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Abstract 

Requirement elicitation is one of the most challenging and critical phases of the software 

development lifecycle. Many faults are introduced into the system as the result of 

incomplete requirements. An effective approach for the design of software systems is to 

describe system requirements using scenarios. A scenario, commonly expressed using a 

message sequence chart or a sequence diagram, is a temporal sequence of messages sent 

between system components. However despite their simplicity and expressive power, 

scenario-based specifications are prone to subtle deficiencies with respect to analysis and 

validation known as incompleteness and partial description. These deficiencies in 

scenario-based specifications are the prime cause of emergent behavior. Emergent 

behavior, also known as implied scenarios are behavior that the system exhibits but are 

not explicitly defined in its requirements. 

Emergent behavior is an important issue in the design of software systems; particularly 

ones with the lack of central control such as distributed and multi-agent systems. 

Detecting and removing emergent behavior during the design phase will lead to huge 

savings in deployment costs of such systems. In this thesis, a method for detecting 

emergent behavior in system requirements described using scenario-based specifications 

is proposed. The use of this methodology for a variety of different software systems such 

as distributed and multi-agent systems (MAS) is demonstrated. Furthermore this research 

contains methodologies for verifying the lack of existence of a particular emergent 

behavior in the software system. These methodologies have been demonstrated using 

various case studies such as distributed systems for a mine-sweeping robot and an online 

commerce application and •a multi-agent system for a manufacturing system. 
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Furthermore as this research aims to develop these methodologies into a software tool, 

the requirement and design documents as well as the prototype of this tool are presented 

in this thesis. 
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I 

Chapter One: Introduction 

1.1 Motivation 

Gathering system requirements is one of the most challenging and at the same 

time a critical stage of the software development lifecycle. Due to the abstract nature of 

software, deciding on clear and concise goals and features can be a challenging task. 

Furthermore as software projects tend to involve several stakeholders, communicating 

ideas and conveying information can be an extremely difficult task [1]. 

An effective and efficient way to describe system requirements is using scenario-

based specifications. A scenario is a temporal sequence of messages sent between system 

components and the actors. Scenarios are appealing because they allow stakeholders to 

describe system functionality by partial stories [2]. Since scenarios usually serve as 

abstract execution traces of the system, they provide the perfect medium through which 

customers, system developers and engineers and other stakeholders can communicate. 

Scenario-Based Software Engineering (SBSE). investigates ways in which scenarios can 

be used in software development [2]. Scenarios are particularly useful in describing the 

requirements for systems with the distribution of control such as distributed systems and 

multi-agent systems (MAS). The lack of central control in these systems often implies 

complex interactions among multiple components [2]. Therefore scenarios can be 

utilized to define these interactions. By following this approach the overall behavior of 

the system can be defined by a comprehensive set of scenarios. 
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However despite the advantages of using scenarios due to their expressive power 

and simplicity, there are several challenges particularly for concurrent systems consisting 

of niultiple autonomous agents (MAS) as well as distributed systems which consist of 

multiple system components. For instance, because each scenario only gives a local and 

partial story of a distributed system's behavior, the challenge is how the behavior of a 

system can be constructed from a set of scenarios and more importantly whether the 

derived behavior is acceptable or not. Generally, system requirements described using 

scenarios are prone to several defects as follows [3]: 

1. Scenarios are partial stories of the system's behavior and each scenario is 

only an instance of the system's functionality. Therefore defining 

comprehensive system requirements using scenarios raises issues of 

coverage and completeness. 

2. Scenarios are instances of system behavior and thus they need to be 

properly combined to have a full description of the system. 

Therefore the artefacts produced when defining the system using SBSE, the 

scenario, must be analyzed and verified. Unfortunately manual review of these 

documents is inefficient and time-consuming. In order to resolve these issues, devising 

systematic and automated methodologies to validate system requirements is necessary. 
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1.2 Objectives 

The main objectives of this thesis are as follows: 

• Devising systematic and automated methodologies to analyze system 

requirements (which are defined using scenario-based specifications) and 

identify cases of emergent behavior. 

• Demonstrating the concept of indeterminism, formalizing the cause of 

implied scenarios as well as addressing and resolving the problems 

associated with it which are mentioned in [4]. 

• Applying the proposed methodologies in this thesis to distributed systems 

and successfully detecting emergent behavior in the requirements of such 

systems. Furthermore ensuring the lack of existence of certain illegal 

scenarios from the requirements of distributed system. 

• Establishing a link between agent oriented software engineering 

methodologies (AOSE) such that AOSE design artefacts can be converted 

• to scenario-based specifications. The results of this conversion are then 

used to verify the design documents of multi-agent systems. 

• To design and implement the prototype, of an easy to use and practical 

software tool to apply these methodologies to requirements and design 

documents of a variety of software systems such as distributed and multi-

agent systems. 
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1.3 Approach and Methodologies 

In this research the merits of defining system requirements using scenarios are 

acknowledged and the necessity of analysis and verification of scenario-based 

specifications is recognized. There are a number of methodologies proposed in the 

literature which deal with the analysis of scenario-based specifications [2, 5-9]. There 

are general commonalities among all approaches; however each approach makes a unique 

contribution in the analysis of scenarios. The general approach used for analyzing the 

requirements of software systems is done in two steps of behavior modeling and 

detection of emergent behavior. These steps are described in the following subsections. 

1.3.1 Behavior Modeling 

The model which describes the behavior of each system element (i.e. agent, 

component or processes) is called the behavioral model, and the procedure for building 

the behavioral models for the elements of scenarios, is called synthesis of behavioral 

models, or simply, the synthesis process. A widely accepted model for behavioral 

modeling of individual system elements is the state machine. Several studies have 

already been conducted to facilitate the procedure of converting a set of scenarios to a 

behavioral model expressed by state machines [2, 5-8, 10]. In the synthesis process, one 

state machine will be built for each system element. The state machine includes all of the 

messages that are 'received or sent by that element. Then the behavior of the distributed 

system is described by the product (parallel execution) of all the state machines of the 

system elements. 
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1.3.2 Emergent Behavior 

One of the challenges during the synthesis process, is implied scenarios [3, 9, 11-

13], also known as emergent behavior [3]. An implied scenario is a specification of 

behavior that is in the synthesized model of the software system and is not explicitly 

specified in its specification as a scenario. 

Emergent behavior occurs when there exists a state, in which the system 

component becomes confused as to what course of action to take. This happens when 

identical states exist in the union of state machines obtained through behavioral 

modelling. A definition for identical states is needed for detection of emergent behavior. 

To achieve this we must first have a clear procedure to assign values to the states of the 

state machines. This is a very important step and is performed differently in various 

works. For instance, the work presented in [2, 5] proposes the assignment of global 

variables to the states of state machines by the system design engineer (referred to as the 

domain expert in this research). However the outcome of this approach is not always 

consistent as the global variables chosen by different domain experts may vary. This 

inconsistency can become problematic when several system engineers attempt to analyze 

the system requirements. The work in [3] proposes an approach which makes use of an 

invariant property of the system called semantic causality. The principle of semantic 

causality will be defined formally and explained in detail in Chapter 3 and will be used 

extensively throughout this thesis. The merit of using semantic causality is that since it is 

an invariant property of the system, using it in assigning state values will result in 

achieving consistency., This is one of the main reasons that the approach of [3] is 
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selected as the most efficient methodology for analyzing scenario-based specifications 

and is used and extended in this work. 

Emergent behavior can be studied both at the system level and component level. 

This work contains the methodologies and applications related to emergent behavior at 

the component level. At the component level, emergent behavior occurs due to the 

generalization mechanism by which behavior models are constructed from scenarios. 

These behaviors are not inherent to the specification and depend solely on the 

assumptions and the generalization techniques used in the synthesis approach. This is the 

reason that they have been referred to in the literature as a side effect of generalization; 

also known as overgeneralization [8]. It should be noted that emergent behaviors for 

components are not necessarily unwanted behaviors. Sometimes they thay simply be 

considered as unexpected situations due to specification incompleteness. 

1.4 Contributions 

This research strives to establish comprehensive framework for analyzing the 

requirements and design of software systems. Figure 1.1 demonstrates the broad scope of 

this research. The parts highlighted in Figure 1.1 show the specific areas addressed in this 

thesis. As shown this framework will take input from a variety of different models and its 

outputs are component-level emergent behavior detection (CEBD), system-level 

emergent behavior detection (SEBD) and model-based detection and testing of MAS 

(MDTM). 
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Moreover as the analysis of the requirements of software systems were conducted 

at the component level in this research, research can be done in analyzing at the system 

level. In system level analysis, it is assumed that the emergent behavior for the 

components has already been resolved. Here scenarios are further analyzed for detecting 

possible system level implied scenarios [3]. 

User 
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Figure 1.1 - Model-based detection system 

First, this work conducts a detailed survey of several of the proposed 

methodologies in the literature which are devised to detect emergent behavior in the 

requirements of software systems. The merits and disadvantaes of each methodology 

are explained and finally the work of [3] is selected and justified as the most effective and 

efficient approach to analyze scenario-based specifications. Thus the methodologies of 

[3] have been used as the starting point of this research. This survey and its results are 

presented in Chapter 2. 
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Next, the applicability of these methodologies is successfully tested on distributed 

and multi-agent systems as well as social networks. Furthermore these methodologies 

were extended to verify the lack of existence of particular illegal scenarios in scenario-

based specifications of software systems as presented in Chapter 4. 

Moreover in Chapter 5, this research attempts to link AOSE to scenario-based 

software engineering (SEBE) by following techniques to convert the artefacts of MaSE 

(which is one of the most common AOSE methodologies for the design of MAS) to 

scenarios. 

Finally 'a comprehensive and practical tool has been designed to automate the 

proposed methodologies. Chapter 6 contains the requirement and design documents of 

this tool. The results of this research have been presented in a number of publications as 

follows: 

Conference Papers  

• M. Moshirpour, B. Far, "Formal Verification of Lack of Existence of Illegal 

Scenarios in The Requirements of Distributed Systems " Proceedings of the 

International Conference on Software Engineering and Applications (SEA 2010), 

Marina Del Rey, USA, November 2010. 

• M. Moshirpour, A. Mousavi, B. Far, "A Technique and Tool to Detect Emergent 

Behavior of Distributed Systems Using Scenario-Based Specifications" 

Proceedings of the Internàtionàl Conference on Tools with Artificial Intelligence, 

Arras, France, October 2010. 
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• M. Moshirpour, A. Mousavi, B. Far, "Model Based Detection of Implied 

Scenarios in Multi Agent Systems" Proceedings of the International Conference 

on Information Reuse and Integration, Las Vegas, USA, August 2010. 

• M. Moshirpour, A. Mousavi, B. Far, "Detecting Emergent Behavior in 

Distributed Systems Using Scenario-Based Specifications" Proceedings of the 

International Conference on Software Engineering and Knowledge Engineering, 

San Francisco Bay, USA, July 2010. (received Best Paper Award) 

Journal Papers 

M. Moshirpour, A. Mousavi, B. Far, "Detecting Emergent Behavior in 

Distributed Systems Using Scenario-Based Specifications", International Journal 

of Software Engineering and Knowledge Engineering (Submitted). 

