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Abstract

In classical homotopy theory, two spaces are homotopy equivalent if one space can be contin-

uously deformed into the other. This theory, however, does not respect the discrete nature

of graphs. For this reason, a discrete homotopy theory that recognizes the difference be-

tween the vertices and edges of a graph was invented, called A-homotopy theory. In classical

homotopy theory, covering spaces and lifting properties are often used to compute the fun-

damental group of a space. In this thesis, we develop the lifting properties for A-homotopy

theory. Using a covering graph and these lifting properties, we compute the fundamental

group of the cycle C5 and use this computation to show that C5 is not contractible in this

theory, even though the cycles C3 and C4 are contractible.
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Chapter 1

Introduction

In algebraic topology, we consider two topological spaces, or just spaces for short, to be the

same if one can be continuously deformed into the other. For example, the shape of a coffee

mug can be continuously deformed into the shape of a doughnut by gradually shifting the

cup part of the mug onto the handle to eventually form the doughnut. Thus to a topologist,

these two shapes represent the same space.

Figure 1.1: Deformation of coffee mug to doughnut [12]

A graph consists of a set of vertices and a set of edges where each edge is an unordered

pair of vertices. In figures, the vertices of a graph are represented as points and the edges

as line segments between the vertices of the unordered pair. The vertices often represent

a set of objects or ideas, while the edges represent a relationship between these objects or

ideas. When considering a graph as a space, that is, as a subset of R2 or R3, any continuous

deformation would ignore the inherent discrete structure of the graph, not distinguishing

between the vertices and edges. All connected graphs can be continuously deformed into a
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bouquet of loops, that is, a single vertex with some number of edges having both endpoints

at that vertex. For example in the Figure 1.2, we can continuously shorten the red edges in

the graph on the left until we have the graph on the right, a bouquet of five loops. This can

be done for every connected graph by continuously contracting the edges of a spanning tree

of the original graph [9, Proposition 1A.2]. Thinking of all graphs as being equivalent to

Figure 1.2: Bouquet of loops

bouquets of loops, however, is not particularly useful because this equivalence is too coarse,

placing graphs in the same equivalence class that should be kept distinct. For this reason,

discrete homotopy theories were developed that would respect the structure of graphs, i.e.,

the vertices and edges, and give us more relevant information about graphs by applying ideas

from algebraic topology in a combinatorial way [6, 8].

In this thesis, we focus on A-homotopy theory, a theory first developed by Atkin (see [5]).

In a space, the properties that are preserved by continuous deformation are called invariants.

For example, the hole created by the handle of a coffee mug which is deformed into the hole

of a doughnut is an invariant of the space, because no continuous deformation can remove

the hole. Another type of invariant of a space is given by examining the loops of a space

based at a distinguished point of the space. A loop of a space X with a distinguished point

x0 is a continuous map f : [0, 1]→ X with f(0) = f(1) = x0. The set of equivalence classes

of these loops is known as the fundamental group of the space. In a graph, these loops do
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not distinguish between the vertices and edges of the graph, and thus cannot record the

combinatorial information of the graph. Hence, the classical fundamental group cannot find

very informative or useful invariants for graphs.

One of the most basic graphs, a cycle, is a set of vertices connected by edges in a closed

chain [11]. The loops mentioned earlier find cycle subgraphs of a graph, which is useful,

but we need a way of keeping track of how many vertices the cycle contains. For example,

the loops would detect a 3-cycle, that is, a cycle on three vertices, but each vertex of a

3-cycle is connected to the other two, so it should not be viewed as a ‘hole’ in the graph. In

A-homotopy theory, we look for areas where there are fewer edges connecting the vertices of

the graph. Since graphs are often used to represent real world networks and systems, these

areas with fewer edges can either point to missing information in the network or areas where

the network could be made more efficient by adding connections. To find some of these

areas, we examine the A-homotopy theory fundamental group of the graph, that is, the set

of equivalence classes of paths (a sequence of edges and a sequence of vertices) mapped into

the graph with both endpoints of the path mapped to the distinguished vertex of the graph.

In classical homotopy theory, all cycles can be continuously deformed into the circle. In

A-homotopy theory, however, the 3-cycle C3 and 4-cycle C4 are contractible, that is, they

are considered to be the same as a single vertex, and all cycles on five or more vertices are

not contractible (see Propositions 3.6 and 3.7). In [4, Proposition 5.12], Barcelo, Kramer,

Figure 1.3: Cycles C3, C4, and C5

Laubenbacher, and Weaver show this by proving that attaching 2-cells to the 3-cycles and

4-cycles of graphs, and using classical homotopy theory on the spaces created, is equivalent
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to using A-homotopy theory on the original graphs.

In this thesis, we explore the question of why the 3-cycle and 4-cycle are contractible in

A-homotopy theory, but the cycles on five or more vertices are not contractible. In classical

homotopy theory, the circle is one of the first spaces for which we compute the fundamental

group. Since the cycles Ck, for k ≥ 5, are not contractible, they are the best candidates for

graphs that have a behavior analogous to the behavior of the circle as a topological space.

For this reason, we prove that, similar to the fundamental group of the circle, there is an

isomorphism between the A-homotopy theory fundamental group of C5 and the integers Z,

using combinatorial methods within A-homotopy theory. This computation implies that C5

is not contractible in a direct way, and the proof fails for C3 and C4 in a way that lends

insight into our question.

The methods used in the computation of the A-homotopy fundamental group of C5 are

inspired by the methods used in the computation of the fundamental group of the circle in

classical homotopy theory found in [9], namely, covering spaces and lifting properties. While

an analogous definition of covering spaces can be found in the literature for graphs (see [10]),

no such analogous theory of lifting properties exists for graphs. Thus we develop these lifting

properties in Chapter 6 of this thesis. Since covering spaces and lifting properties are one of

the frequently-used methods to compute the homotopy groups of spaces in classical homotopy

theory, these analogous lifting properties are a significant contribution to A-homotopy theory.

While developing the Homotopy Lifting Property (6.11), we found that it does not hold for

graphs containing 3-cycles or 4-cycles. Since the Homotopy Lifting Property (6.11) is used

in the computation of the A-homotopy fundamental group of C5 (Theorem 7.8), this same

method cannot be used to compute the A-homotopy fundamental group of C3 or C4. In

fact, an entirely different method is used to compute the A-homotopy fundamental groups

of contractible graphs (Theorem 7.1), which is included in Chapter 7. The fact that the

Homotopy Lifting Property (6.11) does not hold for C3 or C4, and that the A-homotopy

fundamental groups of C3 and C4 must be computed in a different way than the A-homotopy
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fundamental groups of Ck, for k ≥ 5, helps us better understand why the cycles C3 and C4

have such interesting behavior in A-homotopy theory.

In Chapter 2, we introduce the basic definitions of graphs and graph homomorphisms

that are used in A-homotopy theory. Each definition is followed by an example and figure.

We also establish basic notation that is used throughout this thesis.

In Chapter 3, we provide an introduction to A-homotopy theory, summarizing the main

definitions found in the literature. More specifically, we provide the basic definitions of A-

homotopy theory along with examples and figures depicting those examples. We also give the

precise definitions of the A-homotopy fundamental group and the nth A-homotopy group. In

this chapter, we also include proofs that the A-homotopy relation is an equivalence relation

and that the cycles C3 and C4 are A-contractible.

In Chapter 4, we provide an alternate definition for A-homotopy theory first defined

in [3], which establishes an equivalence relation on the set of graph homomorphisms from

infinite paths into a graph G. These graph homomorphisms must be active (p. 29) for only

a finite region of the infinite path. This alternate definition is essential, because the original

homotopy relation, included in Chapter 3, only compares graph homomorphisms with the

same domain, but the A-homotopy fundamental group of a graph G must compare graph

homomorphisms from paths of any length into G. With this new A-homotopy relation, we

define a new set B1(G, v0)/ ∼, which is isomorphic to the A-homotopy fundamental group

defined in Chapter 3. We use the set B1(G, v0)/ ∼ as the A-homotopy fundamental group

of G in all of the remaining chapters.

In Chapter 5, we show that the set B1(G, v0)/ ∼ is a group. While this result is stated

in the literature, a full proof does not appear. This is likely because the proof is long and

highly technical. For this reason, we include the proof here, and this constitutes part of the

original work of this thesis.

In Chapter 6, we provide the definition of a covering graph along with examples and

develop the lifting properties for A-homotopy theory. These properties include the Path
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Lifting Property (6.10), the Homotopy Lifting Property (6.11), and the Lifting Criterion

(6.18). These theorems are the main results of this thesis. We also include examples that

illustrate why the Homotopy Lifting Property (6.11) does not hold for graphs containing

3-cycles or 4-cycles.

In Chapter 7, we conclude this thesis by showing that the A-homotopy fundamental

groups of all A-contractible graphs is zero and by using a covering graph and the lifting

properties to show that the A-homotopy fundamental group of the cycle C5 is isomorphic

to Z. This implies that the cycle C5 is not contractible, even though C3 and C4 are A-

contractible. Indeed, the cycle Ck is not A-contractible for any k ≥ 5.
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Chapter 2

Graphs and Graph Homomorphisms

Before introducing A-homotopy theory, we need to consider some basic definitions and lem-

mas that are the building blocks of this discrete homotopy theory. Since graphs are the main

objects that we consider, we start with a more rigorous definition of a graph.

Definition 2.1. A graph G consists of a set of vertices, V (G), and a set of edges, E(G),

where each edge in E(G) is an unorder pair of distinct vertices. Let {v, w} denote an edge

between the vertices v and w.

This definition ensures that the graphs we consider are simple, that is, the graphs do

not have more than one edge connecting the same two vertices or edges with both endpoints

at the same vertex. If {v, w} ∈ E(G), then we say that the vertices v and w are adjacent

and the edge {v, w} is incident to the vertices v and w. Some graphs we consider have one

selected vertex called a distinguished vertex, even when not explicitly stated. We denote

a graph G with distinguished vertex v by (G, v). In figures, this distinguished vertex will

generally be colored green.

In the following definitions, we use the notation G1, G2, . . . for simple graphs with dis-

tinguished vertices, v1, v2, . . . respectively. Throughout this thesis, we use the graphs (S, x)

and (T, a) depicted in Figure 2.1 as examples. Here, S is a 3-cycle with particular labels.

We reserve the notation C3 for the unlabeled graph with the same shape.

7



x

yz

a b

cd

Figure 2.1: Graphs S and T

In classical homotopy theory, we examine continuous maps from topological spaces to

topological spaces. In A-homotopy theory, we need a discrete mapping that respects the

structure of the graphs.

Definition 2.2. [3, Definition 2.1(2)] A graph homomorphism f : G1 → G2 is a map of

setsV (G1)→ V (G2) such that, if {u, v} ∈ E(G1), then either f(u) = f(v) or {f(u), f(v)} ∈

E(G2), that is, adjacent vertices in G1 are mapped to the same vertex of G2 or adjacent

vertices of G2.

This definition is slightly altered from the standard graph theory definition of a graph

homomorphism [7, p. 3]. In this version, adjacent vertices can always be mapped to the

same vertex.

Example 2.3. Let the identity map 1G : G→ G be defined by 1G(v) = v for all v ∈ V (G).

This map 1G is a graph homomorphism, because if {v, w} ∈ E(G), then {f(v), f(w)} =

{v, w} ∈ E(G).

Example 2.4. Given v0 ∈ V (G), let the constant map cv0 : G→ G be defined by cv0(x) = v0

for all x ∈ V (G). This map cv0 is a graph homomorphism, because if {u,w} ∈ E(G), then

cv0(u) = v0 = cv0(w).
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Example 2.5. Let the vertex set maps f : S → T and g : T → S be defined by

f(x) = a g(a) = x

f(y) = d and g(b) = y

f(z) = c g(c) = z

g(d) = y.

It is routine to verify that both of these set maps f and g are graph homomorphisms.

Definition 2.6. A graph G′ is a subgraph of the graph G if V (G′) ⊆ V (G) and E(G′) ⊆

E(G), where each unordered pair of E(G′) only contains vertices of V (G′).

Definition 2.7. [3, Definition 2.1(3)] Let G′1 be a subgraph of G1 and G′2 be a subgraph

of G2. A relative graph homomorphism f : (G1, G
′
1) → (G2, G

′
2) is a graph homomorphism

f : G1 → G2 which restricts to a graph homomorphism f |G′1 : G′1 → G′2.

We use relative graph homomorphisms to ensure that the distinguished vertex of the first

graph is mapped to the distinguished vertex of the second graph.

Definition 2.8. [4, Definition 5.1(4)] A based graph homomorphism f : (G1, v1)→ (G2, v2)

is a relative graph homomorphism f : G1 → G2 that maps the distinguished vertex v1 to the

distinguished vertex v2.

Example 2.9. Consider the graph homomorphisms f and g from Example 2.5. Since f(x) =

a and g(a) = x, both f and g are based graph homomorphisms.

We assume that all graph homomorphisms are based, unless otherwise specified. Next,

we show that the composition of two based graph homomorphisms is also a based graph

homomorphism.

Lemma 2.10 (Composition Lemma). If f : (G1, v1) → (G2, v2) and g : (G2, v2) →

(G3, v3) are graph homomorphisms, then the composition g ◦ f : (G1, v1) → (G3, v3) is a

graph homomorphism.
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Proof. Let G1, G2, and G3 be simple graphs and f : G1 → G2 and g : G2 → G3 be

graph homomorphisms. Suppose {u,w} ∈ E(G1). Since f is a graph homomorphism, either

{f(u), f(w)} ∈ E(G2) or f(u) = f(w).

• Case 1: Suppose {f(u), f(w)} ∈ E(G2), that is, the vertex f(u) is adjacent to f(w).

Since g is a graph homomorphism, either {g(f(u)), g(f(w))} ∈ E(G3) or g(f(u)) =

g(f(w)). Thus {(g ◦ f)(u), (g ◦ f)(w)} ∈ E(G3) or (g ◦ f)(u) = (g ◦ f)(w).

• Case 2: Suppose f(u) = f(w), that is, f(u) and f(w) are the same vertex. Then

g(f(u)) = g(f(w)). Thus (g ◦ f)(u) = (g ◦ f)(w).

Thus g ◦ f is a graph homomorphism. Also, (g ◦ f)(v1) = g(f(v1)) = g(v2) = v3. Thus g ◦ f

is a based graph homomorphism.

In classical homotopy theory, we frequently use the product of two spaces. In A-homotopy

theory, we use a discrete version of this product that produces a graph.

Definition 2.11. The Cartesian product of the graphs G1 and G2, denoted G1�G2, is the

graph with vertex set V (G1) × V (G2). There is an edge between the vertices (u1, u2) and

(w1, w2) if either u1 = w1 and {u2, w2} ∈ E(G2) or u2 = w2 and {u1, w1} ∈ E(G1).

By default, the distinguished vertex of the Cartesian product of two graphs G1 and G2

is (v1, v2), the 2-tuple with the distinguished vertices of each separate graph.

Example 2.12. The Cartesian product of the graphs S and T is illustrated in Figure 2.2.

If you move the vertices of the graphs S and T into a straight line, you can see that S is

repeated horizontally and T is repeated vertically in the Cartesian product. The edges of

the copies of T are shown in red. The distinguished vertex of S�T is (x, a) and shown in

green.

In classical homotopy theory, we continuously deform maps over the unit interval, and

when forming the fundamental group, we map the unit interval into the space. In A-
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x

y

z

a b c d

Figure 2.2: The Cartesian product of S and T

homotopy theory, in order to better distinguish between vertices and edges in the graphs

that we examine, we replace the unit interval with graphs known as paths.

Definition 2.13. [4, Definition 5.1(3)] Let In be a graph with n+1 vertices labeled 0, 1, . . . , n

and n edges {i− 1, i} for 1 ≤ i ≤ n. This graph is referred to as a path of length n.

The distinguished vertex of a path of length n is the vertex 0, unless otherwise stated.

Example 2.14. The path of length five, I5, is illustrated in Figure 2.3.

0 1 2 3 4 5

Figure 2.3: The graph I5

We also use the path of infinite length, denoted by I∞, with vertices labeled by the

integers. This graph becomes important in Chapter 4. We now proceed to an introduction

to A-homotopy theory.
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Chapter 3

A-Homotopy Theory

In classical homotopy theory, two maps f, g : A → B are homotopic if we can take the

product of the space A with the unit interval and continuously deform the map f into

the map g over time from 0 to 1 [9, p. 3]. In A-homotopy theory, as mentioned in the

previous chapter, we use the Cartesian product of a graph with a path In to deform one

graph homomorphism into another graph homomorphism in a combinatorial way that keeps

track the vertices and edges of the graph.

Definition 3.1. [4, Definition 5.2(1)] Let f, g : (G1, v1) → (G2, v2) be graph homomor-

phisms. If there exists an integer n ∈ N and a graph homomorphism H : G1�In → G2 such

that

• H(v, 0) = f(v) for all v ∈ V (G1),

• H(v, n) = g(v) for all v ∈ V (G1), and

• H(v1, i) = v2 for all 0 ≤ i ≤ n,

then f and g are A-homotopic, denoted f 'A g. The graph homomorphism H is called a

graph homotopy from f to g.

Since H(v1, 0) = v2 by definiton, the graph homotopy H is a based graph homomorphism.
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Example 3.2. Recall the graphs S and T from Figure 2.1. Let f, g : (S, x)→ (T, a) be the

graph homomorphisms defined by

f(x) = a, g(x) = a,

f(y) = d, and g(y) = b,

f(z) = c, g(z) = c.

Figure 3.1 depicts the graph homomorphisms f and g. The image under f of each vertex in

S is shown in red, while the image under g of each vertex in S is shown in blue.

x

yz

f

g

a b

cd

a

d

c

a

b

c

Figure 3.1: Graph homomorphisms from S to T

Define a map H : S�I2 → T by

H(x, 0) = a, H(x, 1) = a, H(x, 2) = a,

H(y, 0) = d, H(y, 1) = a, H(y, 2) = b,

H(z, 0) = c, H(z, 1) = c, H(z, 2) = c.

Figure 3.2 depicts this map H with the image of each vertex shown in red. Then H is a graph

homomorphism with H(v, 0) = f(v) and H(v, 2) = g(v) for all v ∈ V (S), and H(x, i) = a

for all 0 ≤ i ≤ 2. Thus H is a graph homotopy from f to g. However, H is not unique. It is

only one of several possible graph homotopies.

We now show that this relation between graph homomorphisms is an equivalence relation

on Hom((G1, v1), (G2, v2)), the set of graph homomorphism from (G1, v1) to (G2, v2). We
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Figure 3.2: A graph homotopy H from f to g

often abbreviate this set as Hom∗(G1, G2).

Proposition 3.3. The A-homotopy relation 'A is an equivalence relation on Hom∗(G1, G2).

Proof. To show that 'A is reflexive, symmetric, and transitive, we define maps and show

that each map is well-defined, is a graph homomorphism, and is a graph homotopy.

• 'A is reflexive.

Let f ∈ Hom∗(G1, G2). To show that f 'A f , define H : G1�I1 → G2 by

H(v, i) = f(v) for all v ∈ V (G1) and i ∈ {0, 1}.

The map H is well-defined, since f is well-defined. We now show that H is a graph

homomorphism. Suppose that {(u, j), (w, k)} ∈ E(G1�I1). By the definition of the

Cartesian product, either u = w and {j, k} ∈ E(I1), or {u,w} ∈ E(G1) and j = k.

– If u = w and {j, k} ∈ E(I1), then {(u, j), (w, k)} = {(u, j), (u, k)}. Since

H(v, i) = f(v) for all i ∈ {0, 1}, it follows thatH(u, j) = f(u) andH(u, k) = f(u).

Hence, H(u, j) = H(u, k) = H(w, k).

– Otherwise, {u,w} ∈ E(G1) and j = k. Hence, {(u, j), (w, k)} = {(u, j), (w, j)}.

Since j ∈ {0, 1}, it follows that H(u, j) = f(u) and H(w, j) = f(w). More-

over, {u,w} ∈ E(G1) and f is a graph homomorphism, so f(u) = f(w) or

14



{f(u), f(w)} ∈ E(G2). Thus H(u, j) = H(w, j) = H(w, k) or {H(u, j), H(w, k)}

∈ E(G2).

Therefore, in both cases H(u, j) = H(w, k) or {H(u, j), H(w, k)} ∈ E(G2) for each

edge {(u, j), (w, k)} ∈ E(G1�I1), so H is a graph homomorphism. By the definition

of H and since f(v1) = v2, it follows that H(v, 0) = f(v) and H(v, 1) = f(v) for all

v ∈ V (G1), and H(v1, i) = v2 for all i ∈ {0, 1}. Thus H is a graph homotopy from f

to f , so f 'A f .

• 'A is symmetric.

Let f, g ∈ Hom∗(G1, G2), and suppose f 'A g. Then there exists an n ∈ N and a

graph homomorphism H1 : G1�In → G2 such that

H1(v, 0) = f(v) for all v ∈ V (G1),

H1(v, n) = g(v) for all v ∈ V (G1),

H1(v1, i) = v2 for all i ∈ {0, . . . , n}.

To show that g 'A f , define H2 : G1�In → G2 by

H2(v, i) = H1(v, n− i) for all v ∈ V (G1) and i ∈ {0, . . . , n}.

The map H2 is well-defined, since H1 is well-defined. We now show that H2 is a graph

homomorphism. Suppose {(u, j), (w, k)} ∈ E(G1�In). By definition of the Cartesian

product, either u = w and {j, k} ∈ E(In), or {u,w} ∈ E(G1) and j = k.

– If u = w and {j, k} ∈ E(In), then |j − k| = 1. Thus, without loss of generality,

we may assume that k = j + 1, and hence,

H2(u, j) = H1(u, n− j) and H2(w, k) = H2(u, j + 1) = H1(u, n− j − 1).

15



Since {(u, n − j), (u, n − j − 1)} ∈ E(G1�In) for 0 ≤ j < n and H1 is a graph

homomorphism, it follows that H1(u, n − j) = H1(u, n − j − 1) or {H1(u, n −

j), H1(u, n−j−1)} ∈ E(G1). Thus H2(u, j) = H2(w, k) or {H2(u, j), H2(w, k)} ∈

E(G2).

– Otherwise, {u,w} ∈ E(G1) and j = k, and hence,

H2(u, j) = H1(u, n− j) and H2(w, k) = H2(w, j) = H1(w, n− j).

Since {(u, n− j), (w, n− j)} ∈ E(G1�In) for 0 ≤ j ≤ n and H1 is a graph homo-

morphism, it follows that H1(u, n−j) = H1(w, n−j) and {H1(u, n−j), H1(w, n−

j)} ∈ E(G2). Thus H2(u, j) = H2(w, k) or {H2(u, j), H2(w, k)} ∈ E(G2).

Therefore, in both cases H2(u, j) = H2(w, k) or {H2(u, j), H2(w, k)} ∈ E(G2) for each

edge {(u, j), (w, k)} ∈ E(G1�In), so H2 is a graph homomorphism. By definition of

H1 and H2,

H2(v, 0) = H1(v, n− 0) = H1(v, n) = g(v) for all v ∈ V (G1)

H2(v, n) = H1(v, n− n) = H1(v, 0) = f(v) for all v ∈ V (G1),

H2(v1, i) = H1(v1, n− i) = v2 for all i ∈ {0, . . . , n}.

Thus H2 is a graph homotopy from g to f , and hence, g 'A f .

• 'A is transitive.

Let f, g, h ∈ Hom∗(G1, G2), and suppose f 'A g and g 'A h. Then there exists an

16



n ∈ N and a graph homomorphism H1 : G1�In → G2 such that

H1(v, 0) = f(v) for all v ∈ V (G1),

H1(v, n) = g(v) for all v ∈ V (G1),

H1(v1, i) = v2 for all i ∈ {0, . . . , n}.

Similarly, there exists an m ∈ N and a graph homomorphism H2 : G1�Im → G2 such

that

H2(v, 0) = g(v) for all v ∈ V (G1),

H2(v,m) = h(v) for all v ∈ V (G1),

H2(v1, i) = v2 for all i ∈ {0, . . . ,m}.

To show that f 'A h, define H3 : G1�In+m → G2 by

H3(v, i) =


H1(v, i) for 0 ≤ i ≤ n,

H2(v, i− n) for n ≤ i ≤ n+m,

for all v ∈ V (G1). The map H3 is well-defined, since H1(v, n) = H2(v, 0) for all

v ∈ V (G1). We now show thatH3 is a graph homomorphism. Suppose {(u, j), (w, k)} ∈

E(G1�In+m). By definition of Cartesian product, either u = w and {j, k} ∈ E(In+m),

or {u,w} ∈ E(G1) and j = k.

– If u = w and {j, k} ∈ E(In+m), then |j− k| = 1. Thus, without loss of generality,

we may assume that k = j + 1, and hence,

H3(u, j) =


H1(u, j) for 0 ≤ j ≤ n,

H2(u, j − n) for n ≤ j ≤ n+m,
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and

H3(w, k) = H3(u, j + 1) =


H1(u, j + 1) for 0 ≤ j ≤ n,

H2(u, j + 1− n) for n ≤ j ≤ n+m.

