE with other AOSE Methodologies 19

2.3.4 MAS Verification and Monitoring 20

2.4 Validation Methodologies for Scenarios 21

2.5 Summary 24

CHAPTER THREE: METHODOLOGIES AND DEFINITIONS 25

3.1 Definitions 26

3.2 Behavior Modeling 29

3,2.1 Domain Theory 30

3.3 Detection of Indeterminism 32

3.4 Summary 32

CHAPTER FOUR: DETECTION OF EMERGENT BEHAVIOR IN

DISTRIBUTED SYSTEMS 34'

4.1 Background 34

4.2 Case Study: Mine Sweeping Robot 35

vii

4.3 System Behavior Modeling

4.4 Detection of Emergent Behavior

4.5 Verification of Lack of Existence of Illegal Scenarios in Distributed Systems

4.5.1 Case Study: Online Commerce System

4.5.1.1 System Requirements

4.5.1.2 Illegal Scenarios

4.5.2 Formal Verification Methodology

4.5,2.]. Synthesis of Behavior Model

4.5.2.2 Detection of Emergent Behavior

40

43

44

45

45

48

49

50

51

4.6 Using the Proposed Methodologies in Agile Development 52

4.7 Summary 55

CHAPTER FIVE: DETECTION OF EMERGENT BEHAVIOR IN MULTI-AGENT

SYSTEMS

5.1 Background

5.2 Case Study: MAS for Manufacturing System

5.3 MAS Behavior Modeling

5.4 Detection of Emergent Behavior in MAS

5.5 Summary

56

57

59

66

68

69

CHAPTER SIX: DESIGN AND IMPLEMENTATION OF AN AUTOMATED

TOOL 70

vii'

6.1 System Requirements 70

6.1.1 Functional Requirements 70

6.1.2 Non-Functional Requirements 72

6.2 Design Documents 74

6.2.1 List of Actors 74

6.2.2 System's Use Cases 74

6.2.3 Flow of Events 76

6.3 System prototype 80

6.4 Summary

CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK

REFERENCES

ix

83

84

88

List of Figures

Figure 1.1 - Model-based detection system 7

Figure 2.1 - Sequence chart 12

Figure 2.2 - Model-View-Controller software architecture 15

Figure 4.1 - Prototype of a mine sweeping robot 35

Figure 4.2 - Robot is moving forward with no obstacle in its way 37

Figure 4.3 - Robot is halted due to the detection of an obstacle in its path 37

Figure 4.4 - Robot stops due to the detection of mines 38

Figure 4.5 - Client controller receives a "no obstacle" detection message from the
ultra-sound sensor after receiving the mine detection message from the IR sensor
which results in missing the mine 38

Figure 4.6 - eFSM for the client controller in MSC 1 40

Figure 4.7 - eFSM for the client controller process in MSC 2 40

Figure 4.8 - eFSM for the client controller process in MSC 3 41

Figure 4.9 - The union of eFSMs built from MSCs 1-3 43

Figure 4.10 - Resulted DFA after merging identical states 44

4.11 - Customer places an order which is shipped by the supplier 46

4.12 - Customer places an order, then makes changes. Changes are received by
supplier and order is shipped 47

4.13 - Customer places an order. Order is received by the supplier and is shipped.
Customer attempts to change order but is denied. 48

4.14 - Illegal scenaiio 49

4.15 - The union of all eFSMs built for process controller from MSCs 1-3 (Figure
4.11-13) 50

4.16 - Behavior model for the controller process from scenario of set B 51

4.17 - Resulted FSM after merging identical states 51

Figure 4.18 - Agile development with user stories 54

x

Figure 5.1 -

Figure 5.2 -

Figure 5.3 -

Figure 5.4 -

Figure 5.5 -

Figure 5.6 -

Figure 5.7 -

Figure 5.8 -

Figure 5.9 -

Figure 5.10

Figure 5.11

Figure 5.12

Figure 6.1 -

Figure 6.2 -

Figure 6.3 -

Figure 6.4 -

Figure 6.5-

Figure 6.6-

Roles within Agent 1 61

Roles within Agent 2 62

Roles within Agent 3 63

Agent class diagram, 64

Extracted MSC from MaSE models 65

Extracted MSC from MaSE models 65

Extracted MSC from MaSE models 66

eFSM for the controller agent in MSC1 of Figure 5.5 67

eFSM for the controller agent in MSC2 of Figure 5.6 67

- eFSM for the controller agent in MSC3 of Figure 5.7 67

- The union of eFSMs built from MSCs 1-3 68

- Resulted FSM after merging identical states 69

Use case diagram 76

Activity diagrams for the Synthesis Behavior Model 77

Activity diagram for Build Domain Theory 78

Domain class diagram 79

Snapshot of the GUI of the tool; displaying an imported MSC 81

Snapshot of the GUI of the tool; displaying a constructed FSM 82

xi

List of Tables

Table 2.1 - MaSE methodology phases and steps 17

xii

List of Abbreviations

AOSE - Agent Oriented Software Engineering

CEBD - Component-level Emergent Behavior Detection

DFA - Deterministic Finite Automaton

FSM - Finite State Machine

eFSM - Equivalent Finite State Machine

GUI - Graphical User Interface

ITU - International Telecommunications Union

MAS - Multi-agent Systems

MaSE - Multi-agent Software Engineering (It is one of the AOSE methodologies)

MDTM - Model-based Detection and Testing of MAS

MSC - Message Sequence Chart

MVC - Model-View-Controller

NFA - Non-deterministic Finite Automaton

0MG - Object Management Group

pMSC - Partial Message Sequence Chart

SBSE - Scenario-based Software Engineering

SD - Sequence Diagrams

SEBD - System-level Emergent Behavior Detection

UML - Unified Modeling Language

I

Chapter One: Introduction

1.1 Motivation

Gathering system requirements is one of the most challenging and at the same

time a critical stage of the software development lifecycle. Due to the abstract nature of

software, deciding on clear and concise goals and features can be a challenging task.

Furthermore as software projects tend to involve several stakeholders, communicating

ideas and conveying information can be an extremely difficult task [1].

An effective and efficient way to describe system requirements is using scenario-

based specifications. A scenario is a temporal sequence of messages sent between system

components and the actors. Scenarios are appealing because they allow stakeholders to

describe system functionality by partial stories [2]. Since scenarios usually serve as

abstract execution traces of the system, they provide the perfect medium through which

customers, system developers and engineers and other stakeholders can communicate.

Scenario-Based Software Engineering (SBSE). investigates ways in which scenarios can

be used in software development [2]. Scenarios are particularly useful in describing the

requirements for systems with the distribution of control such as distributed systems and

multi-agent systems (MAS). The lack of central control in these systems often implies

complex interactions among multiple components [2]. Therefore scenarios can be

utilized to define these interactions. By following this approach the overall behavior of

the system can be defined by a comprehensive set of scenarios.

2

However despite the advantages of using scenarios due to their expressive power

and simplicity, there are several challenges particularly for concurrent systems consisting

of niultiple autonomous agents (MAS) as well as distributed systems which consist of

multiple system components. For instance, because each scenario only gives a local and

partial story of a distributed system's behavior, the challenge is how the behavior of a

system can be constructed from a set of scenarios and more importantly whether the

derived behavior is acceptable or not. Generally, system requirements described using

scenarios are prone to several defects as follows [3]:

1. Scenarios are partial stories of the system's behavior and each scenario is

only an instance of the system's functionality. Therefore defining

comprehensive system requirements using scenarios raises issues of

coverage and completeness.

2. Scenarios are instances of system behavior and thus they need to be

properly combined to have a full description of the system.

Therefore the artefacts produced when defining the system using SBSE, the

scenario, must be analyzed and verified. Unfortunately manual review of these

documents is inefficient and time-consuming. In order to resolve these issues, devising

systematic and automated methodologies to validate system requirements is necessary.

3

1.2 Objectives

The main objectives of this thesis are as follows:

• Devising systematic and automated methodologies to analyze system

requirements (which are defined using scenario-based specifications) and

identify cases of emergent behavior.

• Demonstrating the concept of indeterminism, formalizing the cause of

implied scenarios as well as addressing and resolving the problems

associated with it which are mentioned in [4].

• Applying the proposed methodologies in this thesis to distributed systems

and successfully detecting emergent behavior in the requirements of such

systems. Furthermore ensuring the lack of existence of certain illegal

scenarios from the requirements of distributed system.

• Establishing a link between agent oriented software engineering

methodologies (AOSE) such that AOSE design artefacts can be converted

• to scenario-based specifications. The results of this conversion are then

used to verify the design documents of multi-agent systems.

• To design and implement the prototype, of an easy to use and practical

software tool to apply these methodologies to requirements and design

documents of a variety of software systems such as distributed and multi-

agent systems.

4

1.3 Approach and Methodologies

In this research the merits of defining system requirements using scenarios are

acknowledged and the necessity of analysis and verification of scenario-based

specifications is recognized. There are a number of methodologies proposed in the

literature which deal with the analysis of scenario-based specifications [2, 5-9]. There

are general commonalities among all approaches; however each approach makes a unique

contribution in the analysis of scenarios. The general approach used for analyzing the

requirements of software systems is done in two steps of behavior modeling and

detection of emergent behavior. These steps are described in the following subsections.

1.3.1 Behavior Modeling

The model which describes the behavior of each system element (i.e. agent,

component or processes) is called the behavioral model, and the procedure for building

the behavioral models for the elements of scenarios, is called synthesis of behavioral

models, or simply, the synthesis process. A widely accepted model for behavioral

modeling of individual system elements is the state machine. Several studies have

already been conducted to facilitate the procedure of converting a set of scenarios to a

behavioral model expressed by state machines [2, 5-8, 10]. In the synthesis process, one

state machine will be built for each system element. The state machine includes all of the

messages that are 'received or sent by that element. Then the behavior of the distributed

system is described by the product (parallel execution) of all the state machines of the

system elements.

5

1.3.2 Emergent Behavior

One of the challenges during the synthesis process, is implied scenarios [3, 9, 11-

13], also known as emergent behavior [3]. An implied scenario is a specification of

behavior that is in the synthesized model of the software system and is not explicitly

specified in its specification as a scenario.

Emergent behavior occurs when there exists a state, in which the system

component becomes confused as to what course of action to take. This happens when

identical states exist in the union of state machines obtained through behavioral

modelling. A definition for identical states is needed for detection of emergent behavior.

To achieve this we must first have a clear procedure to assign values to the states of the

state machines. This is a very important step and is performed differently in various

works. For instance, the work presented in [2, 5] proposes the assignment of global

variables to the states of state machines by the system design engineer (referred to as the

domain expert in this research). However the outcome of this approach is not always

consistent as the global variables chosen by different domain experts may vary. This

inconsistency can become problematic when several system engineers attempt to analyze

the system requirements. The work in [3] proposes an approach which makes use of an

invariant property of the system called semantic causality. The principle of semantic

causality will be defined formally and explained in detail in Chapter 3 and will be used

extensively throughout this thesis. The merit of using semantic causality is that since it is

an invariant property of the system, using it in assigning state values will result in

achieving consistency., This is one of the main reasons that the approach of [3] is

6

selected as the most efficient methodology for analyzing scenario-based specifications

and is used and extended in this work.

Emergent behavior can be studied both at the system level and component level.

This work contains the methodologies and applications related to emergent behavior at

the component level. At the component level, emergent behavior occurs due to the

generalization mechanism by which behavior models are constructed from scenarios.

These behaviors are not inherent to the specification and depend solely on the

assumptions and the generalization techniques used in the synthesis approach. This is the

reason that they have been referred to in the literature as a side effect of generalization;

also known as overgeneralization [8]. It should be noted that emergent behaviors for

components are not necessarily unwanted behaviors. Sometimes they thay simply be

considered as unexpected situations due to specification incompleteness.

1.4 Contributions

This research strives to establish comprehensive framework for analyzing the

requirements and design of software systems. Figure 1.1 demonstrates the broad scope of

this research. The parts highlighted in Figure 1.1 show the specific areas addressed in this

thesis. As shown this framework will take input from a variety of different models and its

outputs are component-level emergent behavior detection (CEBD), system-level

emergent behavior detection (SEBD) and model-based detection and testing of MAS

(MDTM).

7

Moreover as the analysis of the requirements of software systems were conducted

at the component level in this research, research can be done in analyzing at the system

level. In system level analysis, it is assumed that the emergent behavior for the

components has already been resolved. Here scenarios are further analyzed for detecting

possible system level implied scenarios [3].

User

Message

Sequence

(MSC)

Sequence
Diagram
(SD) In

pu
t
Pr

oc
es

si
ng

Rose, aSE1 GAlA, etc.

SEBD

MDTM

Figure 1.1 - Model-based detection system

First, this work conducts a detailed survey of several of the proposed

methodologies in the literature which are devised to detect emergent behavior in the

requirements of software systems. The merits and disadvantaes of each methodology

are explained and finally the work of [3] is selected and justified as the most effective and

efficient approach to analyze scenario-based specifications. Thus the methodologies of

[3] have been used as the starting point of this research. This survey and its results are

presented in Chapter 2.

8

Next, the applicability of these methodologies is successfully tested on distributed

and multi-agent systems as well as social networks. Furthermore these methodologies

were extended to verify the lack of existence of particular illegal scenarios in scenario-

based specifications of software systems as presented in Chapter 4.

Moreover in Chapter 5, this research attempts to link AOSE to scenario-based

software engineering (SEBE) by following techniques to convert the artefacts of MaSE

(which is one of the most common AOSE methodologies for the design of MAS) to

scenarios.