Book Chapters 

• M. Moshirpour, A. Mousavi, B. Far, "Model Based Detection of Implied 

Scenarios in Multi-Agent Systems", in Recent Trends in Information Reuse and 

Integration, Springer-Verlag (Submitted). 

1.5 Structure of Thesis 

This thesis is presented in seven chapters. In chapter 2 related literature is 

presented. Furthermore this chapter contains background information about important 

related topics to this work such as Scenario-based Software Engineering (SBSE) and 
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Agent Oriented Software Engineering (AOSE). Chapter 3 contains definitions utilized by 

methodologies throughout this thesis. 

In Chapter 4 the effectiveness and usability of the methodologies for distributed 

systems are verified using two case studies of a mine-sweeping robot and an online 

commerce application. Furthermore this chapter contains the methodologies to formally 

certify that a particular illegal scenario will not emerge in a software system based on a 

set of given scenarios. Chapter 5 contains a novel approach to establish a link between 

AOSE methodologies and SBSE. This is done by following techniques to convert the 

artefacts of MaSE (which is one of the most common AOSE methodologies for the 

design of MAS) to scenarios (illustrated using MSCs) and is demonstrated using a case 

study of a MAS for a manufacturing system. Chapter 6 contains the design and the 

prototype of the software tool which automates the proposed methodologies. Finally 

conclusions and future work are presented in Chapter 7. 

1.6 Summary 

Scenarios are efficient and effective means of illustrating system requirements. 

Devising systematic and automated. methodologies to analyze scenario-based 

specifications of software systems for deficiencies is highly desirable. This research 

attempts to establish methodologies as well as a comprehensive framework for system 

analysis. The motivation, objectives and the methodologies presented in this thesis have 

been outlined in this chapter. In Chapter 2, a comprehensive review of the related 

literature along with background knowledge on key concepts to this research such as 

multi-agent systems and Agent Oriented Software Engineering (AOSE) are presented. 
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Chapter Two: Related Work and Background 

This chapter focuses on the related work in the literature in the area of scenario-

based software engineering and proceeds to conduct a survey on the various existing 

methodologies devised to analyze system requirements which are defined using 

scenarios. 

Furthermore the adopted methodology which is verified and extended in this 

research is presented in this chapter and the selection of this methodology is justified. In 

addition this chapter provides background knowledge about distributed systems, multi-

agent systems (MAS) and Agent Oriented Software Engineering (AOSE). 

2.1 Scenario-Based Specifications 

An efficient and effective approach for defining system requirements is using 

scenario-based specifications. Scenarios have become popular as a powerful means of 

communication for system requirements due to their simplicity and expressive power 

[14]. Using scenarios, different groups of stakeholders can communicate their goals and 

ideas with regards to the software systems in a productive and efficient manner. In 

addition to their use in requirements engineering as shown in [14], scenarios have been 

utilized in other aspects of software engineering such as code synthesis [15], reverse 

system engineering [2] and model-based testing [16]. 

Scenarios are defined with variations in different works [17-20]; however in 

general scenarios are described as narrative stories of the interactions among system 

components and/or the users and the environment. Moreover scenarios are temporal 
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sequences of messages and thus in a scenario the order of events are clearly 

distinguished. 

There have been several approaches proposed in the literature for representing 

scenarios. These approaches include using narrative text [21], annotated cartoons, video 

recordings, scripted prototypes and sequence charts [2, 17, 22]. Each approach entails 

certain merits and downfalls. For instance the textual notations are useful for 

documentation and are thus popular in the industry. However textual scenarios tend to be 

of a more informal nature and pose real challenges on automated analysis. 

Among the above-mentioned approaches for presenting scenarios, sequence 

charts are the most efficient in terms of analysis of requirements. Moreover, due to the 

simplicity of their notation and expressive power, sequence charts make an efficient 

nedium for representing scenarios. The structure of a simple sequence chart is illustrated 

in Figure 2.1. 

Time 

Figure 2.1 - Sequence chart 
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There are different variations of sequence charts in the literature. Two of the most 

well-known types of sequence charts that are generally used to describe scenarios are 

Message Sequence Charts (MSCs) standardized by the International Telecommunications 

Union (ITU) [23] and Sequence Diagrams developed by the Object Management Group 

(0MG) as a part of UML [24]. Both of these notations have undergone numerous 

revisions since their development. 

Although MSCs and sequence diagrams vary in notations, they are both capable 

of representing scenarios in an efficient and intuitive manner. In this research the prime 

focus is on MSCs. There ae several reasons for choosing to use MSCs over sequence 

diagrams in this research. First, the notation of MSCs is simpler than sequence diagrams; 

which comes as no surprise as sequence diagrams are utilized in object oriented design 

[23, 24]. Since in this research scenarios are used to communicate system requirements 

between all different kinds of stakeholders who are not necessarily computer experts, 

using a simpler notation to illustrate scenarios is desirable. Furthermore, due to their 

simplicity, MSCs serve as a powerful basis for the development of emergent behavior 

detection methodologies. For future work, these methodologies can then be altered to 

incorporate the complexities of sequence diagrams. In this case, the proposed 

methodologies can be used to analyze object oriented design of software systems. 

However, a possible future extension for this research would be incorporating the 

sequence diagram notation in requirement validation methodologies. MSCs are formally 

defined in Chapter 3 of this thesis. 
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2.2 Distributed Systems 

Distributed systems consist of two or more autonomous components which 

communicate through a network [25]. These components interact with one another in 

order to achieve a common goal. Concurrency and lack of central control are among the 

most distinct characteristics of such systems [25, 26]. 

Distributed systems are implemented using a variety of different architectures 

such as client-server, 3-tier (such as model-view-controller) and peer-to-peer [25]. The 

client-server and the model-view-controller architectures which are used in case studies 

of this research are briefly explained in the following subsections. 

2.2.1 Client-Server Architecture 

Client-server is a 2-tier architecture in which one or more clients request service 

from a centralized server. In this architecture the client is generally the consumer and 

requests resources and the server responds accordingly [27]. Client-server computing 

provides the opportunity to use cost-effective user interface, data storage, connectivity 

and concurrency [27]. 

However implementing concurrency is a challenging task. The two major 

problems in concurrent programming are: (1) enabling communication among two or 

more processes and (2) synchronizing certain actions among two or more processes [28]. 

This poses difficulties on the requirement elicitation and design of distributed systems 

which will be addressed in Chapter 4. 
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2.2.2 Model- Vien'-Controller A rc/zitecture 

The MVC software architecture was designed for the development of interactive 

applications in 1979 [29]. Based on this design, applications are divided into three 

different component types of models, views and controllers as shown in Figure 2.2 [29]. 

MVC 

Model 

Controller 

Dispatcher 

Routes 

Web Server 

T 
Browser 

View 

Figure 2.2 - Model-View-Controller software architecture 1291 

MVC isolates the domain logic from the presentation layer and database which 

enables independent development along with testing and maintenance of each. The 

model is the layer which communicates with the database and the controller. It is 

responsible for maintaining the state of the application and enforces all business rules 

which apply to data. The view is the layer which is responsible for the interactions with 

the user and reporting to the controller. The controller or the business logic is the central 

commander of the application. It receives the input from the user through the view and 
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instructs the model and the view to perform certain actions based on the inputs received 

[29]. 

2.3 Multi-Agent Systems and Agent Oriented Software Engineering (AOSE) 

The concept of multi-agent software systems is relatively new; dating back to the 

early 1980s [30, 31]. Over the years, international interest in this area has grown 

enormously. This is partially since agents are attractive software paradigms which 

provide the opportunity to exploit the possibilities presented by massive open distributed 

systems such as the internet [31]. Furthermore as agents are by definition automated 

entities, multi-agent systems (MAS) seem to be a natural metaphor for understanding and 

building a wide range of artificial social systems [31]. 

An agent is a computer system that is situated in an environment and is capable of 

autonomous actions in this environment in order to meet its design objectives [31]. 

Following this definition, it is deduced by extension that multi-agent systems (MAS) are 

defined as systems composed of multiple interacting computing elements, otherwise 

known as agents [31]. As mentioned previously, following the increase in the demand of 

MAS, many Agent Oriented Software Engineering (AOSE). methodologies were 

developed to assist the development of agent-based applications. 

Part of the proposed methodology in this research is based on the MaSE analysis 

and design artefacts. In this section we proceed by providing an overview of the MaSE 

methodology and its recent applications in research and industry are presented in Sections 

2.3.1 and 2.3.2 respectively. Then we provide the results of an evaluation on MaSE 
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methodology and its comparison with other AOSE methodologies in Section 2.3.3. We 

then proceed to discuss other related works on MAS verification and monitoring and 

various methodologies used in Section 2.3.4. 

2.3.1 Agent Orientation Software Engineering Methodology: MaSE 

The Multi-agent Software Engineering (MaSE) methodology is among the most 

well-known of AOSE techniques. MaSE strives to guide a MAS engineer from an initial 

set of requirements through the analysis, design and implementation of a working MAS. 

In MaSE, a MAS is viewed as a high level abstraction of object-oriented design of 

software where the agents are specialized objects that cooperate with each other via 

conversation and act proaOfively to accomplish individual and system-wide goals instead 

of calling methods and procedures. In other words, MaSE builds upon logical object-

oriented techniques and deploys them in the specifications and design of MAS. MaSE 

consists of two major steps of analysis and design as outlined in Table 2.1. 

Table 2.1 - MaSE methodology phases and steps [32] 

'vIaSE Phases and Steps 

1. Analysis Phase 

a. Capturing Goals 

b. Applying Use Cases 

c. Refining Roles 

2. Design Phase 

a. Creating Agent Classes 

b. Constructing Conversations 

c. Assembling Agent Classes 

d. System Design 

Associated Models 

Goal Hierarchy 

Use Cases, Sequence Diagrams 

Concurrent task, Role Diagram 

Agent Class Diagrams 

Conversation Diagrams 

Agent Architecture Diagrams 

Deployment Diagrams 
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The analysis phase of MaSE contains'the three steps of capturing goals, applying 

use cases and refining goals [33] as shown in Table 2.1. This phase produces a set of 

roles and tasks which describe how a system satisfies its ovetall goals. Goals are derived 

from the detailed requirements and should be achieved by defined roles. A role describes 

an entity which acts inside the system and is responsible for achieving or assisting to 

achieve specific system goals. In general, the main approach of the MaSE analysis phase 

is to define system goals from a set of requirements and define the roles necessary to 

meet those goals [33]. 

The design phase of MaSE consists of four distinct steps of Creating Agent 

Classes, Constructing Conversations, Assembling Agent Classes and System Design as 

presented in Table 2.1. In the "Creating Agent Classes" step, the designer assigns roles to 

the specific agent types. During the "Constructing Conversations" step, the conversation 

between agent classes are defined while in the "Assembling Agent Classes" step the 

internal architecture and reasoning processes of the agent classes are designed. Finally in 

the last step of the design phase, the "System Design" step, the designer defines the 

number and location of the agents in the deployed system. 

2.3.2 MaSE in Research and Industry 

MaSE is among the most well known and powerful AOSE methodologies [31]. It 

has been successfully utilized in many agent-based research and industry applications. 

For instance the Multi-Agent Distributed Goal Satisfaction project which is a 

collaborative effort between Air Force Institute of Technology (AFIT), the University of 

Connecticut, and Wright. State University, uses MaSE to design the collaborative agent 
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framework to integrate different constraint satisfaciion and planning systems [34]. 