Since {(u, j), (u, j + 1)} ∈ E(G1�In) for 0 ≤ j < n and H1 is a graph homo-

morphism, H1(u, j) = H1(u, j + 1) or {H1(u, j), H1(u, j + 1)} ∈ E(G2). Thus

H3(u, j) = H3(w, k) or {H3(u, j), H3(w, k)} ∈ E(G2) for 0 ≤ j < n. Similarly,

since {(u, j − n), (u, j + 1 − n)} ∈ G1�Im for n ≤ j < n + m and H2 is a graph

homomorphism, H2(u, j−n) = H2(u, j+1−n) or {H2(u, j−n), H2(u, j+1−n)} ∈

E(G2). Therefore, H3(u, j) = H3(w, k) or {H3(u, j), H3(w, k)} ∈ E(G2) for

n ≤ j < n+m.

– Otherwise, {u,w} ∈ E(G1) and j = k, and hence,

H3(u, j) =


H1(u, j) for 0 ≤ j ≤ n,

H2(u, j − n) for n ≤ j ≤ n+m,

and

H3(w, k) = H3(w, j) =


H1(w, j) for 0 ≤ j ≤ n,

H2(w, j − n) for n ≤ j ≤ n+m.

Since {(u, j), (w, j)} ∈ E(G1�In) for 0 ≤ j < n and H1 is a graph homomorphism,

H1(u, j) = H1(w, j) or {H1(u, j), H1(w, j)} ∈ E(G2). Thus H3(u, j) = H3(w, k)

or {H3(u, j), H3(w, k)} ∈ E(G2) for 0 ≤ j < n. Since {(u, j − n), (w, j − n)} ∈

E(G1�Im) for n ≤ j < n+m and H2 is a graph homomorphism, H2(u, j − n) =

H2(w, j − n) or {H2(u, j − n), H2(w, j − n)} ∈ E(G2). Thus H3(u, j) = H3(w, k)

or {H3(u, j), H3(w, k)} ∈ E(G2) for n ≤ j < n+m.

Therefore, in both cases H3(u, j) = H3(w, k) or {H3(u, j), H3(w, k)} ∈ E(G2) for

18



each edge {(u, j), (w, k)} ∈ E(G1�In+m), so H3 is a graph homomorphism. By the

definitions of H1, H2, and H3,

H3(v, 0) = H1(v, 0) = f(v) for all v ∈ V (G1),

H3(v, n+m) = H2(v, n+m− n) = H2(v,m) = h(v) for all v ∈ V (G1),

H3(v1, i) = v2 for all i ∈ {0, . . . , n+m}.

Thus H3 is a graph homotopy from f to h, so f 'A h.

Therefore, 'A is an equivalence relation on Hom∗(G1, G2).

Just as in classical homotopy theory we seek to know when two spaces are homotopy

equivalent, in A-homotopy theory we seek to know when two graphs are A-homotopy equiv-

alent. The next definition is drawn directly from [9, p. 3], except with ‘graph homomorphism’

in the place of ‘continuous map’ and ‘A-homotopic’ in the place of ‘homotopic’.

Definition 3.4. [4, Definition 5.2(2)] The graph homomorphism f : G1 → G2 is an A-

homotopy equivalence if there exists a graph homomorphism g : G2 → G1 such that f ◦ g 'A

1G2 and g ◦ f 'A 1G1 . In this case, the graphs G1 and G2 are A-homotopy equivalent.

We introduce one more definition in order to give two simple and relevant examples of A-

homotopy equivalence. This definition is a slight modification of the definition of contractible

found in [9, p. 4].

Definition 3.5. A graph G is A-contractible if G is A-homotopy equivalent to the graph

with a single vertex, called ∗, and no edge. For convenience, we will abuse the notation

slightly and refer to this graph as ∗.

As mentioned in the introduction, the results of [4] imply that the cycles C3 and C4 are A-

contractible graphs. We prove this directly using the previous definitions and combinatorial

methods.
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Proposition 3.6. [5, p. 47] The cycle C3 is A-contractible.

Proof. We use the labeled 3-cycle, S, in this proof. First, we must define our graph homo-

morphisms f : S → ∗ and g : ∗ → S. Notice that there is only one possible choice. Namely,

f : S → ∗ must be defined by f(x) = f(y) = f(z) = ∗, since the graph ∗ has only one

vertex. Similarly, g : ∗ → S must be defined by g(∗) = x, since x is the distinguished vertex

of S.

x

yz

∗
f

g

Figure 3.3: Graph homomorphisms f and g

Then f ◦ g is defined by (f ◦ g)(∗) = f(g(∗)) = f(x) = ∗, and thus f ◦ g = 1∗. Also,

(g ◦ f)(x) = g(f(x)) = g(∗) = x,

(g ◦ f)(y) = g(f(y)) = g(∗) = x,

(g ◦ f)(z) = g(f(z)) = g(∗) = x.

Thus the composition g ◦ f is equal to cx : S → S, the constant graph homomorphism

mapping every vertex to x. We must now show that cx 'A 1S. Define H : S�I1 → S by

H(x, 0) = x, H(x, 1) = x,

H(y, 0) = x, H(y, 1) = y,

H(z, 0) = x, H(z, 1) = z.

The image under H of each vertex in S�I1 is shown in red in Figure 3.4. For H to

be a graph homomorphism, it must be the case that for all {u,w} ∈ E(S�I1), either
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Figure 3.4: Homotopy from cx to 1S

H(u) = H(w) or {H(u), H(w)} ∈ E(S). Since every vertex of S is adjacent to every other

vertex of S, the map H is a graph homomorphism. By construction of H, H(v, 0) = cx(v)

and H(v, 1) = 1S(v) for all v ∈ V (S), and H(x, i) = x for all i ∈ {0, 1}. Hence, H is a graph

homotopy from cx to 1S, and g ◦ f 'A 1S. Thus the graph S is A-contractible.

Proposition 3.7. [5, p.46] The cycle C4 is A-contractible.

Proof. Let R be a labeled 4-cycle obtained from the graph T by deleting the edge {a, c}.

There is again only one choice for the graph homomorphisms f and g. Namely, f : R → ∗

is defined by f(a) = f(b) = f(c) = f(d) = ∗ and g : ∗ → R is definedn by g(∗) = a.

a b

cd

∗

f

g

Figure 3.5: Graph homomorphisms f and g
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Then f ◦ g is defined by (f ◦ g)(∗) = f(g(∗)) = f(a) = ∗, and thus f ◦ g = 1∗. Also,

(g ◦ f)(a) = g(f(a)) = g(∗) = a,

(g ◦ f)(b) = g(f(b)) = g(∗) = a,

(g ◦ f)(c) = g(f(c)) = g(∗) = a,

(g ◦ f)(d) = g(f(d)) = g(∗) = a.

Thus g ◦ f is equal to ca : R→ R, the constant graph homomorphism mapping every vertex

to a. We must now show that ca 'A 1R. Define H : R�I2 → R by

H(a, 0) = a, H(a, 1) = a, H(a, 2) = a,

H(b, 0) = a, H(b, 1) = a, H(b, 2) = b,

H(c, 0) = a, H(c, 1) = d, H(c, 2) = c,

H(d, 0) = a, H(d, 1) = d, H(d, 2) = d.

a

b

c

d

0 1 2

H

a b

cd

a

a

a

a

a

a

d

d

a

b

c

d

Figure 3.6: Graph homotopy from ca to 1C4

The image under H of each vertex in R�I2 is shown in red in Figure 3.6. It is routine

to verify that H is a graph homomorphism. By construction of H, H(v, 0) = ca(v) and

H(v, 2) = 1R(v) for all v ∈ V (R), and H(a, i) = a for all i ∈ {0, 1, 2}. Hence, H is a graph

22



homotopy from ca to 1R, and g ◦ f 'A 1R. Thus the graph R is A-contractible.

Therefore, the cycles C3 and C4 are A-contractible. As mentioned in the introduction,

the results in [4, Proposition 5.12] imply that the cycle C5 is not A-contractible. To prove

this in a more direct way, we need to examine the A-homotopy invariants of the cycle.

For example, we show that the A-homotopy theory fundamental group of an A-contractible

graph is equal to zero (Theorem 7.1). Thus, if the fundamental group of a graph is not

equal to zero, then the graph cannot be A-contractible. In a later chapter, we show that the

A-homotopy theory fundamental group of C5 is isomorphic to the group Z, using classical

homotopy inspired methods in a combinatorical way (see Theorem 7.8). This allows us to

explore the question of why the cycles C3 and C4 are A-contractible and the cycles Ck, for

k ≥ 5, are not A-contractible. Then we need a more rigorous definition of the fundamental

group of a graph in A-homotopy theory.

Definition 3.8. [4, Definition 5.5] The fundamental group of the graph (G, v0), denoted

A1(G, v0), is the set of homotopy classes of relative graph homomorphisms f : (Im, {0,m})→

(G, v0) from Im, m ≥ 0, to G that map the vertices 0 and m to the distinguished vertex v0,

using Definition 3.1 of A-homotopic.

Remark 3.9. The fundamental group is a set, but we show that it has group structure with

the operation of concatenation in Chapter 5.

A graph homomorphism f : In → G is also referred to as a path in the graph G. This is

not the standard definition of a path found in graph theory, but it does reflect the classical

homotopy terminology.

Example 3.10. Figure 3.7 depicts the graph homomorphism f : I6 → S, which wraps

around the 3-cycle S twice in a clockwise direction. The image under f of each vertex in I6

is labeled in red.

While this thesis only deals with the fundamental group of graphs in A-homotopy theory,

we include the general definition of the A-homotopy groups for the sake of completeness.
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Figure 3.7: A graph homomorphism from I6 to S

Before doing this, we require two additional definitions. First, we need a higher dimensional

graph to map into a graph.

Definition 3.11. [4, Definition 5.3(1)] The graph Inm = Im� · · ·�Im is the n-fold Cartesian

product of Im for some integers n,m ≥ 0 with distinguished vertex 0 = (0, . . . , 0).

Example 3.12. Figure 3.8 illustrates the 2-fold Cartesian product of I2 and the 3-fold

Cartesian products of I1 and I2, without labels.

Figure 3.8: The graphs I22 and I31 and I32

24



Remark 3.13. In topology, the space [0, 1]n is the n-dimensional cube in Rn. Similarly, the

graph Inm resembles an n-dimensional cube graph with sides of length m, as seen in Figure

3.8.

Definition 3.14. Let G = (V,E) be a graph and V ′ ⊆ V . The induced subgraph G[V ′] is

the graph with vertex set V ′ and edge set E ′ = {{v, w} ∈ E | v, w ∈ V ′}, that is, all edges

with vertices of V ′ as both endpoints.

Definition 3.15. [4, Definition 5.3(2)] The boundary of Inm, denoted δInm, is the subgraph

of Inm induced by the vertices with at least one coordinate equal to 0 or m.

Example 3.16. Figure 3.9 illustrates the unlabeled boundaries of the 2-fold Cartesian prod-

uct of I2 and the 3-fold Cartesian products of I1 and I2.

Figure 3.9: The graphs δI22 and δI31 and δI32

Now we can define the A-homotopy groups for every dimension.

Definition 3.17. [4, Definition 5.5] The nth A-homotopy group An(G, v0), for n ≥ 1, is the

set of homotopy classes of relative graph homomorphisms f : (Inm, δI
n
m) → (G, v0) from Inm,

m ≥ 0, to G which map the vertices of δInm to the distinguished vertex v0, using Definition

3.1 of A-homotopic.

Remark 3.18. We do not provide the group structure for A-homotopy groups in general,

because we are only interested in the fundamental groups of graphs in this thesis.
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While graph homotopies are only defined to compare graph homomorphisms with the

same domain and codomain, the fundamental group of a graph G must compare graph

homomorphisms from paths of different lengths into G. For this reason, the authors of [3]

defined an alternate set and equivalence relation to use with A-homotopy groups of graphs.

These are presented in the next chapter.
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Chapter 4

Alternate Definitions for A-Homotopy

Theory

The A-homotopy theory fundamental group of a graph G, from Definition 3.8, is the set of

equivalence classes of the graph homomorphisms from paths In into G, where n ranges over

all nonnegative integers. Thus we must compare graph homomorphisms starting at paths of

different lengths, but graph homotopies are only defined to compare graph homomorphisms

that have the same domain and codomain. For this reason, the authors of [3] give an alternate

definition of A-homotopy groups that compare graph homomorphisms starting at products

of infinite paths I∞ that are what we term active for finite regions. The definitions for

this alternate theory are given here. While these definitions are notationally heavy, each is

followed by an example and figure to illustrate the idea. The n-fold Cartesian product In∞,

labeled by Zn, features frequently in these definitions.

Definition 4.1. [3, Defintion 3.1] A graph homomorphism f : In∞ → G stabilizes in direction

εi with 1 ≤ i ≤ n and ε ∈ {−1,+1}, if there exists a least integer m0(f, εi) such that either:

• if ε = +1, then for all m ≥ m0(f,+i),

f(a1, · · · , ai−1, m, ai+1, · · · , an) = f(a1, · · · , ai−1, m0(f,+i), ai+1, · · · , an),
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• if ε = −1, then for all m ≤ m0(f,−i),

f(a1, · · · , ai−1, m, ai+1, · · · , an) = f(a1, · · · , ai−1, m0(f,−i), ai+1, · · · , an).

Remark 4.2. The graph homomorphisms f : In∞ → G are not based graph homomorphisms.

The integer m0(f, εi) gives us the point at which the graph homomorphism f stabilizes

on the ith-axis in the ε direction of that axis. In figures, the graphs I∞ and I2∞ are depicted

with the 1st-axis vertical and the 2nd-axis horizontal. No n-cubes of higher dimension are

depicted.

Example 4.3. Figure 4.1 depicts a graph homomorphism f : I∞ → S with the image of

each vertex under f shown in red. Since f(i) = x for all i ≤ −1, the integer m0(f,−1) = −1,

4

3

2

1

0

−1

−2

y

y

x

z

y

x

x

f

x

yz

Figure 4.1: A stable graph homomorphism f from I∞ to S

that is, f stabilizes on the 1st-axis in the negative direction at −1. Similarly, since f(i) = y

for all i ≥ 3, the integer m0(f,+1) = 3, that is, f stabilizes on the 1st-axis in the positive

direction at 3.
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When a graph homomorphism stabilizes in every direction, there is a finite region of the

n-dimensional lattice with “relevant information”. For instance, the information stored by

the graph homomorphism in Example 4.3 could be presented in a graph homomorphism from

I4 to S, since m0(f,+1)−m0(f,−1) = 3− (−1) = 4. We call the region of In∞, induced by

the vertex set
∏

i∈[n][m0(f,−i),m0(f,+i)], the active region for each graph homomorphism

f : In∞ → G. In Figure 4.1, the edges of the active region of the graph homomorphism f are

shown in light blue. For each path f : I∞ → G, we say that f starts at f(m0(f,−1)) and f

ends at f(m0(f,+1)) when these integers exist. In Example 4.3, f : I∞ → S starts at the

vertex x and ends at the vertex y.

Definition 4.4. [3, Defintion 3.1] Let Cn(G) be the set of graph homomorphisms from the

infinite n-cube In∞ to the graph G that stabilize in each direction εi for 1 ≤ i ≤ n and

ε ∈ {−1,+1}. These graph homomorphisms are referred to as stable graph homomorphisms.

The set C0(G) consists of the graph homomorphisms from the graph ∗, with a single

vertex ∗ and no edges, to the graph G.

Definition 4.5. A graph G is connected if for each v, w ∈ V (G), there exists a stable graph

homomorphism f ∈ C1(G) such that f(m0(f,−1)) = v and f(m0(f,+1) = w.

While this is not the standard definition of a connected graph found in [11], it is equiv-

alent. In order to better understand and discuss the graph homomorphisms of Cn(G), we

need the following tools.

Definition 4.6. [3, Definition 3.1] The face map αnεi : Cn(G) → Cn−1(G), with 1 ≤ i ≤ n

and ε ∈ {−1,+1}, is defined by f 7→ αnεi(f), where

αnεi(f)(a1, . . . , an−1) = f(a1, . . . , ai−1,m0(f, εi), ai, . . . , an−1).

We refer to the map αnεi(f) as the face of f in the εi direction.
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For each graph homomorphism f ∈ Cn(G), the face αnεi(f) : In−1∞ → G is a restriction of

f to m0(f, εi) on the ith-axis, that is, the face of f in the εi direction. Thus, since f is a

stable graph homomorphism, each face αnεi(f) is a stable graph homomorphism.

Example 4.7. Consider the graph homomorphism f ∈ C1(S) in Example 4.3. The face

α1
−1(f) : ∗ → S is α1

−1(f)(∗) = f(m0(f,−1)) = f(−1) = x, that is, the face of f on 1st-

axis in the negative direction, is x. Similarly, the face α1
+1(f) : ∗ → S is α1

+1(f)(∗) =

f(m0(f,+1)) = f(3) = y, that is, the face of f on the 1st-axis in the positive direction, is y.

Example 4.8. Figure 4.2 depicts a graph homomorphism H : I2∞ → T with the image of

each vertex in I2∞ under H shown in red. This map H stabilizes in every direction with

m0(H,−1) = −1, m0(H,+1) = 2, m0(H,−2) = 0, and m0(H,+2) = 2. Thus H ∈ C2(T ).
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Figure 4.2: A stable graph homomorphism H from I2∞ to T

The face α2
−1(H) is α2

−1(H)(i) = H(m0(H,−1), i) = H(−1, i) = a for all i ∈ Z. Thus

α2
−1(H) : I∞ → T is constantly equal to a and is shown in orange as the bottom face of the
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lattice. Similarly, α2
+1(H) is α2

+1(H)(i) = H(m0(H,+1), i) = H(2, i) = a for all i ∈ Z and

is shown in orange as the top face of the lattice. The face α2
−2(H), that is, the face of H

on the 2nd-axis in the negative direction, is α2
−2(H)(i) = H(i,m0(H,−2)) = H(i, 0) for all

i ∈ Z and is shown in light blue as the left face of the lattice. The face α2
+2(H), that is, the

face of H on the 2nd-axis in the positive direction, is α2
+2(H)(i) = H(m0(h,+2), i) = H(i, 2)

for all i ∈ Z and is shown in light blue as the right face of the lattice.

Definition 4.9. [3, Definition 3.1] The degeneracy maps βni : Cn−1(G) → Cn(G) with

1 ≤ i ≤ n is defined by f 7→ βni (f), where

βni (f)(a1, . . . , an) = f(a1, . . . , ai−1, ai+1, . . . , an).

Example 4.10. Consider the graph homomorphism f ∈ C1(S) from Example 4.3. Figure

4.3 illustrates that the graph homomorphism β2
1(f) : I2∞ → S is β2

1(f)(i, j) = f(j) for all

i, j ∈ Z. The image of each vertex under β2
1(f) is shown in red. This map repeats f along
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Figure 4.3: The graph homomorphism β2
1 from I2∞ to G

the 1st-axis. The edges of the active region of the lattice are shown in light blue.

31



Example 4.11. Consider the graph homomorphism f ∈ C1(S) from Example 4.3. Figure

4.4 illustrates the graph homomorphism β2
2(f) : I2∞ → S defined by β2

1(f)(i, j) = f(i) for all

i, j ∈ Z. The image of each vertex under β2
2(f) is shown in red. This map repeats f along
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Figure 4.4: The graph homomorphism β2
2(f) from I2∞ to S

the 2nd-axis. Again, the edges of the active region of the lattice are shown in light blue. Note

that this graph homomorphism is just a rotation of Figure 4.3 by −π/2 radians.

In general, these degeneracy maps βni repeat the graph homomorphisms f : In−1∞ → G

along the ith-axis with 1 ≤ i ≤ n, giving us a graph homomorphism from In∞ to G. For our

purpose, we need only map between the sets C0(G) and C1(G), and between the sets C1(G)
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and C2(G) for each graph G.

C2(G)

C1(G)

C0(G)

α2
−1α2

+1α2
−2α2

+2

α1
−1α1

+1

β2
1 β2

2

β1
1

Using these face and degeneracy maps, we can give a definition for a graph homotopy

between two graph homomorphisms of Cn(G).

Definition 4.12. [3, Definition 3.2] Let f, g ∈ Cn(G). The graph homomorphisms f and g

are A-homotopic, denoted f ∼ g, if there exists a graph homomorphism H ∈ Cn+1(G) such

that for all 1 ≤ i ≤ n and ε ∈ {−1,+1}:

(a) αnεi(f) = αnεi(g),

(b) αn+1
εi (H) = βnnα

n
εi(f) = βnnα

n
εi(g),

(c) αn+1
−(n+1)(H) = f and αn+1

+(n+1)(h) = g.

The graph homomorphism H : In+1
∞ → G is referred to as a graph homotopy from f to g.

By part (a), in order for the graph homomorphisms f, g ∈ Cn(G) to be homotopic,

they must stabilize to the same graph homomorphism of Cn−1(G) in each εi direction for

1 ≤ i ≤ n and ε ∈ {−1,+1}, that is, they must have the same faces. By part (b), the graph

homomorphism H must stabilize in each εi direction for 1 ≤ i ≤ n and ε ∈ {−1,+1} to the

faces of f and g repeated along the nth-axis. By part (c), the graph homomorphism H must

stabilize to f in the negative direction of the (n+ 1)st-axis and stabilize to g in the positive

direction of the (n+ 1)st-axis.
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Example 4.13. Recall the graph homomorphism H ∈ C2(T ) depicted in Figure 4.2. Let

the graph homomorphisms f, g ∈ C1(T ) be defined by

f(i) =



a for i ≥ 2,

c for i = 1,

d for i = 0,

a for i ≤ −1,

and g(i) =



a for i ≥ 2,

c for i = 1,

b for i = 0,

a for i ≤ −1.

We show that H is a graph homotopy from f to g by verifying conditions (a)-(c) of Definition

4.12.

(a) Since f and g both stabilize to the vertex a in the negative direction of the 1st-axis

and the positive direction of the 1st-axis, α1
−1(f) = α1

−1(g) and α1
+1(f) = α1

+1(g).

(b) Let pa : I∞ → T denote the graph homomorphism which is constantly equal to a.

Hence, H stabilizes to pa in the negative direction of the 1st-axis and positive direc-

tion of the 1st-axis. Since the degeneracy map β1
1 : C0(T ) → C1(T ) repeats a graph

homomorphism along the 1st-axis, it follows that pa = β1
1α

1
−1(f) = β1

1α
1
−1(g) and

pa = β1
1α

1
+1(f) = β1

1α
1
+1(g). Thus α2

−1(H) = β1
1α

1
−1(f) = β1

1α
1
−1(g) and α2

+1(H) =

β1
1α

1
+1(f) = β1

1α
1
+1(g).

(c) Since H stabilizes to f in the negative direction of the 2nd-axis and stabilizes to g in

the positive direction of the 2nd-axis, α2
−2(H) = f and α2

+2(H) = g.

Thus H is a graph homotopy from f to g, and hence, f ∼ g.

Now that we have a way to compare graph homomorphisms from paths of different lengths

to a graph G, we need an operation that combines the graph homomorphisms of Cn(G).

Definition 4.14. Let f and g be graph homomorphisms of C1(G) with α1
−1(f) = α1

+1(g).
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The concatenation of f and g, denoted f · g, is defined by

(f · g)(a) =


f(a+m0(f,−1)) for a ≥ 0,

g(a+m0(g,+1)) for a ≤ 0.

More generally, if f and g are graph homomorphisms of Cn(G) with αn−i(f) = αn+i(g), then

the concatenation of f and g on the ith-axis, denoted f ·i g, is defined by

(f ·i g)(a1, · · · , ai, · · · , an) =


f(a1, . . . , ai−1, ai +m0(f,−i), ai+1, . . . , an) for ai ≥ 0,

g(a1, . . . , ai−1, ai +m0(g,+i), ai+1, . . . , an) for ai ≤ 0.

This operation essentially shifts the first graph homomorphism f to stabilize in the

negative direction on the ith-axis at zero and shifts the second graph homomorphism g to

stabilize in the positive direction on the ith-axis at zero. For this reason, the face of f in the

negative direction on the ith-axis must be the same as the face of g in the positive direction

on the ith-axis.

Proposition 4.15. If f, g ∈ C1(G) with αn−1(f) = αn+1(g), then the concatenation f · g is a

graph homomorphism of C1(G).

Proof. Let f, g ∈ C1(G) with α1
−1(f) = α1

+1(g). By the definition of concatenation,

(f · g)(i) =


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g,+1)) for i ≤ 0.

Since α1
−1(f) = α1

+1(g), it follows that f(m0(f,−1)) = g(m0(g,+1)). Thus f · g is well-

defined. In order for f · g to be a graph homomorphism, each pair of adjacent vertices in I∞

must be mapped to the same vertex or adjacent vertices in G. By definition of the graph

I∞, there is an edge {j, j + 1} ∈ E(I∞) for each j ∈ Z.
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• If j ≥ 0, then

(f · g)(j) = f(j +m0(f,−1)) and (f · g)(j + 1) = f(j + 1 +m0(f,−1)).

Since {j + m0(f,−1), j + 1 + m0(f,−1)} ∈ E(I∞) and f is a graph homomorphism,

f(j+m0(f,−1)) = f(j+ 1 +m0(f,−1)) or {f(j+m0(f,−1)), f(j+ 1 +m0(f,−1))} ∈

E(I∞). Thus (f · g)(j) = (f · g)(j + 1) or {(f · g)(j), (f · g)(j + 1)} ∈ E(I∞) for all

j ≥ 0.