Finally 'a comprehensive and practical tool has been designed to automate the

proposed methodologies. Chapter 6 contains the requirement and design documents of

this tool. The results of this research have been presented in a number of publications as

follows:

Conference Papers

• M. Moshirpour, B. Far, "Formal Verification of Lack of Existence of Illegal

Scenarios in The Requirements of Distributed Systems " Proceedings of the

International Conference on Software Engineering and Applications (SEA 2010),

Marina Del Rey, USA, November 2010.

• M. Moshirpour, A. Mousavi, B. Far, "A Technique and Tool to Detect Emergent

Behavior of Distributed Systems Using Scenario-Based Specifications"

Proceedings of the Internàtionàl Conference on Tools with Artificial Intelligence,

Arras, France, October 2010.

9

• M. Moshirpour, A. Mousavi, B. Far, "Model Based Detection of Implied

Scenarios in Multi Agent Systems" Proceedings of the International Conference

on Information Reuse and Integration, Las Vegas, USA, August 2010.

• M. Moshirpour, A. Mousavi, B. Far, "Detecting Emergent Behavior in

Distributed Systems Using Scenario-Based Specifications" Proceedings of the

International Conference on Software Engineering and Knowledge Engineering,

San Francisco Bay, USA, July 2010. (received Best Paper Award)

Journal Papers

M. Moshirpour, A. Mousavi, B. Far, "Detecting Emergent Behavior in

Distributed Systems Using Scenario-Based Specifications", International Journal

of Software Engineering and Knowledge Engineering (Submitted).

Book Chapters

• M. Moshirpour, A. Mousavi, B. Far, "Model Based Detection of Implied

Scenarios in Multi-Agent Systems", in Recent Trends in Information Reuse and

Integration, Springer-Verlag (Submitted).

1.5 Structure of Thesis

This thesis is presented in seven chapters. In chapter 2 related literature is

presented. Furthermore this chapter contains background information about important

related topics to this work such as Scenario-based Software Engineering (SBSE) and

10

Agent Oriented Software Engineering (AOSE). Chapter 3 contains definitions utilized by

methodologies throughout this thesis.

In Chapter 4 the effectiveness and usability of the methodologies for distributed

systems are verified using two case studies of a mine-sweeping robot and an online

commerce application. Furthermore this chapter contains the methodologies to formally

certify that a particular illegal scenario will not emerge in a software system based on a

set of given scenarios. Chapter 5 contains a novel approach to establish a link between

AOSE methodologies and SBSE. This is done by following techniques to convert the

artefacts of MaSE (which is one of the most common AOSE methodologies for the

design of MAS) to scenarios (illustrated using MSCs) and is demonstrated using a case

study of a MAS for a manufacturing system. Chapter 6 contains the design and the

prototype of the software tool which automates the proposed methodologies. Finally

conclusions and future work are presented in Chapter 7.

1.6 Summary

Scenarios are efficient and effective means of illustrating system requirements.

Devising systematic and automated. methodologies to analyze scenario-based

specifications of software systems for deficiencies is highly desirable. This research

attempts to establish methodologies as well as a comprehensive framework for system

analysis. The motivation, objectives and the methodologies presented in this thesis have

been outlined in this chapter. In Chapter 2, a comprehensive review of the related

literature along with background knowledge on key concepts to this research such as

multi-agent systems and Agent Oriented Software Engineering (AOSE) are presented.

11

Chapter Two: Related Work and Background

This chapter focuses on the related work in the literature in the area of scenario-

based software engineering and proceeds to conduct a survey on the various existing

methodologies devised to analyze system requirements which are defined using

scenarios.

Furthermore the adopted methodology which is verified and extended in this

research is presented in this chapter and the selection of this methodology is justified. In

addition this chapter provides background knowledge about distributed systems, multi-

agent systems (MAS) and Agent Oriented Software Engineering (AOSE).

2.1 Scenario-Based Specifications

An efficient and effective approach for defining system requirements is using

scenario-based specifications. Scenarios have become popular as a powerful means of

communication for system requirements due to their simplicity and expressive power

[14]. Using scenarios, different groups of stakeholders can communicate their goals and

ideas with regards to the software systems in a productive and efficient manner. In

addition to their use in requirements engineering as shown in [14], scenarios have been

utilized in other aspects of software engineering such as code synthesis [15], reverse

system engineering [2] and model-based testing [16].

Scenarios are defined with variations in different works [17-20]; however in

general scenarios are described as narrative stories of the interactions among system

components and/or the users and the environment. Moreover scenarios are temporal

12

sequences of messages and thus in a scenario the order of events are clearly

distinguished.

There have been several approaches proposed in the literature for representing

scenarios. These approaches include using narrative text [21], annotated cartoons, video

recordings, scripted prototypes and sequence charts [2, 17, 22]. Each approach entails

certain merits and downfalls. For instance the textual notations are useful for

documentation and are thus popular in the industry. However textual scenarios tend to be

of a more informal nature and pose real challenges on automated analysis.

Among the above-mentioned approaches for presenting scenarios, sequence

charts are the most efficient in terms of analysis of requirements. Moreover, due to the

simplicity of their notation and expressive power, sequence charts make an efficient

nedium for representing scenarios. The structure of a simple sequence chart is illustrated

in Figure 2.1.

Time

Figure 2.1 - Sequence chart

13

There are different variations of sequence charts in the literature. Two of the most

well-known types of sequence charts that are generally used to describe scenarios are

Message Sequence Charts (MSCs) standardized by the International Telecommunications

Union (ITU) [23] and Sequence Diagrams developed by the Object Management Group

(0MG) as a part of UML [24]. Both of these notations have undergone numerous

revisions since their development.

Although MSCs and sequence diagrams vary in notations, they are both capable

of representing scenarios in an efficient and intuitive manner. In this research the prime

focus is on MSCs. There ae several reasons for choosing to use MSCs over sequence

diagrams in this research. First, the notation of MSCs is simpler than sequence diagrams;

which comes as no surprise as sequence diagrams are utilized in object oriented design

[23, 24]. Since in this research scenarios are used to communicate system requirements

between all different kinds of stakeholders who are not necessarily computer experts,

using a simpler notation to illustrate scenarios is desirable. Furthermore, due to their

simplicity, MSCs serve as a powerful basis for the development of emergent behavior

detection methodologies. For future work, these methodologies can then be altered to

incorporate the complexities of sequence diagrams. In this case, the proposed

methodologies can be used to analyze object oriented design of software systems.

However, a possible future extension for this research would be incorporating the

sequence diagram notation in requirement validation methodologies. MSCs are formally

defined in Chapter 3 of this thesis.

14

2.2 Distributed Systems

Distributed systems consist of two or more autonomous components which

communicate through a network [25]. These components interact with one another in

order to achieve a common goal. Concurrency and lack of central control are among the

most distinct characteristics of such systems [25, 26].

Distributed systems are implemented using a variety of different architectures

such as client-server, 3-tier (such as model-view-controller) and peer-to-peer [25]. The

client-server and the model-view-controller architectures which are used in case studies

of this research are briefly explained in the following subsections.

2.2.1 Client-Server Architecture

Client-server is a 2-tier architecture in which one or more clients request service

from a centralized server. In this architecture the client is generally the consumer and

requests resources and the server responds accordingly [27]. Client-server computing

provides the opportunity to use cost-effective user interface, data storage, connectivity

and concurrency [27].

However implementing concurrency is a challenging task. The two major

problems in concurrent programming are: (1) enabling communication among two or

more processes and (2) synchronizing certain actions among two or more processes [28].

This poses difficulties on the requirement elicitation and design of distributed systems

which will be addressed in Chapter 4.

'5

2.2.2 Model- Vien'-Controller A rc/zitecture

The MVC software architecture was designed for the development of interactive

applications in 1979 [29]. Based on this design, applications are divided into three

different component types of models, views and controllers as shown in Figure 2.2 [29].

MVC

Model

Controller

Dispatcher

Routes

Web Server

T
Browser

View

Figure 2.2 - Model-View-Controller software architecture 1291

MVC isolates the domain logic from the presentation layer and database which

enables independent development along with testing and maintenance of each. The

model is the layer which communicates with the database and the controller. It is

responsible for maintaining the state of the application and enforces all business rules

which apply to data. The view is the layer which is responsible for the interactions with

the user and reporting to the controller. The controller or the business logic is the central

commander of the application. It receives the input from the user through the view and

16

instructs the model and the view to perform certain actions based on the inputs received

[29].

2.3 Multi-Agent Systems and Agent Oriented Software Engineering (AOSE)

The concept of multi-agent software systems is relatively new; dating back to the

early 1980s [30, 31]. Over the years, international interest in this area has grown

enormously. This is partially since agents are attractive software paradigms which

provide the opportunity to exploit the possibilities presented by massive open distributed

systems such as the internet [31]. Furthermore as agents are by definition automated

entities, multi-agent systems (MAS) seem to be a natural metaphor for understanding and

building a wide range of artificial social systems [31].

An agent is a computer system that is situated in an environment and is capable of

autonomous actions in this environment in order to meet its design objectives [31].

Following this definition, it is deduced by extension that multi-agent systems (MAS) are

defined as systems composed of multiple interacting computing elements, otherwise

known as agents [31]. As mentioned previously, following the increase in the demand of

MAS, many Agent Oriented Software Engineering (AOSE). methodologies were

developed to assist the development of agent-based applications.

Part of the proposed methodology in this research is based on the MaSE analysis

and design artefacts. In this section we proceed by providing an overview of the MaSE

methodology and its recent applications in research and industry are presented in Sections

2.3.1 and 2.3.2 respectively. Then we provide the results of an evaluation on MaSE

17

methodology and its comparison with other AOSE methodologies in Section 2.3.3. We

then proceed to discuss other related works on MAS verification and monitoring and

various methodologies used in Section 2.3.4.

2.3.1 Agent Orientation Software Engineering Methodology: MaSE

The Multi-agent Software Engineering (MaSE) methodology is among the most

well-known of AOSE techniques. MaSE strives to guide a MAS engineer from an initial

set of requirements through the analysis, design and implementation of a working MAS.

In MaSE, a MAS is viewed as a high level abstraction of object-oriented design of

software where the agents are specialized objects that cooperate with each other via

conversation and act proaOfively to accomplish individual and system-wide goals instead

of calling methods and procedures. In other words, MaSE builds upon logical object-

oriented techniques and deploys them in the specifications and design of MAS. MaSE

consists of two major steps of analysis and design as outlined in Table 2.1.

Table 2.1 - MaSE methodology phases and steps [32]

'vIaSE Phases and Steps

1. Analysis Phase

a. Capturing Goals

b. Applying Use Cases

c. Refining Roles

2. Design Phase

a. Creating Agent Classes

b. Constructing Conversations

c. Assembling Agent Classes

d. System Design

Associated Models

Goal Hierarchy

Use Cases, Sequence Diagrams

Concurrent task, Role Diagram

Agent Class Diagrams

Conversation Diagrams

Agent Architecture Diagrams

Deployment Diagrams

18

The analysis phase of MaSE contains'the three steps of capturing goals, applying

use cases and refining goals [33] as shown in Table 2.1. This phase produces a set of

roles and tasks which describe how a system satisfies its ovetall goals. Goals are derived

from the detailed requirements and should be achieved by defined roles. A role describes

an entity which acts inside the system and is responsible for achieving or assisting to

achieve specific system goals. In general, the main approach of the MaSE analysis phase

is to define system goals from a set of requirements and define the roles necessary to

meet those goals [33].

The design phase of MaSE consists of four distinct steps of Creating Agent

Classes, Constructing Conversations, Assembling Agent Classes and System Design as

presented in Table 2.1. In the "Creating Agent Classes" step, the designer assigns roles to

the specific agent types. During the "Constructing Conversations" step, the conversation

between agent classes are defined while in the "Assembling Agent Classes" step the

internal architecture and reasoning processes of the agent classes are designed. Finally in

the last step of the design phase, the "System Design" step, the designer defines the

number and location of the agents in the deployed system.

2.3.2 MaSE in Research and Industry

MaSE is among the most well known and powerful AOSE methodologies [31]. It

has been successfully utilized in many agent-based research and industry applications.

For instance the Multi-Agent Distributed Goal Satisfaction project which is a

collaborative effort between Air Force Institute of Technology (AFIT), the University of

Connecticut, and Wright. State University, uses MaSE to design the collaborative agent

19

framework to integrate different constraint satisfaciion and planning systems [34].

Furthermore this methodology has also been used successfully in agent-based

heterogeneous database integration system [35] as well as a multi-agent approach to a

biologically based computer virus immune system [36].

2.3.3 comparing MaSE with other A OSE Methodologies

Several methodologies have been developed for the analysis and design of MAS

[37]. These methodologies have been evaluated and ranked in the literature. For instance

in [38], a set of 9 AOSE methodologies are evaluated based on criteria which can be

considered as empirical software metrics for these techniques. Consequently in [13]

AOSE methodologies were ranked according to the estimated mean effectiveness of the

evaluation based on 6 dimensions of agency-related attributes, modeling-related

attributes, communication-related attributes, process-related attributes, application-related.

attributes, and user perception attributes to suppo.rt the decision of selecting the most

appropriate methodology.

Among the methodologies evaluated in [13] MaSE ranked first in 3 of the

proposed dimensions which were modeling-related attributes, application-related

attributes, and user perception attributes. Furthermore MaSE ranked first in the overall

ranking of the evaluated AOSE methodologies.

Here MaSE is compared against two other AOSE methodologies of GAlA [39]

and Tropos. The aforementioned AOSE methodologies are chosen to be compared

against MaSE as they are amongst the most popular and widely used techniques [40].