Furthermore this methodology has also been used successfully in agent-based 

heterogeneous database integration system [35] as well as a multi-agent approach to a 

biologically based computer virus immune system [36]. 

2.3.3 comparing MaSE with other A OSE Methodologies 

Several methodologies have been developed for the analysis and design of MAS 

[37]. These methodologies have been evaluated and ranked in the literature. For instance 

in [38], a set of 9 AOSE methodologies are evaluated based on criteria which can be 

considered as empirical software metrics for these techniques. Consequently in [13] 

AOSE methodologies were ranked according to the estimated mean effectiveness of the 

evaluation based on 6 dimensions of agency-related attributes, modeling-related 

attributes, communication-related attributes, process-related attributes, application-related. 

attributes, and user perception attributes to suppo.rt the decision of selecting the most 

appropriate methodology. 

Among the methodologies evaluated in [13] MaSE ranked first in 3 of the 

proposed dimensions which were modeling-related attributes, application-related 

attributes, and user perception attributes. Furthermore MaSE ranked first in the overall 

ranking of the evaluated AOSE methodologies. 

Here MaSE is compared against two other AOSE methodologies of GAlA [39] 

and Tropos. The aforementioned AOSE methodologies are chosen to be compared 

against MaSE as they are amongst the most popular and widely used techniques [40]. 

Similar to the approach of MaSE, GAlA utilizes roles as building blocks and captures 
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much of the same types of information in the design phase. However in GAlA this is 

done through different types of models [25]. The main difference between these two 

methodologies is that GAlA generates high level design and assumes details will be 

developed using other techniques whereas MaSE provides models and guidance on 

building the detailed design [41]. Tropos on the other hand takes a completely different 

approach compared with MaSE [26]. The focus of Tropos is mainly on the early 

requirements which are not addressed in MaSE at all [41]. However the Tropos early 

requirements approach could be used in MaSE as the goal model in the design phase [41] 

[42]. 

2.3.4 MAS Verification and Monitoring 

The current work on MAS verification is divided into two categories of axiomatic 

and model checking approaches [41]. In [43] axiomatic verification is applied to the 

Beliefs, Desires and Intentions (BDI) model of MAS using a concurrent temporal logic 

programming language. However, it was noticed that this kind of verification cannot be 

applied when the BDI principles are implemented with non-logic based languages [41]. 

Furthermore in design by contract [44] pre and post-conditions and invariants for the 

methods or procedures of the code are defined and verified in runtime, and violating any 

of them results in an exception. However as stated in [41] the main issue is that this 

technique does not check program correctness, rather it simply only informs that a 

contract has been violated at runtime. 
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Model checking approaches seem to be more acceptable by the industry, 

because of lower complexity and better traceability compared to the axiomatic approach. 

Automatic verification of multi-agent conversations [45] and model checking of MAS 

with the MABLE programming language [46] are a few examples of model checking 

approaches which use the SPIN model checker [47] which is a verification system for 

detection of faults in the design models of software systems. 

2.4 Validation Methodologies for Scenarios 

As was mentioned in the previous sections, using scenario-based specifications is 

an efficient and intuitive approach to define system requirements; particularly for 

concurrent software systems such as distributed systems and MAS. Scenario-based 

specifications entail devising scenarios of interactions among system components and/or 

the users and environment such that each scenario defines a certain behavior of the 

system. However scenario-based specifications are prone to deficiencies such as 

contradictions among scenarios or, incompleteness issues. Therefore devising systematic 

and automated methodologies to verify the correctness of requirements is very important. 

There are numerous methodologies proposed in the literature to verify system 

requirements expressed using scenarios. In this section some of these methodologies are 

explained and the merits and shortcomings of each are outlined. Finally the methodology 

chosen for this research is introduced and justified. 

As mentioned previously, there are several methodologies [2, 3, 5, 7, 12, 48] 

which attempt to analyze system requirements (which have been expressed using 
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scenarios) with a systematic approach. Each methodology has devised algorithms to take 

scenarios as input and identify emergent behaviors in the requirements. The general 

structure of these algorithms is quite similar and is often done in two major steps of 

behavior modeling and detection of emergent behavior. The process of building behavior 

models has been explained in Section 1.3.1 and will be demonstrated in detail in the 

upcoming chapters. As mentioned in Section 1.3.1 many studies have already been 

conducted to facilitate the procedure of converting a set of scenarios to a behavioral 

model expressed by state machines [2, 5-8, 10]. Thus, the detection of emergent behavior 

as outlined in Section 1.3.2 is done by analyzing the state machines. To do so, a clear 

and concise methodology to assign values to the states of the state machine is required. 

This is a very crucial step and in fact is where the methodologies differ from one another. 

This step is important since the detection of emergent behavior is a direct result of 

finding identical states in behavioral models. One approach as presented in [7] is to allow 

stakeholders to tag scenario states. Typically labels that describe the states of the 

component are placed on scenario states. If two states in a scenario appear with the same 

label, they are considered as the same component states. 

The second approach does not attempt to explicitly label the states in scenarios, 

but instead provides rules for identifying component states. These rules are usually based 

on domain-specific knowledge and additional information of the system being specified. 

For instance the work of [48] constructs state-charts and uses some assumptions to decide 

whether or not two scenario states are equal. The work of Whittle and Schumann [2, 5] 

attempts to use an Object Constraint Language (OCL) specification that states pre- and 
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post-conditions for scenario messages. OCL is part of the UML standard and is a side-

effect free and set-based, constraint language [49]. The OCL specifications include the 

declaration of state variables. A state variable represents some important aspect of the 

system such as whether or not a component is coordinating with other components. 

Moreover the OCL specifications enable the detection of conflicts between different 

scenarios and allow scenarios to be merged in a justified way [2]. The OCL specification 

is traversed with the MSCs to produce an evaluation of state variables for each scenario 

state. Scenario states that have equivalent valuations are considered to represent the same 

component states. 

The main issue with these approaches is that their outcomes are not always 

consistent as the global variables and scenario labels chosen by different software 

engineers (referred to as the domain experts in this research) could vary. It is needless to 

say that in order to have a systematic approach for detecting emergent behavior, 

consistency of the methodology for different domain experts is a must. The approach 

followed in the work of Mousavi [3] addresses this issue by making use ofan invariant 

property of the system called semantic causality. ' A formal definition of semantic 

causality is provided in definition 4 of Chapter 3 of this thesis and its pivotal role in the 

detection of emergent behavior has been demonstrated in the case studies presented in 

Chapters 4 and 5. Therefore since the methodologies presented in [3] provide an 

effective and efficient solution to address the issue of consistency in assigning state 

values in behavioral modeling, they are recognized as the better approach towards 

automation of such techniques and thus are closely followed in this work. 
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2.5 Summary 

The related literature was presented in this chapter. Moreover the background 

knowledge for key concepts to this thesis such as scenario-based' specifications, 

distributed systems, multi-agent systems (MAS) and Agent Oriented Software 

Engineering (AOSE) was provided. A comprehensive survey on the existing 

methodologies to analyze scenario-based specifications was conducted and the chosen 

methodology was introduced. In Chapter 3 formal definitions for this methodology will 

be presented. 
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Chapter Three: Methodologies and Definitions 

As outlined in detail in Chapter 2 of this thesis, scenario-based specifications are 

prone to deficiencies such as incompleteness and contradictions. However manual 

review of scenario-based specifications is usually inefficient and time consuming, 

particularly for larger systems. Therefore devising systematic and automated 

methodologies to detect deficiencies in scenarios is highly desirable and cost effective. 

There are several methodologies proposed in the literature for this purpose [2, 3, 

5, 7, 48]. These methodologies are broken down into the two steps of: 

1. Behavior modelling 

2. Detection of emergent behavior 

Prior to devising such methodologies, it is vital to have clear and concise syntax 

and definitions for the scenario notations, state models and other conceptual entities 

required. This chapter contains an overview of the methodologies along with formal 

definition of the key concepts which are used. These definitions will be further 

illustrated in Chapters 4 and 5 where these methodologies are applied to distributed and 

multi-agent systems respectively. The structure of this chapter is as follows: In Section 

3.1 definitions related to scenario notations and state machines are provided. Section 3.2 

contains the procedure of behavior modelling and construction of the domain theory. 

Detection of indeterminism is covered in Section 3.3 and the summary of the chapter is 

provided in Section 3.4. 
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3.1 Definitions 

As explained in section 2.1, there are two main methods for representing 

scenarios; namely Sequence Diagrams (SD) and Message Sequence Charts (MSC) [24, 

50]. In this research it is assumed that MSCs will be used to illustrate scenarios. 

In this section, we give some definitions related to the MSC notation based on a 

subset of ITU definitions for MSCs [12, 23, 51]. 

Let P be a finite set of processes in a software system (with the total number of 

processes or agents p ≥ 2) and C be a finite set of message contents (or message labels) 

that are passed between the processes. Let Z, = [i!] (C), t?j(c)IJ e P\{i), c C C) be the set of 

alphabet (i.e. events) for the process i E P, where flj(c) denotes: an event that sends a 

message from process I with content c to processj, whereas i?j(c) denotes an event that is 

received by process I a message with content c from process j. The set of alphabet will be 

E = and each member of E is called a message. 

In the following, we try to capture a causal relationship between a message and its 

predecessors by defining partial Message Sequence Chart (pMSC)i 

Definition 1 [3] (partial Message Sequence Chart): A partial Message Sequence Chart 

(pMSC) over P and C is defined to be a tuple m = (E, a, f?, -<) where: 

• E is a finite set of events. 

• a: E - E maps each event with its label. The set of events located on process I 

is E1 = a(). The set of all send events in the event set E is denoted by E! = 

fe C E I 31,] C P, c C C: a(e) = i!j(c)) and the set of receive events as E? = E\E!. 
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• /3: F! - E? is a bijection mapping between send and receive events such that 

whenever /3(e1) = e2 and a(d1) = flj(c), then a(e2) = j? i(c). 

• -< is a partial order on E such that for every process I P, the result of -< on El is a 

total order of its members and the transitive closure of {(e1, e2)Je1 <e2, 31 E 

P: e1, e2 E E) U ((e, 13(e))Ie E E) is a partial order of the members of E. 

The partial order -< captures a causal relationship between the events of a pMSC. 

This causality basically represents two things. First, a receive event cannot happen prior 

to its corresponding send event. Second, a receive (or send) event cannot happen until all 

the previous events, which are causal predecessors of it, have already been accomplished. 

Obviously if all of the send events have their corresponding receive events (i.e. as defined 

by the function /3), the structure is called a Message Sequence Chart or simply an MSC. 

In other words, an MSC has thesame structural components as a pMSC, except that /3 is 

defined for F!=El. 

Following the formal definition of MSCs, it is important to define the sequence of 

messages between system components as shown in Definition 2. 

Definition 2 [3] (projection): The projection mit for process i in MSC m, is the ordered 

sequence of messages corresponding to the events for the process i in the pMSC m. For 

mit, limit II indicates its length, which is equal to the total number of events of m for the 

process i, and t [/] refers to 11h element of m1l, so that if e is the f" " interaction event for 

process i according to the total order of the events of i in m, then am(ej) = ml[j — 
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J -< Ilmi1Ii. In m, we call every element i!j(c),i,j E P,c E C, a send message and every 

element i?j(c), a receive message. 