• Otherwise j < 0, and it follows that

(f · g)(j) = g(j +m0(g,+1)) and (f · g)(j + 1) = g(j + 1 +m0(g,+1)).

Since {j + m0(f,−1), j + 1 + m0(f,−1)} ∈ E(I∞) and g is a graph homomorphism,

g(j +m0(g,+1)) = g(j + 1 +m0(g,+1)) or {g(j +m0(g,+1)), g(j + 1 +m0(g,+1))} ∈

E(I∞). Thus (f · g)(j) = (f · g)(j + 1) or {(f · g)(j), (f · g)(j + 1)} ∈ E(I∞) for all

j < 0.

Therefore, (f · g)(j) = (f · g)(j + 1) or {(f · g)(j), (f · g)(j + 1)} ∈ E(I∞) for all j ∈ Z, and

thus the concatenation f · g is a graph homomorphism.

Lemma 4.16. For each f, g ∈ C1(G) with α1
−1(f) = α1

+1(g), the concatenation f ·g ∈ C1(G)

stabilizes in the positive direction at m0(f ·g,+1) = m0(f,+1)−m0(f,−1) and in the negative

direction at m0(f · g,−1) = m0(g,−1)−m0(g,+1).

Proof. Let f, g ∈ C1(G) be such that α1
−1(f) = α1

+1(g). Then by Proposition 4.15, the

concatenation f · g is a graph homomorphism. For i ≥ 0, (f · g)(i) = f(i+m0(f,−1)). Since

m0(f,+1)−m0(f,−1) ≥ 0,

(f · g)(m0(f,+1)−m0(f,−1)) = f(m0(f,+1)−m0(f,−1) +m0(f,−1))

= f(m0(f,+1)).
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By Definition 4.1, m0(f,+1) is the least integer such that f(m) = f(m0(f,+1)) for all

m ≥ m0(f,+1), so it follows that m0(f,+1) − m0(f,−1) is the least integer such that

(f · g)(i) = f(m0(f,+1)) for all i ≥ m0(f,+1) − m0(f,−1). Therefore, m0(f · g,+1) =

m0(f,+1)−m0(f,−1). For i ≤ 0, (f ·g)(i) = g(i+m0(g,+1)). Since m0(g,−1)−m0(g,+1) ≤

0,

(f · g)(m0(g,−1)−m0(g,+1)) = g(m0(g,−1)−m0(g,+1) +m0(g,+1))

= g(m0(g,−1)).

By Definition 4.1, m0(g,−1) is the greatest integer such that g(m) = g(m0(g,−1)) for all

m ≤ m0(f,+1), so it follows that m0(g,−1) − m0(g,+1) is the greatest integer such that

(f · g)(i) = g(m0(g,−1)) for all i ≤ m0(g,−1) − m0(g,+1). Therefore, m0(f · g,−1) =

m0(g,−1)−m0(g,+1).

We now continue with an example of the concatenation of two graph homomorphisms.

Example 4.17. Figure 4.5 depicts the stable graph homomorphism f : I∞ → S that

starts at x, wraps around S in a clockwise direction, and stops at y, and the stable graph

homomorphism g : I∞ → S that starts at y, wraps around S in a counterclockwise direction,

and stops at x.

Since f stabilizes to x in the the negative direction and g stabilizes to x in the positive

direction, α1
−1(f) = α1

+1(g). Since g stabilizes to y in the the negative direction and f sta-

bilizes to y in the positive direction, α1
−1(g) = α1

+1(f). Thus we can take the concatenations

f · g and g · f , which are illustrated in Figure 4.6.

Since m0(f,−1) = −1, m0(f,+1) = 3, m0(g,−1) = −2, and m0(g,+1) = 2, the
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Figure 4.5: Stable graph homomorphisms from I∞ to S

concatenations f · g and g · f stabilize at the following integers:

m0(f · g,−1) = m0(g,−1)−m0(g,+1) = −2− 2 = −4,

m0(f · g,+1) = m0(f,+1)−m0(f,−1) = 3− (−1) = 4,

m0(g · f,−1) = m0(f,−1)−m0(f,+1) = −1− 3 = −4,

m0(g · f,+1) = m0(g,+1)−m0(g,−1) = 2− (−2) = 4.

This definition of concatenation is only one of many variations that are all A-homotopic to

each other. We use the version defined here because we know exactly where the concatenation

of two graph homomorphisms stabilizes.

Proposition 4.18. The homotopy relation ∼ is an equivalence relation on C1(G).

Proof. To show that ∼ is reflexive, symmetric, and transitive, we define maps, and show

that each map is well-defined, a stable graph homomorphism, and a graph homotopy.

• ∼ is reflexive.

Let f ∈ C1(G). Define H = β2
2(f), that is, f repeated along the 2nd-axis. By definition

of H and since f ∈ C1(G), the map H : I2∞ → G is well-defined and a stable graph
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Figure 4.6: The concatenations f · g and g · f

homomorphism in C2(G). To show that H is a graph homotopy from f to f , we must

verify conditions (a)-(c) of Definition 4.12.

(a) Since f(m0(f,+1)) = f(m0(f,+1)) and f(m0(f,−1)) = f(m0(f,−1)) trivially, it

follows that α1
+1(f) = α1

+1(f) and α1
−1(f) = α1

−1(f).

(b) By definition of H, H(i, j) = β2
2(f)(i, j) = f(i) for all i, j ∈ Z. Thus the

graph homomorphism H stabilizes on the 1st-axis at m0(H,+1) = m0(f,+1)

and m0(H,−1) = m0(f,−1). The face α2
+1(H) : I∞ → G is given by

α2
+1(H)(i) = H(m0(H,+1), i)

= H(m0(f,+1), i)

= β2
2(f)(m0(f,+1), i)

= f(m0(f,+1))
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for all i ∈ Z, that is, taking the top face of H is the same as taking the top face

of f and repeating it along the 1st-axis. Thus α2
+1(H) = β1

1α
1
+1(f) = β1

1α
1
+1(f).

Similarly, the face α2
−1(H) : I∞ → G is given by

α2
−1(H)(i) = H(m0(H,−1), i)

= H(m0(f,−1), i)

= β2
2(f)(m0(f,−1), i)

= f(m0(f,−1))

for all i ∈ Z, that is, taking the bottom face of H is the same as taking the

bottom face of f and repeating it along the 1st-axis. Thus α2
−1(H) = β1

1α
1
−1(f) =

β1
1α

1
−1(f).

(c) Since H(i, j) = f(i) for all i, j ∈ Z, the graph homomorphism H stabilizes on the

2nd-axis at m0(H,+2) = m0(H,−2) = 0. The face α2
−2(H) is given by

α2
−2(H)(i) = H(i,m0(H,−2))

= H(i, 0)

= β2
2(f)(i, 0)

= f(i)

for all i ∈ Z. Thus α2
−2(H) = f . Similarly, the face α2

+2(H) = f .

Hence, H is a graph homotopy from f to f , so f ∼ f . Thus the relation ∼ is reflexive.

• ∼ is symmetric.

Let f, g ∈ C1(G), and suppose f ∼ g. Then there exists a graph homomorphism

H1 ∈ C2(G) such that

(1) α1
+1(f) = α1

+1(g), and α1
−1(f) = α1

−1(g)
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(2) α2
+1(H1) = β1

1α
1
+1(f) = β1

1α
1
+1(g) and α2

−1(H1) = β1
1α

1
−1(f) = β1

1α
1
−1(g),

(3) α2
−2(H1) = f and α2

+2(H1) = g.

Define the map H2 : I2∞ → G by H2(i, j) = H1(i,−j) for all i, j ∈ Z. Since H1 ∈ C2(G),

the map H2 is well-defined. Since

H2(i, j) = H1(i,−j),

H2(i+ 1, j) = H1(i+ 1,−j),

H2(i, j + 1) = H1(i,−j − 1),

and H1 is a graph homomorphism, the map H2 is a graph homomorphism. To show

that H2 is a graph homotopy from g to f , we must verify conditions (a)-(c) of Definition

4.12.

(a) Trivially by condition (1), α1
+1(g) = α1

+1(f) and α1
−1(g) = α1

−1(f).

(b) By condition (2), α2
−1(H1) = β1

1α
1
−1(f) = β1

1α
1
−1(g) and α2

+1(H1) = β1
1α

1
+1(f) =

β1
1α

1
+1(g). Since

m0(H1,−1) ≤ m0(f,−1),

m0(H1,−1) ≤ m0(g,−1),

m0(H1,+1) ≥ m0(f,+1),

m0(H1,+1) ≥ m0(g,+1),

the faces α2
−1(H1) and α2

+1(H1) are given by

α2
−1(H1)(i) = H1(m0(H1,−1), i) = f(m0(f,−1)) = g(m0(g,−1))
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and

α2
+1(H1)(i) = H1(m0(H1,+1), i) = f(m0(f,+1)) = g(m0(g,+1)),

respectively, for all i ∈ Z. Since H2(m0(H1,−1), i) = H1(m0(H1,−1),−i) and

H2(m0(H1,+1), i) = H1(m0(H1,+1),−i) for all i ∈ Z, it follows that H2 stabilizes

on the 1st-axis in the negative direction at m0(H2,−1) = m0(H1,−1) and in the

positive direction at m0(H2,+1) = m0(H1,+1). The faces α2
−1(H2) and α2

+1(H2)

are given by

α2
−1(H2)(i) = H2(m0(H2,−1), i)

= H1(m0(H2,−1),−i)

= H1(m0(H1,−1),−i)

and

α2
+1(H2)(i) = H2(m0(H2,+1), i)

= H1(m0(H2,+1),−i)

= H1(m0(H1,+1),−i)

for all i ∈ Z. This implies that α2
−1(H2)(i) = f(m0(f,−1)) = g(m0(g,−1)) and

α2
+1(H2)(i) = f(m0(f,+1)) = g(m0(g,+1)) for all i ∈ Z. Therefore, α2

−1(H2) =

β1
1α

1
−1(g) = β1

1α
1
−1(f) and α2

+1(H2) = β1
1α

1
+1(g) = β1

1α
1
+1(f).

(c) By condition (3),

H1(i,m0(H1,−2)) = f(i) and H1(i,m0(H1,+2)) = g(i)

for all i ∈ Z. Since H2(i, j) = H1(i,−j) for all i, j ∈ Z, it follows that H2 stabilizes
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on the 2nd-axis in the negative direction at m0(H2,−2) = −m0(H1,+2) and in

the positive direction at m0(H2,+2) = −m0(H1,−2). The face α2
−2(H2) is given

by

α2
−2(H2)(i) = H2(i,m0(H2,−2))

= H2(i,−m0(H1,+2))

= H1(i,m0(H1,+2))

= g(i)

for all i ∈ Z. Similarly, the face α2
+2(H2) is given by

α2
+2(H2)(i) = H2(i,m0(H2,+2))

= H2(i,−m0(H1,−2))

= H1(i,m0(H1,−2))

= f(i)

for all i ∈ Z. Thus it follows that α2
−2(H2) = g and α2

+2(H2) = f .

Therefore, g ∼ f , so the relation ∼ is symmetric.

• ∼ is transitive.

Let f, g, h ∈ C1(G), and suppose f ∼ g and g ∼ h. Then there exists a graph

homomorphism H1 ∈ C2(G) such that

(1) α1
−1(f) = α1

−1(g) and α1
+1(f) = α1

+1(g),

(2) α2
−1(H1) = β1

1α
1
−1(f) = β1

1α
1
−1(g) and α2

+1(H1) = β1
1α

1
+1(f) = β1

1α
1
+1(g),

(3) α2
−2(H1) = f and α2

+2(H1) = g,

and there exists a graph homomorphism H2 ∈ C2(G) such that
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(4) α1
−1(g) = α1

−1(h) and α1
+1(g) = α1

+1(h),

(5) α2
−1(H2) = β1

1α
1
−1(g) = β1

1α
1
−1(h) and α2

+1(H2) = β1
1α

1
+1(g) = β1

1α
1
+1(h),

(5) α2
−2(H2) = g and α2

+2(H2) = h.

Define H3 : I2∞ → G by H3 = H2 ·2 H1, namely,

H3(i, j) =


H2(i, j +m0(H2,−2)) for j ≥ 0,

H1(i, j +m0(H1,+2)) for j ≤ 0.

Since H1 and H2 are graph homomorphism and α2
+2(H1) = g = α2

−2(H2), the concate-

nation H3 is a graph homomorphism. To show that H3 is a graph homotopy from f

to h, we must verify conditions (a)-(c) of Definition 4.12.

(a) By conditions (1) and (4), α1
−1(f) = α1

−1(g) = α1
−1(h) and α1

+1(f) = α1
+1(g) =

α1
+1(h).

(b) By conditions (2) and (5),

H1(m0(H1,−1), j) = f(m0(f,−1)) = g(m0(g,−1)),

H1(m0(H1,+1), j) = f(m0(f,+1)) = g(m0(g,+1)),

H2(m0(H2,−1), j) = g(m0(g,−1)) = h(m0(h,−1)),

H2(m0(H2,+1), j) = g(m0(g,+1)) = h(m0(h,+1))

for all j ∈ Z. Since H3 is the concatenation of H1 and H2 on the 2nd-axis, it

follows that m0(H3,−1) = min{m0(H1,−1), m0(H2,−1)} and m0(H3,+1) =
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max{m0(H1,+1), m0(H2,+1)}. Thus the face α2
−1(H3) is given by

α2
−1(H3)(j) = H3(m0(H3,−1), j)

=


H2(m0(H3,−1), j +m0(H2,−2)) for j ≥ 0,

H1(m0(H3,−1), j +m0(H1,+2)) for j ≤ 0,

=


H2(m0(H2,−1), j +m0(H2,−2)) for j ≥ 0,

H1(m0(H1,−1), j +m0(H1,+2)) for j ≤ 0,

and the face α2
+1(H3) is given by

α2
+1(H3)(j) = H3(m0(H3,+1), j)

=


H2(m0(H3,+1), j +m0(H2,−2)) for j ≥ 0,

H1(m0(H3,+1), j +m0(H1,+2)) for j ≤ 0,

=


H2(m0(H2,+1), j +m0(H2,−2)) for j ≥ 0,

H1(m0(H1,+1), j +m0(H1,+2)) for j ≤ 0.

Since by parts (1) and (4) f(m0(f,−1)) = g(m0(g,−1)) = h(m0(h,−1)) and

f(m0(f,+1)) = g(m0(g,+1)) = h(m0(h,+1)), it follows that α2
−1(H3)(j) =

f(m0(f,−1)) = h(m0(h,−1)) and α2
+1(H3)(j) = f(m0(f,+1)) = h(m0(h,+1))

for all j ∈ Z. Thus α2
−1(H3) = β1

1α
1
−1(f) = β1

1α
1
−1(h) and α2

+1(H3) = β1
1α

1
+1(f) =

β1
1α

1
+1(h).

(c) By condition (3) and (6),

H1(i,m0(H1,−2)) = f(i) and H2(i,m0(H2,+2)) = h(i)

for all i ∈ Z. Since H3 is a concatenation of H1 and H2 on the 2nd-axis, it follows

that m0(H3,−2) = m0(H1,−2) − m0(H1,+2) and m0(H3,+2) = m0(H2,+2) −
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m0(H2,−2). Thus the face α2
−2(H3) is given by

α2
−2(H3)(i) = H3(i,m0(H3,−2))

= H3(i,m0(H1,−2)−m0(H1,+2))

= H1(i,m0(H1,−2)−m0(H1,+2) +m0(H1,+2))

= H1(i,m0(H1,−2))

= f(i)

for all i ∈ Z, since m0(H1,−2) −m0(H1,+2) ≤ 0. Similarly, the face α2
+2(H3) is

given by

α2
+2(H3)(i) = H3(i,m0(H3,+2))

= H3(i,m0(H2,+2)−m0(H2,−2))

= H2(i,m0(H2,+2)−m0(H2,−2) +m0(H2,−2))

= H2(i,m0(H2,+2))

= h(i)

for all i ∈ Z, since m0(H2,+2) − m0(H2,−2) ≥ 0. Thus α2
−2(H3) = f and

α2
+2(H3) = h.

Hence, H3 is a graph homotopy from f to h, so f ∼ h. Therefore, the relation ∼ is

transitive.

Thus ∼ is an equivalence relation on C1(G).

Definition 4.19. [3, Definition 3.4] Let v0 ∈ G be a distinguished vertex of the graph G.

The set Bn(G, v0) ⊆ Cn(G) is the subset of all graph homomorphisms from In∞ to G that are

equal to v0 outside of a finite region of In∞ for n ≥ 0.

Theorem 4.20. [3, Proposition 3.5] The nth A-homotopy group of the graph G with dis-
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tinguished vertex v0 is

An(G, v0) ∼= (Bn(G, v0)/ ∼).

From now on, we refer to the set B1(G, v0)/ ∼ as the fundamental group of G. In the

next chapter, we show that B1(G, v0)/ ∼ is a group under the operation of concatenation.
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Chapter 5

The Group B1(G, v0)/ ∼

Since B1(G, v0) ⊆ C1(G) and ∼ is an equivalence relation on C1(G), the relation ∼ is a

equivalence relation on B1(G, v0). Thus the set B1(G, v0)/ ∼ is well-defined. We now need

to show that the set B1(G, v0)/ ∼ is a group with the operation of concatenation.

Remark 5.1. This result is stated in the existing literature, but the full proof is not, since

it is similar to the proof that the discrete fundamental group of a simplicial complex is a

group, which is including in the literature.

To do this, we need a series of lemmas. The first is called the Padding Lemma (5.2).

When a path f : I∞ → G maps a sequence of consecutive vertices to the same vertex in G,

this section is called padding. The Padding Lemma (5.2) states that a path with padding is

homotopic to that same path with the padding removed.

Lemma 5.2 (Padding Lemma). Let f ∈ C1(G). Define f ′, f ′′ ∈ C1(G) by

f ′(i) =


f(i− n) for i ≥ b+ n,

f(b) for b ≤ i ≤ b+ n,

f(i) i for ≤ b,
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and

f ′′(i) =


f(i) for i ≥ b,

f(b) for b− n ≤ i ≤ b,

f(i+ n) for i ≤ b− n,

for some n ∈ N and some b ∈ Z such that m0(f,−1) ≤ b ≤ m0(f,+1). Then f ∼ f ′ ∼ f ′′.

Proof. Let f ∈ C1(G), and f ′ ∈ C1(G) be defined as in the statement of the lemma. To show

that f ∼ f ′, we define a map H ′ : I2∞ → G, show that H ′ is a stable graph homomorphism,

and show that H ′ is a graph homotopy from f to f ′. Define H ′ : I2∞ → G by

H ′(i, j) =



f(i) for j ≤ 0

f(i− j) for 0 ≤ j ≤ n, i ≥ b+ j,

f(b) for 0 ≤ j ≤ n, b ≤ i ≤ b+ j,

f(i) for 0 ≤ j ≤ n, i ≤ b

f ′(i) j ≥ n.

We now show that H ′ is a graph homomorphism. By the definitions of I∞ and Cartesian

product, there are edges {(i, j), (i+1, j)}, {(i, j), (i, j+1)} ∈ E(I2∞) for all i, j ∈ Z. Thus the

map H ′ is a graph homomorphism if H ′(i, j) = H ′(i+1, j) or {H ′(i, j), H ′(i+1, j)} ∈ E(G),

and H ′(i, j) = H ′(i, j + 1) or {H ′(i, j), H ′(i, j + 1)} ∈ E(G). Since f and f ′ are graph

homomorphisms, and H ′ is constantly equal to f for j ≤ 0 and constantly equal to f ′ for

j ≥ n, it is sufficient to examine H ′ for 0 ≤ j < n. The restriction H ′|I∞�{j} : I∞ → G is

defined by

H ′|I∞�{j}(i) =


f(i− j) for i ≥ b+ j,

f(b) for b ≤ i ≤ b+ j,

f(i) for i ≤ b,

for each 0 ≤ j < n. SinceH ′|I∞�{j} is a graph homomorphism andH ′|I∞�{j}(i) = H ′(i, j) and
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H ′|I∞�{j}(i+1) = H ′(i+1, j), it follows that H ′(i, j) = H ′(i+1, j) or {H ′(i, j), H ′(i+1, j)} ∈

E(G). Thus it suffices to show that H ′(i, j) = H ′(i, j + 1) or {H ′(i, j), H ′(i, j + 1)} ∈ E(G).

Let 0 ≤ j < n.

• For i ≥ b+ j,

H ′(i, j) = f(i− j) and H ′(i, j + 1) = f(i− j − 1).

Since {i − j, i − j − 1} ∈ E(I∞ for all j ∈ Z and f is a graph homomorphism,

f(i− j) = f(i− j− 1) or {f(i− j), f(i− j− 1)} ∈ E(G). Thus H ′(i, j) = H ′(i, j + 1)

or {H ′(i, j), H ′(i, j + 1)} ∈ E(G).

• For b ≤ i ≤ b+ j,

H ′(i, j) = f(b) and H ′(i, j + 1) = f(b).

Thus H ′(i, j) = f(b) = H ′(i, j + 1).

• For i ≤ b,

H ′(i, j) = f(i) and H ′(i, j + 1) = f(i).

Thus H ′(i, j) = f(i) = H ′(i, j + 1).

Therefore, the map H ′ is a graph homomorphism. To show that H ′ is a graph homotopy

from f to f ′, we must verify conditions (a)-(c) from Definition 4.12.

(a) Since f ′(m0(f,+1) + n) = f(m0(f,+1) + n − n) = f(m0(f,+1)), it follows that

m0(f
′,+1) = m0(f,+1) + n. Since b ≤ m0(f,+1) implies that b+ n ≤ m0(f,+1) + n,
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the face α1
+1(f) is given by

α1
+1(f)(∗) = f(m0(f,+1))

= f(m0(f,+1) + n− n)

= f ′(m0(f,+1) + n)

= f ′(m0(f
′,+1))

= α1
+1(f

′)(∗).

Thus α1
+1(f) = α1

+1(f
′). Similarly, since f ′(m0(f,−1)) = f(m0(f,−1)), it follows that

m0(f
′,−1) = m0(f,−1). Since m0(f,−1) ≤ b, the face α1

−1(f) is given by

α1
−1(f)(∗) = f(m0(f,−1))

= f ′(m0(f,−1))

= f ′(m0(f
′,−1))

= α1
−1(f

′)(∗).

Thus α1
−1(f) = α1

−1(f
′).

(b) For all i ≤ b, H ′(i, j) = f(i) when j ≤ n and H ′(i, j) = f ′(i) when j ≥ n. Since f ′(i) =

f(i) for all i ≤ b, it follows that H ′ stabilizes on the 1st-axis in the negative direction

at m0(H
′,−1) = m0(f

′,−1) = m0(f,−1). Since m0(H
′,−1) = m0(f,−1) ≤ b, the face
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α2
−1(H

′) is given by

α2
−1(H

′)(j) = H ′(m0(H
′,−1), j)

=


f(m0(H

′,−1)) for j ≤ 0,

f(m0(H
′,−1)) for 0 ≤ j ≤ n,

f ′(m0(H
′,−1)) for j ≥ n,

=


f(m0(f,−1)) for j ≤ 0,

f(m0(f,−1)) for 0 ≤ j ≤ n,

f ′(m0(f
′,−1)) for j ≥ n.

Thus α2
−1(H

′)(j) = α1
−1(f)(∗) = α1

−1(f
′)(∗) for all j ∈ Z. Therefore, α2

−1(H
′) =

β1
1α

1
−1(f) = β1

1α
1
−1(f

′). Also, H ′ stabilizes on the 1st-axis in the positive direction

at m0(H
′,+1) = m0(f

′,+1) = m0(f,+1) + n. Since b ≤ m0(f,+1) implies that

b+ j ≤ m0(f,+1) + j ≤ m0(f,+1) + n = m0(H
′,+1), the face α2

+1(H
′) is given by

α2
+1(H

′)(j) = H ′(m0(H
′,+1), j)

=


f(m0(H

′,+1)) for j ≤ 0,

f(m0(H
′,+1)− j) for 0 ≤ j ≤ n,

f ′(m0(H
′,+1)) for j ≥ n,

=


f(m0(f,+1) + n) for j ≤ 0,

f(m0(f,+1) + n− j) for 0 ≤ j ≤ n,

f ′(m0(f
′,+1)) for j ≥ n.

Thus α2
+1(H

′)(j) = α1
+1(f)(∗) = α1

+1(f
′)(∗) for all j ∈ Z. Therefore, α2

+1(H
′) =

β1
1α

1
+1(f) = β1

1α
1
+1(f

′).
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(c) By construction of H ′, m0(H
′,−2) = 0 and m0(H

′,+2) = n. Hence, the faces α2
−2(H

′)

and α2
+2(H

′) are given by

α2
−2(H

′)(i) = H ′(i, 0) = f(i) and α2
+2(H

′)(i) = H ′(i, n) = f ′(i),

for all i ∈ Z. Thus α2
−2(H

′) = f and α2
+2(H

′) = f ′.

Therefore, H ′ is a homotopy from f to f ′, so f ∼ f ′. The proof that f ∼ f ′′ proceeds in the

same way using the homotopy H ′′ ∈ C2(G) defined by

H ′′(i, j) =



f(i) for j ≤ 0,

f(i) for 0 ≤ j ≤ n, i ≥ b,

f(b) for 0 ≤ j ≤ n, b− j ≤ i ≤ b,

f(i+ j) for 0 ≤ j ≤ n, i ≤ b− j,

f ′′(i) for j ≥ n.