Similar to the approach of MaSE, GAlA utilizes roles as building blocks and captures

20

much of the same types of information in the design phase. However in GAlA this is

done through different types of models [25]. The main difference between these two

methodologies is that GAlA generates high level design and assumes details will be

developed using other techniques whereas MaSE provides models and guidance on

building the detailed design [41]. Tropos on the other hand takes a completely different

approach compared with MaSE [26]. The focus of Tropos is mainly on the early

requirements which are not addressed in MaSE at all [41]. However the Tropos early

requirements approach could be used in MaSE as the goal model in the design phase [41]

[42].

2.3.4 MAS Verification and Monitoring

The current work on MAS verification is divided into two categories of axiomatic

and model checking approaches [41]. In [43] axiomatic verification is applied to the

Beliefs, Desires and Intentions (BDI) model of MAS using a concurrent temporal logic

programming language. However, it was noticed that this kind of verification cannot be

applied when the BDI principles are implemented with non-logic based languages [41].

Furthermore in design by contract [44] pre and post-conditions and invariants for the

methods or procedures of the code are defined and verified in runtime, and violating any

of them results in an exception. However as stated in [41] the main issue is that this

technique does not check program correctness, rather it simply only informs that a

contract has been violated at runtime.

21

Model checking approaches seem to be more acceptable by the industry,

because of lower complexity and better traceability compared to the axiomatic approach.

Automatic verification of multi-agent conversations [45] and model checking of MAS

with the MABLE programming language [46] are a few examples of model checking

approaches which use the SPIN model checker [47] which is a verification system for

detection of faults in the design models of software systems.

2.4 Validation Methodologies for Scenarios

As was mentioned in the previous sections, using scenario-based specifications is

an efficient and intuitive approach to define system requirements; particularly for

concurrent software systems such as distributed systems and MAS. Scenario-based

specifications entail devising scenarios of interactions among system components and/or

the users and environment such that each scenario defines a certain behavior of the

system. However scenario-based specifications are prone to deficiencies such as

contradictions among scenarios or, incompleteness issues. Therefore devising systematic

and automated methodologies to verify the correctness of requirements is very important.

There are numerous methodologies proposed in the literature to verify system

requirements expressed using scenarios. In this section some of these methodologies are

explained and the merits and shortcomings of each are outlined. Finally the methodology

chosen for this research is introduced and justified.

As mentioned previously, there are several methodologies [2, 3, 5, 7, 12, 48]

which attempt to analyze system requirements (which have been expressed using

22

scenarios) with a systematic approach. Each methodology has devised algorithms to take

scenarios as input and identify emergent behaviors in the requirements. The general

structure of these algorithms is quite similar and is often done in two major steps of

behavior modeling and detection of emergent behavior. The process of building behavior

models has been explained in Section 1.3.1 and will be demonstrated in detail in the

upcoming chapters. As mentioned in Section 1.3.1 many studies have already been

conducted to facilitate the procedure of converting a set of scenarios to a behavioral

model expressed by state machines [2, 5-8, 10]. Thus, the detection of emergent behavior

as outlined in Section 1.3.2 is done by analyzing the state machines. To do so, a clear

and concise methodology to assign values to the states of the state machine is required.

This is a very crucial step and in fact is where the methodologies differ from one another.

This step is important since the detection of emergent behavior is a direct result of

finding identical states in behavioral models. One approach as presented in [7] is to allow

stakeholders to tag scenario states. Typically labels that describe the states of the

component are placed on scenario states. If two states in a scenario appear with the same

label, they are considered as the same component states.

The second approach does not attempt to explicitly label the states in scenarios,

but instead provides rules for identifying component states. These rules are usually based

on domain-specific knowledge and additional information of the system being specified.

For instance the work of [48] constructs state-charts and uses some assumptions to decide

whether or not two scenario states are equal. The work of Whittle and Schumann [2, 5]

attempts to use an Object Constraint Language (OCL) specification that states pre- and

23

post-conditions for scenario messages. OCL is part of the UML standard and is a side-

effect free and set-based, constraint language [49]. The OCL specifications include the

declaration of state variables. A state variable represents some important aspect of the

system such as whether or not a component is coordinating with other components.

Moreover the OCL specifications enable the detection of conflicts between different

scenarios and allow scenarios to be merged in a justified way [2]. The OCL specification

is traversed with the MSCs to produce an evaluation of state variables for each scenario

state. Scenario states that have equivalent valuations are considered to represent the same

component states.

The main issue with these approaches is that their outcomes are not always

consistent as the global variables and scenario labels chosen by different software

engineers (referred to as the domain experts in this research) could vary. It is needless to

say that in order to have a systematic approach for detecting emergent behavior,

consistency of the methodology for different domain experts is a must. The approach

followed in the work of Mousavi [3] addresses this issue by making use ofan invariant

property of the system called semantic causality. ' A formal definition of semantic

causality is provided in definition 4 of Chapter 3 of this thesis and its pivotal role in the

detection of emergent behavior has been demonstrated in the case studies presented in

Chapters 4 and 5. Therefore since the methodologies presented in [3] provide an

effective and efficient solution to address the issue of consistency in assigning state

values in behavioral modeling, they are recognized as the better approach towards

automation of such techniques and thus are closely followed in this work.

24

2.5 Summary

The related literature was presented in this chapter. Moreover the background

knowledge for key concepts to this thesis such as scenario-based' specifications,

distributed systems, multi-agent systems (MAS) and Agent Oriented Software

Engineering (AOSE) was provided. A comprehensive survey on the existing

methodologies to analyze scenario-based specifications was conducted and the chosen

methodology was introduced. In Chapter 3 formal definitions for this methodology will

be presented.

25

Chapter Three: Methodologies and Definitions

As outlined in detail in Chapter 2 of this thesis, scenario-based specifications are

prone to deficiencies such as incompleteness and contradictions. However manual

review of scenario-based specifications is usually inefficient and time consuming,

particularly for larger systems. Therefore devising systematic and automated

methodologies to detect deficiencies in scenarios is highly desirable and cost effective.

There are several methodologies proposed in the literature for this purpose [2, 3,

5, 7, 48]. These methodologies are broken down into the two steps of:

1. Behavior modelling

2. Detection of emergent behavior

Prior to devising such methodologies, it is vital to have clear and concise syntax

and definitions for the scenario notations, state models and other conceptual entities

required. This chapter contains an overview of the methodologies along with formal

definition of the key concepts which are used. These definitions will be further

illustrated in Chapters 4 and 5 where these methodologies are applied to distributed and

multi-agent systems respectively. The structure of this chapter is as follows: In Section

3.1 definitions related to scenario notations and state machines are provided. Section 3.2

contains the procedure of behavior modelling and construction of the domain theory.

Detection of indeterminism is covered in Section 3.3 and the summary of the chapter is

provided in Section 3.4.

26

3.1 Definitions

As explained in section 2.1, there are two main methods for representing

scenarios; namely Sequence Diagrams (SD) and Message Sequence Charts (MSC) [24,

50]. In this research it is assumed that MSCs will be used to illustrate scenarios.

In this section, we give some definitions related to the MSC notation based on a

subset of ITU definitions for MSCs [12, 23, 51].

Let P be a finite set of processes in a software system (with the total number of

processes or agents p ≥ 2) and C be a finite set of message contents (or message labels)

that are passed between the processes. Let Z, = [i!] (C), t?j(c)IJ e P\{i), c C C) be the set of

alphabet (i.e. events) for the process i E P, where flj(c) denotes: an event that sends a

message from process I with content c to processj, whereas i?j(c) denotes an event that is

received by process I a message with content c from process j. The set of alphabet will be

E = and each member of E is called a message.

In the following, we try to capture a causal relationship between a message and its

predecessors by defining partial Message Sequence Chart (pMSC)i

Definition 1 [3] (partial Message Sequence Chart): A partial Message Sequence Chart

(pMSC) over P and C is defined to be a tuple m = (E, a, f?, -<) where:

• E is a finite set of events.

• a: E - E maps each event with its label. The set of events located on process I

is E1 = a(). The set of all send events in the event set E is denoted by E! =

fe C E I 31,] C P, c C C: a(e) = i!j(c)) and the set of receive events as E? = E\E!.

27

• /3: F! - E? is a bijection mapping between send and receive events such that

whenever /3(e1) = e2 and a(d1) = flj(c), then a(e2) = j? i(c).

• -< is a partial order on E such that for every process I P, the result of -< on El is a

total order of its members and the transitive closure of {(e1, e2)Je1 <e2, 31 E

P: e1, e2 E E) U ((e, 13(e))Ie E E) is a partial order of the members of E.

The partial order -< captures a causal relationship between the events of a pMSC.

This causality basically represents two things. First, a receive event cannot happen prior

to its corresponding send event. Second, a receive (or send) event cannot happen until all

the previous events, which are causal predecessors of it, have already been accomplished.

Obviously if all of the send events have their corresponding receive events (i.e. as defined

by the function /3), the structure is called a Message Sequence Chart or simply an MSC.

In other words, an MSC has thesame structural components as a pMSC, except that /3 is

defined for F!=El.

Following the formal definition of MSCs, it is important to define the sequence of

messages between system components as shown in Definition 2.

Definition 2 [3] (projection): The projection mit for process i in MSC m, is the ordered

sequence of messages corresponding to the events for the process i in the pMSC m. For

mit, limit II indicates its length, which is equal to the total number of events of m for the

process i, and t [/] refers to 11h element of m1l, so that if e is the f" " interaction event for

process i according to the total order of the events of i in m, then am(ej) = ml[j —

28

J -< Ilmi1Ii. In m, we call every element i!j(c),i,j E P,c E C, a send message and every

element i?j(c), a receive message.

State machines have been used for the behavioral modeling of scenarios in the

literature [2, 3, 5, 12] and will be used for that purpose in this research as well. The

formal definition of state machines is given in Definition 3.

Definition 3 [3] (Equivalent Finite State Machine for a projection): For the

projection mit, we define the corresponding deterministic finite state machine A =

(Sm, Zrn, (5, q, q7) such that:

• m is a finite set of states labelled by q to

• Em is the set of alphabet

• q is the initial state

• q = is the final state (accepting state)

• 'Sm is the transition function for A such that S(q71, mit[f]) q7 1, 0 ≤ j:5 limit ii -

1. Thus the only word accepted by A is mit.

Note that scenarios can be treated as words in a formal language, which are

defined over send and receive events in MSCs. Then, a well-formed word for a process is

one that for every reeive event therie exists a send event in that word, which in fact

captures the essence of the definition given for a pMSC (Definition 1). On the other hand,

a complete word for a process is one that for every send event in it, it contains the

corresponding receive event. In practice, a system designer must look for complete and

well-formed words for each process which is not necessarily an easy task. For any MSC

29

m in the set of MSCs M, any sequence cv of m, obtained from a sequence of events in m

that respects the partial order of the events defined for m, is called a linearization of m,

and is a word in the language L(M of M.

3.2 Behavior Modeling

The model which describes the behavior of each system element (i.e. agent,

component or processes) is called the behavioral model, and the procedure of building

the behavioral models for the elements from a scenario-based specification, is called

synthesis of behavioral models, or simply, the synthesis process. A widely accepted

model for behavioral modeling of individual system elements is the state machine.

Several studies have already been conducted to facilitate the procedure of converting a

set of scenarios to a behavioral model expressed by state machines [2, 5-8, 10]. In the

synthesis process, one state machine will be built for each system element. The state

machine includes all of the messages that are received or sent by that element. Then the

behavior of the distributed system is described by the product (parallel execution) of all

the state machines of the system elements. The automation of this process has been

outlined in Chapter 6 of this thesis.

The process of behavior modelling for distributed systems and multi-agent

systems is illustrated in Chapters 4 and 5 respetively. In this section key definitions and

concepts related to synthesis of behavioral models are explained.

A pivotal step in behavior modeling is to assign state values. This is done

differently in different works as outlined in detail in Section 2.4. In this research this task

30

is done by making use of an invariant property of the system referred to as semantic

causality as defined formally in Definition 4 [3].

Definition 4 [3] (Semantic causality): A message mI[j] is a semantical cause for message

m 1[k] and is denoted by mIL[j] Sd mI[k], if agent i has to keep the result of the operation

of mlt[j] in order to perform ml,[k].

Semantic causality is an invariant property of the system and is part of the

system's architecture and the domain knowledge. Therefore it is independent of the

choices made by the domain experts. In other words, we let the current state of the

system component to be defined by the messages which that particular component needs

in order to perform the messages that come after its current states.

3.2.1 Domain Theory

Based on the concept of semantic causality introduced in Definition 4, it is

deduced that in order to evaluate state values of the resulting FSM, a domain theory

which consists of the domain knowledge of the system must be constructed. A formal

definition for the domain theory is provided in Definition 5.

Definition 5 [3] (Domain theory): The domain theory Di for a set of MSCs M and agent

I E P is defined such that for all m E M, if mj1[/] mlt[k] then (mlt[j], mlt[k]) E D1.

However building a domain theory can be very time-consuming. Therefore as a

part of this systematic approach, building a light domain theory is introduced. The

concept of light domain theory is closely tied to the calculation of state values as defined

in Definition 6.

31

Definition 6 [3] (State value): The state value v1I(qj) for the state q in eFSM A =

(Sm, Zm, (5, qg, qjJ) is a word over the alphabet zi U (1) such that vjI(q7) = m 11 [f - 1],

and for 0 <k < f is defined as follows:

i) vi I = m I j [k - 1]vtl(qy'), if there exist some j and 1 such that j is the

maximum index that mI[f - 1] m11[1], 0 <j < k, k ≤ I < f

v(q) = m Ii [Ic - 1] if case i) does not hold but mI{k - 1] mlt[I], for some k

≤ 1 < f

vi I = 1, if none of the above cases hold

Using this definition, it becomes evident that only states with the same incoming

transitions have the potential to exhibit indeterministic behavior. Assigning state values

to states of eFSMs is done by making use of semantic causality as defined in Definition

4.