State machines have been used for the behavioral modeling of scenarios in the 

literature [2, 3, 5, 12] and will be used for that purpose in this research as well. The 

formal definition of state machines is given in Definition 3. 

Definition 3 [3] (Equivalent Finite State Machine for a projection): For the 

projection mit, we define the corresponding deterministic finite state machine A = 

(Sm, Zrn, (5, q, q7) such that: 

• m  is a finite set of states labelled by q to 

• Em is the set of alphabet 

• q is the initial state 

• q = is the final state (accepting state) 

• 'Sm is the transition function for A such that S(q71, mit[f]) q7 1, 0 ≤ j:5 limit ii - 

1. Thus the only word accepted by A is mit. 

Note that scenarios can be treated as words in a formal language, which are 

defined over send and receive events in MSCs. Then, a well-formed word for a process is 

one that for every reeive event therie exists a send event in that word, which in fact 

captures the essence of the definition given for a pMSC (Definition 1). On the other hand, 

a complete word for a process is one that for every send event in it, it contains the 

corresponding receive event. In practice, a system designer must look for complete and 

well-formed words for each process which is not necessarily an easy task. For any MSC 
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m in the set of MSCs M, any sequence cv of m, obtained from a sequence of events in m 

that respects the partial order of the events defined for m, is called a linearization of m, 

and is a word in the language L(M of M. 

3.2 Behavior Modeling 

The model which describes the behavior of each system element (i.e. agent, 

component or processes) is called the behavioral model, and the procedure of building 

the behavioral models for the elements from a scenario-based specification, is called 

synthesis of behavioral models, or simply, the synthesis process. A widely accepted 

model for behavioral modeling of individual system elements is the state machine. 

Several studies have already been conducted to facilitate the procedure of converting a 

set of scenarios to a behavioral model expressed by state machines [2, 5-8, 10]. In the 

synthesis process, one state machine will be built for each system element. The state 

machine includes all of the messages that are received or sent by that element. Then the 

behavior of the distributed system is described by the product (parallel execution) of all 

the state machines of the system elements. The automation of this process has been 

outlined in Chapter 6 of this thesis. 

The process of behavior modelling for distributed systems and multi-agent 

systems is illustrated in Chapters 4 and 5 respetively. In this section key definitions and 

concepts related to synthesis of behavioral models are explained. 

A pivotal step in behavior modeling is to assign state values. This is done 

differently in different works as outlined in detail in Section 2.4. In this research this task 
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is done by making use of an invariant property of the system referred to as semantic 

causality as defined formally in Definition 4 [3]. 

Definition 4 [3] (Semantic causality): A message mI[j] is a semantical cause for message 

m 1[k] and is denoted by mIL[j] Sd mI[k], if agent i has to keep the result of the operation 

of mlt[j] in order to perform ml,[k]. 

Semantic causality is an invariant property of the system and is part of the 

system's architecture and the domain knowledge. Therefore it is independent of the 

choices made by the domain experts. In other words, we let the current state of the 

system component to be defined by the messages which that particular component needs 

in order to perform the messages that come after its current states. 

3.2.1 Domain Theory 

Based on the concept of semantic causality introduced in Definition 4, it is 

deduced that in order to evaluate state values of the resulting FSM, a domain theory 

which consists of the domain knowledge of the system must be constructed. A formal 

definition for the domain theory is provided in Definition 5. 

Definition 5 [3] (Domain theory): The domain theory Di for a set of MSCs M and agent 

I E P is defined such that for all m E M, if mj1[/] mlt[k] then (mlt[j], mlt[k]) E D1. 

However building a domain theory can be very time-consuming. Therefore as a 

part of this systematic approach, building a light domain theory is introduced. The 

concept of light domain theory is closely tied to the calculation of state values as defined 

in Definition 6. 
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Definition 6 [3] (State value): The state value v1I(qj) for the state q in eFSM A = 

(Sm, Zm, (5, qg, qjJ) is a word over the alphabet zi U (1) such that vjI(q7) = m 11 [f - 1], 

and for 0 <k < f is defined as follows: 

i) vi I  = m I j [k - 1]vtl(qy'), if there exist some j and 1 such that j is the 

maximum index that mI[f - 1] m11[1], 0 <j < k, k ≤ I < f 

v(q) = m Ii [Ic - 1] if case i) does not hold but mI{k - 1] mlt[I], for some k 

≤ 1 < f 

vi I  = 1, if none of the above cases hold 

Using this definition, it becomes evident that only states with the same incoming 

transitions have the potential to exhibit indeterministic behavior. Assigning state values 

to states of eFSMs is done by making use of semantic causality as defined in Definition 

4. 
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3.3 Detection of Indeterminism 

The concept of emergent behavior and the process of detecting indeterminism 

have been presented in section 1.3.2 and will be illustrated in detail in Chapters 4 and 5. 

Upon constructing the behavior model and by assigning state values based on 

semantic causality, the basis for comparing states and consequently discovering identical 

states is established. Identical states are defined in Definition 7 as follows: 

Definition 7 [3] (Identical states): Two states qT and qof process 1, (m and n could be 

the same) are identical if one of the following holds: 

i) jk for 0 ≤ t -<j:m[t] = nit[t] 

(q) = v (qj) 

As stated previously, emergent behavior usually happens when the system 

components become confused as the result of identical states. Definition 7 can be used to 

systematically detect emergent behavior at the component level. 

3.4 Summary 

Prior to devising systematic and automated methodologies to analyze software 

requirements, it is vital to have clear and concise definitions for scenario notations and 

key concepts of the techniques. This chapter contains formal definitions for MSCs which 

are used in representing scenarios and FSMs which are used in behavior modelling. 

Furthermore the steps of the methodologies used along with the necessary formal 

definitions for each step are formally defined. 
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These definitions are illustrated in great detail in Chapters 4 and 5 where the 

proposed methodologies are applied to verify the requirements of distributed systems and 

multi-agent systems respectively. 
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Chapter Four: Detection of Emergent Behavior in Distributed Systems 

This research proposes two distinct approaches towards prevention against 

emergent behavior. The first approach involves compiling all system scenarios and 

conducting behavioral modeling in order to discover all cases of emergent behavior in 

system's requirements. This approach is applied to an illustrative example of a mine 

sweeping robot. The robot has been designed to have multiple independent processing 

units, indicating that there is no centralized control. 

The second approach involves ensuring the lack of emergence of particular 

behaviors [52]. In this approach system engineers will have a set of undesired scenarios 

and the system requirements (which are also expressed using scenarios) are checked to 

verify that the illegal scenarios from this set cannot be derived from them. This approach 

is demonstrated using a case study of a common online commerce system. 

Furthermore it has been demonstrated in this chapter that scenario-based 

specifications can be used in agile software development to verify the consistency of user 

stories. 

4.1 Background 

To analyze system requirements with the proposed methodologies in this 

research, first the behavioral model of the system is built and then the behavioral models 

are checked for emergent behavior . Both processes of behavioral thodeling and detection 

of emergent behavior were ep1ained in the first two chapters and are illustrated in this 

chaptei using real-life examples of distributed systems. It is important to note that while 
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these examples are kept simple for the sake of brevity, they are quite illustrative of the 

proposed methodologies in this research. 

4.2 Case Study: Mine Sweeping Robot 

Let's consider the prototype of an automated mine-sweeping robot shown in 

Figure 4.1. 

pop 

Figure 4.1 - Prototype of a mine sweeping robot 

The robot's mission is to navigate through a maze-like course, which resembles 

the layout of the streets of a city, for which the robot has no map and has to investigate it 

by utilizing its sensory information (i.e. ultrasonic and/or GPS data). At the same time, it 

has to identify and mark the location of mines. For this prototype version it is assumed 
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that mines emit infrared signal which is detectable via the infrared sensor. In order to 

provide the robot with more computation power and additional control for the motors and 

different types of sensors, two multi-core CPU units are utilized. The units are built on 

separate boards connected via a simple but reliable connection protocol. The two CPUs 

interact using the client-server architecture; one of the CPUs acts as the client and the 

other acts as the server. As there is no sophisticated' operating system in charge of the 

control and scheduling of the processes and threads, the design of the robot must account 

for the proper management of all processes and their interactions in a logical and efficient 

manner. 

For the' sake of simplicity, let's assume that the robot has only two sets of sensors: 

an ultra-sonic sensor which is used for navigation purposes, and an infrared sensor to 

detect mines. Given the sensors of the robot, its design is as follows: Both of these 

sensors are connected to the client CPU. Thus the client receives signals from sensors, 

processes the message and sends them to the server CPU to act upon them accordingly. 

The processes Client Controller and Server Controller, depicted in Figure 4.2, are in 

charge of the motors responsible for the wheels on the left and right sides of the robot. 

Each process is also responsible for sending and receiving messages to and, from the 

other. The server controller is. also in charge of the motor of the mechanism which 

dispenses a. flag on the location in which a mine has been detected. The ULTS Motor 

Controller process is responsible for the motor in charge of the rotation of the ultra-sound 

sensor which is necessary for optimum navigation through the maze. 
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MSC1 

IR Sensor 

IR Sensor 

ULT Sensor Client Controller 

send signal 
(no obstacle detecte1) 

ULT Motor Controller 

Rotate ULT sensor 

Motors move 
- forward 

Server Controller 

send message (no obstacle detected) 

Figure 4.2 - Robot is moving forward with no obstacle in its way 

ULT Sensor 
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Client Controller ULT Motor Controller 

send signal 

(obstacle detected$ Stop rotating ULT 
sensor 

—Stop motors 
__I 

Motors move 
forward 

Server Controller 

send message (obstacle detected) 

Figure 4.3 - Robot is halted due to the detection of an obstacle in its path 

rStop motors 
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MSC3 

IR Sensor LJLT Sensor 

send signal 

Client Controller 

(mine detected) 

JR Sensor LILT Sensor 

send signal 

 > 

LILT Motor Controller 

Stop rotating ULT 
sensor 

—Stop motors 
__I 
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Server Controller 

(mine detected) 

Figure 4.4 - Robot stops due to the detection of mines 
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Client Controller 

(mine detected) 

LILT Motor Controller 
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(rlo obstacles detected) 

Rotate LILT sensor 

Motors move 
1 forward 

—Stop motors 
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Flag mine 
L. 

location 

Server Controller 

send message (no obstacles detected) 
 > 

Motors move 
forward 

K 

Figure 4.5 - Client controller receives a "no obstacle" detection message from the ultra-

sound sensor after receiving the mine detection message from the JR sensor which results in missing 

the mine 



39 

Partial behavioral scenarios for this robot are represented by message sequence 

charts. The message sequence chart 1 (MSC1), shown in Figure 4.2, illustrates a scenario 

where the robot is moving forward with no obstacles in its way. MSC2 (Figure 4.3), 

shows a scenario where the robot has been halted due to the detection of an obstacle in its 

path while MSC3 (Figure 4.4) illustrates a scenario where the robot stops because of the 

detection of a mine (based on the signal received from the IR sensor) which is a pre-

requisite for the mine-flagging operation. 