We combine the two cases of the previous lemma into the following convenient statement.

Lemma 5.3 (General Padding Lemma). Let f ∈ C1(G). Define f ′ ∈ C1(G) by

f ′(i) =


f(i−m) for i ≥ b+m,

f(b) for b− n ≤ i ≤ b+m,

f(i+ n) for i ≤ b− n,

for some n,m ∈ N and b ∈ Z with m0(f,−1) < b < m0(f,+1). Then f ∼ f ′.

Proof. Let f ∈ C1(G) and f ′ ∈ C1(G) be defined as in the statement of the lemma. By the
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Padding Lemma (5.2), f ∼ g, where

g(i) =


f(i−m) for i ≥ b+m,

f(b) for b ≤ i ≤ b+m,

f(i) for i ≤ b.

Also by the Padding Lemma (5.2), g ∼ h, where

h(i) =


g(i) for i ≥ b,

g(b) for b− n ≤ i ≤ b,

g(i+ n) for i ≤ b− n,

=



f(i−m) for i ≥ b+m,

f(b) for b ≤ i ≤ b+m,

f(b) for b− n ≤ i ≤ b,

f(i+ n) for i ≤ b− n,

=


f(i−m) for i ≥ b+m,

f(b) for b− n ≤ i ≤ b+m,

f(i+ n) for i ≤ b− n.

Thus f ∼ g ∼ h = f ′. Since ∼ is an equivalence relation, f ∼ f ′.

Lastly, we need the Shifting Lemma (5.4). This lemma states that a path is homotopic

to that same path shifted down to start at an earlier vertex and to that same path shifted

up to start at a later vertex.

Lemma 5.4 (Shifting Lemma). Let f ∈ C1(G) and n ∈ N. Define fn ∈ C1(G) by

fn(i) = f(i − n) (f shifted by n). Then f ∼ fn. Similarly, if f−n ∈ C1(G) is defined by
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f−n(i) = f(i+ n) (f shifted down by n), then f ∼ f−n.

Proof. Let f ∈ C1(G), and suppose fn ∈ C1(G) is defined by fn(i) = f(i−n) for some n ∈ N.

To show f ∼ fn, we define a map Hn : I2∞ → G, show that Hn is a graph homomorphism,

and show that Hn is a graph homotopy from f to fn. Define Hn : I2∞ → G by

Hn(i, j) =


f(i) for j ≤ 0,

f(i− j) for 0 ≤ j ≤ n,

f(i− n) for j ≥ n.

Since f(i) = f(i− j) for j = 0 and f(i− j) = f(i−n) for j = n, the map Hn is well-defined.

We now show that Hn is a graph homomorphism. By the definitions of I2∞ and the Cartesian

product, there are edges {(i, j), (i+1, j)}, {(i, j), (i, j+1)} ∈ E(I∞) for all i, j ∈ Z. Thus the

map Hn is a graph homomorphism if Hn(i, j) = Hn(i+1, j) or {Hn(i, j), Hn(i+1, j)} ∈ E(G),

and Hn(i, j) = Hn(i, j + 1) or {Hn(i, j), Hn(i, j + 1)} ∈ E(G) for all i, j ∈ Z. Since Hn is

constantly equal to f for j ≤ 0 and constantly equal to fn for j ≥ n, it suffices to examine

Hn for 0 ≤ j < n. Let 0 ≤ j < n.

• For all i ∈ Z,

Hn(i, j) = f(i− j) and Hn(i+ 1, j) = f(i+ 1− j).

Since {i − j, i + 1 − j} ∈ E(I∞) for all i, j ∈ Z and f is a graph homomorphism,

f(i−j) = f(i+1−j) or {f(i−j), f(i+1−j)} ∈ E(G). Hence, Hn(i, j) = Hn(i+1, j)

or {Hn(i, j), Hn(i+ 1, j)} ∈ E(G).

• Similarly, for all i ∈ Z,

Hn(i, j) = f(i− j) and Hn(i, j + 1) = f(i− j − 1)).
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Since {i − j, i − j − 1} ∈ E(I∞) for all i, j ∈ Z and f is a graph homomorphism,

f(i−j) = f(i−j−1) or {f(i−j), f(i−j−1)} ∈ E(G). Hence, Hn(i, j) = Hn(i, j+1)

or {Hn(i, j), Hn(i, j + 1)} ∈ E(G).

Thus Hn is a graph homomorphism. We now show that Hn is a graph homotopy from f to

fn by verifying conditions (a)-(c) of Definition 4.12.

(a) Since m0(fn,+1) = m0(f,+1) + n and m0(fn,−1) = m0(f,−1) + n, the face α1
+1(f) is

given by

α1
+1(f)(∗) = f(m0(f,+1))

= f(m0(f,+1) + n− n)

= fn(m0(f,+1) + n)

= fn(m0(fn,+1))

= α1
+1(fn)(∗),

and the face α1
−1(f) is given by

α1
−1(f)(∗) = f(m0(f,−1))

= f(m0(f,−1) + n− n)

= fn(m0(f,−1) + n)

= fn(m0(fn,−1))

= α1
−1(fn)(∗).

Thus α1
+1(f) = α1

+1(fn) and α1
−1(f) = α1

−1(fn).

(b) Let (Hn)j : I∞ → G be defined by (Hn)j(i) = Hn(i, j) for all i, j ∈ Z. Then

(Hn)j(i) = f(i−j) for 0 ≤ i ≤ n, which implies that m0((Hn)j,+1) = m0(f,+1)+j and

m0((Hn)j,−1) = m0(f,−1) + j. Since Hn is constantly equal to f for j ≤ 0 and Hn is
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constantly equal to fn for j ≥ n, it follows that m0(Hn,+1) = max{m0((Hn)j,+1) | 0

≤ j ≤ n} = max{m0(f,+1)+j | 0 ≤ j ≤ n} = m0(f,+1)+n. Similarly, m0(Hn,−1) =

min{m0((Hn)j,−1) | 0 ≤ j ≤ n} = min{m0(f,−1) + j | 0 ≤ j ≤ n} = m0(f,−1).

Hence, the face α2
+1(Hn) is given by

α2
+1(Hn)(j) = Hn(m0(Hn,+1), j)

=


f(m0(Hn,+1)) for j ≤ 0,

f(m0(Hn,+1)− j) for 0 ≤ j ≤ n,

f(m0(Hn,+1)− n) for j ≥ n,

=


f(m0(f,+1) + n) for j ≤ 0,

f(m0(f,+1) + n− j) for 0 ≤ j ≤ n,

f(m0(f,+1) + n− n) for j ≥ n,

=


f(m0(f,+1) + n) for j ≤ 0,

f(m0(f,+1) + n− j) for 0 ≤ j ≤ n,

f(m0(f,+1)) for j ≥ n.

Thus α2
+1(Hn)(j) = α1

+1(f)(∗) = α1
+1(fn)(∗) for all j ∈ Z. Therefore, α2

+1(Hn) =
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β1
1α

1
+1(f) = β1

1α
1
+1(fn). Similarly, the face α2

−1(Hn) is given by

α2
−1(Hn)(j) = Hn(m0(Hn,−1), j)

=


f(m0(Hn,−1)) for j ≤ 0,

f(m0(Hn,−1)− j) for 0 ≤ j ≤ n,

f(m0(Hn,−1)− n) for j ≥ n,

=


f(m0(f,−1)) for j ≤ 0,

f(m0(f,−1)− j) for 0 ≤ j ≤ n,

f(m0(f,−1)− n) for j ≥ n.

Thus α2
−1(Hn)(j) = α1

−1(f)(∗) = α1
−1(fn)(∗) for all j ∈ Z. Therefore, α2

−1(Hn) =

β1
1α

1
−1(f) = β1

1α
1
−1(fn).

(c) By construction, Hn stabilizes on the 2nd-axis at the integers m0(Hn,−2) = 0 and

m0(Hn,+2) = n. Thus the faces α2
−2(Hn) and α2

+2(Hn) are given by

α2
−2(Hn)(i) = Hn(i, 0) = f(i) and α2

+2(Hn)(i) = Hn(i, n) = f(i− n) = fn(i)

for all i ∈ Z. Thus α2
−2(Hn) = f and α2

+2(Hn) = fn.

Thus Hn is a graph homotopy from f to fn, so f ∼ fn for all n ∈ N. The proof of f ∼ f−n

proceeds in the same way using the graph homotopy H−n ∈ C2(G) defined by

H−n(i, j) =


f(i) for j ≤ 0,

f(i+ j) for 0 ≤ j ≤ n,

f(i+ n) for j ≥ n,

for all i ∈ Z.
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With the General Padding Lemma (5.3) and the Shifting Lemma (5.4), we can now

proceed to the proof that the set B1(G, v0)/ ∼ with the operation of concatenation has

group structure. We prove this in five propositions:

• Concatenation is well-defined on the equivalence classes of B1(G, v0)/ ∼.

• The set B1(G, v0) is closed with respect to concatenation.

• The set B1(G, v0)/ ∼ has an identity element.

• Every element of the set B1(G, v0)/ ∼ has an inverse in the set.

• Concatenation on the set B1(G, v0)/ ∼ is associative.

Proposition 5.5 (Well-Defined). Concatenation is well-defined on the equivalence classes

of B1(G, v0)/ ∼.

Proof. Let f1, g1, f2, g2 ∈ B1(G, v0) be such that f1 ∼ g1 and f2 ∼ g2. Then there exists a

graph homotopy H1 ∈ C2(G) such that

(1) α1
−1(f1) = α1

−1(g1) and α1
+1(f1) = α1

+1(g1),

(2) α2
−1(H1) = β1

1α
1
−1(f1) = β1

1α
1
−1(g1) and α2

−1(H1) = β1
1α

1
+1(f1) = β1

1α
1
+1(g1),

(3) α2
−2(H1) = f1 and α2

+2(H1) = g1,

and there exists a graph homotopy H2 ∈ C2(G) such that

(4) α1
−1(f2) = α1

−1(g2) and α1
+1(f2) = α1

+1(g2),

(5) α2
−1(H2) = β1

1α
1
−1(f2) = β1

1α
1
−1(g2) and α2

+1(H2) = β1
1α

1
+1(f2) = β1

1α
1
+1(g2),

(6) α2
−2(H2) = f2 and α2

+2(H2) = g2.

These graph homotopies are illustrated in Figure 5.1 with only the active regions of the

lattice I2∞ shown as light blue rectangles. The graph homomorphisms f1 and f2 are shown
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m0(H1,+1)

m0(f1,+1)

m0(f1,−1)

m0(H1,−1)

f1 H1 g1

m0(H1,+1)

m0(g1,+1)

m0(g1,−1)

m0(H1,−1)

m0(H2,+1)

m0(f2,+1)

m0(f2,−1)

m0(H2,−1)

f2 H2 g2

m0(H2,+1)

m0(g2,+1)

m0(g2,−1)

m0(H2,−1)

Figure 5.1: The homotopies H1 and H2

on the left sides, and the graph homomorphisms g1 and g2 are shown on the right sides of

the graph homotopies. By parts (3) and (6), for all i ∈ Z,

H1(i,m0(H1,−2)) = f1(i) and H1(i,m0(H1,+2)) = g1(i),

and

H2(i,m0(H1,−2)) = f2(i) and H2(i,m0(H2,+2)) = g2(i).

This implies that

m0(H1,+1) ≥ m0(f1,+1) and m0(H1,+1) ≥ m0(g1,+1),

m0(H1,−1) ≤ m0(f1,−1) and m0(H1,−1) ≤ m0(g1,−1),

m0(H2,+1) ≥ m0(f2,+1) and m0(H2,+1) ≥ m0(g2,+1),

m0(H2,−1) ≤ m0(f2,−1) and m0(H2,−1) ≤ m0(g2,−1).

Because of these inequalities, there is potentially some padding between each of the following
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pairs of the vertices:

(m0(H1,+1),m0(H1,−2)) and (m0(f1,+1),m0(H1,−2)),

(m0(H1,−1),m0(H1,−2)) and (m0(f1,−1),m0(H1,−2)),

(m0(H1,+1),m0(H1,+2)) and (m0(g1,+1),m0(H1,+2)),

(m0(H1,−1),m0(H1,+2)) and (m0(g1,−1),m0(H1,+2)),

(m0(H2,+1),m0(H2,−2)) and (m0(f2,+1),m0(H2,−2)),

(m0(H2,−1),m0(H2,−2)) and (m0(f2,−1),m0(H2,−2)),

(m0(H2,+1),m0(H2,+2)) and (m0(g2,+1),m0(H2,+2)),

(m0(H2,−1),m0(H2,+2)) and (m0(g2,−1),m0(H2,+2)).

These sections of potential padding are depicted as thick red lines in Figure 5.1.

The concatenations f1 · f2 and g1 · g2 are defined by

(f1 · f2)(i) =


f1(i+m0(f1,−1)) for i ≥ 0,

f2(i+m0(f2,+1)) for i ≤ 0.

and

(g1 · g2)(i) =


g1(i+m0(g1,−1)) for i ≥ 0,

g2(i+m0(g2,+1)) for i ≤ 0.

Since f1, g1, f2, g2 ∈ B1(G, v0), it follows that α1
−1(f1) = α1

+1(f2) and α1
−1(g1) = α1

+1(g2),

which implies that the concatenations f1 · f2 and g1 · g2 are well-defined and graph homo-

morphisms. In order to show that f1 · f2 ∼ g1 · g2, we need to define a graph homotopy from

f1 · f2 to g1 · g2. Consider the concatenation of the two graph homotopies H1 and H2 on the
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1st-axis defined by

(H1 ·1 H2)(i, j) =


H1(i+m0(H1,−1), j) for i ≥ 0,

H2(i+m0(H2,+1), j) for i ≤ 0.

This concatentation is depicted Figure 5.2. Since f1, g1, f2, g2 ∈ B1(G, v0), by parts (2)

m0(H1,+1)−m0(H1,+1)

m0(f1,+1)−m0(H1,−1)

m0(f1,−1)−m0(H1,−1)

0

m0(f2,+1)−m0(H2,+1)

m0(f2,−1)−m0(H2,+1)

m0(H2,−1)−m0(H1,+1)

m0(H1,+1)−m0(H1,+1)

m0(g1,+1)−m0(H1,−1)

m0(g1,−1)−m0(H1,−1)

0

m0(g2,+1)−m0(H2,+1)

m0(g2,−1)−m0(H2,+1)

m0(H2,−1)−m0(H1,+1)

f1 H1 g1

f2 H2 g2

Figure 5.2: The concatenation of H1 and H2

and (4), H1(m0(H1,−1), j) = v0 and H2(m0(H2,+1), j) = v0 for all j ∈ Z. Therefore,

α2
−1(H1) = α2

+1(H2), which implies that H1 ·1H2 is well-defined and a graph homomorphism.

However, this concatenation is not necessarily a graph homotopy from f1 · f2 to g1 · g2, as

we would hope, but H1 ·1 H2 is still useful. Let us examine the faces α2
−2(H1 ·1 H2) and
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α2
−2(H1 ·1 H2) to show that this is the case.

Since H1 stabilizes on the 2nd-axis in the negative direction at m0(H1,−2), H2 stabilizes

on the 2nd-axis in the negative direction at m0(H2,−2), and H1 ·1H2 is the concatenation of

H1 and H2 on the 1st-axis, it follows that H1 ·1 H2 stabilizes on the 2nd-axis in the negative

direction at m0(H1 ·1 H2,−2) = min{m0(H1,−2), m0(H2,−2)}. Thus by parts (3) and (6),

the face α2
−2(H1 ·1 H2) is given by

α2
−2(H1 ·1 H2)(i) = (H1 ·1 H2)(i,m0(H1 ·1 H2,−2))

=


H1(i+m0(H1,−1),m0(H1 ·1 H2,−2)) for i ≥ 0,

H2(i+m0(H2,+1),m0(H1 ·1 H2,−2)) for i ≤ 0,

=


H1(i+m0(H1,−1),m0(H1,−2)) for i ≥ 0,

H2(i+m0(H2,+1),m0(H2,−2)) for i ≤ 0,

=


f1(i+m0(H1,−1)) for i ≥ 0,

f2(i+m0(H2,+1)) for i ≤ 0.

Thus α2
−2(H1 ·1H2) is constantly equal to v0 from the vertex m0(f2,+1)−m0(H2,+1) to the

vertex m0(f1,−1)−m0(H1,−1). Therefore, α2
−2(H1 ·1 H2) 6= f1 · f2 if

m0(f2,+1) 6= m0(H2,+1) or m0(f1,−1) 6= m0(H1,−1),

because there is padding between f1 and f2. However, by the General Padding Lemma (5.3),

α2
−2(H1 ·1 H2) ∼ f1 · f2. Also, since H1 stabilizes on the 2nd-axis in the positive direction at

m0(H1,+2), H2 stabilizes on the 2nd-axis in the positive direction at m0(H2,+2), and H1 ·1H2

is the concatenation of H1 and H2 on the 1st-axis, it follows that H1 ·1 H2 stabilizes on the

2nd-axis in the positive direction at m0(H1 ·1 H2,+2) = max{m0(H1,+2), m0(H2,+2)}.
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Thus by part (3) and (6), the face α2
+2(H1 ·1 H2) is given by

α2
+2(H1 ·1 H2)(i) = (H1 ·1 H2)(i,m0(H1 ·1 H2,+2))

=


H1(i+m0(H1,−1),m0(H1 ·1 H2,+2)) for i ≥ 0,

H2(i+m0(H2,+1),m0(H1 ·1 H2,+2)) for i ≤ 0,

=


H1(i+m0(H1,−1),m0(H1,+2)) for i ≥ 0,

H2(i+m0(H2,+1),m0(H2,+2)) for i ≤ 0,

=


g1(i+m0(H1,−1)) for i ≥ 0,

g2(i+m0(H2,+1)) for i ≤ 0.

Thus α2
+2(H1 ·1H2) is constantly equal to v0 from the vertex m0(g2,+1)−m0(H2,+1) to the

vertex m0(g1,−1)−m0(H1,−1). Therefore, α2
+2(H1 ·1 H2) 6= g1 · g2 if

m0(g2,+1) 6= m0(H2,+1) and m0(g1,−1) 6= m0(H1,−1),

because there is padding between g1 and g2. However, by the General Padding Lemma (5.3),

α2
+2(H1 ·1H2) ∼ g1 ·g2. Thus H1 ·1H2 may not be a homotopy from f1 ·f2 to g1 ·g2, but if the

concatenation H1 ·1H2 is a homotopy from α2
−2(H1 ·1H2) to α2

+2(H1 ·1H2), then f1 ·f2 ∼ g1 ·g2.

We now show that H1 ·1 H2 is a graph homotopy from α2
−2(H1 ·1 H2) to α2

+2(H1 ·1 H2) by

verifying conditions (a)-(c) found in Definition 4.12.

(a) By the definition of concatentation, and since α2
−2(H1 ·1 H2) ∼ f1 · f2,

α1
+1(α

2
−2(H1 ·1 H2)) = α1

+1(f1 · f2) = α1
+1(f1)

and

α1
−1(α

2
−2(H1 ·1 H2)) = α1

−1(f1 · f2) = α1
−1(f2).
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By the definition of concatenation, and since α2
+2(H1 ·1 H2) ∼ g1 · g2,

α1
+1(α

2
+2(H1 ·1 H2)) = α1

+1(g1 · g2) = α1
+1(g1)

and

α1
−1(α

2
+2(H1 ·1 H2)) = α1

−1(g1 · g2) = α1
−1(g2).

By part (1), α1
+1(f1) = α1

+1(g1), and by part (4), α1
−1(f2) = α1

−1(g2). Therefore, by the

previous statements,

α1
+1(α

2
−2(H1 ·1 H2)) = α1

+1(α
2
+2(H1 ·1 H2))

and

α1
−1(α

2
−2(H1 ·1 H2)) = α1

−1(α
2
+2(H1 ·1 H2)).

(b) By the definition of concatenation, α2
+1(H1 ·1 H2) = α2

+1(H1) and α2
−1(H1 ·1 H2) =

α2
−1(H2). Recall thatH1 is a graph homotopy from f1 to g1, andH2 is a graph homotopy

from f2 to g2. Thus by part (2), α2
+1(H1) = β1

1α
1
+1(f1) and α2

+1(H1) = β1
1α

1
+1(g1),

and by part (5), α2
−1(H2) = β1

1α
1
−1(f2) and α2

−1(H2) = β1
1α

1
−1(g2). By definition of

concatenation,

β1
1α

1
+1(f1) = β1

1α
1
+1(f1 · f2),

β1
1α

1
+1(g1) = β1

1α
1
+1(g1 · g2),

β1
1α

1
−1(f2) = β1

1α
1
−1(f1 · f2),

β1
1α

1
−1(g2) = β1

1α
1
−1(g1 · g2).

Since α2
−2(H1 ·1 H2) ∼ f1 · f2, it follows that β1

1α
1
+1(f1 · f2) = β1

1α
1
+1(α

2
−2(H1 ·1 H2))

and β1
1α

1
+1(g1 · g2) = β1

1α
1
+1(α

2
+2(H1 ·1 H2)). Similarly, α2

+2(H1 ·1 H2) ∼ g1 · g2 implies

that β1
1α

1
−1(f1 · f2) = β1

1α
1
−1(α

2
−2(H1 ·1H2)) and β1

1α
1
−1(g1 · g2) = β1

1α
1
−1(α

2
+2(H1 ·1H2)).

65



Therefore,

α2
+1(H1 ·1 H2) = α2

+1(H1) = β1
1α

1
+1(α

2
−2(H1 ·1 H2))

= β1
1α

1
+1(α

2
+2(H1 ·1 H2))

and

α2
−1(H1 ·1 H2) = α2

−1(H2) = β1
1α

1
−1(α

2
−2(H1 ·1 H2))

= β1
1α

1
−1(α

2
+2(H1 ·1 H2)).

(c) Trivially, α2
−2(H1 ·1 H2) = α2

−2(H1 ·1 H2) and α2
+2(H1 ·1 H2) = α2

+2(H1 ·1 H2).

Thus H1 ·1H2 is a homotopy from α2
−2(H1 ·1H2) to α2

+2(H1 ·1H2), so f1 ·f2 ∼ α2
−2(H1 ·1H2) ∼

α2
+2(H1 ·1 H2) ∼ g1 · g2. Hence, concatenation is well-defined on the set B1(G, v0)/ ∼, that

is, if [f1] = [g1] and [f2] = [g2], then [f1 · f2] = [g1 · g2].

Thus for each pair of elements [f ], [g] ∈ B1(G, v0)/ ∼, the concatenation of [f ] and [g]

is defined by [f ] · [g] = [f · g]. We now continue by showing that the set B1(G, v0) is closed

under concatenation.

Proposition 5.6 (Closure). The set B1(G, v0) is closed under concatenation.

Proof. Let f, g ∈ B1(G, v0). Then f(m0(f,−1)) = g(m0(g,+1)) = v0, and α1
−1(f) = α1

+1(g).

Thus the concatenation f · g is well-defined and defined by

(f · g)(i) =


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g,+1)) for i ≤ 0.

By Lemma 4.16, m0(f · g,+1) = m0(f,+1) − m0(f,−1) and m0(f · g,−1) = m0(g,−1) −
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m0(g,+1). Thus the faces α1
+1(f · g) and α1

−1(f · g) are given by

α1
+1(f · g)(∗) = f · g(m0(f,+1)−m0(f,−1))

= f(m0(f,+1)−m0(f,−1) +m0(f,−1))

= f(m0(f,+1)),

and

α1
−1(f · g)(∗) = f · g(m0(g,−1)−m0(g,+1))

= g(m0(g,−1)−m0(g,+1) +m0(g,+1))

= g(m0(g,−1)).

Since f, g ∈ B1(G, v0), it follows that f and g stabilize to v0 in both directions. Thus

f · g ∈ B1(G, v0) and B1(G, v0) is closed with respect to concatenation.

Definition 5.7. Let the constant path pv0 : I∞ → G be defined by pv0(i) = v0 for all i ∈ Z.

Proposition 5.8 (Identity). The equivalence class of the constant path pv0 : I∞ → G is

the identity element of B1(G, v0)/ ∼.

Proof. Let f ∈ B1(G, v0). Consider the concatenation pv0 · f : I∞ → G. Since m0(pv0 ,−1) =
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0 and f ∈ B1(G, v0),

(pv0 · f)(i) =


pv0(i+m0(pv0 ,−1)) for i ≥ 0,

f(i+m0(f,+1)) for i ≤ 0,

=


pv0(i) for i ≥ 0,

f(i+m0(f,+1)) for i ≤ 0,

=


v0 for i ≥ 0,

f(i+m0(f,+1)) for i ≤ 0,

= f(i+m0(f,+1)).

Thus pv0 · f = f−m0(f,+1), the graph homomorphism f shifted by −m0(f,+1). Therefore,

f ∼ pv0 · f by the Shifting Lemma (5.4). Now consider the concatenation f · pv0 : I∞ → G.