32

3.3 Detection of Indeterminism

The concept of emergent behavior and the process of detecting indeterminism

have been presented in section 1.3.2 and will be illustrated in detail in Chapters 4 and 5.

Upon constructing the behavior model and by assigning state values based on

semantic causality, the basis for comparing states and consequently discovering identical

states is established. Identical states are defined in Definition 7 as follows:

Definition 7 [3] (Identical states): Two states qT and qof process 1, (m and n could be

the same) are identical if one of the following holds:

i) jk for 0 ≤ t -<j:m[t] = nit[t]

(q) = v (qj)

As stated previously, emergent behavior usually happens when the system

components become confused as the result of identical states. Definition 7 can be used to

systematically detect emergent behavior at the component level.

3.4 Summary

Prior to devising systematic and automated methodologies to analyze software

requirements, it is vital to have clear and concise definitions for scenario notations and

key concepts of the techniques. This chapter contains formal definitions for MSCs which

are used in representing scenarios and FSMs which are used in behavior modelling.

Furthermore the steps of the methodologies used along with the necessary formal

definitions for each step are formally defined.

33

These definitions are illustrated in great detail in Chapters 4 and 5 where the

proposed methodologies are applied to verify the requirements of distributed systems and

multi-agent systems respectively.

34

Chapter Four: Detection of Emergent Behavior in Distributed Systems

This research proposes two distinct approaches towards prevention against

emergent behavior. The first approach involves compiling all system scenarios and

conducting behavioral modeling in order to discover all cases of emergent behavior in

system's requirements. This approach is applied to an illustrative example of a mine

sweeping robot. The robot has been designed to have multiple independent processing

units, indicating that there is no centralized control.

The second approach involves ensuring the lack of emergence of particular

behaviors [52]. In this approach system engineers will have a set of undesired scenarios

and the system requirements (which are also expressed using scenarios) are checked to

verify that the illegal scenarios from this set cannot be derived from them. This approach

is demonstrated using a case study of a common online commerce system.

Furthermore it has been demonstrated in this chapter that scenario-based

specifications can be used in agile software development to verify the consistency of user

stories.

4.1 Background

To analyze system requirements with the proposed methodologies in this

research, first the behavioral model of the system is built and then the behavioral models

are checked for emergent behavior . Both processes of behavioral thodeling and detection

of emergent behavior were ep1ained in the first two chapters and are illustrated in this

chaptei using real-life examples of distributed systems. It is important to note that while

35

these examples are kept simple for the sake of brevity, they are quite illustrative of the

proposed methodologies in this research.

4.2 Case Study: Mine Sweeping Robot

Let's consider the prototype of an automated mine-sweeping robot shown in

Figure 4.1.

pop

Figure 4.1 - Prototype of a mine sweeping robot

The robot's mission is to navigate through a maze-like course, which resembles

the layout of the streets of a city, for which the robot has no map and has to investigate it

by utilizing its sensory information (i.e. ultrasonic and/or GPS data). At the same time, it

has to identify and mark the location of mines. For this prototype version it is assumed

36

that mines emit infrared signal which is detectable via the infrared sensor. In order to

provide the robot with more computation power and additional control for the motors and

different types of sensors, two multi-core CPU units are utilized. The units are built on

separate boards connected via a simple but reliable connection protocol. The two CPUs

interact using the client-server architecture; one of the CPUs acts as the client and the

other acts as the server. As there is no sophisticated' operating system in charge of the

control and scheduling of the processes and threads, the design of the robot must account

for the proper management of all processes and their interactions in a logical and efficient

manner.

For the' sake of simplicity, let's assume that the robot has only two sets of sensors:

an ultra-sonic sensor which is used for navigation purposes, and an infrared sensor to

detect mines. Given the sensors of the robot, its design is as follows: Both of these

sensors are connected to the client CPU. Thus the client receives signals from sensors,

processes the message and sends them to the server CPU to act upon them accordingly.

The processes Client Controller and Server Controller, depicted in Figure 4.2, are in

charge of the motors responsible for the wheels on the left and right sides of the robot.

Each process is also responsible for sending and receiving messages to and, from the

other. The server controller is. also in charge of the motor of the mechanism which

dispenses a. flag on the location in which a mine has been detected. The ULTS Motor

Controller process is responsible for the motor in charge of the rotation of the ultra-sound

sensor which is necessary for optimum navigation through the maze.

37

MSC1

IR Sensor

IR Sensor

ULT Sensor Client Controller

send signal
(no obstacle detecte1)

ULT Motor Controller

Rotate ULT sensor

Motors move
- forward

Server Controller

send message (no obstacle detected)

Figure 4.2 - Robot is moving forward with no obstacle in its way

ULT Sensor

MSC2

Client Controller ULT Motor Controller

send signal

(obstacle detected$ Stop rotating ULT
sensor

—Stop motors
__I

Motors move
forward

Server Controller

send message (obstacle detected)

Figure 4.3 - Robot is halted due to the detection of an obstacle in its path

rStop motors

38

MSC3

IR Sensor LJLT Sensor

send signal

Client Controller

(mine detected)

JR Sensor LILT Sensor

send signal

 >

LILT Motor Controller

Stop rotating ULT
sensor

—Stop motors
__I

send message

Server Controller

(mine detected)

Figure 4.4 - Robot stops due to the detection of mines

MSC4

Client Controller

(mine detected)

LILT Motor Controller

Isend signal
(rlo obstacles detected)

Rotate LILT sensor

Motors move
1 forward

—Stop motors

K

Flag mine
L.

location

Server Controller

send message (no obstacles detected)
 >

Motors move
forward

K

Figure 4.5 - Client controller receives a "no obstacle" detection message from the ultra-

sound sensor after receiving the mine detection message from the JR sensor which results in missing

the mine

39

Partial behavioral scenarios for this robot are represented by message sequence

charts. The message sequence chart 1 (MSC1), shown in Figure 4.2, illustrates a scenario

where the robot is moving forward with no obstacles in its way. MSC2 (Figure 4.3),

shows a scenario where the robot has been halted due to the detection of an obstacle in its

path while MSC3 (Figure 4.4) illustrates a scenario where the robot stops because of the

detection of a mine (based on the signal received from the IR sensor) which is a pre-

requisite for the mine-flagging operation.

As can be seen from MSC2 and MSC3 (Figures 4.3 and 4.4) there are two events

which cause the robot to halt: (1) detecting an obstacle on the way performed by the

ultrasound sensor; and (2) detecting a mine which is done by the infrared sensor.

Similarly there are two events which trigger the motion of the robot: (1) detection of a

free path (i.e. no obstacles in the way) by the ultrasound sensor; and (2) the'completion of

the mine-flagging operation. MSC4 shown in Figure 4.5 illustrates an emergent behavior

that might occur as a result.

An important observation to be made is the generalization of messages to indicate

their purpose rather than their specific implementation. Consider message "send signal

(some signal)" which is sent from either of the sensor to the client controller process as

shown in each of the MSCs (Figures 4.2 - 4.4). For instance in MSC1 (Figure 4.2) the

content of the message sent from the sensor to the client controller is "no obstacles

detected" while in MSC3 (Figure 4.4) the content of the message is "mine detected". It is

important to note that although the content of these messages are different, the purpose of

the two messages remains the same. That is, the client controller process expects to

40

receive a message (regardless of the content of the message) from a sensor. Therefore the

message sent from either sensor to the client controller process is "send signal" and the

content is included in brackets only for clarity.

4.3 System Behavior Modeling

In this section, the synthesis of state machines from MSCs which is the first part

of the systematic approach to analyze system requirements (expressed using scenarios) is

illustrated using the example of a mine sweeping robot.

As mentioned previously, the procedure of construction of finite state machines

(FSMs) from message sequence charts ,(MSCs) is referred to as behavior modeling. For

any process I of a partial MSC described in Definition 1, an equivalent finite state

machine (Definition 3) can be constructed. For instance, Figure 4.6 shows the eFSM

constructed for the client controller process in MSC1.

send signal
no obstacles detected)

send signal
(obstacles detected)

send signal
(mine detected)

Rotate motors move send message
ULT Sensor ml forward - ml (no obstacles detected)

q 3

Figure 4.6 - eFSM for the client contr011er in MSC 1

Stop rotating ULT
sensor

send message
stop motors / , \(obstacles detected)

Figure 4.7 - eFSM for the client controller process in MSC 2

Stop rotating
ULT sensor

)

stop motors
send message
(mine detected)

41

Figure 4.8 - eFSM for the client controller process in MSC 3

A comprehensive definition for identical states is needed for synthesis of behavior

models from scenarios. To achieve this we must first have a clear procedure to assign

values to the states of the eFSMs. As outlined in detail in Chapter 2 of this thesis, this is

a very important step and is performed differently in various works. For instance, the

work presented in [2, 5] proposes the assignment of global variables to the states of

eFSMs by the domain expert. However the outcome of this approach is not always

consistent as the global variables chosen by different domain experts would vary.

Therefore to achieve consistency in assigning state values, the approach of [3] which is

making use of an invariant property of the system called semantic causality given in

Definition 4 (Chapter 3) is followed.

For example, in MSC1 in Figure 4.2, the message "send signal" is a semantic

cause for message "rotate". As semantic causality is an invariant property of the system

and is part of the system's architecture and the domain knowledge, it is independent of

the choices made by the domain experts. In other words, we let the current state of the

process to be defined by the messages that the process needs in order to perform the

messages that come after its current states. Therefore using semantic causality, we

proceed to build the system's domain theory which is defined in Definition 5 of Chapter

3.

Following the robot example, since the message "send signal" is a semantic cause

for message "rotate", both messages are part of the domain theory. However building the

domain theory can be very time-consuming. Therefore as a part of this systematic

42

approach, building a light domain theory is introduced. The concept of light domain

theory is closely tied to the calculated state values as defined in Definition 6. Using this

definition, it becomes evident that only states with the same incoming transitions have the

potential to exhibit indeterministic behavior. Assigning state values to states of eFSMs is

done by making use of semantic causality as defined in Definition 6 of Chapter 3.

For instance in order to calculate the state value for state q'1 we proceed as

follows: from the domain theory of the system (Definition 5) we learn that the maximum

index j for which ml I client controller 1] - 1] is a semantic cause for a message in the

transitions after q 1 is j = 1 for which ml IcUent controller [I - 1] = send signal.

That is to say that for example the message "send signal" is a semantic cause for message

"motors move forward". Therefore from case (i) of Definition 6 we obtain:

Vcljent controller ml\ - 1 11 (ml. (q2 - m L) - .1.J client controller VCI(ent controller q1

In order to calculate 12c1ient controller I (qfl1) we observe that "send signal" is the

only semantic cause after q 1, thus case (ii) of Definition 6 holds and we

get 12c1ient = send signal.

client controller Icqmi2

Therefore we have

= (rotate) (send signal). By following the same approach we get

the state value for q 3 to be = (rotate) (send signal).

From these examples it becomes clear that semantic causality' is an invariant

property of the system and is nOt affected by the preferences of the domain expert. To

complete behavior modeling for the systeinj for each process a final FSM which is the

union of its corresponding eFSMs from different scenarios is to be built. Figure 4.9

43

demonstrates the union of the three eFSMs built from MSCs 1-3. As established in

Definition 6 the value of start and end states are defined to be equal to 1.

send signal

G (obstacles.
detected)

Figure 4,9 - The union of eFSMs built from MSCs 1-3

rotate

stop rotation

stop rotation

Motors move
forward

stop motors

stop motors

 > V(qm2

send message
no obstacles detected)

send message
(obstacles detected)

send message
(mine detected)

4.4 Detection of Emergent Behavior *

As demonstrated in the previous section, by assigning state values based on

semantic causality, the basis for comparing states and consequently discovering identical

states is established. Identical states are formally defined in Definition 7 of Chapter 3.

By considering the union of the eFSMs demonstrated in Figure 4.9, the identical

states that correspond to case (ii) of Definition 7 are determined. As identical states are

possible areas in which the system might get confused over what course of action to take,

these states are recorded and presented to the domain expert to be analyzed and

reconsidered.

The FSM shown in Figure 4.10 demonstrates the manner by which identical states

in the mine sweeping robot example can result in emergent behavior. As mentioned

44

earlier, the message "send signal" sent from either sensor to the "client controller", should

be considered as a transition regardless of the content of that message since the client

controller process is waiting to take any message that is sent from the sensors. This

causes q", q 2, q 3 to have identical state values and satisfy case (ii) of Definition 7.

send signal

stop rotation

Motors move
forward

stop motors

send message
(obstacles detected)

send message
(obstacles detected)

fe0

Figure 4.10 - Resulted DFA after merging identical states

As stated in Section 4.2, as a result of generalization, the content of the message

"send signal" is not considered. However the content of the "send signal" will make a

difference in the behavior of the robot. Therefore these identical states may result in

emergent behavior. As shown in Figure 4. 10, by having the states q 1, q 3 as identical

states, the robot gets stuck in a state of confusion between moving forward as it detects

no obstacles in its path, and setting a flag that a mine is detected by the infrared sensor.

This state of deadlock is illustrated by MSC4 in Figure 4.5.

4.5 Verification of Lack of Existence of Illegal Scenarios in Distributed Systems

In the development of larger distributed systems, it is often desirable to ensure

that certain scenarios do not emerge in the system's behavior. This section introduces

45

methodologies which ensure formal verification of lack of such scenarios. These

methodologies are demonstrated using a case study of a common online commerce

system.