As can be seen from MSC2 and MSC3 (Figures 4.3 and 4.4) there are two events 

which cause the robot to halt: (1) detecting an obstacle on the way performed by the 

ultrasound sensor; and (2) detecting a mine which is done by the infrared sensor. 

Similarly there are two events which trigger the motion of the robot: (1) detection of a 

free path (i.e. no obstacles in the way) by the ultrasound sensor; and (2) the'completion of 

the mine-flagging operation. MSC4 shown in Figure 4.5 illustrates an emergent behavior 

that might occur as a result. 

An important observation to be made is the generalization of messages to indicate 

their purpose rather than their specific implementation. Consider message "send signal 

(some signal)" which is sent from either of the sensor to the client controller process as 

shown in each of the MSCs (Figures 4.2 - 4.4). For instance in MSC1 (Figure 4.2) the 

content of the message sent from the sensor to the client controller is "no obstacles 

detected" while in MSC3 (Figure 4.4) the content of the message is "mine detected". It is 

important to note that although the content of these messages are different, the purpose of 

the two messages remains the same. That is, the client controller process expects to 
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receive a message (regardless of the content of the message) from a sensor. Therefore the 

message sent from either sensor to the client controller process is "send signal" and the 

content is included in brackets only for clarity. 

4.3 System Behavior Modeling 

In this section, the synthesis of state machines from MSCs which is the first part 

of the systematic approach to analyze system requirements (expressed using scenarios) is 

illustrated using the example of a mine sweeping robot. 

As mentioned previously, the procedure of construction of finite state machines 

(FSMs) from message sequence charts ,(MSCs) is referred to as behavior modeling. For 

any process I of a partial MSC described in Definition 1, an equivalent finite state 

machine (Definition 3) can be constructed. For instance, Figure 4.6 shows the eFSM 

constructed for the client controller process in MSC1. 

send signal 
no obstacles detected) 

send signal 
(obstacles detected) 

send signal 
(mine detected) 

Rotate motors move send message 
ULT Sensor ml forward - ml (no obstacles detected) 

q 3 

Figure 4.6 - eFSM for the client contr011er in MSC 1 

Stop rotating ULT 
sensor 

send message 
stop motors / , \(obstacles detected) 

Figure 4.7 - eFSM for the client controller process in MSC 2 

Stop rotating 
ULT sensor 

 ) 

stop motors 
send message 
(mine detected) 
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Figure 4.8 - eFSM for the client controller process in MSC 3 

A comprehensive definition for identical states is needed for synthesis of behavior 

models from scenarios. To achieve this we must first have a clear procedure to assign 

values to the states of the eFSMs. As outlined in detail in Chapter 2 of this thesis, this is 

a very important step and is performed differently in various works. For instance, the 

work presented in [2, 5] proposes the assignment of global variables to the states of 

eFSMs by the domain expert. However the outcome of this approach is not always 

consistent as the global variables chosen by different domain experts would vary. 

Therefore to achieve consistency in assigning state values, the approach of [3] which is 

making use of an invariant property of the system called semantic causality given in 

Definition 4 (Chapter 3) is followed. 

For example, in MSC1 in Figure 4.2, the message "send signal" is a semantic 

cause for message "rotate". As semantic causality is an invariant property of the system 

and is part of the system's architecture and the domain knowledge, it is independent of 

the choices made by the domain experts. In other words, we let the current state of the 

process to be defined by the messages that the process needs in order to perform the 

messages that come after its current states. Therefore using semantic causality, we 

proceed to build the system's domain theory which is defined in Definition 5 of Chapter 

3. 

Following the robot example, since the message "send signal" is a semantic cause 

for message "rotate", both messages are part of the domain theory. However building the 

domain theory can be very time-consuming. Therefore as a part of this systematic 
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approach, building a light domain theory is introduced. The concept of light domain 

theory is closely tied to the calculated state values as defined in Definition 6. Using this 

definition, it becomes evident that only states with the same incoming transitions have the 

potential to exhibit indeterministic behavior. Assigning state values to states of eFSMs is 

done by making use of semantic causality as defined in Definition 6 of Chapter 3. 

For instance in order to calculate the state value for state q'1 we proceed as 

follows: from the domain theory of the system (Definition 5) we learn that the maximum 

index j for which ml I client controller 1] - 1] is a semantic cause for a message in the 

transitions after q 1 is j = 1 for which ml IcUent controller [I - 1] = send signal. 

That is to say that for example the message "send signal" is a semantic cause for message 

"motors move forward". Therefore from case (i) of Definition 6 we obtain: 

Vcljent controller ml\ - 1 11 (ml. ( q2 - m L) - .1.J client controller VCI(ent controller q1 

In order to calculate 12c1ient controller I (qfl1) we observe that "send signal" is the 

only semantic cause after q 1, thus case (ii) of Definition 6 holds and we 

get 12c1ient = send signal. 

client controller Icqmi2 

Therefore we have 

= (rotate) (send signal). By following the same approach we get 

the state value for q 3 to be = (rotate) (send signal). 

From these examples it becomes clear that semantic causality' is an invariant 

property of the system and is nOt affected by the preferences of the domain expert. To 

complete behavior modeling for the systeinj for each process a final FSM which is the 

union of its corresponding eFSMs from different scenarios is to be built. Figure 4.9 
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demonstrates the union of the three eFSMs built from MSCs 1-3. As established in 

Definition 6 the value of start and end states are defined to be equal to 1. 

send signal 

G (obstacles. 
detected) 

Figure 4,9 - The union of eFSMs built from MSCs 1-3 
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4.4 Detection of Emergent Behavior * 

As demonstrated in the previous section, by assigning state values based on 

semantic causality, the basis for comparing states and consequently discovering identical 

states is established. Identical states are formally defined in Definition 7 of Chapter 3. 

By considering the union of the eFSMs demonstrated in Figure 4.9, the identical 

states that correspond to case (ii) of Definition 7 are determined. As identical states are 

possible areas in which the system might get confused over what course of action to take, 

these states are recorded and presented to the domain expert to be analyzed and 

reconsidered. 

The FSM shown in Figure 4.10 demonstrates the manner by which identical states 

in the mine sweeping robot example can result in emergent behavior. As mentioned 
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earlier, the message "send signal" sent from either sensor to the "client controller", should 

be considered as a transition regardless of the content of that message since the client 

controller process is waiting to take any message that is sent from the sensors. This 

causes q", q 2, q 3 to have identical state values and satisfy case (ii) of Definition 7. 

send signal 

stop rotation 

Motors move 
forward 

stop motors 

send message 
(obstacles detected) 

send message 
(obstacles detected) 

fe0 

Figure 4.10 - Resulted DFA after merging identical states 

As stated in Section 4.2, as a result of generalization, the content of the message 

"send signal" is not considered. However the content of the "send signal" will make a 

difference in the behavior of the robot. Therefore these identical states may result in 

emergent behavior. As shown in Figure 4. 10, by having the states q 1, q 3 as identical 

states, the robot gets stuck in a state of confusion between moving forward as it detects 

no obstacles in its path, and setting a flag that a mine is detected by the infrared sensor. 

This state of deadlock is illustrated by MSC4 in Figure 4.5. 

4.5 Verification of Lack of Existence of Illegal Scenarios in Distributed Systems 

In the development of larger distributed systems, it is often desirable to ensure 

that certain scenarios do not emerge in the system's behavior. This section introduces 
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methodologies which ensure formal verification of lack of such scenarios. These 

methodologies are demonstrated using a case study of a common online commerce 

system. 

4.5.1 Case Study: Online Commerce System 

Online commerce applications are among the most widely used distributed 

systems which have helped transform the nature of free trade as was traditionally known. 

Web sites such as Amazon and eBay are among the largest of such applications. The case 

study used in this paper is a typkal example of a large scale online commerce 

application; very similar to the likes of amazon.com. This application is a distributed 

client-server system with potentially thousands of users. This system is constructed 

based on the widely accepted Model-View-Controller (MVC) architecture which is 

explained in section 2.2.2. 

4.5.1.1 System Requirements 

A subset of system requirements are expressed using message sequence charts 

(MSC) as shown in Figures 4.11-4.13. As it can be seen, these charts essentially present 

the interactions among the three layers of the MVC architecture and system users. In this 

case study, two different classes of users are assumed; the customers and the suppliers. 

The users belonging to the costumer class use the system to browse or search for goods 

and ultimately to place orders. The users on the supplier side use the system to view 

orders and update shipping information and order statuses. It is needless to say that both 

of these groups of users interact with the view layer of the MVC architecture. 



46 

In the interest of simplicity and efficiency, four different processes are described 

in these scenarios which incorporate both the user classes as well as the three layers of 

the MVC architecture. As illustrated in Figures 4.11-4.13, the supplier and customer user 

classes are combined with the view layer of MVC while the controller and model layers 

are each distinctly represented. 

These scenarios describe the process of placing orders by the customer and 

shipment of orders by the supplier. MSC1 illustrated in Figure 4.11 demonstrates a 

scenario where the customer places an order which is received by the supplier. The 

supplier then ships the order and the customer is notified. 

MSCI 

Supplier Model 

Notif 

Notify user 

Controller Customer 

Place order 

Write to DB 

supplier 

of shipment 

Write to D.B. 

> 

Notify user 
> 

4.11 - Customer places an order which is shipped by the supplier 

MSC2, illustrated in Figure 4.12 presents a scenario where the customer places an 

order which is received by the supplier. However before the order is shipped by the 



47 

supplier, the customer applies changes to the order which are also received by the 

supplier. The supplier ships the order according to the changes made by the customer. 

MSC3 shown in Figure 4.13 illustrates a scenario where the customer tries to make 

changes after the order has been shipped by the supplier but this request is rightfully 

denied. 

MSC2 

Supplier 
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Model 

Notify 

Notify 

Notify user 

Controller 

Write to DB 
K  

supplier 

Write toDB 

supplier 

of shipment 

K Write toDB 

K: 

 > 

Customer 

Place order 

Change order 

Notify user 

4.12 - Customer places an order, then makes changes. Changes are received by supplier and 

order is shipped 
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MSC3 
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Controller 
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supplier 

of shipment 
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Notify supplier 
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 > 

K:  

Customer 

Place order 

Notify user 

Change order 

> 

No change allowed 
(order shipped) 

> 

4.13 - Customer places an order. Order is received by the supplier and is shipped. 

Customer attempts to change order but is denied. 

4.5.1.2 Illegal Scenarios 

Figure 4.14 represents a possible illegal scenario which is undesirable to occur. 

Therefore it. is required to verify that such a scenario will not emerge from the system 

requirements, or in other words, from the scenarios which describe the system's behavior. 



49 

Illegal Scenario I 

Supplier 
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Notify user 
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Customer 

Place order 

Change order 

4.14 - Illegal scenario 

The MSC shown in Figure 4.14 illustrates a scenario where the customer attempts 

to make changes at the exact same time as the supplier notifies the system of the order 

shipment. That is, the controller process receives the two messages of "notify user of 

shipment" and "change order" almost simultaneously. Needless to say that in this case 

the process controller would be confused as to what course of action to take. It is 

important to note that although this is a simple scenario and is very unlikely to occur due 

to the available technology, it is still illustrative for the purpose of illegal scenario. 