Since m0(pv0 ,+1) = 0 and f ∈ B1(G, v0),

(f · pv0)(i) =


f(i+m0(f,−1)) for i ≥ 0,

pv0(i+m0(pv0 ,+1)) for i ≤ 0,

=


f(i+m0(f,−1)) for i ≥ 0,

pv0(i) for i ≤ 0,

=


f(i+m0(f,−1)) for i ≥ 0,

v0 for i ≤ 0,

= f(i+m0(f,−1)).

Thus f ·pv0 = f−m0(f,−1), the graph homomorphism f shifted by −m0(f,−1). Hence, f ·pv0 ∼

f by the Shifting Lemma (5.4). Thus the equivalence class of pv0 is the identity element of

B1(G, v0)/ ∼.
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Definition 5.9. For each f ∈ C1(G), let f̄ ∈ C1(G) be defined by f̄(i) = f(−i) for all i ∈ Z.

Proposition 5.10 (Inverses). For each [f ] ∈ B1(G, v0)/ ∼, the equivalence class [f̄ ] ∈

B1(G, v0)/ ∼ is the inverse of [f ].

Proof. Let f ∈ B1(G, v0). Then f̄ ∈ B1(G, v0). By definition, f̄ stabilizes in the positive

direction at the integer m0(f̄ ,+1) = −m0(f,−1). Thus the concatenation f · f̄ is given by

(f · f̄)(i) =


f(i+m0(f,−1)) for i ≥ 0,

f̄(i+m0(f̄ ,+1)) for i ≤ 0,

=


f(i+m0(f,−1)) for i ≥ 0,

f̄(i−m0(f,−1)) for i ≤ 0,

=


f(i+m0(f,−1)) for i ≥ 0,

f(−i+m0(f,−1)) for i ≤ 0.

To show that f · f̄ ∼ pv0 , we define a map H1 : I2∞ → G and show that H1 is well-defined, is a

stable graph homomorphism, and is a graph homotopy from f · f̄ to pv0 . Define H1 : I2∞ → G

by

H1(i, j) =



(f · f̄)(i) for j ≤ 0,

(f · f̄)(i+ j) for 0 ≤ j ≤ m0(f,+1)−m0(f,−1), i ≥ 0,

(f · f̄)(i− j) for 0 ≤ j ≤ m0(f,+1)−m0(f,−1), i ≤ 0,

pv0(i) for j ≥ m0(f,+1)−m0(f,−1).

By definition of concatenation, (f · f̄)(i + j) = f(i + j + m0(f,−1)) for i + j ≥ 0, and

(f · f̄)(i− j) = f̄(i− j +m0(f̄ ,+1)) for i− j ≤ 0. Since m0(f̄ ,+1) = −m0(f,−1), it follows
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that f̄(i− j +m0(f̄ ,+1)) = f(−i+ j +m0(f,−1)) by definition of f̄ . Thus

H1(i, j) =



(f · f̄)(i) for j ≤ 0,

f(i+ j +m0(f,−1)) for 0 ≤ j ≤ m0(f,+1)−m0(f,−1), i ≥ 0,

f(−i+ j +m0(f,−1)) for 0 ≤ j ≤ m0(f,+1)−m0(f,−1), i ≤ 0,

v0 for j ≥ m0(f,+1)−m0(f,−1).

First, we show that H1 is well-defined where it is doubly defined: when 0 ≤ j ≤ m0(f,+1)−

m0(f,−1) and i = 0; when j = 0 and i ≤ 0; when j = 0 and i ≥ 0; when j = m0(f,+1) −

m0(f,−1) and i ≤ 0; and when j = m0(f,+1)−m0(f,−1) and i ≥ 0.

• When 0 ≤ j ≤ m0(f,+1) − m0(f,−1) and i = 0, f(i + j + m0(f,−1)) = f(j +

m0(f,−1)) = f(−i+ j +m0(f,−1)).

• Suppose j = 0. For i ≤ 0, H1(i, j) = (f · f̄)(i) = f̄(i + m0(f̄ ,+1)) = f(−i +

m0(f,−1)) = f(−i + j + m0(f,−1)), and for i ≥ 0, H1(i, j) = (f · f̄)(i) = f(i +

m0(f,−1)) = f(i+ j +m0(f,−1)).

• Suppose j = m0(f,+1)−m0(f,−1). For i ≤ 0,

H1(i, j) = f(−i+ j +m0(f,−1))

= f(−i+m0(f,+1)−m0(f,−1) +m0(f,−1))

= f(−i+m0(f,+1))

= v0,
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and for all i ≥ 0,

H1(i, j) = f(i+ j +m0(f,−1))

= f(i+m0(f,+1)−m0(f,−1) +m0(f,−1))

= f(i+m0(f,+1))

= v0.

Thus H1 is well-defined. We now show that H1 is a graph homomorphism. Since there

are edges {(i, j), (i + 1, j)}, {(i, j), (i, j + 1)} ∈ E(I2∞) for all i, j ∈ Z, the map H1 is a

graph homomorphism if either H1(i, j) = H1(i + 1, j) or {H1(i, j), H1(i + 1, j)} ∈ E(G),

and either H1(i, j) = H1(i, j + 1) or {H1(i, j), H1(i, j + 1)} ∈ E(G) for all i, j ∈ Z. Since

f · f̄ and pv0 are graph homomorphisms, and since H1 is constantly equal to f · f̄ for j ≤ 0

and constantly equal to pv0 for j ≥ m0(f,+1)−m0(f,−1), we only need to examine H1 for

0 ≤ j < m0(f,+1)−m0(f,−1). Let 0 ≤ j < m0(f,+1)−m0(f,−1).

• First, consider H1(i, j) and H1(i+ 1, j).

For i ≥ 0,

H1(i, j) = f(i+ j +m0(f,−1)) and H1(i+ 1, j) = f(i+ 1 + j +m0(f,−1)).

Since f is a graph homomorphism, f(i+ j +m0(f,−1)) = f(i+ 1 + j +m0(f,−1)) or

{f(i+ j +m0(f,−1)), f(i+ 1 + j +m0(f,−1))} ∈ E(G).

For i < 0,

H1(i, j) = f(−i+ j +m0(f,−1)) and H1(i+ 1, j) = f(−i− 1 + j +m0(f,−1)).

Since f is a graph homomorphism, either f(−i + j + m0(f,−1)) = f(−i − 1 + j +

m0(f,−1)) or {f(−i + j + m0(f,−1)), f(−i − 1 + j + m0(f,−1))} ∈ E(G). Thus
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H1(i, j) = H1(i+ 1, j) or {H1(i, j), H1(i+ 1, j)} ∈ E(G) for all i ∈ Z.

• Next, consider H1(i, j) and H1(i, j + 1).

For i ≥ 0,

H1(i, j) = f(i+ j +m0(f,−1)) and H1(i, j + 1) = f(i+ j + 1 +m0(f,−1)).

Since f is a graph homomorphism, f(i+ j +m0(f,−1)) = f(i+ j + 1 +m0(f,−1)) or

{f(i+ j +m0(f,−1)), f(i+ j + 1 +m0(f,−1))} ∈ E(G).

For i < 0,

H1(i, j) = f(−i+ j +m0(f,−1)) and H1(i, j + 1) = f(−i+ j + 1 +m0(f,−1)).

Since f is a graph homomorphism, f(−i+j+m0(f,−1)) = f(−i+j+1+m0(f,−1)) or

{f(−i+j+m0(f,−1)), f(−i+j+1+m0(f,−1))} ∈ E(G). Thus H1(i, j) = H1(i, j+1)

or {H1(i, j), H1(i, j + 1)} ∈ E(G) for all i ∈ Z.

Thus H1 is a graph homomorphism. We now show that H1 is a graph homotopy from f · f̄

to pv0 by verifying conditions (a)-(c) found in Definition 4.12.

(a) Since f ·f̄ , pv0 ∈ B1(G, v0), both graph homomorphisms stabilize to the vertex v0 in the

positive and negative directions. Thus α1
−1(f · f̄) = α1

−1(pv0) and α1
+1(f · f̄) = α1

+1(pv0).

(b) Let (H1)j : I∞ → G be defined by (H1)j(i) = H1(i, j) for each i, j ∈ Z. Since H1 is

constantly equal to f · f̄ for j ≤ 0 and constantly equal to pv0 for j ≥ m0(f,+1) −

m0(f,−1), it follows that H1 stabilizes on the 1st-axis in the positive direction at

m0(H1,+1) = max{m0((H1)j,+1) | 0 ≤ j ≤ m0(f,+1) − m0(f,−1)}. For 0 ≤

j ≤ m0(f,+1) − m0(f,−1) and i ≥ 0, (H1)j(i) = f(i + j + m0(f,−1)). Since

(H1)j(m0(f,+1)−m0(f,−1)− j) = f(m0(f,+1)−m0(f,−1)− j + j +m0(f,−1)) =

f(m0(f,+1)) and f stabilizes in the positive direction at m0(f,+1), it follows that
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(H1)j stabilizes in the positive direction at m0((H1)j,+1) = m0(f,+1)−m0(f,−1)−j.

Therefore, m0(H1,+1) = max{m0(f,+1) − m0(f,−1) − j | 0 ≤ j ≤ m0(f,+1) −

m0(f,−1)} = m0(f,+1) − m0(f,−1). For clarity, let M = m0(f,+1) − m0(f,−1).

Since (f · f̄)(i) = f(i + m0(f,+1)) for all i ≥ 0 and since m0(f,+1)−m0(f,−1) ≥ 0,

the face α2
+1(H1) is given by

α2
+1(H1)(j) = H1(m0(H1,+1), j)

= H1(m0(f,+1)−m0(f,−1), j)

=


(f · f̄)(m0(f,+1)−m0(f,−1)) for j ≤ 0,

f(m0(f,+1)−m0(f,−1) + j +m0(f,−1)) for 0 ≤ j ≤M,

v0 for j ≥M,

=


f(m0(f,+1)−m0(f,−1) +m0(f,−1)) for j ≤ 0,

f(m0(f,+1) + j) for 0 ≤ j ≤M,

v0 for j ≥M,

=


f(m0(f,+1)) for j ≤ 0,

f(m0(f,+1) + j) for 0 ≤ j ≤M,

v0 for j ≥M,

=


v0 for j ≤ 0,

v0 for 0 ≤ j ≤M,

v0 for j ≥M.

Since f · f̄ and pv0 stabilize to v0 in the positive direction, α2
+1(H1)(j) = α1

+1(f · f̄)(∗) =

α1
+1(pv0)(∗) for all j ∈ Z. Therefore, α2

+1(H1) = β1
1α

1
+1(f · f̄) = β1

1α
1
+1(pv0).

Similarly, the graph homomorphism H1 stabilizes on the 1st-axis in the negative di-

rection at m0(H1,−1) = min{m0((H1)j,−1) | 0 ≤ j ≤ m0(f,+1) −m0(f,−1)}. For
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0 ≤ j ≤ m0(f,+1) −m0(f,−1) and i ≤ 0, (H1)j(i) = f(−i + j + m0(f,−1)). Since

(H1)j(−m0(f,+1) +m0(f,−1) + j) = f(m0(f,+1)−m0(f,−1)− j+ j+m0(f,−1)) =

f(m0(f,+1)) = f̄(−m0(f,+1)) = f̄(m0(f̄ ,−1)) and f̄ stabilizes in the negative di-

rection at m0(f̄ ,−1), it follows that (H1)j stabilizes in the negative direction at

m0((H1)j,−1) = −m0(f,+1) +m0(f,−1) + j. Thus m0(H1,+1) = min{−m0(f,+1) +

m0(f,−1) + j | 0 ≤ j ≤ m0(f,+1) − m0(f,−1)} = −m0(f,+1) + m0(f,−1). Since

(f · f̄)(i) = f̄(i + m0(f̄ ,+1)) = f(−i −m0(f̄ ,+1)) = f(−i + m0(f,−1)) for all i ≤ 0

and since −m0(f,+1) +m0(f,−1) ≤ 0, the face α2
−1(H1) is given by

α2
−1(H1)(j) = H1(m0(H1,−1), j)

= H1(m0(f,−1)−m0(f,+1), j)

=


(f · f̄)(m0(f,−1)−m0(f,+1)) for j ≤ 0,

f(−m0(f,−1) +m0(f,+1) + j +m0(f,−1)) for 0 ≤ j ≤M,

v0 for j ≥M,

=


f(−m0(f,−1) +m0(f,+1) +m0(f,−1)) for j ≤ 0,

f(m0(f,+1) + j) for 0 ≤ j ≤M,

v0 for j ≥M,

=


f(m0(f,+1)) for j ≤ 0,

f(m0(f,+1) + j) for 0 ≤ j ≤M,

v0 for j ≥M,

=


v0 for j ≤ 0,

v0 for 0 ≤ j ≤M,

v0 for j ≥M.

Since f · f̄ and pv0 stabilize to v0 in both directions, α2
−1(H1)(j) = α1

−1(f · f̄)(∗) =
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α1
−1(pv0)(∗) for all j ∈ Z. Therefore, α2

−1(H1) = β1
1α

1
−1(f · f̄) = β1

1α
1
−1(pv0).

(c) By construction, H1 stabilizes on the 2nd-axis at m0(H1,−2) = 0 and m0(H1,+2) =

m0(f,+1)−m0(f,−1). Thus the faces α2
−2(H1) and α2

+2(H1) are given by

α2
−2(H1)(i) = H1(i, 0) = f · f̄(i)

and

α2
+2(H1)(i) = H1(i, m0(f,+1)−m0(f,−1)) = pv0(i),

respectively, for all i ∈ Z. Hence, α2
−2(H1) = f · f̄ and α2

+2(H1) = pv0 .

Thus H1 is a graph homotopy from f · f̄ to pv0 , and hence, f · f̄ ∼ pv0 . We show that

f̄ · f ∼ pv0 by proceeding in the same way using the homotopy H2 ∈ C2(G) defined by

H2(i, j) =



(f̄ · f)(i) for j ≤ 0,

(f̄ · f)(i+ j) for 0 ≤ j ≤ m0(f,+1)−m0(f,−1), i ≥ 0,

(f̄ · f)(i− j) for 0 ≤ j ≤ m0(f,+1)−m0(f,−1), i ≤ 0,

pv0(i) for j ≥ m0(f,+1)−m0(f,−1).

Now the only thing left to show is that concatenation on the set B1(G, v0)/ ∼ is associa-

tive.

Proposition 5.11 (Associativity). Concatenation on the set B1(G, v0)/ ∼ is associative.

Proof. Let f, g, h ∈ B1(G, v0). The concatenations f · g and g · h are defined by

(f · g)(i) =


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g,+1)) for i ≤ 0,
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and

(g · h)(i) =


g(i+m0(g,−1)) for i ≥ 0,

h(i+m0(h,+1)) for i ≤ 0.

By Proposition 5.6, f · g, g · h ∈ B1(G, v0). Recall that by Lemma 4.16,

m0(f · g,−1) = m0(g,−1)−m0(g,+1),

m0(f · g,+1) = m0(f,+1)−m0(f,−1),

m0(g · h,−1) = m0(h,−1)−m0(h,+1),

m0(g · h,+1) = m0(g,+1)−m0(g,−1).
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Thus the concatenation (f · g) · h : I∞ → G is defined by

((f · g) · h)(i)

=


(f · g)(i+m0(f · g,−1)) for i ≥ 0,

h(i+m0(h,+1)) for i ≤ 0,

=


f(i+m0(f · g,−1) +m0(f,−1)) for i+m0(f · g,−1) ≥ 0,

g(i+m0(f · g,−1) +m0(g,+1)) for m0(f · g,−1) ≤ i+m0(f · g,−1) ≤ 0,

h(i+m0(h,+1)) for i ≤ 0,

=


f(i+m0(f · g,−1) +m0(f,−1)) for i ≥ −m0(f · g,−1),

g(i+m0(f · g,−1) +m0(g,+1)) for 0 ≤ i ≤ −m0(f · g,−1),

h(i+m0(h,+1)) for i ≤ 0,

=


f(i+m0(g,−1)−m0(g,+1) +m0(f,−1)) for i ≥ −m0(g,−1) +m0(g,+1),

g(i+m0(g,−1)−m0(g,+1) +m0(g,+1)) for 0 ≤ i ≤ −m0(g,−1) +m0(g,+1),

h(i+m0(h,+1)) for i ≤ 0,

=


f(i+m0(g,−1)−m0(g,+1) +m0(f,−1)) for i ≥ m0(g,−1)−m0(g,+1),

g(i+m0(g,−1)) for 0 ≤ i ≤ m0(g,−1)−m0(g,+1),

h(i+m0(h,+1)) for i ≤ 0.
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Similarly, the concatenation f · (g · h) : I∞ → G is defined by

(f · (g · h))(i)

=


f(i+m0(f,−1)) for i ≥ 0,

(g · h)(i+m0(g · h,+1)) for i ≤ 0,

=


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g · h,+1) +m0(g,−1)) for 0 ≤ i+m0(g · h,+1) ≤ m0(g · h,+1),

h(i+m0(g · h,+1) +m0(h,+1)) for i+m0(g · h,+1) ≤ 0,

=


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g · h,+1) +m0(g,−1)) for −m0(g · h,+1) ≤ i ≤ 0,

h(i+m0(g · h,+1) +m0(h,+1)) for i ≤ −m0(g · h,+1),

=


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g,+1)−m0(g,−1) +m0(g,−1)) for −m0(g,+1) +m0(g,−1) ≤ i ≤ 0,

h(i+m0(g,+1)−m0(g,−1) +m0(h,+1)) for i ≤ −m0(g,+1) +m0(g,−1),

=


f(i+m0(f,−1)) for i ≥ 0,

g(i+m0(g,+1)) for −m0(g,+1) +m0(g,−1) ≤ i ≤ 0,

h(i+m0(g,+1)−m0(g,−1) +m0(h,+1)) for i ≤ −m0(g,+1) +m0(g,−1).

However, for all i ∈ Z,

((f · g) · h)(i+m0(g,+1)−m0(g,−1)) = (f · (g · h))(i).

Thus f ·(g·h) = (f ·g)·h−m0(g,+1)+m0(g,−1), that is, f ·(g·h) is equal to the graph homomorphism

(f · g) · h shifted down by m0(g,+1) −m0(g,−1). Therefore, by the Shifting Lemma (5.4),

f · (g · h) ∼ (f · g) · h, and concatenation on the set B1(G, v)/ ∼ is associative.
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Since concatenation is well-defined on B1(G, v0)/ ∼, and the set B1(G, v0)/ ∼ is closed

under concatenation, has an identity, inverses, and concatenation is associative on the set

B1(G, v0)/ ∼, we can conclude the following.

Theorem 5.12. The set of equivalence classes B1(G, v0)/ ∼ is a group with the operation

of concatenation.

Now that we have shown B1(G, v0)/ ∼ is a group with the operation of concatenation, in

the next chapter we move to the main results of this thesis, the development of the theory

of graph coverings and lifting properties.
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Chapter 6

Covering Graphs and Lifting

Properties

In topology, a covering space is a continuous map p : X̃ → X that preserves the local

structure of the space. When considering a graph as a space, these covering spaces again

fail to recognize the structure of the graph, namely, the vertices and edges. Thus there are

covering graphs, that is, graph homomorphisms p : G̃→ G that preserve the local structures

of the graphs. In particular, the graph G̃ should ‘look like’ the graph G locally with the map

p formalizing this structure. In topology, given a covering space p : X̃ → X and a continuous

map f : Y → X, there are also lifts f̃ : Y → X̃ which factor f through the space X̃. There

are lifting properties in topology that determine when a lift does or does not exist. While an

analogous term and properties do not exist in the current literature for A-homotopy theory,

we define a discrete version of lifts and develop the corresponding lifting properties in this

chapter. The next three definitions give us a more precise idea of what covering graphs are.

Definition 6.1. Let G be a graph and be v ∈ V (G). The closed neighborhood of v, denoted

N [v], is the set of vertices adjacent to v as well as v itself, more precisely,

N [v] = {a ∈ V (G) | {a, v} ∈ E(G) or a = v}.
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Definition 6.2. [10] The graph homomorphism p : G1 → G2 is a local isomorphism if p

is onto and for each vertex v ∈ V (G2) and each vertex w ∈ p−1(v), the induced mapping

p|N [w] : N [w]→ N [v] is bijective.

Remark 6.3. While the restriction p|N [w] : N [w]→ N [v] given in the previous definition is

a bijection between the vertex sets N [w] and N [v], it is not necessarily a bijection between

the edges of the induced subgraphs G1(N [w]) and G2(N [v]) (see Definition 3.14).

Example 6.4. Let Ck be a k-cycle on k ≥ 3 and vertices labeled [0], [1], . . . , [k−1]. Figure 6.1

depicts a local isomorphism p : C6 → C3 defined by p([i]) = [i mod 3] for i ∈ {0, . . . , 6}. The

[0] [1]

[2]

[3][4]

[5]

[0]

[1][2]

Figure 6.1: The local isomorphism p : C6 → C3

edges of the induced subgraphs C6(N [[4]]) and C3(N [[1]]) are shown in light blue. While

there is an edge {[0], [2]} in C3, there is no edge {[3], [5]} in C6). Thus the restriction

p|N [[4]] : N [[4]] → N [[1]] is a bijective on the vertices but not the edges of the induced

subgraphs C6(N [[4]]) and C3(N [[1]]).

We define a different subgraph with the property p restricted to this subgraph is bijective

on both vertices and edges. For x ∈ V (G1), let Nx denote the subgraph of G1 with vertex
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set V (Nx) = N [x] and edge set E(Nx) = {{x, v} | v ∈ N [x], v 6= x}. If p : G1 → G2 is a local

isomorphism, then p induces a graph homomorphism from the subgraph Nx to the subgraph

Np(x) for each x ∈ V (G1), that is, there is a graph homomorphism

p|Nx : Nx → Np(x),

that is bijective on the vertices and edges of the subgraphs. This implies the following lemma.

Lemma 6.5. Let p : G1 → G2 be a local isomorphism and x ∈ V (G1). Then the graph

homomorphism p|Nx is invertible, and its inverse (p|Nx)−1 : Np(x) → Nx is a graph homo-

morphism.

These restrictions of local isomorphisms are useful when we discuss lifting properties.

Definition 6.6. [10] Let G and G̃ be graphs, and let p : G̃→ G be a graph homomorphism.

The pair (G̃, p) is a covering graph of G if p is a local isomorphism.

We now give some examples of covering graphs and how they differ from covering spaces.

Example 6.7. Let Ck be a cycle with k ≥ 3 and vertices labeled [0], [1], . . . , [k − 1]. If the

graph homomorphism pk : I∞ → Ck is defined by pk(i) = [i mod k], then the pair (I∞, pk)

forms a covering graph of the cycle Ck.

As mentioned previously, in classical homotopy theory, all cycles are homotopy equivalent

as topological space to the circle. Example 6.7 is analogous to covering the circle with the

real line R by mapping it onto the circle as a helix. This is illustrated in Figure 6.2.

Example 6.8. If the graph homomorphism p : C2k → Ck is defined by p([i]) = [i mod k]

for all i ∈ {0, . . . , 2k − 1}, then the pair (C2k, p) forms a covering graph of the cycle Ck.

The local isomorphism p depicted in Figure 6.1 is an example of a covering graph of Ck

by C2k with k = 3. Example 6.8 is analogous to mapping the topological circle onto another

circle so that the first wraps around the second twice. We now continue to the definition of a
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p5

Figure 6.2: The maps p : R→ S1 and p5 : I∞ → C5

lift and lifting properties, material that is not found in the existing literature for A-homotopy

theory. The following definition is taken from [9, p. 5] but with ‘graph homomorphism’ in

place of ‘continuous map’.

Definition 6.9. Let G be a graph, and let (G̃, p) be a covering graph of G. Given a graph

homomorphism f : K → G, a lift of f is a graph homomorphism f̃ : K → G̃ such that

p ◦ f̃ = f .

Theorem 6.10 (Path Lifting Property). Let (G̃, p) be a covering graph of G. For each

f ∈ C1(G) with f(m0(f,−1)) = v0 ∈ V (G) and each vertex ṽ0 ∈ p−1(v0), there exists a

unique lift f̃ of f starting at the vertex ṽ0.

G̃

I∞ G

p

f

∃!f̃

Proof. Let f ∈ C1(G) with f(m0(f,−1)) = v0 ∈ V (G), and suppose ṽ0 ∈ p−1(v0). Define
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the map f̃ : I∞ → G̃ by f̃(i) = ṽ0 for all i ≤ m0(f,−1) and recursively by

f̃(i) = (p|N
f̃(i−1)

)−1(f(i)) for i > m0(f,−1).

We must show that the map f̃ is well-defined, is a graph homomorphism, is a lift of f ,

and is unique. Since f̃ is defined to be constant for i ≤ m0(f,−1) and defined recursively

for i > m0(f,−1), in the following proofs of the four properties we address the case for

i ≤ m0(f,−1) separately and use induction to prove the properties for i ≥ m0(f,−1).

(1) f̃ is well-defined.

• By definition, f̃(i) = ṽ0 for all i ≤ m0(f,−1). Thus f̃(i) is well-defined for

i ≤ m0(f,−1).

• For i ≥ m0(f,−1), we show that the correspondence i 7→ f̃(i) is well-defined by

induction on i.

Base Case: By definition of f̃ , f̃(m0(f,−1)) = ṽ0 and

f̃(m0(f,−1) + 1) = (p|N
f̃(m0(f,−1))

)−1(f(m0(f,−1) + 1))

= (p|Nṽ0 )−1(f(m0(f,−1) + 1)).