4.5.1 Case Study: Online Commerce System

Online commerce applications are among the most widely used distributed

systems which have helped transform the nature of free trade as was traditionally known.

Web sites such as Amazon and eBay are among the largest of such applications. The case

study used in this paper is a typkal example of a large scale online commerce

application; very similar to the likes of amazon.com. This application is a distributed

client-server system with potentially thousands of users. This system is constructed

based on the widely accepted Model-View-Controller (MVC) architecture which is

explained in section 2.2.2.

4.5.1.1 System Requirements

A subset of system requirements are expressed using message sequence charts

(MSC) as shown in Figures 4.11-4.13. As it can be seen, these charts essentially present

the interactions among the three layers of the MVC architecture and system users. In this

case study, two different classes of users are assumed; the customers and the suppliers.

The users belonging to the costumer class use the system to browse or search for goods

and ultimately to place orders. The users on the supplier side use the system to view

orders and update shipping information and order statuses. It is needless to say that both

of these groups of users interact with the view layer of the MVC architecture.

46

In the interest of simplicity and efficiency, four different processes are described

in these scenarios which incorporate both the user classes as well as the three layers of

the MVC architecture. As illustrated in Figures 4.11-4.13, the supplier and customer user

classes are combined with the view layer of MVC while the controller and model layers

are each distinctly represented.

These scenarios describe the process of placing orders by the customer and

shipment of orders by the supplier. MSC1 illustrated in Figure 4.11 demonstrates a

scenario where the customer places an order which is received by the supplier. The

supplier then ships the order and the customer is notified.

MSCI

Supplier Model

Notif

Notify user

Controller Customer

Place order

Write to DB

supplier

of shipment

Write to D.B.

>

Notify user
>

4.11 - Customer places an order which is shipped by the supplier

MSC2, illustrated in Figure 4.12 presents a scenario where the customer places an

order which is received by the supplier. However before the order is shipped by the

47

supplier, the customer applies changes to the order which are also received by the

supplier. The supplier ships the order according to the changes made by the customer.

MSC3 shown in Figure 4.13 illustrates a scenario where the customer tries to make

changes after the order has been shipped by the supplier but this request is rightfully

denied.

MSC2

Supplier

K

Model

Notify

Notify

Notify user

Controller

Write to DB
K

supplier

Write toDB

supplier

of shipment

K Write toDB

K:

 >

Customer

Place order

Change order

Notify user

4.12 - Customer places an order, then makes changes. Changes are received by supplier and

order is shipped

48

MSC3

Supplier

K

Model

Notify

Notify user

K

Controller

Write to DB
K:

supplier

of shipment

K
Notify supplier

Write toDB

 >

K:

Customer

Place order

Notify user

Change order

>

No change allowed
(order shipped)

>

4.13 - Customer places an order. Order is received by the supplier and is shipped.

Customer attempts to change order but is denied.

4.5.1.2 Illegal Scenarios

Figure 4.14 represents a possible illegal scenario which is undesirable to occur.

Therefore it. is required to verify that such a scenario will not emerge from the system

requirements, or in other words, from the scenarios which describe the system's behavior.

49

Illegal Scenario I

Supplier

K

Model

Notify

Notify user

Controller

K
Write to DB

supplier

of shipment
><

Customer

Place order

Change order

4.14 - Illegal scenario

The MSC shown in Figure 4.14 illustrates a scenario where the customer attempts

to make changes at the exact same time as the supplier notifies the system of the order

shipment. That is, the controller process receives the two messages of "notify user of

shipment" and "change order" almost simultaneously. Needless to say that in this case

the process controller would be confused as to what course of action to take. It is

important to note that although this is a simple scenario and is very unlikely to occur due

to the available technology, it is still illustrative for the purpose of illegal scenario.

4.5.2 Formal Verification Methodology

This methodology takes two different sets of scenarios which are expressed using

MSCs as follows:

A. A set ofMSCs containing scenarios which describe system's behavior

B. A set of illegal scenarios which are undesirable to occur

50

By having these two sets of scenarios which were given in Section 4.5.1, this

methodology is to verify that scenarios in set B cannot be derived from scenarios of set

A.. In other words this methodology ensures that system's behavior does not contain

scenarios from set B. As for the previous approach (done for the mine-sweeping robot),

this methodology is divided into two parts of constructing the behavioral model and

ensuring the lack of invalid scenarios in the built models. Since these steps were

demonstrated in detail in the previous sections of this chapter, only the results of each are

presented for this approach.

4,5,2.1 Synthesis of Behavior Model

The behavior model for the controller process of the scenarios in set A is shown

in Figure 4.15.

Place order

Place
order

Place
order

Write to DB

Write
to 1313

Notify

supplier

Notify supplier

Change
order

Notify user
of shipment

Notify user
of shipment

Write
to IDS

Write
to 08

Write to DB

Notify
supplier

Notify
user

Notify user

Notify user
of shipmen

Change
order

Write
to DB

No change
allowed

Notify
user

4.15- The union of all eFSMs built for process controller from MSCs 1-3 (Figure 4.11-13)

Consequently, the behavior model of the controller process from the scenario in

set B is constructed as shown in Figure 4.16.

51

Place order/ mi \ Write to DB

Notify user
of shipment

L

Notify supplier

4.16 - Behavior model for the controller process from scenario of set B

4.5.2.2 Detection of Emergent Behavior

Figure 4.17 illustrates the constructed FSM as the result of the merging of

identical states.

Place Write Notify Change

order, si to DB 2 s pp ier order

\J j" k , a

Notify user
of shipment

4.17 - Resulted FSM after merging identical states

Upon the identification of cases of emergent behavior in system requirements

(case A), a new set C can be constructed to contain their related behavioral models.

Therefore if a behavior model built based on scenarios in set B does not match a

behavioral model in set C, it is verified that the system will not contain that particular

illegal scenario. Conversely if a behavior model constructed based on the scenarios of set

B is equal to the behavioral model in set C, the verification has failed. By comparing the

FSM in Figure 4.17 with the behavior model constructed from set B (Figure 4.16) it

becomes evident that the illegal scenario of set B can potentially emerge from the

scenarios of set A.

52

4.6 Using the ProposedMethodologies in Agile Development

Agile software development has been adopted as one of the most practical

approaches to software development. The main reason for this is the tendency to

incorporate changes in requirements [53]. In general, agile follows iterative development

which advocates frequent and regular software releases [53]. This allows new versions of

the software to be released to users quickly and frequently. Therefore users can respond

to these releases with feedback, changes of their requirements and general comments.

These changes and comments can then be incorporated in the future iterations and

releases of the software [53].

Developing software in iterations implies the execution of software development

lifecycle in each release. That is each iteration consists of requirements elicitation,

analysis and design, development and testing [53, 54]. A common belief about agile

methods is that they can benefit from using more quantified approaches across the entire

development life cycle. The research presented in [55] discusses such things as

quantification of the requirements, design estimation, and measurement of the delivered

results and proceeds to highlight the advantages of adopting such approaches. In this

section some of the merits of quantification of agile methodologies particularly in the

requirements engineering portion of each iteration is discussed. Furthermore the

advantages of incorporating the methodologies proposed in this thesis into agile

development to detect defects in software requirements are outlined.

As it was mentioned in the previous sections of this thesis, collecting and

analyzing user requirements is very complex and is often a problematic process in

53

software development projects. There are several approaches, which suggest ways of

managing user's requirements; some of the most well-known are IEEE 830 software

requirements specification (SRS), use cases, interaction design scenarios, etc [56]. Many

software experts believe the real user requirements emerge during the development

phase. By constantly viewing functional sub-systems of the whole system and

participating, in fact, in all phases of system development, customers/users can revise

their requirements by adding, deleting, or modifying them [56].

However it is needless to say that the traditional waterfall model does not allow

such flexibility concerning not, only the management of user's requirements, but also the

entire software development process in general. Agile methodologies represent this

different approach since the iterative and incremental way of development they propose

includes user requirements revision mechanisms and user active participation throughout

the development of the system [56]..,The most famous approach concerning requirements

specification among the supporters of the agile methodologies is probably user stories

[56]. In fact, user stories are one of the primary development artefacts for extreme

programming (XP) project teams. XP creator Beck defines a user story as: "One thing

the customer wants the system to do. Stories should be estimable at between one to five

ideal programming weeks. Stories should be testable. Stories need to be of a size that you

can build afew of them in each iteration" [57]. Figure 4.18 demonstrates the use of user

stories in agile development.

54

Customer

(

Customer

Wflt4S tt0t14

I.

Cl
,Stsnal.S .tor peels art

sam, setcey

Development
Team

-

— t-

sLate

P'Ctfl Stale, 8flc

panS t. rain..

Development
Team

pan the nra,,,,

ft.eatcer,Z

Figure 4.18 - Agile development with user stories

There arc several ways to represent user stories: it can be done using text [55-57]

or as suggested in this thesis, they can be illustrated using sequence diagrams or message

sequence charts (MSC). As mentioned previously in this research, the advantage of using

MSCs is that they are easy to understand and have a great expressive power.

Furthermore due to the concise notation of MSCs they can be used in systematic

methodologies proposed in this research to test and verify the correctness of user stories.

Incorporating requirement and design validation methodologies in agile development

goes a long way towards quantifying agile approaches and can be particularly useful in

building large scale and complex software such as distributed or multi-agent systems.

55

4.7 Summary

In this chapter two different approaches for the validation of software

requirements for distributed systems were introduced. The first approach which was

illustrated using the case study for a minesweeping robot involves compiling all system

scenarios and conducting behavioral modeling in order to discover all cases of emergent

behavior in system's requirements. The second approach which was illustrated using an

online commerce application involves ensuring the lack of existence of particular

scenarios in the system behavior.

Furthermore it has been demonstrated in this chapter that scenario-based

specifications can be used in agile software development and that the proposed

methodologies in this research can be utilized effectively in quantifying agile approaches.

In Chapter 5, these methodologies are used to analyze and validate design documents of

multi-agent systems.

56

Chapter Five: Detection of Emergent Behavior in Multi-Agent Systems

Multi-agent systems (MAS) are efficient solutions for commercial applications

such as robotics, business commerce applications, information retrieval and search

engines. In MAS, agents are usually designed with distribution of functionality and

control. Lack of central control implies that the quality of service of MAS may be

degraded because of possible unwanted behavior at runtime, commonly known as

emergent behavior. Requirements and design of multi-agent systems is particularly

challenging due to the sophisticated interactions of automated entities. Therefore system

faults such as deadlock or feature interaction may arise in MAS. A feature is defined as

an identified piece of functionality which is added as an extension to a base system. By

extension feature interaction is the situation where two features contradict or have a

negative effect on each other [58]. However it is important to notice that emergent

behavior is not necessarily always negative. Emergent behavior by definition is a

behavior exhibited by the system, but is not explicitly a part of its specifications. Thus

although feature interactions are classified as a type of emergent behavior and can be

detected using the proposed methodologies in this research, they are only a subset of

emergent behavior.

Detecting and removing emergent behavior during the design phase of MAS will

lead to huge savings in deployment costs of such systems. Effective and efficient design

validation of MAS requires the development of systematic and automated methodologies

to review MAS design documents [59]. Although the increasing demand for multi-agent

systems (MAS) in the software industry has led to the development of several Agent

57

Oriented Software Engineering (AOSE) methodologies, the AOSE methodologies

usually do not fully cover monitoring and testing. In, this thesis, a methodology to help

MAS developers verify, test and monitor MAS design is introduced. In Chapter 4 the

detection of emergent behavior in the requirements of distributed systems were

illustrated. This chapter goes further and introduces a methodology to analyze the design

of multi-agent systems for emergent behavior.

This method uses MAS design and analysis artefacts created by MaSE which is

one of the most powerful and famous AOSE methodologies. In this method, the design

artefacts of MaSE are converted to scenario-based specifications, which are very similar

to UML's sequence diagrams [60, 61]. These specifications are then used to analyze the

design of MAS to ensure the lack of emergent behavior.

5.1 Background

Over the years, international interest in multi-agent systems (MAS) has grown

enormously. This is partially since agents are attractive software paradigms which

provide the opportunity to exploit the possibilities presented by massive open distributed

systems such as the internet [31]. Furthermore as agents are by definition automated

entities, multi-agent systems (MAS) seem to be a natural metaphor for understanding and

building a wide range of artificial social systems [31]. As the result of this growth in

agent technology, many Agent Oriented Software Engineering (AOSE) methodologies

such as GAlA and MaSE have emerged to assist in the development of MAS [37].

As mentioned previously, this research proposes a systematic methodology that

can be automated to review MaSE design artefacts in order to discover and remove

58

emergent behavior. MaSE provides a comprehensive and detailed approach for the

analysis and design of MAS. This methodology utilizes several diagrams and models

which are driven from the standard Unified Modeling Language (UML) to describe the

architecture-independent structure of agents and their interactions [33]. The main focus

in MaSE is to guide a MAS engineer from an initial set of requirements through the

analysis, design and implementation of a working MAS. In MaSE, a MAS is viewed as a

high level abstraction of object oriented design of software where the agents are

specialized objects that cooperate with each other via conversation and act proactively to

accomplish individual and system-wide goals instead of calling methods and procedures.

MaSE incorporates models which illustrate the interactions among different roles

within agents as well as the conversations between the agents themselves. In other

words, different scenarios that make up the overall functionality and behavior of the

MAS can be extracted from these models. Having access to the scenario-based

specifications of MAS is considered greatly valuable as scenarios are not only an

efficient way to describe the system's requirements and behavior, but they can also be

used to examine the system for possible design faults such as emergent behaviors. In this

research a systematic approach is proposed to extract MSCs from MaSE artefacts. These

MSCs are then used to examine the design of the MAS.