4.5.2 Formal Verification Methodology 

This methodology takes two different sets of scenarios which are expressed using 

MSCs as follows: 

A. A set ofMSCs containing scenarios which describe system's behavior 

B. A set of illegal scenarios which are undesirable to occur 
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By having these two sets of scenarios which were given in Section 4.5.1, this 

methodology is to verify that scenarios in set B cannot be derived from scenarios of set 

A.. In other words this methodology ensures that system's behavior does not contain 

scenarios from set B. As for the previous approach (done for the mine-sweeping robot), 

this methodology is divided into two parts of constructing the behavioral model and 

ensuring the lack of invalid scenarios in the built models. Since these steps were 

demonstrated in detail in the previous sections of this chapter, only the results of each are 

presented for this approach. 

4,5,2.1 Synthesis of Behavior Model 

The behavior model for the controller process of the scenarios in set A is shown 

in Figure 4.15. 

Place order 

Place 
order 

Place 
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to 1313 

Notify 

supplier 
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Change 
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Write 
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Write to DB 

Notify 
supplier 

Notify 
user 

Notify user 

Notify user 
of shipmen 

Change 
order 

Write 
to DB 

No change 
allowed 

Notify 
user 

4.15- The union of all eFSMs built for process controller from MSCs 1-3 (Figure 4.11-13) 

Consequently, the behavior model of the controller process from the scenario in 

set B is constructed as shown in Figure 4.16. 
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Place order/ mi \ Write to DB 

Notify user 
of shipment 

L 

Notify supplier 

4.16 - Behavior model for the controller process from scenario of set B 

4.5.2.2 Detection of Emergent Behavior 

Figure 4.17 illustrates the constructed FSM as the result of the merging of 

identical states. 

Place Write Notify Change 

order, si to DB 2 s pp ier order 

\J j" k , a 

Notify user 
of shipment 

4.17 - Resulted FSM after merging identical states 

Upon the identification of cases of emergent behavior in system requirements 

(case A), a new set C can be constructed to contain their related behavioral models. 

Therefore if a behavior model built based on scenarios in set B does not match a 

behavioral model in set C, it is verified that the system will not contain that particular 

illegal scenario. Conversely if a behavior model constructed based on the scenarios of set 

B is equal to the behavioral model in set C, the verification has failed. By comparing the 

FSM in Figure 4.17 with the behavior model constructed from set B (Figure 4.16) it 

becomes evident that the illegal scenario of set B can potentially emerge from the 

scenarios of set A. 
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4.6 Using the ProposedMethodologies in Agile Development 

Agile software development has been adopted as one of the most practical 

approaches to software development. The main reason for this is the tendency to 

incorporate changes in requirements [53]. In general, agile follows iterative development 

which advocates frequent and regular software releases [53]. This allows new versions of 

the software to be released to users quickly and frequently. Therefore users can respond 

to these releases with feedback, changes of their requirements and general comments. 

These changes and comments can then be incorporated in the future iterations and 

releases of the software [53]. 

Developing software in iterations implies the execution of software development 

lifecycle in each release. That is each iteration consists of requirements elicitation, 

analysis and design, development and testing [53, 54]. A common belief about agile 

methods is that they can benefit from using more quantified approaches across the entire 

development life cycle. The research presented in [55] discusses such things as 

quantification of the requirements, design estimation, and measurement of the delivered 

results and proceeds to highlight the advantages of adopting such approaches. In this 

section some of the merits of quantification of agile methodologies particularly in the 

requirements engineering portion of each iteration is discussed. Furthermore the 

advantages of incorporating the methodologies proposed in this thesis into agile 

development to detect defects in software requirements are outlined. 

As it was mentioned in the previous sections of this thesis, collecting and 

analyzing user requirements is very complex and is often a problematic process in 
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software development projects. There are several approaches, which suggest ways of 

managing user's requirements; some of the most well-known are IEEE 830 software 

requirements specification (SRS), use cases, interaction design scenarios, etc [56]. Many 

software experts believe the real user requirements emerge during the development 

phase. By constantly viewing functional sub-systems of the whole system and 

participating, in fact, in all phases of system development, customers/users can revise 

their requirements by adding, deleting, or modifying them [56]. 

However it is needless to say that the traditional waterfall model does not allow 

such flexibility concerning not, only the management of user's requirements, but also the 

entire software development process in general. Agile methodologies represent this 

different approach since the iterative and incremental way of development they propose 

includes user requirements revision mechanisms and user active participation throughout 

the development of the system [56]..,The most famous approach concerning requirements 

specification among the supporters of the agile methodologies is probably user stories 

[56]. In fact, user stories are one of the primary development artefacts for extreme 

programming (XP) project teams. XP creator Beck defines a user story as: "One thing 

the customer wants the system to do. Stories should be estimable at between one to five 

ideal programming weeks. Stories should be testable. Stories need to be of a size that you 

can build afew of them in each iteration" [57]. Figure 4.18 demonstrates the use of user 

stories in agile development. 
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Figure 4.18 - Agile development with user stories 

There arc several ways to represent user stories: it can be done using text [55-57] 

or as suggested in this thesis, they can be illustrated using sequence diagrams or message 

sequence charts (MSC). As mentioned previously in this research, the advantage of using 

MSCs is that they are easy to understand and have a great expressive power. 

Furthermore due to the concise notation of MSCs they can be used in systematic 

methodologies proposed in this research to test and verify the correctness of user stories. 

Incorporating requirement and design validation methodologies in agile development 

goes a long way towards quantifying agile approaches and can be particularly useful in 

building large scale and complex software such as distributed or multi-agent systems. 
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4.7 Summary 

In this chapter two different approaches for the validation of software 

requirements for distributed systems were introduced. The first approach which was 

illustrated using the case study for a minesweeping robot involves compiling all system 

scenarios and conducting behavioral modeling in order to discover all cases of emergent 

behavior in system's requirements. The second approach which was illustrated using an 

online commerce application involves ensuring the lack of existence of particular 

scenarios in the system behavior. 

Furthermore it has been demonstrated in this chapter that scenario-based 

specifications can be used in agile software development and that the proposed 

methodologies in this research can be utilized effectively in quantifying agile approaches. 

In Chapter 5, these methodologies are used to analyze and validate design documents of 

multi-agent systems. 
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Chapter Five: Detection of Emergent Behavior in Multi-Agent Systems 

Multi-agent systems (MAS) are efficient solutions for commercial applications 

such as robotics, business commerce applications, information retrieval and search 

engines. In MAS, agents are usually designed with distribution of functionality and 

control. Lack of central control implies that the quality of service of MAS may be 

degraded because of possible unwanted behavior at runtime, commonly known as 

emergent behavior. Requirements and design of multi-agent systems is particularly 

challenging due to the sophisticated interactions of automated entities. Therefore system 

faults such as deadlock or feature interaction may arise in MAS. A feature is defined as 

an identified piece of functionality which is added as an extension to a base system. By 

extension feature interaction is the situation where two features contradict or have a 

negative effect on each other [58]. However it is important to notice that emergent 

behavior is not necessarily always negative. Emergent behavior by definition is a 

behavior exhibited by the system, but is not explicitly a part of its specifications. Thus 

although feature interactions are classified as a type of emergent behavior and can be 

detected using the proposed methodologies in this research, they are only a subset of 

emergent behavior. 

Detecting and removing emergent behavior during the design phase of MAS will 

lead to huge savings in deployment costs of such systems. Effective and efficient design 

validation of MAS requires the development of systematic and automated methodologies 

to review MAS design documents [59]. Although the increasing demand for multi-agent 

systems (MAS) in the software industry has led to the development of several Agent 
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Oriented Software Engineering (AOSE) methodologies, the AOSE methodologies 

usually do not fully cover monitoring and testing. In, this thesis, a methodology to help 

MAS developers verify, test and monitor MAS design is introduced. In Chapter 4 the 

detection of emergent behavior in the requirements of distributed systems were 

illustrated. This chapter goes further and introduces a methodology to analyze the design 

of multi-agent systems for emergent behavior. 

This method uses MAS design and analysis artefacts created by MaSE which is 

one of the most powerful and famous AOSE methodologies. In this method, the design 

artefacts of MaSE are converted to scenario-based specifications, which are very similar 

to UML's sequence diagrams [60, 61]. These specifications are then used to analyze the 

design of MAS to ensure the lack of emergent behavior. 

5.1 Background 

Over the years, international interest in multi-agent systems (MAS) has grown 

enormously. This is partially since agents are attractive software paradigms which 

provide the opportunity to exploit the possibilities presented by massive open distributed 

systems such as the internet [31]. Furthermore as agents are by definition automated 

entities, multi-agent systems (MAS) seem to be a natural metaphor for understanding and 

building a wide range of artificial social systems [31]. As the result of this growth in 

agent technology, many Agent Oriented Software Engineering (AOSE) methodologies 

such as GAlA and MaSE have emerged to assist in the development of MAS [37]. 

As mentioned previously, this research proposes a systematic methodology that 

can be automated to review MaSE design artefacts in order to discover and remove 
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emergent behavior. MaSE provides a comprehensive and detailed approach for the 

analysis and design of MAS. This methodology utilizes several diagrams and models 

which are driven from the standard Unified Modeling Language (UML) to describe the 

architecture-independent structure of agents and their interactions [33]. The main focus 

in MaSE is to guide a MAS engineer from an initial set of requirements through the 

analysis, design and implementation of a working MAS. In MaSE, a MAS is viewed as a 

high level abstraction of object oriented design of software where the agents are 

specialized objects that cooperate with each other via conversation and act proactively to 

accomplish individual and system-wide goals instead of calling methods and procedures. 

MaSE incorporates models which illustrate the interactions among different roles 

within agents as well as the conversations between the agents themselves. In other 

words, different scenarios that make up the overall functionality and behavior of the 

MAS can be extracted from these models. Having access to the scenario-based 

specifications of MAS is considered greatly valuable as scenarios are not only an 

efficient way to describe the system's requirements and behavior, but they can also be 

used to examine the system for possible design faults such as emergent behaviors. In this 

research a systematic approach is proposed to extract MSCs from MaSE artefacts. These 

MSCs are then used to examine the design of the MAS. 

This chapter is organized as follows: In section 5.2 the multi-agent system for 

manufacturing which is used as the case study throughout this paper is introduced. The 

analysis and design models of MaSE for the system are provided in this section and the 

processes of extracting MSCs from these models is explained. Section 5.3 consists of the 
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behavioral modeling of the manufacturing* MAS. Detection of implied scenarios and 

emergent behavior is discussed in Section 5.4 and the summary of the chapter is 

presented in Section 5.5. 

5.2 Case Study: MAS for Manufacturing System 

The methodologies proposed in this research are explained using a MAS of a 

manufacturing system. An Automated Manufacturing System (AMS) is an integrated 

system of equipments and processes controlled via computer applications or a network of 

them that is capable of producing a variety of products with flexibility and efficiency. A 

manufacturing system automaied by agent-based technology is composed of several 

autonomous and intelligent agents that can communicate and exchange information to 

manage the product line processes and solve challenging problems collaboratively such 

as resource allocation for production tasks. Robots and machines are the resources in 

these systems which are used by agents in cqmpleting tasks and achieving the overall 

systems' goals. 