By Lemma 6.5, the inverse (p|Nṽ0 )−1 : Np(ṽ0) → Nṽ0 exists. Since ṽ0 ∈ p−1(v0), the

domain of (p|Nṽ0 )−1 is equal to Nv0 . Moreover, f(m0(f,−1) + 1) ∈ N [v0], since f

is a graph homomorphism. Thus f(m0(f,−1) + 1) is in the domain of (p|Nṽ0 )−1,

and hence, (p|Nṽ0 )−1(f(m0(f,−1) + 1)) is well-defined.

Inductive Hypothesis: Suppose f̃(i) is well-defined for some i > m0(f,−1).

By definition, f̃(i + 1) = (p|N
f̃(i)

)−1(f(i + 1)). In order for f̃(i + 1) to be well-

defined, we must verify that f(i + 1) is in the domain of (p|N
f̃(i)

)−1. By the

inductive hypothesis, f̃(i) = (p|N
f̃(i−1)

)−1(f(i)) is well-defined. Since p is a graph

84



homomorphism,

p|N
f̃(i−1)

(f̃(i)) = p|N
f̃(i−1)

((p|N
f̃(i−1)

)−1(f(i)))

= f(i).

By Lemma 6.5, the inverse (p|N
f̃(i)

)−1 : Np(f̃(i)) → Nf̃(i) exists. Since p(f̃(i)) =

f(i), the domain of (p|N
f̃(i)

)−1 is equal to Nf(i). Moreover, since f is a graph

homomorphism, it follows that f(i+ 1) ∈ N [f(i)], so f(i+ 1) is in the domain of

(p|N
f̃(i)

)−1. Therefore, (p|N
f̃(i)

)−1(f(i+ 1)) is well-defined.

Thus by induction, the map f̃ is well-defined for i ≥ m0(f,−1).

Hence, f̃ is well-defined.

(2) f̃ is a graph homomorphism.

There is an edge {i, i + 1} ∈ E(I∞) for all i ∈ Z. Thus to show that f̃ is a graph

homomorhism, we must show that either f̃(i) = f̃(i+ 1) or {f̃(i), f̃(i+ 1)} ∈ E(G) for

all i ∈ Z.

• By definition, f̃(i) = ṽ0 for all i ≤ m0(f,−1). Thus f̃(i) = ṽ0 = f̃(i + 1) for all

i < m0(f,−1).

• For i ≥ m0(f,−1), we show that either f̃(i) = f̃(i+ 1) or {f̃(i), f̃(i+ 1)} ∈ E(G)

by induction on i.

Base Case: By definition, f̃(m0(f,−1)) = ṽ0 ∈ p−1(v0), and by part (1),

f̃(m0(f,−1) + 1) = (p|Nṽ0 )−1(f(m0(f,−1) + 1).

Thus, since f(m0(f,−1)) = v0, it follows that f̃(m0(f,−1)) = (p|Nṽ0 )−1(v0) =

(p|Nṽ0 )−1(f(m0(f,−1)). Moreover, since f is a graph homomorphism, either

f(m0(f,−1)) = f(m0(f,−1) + 1) or {f(m0(f,−1)), f(m0(f,−1) + 1)} ∈ E(G).
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Therefore, it follows that (p|Nṽ0 )−1(f(m0(f,−1))) = (p|Nṽ0 )−1(f(m0(f,−1) + 1))

or {(p|Nṽ0 )−1(f(m0(f,−1))), (p|Nṽ0 )−1(f(m0(f,−1)+1))} ∈ E(G̃), since (p|Nṽ0 )−1

is a graph homomorphism. Thus either

f̃(m0(f,−1)) = f̃(m0(f,−1) + 1)

or

{f̃(m0(f,−1)), f̃(m0(f,−1) + 1)} ∈ E(G).

Inductive Hypothesis: Suppose that for some i > m0(f,−1), f̃(i − 1) = f̃(i) or

{f̃(i− 1), f̃(i)} ∈ E(G).

By definition, f̃(i) = (p|N
f̃(i−1)

)−1(f(i)) and f̃(i + 1) = (p|N
f̃(i)

)−1(f(i + 1)). By

Lemma 6.5, the inverses (p|N
f̃(i−1)

)−1 : Np(f̃(i−1)) → Nf̃(i−1) and (p|N
f̃(i)

)−1 :

Np(f̃(i)) → Nf̃(i) exist. By the inductive hypothesis, either f̃(i − 1) = f̃(i) or

{f̃(i − 1), f̃(i)} ∈ E(G), so f̃(i) ∈ N [f̃(i − 1)] ∩ N [f̃(i)]. Since both p|N
f̃(i−1)

and p|N
f̃(i)

are bijective, p(f̃(i)) ∈ N [p(f̃(i − 1))] ∩ N [p(f̃(i))]. By part (1),

p(f̃(i)) = f(i). Thus, we can write

(p|N
f̃(i−1)

)−1(f(i)) = (p|N
f̃(i)

)−1(f(i)).

Since f is a graph homomorphism, f(i) = f(i + 1) or {f(i), f(i + 1)} ∈ E(G).

Thus (p|N
f̃(i)

)−1(f(i)) = (p|N
f̃(i)

)−1(f(i+ 1)) or {(p|N
f̃(i)

)−1(f(i)), (p|N
f̃(i)

)−1(f(i+

1))} ∈ E(G̃), since (p|N
f̃(i)

)−1 is a graph homomorphism. Hence, f̃(i) = f̃(i + 1)

or {f̃(i), f̃(i+ 1)} ∈ E(G̃) for all i > m0(f,−1) by induction on i.

Thus f̃ is a graph homomorphism.

(3) f̃ is a lift of f .

• For all i ≤ m0(f,−1), the composition p ◦ f̃ is defined by p(f̃(i)) = p(ṽ0) = v0.
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Thus p(f̃(i)) = f(i) for all i ≤ m0(f,−1).

• For all i > m0(f,−1),

p(f̃(i)) = p((p|N
f̃(i−1)

)−1(f(i)))

= f(i).

Thus p(f̃(i)) = f(i) for all i > m0(f,−1).

Therefore, p ◦ f̃ = f , and hence, the graph homomorphism f̃ is a lift of f .

(4) f̃ is unique for each choice of ṽ0 ∈ p−1(v0).

Let g̃ : I∞ → G̃ be a graph homomorphism such that g̃(m0(g̃,−1)) = ṽ0 and p ◦ g̃ = f .

• Since f(i) = v0 for all i ≤ m0(f,−1) and p ◦ g̃ = f , it follows that p(g̃(i)) =

v0 for all i ≤ m0(f,−1). By Lemma 6.5, p|Nṽ0 )−1 : Nv0 → Nṽ0 is a graph

homomorphism, since ṽ0 ∈ p−1(v0). Thus (p|Nṽ0 )−1(p(g̃(i))) = (p|Nṽ0 )−1(v0) for

all i ≤ m0(f,−1). This implies that g̃(i) = ṽ0 for all i ≤ m0(f,−1). By definition

f̃(i) = ṽ0 for all i ≤ m0(f,−1), so g̃(i) = f̃(i) for all i ≤ m0(f,−1).

• We now show that g̃(i) = f̃(i) for all i > m0(f,−1) by induction on i.

Base Case: By the previous case, f̃(m0(f,−1)) = ṽ0 = g̃(m0(f,−1)).

Inductive Hypothesis: Suppose g̃(i) = f̃(i) for some i ≥ m0(f,−1).

Since f̃ and g̃ are graph homomorphisms,

f̃(i) = f̃(i+ 1) or {f̃(i), f̃(i+ 1)} ∈ E(G)

and

g̃(i) = g̃(i+ 1) or {g̃(i), g̃(i+ 1)} ∈ E(G).

By the inductive hypothesis, g̃(i) = f̃(i). Hence, f̃(i + 1), g̃(i + 1) ∈ N [f̃(i)].

Since p ◦ g̃ = f = p ◦ f̃ , it follows that p|N
f̃(i)

(g̃(i + 1)) = p|N
f̃(i)

(f̃(i + 1)).
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Thus (p|N
f̃(i)

)−1(p|N
f̃(i)

(g̃(i + 1))) = (pN
f̃(i)

)−1(p|N
f̃(i)

(f̃(i + 1))), since (p|N
f̃(i)

)−1 :

Nf(i) → Nf̃(i) is a graph homomorphism. Therefore, f̃(i + 1) = g̃(i + 1) for all

i ≥ m0(f,−1).

Thus by induction, g̃(i+ 1) = f̃(i+ 1) for all i ≥ m0(f,−1).

Hence, g̃ = f̃ , so the lift f̃ of f is unique.

We now use the Path Lifting Property (Theorem 6.10) to prove the Homotopy Lifting

Property (Theorem 6.11). In the introduction, we discussed the question of why the 3-cycle

and 4-cycle are A-contractible, but the cycles on five or more vertices are not. This question

is answered in Chapter 7, where we use the Homotopy Lifting Property (Theorem 6.11) to

show that C5 is not A-contractible. The fact that homotopy lifting does not hold for C3 or

C4 is significant.

Theorem 6.11 (Homotopy Lifting Property). Let G be a graph containing no 3-cycles

or 4-cycles and (G̃, p) be a covering graph of G. Given a homotopy H : K�In → G from f

to g and a lift f̃ : K → G̃ of f , there exists a unique homotopy H̃ : K�In → G̃ that lifts H.

The statement of this theorem can be summarized by the following diagram.

G̃

K G

p

g

f

∼

g̃

f̃

∼

Here G̃ is a cover of G by the graph homomorphism p, the ∼ between f and g represents

the graph homotopy H from f to g, and the ∼ between f̃ and g̃ represents a lift H̃ of H, a
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graph homotopy between a lift f̃ of f and a lift g̃ of g. Thus if a lift H̃ of H exists, then a

lift g̃ of g exists as well. Now we proceed to the proof.

Proof. Let G, (G̃, p), H and f̃ be as in the statement of the theorem. The strategy of this

proof is to build the lift H̃ inductively. For each y ∈ V (K), we produce a lift of H restricted

to Ny�In. First, we use the lift of f to construct a lift of H|N(y,0)
. Then we proceed by

induction to define a lift of H|N(y,i+1)
for each 0 ≤ i < n, which agrees with the previous lift

of H|N(y,i)
on V (N(y,i−1)) ∩ v(N(y,i)). This produces a lift of H|N(y,0)∪···∪N(y,n−1)∪N(y,n)

, which

we can then complete to a lift of H|Ny�In . Once we have constructed a lift H̃|Ny�In , we use

it to build the lift H̃ by appealing to the uniqueness of the Path Lifting Property (Theorem

6.10).

Now we proceed to the construction of H̃Ny�In . Let y ∈ V (K). Since H is a graph

homotopy from f to g, it follows that H|Ny�{0} = f |Ny . Define H̃|Ny�{0} = f̃ |Ny . Since p is

a covering map, the restriction p|N
H̃(y,0)

: NH̃(y,0) → Np(H̃(y,0)) is a bijection on the vertices

and edges of these subgraphs. By definition of H|Ny�{0}, it follows that p(H̃(y, 0)) = f(y) =

H(y, 0). Thus the inverse (p|N
H̃(y,0)

)−1 : NH(y,0) → NH̃(y,0) exists by Lemma 6.5. Since

H is a graph homomorphism, there is an inclusion of sets H(N [y, 0]) ⊆ N [H(y, 0)] and, in

particular, H(y, 1) ∈ N [H(y, 0)]. That is, H(y, 1) is in the domain of the inverse (p|N
H̃(y,0)

)−1.

Define H̃(y, 1) = (p|N
H̃(y,0)

)−1(H(y, 1)). Since f̃ is a lift of f and H|Ny�{0} = f |Ny , it

follows that f̃ |Ny = (p|N
H̃(y,0)

)−1 ◦H|Ny�{0}. Thus we have defined H̃|N(y,0)
, and it is a graph

homomorphism because it is the composition of graph homomorphisms.

For the inductive step, assume that H|N(y,0)∪···∪N(y,i)
has a lift H̃|N(y,0)∪···∪N(y,i)

for some

0 ≤ i < n. Figure 6.3 illustrates the graph N(y,0) ∪ · · · ∪N(y,i), in the case that the vertex y

has three adjacent vertices. The subgraph N(y,i) is shown in light blue, and the dashed edges

shown in red are not included in the graph N(y,0) ∪ · · · ∪N(y,i). Since (y, i + 1) ∈ N [y, i], it

follows that H̃(y, i+ 1) is defined.

Since p is a covering map, the restriction p|N
H̃(y,i+1)

: NH̃(y,i+1) → NH(y,i+1) is a bijection

on the vertices and edges of these subgraphs. Thus by Lemma 6.5, the inverse (p|N
H̃(y,i+1)

)−1 :
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Ny

y (y, 0) (y, 1) (y, 2) (y, i− 1) (y, i) (y, i + 1)

Figure 6.3: The union of neighborhoods N(y,0) ∪ · · · ∪N(y,i−1) ∪N(y,i)

NH(y,i+1) → NH̃(y,i+1) exists and is a graph homomorphism. Define

H̃|N(y,i+1)
= (p|N

H̃(y,i+1)
)−1 ◦H|N(y,i+1)

.

Since H is a graph homomorphism, there is an inclusion H(N [(y, i + 1)]) ⊆ N [H(y, i + 1)].

Thus H̃|N(y,i+1)
is well-defined. Since H̃|N(y,i+1)

is the composition of graph homomorphisms,

it follows that H̃|N(y,i+1)
is a graph homomorphism. This is illustrated by the following

diagram.

NH̃(y,i+1)

N(y,i+1) H(N(y,i+1)) NH(y,i+1)

H̃|N(y,i+1)

H|N(y,i+1)

(p|N
H̃(y,i+1)

)−1

Thus after a finite number of steps, the lift H̃|N(y,0)∪···∪N(y,n−1)∪N(y,n)
is defined.

Suppose x ∈ N [y]. Then {(x, i), (x, i + 1)} ∈ E(Ny�In) for all 0 ≤ i < n. Hence, in

order for H̃|N(y,0)∪···∪N(y,n−1)∪N(y,n)
to be extended to a graph homomorphism with domain

Ny�In, we must show that H̃(x, i) = H̃(x, i + 1) or {H̃(x, i), H̃(x, i + 1)} ∈ E(G̃) for all
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0 ≤ i < n. By definition of H̃|N(y,0)∪···∪N(y,n−1)∪N(y,n)
,

H̃(x, i) = (p|N
H̃(y,i)

)−1 ◦H|N(y,i)
(x, i) = (p|N

H̃(y,i)
)−1 ◦H(x, i)

and

H̃(x, i+ 1) = (p|N
H̃(y,i+1)

)−1 ◦H|N(y,i+1)
(x, i+ 1) = (p|N

H̃(y,i+1)
)−1 ◦H(x, i+ 1).

That is, H̃(x, i) is constructed using the graph homomorphism (p|N
H̃(y,i)

)−1, and H̃(x, i+1) is

constructed using the graph homomorphism (p|N
H̃(y,i+1)

)−1. In order to show that H̃(x, i) =

H̃(x, i+ 1) or {H̃(x, i), H̃(x, i+ 1)} ∈ E(G̃) for all 0 ≤ i < n, we will examine the 4-cycle of

Ny�In shown in light blue in Figure 6.4.

Ny

y

x

(y, 0) (y, 1) (y, i− 1) (y, i) (y, i + 1)

(x, i) (x, i + 1)

(y, n− 1) (y, n)

Figure 6.4: The union of neighborhoods N(y,0) ∪ · · · ∪N(y,n−1) ∪N(y,n)

We denote this 4-cycle subgraph by Cx,i. Since H is a graph homomorphism and G contains

no 3-cycles or 4-cycles, we have the following nine cases of how H maps Cx,i to G, illustrated

in Figure 6.5. The label ‘=’ means that H maps the pair of vertices to the same vertex in

G. The label a means that H maps the pair of vertices to adjacent vertices in G. In cases

(8) and (9), the pair of vertices being mapped to the same vertex are circled in red.

For cases (1)-(8), there is an inclusion of sets H(Cx,i) ⊆ N [H(y, i)], and H(x, i) =

H(x, i + 1) or {H(x, i), H(x, i + 1)} ∈ E(G) for all 0 ≤ i < n. Thus the subgraph Cx,i

is mapped by H into the domain of the inverse (p|N
H̃(y,i)

)−1 : NH(y,i) → NH̃(y,i). Since
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

(x, i)

(y, i)

(x, i + 1)

(y, i + 1)

=

=

=

=

=

a

a

=

=

a

=

a

=

=

a

a

a

a

=

=

a

=

a

=

a

=

=

a

a

a

a

a

= a

a

a

a

=

Figure 6.5: The cases of how H maps Cx,i to G

H̃|Cx,i = (p|N
H̃(y,i)

)−1 ◦H|Cx,i , it follows that

H̃(x, i) = H̃(x, i+ 1) or {H̃(x, i), H̃(x, i+ 1)} ∈ E(G̃).

For case (9), there is an inclusion of sets H(Cx,i) ⊆ N [H(y, i+ 1)], and H(x, i) = H(x, i+ 1)

or {H(x, i), H(x, i + 1)} ∈ E(G) for all 0 ≤ i < n. Thus the subgraph Cx,i is mapped

by H into the domain of the inverse (p|N
H̃(y,i+1)

)−1 : NH(y,i+1) → NH̃(y,i+1). Since H̃|Cx,i =

(p|N
H̃(y,i+1)

)−1 ◦H|Cx,i , it follows that

H̃(x, i) = H̃(x, i+ 1) or {H̃(x, i), H̃(x, i+ 1)} ∈ E(G̃).

Thus we can extend the graph homomorphism H̃|N(y,0)∪···∪N(y,n−1)∪N(y,n)
to H̃|Ny�In .
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The restriction H|{y}�In is a graph homomorphism from In to G and can be written as

Hy : In → G. By the Uniqueness of Path Lifting (6.10), the lift H̃y : In → G̃ is unique

with H̃y(0) = H̃(y, 0) = f̃(y). Since each graph homomorphism Hx : In → G must have a

unique lift H̃x : In → G̃ for all x ∈ N [y] with H̃x(0) = H̃(x, 0) = f̃(x), the lift H̃|Ny�In must

be unique for each y ∈ V (K). Since H̃x is unique for each x ∈ V (K) and is a restriction

of the graph homomorphism H̃|Ny�In for each y ∈ V (K) such that x ∈ N [y], the graph

homomorphisms H̃|N(y)�In must form a unique lift H̃ of the homotopy H.

Here, we provide two examples of homotopies into C3 and C4 that do not have lifts.

Example 6.12. Let f : I3 → C3 be the graph homomorphism that starts at [0] and wraps

around C3 once in a clockwise direction and is defined by

f(0) = [0], f(1) = [1], f(2) = [2], and f(3) = [0].

Let g : I3 → C3 be the graph homomorphism that stays constantly at [0] and is defined by

g(i) = [0] for all i ∈ {0, 1, 2, 3}. Recall that (I∞, p3) is a covering graph of C3, where p3 is

defined by p3(i) = [i mod 3] for all i ∈ Z. Figure 6.6 depicts, on the left, a graph homotopy

H : I3�I1 → C3 from f to g.

A lift H̃ : I3�I1 → I∞ of H is depicted in Figure 6.6, on the right. However, this map

H̃ is not a graph homomorphism. The edges shown in red are incident to vertices that are

not mapped to the same vertex or adjacent vertices of I∞.

By the Path Lifting Property (6.10), since the restriction H|I∞�{j} is a path for each

j ∈ {0, 1}, there is a unique lift H̃|I∞�{j} starting at 0 ∈ V (I∞) for each j ∈ {0, 1}. Thus H̃

is the only possible lift of H given the lift f̃ of f starting at 0 ∈ V (I∞).

Example 6.13. Let f : I4 → C4 be the graph homomorphism that starts at [0] and wraps

around C4 once in a clockwise direction and is defined by

f(0) = [0], f(1) = [1], f(2) = [2], f(3) = [3], and f(4) = [0].
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Figure 6.6: A homotopy H : I3�I1 → C3 and the lift H̃ : I3�I1 → I∞

Let g : I4 → C4 be the graph homomorphism that stays constantly at [0] and is defined

by g(i) = [0] for all i ∈ {0, 1, 2, 3, 4}. Recall that (I∞, p4) is a covering graph of C4, where

p4 is defined by p4(i) = [i mod 4]. Figure 6.7 depicts, on the left, a graph homotopy

H : I4�I2 → C4 from f to g.

The lift H̃ : I4�I2 → I∞ of H is depicted in Figure 6.7, on the right. Again, this map H̃

is not a graph homomorphism. The edges shown in red are incident to vertices that are not

mapped to the same vertex or adjacent vertices of I∞.
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Figure 6.7: A homotopy H : I4�I2 → C4 and the lift H̃ : I4�I2 → I∞

By the Path Lifting Property (6.10), since the restriction H|I∞�{j} is a path for each
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j ∈ {0, 1, 2}, there is a unique lift H̃|I∞�{j} starting at 0 ∈ V (I∞) for each j ∈ {0, 1, 2}.

Thus H̃ is the only possible lift of H given the lift f̃ of f starting at 0 ∈ V (I∞).

We now use the Path Lifting Property (6.10) and the Homotopy Lifting Property (6.11)

to prove the general Lifting Criterion (6.18), but first we need the following definition.

Definition 6.14. Let f : (K, y0) → (G, x0) be a graph homomorphism. The induced map

f∗ : B1(K, y0)/ ∼ → B1(G, x0)/ ∼ is defined by f∗([γ]) = [f ◦ γ], where [γ] is an equivalence

class of B1(K, y0)/ ∼.

Lemma 6.15. If f : (K, y0) → (G, x0) is a graph homomorphism, then the induced map

f∗ : B1(K, y0)/ ∼ → B1(G, x0)/ ∼ is well-defined.

Proof. Let f : (K, y0) → (G, x0) be a graph homomorphism, and let the induced map

f∗ : B1(K, y0)/ ∼ → B1(G, x0)/ ∼ be defined by f∗([γ]) = [f ◦ γ], where [γ] ∈ B1(K, y0)/ ∼.

Suppose γ1, γ2 ∈ B1(K, y0) such that γ1 ∼ γ2. Thus there exist a graph homomorphism

H1 ∈ C2(K) such that

(1) α1
−1(γ1) = α1

−1(γ2) and α1
+1(γ1) = α1

+1(γ2),

(2) α2
−1(H1) = β1

1α
1
−1(γ1) = β1

1α
1
−1(γ2) and α2

+1(H1) = β1
1α

1
+1(γ1) = β1

1α
1
+1(γ2),

(3) α2
−2(H1) = γ1 and α2

+2(H1) = γ2.

We need to show that f∗([γ1]) = f∗([γ2]), that is, f ◦ γ1 ∼ f ◦ γ2. Thus we must define

a map H2 : I2∞ → G and show that H2 is well-defined, a graph homomorphism, and is a

graph homotopy from f ◦ γ1 to f ◦ γ2. Define H2 : I2∞ → G by H2 = f ◦ H1. Since H2

is a composition of the graph homomorphisms H1 : I2∞ → K and f : K → G, it follows

that H2 is a graph homomorphism. We now show that H2 is a graph homotopy by verifying

conditions (a)-(c) of Definition 4.12.
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(a) By part (1), γ1(m0(γ1,−1)) = γ2(m0(γ2,−1)) and γ1(m0(γ1,+1)) = γ2(m0(γ2,+1)).

Since f is a graph homomorphism, it follows that

f(γ1(m0(γ1,−1))) = f(γ2(m0(γ2,−1)))

and

f(γ1(m0(γ1,+1))) = f(γ2(m0(γ2,+1))).

Therefore, α1
−1(f ◦ γ1) = α1

−1(f ◦ γ2) and α1
+1(f ◦ γ1) = α1

+1(f ◦ γ2).

(b) By part (2), it follows that H1(m0(H1,−1), j) = γ1(m0(γ1,−1)) = γ2(m0(γ2,−1))

and H1(m0(H1,+1), j) = γ1(m0(γ1,+1)) = γ2(m0(γ2,+1)) for all j ∈ Z. Since f is

a graph homomorphism, it follows that f(H1(m0(H1,−1), j)) = f(γ1(m0(γ1,−1))) =

f(γ2(m0(γ2,−1))) and f(H1(m0(H1,+1), j)) = f(γ1(m0(γ1,+1))) = f(γ2(m0(γ2,+1)))

for all j ∈ Z. Thus α2
−1(H2) = β1

1α
1
−1(f ◦γ1) = β1

1α
1
−1(f ◦γ2) and α2

+1(H1) = β1
1α

1
+1(f ◦

γ1) = β1
1α

1
+1(f ◦ γ2), since H2 = f ◦H1.

(c) By part (3), H1(i,m0(H1,−2)) = γ1(i) and H1(i,m0(H1,+2)) = γ2(i) for all i ∈ Z.

Since f is a graph homomorphism, it follows that f(H1(i,m0(H1,−2))) = f(γ1(i))

and f(H1(i,m0(H1,+2))) = f(γ2(i)) for all i ∈ Z. Therefore, α2
−2(H2) = f ◦ γ1 and

α2
+2(H2) = f ◦ γ2, since H2 = f ◦H1.

Thus H2 is a graph homotopy from f ◦ γ1 to f ◦ γ2, so f ◦ γ1 ∼ f ◦ γ2. Therefore, f∗ is

well-defined.