This chapter is organized as follows: In section 5.2 the multi-agent system for

manufacturing which is used as the case study throughout this paper is introduced. The

analysis and design models of MaSE for the system are provided in this section and the

processes of extracting MSCs from these models is explained. Section 5.3 consists of the

59

behavioral modeling of the manufacturing* MAS. Detection of implied scenarios and

emergent behavior is discussed in Section 5.4 and the summary of the chapter is

presented in Section 5.5.

5.2 Case Study: MAS for Manufacturing System

The methodologies proposed in this research are explained using a MAS of a

manufacturing system. An Automated Manufacturing System (AMS) is an integrated

system of equipments and processes controlled via computer applications or a network of

them that is capable of producing a variety of products with flexibility and efficiency. A

manufacturing system automaied by agent-based technology is composed of several

autonomous and intelligent agents that can communicate and exchange information to

manage the product line processes and solve challenging problems collaboratively such

as resource allocation for production tasks. Robots and machines are the resources in

these systems which are used by agents in cqmpleting tasks and achieving the overall

systems' goals.

An automated manufacturing system usually consists of a set of cells, a material

handling system connecting the cells, and service centers including material warehouse,

tools room, and equipment repair. A cell can be either a machine, inspector, or a

load/unload robot. Therefore, an automated manufacturing system can also be defined as

a set of machines in which parts are automatically transported from one machine to

another for processing. However due to the lack of central control, allocating resources

(i.e. machines and robots) in such systems are prone to emergent behavior.

60

In this research, we consider a multi-agent manufacturing system which consists

of several interacting agents; one of which is the controller agent. The agents are

responsible for the production tasks in the system. Each agent can play different roles.

The machines and robots are shared among the agents. The controller agent assigns tasks

to each agent. Once the tasks are assigned to an agent, that agent would be responsible for

their completion. All the communications regarding those tasks (e.g. transportation

requests) are initiated by the agent. While the tasks are being completed, the agent makes

transportation requests to the controller agent and the controller responds accordingly.

Once the transportation is complete, a message is sent to the agent informing that the

parts are located on the requested machine. Once the tasks are done, the agent sends a

message to the controller agent and informs it about the task completion.

This system is analyzed and designed using MaSE methodology. Among the

MaSE models produced, the sequence diagrams in the "Applying Use Cases" step from

the analysis phase of MaSE along with the "Agent Class Diagrams" from the design

phase of this methodology are used to construct the partial scenarios for the system in this

research. This is since the role sequence diagrams of the "Applying Use Cases" step of

MaSE contain the conversations among roles assigned to each agent [16]. The agent

class diagrams of MaSE on the other hand represent the complete agent system

organization consisting of agent classes and the high-level relationships among them. An

agent class is a template for a type of agent with the system 'roles it plays. Multiple

assignments of roles to an agent demonstrate the ability of the agent to play assigned

roles concurrently or sequentially.

61

The agent class diagram in MaSE is similar to the class diagrams used in object

oriented design but the difference is that the agent classes are defined by roles, not by

attributes and operations. Furthermore, relationships are the conversations among agents

[62]. Figures 5.1-5.3 demonstrate MaSE role sequence diagrams for the multi-agent

manufacturing system while Figure 5.4 shows the agent class diagram.

SDI)

Dispatcher Manufacturing
Machine 1.1

LoadOnMachine (Machinel.1)

Transport Roboti

PartsLoaded

MveToMachine (Machinel.2)

Manufacturing
Machine 1.2

PartsLoaded

MoveToMachine (Machine I 3)

Manufacturing
Machine 1.3

PartsLoaded

ProductisDorte

Figure 5.1 - Roles within Agent 1

62

SD2

Dispatcher Manufacturing
Machine 2.1

LoaclOnMachine (Machine2.1)

Transport Roboti

PartsLoaded

MoveToMachine (Machine2.2)
 >

Manufacturing
Machine 2.2

PartsLoaded

ProductDone

Figure 5.2 - Roles within Agent 2

63

SD3

Dispatcher
Manufacturing
Machine 3.1

LoadOnMachine (Machine3.2)

Transport Robotl
Manufacturing
Machine 3.2

PartsLoaded

MoveToMachine (Machine3

1<

PartsLoaded

MveToMachine (Machlne3.3)

1)

Manufacturing
Machine 3.3

PartsLoaded

ProductisDone

Figure 5.3 - Roles within Agent 3

The role sequence diagrams illustrated in Figures 5.1-5.3 illustrate the roles in

agents 1-3 respectively, along with the conversations among these roles. The agent

class diagram on the other hand demonstrates the communications of the agents with

the controller agent as shown in Figure 5.4. For the sake of the simplicity of this case

64

study, the conversations among Agents 1-3 are omitted from the agent class diagram.

Assign Product

Controller
Dispatcher

TransportRobotl

Handling Request

Assign Product

Aqent3
Manufacturing Mach ine3. I
Manufacturing Mach ine3.2
Man ufactu ring Machine3.3

 >

Handling Request

Asn Prod uct

Handling Request

Acjent2
Man uMctu ring Machine2. I
ManufacturingMachine2.2

Man ufactu ring Machine2.3

Aqent1
Manufactu ring Mach! nel .1
ManufacturingMachinel .2
ManufacturingMachinel .3

Figure 5.4 - Agent class diagram

The approach for extracting message sequence charts (MSCs) from the two above

mentioned MaSE models is defined as follows: Each role sequence diagram is searched

for the roles which are listed in the same agent clss shown in the agent class diagram

(Figure 5,4). Following this, all of the roles in each role sequence diagram are

categorized based on their agent. Thus each category corresponds to an agent class of the

agent class diagram and the messages which it exchanges with other categories are

recognizable. From these two models an MSC can be generated which would display the

65

recognized messages between each two categories. Figure 5.5 demonstrates the extracted

MSCs from the MaSE artefacts shown in Figures 5.1-5.4.

MSCI

Controller Agent

LoadOnMachine
(Machinel.1)

PartsLoaded

Agenti

¼:
MoveToMachine(Machinel.2)

PartsLoaded

,< MoveloMachine(Machinet3)

PartsLoaded

ProductsDone

Controller Agent

Agent2

Figure 5.5 - Extracted MSC from MaSE models

LoadOnMachine
(Machine2.1)

PartsLoaded

MSC2

Agent2

MoveToMachine(Machine2.2)

PartsLoaded

ProductsDone

Agent2

Figure 5.6 - Extracted MSC from MaSE models

Agent3

Agent3

66

MSC3

Controller Agent

LoadOnMachine
(Machine3.2)

PartsLoaded

Agent3

MoveloMachine(Machine3.1)

PartsLoaded

K MoveToMachine(Machine3.3)

PartsLoaded

ProductsDone

Agent2 Agent3

Figure 5.7 - Extracted MSC from MaSE models

5.3 MAS Behavior Modeling

By extracting the partial scenarios of the system based on the MaSE models, we

proceed to the modeling of the system's behavior. As mentioned previously, developing

a methodology which can systematically discover and remove system design faults prior

to the implementation phase results in huge savings in cost and time. The first step of the

methodology proposed by this research is the synthesis of state machines from MSCs.

This step was demonstrated in Chapter 3 for the distributed system of a mine sweeping

robot and is followed in this section using the case study of the manufacturing MAS.

We start by constructing behavior models for individual agents using finite state

machines (FSMs). The process of building FSMs from message sequence charts (MSCs)

is generally referred to as behavior modeling. For any agent i of a partial message

sequence chart (pMSC) defined in Definition 1, an equivalent state machine (Definition

67

3) can be constructed. For instance, in the case of the manufacturing MAS the behavior

model of the "Controller Agent" is demonstrated. Figures 5.8, 5.9 and 5.10 show the

eFSMs built for the "Controller Agent" in MSCs 1, 2 and 3 respectively (Figures 5.5-5.7).

LoadOnMachine
())(Machine1.1)i"mi PartsLoaded

MoveToMachine MoveToMachine
PartsLoaded (Machinel.2) (Machine 1.3) PartsLoade

Figure 5.8 - eFSM.for the controller agent in MSC1 of Figure 5.5

LoadOnMachirie Loaded /''\'
(Machine2.1) hine2.2) / m2 \PartsLoaded q a,) Parts (Mac >q 2 >q 3

 . LoadOnMachine
" •(Machine3.2)
0)

PartsLoaded

Figure 5.9 - eFSM for the controller agent in MSC2 of Figure 5.6

oveToMachine
(Machlne3.1) PartsLoaded

MoveToMachine
(Machine3.3)

ProductDone

ProductDone

PartsLoade. ,q ProductDone

Figure 5.10 - eFSM for the conttoller agent in MSC3 of Figure 5.7

To complete the behavior modeling for the Controller Agent, the union of eFSMs

built for each eFSM from MSCs 1-3 of Figures 5.5-5.7 is constructed as shown in Figure

s:ii.

68

LoadOnMachine

(Machinel 1)iv(qml 1)

LoadOnMachine
'1 (Machine2.1)fv(qm2 PartsLoaded 1)

PartsLoaded,
V(qm12)

LoadOnMachine
(Machine3.2)

MoveToMachine
(Machinel.2)

MoveToMachine
V(qm22j)(Mhun1e22> V(qm2,) PartsLoaded

PartsLoaded

PartsLoaded
MoveToMachne
(Machine3.1) PartsLoaded

MoveToMachine

V(qm14)Mathe 1.3)

ProductDone

MoveToMachine
(Machine3.3)

V(qmas)
PartsLoade

ProductDone

ProductDone
V(qM3 10

Figure 5.11 - The union of eFSMs built from MSCs 1-3

5.4 Detection of Emergent Behavior in MAS

In this section detection of emergent behavior in MAS is illustrated using the

manufacturing case study. Since this method is quite similar to the one used for

distributed systems, this section is kept very brief. We start by calculating state values.

For instance in order to calculate the state value for state q 1 we proceed as follows: from

the domain theory of the system. (Definition 5) we learn that the case ii of Definition 6

applies. Therefore the value of state q 1 is calculated as Vcontroiter Agent I (q 1) =

M IcontrotZ Agent [4 - 1] = PartsLoaded. Continuing the same approach the values of states

q 2 and q'3 are also calculated to be "PartsLoaded".

By considering the resulting FSM in Figure 5.11, we select pairs of states with the

same incoming transitions and evaluate their state to look for identical states. Figure 5.12

illustrates the constructed FSM as the result of merging two of the discovered identical

states. Thus as shown in Figure 5.12, it is discovered that emergent behavior exists in S4.

In this state, the controller agent becomes confused as to whether the right action is to

move to machine 1.3, or whether to conclude its work.

69

LoadOnMachine --.-..
(Machinel.1)(1 04

'LoadOnMachine

) (Machine2.1) K S7

PartsLoaded

PartsLoaded

MoveToMachine MoveToMachine
(Machinel.2) PartsLoaded (Machine 1.3)

S4

MoveToMachine
(Machine2.2) PartsLoaded ProductOone

PartsLoadec(\ ProductOone

Figure 5.12 - Resulted FSM after merging identical states

5.5 Summary

This chapter aims to detecting emergent behavior in the requirements of multi-

agent systems (MAS) using systematic and automated methodologies. This is

accomplished by formulating a link between MaSE, which is one of the prime AOSE

methodologies, and scenario-based software engineering (SB SE). This endeavour is

commenced by converting MaSE artefacts to scenario-based specifications, represented

by niëssage sequence charts (MSCs). These specifications are then used to construct

behavior models for all agents involved in the MAS. Finally the behavior models are

analyzed for validating the design of MAS and ensuring the lack of emergent behavior.

In Chapter 6 the requirement and design documents, as well as the prototype for

the design validation tool which automates the methodologies outlined in this chapter and

Chapter 4 are presented.

70

Chapter Six: Design and Implementation of an Automated Tool

As presented in the preceding sections of this thesis, despite many advantages of

using scenario-based specification for the design of distributed systems, there are certain

limitations to this approach. Therefore in order to use scenarios, it is greatly beneficial

and even necessary to devise methodologies which verify the resulted design of the

system. Consequently in order to enable the efficient and effective use of these

methodologies in real world projects, they need to be made automated in a user-friendly

software package. In this section, the design and implementation of this tool is presented.

6.1 System Requirements

The functional and non-functional requirements of this tool are outlined in this

section.

6.1.1 Functional Requirements

Fl: Import Message Seciuence Charts (Evident

The user must be able to import one or more (1-200) message sequence charts

from a third party software such as Eclipse, Microsoft Visio or IBM Rational Rose

(Assuming only Eclipse in preliminary requirements).

F2: Parse Imported MSCs (Hidden)

The MSCs that the user has imported are in XML. The system must parse them

and extract relevant information from those files.

F3: Synthesis Behavior Models (Hidden)

MSCs are to be converted into finite state machines. This is to be done as

follows: For each component in each MSC, a finite state machine is to be defined in such

71

a way that messages to and from that component are the transitions between states. To

complete the synthesis step for each component, union all the resulting FSMs from all the

different scenarios which contain that component.

F4: Converting the resulting NFAs to DFAs (Hidden

As the resulting FSMs from F3 are unions of other FSMs, they are by definition

non-deterministic finite state machines (NFA). These NFAs must be made into DFAs

and simplified.

F5: Building the Domain Theory (Evident)

In order to determine the identical states (which is the ultimate goal of the tool)

the domain expert must specify certain architectural information known as semantic

causality between pairs of messages. Semantic causality is formally defined in Definition

4 of Chapter 3.