An automated manufacturing system usually consists of a set of cells, a material 

handling system connecting the cells, and service centers including material warehouse, 

tools room, and equipment repair. A cell can be either a machine, inspector, or a 

load/unload robot. Therefore, an automated manufacturing system can also be defined as 

a set of machines in which parts are automatically transported from one machine to 

another for processing. However due to the lack of central control, allocating resources 

(i.e. machines and robots) in such systems are prone to emergent behavior. 
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In this research, we consider a multi-agent manufacturing system which consists 

of several interacting agents; one of which is the controller agent. The agents are 

responsible for the production tasks in the system. Each agent can play different roles. 

The machines and robots are shared among the agents. The controller agent assigns tasks 

to each agent. Once the tasks are assigned to an agent, that agent would be responsible for 

their completion. All the communications regarding those tasks (e.g. transportation 

requests) are initiated by the agent. While the tasks are being completed, the agent makes 

transportation requests to the controller agent and the controller responds accordingly. 

Once the transportation is complete, a message is sent to the agent informing that the 

parts are located on the requested machine. Once the tasks are done, the agent sends a 

message to the controller agent and informs it about the task completion. 

This system is analyzed and designed using MaSE methodology. Among the 

MaSE models produced, the sequence diagrams in the "Applying Use Cases" step from 

the analysis phase of MaSE along with the "Agent Class Diagrams" from the design 

phase of this methodology are used to construct the partial scenarios for the system in this 

research. This is since the role sequence diagrams of the "Applying Use Cases" step of 

MaSE contain the conversations among roles assigned to each agent [16]. The agent 

class diagrams of MaSE on the other hand represent the complete agent system 

organization consisting of agent classes and the high-level relationships among them. An 

agent class is a template for a type of agent with the system 'roles it plays. Multiple 

assignments of roles to an agent demonstrate the ability of the agent to play assigned 

roles concurrently or sequentially. 
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The agent class diagram in MaSE is similar to the class diagrams used in object 

oriented design but the difference is that the agent classes are defined by roles, not by 

attributes and operations. Furthermore, relationships are the conversations among agents 

[62]. Figures 5.1-5.3 demonstrate MaSE role sequence diagrams for the multi-agent 

manufacturing system while Figure 5.4 shows the agent class diagram. 
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Figure 5.3 - Roles within Agent 3 

The role sequence diagrams illustrated in Figures 5.1-5.3 illustrate the roles in 

agents 1-3 respectively, along with the conversations among these roles. The agent 

class diagram on the other hand demonstrates the communications of the agents with 

the controller agent as shown in Figure 5.4. For the sake of the simplicity of this case 
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study, the conversations among Agents 1-3 are omitted from the agent class diagram. 
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Figure 5.4 - Agent class diagram 

The approach for extracting message sequence charts (MSCs) from the two above 

mentioned MaSE models is defined as follows: Each role sequence diagram is searched 

for the roles which are listed in the same agent clss shown in the agent class diagram 

(Figure 5,4). Following this, all of the roles in each role sequence diagram are 

categorized based on their agent. Thus each category corresponds to an agent class of the 

agent class diagram and the messages which it exchanges with other categories are 

recognizable. From these two models an MSC can be generated which would display the 
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recognized messages between each two categories. Figure 5.5 demonstrates the extracted 

MSCs from the MaSE artefacts shown in Figures 5.1-5.4. 
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5.3 MAS Behavior Modeling 

By extracting the partial scenarios of the system based on the MaSE models, we 

proceed to the modeling of the system's behavior. As mentioned previously, developing 

a methodology which can systematically discover and remove system design faults prior 

to the implementation phase results in huge savings in cost and time. The first step of the 

methodology proposed by this research is the synthesis of state machines from MSCs. 

This step was demonstrated in Chapter 3 for the distributed system of a mine sweeping 

robot and is followed in this section using the case study of the manufacturing MAS. 

We start by constructing behavior models for individual agents using finite state 

machines (FSMs). The process of building FSMs from message sequence charts (MSCs) 

is generally referred to as behavior modeling. For any agent i of a partial message 

sequence chart (pMSC) defined in Definition 1, an equivalent state machine (Definition 
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3) can be constructed. For instance, in the case of the manufacturing MAS the behavior 

model of the "Controller Agent" is demonstrated. Figures 5.8, 5.9 and 5.10 show the 

eFSMs built for the "Controller Agent" in MSCs 1, 2 and 3 respectively (Figures 5.5-5.7). 
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Figure 5.10 - eFSM for the conttoller agent in MSC3 of Figure 5.7 

To complete the behavior modeling for the Controller Agent, the union of eFSMs 

built for each eFSM from MSCs 1-3 of Figures 5.5-5.7 is constructed as shown in Figure 

s:ii. 
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Figure 5.11 - The union of eFSMs built from MSCs 1-3 

5.4 Detection of Emergent Behavior in MAS 

In this section detection of emergent behavior in MAS is illustrated using the 

manufacturing case study. Since this method is quite similar to the one used for 

distributed systems, this section is kept very brief. We start by calculating state values. 

For instance in order to calculate the state value for state q 1 we proceed as follows: from 

the domain theory of the system. (Definition 5) we learn that the case ii of Definition 6 

applies. Therefore the value of state q 1 is calculated as Vcontroiter Agent I (q 1) = 

M IcontrotZ Agent [4 - 1] = PartsLoaded. Continuing the same approach the values of states 

q 2 and q'3 are also calculated to be "PartsLoaded". 

By considering the resulting FSM in Figure 5.11, we select pairs of states with the 

same incoming transitions and evaluate their state to look for identical states. Figure 5.12 

illustrates the constructed FSM as the result of merging two of the discovered identical 

states. Thus as shown in Figure 5.12, it is discovered that emergent behavior exists in S4. 

In this state, the controller agent becomes confused as to whether the right action is to 

move to machine 1.3, or whether to conclude its work. 
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Figure 5.12 - Resulted FSM after merging identical states 

5.5 Summary 

This chapter aims to detecting emergent behavior in the requirements of multi-

agent systems (MAS) using systematic and automated methodologies. This is 

accomplished by formulating a link between MaSE, which is one of the prime AOSE 

methodologies, and scenario-based software engineering (SB SE). This endeavour is 

commenced by converting MaSE artefacts to scenario-based specifications, represented 

by niëssage sequence charts (MSCs). These specifications are then used to construct 

behavior models for all agents involved in the MAS. Finally the behavior models are 

analyzed for validating the design of MAS and ensuring the lack of emergent behavior. 

In Chapter 6 the requirement and design documents, as well as the prototype for 

the design validation tool which automates the methodologies outlined in this chapter and 

Chapter 4 are presented. 
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Chapter Six: Design and Implementation of an Automated Tool 

As presented in the preceding sections of this thesis, despite many advantages of 

using scenario-based specification for the design of distributed systems, there are certain 

limitations to this approach. Therefore in order to use scenarios, it is greatly beneficial 

and even necessary to devise methodologies which verify the resulted design of the 

system. Consequently in order to enable the efficient and effective use of these 

methodologies in real world projects, they need to be made automated in a user-friendly 

software package. In this section, the design and implementation of this tool is presented. 

6.1 System Requirements 

The functional and non-functional requirements of this tool are outlined in this 

section. 

6.1.1 Functional Requirements 

Fl: Import Message Seciuence Charts (Evident  

The user must be able to import one or more (1-200) message sequence charts 

from a third party software such as Eclipse, Microsoft Visio or IBM Rational Rose 

(Assuming only Eclipse in preliminary requirements). 

F2: Parse Imported MSCs (Hidden)  

The MSCs that the user has imported are in XML. The system must parse them 

and extract relevant information from those files. 

F3: Synthesis Behavior Models (Hidden)  

MSCs are to be converted into finite state machines. This is to be done as 

follows: For each component in each MSC, a finite state machine is to be defined in such 
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a way that messages to and from that component are the transitions between states. To 

complete the synthesis step for each component, union all the resulting FSMs from all the 

different scenarios which contain that component. 

F4: Converting the resulting NFAs to DFAs (Hidden  

As the resulting FSMs from F3 are unions of other FSMs, they are by definition 

non-deterministic finite state machines (NFA). These NFAs must be made into DFAs 

and simplified. 

F5: Building the Domain Theory (Evident)  

In order to determine the identical states (which is the ultimate goal of the tool) 

the domain expert must specify certain architectural information known as semantic 

causality between pairs of messages. Semantic causality is formally defined in Definition 

4 of Chapter 3. 

This information will be known as the "domain theory" and will assist the system 

to determine the state values of the resulted FSMs. The formal definition for the domain 

theory has been given in Chapter 3 as Definition 5. 

However it is obvious that prior to selecting pairs of messages between which 

semantic causality exits, state values of the FSM must be calculated. The state values in 

FSMs are provided in Definition 6 in Chapter 3. 

Building a full domain theory would mean having the domain expert establish 

every semantic causality relationship for each component in the system. Therefore a light 

domain theory must be made as follows: 
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For each component, consider the resulting FSM (DFA) from F4. For every pair 

of states that have the same incoming transitions, seek user input and calculate state 

values. 

F6: Detection of Emergent Behavior (Hidden  

Based on the domain theory constructed in F5, identical states are to be identified 

according to Definition 7 given in Chapter 3. 

F7: Producing Report(Evident)  

Using the results from F6, a report is generated for the system engineer to inform 

them as to whether or not emergent behavior exists in the system. 

6.1.2 Non-Functional Requirements 

The system's non-functional requirements are defined in the following categories: 

Usability 

The system is being developed to be used mostly by software engineers and 

designers. It is envisioned to be used to design a vast range of software systems such as 

distributed systems and multi-agent systems. Therefore it is of vital importance for this 

tool to be versatile and easy to use. To achieve this, an easy to use and user-friendly 

graphical user interface (GUI) will be designed and implemented. Furthermore the steps 

the software will take to achieve its goals will be well thought of, so that they follow a 

logical flow. To assess whether or not this requirement has been realized, several users 

will be selected to use this tool. Their feedback will be recorded to evaluate the usability 

of this tool. 
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Reliability  

This tool is planned to be a desktop application, therefore reliability becomes a 

much simpler concept to deal with. However this tool is to be depended upon by 

engineers and software designers, and it must be made reliable. This tool will be 

designed in such a way that data is not lost if the program is to terminate. Rigorous 

testing must be done throughout to ensure the software is developed correctly. Both 

black-box and white-box testing must be done to remove faults. Software reliability 

engineering techniques must be employed to asses and ensure reliability of the software. 

Performance  

This tool will potentially have to process a great amount Qf data in one run. 

Numerous scenarios can be chosen to be checked using this tool at one time. The core 

algorithms have already been designed and have been optimized to match this 

requirement. It is set as a limit that the response time for any number of input scenarios 

should not exceed 10 minutes. Since the maximum number of input scenarios as 

specified in the functional requirements (Fl) is 200, the performance of the tool can 

simply be measured against time. 

Supportability 

This system is to be designed to be modular and by extension maintainable. 

There are a number of different algorithms that will be implemented and added to this 

tool. Therefore the design of this tool is to be in such a way that updating and correcting 

algorithms and adding new ones are made simple. To asses the achievement of this 

requirement the modularity of the architecture of this tool can be analyzed. 



74 

6.2 Design Documents 

High level design documents of this tool have been provided in this section. 