Lemma 6.16. If f : (K, y0) → (G, x0) is a graph homomorphism, then the induced map

f∗ : B1(K, y0)/ ∼ → B1(G, x0)/ ∼ is a group homomorphism.

Proof. Let f : (K, y0) → (G, x0) be a graph homomorphism, and let the induced map

f∗ : B1(K, y0)/ ∼→ B1(G, x0)/ ∼ be defined by f∗([γ]) = [f ◦ γ], where [γ] ∈ B1(K, y0)/ ∼.

Suppose γ1, γ2 ∈ B1(K, y0). Since B1(K, y0) is closed with respect to concatenation, it
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follows that γ1 · γ2 ∈ B1(K, y0). We need to show that f∗([γ1 · γ2]) = f∗([γ1]) · f∗([γ2]), that

is, f ◦ (γ1 · γ2) = (f ◦ γ1) · (f ◦ γ2). The concatenation (f ◦ γ1) · (f ◦ γ2) is defined by

((f ◦ γ1) · (f ◦ γ2))(i) =


(f ◦ γ1)(i+m0(f ◦ γ1,−1)) for i ≥ 0,

(f ◦ γ2)(i+m0(f ◦ γ2,+1)) for i ≤ 0,

=


(f(γ1(i+m0(f ◦ γ1,−1))) for i ≥ 0,

(f(γ2(i+m0(f ◦ γ2,+1))) for i ≤ 0.

Similarly, the concatenation γ1 · γ2 is defined by

(γ1 · γ2)(i) =


γ1(i+m0(γ1,−1)) for i ≥ 0,

γ2(i+m0(γ2,+1)) for i ≤ 0.

Thus the composition f ◦ (γ1 · γ2) is defined by

f((γ1 · γ2)(i)) =


f(γ1(i+m0(γ1,−1))) for i ≥ 0,

f(γ2(i+m0(γ2,+1))) for i ≤ 0.

Since f might possibly map vertices to x0 after γ1 stabilizes at m0(γ1,−1), it follows that

m0(f ◦ γ1,−1) ≥ m0(γ1,−1). Thus m0(f ◦ γ1,−1)−m0(γ1,−1) ≥ 0, which implies that

f((γ1 · γ2)(m0(f ◦ γ1,−1)−m0(γ1,−1)))

= f(γ1(m0(f ◦ γ1,−1)−m0(γ1,−1) +m0(γ1,−1)))

= f(γ1(m0(f ◦ γ1,−1))).

Since m0(f ◦ γ1,−1) is the greatest integer such that (f ◦ γ1)(m) = f ◦ γ1(m0(f ◦ γ1,−1))

for all m ≤ m0(f ◦ γ1,−1), it follows that f ◦ (γ1 · γ2) maps all vertices between 0 and

m0(f ◦ γ1,−1)−m0(γ1,−1) to v0.
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Since f might possibly map vertices to x0 before the end of γ2 at m0(γ2,+1), it follows

that m0(f ◦ γ1,+1) ≤ m0(γ1,+1). Thus m0(f ◦ γ1,+1)−m0(γ1,+1) ≤ 0, which implies that

f((γ1 · γ2)(m0(f ◦ γ2,+1)−m0(γ2,+1)))

= f(γ2(m0(f ◦ γ2,+1)−m0(γ2,+1) +m0(γ2,+1)))

= f(γ2(m0(f ◦ γ2,+1))).

Since m0(f ◦ γ2,+1) is the least integer such that (f ◦ γ2)(m) = f ◦ γ2(m0(f ◦ γ2,+1)) for all

m ≥ m0(f ◦ γ2,+1), it follows that f ◦ (γ1 · γ2) maps all vertices between m0(f ◦ γ2,+1) −

m0(γ2,+1) and 0 to v0.

Thus there is potentially padding in f◦(γ1·γ2) from the vertex m0(f◦γ2,+1)−m0(γ2,+1))

to the vertex m0(f ◦ γ1,−1)−m0(γ1,−1)). Therefore, f ◦ (γ1 · γ2) ∼ (f ◦ γ1) · (f ◦ γ2) by the

General Padding Lemma (5.3), and it follows that f∗ is a group homomorphism.

Lemma 6.17. Let (G̃, p) with p : (G̃, x̃0) → (G, x0) be a covering graph of G and f :

(K, y0) → (G, x0) be a graph homomorphism. Given a lift f̃ : (K, y0) → (G̃, x̃0) of f ,

p∗ ◦ f̃∗ = f∗.

Proof. Let (G̃, p) with p : (G̃, x̃0) → (G, x0) be a covering graph of G, let f : (K, y0) →

(G, x0) be a graph homomorphism, and let f̃ : (K, y0) → (G̃, x̃0) be a lift of f . For all

[γ] ∈ B1(K, y0)/ ∼,

(p∗ ◦ f̃∗)([γ]) = p∗(f̃∗([γ]))

= p∗([f̃ ◦ γ])

= [p ◦ (f̃ ◦ γ)]

= [(p ◦ f̃) ◦ γ]

= [f ◦ γ]

= f∗([γ]).
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Therefore, p∗ ◦ f̃∗ = f∗.

Theorem 6.18 (Lifting Criterion). Let G be a connected graph, let (G̃, p) be a covering

graph of G, and let f : (K, y0) → (G, x0) be a stable graph homomorphism. If G contains

neither 3-cycles nor 4-cycles, then there is a lift f̃ : (K, y0) → (G̃, x̃0) of f if and only if

f∗(B1(K, y0)/ ∼) ⊆ p∗(B1(G̃, x̃0)/ ∼).

(G̃, x̃0)

(K, y0) (G, x0)

p

f

∃!f̃

Proof. Let G be a connected graph with no 3-cycles or 4-cycles, (G̃, p) be a covering graph

of G, and f : (K, y0)→ (G, x0) be a stable graph homomorphism.

• Suppose a lift f̃ : (K, y0) → (G̃, x̃0) of f exists. Then p ◦ f̃ = f , which implies that

p∗ ◦ f̃∗ = f∗ by Lemma 6.17. Let [γ] ∈ B1(K, y0)/ ∼. Thus f∗([γ]) = (p∗ ◦ f̃∗)([γ]) =

p∗(f̃∗([γ])) ∈ p∗(B1(G̃, x̃0)/ ∼), since f̃∗([γ]) = [f̃ ◦ γ] ∈ B1(G̃, x̃0)/ ∼. Therefore,

f∗(B1(K, y0)/ ∼) ⊆ p∗(B1(G̃, x̃0)/ ∼).

• Conversely, suppose f∗(B1(K, y0)/ ∼) ⊆ p∗(B1(G̃, x̃0)/ ∼). Let y ∈ V (K). Since G is

connected, there is a stable graph homomorphism γy : I∞ → K with γy(m0(γy,−1)) =

y0 and γy(m0(γy,+1)) = y. Thus f ◦γy : I∞ → G is a stable graph homomorphism with

f(γy(m0(γy,−1))) = x0 and f(γy(m0(γy,+1))) = f(y) ∈ V (G). Hence, by the Path

Lifting Property (6.10), there is a unique lift f̃γy : I∞ → G̃ with f̃γy(m0(γy,−1)) =

x̃0 ∈ p−1(x0). Define f̃ : K → G̃ by f̃(y) = f̃γy(m0(γy,+1)) ∈ p−1(f(y)).
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(G̃, x̃0)

I∞ (K, y0) (G, x0)

p

γy

f̃γy

f

∃f̃

(1) The map f̃ is well-defined.

We must show that f̃(y) does not depend on the choice of γy. Suppose γ′y :

I∞ → K is another stable graph homomorphism with γ′y(m0(γ
′
y,−1)) = y0 and

γ′y(m0(γ
′
y,+1)) = y. Then f ◦ γ′y : I∞ → G is a stable graph homomorphism with

f(γ′y(m0(γ
′
y,−1))) = x0 and f(γ′y(m0(γ

′
y,+1))) = f(y). Recall from Definition 5.9

that γy : I∞ → K is defined by γy(i) = γy(i − 1) for all i ∈ Z. Therefore, the

concatenation γy · γ′y : I∞ → K is defined by

γy · γ′y(i) =


γy(i+m0(γy,−1)) for i ≥ 0,

γ′y(i+m0(γ
′
y,+1)) for i ≤ 0,

=


γy(i−m0(γy,+1)) for i ≥ 0,

γ′y(i+m0(γ
′
y,+1)) for i ≤ 0,

=


γy(−i+m0(γy,+1)) for i ≥ 0,

γ′y(i+m0(γ
′
y,+1)) for i ≤ 0.

Since γy(m0(γy,−1)) = γy(−m0(γy,−1)) = γy(m0(γy,+1)) = y = γ′y(γ
′
y,+1)),

it follows that α1
−1(γy) = α1

+1(γ
′
y). Thus by Proposition 4.15, γy · γ′y is a graph

homomorphism. By Lemma 4.16, γy · γ′y stabilizes in the negative direction at

m0(γy · γ′y,−1) = m0(γ
′
y,−1)−m0(γ

′
y,+1) and in the positive direction at m0(γy ·
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γ′y,+1) = m0(γy,+1)−m0(γy,−1) = −m0(γy,−1) +m0(γy,+1). Therefore,

γy · γ′y(m0(γy · γ′y,−1)) = γy · γ′y(m0(γ
′
y,−1)−m0(γ

′
y,+1))

= γ′y(m0(γ
′
y,−1)−m0(γ

′
y,+1) +m0(γ

′
y,+1))

= γ′y(m0(γ
′
y,−1))

= y0

and

γy · γ′y(m0(γy · γ′y,+1)) = γy · γ′y(−m0(γy,−1) +m0(γy,+1))

= γy(m0(γy,−1)−m0(γy,+1) +m0(γy,+1))

= γy(m0(γy,−1))

= y0.

Thus [γy · γ′y] ∈ B1(K, y0)/ ∼, namely, a ‘loop’ in the graph K based at the

distinguished vertex y0. Since f∗ is a group homomorphism by Lemma 6.16,

f∗([γy · γ′y]) = [f(γy · γ′y)] = [fγy · fγ′y]. Therefore, [fγy · fγ′y] ∈ f∗(B1(K, y0)/ ∼

) ⊆ p∗(B1(G̃, x̃0)/ ∼). Thus there exists an equivalence class [g] ∈ B1(G̃, x̃0)/ ∼

such that p∗([g]) = [fγy · fγ′y]. Hence, [pg] = [fγy · fγ′y], which implies that pg ∼

fγy · fγ′y. Therefore, it follows that there exists a graph homotopy H : I2∞ → G

from pg to fγy ·fγ′y. The graph homomorphism g : I∞ → G̃ is a lift of pg. By the

Path Lifting Property (6.10), there is a unique lift ˜fγy · fγ′y : I∞ → G̃ of fγy · fγ′y

with ˜fγy · fγ′y(m0(
˜fγy · fγ′y,−1)) = x̃0. Since G contains neither 3-cycles nor

4-cycles, the Homotopy Lifting Property (6.11) holds. Thus there exists a lifted

homotopy H̃ : I2∞ → G̃ from g to ˜fγy · fγ′y. Since [g] ∈ B1(G̃, x̃0)/ ∼, it follows

that ˜fγy · fγ′y(m0(fγy · fγ′y,−1)) = ˜fγy · fγ′y(m0(fγy · fγ′y,+1)) = x̃0 as well. By

definition of concatenation, fγy · fγ′y : I∞ → G is first defined by fγ′y followed by
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fγy. By definition of inverses, fγy is defined by fγy in reverse. Therefore, by the

uniqueness of the Path Lifting Property (6.10), the first part of ˜fγy · fγ′y is the

lift f̃γ′y of fγ′y followed by the lift f̃γy of fγy in reverse with the common vertex

f̃γ′y(m0(γ
′
y,+1)) = f̃γy(m0(γy,+1)). Thus f̃(y) is not dependent on the choice of

path γy starting at y0 and ending at y. Therefore, f̃ is well-defined.

(2) f̃ is a graph homomorphism.

Suppose x ∈ N [y], the closed neighborhood of y. The map f̃ is a graph homo-

morphism if either f̃(y) = f̃(x) or {f̃(y), f̃(x)} ∈ E(G̃). Define β : I∞ → G

by

β(i) =


γy(i) for i ≤ m0(γy,+1),

x for i > m0(γy,+1).

Since γy is a stable graph homomorphism and x ∈ N [y], the map β is a sta-

ble graph homomorphism with m0(β,+1) = m0(γy,+1) + 1. Therefore, f̃(x) =

f̃β(m0(β,+1)). Since β(m0(β,+1) − 1) = β(m0(γy,+1)) = γy(m0(γy,+1)) = y

and f is a graph homomorphism, f(β(m0(β,+1)−1)) = f(γy(m0(γy,+1))). Thus

f̃γy(m0(γy,+1)) = f̃β(m0(β,+1) − 1), which implies that f̃γy(m0(γy,+1)) =

f̃β(m0(β,+1)) or {f̃γy(m0(γy,+1)), f̃β(m0(β,+1))} ∈ E(G̃). Therefore, f̃(y) =

f̃(x) or {f̃(y), f̃(x)} ∈ E(G̃), and hence, f̃ is a graph homomorphism.

(3) The graph homomorphism f̃ is a lift of f , that is, p ◦ f̃ = f .

Since f̃γy : I∞ → G̃ is a lift of fγy and p ◦ f̃γy = fγy, it follows that

p ◦ f̃(y) = p(f̃γy(m0(γy,+1)))

= f(γy(m0(γy,+1)))

= f(y)

for all y ∈ V (K). Thus p ◦ f̃ = f , and the graph homomorphism f̃ : K → G̃ is

lift of f .
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In the next chapter, we use these lifting properties to show that the fundamental group

of the cycle C5 is isomorphic to Z in a combinatorial way, concluding our question of why

the cycles C3 and C4 are A-contractible, while cycles on five or more vertices are not.
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Chapter 7

Fundamental Group

In this final chapter, we answer the question of why the cycles C3 and C4 are A-contractible

and the cycles Ck with k ≥ 5 are not contractible. In topology, the lifting properties are used

to prove that the fundamental group of the circle is isomorphic to Z. We use the analogous

lifting properties defined in Chapter 6 in a similar way to show that (B1(C5, [0])/ ∼) ∼= Z in

this chapter. This method cannot be used for C3 and C4, however, because the Homotopy

Lifting Property only holds for graphs containing neither 3-cycles or 4-cycles. Before we

proceed to the computation of the fundamental group of C5, we first address the fundamental

group of all A-contractible graphs, including C3 and C4.

Theorem 7.1. If a graph G is A-contractible, then the fundamental group of G based at v0

is (B1(G, v0)/ ∼) = 0.

Proof. Let G be an A-contractible graph. Recall from Definition 4.14, this implies that there

exists graph homomorphisms f : G→ ∗ defined by f(x) = ∗ for all x ∈ V (G) and g : ∗ → G

defined by g(∗) = v0 such that f ◦g 'A 1∗ and g ◦f 'A 1G. The composition f ◦g is defined

by f(g(∗)) = f(v0) = ∗, and the composition g ◦ f is defined by

g(f(x)) = g(∗) = v0 for all x ∈ V (G).
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Therefore, f ◦g is equal to the identity 1∗ (see Example 2.3) and g◦f is equal to the constant

map cv0 : G → G (see Example 2.4) that maps every vertex to v0. Since g ◦ f 'A 1G, it

follows that 1G 'A cv0 . Thus there exists an integer n ∈ N and a graph homomorphism

H : G�In → G such that

• H(x, 0) = 1G(x) for all x ∈ V (G),

• H(x, n) = cv0(x) for all x ∈ V (G),

• H(v0, j) = v0 for all 0 ≤ j ≤ n.

Define H∞ : G�I∞ → G by

H∞(x, j) =


H(x, 0) for j ≤ 0,

H(x, j) for 0 ≤ j ≤ n,

H(x, n) for j ≥ n,

for all x ∈ V (G). Since H is a graph homomorphism, H∞ is a graph homomorphism. The

fundamental group of G is isomorphic to zero if every element of B1(G, v0) is homotopic

to the constant path pv0 : I∞ → G that maps every vertex to v0 (see Definition 5.7). Let

γ ∈ B1(G, v0). We use the graph homomorphism H∞ and γ itself to build a homotopy from

γ to pv0 . Define a map γ�1I : I∞�I∞ → G�I∞ by

(γ�1I)(i, j) = (γ(i),1I(j)) = (γ(i), j) for all i, j ∈ Z.

We must now show that γ�1I is a graph homomorphism. By the definitions of I∞ and the

Cartesian product, there are edges {(i, j), (i + 1, j)}, {(i, j), (i, j + 1)} ∈ E(I∞�I∞) for all

i, j ∈ Z. Thus γ�1I is a graph homomorphism if either (γ�1I)(i, j) = (γ�1I)(i + 1, j) or

{(γ�1I)(i, j), (γ�1I)(i + 1, j)} ∈ E(G�I∞), and either (γ�1I)(i, j) = (γ�1I)(i, j + 1) or

{(γ�1I)(i, j), (γ�1I)(i, j + 1)} ∈ E(G�I∞).
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• First consider (γ�1I)(i, j) and (γ�1I)(i+ 1, j).

By definition of γ�1I ,

(γ�1I)(i, j) = (γ(i), j) and (γ�1I)(i+ 1, j) = (γ(i+ 1), j).

Since {i, i+ 1} ∈ E(I∞) for all i ∈ Z and γ is a graph homomorphism, it follows that

either γ(i) = γ(i+ 1) or {γ(i), γ(i+ 1)} ∈ E(G). Thus (γ�1I)(i, j) = (γ�1I)(i+ 1, j)

or {(γ�1I)(i, j), (γ�1I)(i+ 1, j)} ∈ E(G�I∞).

• Next consider (γ�1I)(i, j) and (γ�1I)(i, j + 1).

By definition of γ�1I ,

(γ�1I)(i, j) = (γ(i), j) and (γ�1I)(i, j + 1) = (γ(i), j + 1).

By definition of I∞, the edge {j, j + 1} ∈ E(I∞) for all j ∈ Z. Therefore, {(γ(i), j),

(γ(i), j + 1)} ∈ E(G�I∞) by definition of the Cartesian product. Thus

{(γ�1I)(i, j), (γ�1I)(i, j + 1)} ∈ E(G�I∞).

Therefore, γ�1I is a graph homomorphism. Define a map H1 = H∞ ◦ (γ�1I). Since

γ�1I : I∞�I∞ → G�I∞ and H∞ : G�I∞ → G, it follows that H1 : I∞�I∞ → G. The map

H1 is

H1(i, j) = (H∞ ◦ (γ�1I))(i, j)

= H∞(γ(i), j)

=


H(γ(i), 0) for j ≤ 0,

H(γ(i), j) for 0 ≤ j ≤ n,

H(γ(i), n) for j ≥ n,
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for all i ∈ Z. Since H∞ and γ�1I are graph homomorphisms, the composition H∞ ◦ (γ�1I)

is a graph homomorphism by Lemma 2.10. We must now show that H1 is a homotopy from

γ to pv0 by verifying conditions (a)-(c) of Definition 4.12.

(a) Since the path pv0 is constantly equal to v0, m0(pv0 ,+1) = 0 = m0(pv0 ,−1), and since

γ ∈ B1(G, v0), γ must start and end at v0. Thus

α1
+1(γ)(∗) = γ(m0(γ,+1)) = v0 and α1

+1(pv0)(∗) = pv0(0) = v0

and

α1
−1(γ)(∗) = γ(m0(γ,−1)) = v0 and α1

−1(pv0)(∗) = pv0(0) = v0,

Therefore, α1
+1(γ) = α1

+1(pv0) and α1
−1(γ) = α1

−1(pv0).

(b) Since H1(i, j) = H(γ(i), 0) for j ≤ 0, H1(i, j) = H(γ(i), j) for 0 ≤ j ≤ n, and

H1(i, j) = H(γ(i), n) for j ≥ n, it follows that H1 stabilizes on the 1st-axis when γ

stabilizes. Thus m0(H1,+1) = m0(γ,+1) and m0(H1,−1) = m0(γ,−1). Therefore,

the face α2
+1(H1) is given by

α2
+1(H1)(j) = H1(m0(γ,+1), j)

=


H(γ(m0(γ,+1)), 0) for j ≤ 0,

H(γ(m0(γ,+1)), j) for 0 ≤ j ≤ n,

H(γ(m0(γ,+1)), n) for j ≥ n,

=


H(v0, 0) for j ≤ 0,

H(v0, j) for 0 ≤ j ≤ n,

H(v0, n) for j ≥ n.

Since H(v0, i) = v0 for all 0 ≤ i ≤ n, it follows that α2
+1(H1)(j) = v0 = α1

+1(γ)(∗) =

α1
+1(pv0)(∗) for all j ∈ Z. Thus α2

+1(H1) = β1
1α

1
+1(γ) = β1

1α
1
+1(pv0). Similarly, the face
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α2
−1(H1) is given by

α2
−1(H1)(j) = H1(m0(γ,−1), j)

=


H(γ(m0(γ,−1)), 0) for j ≤ 0,

H(γ(m0(γ,−1)), j) for 0 ≤ j ≤ n,

H(γ(m0(γ,−1)), n) for j ≥ n,

=


H(v0, 0) for j ≤ 0,

H(v0, j) for 0 ≤ j ≤ n,

H(v0, n) for j ≥ n.

Since H(v0, i) = v0 for all 0 ≤ i ≤ n, it follows that α2
−1(H1)(j) = v0 = α1

−1(γ)(∗) =

α1
−1(pv0)(∗) for all j ∈ Z. Thus α2

−1(H1) = β1
1α

1
−1(γ) = β1

1α
1
−1(pv0).

(c) Since H1(i, j) = H(γ(i), 0) for j ≤ 0 and H1(i, j) = H(γ(i), n) for j ≥ n, it follows

that H1 stabilizes on the 2nd-axis at m0(H1,−2) = 0 and m0(H1,+2) = n. Thus the

face α2
−2(H1) is

α2
−2(H1)(i) = H1(i, 0) = H(γ(i), 0) = 1G(γ(i)) = γ(i) for all i ∈ Z.

Therefore, α2
−2(H1) = γ. Similarly, the face α2

+2(H1) is

α2
+2(H1)(i) = H1(i, n) = H(γ(i), n) = cv0(γ(i)) = v0 for all i ∈ Z.

Hence, α2
+2(H1) = pv0 .

Thus H1 is a graph homotopy from γ to pv0 , and it follows that γ ∼ pv0 . Therefore,

(B1(G, v0)/ ∼) = 0, since γ is an arbitrary element of B1(G, v0).

The next step is to find the fundamental group of the cycle C5, which is not A-contractible.
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We need a few tools in order to do this.

Definition 7.2. Let C5 be a 5-cycle with vertices labeled [0], [1], [2], [3], and [4], and let

p5 : I∞ → C5 be the graph homomorphism defined by p5(i) = [i mod 5] for all i ∈ Z.

Note that p5 does not stabilize in either direction. Let [i− 1, i+ 1] denote the subgraph

of I∞ with vertex set V ([i − 1, i + 1]) = {i − 1, i, i + 1} and edge set E([i − 1, i + 1]) =

{{i− 1, i}, {i, i+ 1}} for all i ∈ Z. The relative graph homomorphism p5|N [i] = p5|[i−1,i+1] is

bijective for all i ∈ Z. Thus p5 is a local isomorphism, and the pair (I∞, p5) forms a covering

graph of C5.

If α : I∞ → C5 is a stable graph homomorphism with α(m0(α,−1)) = [0], then by the

Path Lifting Property (Theorem 6.10) there is a unique graph homomorphism α̃ : I∞ → I∞

with α̃(m0(α̃,−1)) = x̃ for each x̃ ∈ p−15 ([0]) such that the diagram

(I∞, x̃)

I∞ (C5, [0])

p5

α

α̃

commutes, that is, p5 ◦ α̃ = α.

Lemma 7.3 (Path Lift). Let α ∈ B1(C5, x0), and let the pair (I∞, p5) be as in Definition

7.2. Suppose x̃0 ∈ p−15 (x0). Then a lift α̃ : I∞ → I∞ of α is defined for all i ≤ m0(α,−1) by

α̃(i) = x̃0 and for all i > m0(α,−1) recursively by

α̃(i) =


α̃(i− 1) + 1 if α(i) = α(i− 1) + [1],

α̃(i− 1) if α(i) = α(i− 1),

α̃(i− 1)− 1 if α(i) = α(i− 1)− [1].
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Proof. Let α ∈ B1(C5, x0) and the pair (I∞, p5) be as defined previously. Suppose x̃0 ∈

p−15 (x0). By the Path Lifting Property (6.10), there is a unique lift α̃ : I∞ → I∞ defined

by α̃(i) = x̃0 for all i ≤ m0(α,−1), and recursively by α̃(i) = (p5|Nα̃(i−1)
)−1(α(i)) for all i >

m0(α,−1), so we only need to compute (p5|Nα̃(i−1)
)−1(α(i)) for i > m0(α,−1). By definition

of I∞, it follows that the subgraph Nα̃(i−1) = [α̃(i−1)−1, α̃(i−1)+1]. Therefore, p5|Nα̃(i−1)
is

a graph homomorphism from the subgraph with vertex set {α̃(i−1)−1, α̃(i−1), α̃(i−1)+1}

to the subgraph with vertex set {p5(α̃(i−1)−1), p5(α̃(i−1)), p5(α̃(i−1)+1)}. By definition

of p5 and since p5 ◦ α̃ = α,

p5(α̃(i− 1)− 1) = [(α̃(i− 1)− 1) mod 5]

= [α̃(i− 1) mod 5]− [1]

= p5(α̃(i− 1))− [1]

= α(i− 1)− [1],

and

p5(α̃(i− 1)) = α(i− 1),

and

p5(α̃(i− 1) + 1) = [(α̃(i− 1) + 1) mod 5]

= [α̃(i− 1) mod 5] + [1]

= p5(α̃(i− 1) + [1]

= α(i− 1) + [1].