This information will be known as the "domain theory" and will assist the system

to determine the state values of the resulted FSMs. The formal definition for the domain

theory has been given in Chapter 3 as Definition 5.

However it is obvious that prior to selecting pairs of messages between which

semantic causality exits, state values of the FSM must be calculated. The state values in

FSMs are provided in Definition 6 in Chapter 3.

Building a full domain theory would mean having the domain expert establish

every semantic causality relationship for each component in the system. Therefore a light

domain theory must be made as follows:

72

For each component, consider the resulting FSM (DFA) from F4. For every pair

of states that have the same incoming transitions, seek user input and calculate state

values.

F6: Detection of Emergent Behavior (Hidden

Based on the domain theory constructed in F5, identical states are to be identified

according to Definition 7 given in Chapter 3.

F7: Producing Report(Evident)

Using the results from F6, a report is generated for the system engineer to inform

them as to whether or not emergent behavior exists in the system.

6.1.2 Non-Functional Requirements

The system's non-functional requirements are defined in the following categories:

Usability

The system is being developed to be used mostly by software engineers and

designers. It is envisioned to be used to design a vast range of software systems such as

distributed systems and multi-agent systems. Therefore it is of vital importance for this

tool to be versatile and easy to use. To achieve this, an easy to use and user-friendly

graphical user interface (GUI) will be designed and implemented. Furthermore the steps

the software will take to achieve its goals will be well thought of, so that they follow a

logical flow. To assess whether or not this requirement has been realized, several users

will be selected to use this tool. Their feedback will be recorded to evaluate the usability

of this tool.

73

Reliability

This tool is planned to be a desktop application, therefore reliability becomes a

much simpler concept to deal with. However this tool is to be depended upon by

engineers and software designers, and it must be made reliable. This tool will be

designed in such a way that data is not lost if the program is to terminate. Rigorous

testing must be done throughout to ensure the software is developed correctly. Both

black-box and white-box testing must be done to remove faults. Software reliability

engineering techniques must be employed to asses and ensure reliability of the software.

Performance

This tool will potentially have to process a great amount Qf data in one run.

Numerous scenarios can be chosen to be checked using this tool at one time. The core

algorithms have already been designed and have been optimized to match this

requirement. It is set as a limit that the response time for any number of input scenarios

should not exceed 10 minutes. Since the maximum number of input scenarios as

specified in the functional requirements (Fl) is 200, the performance of the tool can

simply be measured against time.

Supportability

This system is to be designed to be modular and by extension maintainable.

There are a number of different algorithms that will be implemented and added to this

tool. Therefore the design of this tool is to be in such a way that updating and correcting

algorithms and adding new ones are made simple. To asses the achievement of this

requirement the modularity of the architecture of this tool can be analyzed.

74

6.2 Design Documents

High level design documents of this tool have been provided in this section.

6.2.1 List of Actors

There are two types of actors in this system as explained in this section:

Domain Expert (System's user)

The domain expert is the human user of the system. This user is typically the

requirement engineer or the designer of the software. To start with, the domain expert

chooses a set of message sequence charts as input for the system. Then as the system is

running, the domain expert is asked to help with building the "domain theory". That is,

the domain expert will be asked to provide input related to the architecture of the system

to be built. Upon completion, the domain expert is presented with the output.

Eclipse

Message sequence charts '(MSCs) are produced using Eclipse. They are then

imported by our system to start analysis.

NOTE: As the software is developed, the goal is to have the tool connect to other

tools such as IBM's Rational Rose and Microsoft Visio.

6.2.2 System's Use Cases

The names and brief descriptions for the systems use cases are provided in this

section.

Import XML Files

This use case is responsible for importing MSCs from Eclipse, parsing them and

extracting relevant information from those files.

75

Construct Finite State Machines (FSM)

As defined in functional requirements (F3), each component in the imported

MSCs is to be converted to finite state machines.

Synthesize Behavior Model

As required by the functional requirements (F3), the resulted FSMs for each

component are to be unionized. This is done to obtain the full behavior of the component

in the system. As defined by F4, the resulting FSM is simplified to obtain a deterministic

finite automaton (DFA),

Build Domain Theory

As required by F5 the architectural properties of the system are defined in this use

case. All requirements stated by P5 are realized here.

Detect Identical States

As required by P6, based on the domain theory constructed, identical states are to

be identified.

Produce Report

This use case is responsible for making a report based on the result of the

analysis.

The use case diagram of the system is presented in Figure 6.1.

76

Domain Expert

Figure 6.1 - Use case diagram

Produce Repo

System

Import XML Files

Synthesize
Behaviour Model

Construct FSM

Build Domain Theory

Detect Identical
States

6.2.3 Flow of Events

The flow of events is done for the following two use cases:

Synthesis of Behavior Model

Eclipse

• Each component of each scenario is converted to a finite state machine as stated
in F3

• The resulting state machines of each components from different scenarios are
unionized together

• If the resulting FSM is non-deterministic, convert it to a deterministic finite state

machine (i.e. DFA)

• Simplify the resulting DFA (remove unnecessary states)

Build Domain Theory

• For a given FSM, search for pairs of states which have the same incoming
transitions

77

• For each of the states obtained in the previous step, obtain its semantic cause

• Using semantic causality, calculate the state's value (Definition 4)

The activity diagrams for the above two use cases are illustrated in Figures 6.2-
6.3.

(Divide each MSC into components

V
Convert each component to FSm

(Convert the NFA to DF

(Simplify resulting DFA

(i
Figure 6.2 - Activity diagrams for the Synthesis Behavior Model

78

(Get fully constructed FSM (DFA) for each component

_earch for pairs of identical states

[E se]

V
Get the states' semantic cause

[If none found]

/
 (calculate the states' values

Figure 6.3 - Activity diagram for Build Domain Theory

79

Domain Class Diagram

The domain class diagram according to the system requirements is presented

below:

<<Boundary>> InputReader

<<Control>> Parser

<<Boundary>> ReportBuilder

<<Controller>> DomainlheoryBuilder

<<Controller>> MSCtoFSMConverter

<<Entity>> MSC

<<Controller>>NFAtoDFAConverter

<<Entity>> Component

<<Entity>> Message

<<Entity>> FSM

<<Controller>> ldenticalStatesFinder

<<Entity>> Domainlheory

<<Entity>> State <<Entity>> Transition

Figure 6.4 - Domain class diagram

80

6.3 System prototype

The prototype of the design validation tool is presented in this section [63]. There

were two major concerns in the developmnt of this tool. First, as there is still a vast

amount of research remaining in this area, it is essential for this tool to be modular and

scalable. To comply with this requirement, this tool was built on the two pillars of

encapsulation and parallel execution.

The second concern was that since this tool is developed to increase the efficiency

of the development life cycle, it is highly desirable that it is easy to use. To incorporate

the usability of the tool, an easy to follow graphical user interface (GUI) has been

developed (Figure 6.5) which closely represents the logical flow of the developed

methodology. To test the usability of this tool, as mentioned in the non-functional

requirements section of this chapter, several users will be selected to utilize .this tool.

Their feedback will be recorded to evaluate the usability of this tool.

Moreover, as MSCs are constructed using a variety of different software

packages, in order to account for the convenience of the users, this tool can import MSCs

from a variety of different tools such as IBM Rational Rose and Microsoft Office Visio.

81

ERD

Component Level Nms, ,iueri L.el Analysis

Message Sequence Chart
Selected Diagram

CR Sensor

Composer-its

hR Sensor
ljI n.inr

ULT Motor Controller
Server Controller

MCCI

Sensor Controller

I send signal I
(rio obstacle detectet)

Messages Constructed FSMs

send signal no obstacle detected)
rotate
Motors move forward
send message)'o obstacle detected)

FSM . I Sensor
FSM - ULT Sensor
FSM Client Controller
FSM - Motor Controller
FSM -Server Controller

ULT P401st COntroler Server Controller

'I rotate

I Motors move I
r 's't

send message trip obtarle detorted)

Import 'atsia Project

Import Visual
Poradigm Project

Import Rational
Rose Project

LM0t0t3 niove

Validate Design

Figure 6.5 - Snapshot of the GUI of the tool; displaying an imported MSC

As it can be seen from the snapshot of the tool's graphical user interface shown in

Figure 6.5, upon importing a design project from one of the above mentioned tools, the

data boxes of the GUI are populated automatically with appropriate data. By clicking

any of the imported MSCs, the components of that MSC will be shown in the Component

subsection of the GUI and the actual MSC will be shown in the Selected Diagram area.

Consequently, by selecting a component, the messages associated with that component

will be shown in the Message subsection of the GUI. The synthesis of the behavior

model, explained in Sections 3.2 and 4.3 of this thesis is conducted immediately upon

importing related MSCs. As the result the built FSMs will be shown in the Constructed

82

FSMs subsection of the GUI. By clicking on the title of any of the FSMs the constructed

figure will be shown in the Selected Diagram area as shown in Figure 6.6.

EBD

Component Level Analysis IR4!aLe el Analysis

EB Detection 'Generalization Report]

Message Sequence Chad

MSC2
MSCJ

Components

IR Sensor
ULT Sensor

ULT Motor Controller
Server Controller

Messages

send signal (o obstacle detected)
rotate
Motors move forward
send message (no obstacle detected)

Selected Diagram

Weis move
III0NH,0

*od signal
I,

Cunr.ind)

0*00 ineseage
(no j1ncIur, Oi.E,tti,*i

aqad ITh(5!ioç;O

(obEaclee CaterSed)

*rC message

etccrotalice - atop motors (mire 0ete.teC(

FSM- IR Sensor
FSM . ULT Sensor

FS 14 Motor Controller
FS . Server Controller

Import 'aisto Project

Import Visual
Paradigm Project

Import Rational
Rose Project

Constructed FSMs

a
a

Validate Design

Figure 6.6- Snapshot of the GUI of the tool; displaying a constructed FSM

At this point, by clicking the Validate Design button, the methodology

commences. The user will be asked to assist in constructing the domain theory which

will be used to find identical states as outlined in sections 3.3 and 4.4 of this thesis. Upon

completion of the analysis, the user will be presented with a report outlining the areas in

which indeterminism could occur.

83

6.4 Summary

Manual review of requirements and design 'documents, particularly for large-

scale software systems such as MAS and distributed systems is somehow inefficient.

This research attempts to devise methodologies to analyze software design and

requirements using a systematic approach as outlined in this thesis. This chapter presents

the steps towards automating the proposed methodologies as a software tool.

The requirements and design documents of the design validation software tool, as
/

well as its preliminary prototype are presented in this chapter. Using this tool, system

engineers can analyze system requirements in an efficient and effective manner.

84

Chapter Seven: Conclusions and Future Work

Scenario-based specifications are an effective and efficient way to describe the

requirements of a variety of software systems such as multi-agent systems (MAS) and

distributed systems. Scenarios enable engineers and designers to describe system

functionality using the partial interactions of the system elements. Moreover, due to their

simplicity and expressive power, scenarios are the perfect medium through which all

stakeholders can communicate in an efficient and effective manner.

However scenario-based specifications are prone to deficiencies such as

incompleteness and contradictions. It is of vital importance that these deficiencies are

identified prior to implementation as many system failures can be attributed to faulty

requirements and design of software. Studies suggest that the discovery and elimination

of faults and failures during field use of a system is estimated to be about 20 times more

expensive than detection and removal of faults in the requirement and design phase [64].

The main goal of this research is to identify possible design flaws that might lead

to run time problems in software systems by analyzing the system specification expressed

by scenarios. Unfortunately, manual review may not efficiently detect all of the design

flaws due to the scale and complexity of the systems. In this research we have provided

sound techniques to automate the specification and design review of the software systems

and detect a subset of unwanted run time behaviors, including implied scenarios.

Furthermore, in this thesis a method to identify the exact cause of implied

scenarios is provided, so that by capturing it, implied scenarios can be detected and

removed. This method is novel in the sense of formalization of the cause of implied

85

scenarios. We believe that this is the main reason for some shortcomings and conflicts in

the current works, as they have, be'en rvealed in [4, 26, 65].

The proposed methodologies in this thesis were applied to a variety of different

software systems such as distributed and multi-agent systems. In Chapter 4, two

approaches for the validation of software requirements for distributed systems were

introduced. The first approach which was illustrated using the case study for a mine-

sweeping robot involves compiling all system scenarios and conducting behavioral

modeling in order to discover all cases of emergent behavior in system's requirements.

The second approach which was illustrated using an online commerce application

involves ensuring the lack of existence of particular scenarios in the system behavior.

Furthermore the applicability of scenario-based software engineering (SEBE) and the

emergent behavior detection methodologies in agile development was addressed in this

chapter. Incorporating requirement and design validation methodologies in agile

development goes a long way towards quantifying agile approaches and can be

particularly useful in building large scale and complex software such as distributed or

multi-agent systems.

In Chapter 5 a comprehensive methodology was introduced to analyse AOSE

design documents to ensure validation of MAS requirements and the prototype of the

design validation software was presented in Chapter 6. This software provides an easy to

use and practical tool to apply these algorithms to requirements and design documents.

For future work, the proposed methodologies can be extended to a comprehensive

framework for model based analysis and testing of distributed and multi-agent software

86

systems. Furthermore, this technique can be modified to take the UML's sequence

diagrams as input and thus incorporate analyzing object oriented design. These

techniques can also be extended to systematically analyze the design of multi-agent

systems as well as social networks. In this research plug-ins to convert MaSE artefacts to

MSCs were developed. For future work additional plug-ins can be developed to convert

modeling constructs of other AOSE methodologies to scenario-based specifications

(Figure 1.1).