6.2.1 List of Actors 

There are two types of actors in this system as explained in this section: 

Domain Expert (System's user)  

The domain expert is the human user of the system. This user is typically the 

requirement engineer or the designer of the software. To start with, the domain expert 

chooses a set of message sequence charts as input for the system. Then as the system is 

running, the domain expert is asked to help with building the "domain theory". That is, 

the domain expert will be asked to provide input related to the architecture of the system 

to be built. Upon completion, the domain expert is presented with the output. 

Eclipse 

Message sequence charts '(MSCs) are produced using Eclipse. They are then 

imported by our system to start analysis. 

NOTE: As the software is developed, the goal is to have the tool connect to other 

tools such as IBM's Rational Rose and Microsoft Visio. 

6.2.2 System's Use Cases 

The names and brief descriptions for the systems use cases are provided in this 

section. 

Import XML Files 

This use case is responsible for importing MSCs from Eclipse, parsing them and 

extracting relevant information from those files. 



75 

Construct Finite State Machines (FSM)  

As defined in functional requirements (F3), each component in the imported 

MSCs is to be converted to finite state machines. 

Synthesize Behavior Model 

As required by the functional requirements (F3), the resulted FSMs for each 

component are to be unionized. This is done to obtain the full behavior of the component 

in the system. As defined by F4, the resulting FSM is simplified to obtain a deterministic 

finite automaton (DFA), 

Build Domain Theory  

As required by F5 the architectural properties of the system are defined in this use 

case. All requirements stated by P5 are realized here. 

Detect Identical States  

As required by P6, based on the domain theory constructed, identical states are to 

be identified. 

Produce Report 

This use case is responsible for making a report based on the result of the 

analysis. 

The use case diagram of the system is presented in Figure 6.1. 
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Domain Expert 

Figure 6.1 - Use case diagram 

Produce Repo 

System 

Import XML Files 

Synthesize 
Behaviour Model 

Construct FSM 

Build Domain Theory 

Detect Identical 
States 

6.2.3 Flow of Events 

The flow of events is done for the following two use cases: 

Synthesis of Behavior Model 

Eclipse 

• Each component of each scenario is converted to a finite state machine as stated 
in F3 

• The resulting state machines of each components from different scenarios are 
unionized together 

• If the resulting FSM is non-deterministic, convert it to a deterministic finite state 

machine (i.e. DFA) 

• Simplify the resulting DFA (remove unnecessary states) 

Build Domain Theory 

• For a given FSM, search for pairs of states which have the same incoming 
transitions 
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• For each of the states obtained in the previous step, obtain its semantic cause 

• Using semantic causality, calculate the state's value (Definition 4) 

The activity diagrams for the above two use cases are illustrated in Figures 6.2-
6.3. 

(Divide each MSC into components 

V 
Convert each component to FSm 

(Convert the NFA to DF 

(Simplify resulting DFA 

(i 
Figure 6.2 - Activity diagrams for the Synthesis Behavior Model 
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(Get fully constructed FSM (DFA) for each component 

_earch for pairs of identical states 

[E se] 

V 
Get the states' semantic cause 

[If none found] 

/ 
 (calculate the states' values 

Figure 6.3 - Activity diagram for Build Domain Theory 
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Domain Class Diagram 

The domain class diagram according to the system requirements is presented 

below: 

<<Boundary>> InputReader 

<<Control>> Parser 

<<Boundary>> ReportBuilder 

<<Controller>> DomainlheoryBuilder 

<<Controller>> MSCtoFSMConverter 

<<Entity>> MSC 

<<Controller>>NFAtoDFAConverter 

<<Entity>> Component 

<<Entity>> Message 

<<Entity>> FSM 

<<Controller>> ldenticalStatesFinder 

<<Entity>> Domainlheory 

<<Entity>> State <<Entity>> Transition 

Figure 6.4 - Domain class diagram 
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6.3 System prototype 

The prototype of the design validation tool is presented in this section [63]. There 

were two major concerns in the developmnt of this tool. First, as there is still a vast 

amount of research remaining in this area, it is essential for this tool to be modular and 

scalable. To comply with this requirement, this tool was built on the two pillars of 

encapsulation and parallel execution. 

The second concern was that since this tool is developed to increase the efficiency 

of the development life cycle, it is highly desirable that it is easy to use. To incorporate 

the usability of the tool, an easy to follow graphical user interface (GUI) has been 

developed (Figure 6.5) which closely represents the logical flow of the developed 

methodology. To test the usability of this tool, as mentioned in the non-functional 

requirements section of this chapter, several users will be selected to utilize .this tool. 

Their feedback will be recorded to evaluate the usability of this tool. 

Moreover, as MSCs are constructed using a variety of different software 

packages, in order to account for the convenience of the users, this tool can import MSCs 

from a variety of different tools such as IBM Rational Rose and Microsoft Office Visio. 
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Figure 6.5 - Snapshot of the GUI of the tool; displaying an imported MSC 

As it can be seen from the snapshot of the tool's graphical user interface shown in 

Figure 6.5, upon importing a design project from one of the above mentioned tools, the 

data boxes of the GUI are populated automatically with appropriate data. By clicking 

any of the imported MSCs, the components of that MSC will be shown in the Component 

subsection of the GUI and the actual MSC will be shown in the Selected Diagram area. 

Consequently, by selecting a component, the messages associated with that component 

will be shown in the Message subsection of the GUI. The synthesis of the behavior 

model, explained in Sections 3.2 and 4.3 of this thesis is conducted immediately upon 

importing related MSCs. As the result the built FSMs will be shown in the Constructed 
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FSMs subsection of the GUI. By clicking on the title of any of the FSMs the constructed 

figure will be shown in the Selected Diagram area as shown in Figure 6.6. 
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Figure 6.6- Snapshot of the GUI of the tool; displaying a constructed FSM 

At this point, by clicking the Validate Design button, the methodology 

commences. The user will be asked to assist in constructing the domain theory which 

will be used to find identical states as outlined in sections 3.3 and 4.4 of this thesis. Upon 

completion of the analysis, the user will be presented with a report outlining the areas in 

which indeterminism could occur. 
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6.4 Summary 

Manual review of requirements and design 'documents, particularly for large-

scale software systems such as MAS and distributed systems is somehow inefficient. 

This research attempts to devise methodologies to analyze software design and 

requirements using a systematic approach as outlined in this thesis. This chapter presents 

the steps towards automating the proposed methodologies as a software tool. 

The requirements and design documents of the design validation software tool, as 
/ 

well as its preliminary prototype are presented in this chapter. Using this tool, system 

engineers can analyze system requirements in an efficient and effective manner. 
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Chapter Seven: Conclusions and Future Work 

Scenario-based specifications are an effective and efficient way to describe the 

requirements of a variety of software systems such as multi-agent systems (MAS) and 

distributed systems. Scenarios enable engineers and designers to describe system 

functionality using the partial interactions of the system elements. Moreover, due to their 

simplicity and expressive power, scenarios are the perfect medium through which all 

stakeholders can communicate in an efficient and effective manner. 

However scenario-based specifications are prone to deficiencies such as 

incompleteness and contradictions. It is of vital importance that these deficiencies are 

identified prior to implementation as many system failures can be attributed to faulty 

requirements and design of software. Studies suggest that the discovery and elimination 

of faults and failures during field use of a system is estimated to be about 20 times more 

expensive than detection and removal of faults in the requirement and design phase [64]. 

The main goal of this research is to identify possible design flaws that might lead 

to run time problems in software systems by analyzing the system specification expressed 

by scenarios. Unfortunately, manual review may not efficiently detect all of the design 

flaws due to the scale and complexity of the systems. In this research we have provided 

sound techniques to automate the specification and design review of the software systems 

and detect a subset of unwanted run time behaviors, including implied scenarios. 

Furthermore, in this thesis a method to identify the exact cause of implied 

scenarios is provided, so that by capturing it, implied scenarios can be detected and 

removed. This method is novel in the sense of formalization of the cause of implied 
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scenarios. We believe that this is the main reason for some shortcomings and conflicts in 

the current works, as they have, be'en rvealed in [4, 26, 65]. 

The proposed methodologies in this thesis were applied to a variety of different 

software systems such as distributed and multi-agent systems. In Chapter 4, two 

approaches for the validation of software requirements for distributed systems were 

introduced. The first approach which was illustrated using the case study for a mine-

sweeping robot involves compiling all system scenarios and conducting behavioral 

modeling in order to discover all cases of emergent behavior in system's requirements. 

The second approach which was illustrated using an online commerce application 

involves ensuring the lack of existence of particular scenarios in the system behavior. 

Furthermore the applicability of scenario-based software engineering (SEBE) and the 

emergent behavior detection methodologies in agile development was addressed in this 

chapter. Incorporating requirement and design validation methodologies in agile 

development goes a long way towards quantifying agile approaches and can be 

particularly useful in building large scale and complex software such as distributed or 

multi-agent systems. 

In Chapter 5 a comprehensive methodology was introduced to analyse AOSE 

design documents to ensure validation of MAS requirements and the prototype of the 

design validation software was presented in Chapter 6. This software provides an easy to 

use and practical tool to apply these algorithms to requirements and design documents. 

For future work, the proposed methodologies can be extended to a comprehensive 

framework for model based analysis and testing of distributed and multi-agent software 
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systems. Furthermore, this technique can be modified to take the UML's sequence 

diagrams as input and thus incorporate analyzing object oriented design. These 

techniques can also be extended to systematically analyze the design of multi-agent 

systems as well as social networks. In this research plug-ins to convert MaSE artefacts to 

MSCs were developed. For future work additional plug-ins can be developed to convert 

modeling constructs of other AOSE methodologies to scenario-based specifications 

(Figure 1.1). 

As the produced software closely follows the principle of encapsulations and 

modularization, it is intended to add the future results of this research to this tool upon 

completion. In addition, since this tool already has the capabilities to import projects 

from IBM's Rational Rose, it can be modified and implemented as a plug-in for it. Figure 

1.1 illustrates the general structure of the comprehensive framework to be built. This 

framework will take input from a variety of different models and its outputs are 

component-level emergent behavior detection (CEBD), system-level emergent behavior 

detection (SEBD) and model based detection and testing of MAS (MDTM). 

Moreover as the analysis of the requirements of software systems were conducted 

at the component level in this research, research can be done in analyzing at the system 

level. In system level analysis it is assumed that the emergent behavior for the 

components has already been resolved. Here scenarios are further analyzed for detecting 

possible system level implied scenarios [3]. Contributions regarding this task involve: 

(1) revisiting the notion of safe realizability for MSC specifications [3] in order to make 

it computationally implementable; (2) devising an algorithm for "strong safe 
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realizability" (i.e. an implementation that covers the behavior described by the 

specification while avoiding "stuck states" [3]); and (3) devising an algorithm for 

detecting implied scenarios. The teiin stuck states (i.e. a super set for deadlock) is new 

and it means that a message sent has no receiver to catch it, and a receiver waits for a 

message that has never been sent. 

The efficiency of the proposed methodologies is highly dependent on building the 

domain theory for the system. Future work can be done to add efficiency to the building, 

maintenance and using of the domain theory. Data mining techniques and ontology can 

be employed to improve the current state of domain theory in the proposed 

methodologies. 
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