As the produced software closely follows the principle of encapsulations and

modularization, it is intended to add the future results of this research to this tool upon

completion. In addition, since this tool already has the capabilities to import projects

from IBM's Rational Rose, it can be modified and implemented as a plug-in for it. Figure

1.1 illustrates the general structure of the comprehensive framework to be built. This

framework will take input from a variety of different models and its outputs are

component-level emergent behavior detection (CEBD), system-level emergent behavior

detection (SEBD) and model based detection and testing of MAS (MDTM).

Moreover as the analysis of the requirements of software systems were conducted

at the component level in this research, research can be done in analyzing at the system

level. In system level analysis it is assumed that the emergent behavior for the

components has already been resolved. Here scenarios are further analyzed for detecting

possible system level implied scenarios [3]. Contributions regarding this task involve:

(1) revisiting the notion of safe realizability for MSC specifications [3] in order to make

it computationally implementable; (2) devising an algorithm for "strong safe

87

realizability" (i.e. an implementation that covers the behavior described by the

specification while avoiding "stuck states" [3]); and (3) devising an algorithm for

detecting implied scenarios. The teiin stuck states (i.e. a super set for deadlock) is new

and it means that a message sent has no receiver to catch it, and a receiver waits for a

message that has never been sent.

The efficiency of the proposed methodologies is highly dependent on building the

domain theory for the system. Future work can be done to add efficiency to the building,

maintenance and using of the domain theory. Data mining techniques and ontology can

be employed to improve the current state of domain theory in the proposed

methodologies.

88

References

[1] R. F. Goldsmith, Discovering Real Business Requirements for Software Project

Success. Norwood MA: Artech House, Inc., 2004.

[2] J. Whittle and I. Schumann, "Scenario-Based Engineering of Multi-Agent

Systems," in Agent Technology from a Formal Perspective, Third ed London:

Springer-Verlag, 2006.

A. Mousavi, "Inference of Emergent Behaviours of Scenario-Based

Specifications," in Department of Electrial and Computer Engineering. vol. PhD

Calgary: University of Calgary, 2009.

[4] A. J. Mooij, N. Goga, and J. M. T. Romijn, "Non-local choice and beyond:

Intericacies of MSC choice nodes," in M Cerioli (ed): FASE 2005, LNCS 3442:

Springer, 2005, pp. 273-288.

[5] J. Whittle and J. Schumann, "Generating statecharts designs from scenarios," in

ICSE Limerick, Ireland, 2000.

[6] D. Harel and H. Kugler, "Synthesizing state-based object systems from Ise

specifications," International Journal of Foundations of Computer Science, 2002.

[7] I. Kruger, R. Grosu, P. Scholz, and M. Broy, "From mscs to statecharts," in Franz

j. rammig (ed): Distributed and parallel embedded systems: Kluwer Academic

Publis, 1999.

[8] E. Makinen and T. Systa, "MAS - an interactive synthesizer to support behavioral

modeling inUML," inICSE 2001 Toronto, 2001.

[3]

[9]

89

S. Uchitel, J. Kramer, and J. Magee, "Negative scenarios for implied scenario

elicitation," in 10th ACM SIGSOFT International Symposium on the Foundations

of Software Engineering (FSE 2002) Charleston.

[10] S. Uchitel, J. Kramer, and J. Magee, "Synthesis of behavioral models from

scenarios," IEEE Transaction on Software Engineering, pp. 99-115, February

2003.

[11] B. Adsul, M. Mukund, K. N. Kumar, and V. Narayanan, "Casual Closure for

MSC Languages "in FSTTCS, 2005, pp. 335-347.

[12] R. Alur, K. Etessami, and M. Yannakakis, '!Inference of Message Sequence

Charts," IEEE Transaction on Software Engineering, pp. 623-633, July 2003.

[13] H. Muccini, "Detecting implied scenarios analyzing nonlocal branching choices,"

in FASE 2003 Warsaw, Poland.

[14] G. J. Holzmann, D. Peled, and M. H. Redberg, "Design Tools for Requirement

Engineering," Bell Labs Technical Journal, 1997.

[15] D. Harel, "From Play-in Scenarios to Code: An Achievable Dream," IEEE

Software, vol. 34(1), pp. 53-60, 2001.

[16] J. Grabowski, "Test Generation and Test Case Specification with Message

Sequence Charts," in Institute for Informatics and Applied Mathematics:

Universitat Bern, 1994.

[17] J. M. Carroll, Scenario-based Design: Envisioning Work and Technology in

System Development. New York: Wiley, 1995.

90

[18] I. Jacobson, J. Rumbaugh, and G. Booch, The Unified Software Development

Process. Harlow: Addison-Wesley, 1999.

[19] T. Quatrani, Visual Modeling with Rational Rose 2000 and UML. Boston:

Addison Wesley, 2004.

[20] P. P. Texel and C. B. Williams, Use Cases Combined with Booch, OlvIT, and

UAL: Prentice-Hall, 1997.

[21] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, "Scenarios in System

Development: Current Practice," IEEE Software, vol. 15(2), pp. 34-45, 1998.

[22] S. Robertson and J. Robertsoh, Mastering the Requirements Process. Harlow,

England: ACM Press, 1999.

[23] "ITU: Message Sequence Charts. Recommendation, International

Telecommunication Union. ," 1992.

[24] "Unified Modeling Language Specification. Version 2. Available from Rational

Software Corporation," Cupertino, CA, 2006.

[25] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed

Programming: Addison—Wesley, 2000.

[26] M. Moshirpour, A. Mousavi, and B. Far, "Detecting Emergent .Behavior in

Distributed Systems Using Scenario-Based Specifications," in Proceedings of the

International Conference on Software Engineering and Knowledge Engineering

San Francisco Bay, USA, 2010.

[27] P. Smith, Client/Server Computing, Second ed.: Sams Publishing, 1994.

[28] S. H. Kaisler, Software Paradigms: John Wiley & Sons, Inc., 2005.

91

[29] S. Ruby, D. Thomas, and D. H. Hansson, Agile Web Development with Rails,

Third ed.: The Pragmatic Programmers LLC, 2009.

[30] G. Weib, Agent Orientation in Software Engineering: Cambridge University

Press, 2001.

[31] M. Wooldridge, An Introduction to Multi-Agent Systems, Second ed.: John Wiley

& Sons, 2009.

[32] S. A. DeLoach, "The MaSE Methodology," in Methodologies and Software Eng.

for Agent System, F. Bergenti, M.P.Gleizes, and F. Zambonelli, Eds. Boston:

Kiuwer Academic Publishers, 2004, pp. 107-147.

[33] S. A. DeLoach, "The MaSE Methodology," in Methodologies and Software Eng.

for Agent System. vol. 11, F. Bergenti, M.P.Gleizes, and F. Zambonelli, Eds. New

York: Kluwer Academic Publishers, 2004.

[34] G. M. Saba and E. Santos, "The Multi-Agent Distributed Goal Satisfaction

System," in ICSC Symposium on Multi-Agents and Mobile Agents in Virtual

Organizations and E-Commerce, 2000.

[35] J. T. McDonald, M. L. Talbert, and S. A. DeLoach, "Heterogeneous Database

Integration Using Agent Oriented Information Systems," in the International

Conference on Artificial Intelligence, 2000.

[36] P. K. Harmer and C. B. Lamoiit, "An Agent Architecture for a Computer Virus

Immune System," in Genetic and Evolutionary Computation Conference, 2000.

9

92

[37] f. Bergenti, M. P. Gleizes, and F. Zambonelli, Methodologies and Software

Engineering for Agent System vol. 11. New York: Kluwer Academic Publishers,

2004.

[38] A. H. Elamy and B. Far, "A Statistical Approach for Evaluating and Assembling

Agent-Oriented Software Engineering Methodologies," in Agent-Oriented

Information Systems IV. vol. 4898/2008 Berlin / Heidelberg: Springer, 2008, pp.

105-122.

[39] M. Wooldridge, N. R. Jennings, and D. Kinny, "The Gaia Methodology for

Agent-Oriented Analysis and Design," in Autonomous Agents and Multi-Agent

Systems. vol. 3, 2000, pp. 285-312.

[40] F. Giunchiglia, J. Mylopoulos, and A. Perini, "The tropos software development

methodology: processes, models and diagrams," in the first international joint

conference on Autonomous agents and multiagent systems, Italy, 2002, pp. 35-36.

[41] F. Bergenti, M.P.Gleizes, and F. Zambonelli, Methodologies and Software

Engineering for Agent System vol. 11. New York: Kluwer Academic Publishers,

2004.

[42] F. Giunchiglia, J. Mylopoulos, and A. Perini, "The tropos software development

methodology: processes, models and diagrams," in Proceedings of the first

international joint conference on Autonomous agents and multiagent systems,

Italy, 2002, pp. 35- 36

93

[43] M. J. Wooldridge and P. Ciancarini, "Agent-Oriented Software Engineering: The

State of the Art," in Proc. of the Workshop on Agent-Oriented Soft. Eng., 2000,

pp. 1-28.

[44] B. Meyer, "Applying Design by Contract," IEEE Computer, vol. 25, pp. 40-51,

1992.

[45] H. L. Timothy and S. A. DeLoach, "Automatic Verification of Multiagent

Conversations," in the Annual Midwest Artificial Intelligence and Cognitive

Science Fayetteville, 2000.

[46] M. J. Wooldridge, M. Fisher, M. Huget, and S. Parsons, "Model Checking Multi-

Agent Systems with MABLE," in Proc. of the mt. Joint Conf. on Autonomous

Agents and Multiagent Systems, 2002, pp. 952-959.

[47] G. J. Holzmann, "The Model Checker Spin," IEEE Trans. on Soft. Eng., vol. 23,

pp. 279-295, 1997.

[48] K. Koskimies, T. Mannisto, T. Systa, and J. Tuonmi, "Automated support for

modeling oo software," IEEE Software, pp. 15(1):87-94, 1998.

[49] J. Warmer and A. Kieppe, The Object Constraint Language: Precise Modeling

with UML: Addison-Wesley, 1999.

[50] "Recommendation Z.120: Message Sequence Chart(MSC)," Geneva, 1996.

[51] M. Lohrey, "Safe realizability of high-level message sequence charts," CONCUR,

vol. 177-192, 2002.

[52] M. Moshirpour and B. H. Far, "Formal Verification of Lack of Existence of

Illegal Scenarios in the Requirements of Distributed Systems," in The lASTED

94

International Conferences on Informatics 2010 Software Engineering and

Applications (SEA 2010), Marina del Rey, USA, 2010.

[53] J. Hunt, Agile Software Construction. London: Springer-Verlag, 2006.

[54] E. Mnkandla and B. Dwolatzky, "Agile Software Methods: State-of-the-Art," in

Agile Software Development Quality Assurance, I. Stamelos and P. Sfetsos, Eds.

Hershey, London, Melbourne, Singapore: Information Science Reference, 2007.

[55]. T. Gilb and L. Brodie, "What's Wrong with Agile Methods? Some Principles and

Values to Encourage Quantification," in Agile Software Development Quality

Assurance, I. U. Stamelos and P. Sfetsos, Eds. Hershey, London, Melbourne,

Singapore: Information science reference, 2007.

[56] V. Monochristou and M. Vlachopoulou, "Requirements Spcification using User

Stories," in Agile Software Development Quality Assurance, I. G. Stamelos and P.

Sfetsos, Eds. Hershey, London, Melbourne , Singapore: Information science

reference, 2007.

[57] K. Beck, Extereme Programming Explained: Embrace Change. Reading, MA:

Addison Wesley, 2000.

[58] M. Shehata, A. Eberlein, and A. Fapojuwo, "IRIS: A Semi-Formal Approach for

Detecting Requirements Interactions," in Proceedings of the 11th IEEE

International Conference and Workshop on the Engineering of Computer-Based

Systems (EG'BS'04), 2004, pp. 273 -281.

95

[59] M. Moshirpour, A. Mousavi, and B. Far, "Model Based Detection of Implied

Scenarios in Multi Agent Systems," in Proceedings of the International

Conference on Information Reuse and Integration, Las Vegas, USA, 2010.

[60] N. Mani, V. Garousi, and B. H. Far, "Search-based Testing of Multi-Agent

Manufacturing Systems for Deadlock Detection Based on UML Models," Special

issue of the International Journal on Artificial Intelligence Tools (IJAIT), vol. 19,

pp. 417-437, 2010.

[61] N. Mani, V. Garousi, and B. H. Far, "A UML-Based Conversion Tool for

Monitoring and Testing Multi-Agent Systems," in 20th IEEE International

Conference on Tools with Artificial Intelligence, Dayton, Ohio, USA, 2008, pp.

212-219.

[62] S. A. DeLoach, "The MaSE Methodology," in Methodologies and Software Eng.

for Agent System. vol. 11, F. Bergenti, M.P.Gleizes, and F. Zambonelli, Eds. New

York: Kluwer Academic Publishers, 2004, pp. 107-147.

[63] M. Moshirpour, A. Mousavi, and B. Far, "A Technique and Tool to Detect

Emergent Behavior of Distributed Systems Using Scenario-Based Specifications,"

in Proceedings of the International Conference on Tools with Artificial

Intelligence, Arras, France, 2010.

[64] D. R. Goldenson and D. L. Gibson, "Demonstrating the Impact and Benefits of

CMMI: An Update and Preliminary Results," CAIU/SEI-2003-SR-009, October

2003.

96

[65] A. Mousavi and B. Far, "Eliciting Scenarios from Scenarios," in Proceedings of

20th International Conference on Software Engineering and Knowledge

Engineering (SEKE 2008) San Francisco Bay, USA: July 13, 2008, 2008.