Thus (p5|Nα̃(i−1)
)−1(α(i − 1) − [1]) = α̃(i − 1) − 1, (p5|Nα̃(i−1)

)−1(α(i − 1)) = α̃(i − 1)

(p5|Nα̃(i−1)
)−1(α(i − 1) + [1]) = α̃(i − 1) + 1. Therefore, α̃ is defined by α̃(i) = x̃0 for all
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i ≤ m0(α,−1) and recursively by

α̃(i) =


α̃(i− 1) + 1 if α(i) = α(i− 1) + [1],

α̃(i− 1) if α(i) = α(i− 1),

α̃(i− 1)− 1 if α(i) = α(i− 1)− [1],

for all i > m0(α,−1).

We also need to propose representatives for the equivalence classes of B1(C5, [0])/ ∼.

Definition 7.4. Let the map γn : I∞ → C5 be defined for each n ≥ 0 by

γn(i) =


[0] for i ≤ 0,

[i mod 5] for 0 ≤ i ≤ 5n,

[0] for i ≥ 5n,

and for each n ≤ 0 by

γn(i) =


[0] for i ≤ 0,

[(−i) mod 5] for 0 ≤ i ≤ −5n,

[0] for i ≥ −5n.

When n = 0, γn is the constant map at [0]. For n > 0, the graph homomorphism γn

starts at [0] and wraps around C5 in a clockwise direction n times. Similarly, for n < 0, the

graph homomorphism γn starts at [0] and wraps around C5 in a counterclockwise direction
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n times. Given these γn representatives, we need lifts γ̃n. If n ≥ 0, then

γn(i) = [i mod 5]

= [(i− 1 + 1) mod 5]

= [(i− 1) mod 5] + [1]

= γn(i− 1) + [1]

for all 0 < i ≤ 5n, and γn(i) = [0] otherwise. Similarly, if n ≤ 0, then

γn(i) = [(−i) mod 5]

= [(−i+ 1− 1) mod 5]

= [(−i+ 1) mod 5]− [1]

= γn(i− 1)− [1]

for all 0 < i ≤ −5n, and γn(i) = [0] otherwise. Thus by Lemma 7.3, the lift of γn starting

at 0 is γ̃n : I∞ → I∞ defined by

γ̃n(i) =


0 for i ≤ 0,

i for 0 ≤ i ≤ 5n,

5n for i ≥ 5n,

if n ≥ 0

and

γ̃n(i) =


0 for i ≤ 0,

−i for 0 ≤ i ≤ −5n,

5n for i ≥ −5n,

if n ≤ 0.

We also need to know how the representatives γn relate to each other. We do this by the

following lemma.
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Lemma 7.5. Let γn, γ−n ∈ B1(C5, [0]) be as defined in Definition 7.4 for n ∈ Z. Then

γ−n ∼ γn, the inverse of graph homomorphism γn.

Proof. Suppose n ≥ 0. By Definition 7.4 and Definition 5.9,

γn(i) = γn(−i)

=


[0] for − i ≤ 0,

[(−i) mod 5] for 0 ≤ −i ≤ 5n,

[0] for − i ≥ 5n,

=


[0] for i ≤ −5n,

[(−i) mod 5] for − 5n ≤ i ≤ 0,

[0] for i ≥ 0.

By the construction of γn,

γ−n(i+ 5n) =


[0] for i+ 5n ≤ 0,

[(−i− 5n) mod 5] for 0 ≤ i+ 5n ≤ 5n,

[0] for i+ 5n ≥ 5n,

=


[0] for i ≤ −5n,

[(−i) mod 5] for − 5n ≤ i ≤ 0,

[0] for i ≥ 0,

= γn(i),

for all i ∈ Z. Therefore, the inverse γn is γ−n shifted down by 5n. Thus it follows by the

Shifting Lemma (5.4) that γ−n ∼ γn for n ≥ 0. Suppose n ≤ 0. By Definition 5.9 and
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Definition 7.4,

γn(i) = γn(−i)

=


[0] for − i ≤ 0,

[i mod 5] for 0 ≤ −i ≤ −5n,

[0] for − i ≥ −5n,

=


[0] for i ≤ 5n,

[i mod 5] for 5n ≤ i ≤ 0,

[0] for i ≥ 0.

By construction of γn,

γ−n(i− 5n) =


[0] for i− 5n ≤ 0,

[(i− 5n) mod 5] for 0 ≤ i− 5n ≤ −5n,

[0] for i− 5n ≥ −5n,

=


[0] for i ≤ 5n,

[i mod 5] for 5n ≤ i ≤ 0,

[0] for i ≥ 0,

= γn(i),

for all i ∈ Z. Therefore, the inverse γn is γ−n shifted down by −5n. Thus it follows by the

Shifting Lemma (5.4) that γ−n ∼ γn for n ≤ 0. Therefore, γ−n ∼ γn for all n ∈ Z.

We need one last lemma before proceeding to the proof that (B1(C5, [0])/ ∼) ∼= Z.

Definition 7.6. Let f̃ : I∞ → I∞ be a stable graph homomorphism. For i ∈ Z, the value

f̃(i) is increasing if f̃(i) < f̃(i + 1) and is decreasing if f̃(i) > f̃(i + 1) and is constant if
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f̃(i) = f̃(i+ 1).

Lemma 7.7. If f̃ : I∞ → I∞ is a stable graph homomorphism with f̃(m0(f̃ ,−1)) = 0 and

f̃(m0(f̃ ,+1)) = 5n, then [f̃ ] = [γ̃n], where γ̃n is a lift of γn : I∞ → C5.

Proof. Let f̃ : I∞ → I∞ be a stable graph homomorphism with f̃(m0(f̃ ,−1)) = 0 and

f̃(m0(f̃ ,+1)) = 5n with n ∈ Z. Although the path f̃ starts at 0 and ends at 5n, f̃ may

increase, decrease, or remain constant from the vertex m0(f̃ ,−1) to the vertex m0(f̃ ,+1). In

contrast, for n ≥ 0, γ̃n increases constantly from starting at 0 to ending at 5n, and for n ≤ 0,

γ̃n decreases constantly from starting at 0 to ending at 5n. We show that f̃ is homotopic

to γ̃n by first showing that f̃ is homotopic to a path f̃ ′ that has no negative increasing

values and no positive decreasing values. Since f̃ ′ starts at 0 as well, if n ≥ 0, no negative

increasing values implies that f̃ ′ has no negative values at all, and no positive decreasing

values implies that f̃ ′ is constant or increasing from 0 to 5n. If n ≤ 0, no positive decreasing

values implies that f̃ ′ has no positive values at all, and no negative increasing values implies

that f̃ ′ is constant or decreasing from 0 to 5n. Then we use the General Padding Lemma

(5.3) to show that this path f̃ ′ is homotopic to γ̃n.

Define H : I∞�I∞ → I∞ for all j ≤ 0 by H(i, j) = f̃(i), and recursively for all j > 0 by

H(i, j) =



H(i, j − 1)− 1 if 0 ≤ H(i+ 1, j − 1) < H(i, j − 1),

H(i, j − 1) if 0 ≤ H(i, j − 1) ≤ H(i+ 1, j − 1),

H(i, j − 1) + 1 if H(i, j − 1) < H(i+ 1, j − 1) ≤ 0,

H(i, j − 1) if H(i+ 1, j − 1) ≤ H(i, j − 1) ≤ 0.

First, we must confirm that these are all of the cases. Define Hj : I∞ → I∞ by Hj(i) = H(i, j)

of all i, j ∈ Z. The first case is if Hj−1(i) is a positive decreasing value. The second case

is if Hj−1(i) is a non-negative increasing or constant value. The third case is if Hj−1(i)

is a negative increasing value. The fourth case is if Hj−1(i) is a non-positive decreas-

ing or constant value. These are all possible cases. Note that the second and fourth
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cases overlap when Hj−1(i) = 0 and is a constant value. The map H is well-defined,

however, since H(i, j) = H(i, j − 1) in both cases. We now need to show that H is a

graph homomorphism. By the definitions of I∞ and the Cartesian product, there are edges

{(i, j), (i+1, j)}, {(i, j), (i, j+1)} ∈ E(I∞�I∞). Thus H is a graph homomorphism if either

H(i, j) = H(i + 1, j) or {H(i, j), H(i + 1, j)} ∈ E(I∞), and either H(i, j) = H(i, j + 1)

or {H(i, j), H(i, j + 1)} ∈ E(I∞). Since H(i, j) = f̃(i) for all j ≤ 0 and f̃ is a graph

homomorphism, we only need to examine H for j ≥ 0. Let j ≥ 0.

• First consider H(i, j) and H(i+ 1, j).

Since H is defined recursively for j > 0, we show that either H(i, j) = H(i + 1, j) or

{H(i, j), H(i+ 1, j)} ∈ E(I∞) by induction on j.

Base case: For j = 0, H(i, j) = H(i, 0) = f̃(i) and H(i+ 1, j) = H(i+ 1, 0) = f̃(i+ 1).

Since {i, i + 1} ∈ E(I∞) and f̃ is a graph homomorphism, either f̃(i) = f̃(i + 1) or

{f̃(i), f̃(i+ 1)} ∈ E(I∞). Thus H(i, 0) = H(i+ 1, 0) or {H(i, 0), H(i+ 1, 0)} ∈ E(I∞).

Inductive Hypothesis: Assume H(i, j−1) = H(i+1, j−1) or {H(i, j−1), H(i+1, j−

1)} ∈ E(I∞) for some j > 0.

We examine the four cases for how H(i, j) is defined, and for each of these cases, the

four cases for how H(i+ 1, j) is defined.

1. Suppose 0 ≤ H(i+ 1, j − 1) < H(i, j − 1). By definition of H, H(i, j) = H(i, j −

1)−1 in this case. By the inductive hypothesis, since H(i+1, j−1) < H(i, j−1),

it follows that H(i + 1, j − 1) = H(i, j − 1) − 1 = H(i, j). We now examine the

four cases for how H(i+ 1, j) is defined in this case.

(a) Suppose 0 ≤ H(i+2, j−1) < H(i+1, j−1). By definition of H, H(i+1, j) =

H(i+ 1, j− 1)− 1. Thus H(i+ 1, j) = H(i, j)− 1, so {H(i, j), H(i+ 1, j)} ∈

E(I∞).

(b) Suppose 0 ≤ H(i+1, j−1) ≤ H(i+2, j−1). By definition of H, H(i+1, j) =

H(i+ 1, j − 1). Thus H(i+ 1, j) = H(i, j).
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(c) Suppose H(i+ 1, j − 1) < H(i+ 2, j − 1) ≤ 0. Since 0 ≤ H(i+ 1, j − 1), this

is a contradiction.

(d) Suppose H(i+2, j−1) ≤ H(i+1, j−1) = 0. By definition of H, H(i+1, j) =

H(i+ 1, j − 1), so H(i+ 1, j) = H(i, j).

2. Suppose 0 ≤ H(i, j−1) ≤ H(i+1, j−1). By definition of H, H(i, j) = H(i, j−1)

in this case. By the inductive hypothesis, since H(i, j − 1) ≤ H(i + 1, j − 1), it

follows that H(i+ 1, j−1) = H(i, j−1) or H(i+ 1, j−1) = H(i, j−1) + 1. Thus

H(i + 1, j − 1) = H(i, j) or H(i + 1, j − 1) = H(i, j) + 1. We now examine the

four cases for how H(i+ 1, j) is defined in this case.

(a) Suppose 0 ≤ H(i+2, j−1) < H(i+1, j−1). By definition of H, H(i+1, j) =

H(i+ 1, j − 1)− 1. Thus

H(i+ 1, j) = H(i, j)− 1 or H(i+ 1, j) = H(i, j) + 1− 1 = H(i, j),

which implies that H(i+ 1, j) = H(i, j) or {H(i, j), H(i+ 1, j)} ∈ E(I∞).

(b) Suppose 0 ≤ H(i+1, j−1) ≤ H(i+2, j−1). By definition of H, H(i+1, j) =

H(i+ 1, j − 1). Thus

H(i+ 1, j) = H(i, j) or H(i+ 1, j) = H(i, j) + 1,

which implies that H(i+ 1, j) = H(i, j) or {H(i, j), H(i+ 1, j)} ∈ E(I∞).

(c) Suppose H(i+ 1, j − 1) < H(i+ 2, j − 1) ≤ 0. Since 0 ≤ H(i+ 1, j − 1), this

is a contradiction.

(d) Suppose H(i+2, j−1) ≤ H(i+1, j−1) = 0. By definition of H, H(i+1, j) =

H(i+ 1, j − 1). Thus

H(i+ 1, j) = H(i, j) or H(i+ 1, j) = H(i, j) + 1.
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Therefore, H(i, j) = H(i+ 1, j) or {H(i, j), H(i+ 1, j)} ∈ E(I∞).

3. Suppose H(i, j − 1) < H(i+ 1, j − 1) ≤ 0. By definition of H, H(i, j) = H(i, j −

1)+1 in this case. By the inductive hypothesis, since H(i, j−1) < H(i+1, j−1),

it follows that H(i + 1, j − 1) = H(i, j − 1) + 1 = H(i, j). We now examine the

four cases for how H(i+ 1, j) is defined in this case.

(a) Suppose 0 ≤ H(i+ 2, j − 1) < H(i+ 1, j − 1). Since H(i+ 1, j − 1) ≤ 0, this

is a contradiction.

(b) Suppose 0 = H(i+1, j−1) ≤ H(i+2, j−1). By definition of H, H(i+1, j) =

H(i+ 1, j − 1). Thus H(i+ 1, j) = H(i, j).

(c) Suppose H(i+1, j−1) < H(i+2, j−1) ≤ 0. By definition of H, H(i+1, j) =

H(i + 1, j − 1) + 1. Thus H(i + 1, j) = H(i, j) + 1, which implies that

{H(i, j), H(i+ 1, j)} ∈ E(I∞).

(d) Suppose H(i+2, j−1) ≤ H(i+1, j−1) ≤ 0. By definition of H, H(i+1, j) =

H(i+ 1, j − 1). Thus H(i+ 1, j) = H(i, j).

4. Suppose H(i+1, j−1) ≤ H(i, j−1) ≤ 0. By definition of H, H(i, j) = H(i, j−1)

in this case. By the inductive hypothesis, since H(i + 1, j − 1) ≤ H(i, j − 1), it

follows that H(i+ 1, j−1) = H(i, j−1) or H(i+ 1, j−1) = H(i, j−1)−1. Thus

H(i + 1, j − 1) = H(i, j) or H(i + 1, j − 1) = H(i, j) − 1. We now examine the

four cases for how H(i+ 1, j) is defined in this case.

(a) Suppose 0 ≤ H(i+ 2, j− 1) < H(i+ 1, j− 1). Since H(i+ 1, j− 1) ≤ 0, then

this is a contradiction.

(b) Suppose 0 = H(i+1, j−1) ≤ H(i+2, j−1). By definition of H, H(i+1, j) =

H(i + 1, j − 1). Since H(i + 1, j − 1) ≤ H(i, j − 1) ≤ 0, it follows that

H(i+ 1, j − 1) = H(i, j − 1) = 0. Therefore, H(i+ 1, j) = 0 = H(i, j).

(c) Suppose H(i+1, j−1) < H(i+2, j−1) ≤ 0. By definition of H, H(i+1, j) =
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H(i+ 1, j − 1) + 1. Thus

H(i+ 1, j) = H(i, j) + 1 or H(i+ 1, j) = H(i, j)− 1 + 1 = H(i, j),

which implies that H(i, j) = H(i+ 1, j) or {H(i, j), H(i+ 1, j)} ∈ E(I∞).

(d) Suppose H(i+2, j−1) ≤ H(i+1, j−1) ≤ 0. By definition of H, H(i+1, j) =

H(i+ 1, j − 1). Thus

H(i+ 1, j) = H(i, j) or H(i+ 1, j) = H(i, j)− 1,

which implies that H(i, j) = H(i+ 1, j) or {H(i, j), H(i+ 1, j)} ∈ E(I∞).

Therefore, H(i, j) = H(i+ 1, j) or {H(i, j), H(i+ 1, j)} ∈ E(I∞) for all i, j ∈ Z.

• Next consider H(i, j) and H(i, j + 1).

For each i ∈ Z and j ≥ 0, we show that either H(i, j) = H(i, j+1) or {H(i, j), H(i, j+

1)} ∈ E(I∞) directly by examining the four possible cases which define H(i, j + 1).

1. Suppose 0 ≤ H(i+ 1, j) < H(i, j). By definition of H, H(i, j + 1) = H(i, j)− 1.

Thus {H(i, j), H(i, j + 1)} ∈ E(I∞).

2. Suppose 0 ≤ H(i, j) ≤ H(i+ 1, j). By definition of H, H(i, j + 1) = H(i, j).

3. Suppose H(i, j) < H(i+ 1, j) ≤ 0. By definition of H, H(i, j + 1) = H(i, j) + 1.

Thus {H(i, j), H(i, j + 1)} ∈ E(I∞).

4. Suppose H(i+ 1, j) ≤ H(i, j) ≤ 0. By definition of H, H(i, j + 1) = H(i, j).

Therefore, H(i, j) = H(i, j + 1) or {H(i, j), H(i, j + 1)} ∈ E(I∞) for all i, j ∈ Z.

Thus H is a graph homomorphism.

We now show that H is stable. Recall that Hj : I∞ → I∞ is defined by Hj(i) = H(i, j) for

all i, j ∈ Z. Since H is a graph homomorphism, the restriction Hj is a graph homomorphism.
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Since f̃ is a stable graph homomorphism, the difference between m0(f̃ ,−1) and m0(f̃ ,+1)

is finite. Thus there are a finite number of m ∈ Z with m0(f̃ ,−1) ≤ m ≤ m0(f̃ ,+1).

(1) Suppose Hj(m) = 0. By definition of H, either 0 = Hj(m) ≤ Hj(m+1) and Hj+1(m) =

Hj(m), or Hj(m + 1) ≤ Hj(m) = 0 and Hj+1(m) = Hj(m). Thus if Hj(m) = 0, then

Hj+1(m) = 0. This also implies that if H0(m) = f̃(m) > 0, then Hj(m) ≥ 0 for all

j ≥ 0, and if H0(m) = f̃(m) < 0, then Hj(m) ≤ 0 for all j ≥ 0.

(2) Suppose Hj(m) > 0. By definition of H, either 0 ≤ Hj(m+1) < Hj(m) and Hj+1(m) =

Hj(m)−1, or 0 ≤ Hj(m) ≤ Hj(m+1) and Hj+1(m) = Hj(m). Thus Hj(m) is constant

or decreasing as j increases.

(3) Suppose Hj(m) < 0. By definition of H, either Hj(m) < Hj(m+1) ≤ 0 and Hj+1(m) =

Hj(m)+1, or Hj(m+1) ≤ Hj(m) ≤ 0 and Hj+1(m) = Hj(m). Thus Hj(m) is constant

or increasing as j increases.

Observe that if there exists j ≥ 0 such that Hj+1(i) = Hj(i) for all i ∈ Z, then H stabilizes

in the positive direction on the 2nd-axis, that is, the integer m0(H,+2) exists. For each

j ≥ 0, H does not stabilize at j in the positive direction in the 2nd-axis if and only if there

exists some m ∈ Z with m0(f̃ ,−1) ≤ m ≤ m0(f̃ ,+1) such that Hj(m) 6= Hj+1(m). We now

count how many times it is possible for Hj(m) 6= Hj+1(m) for j ≥ 0 and m0(f̃ ,−1) ≤ m ≤

m0(f̃ ,+1). There are at most m0(f̃ ,+1) −m0(f̃ ,−1) choices for m ∈ Z with m0(f̃ ,−1) ≤

m ≤ m0(f̃ ,+1). By parts (1)-(3), for each such m, there are at most |f̃(m)| times that

Hj(m) 6= Hj+1(m). This implies that H is not stable in the positive direction on the 2nd-axis

at a maximum of j =
∑

m |f̃(m)| <∞. Therefore, the integer m0(H,+2) exists.

We now show that H is a graph homotopy from f̃ to α2
+2(H) by verifying conditions

(a)-(c) of Definition 4.12.

(a) We use induction on j to show that Hj(m0(Hj,−1)) = 0 for all j ≥ 0.

Basis Case: By construction of H, H0 = f̃ . Since f̃(m0(f̃ ,−1)) = 0, it follows that

H0(m0(H0,−1)) = 0.
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Induction Hypothesis: Suppose Hj(m0(Hj,−1)) = 0 for some j ≥ 0. Then 0 =

Hj(m0(Hj,−1)) ≤ Hj(m0(Hj,−1) + 1), or Hj(m0(Hj,−1) + 1) ≤ Hj(m0(Hj,−1)) =

0, which implies that Hj+1(m0(Hj,−1)) = Hj(m0(Hj,−1)) = 0 by definition of H.

Thus by induction, Hj(m0(Hj,−1)) = 0 for all j ≥ 0. Therefore, α1
−1(α

2
+2(H))(∗) =

α2
+2(H)(m0(Hm0(H,+2),−1)) = 0, which implies that α1

−1(f̃) = α1
−1(α

2
+2(H)).

We now use induction on j to show that Hj(m0(Hj,+1)) = 5n for all j ≥ 0.

Basic Case: By construction of H, H0 = f̃ . Since f̃(m0(f̃ ,+1)) = 5n, it follows that

H0(m0(H0,+1)) = 5n.

Induction Hypothesis: Suppose Hj(m0(Hj,+1)) = 5n for some j ≥ 0. Then it follows

that Hj(m0(Hj,+1) + 1) = 5n. Therefore, Hj+1(m0(Hj,+1)) = Hj(m0(Hj,+1)) = 5n

by definition of H. Thus by induction, Hj(m0(Hj,+1)) = 5n for all j ≥ 0. Therefore,

α1
+1(α

2
+2(H))(∗) = α2

+2(H)(m0(Hm0(H,+2),+1)) = 5n, which implies that α1
+1(f̃) =

α1
+1(α

2
+2(H)).

(b) This condition is a consequence of the inductive arguments in part (a). By part (a),

H(m0(H,−1), j) = 0 = α1
−1(f̃)(∗) = α1

−1(α
2
+2(H))(∗) for all j ∈ Z, and similarly,

H(m0(H,+1), j) = 5n = α1
+1(f̃)(∗) = α1

+1(α
2
+2(H))(∗) for all j ∈ Z. Therefore,

α2
−1(H) = β1

1α
1
−1(f̃) = β1

1α
1
−1(α

2
+2(H)) and α2

+1(H) = β1
1α

1
+1(f̃) = β1

1α
1
+1(α

2
+2(H)).

(c) By construction of H, α2
−2(H) = f̃ . Trivially, α2

+2(H) = α2
+2(H).

ThusH is a homotopy from f̃ to α2
+2(H), so f̃ ∼ α2

+2(H). By definition ofH, the face α2
+2(H)

has no positive decreasing value and no negative increasing values. Since α1
−1(α

2
+2(H))(∗) = 0

and α1
+1(α

2
+2(h))(∗) = 5n, it follows that α2

+2(H) must be increasing or constant from 0 to

5n. Thus by the General Padding Lemma (5.3), α2
+2(H) ∼ γ̃n. Therefore, f̃ ∼ γ̃n for all

n ∈ Z.

We conclude this chapter by computing the fundamental group of the 5-cycle.

Theorem 7.8. The fundamental group of C5 is (B1(C5, [0])/ ∼, ·) ∼= (Z,+).
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Proof. Define ϕ : Z → B1(C5, [0])/ ∼ by n 7→ [γn], the homotopy class of the stable graph

homomorphism γn : I∞ → C5 defined in Definition 7.4. We now show that this map ϕ is an

isomorphism.

• Group Homomorphism: We show that ϕ(n+m) = ϕ(n) · ϕ(m) for all n,m ∈ Z.

– Case 1: Suppose n,m ≥ 0. The concatenation γn · γm is defined by

(γn · γm)(i) =


γn(i+m0(γn,−1)) for i ≥ 0,

γm(i+m0(γm,+1)) for i ≤ 0,

=


γn(i+ 0) for i ≥ 0,

γm(i+ 5m) for i ≤ 0,

=



[0] i ≥ 5n

[i mod 5] for 0 ≤ i ≤ 5n,

[(i+ 5m) mod 5] for − 5m ≤ i ≤ 0,

[0] for i ≤ −5m,

=


[0] for i ≥ 5n,

[i mod 5] for − 5m ≤ i ≤ 5n,

[0] for i ≤ −5m.

Thus (γn · γm)(i − 5m) = γn+m(i), and γn · γm ∼ γn+m by the Shifting Lemma

(5.4).
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– Case 2: Suppose n,m < 0. The concatenation γn · γm is defined by

(γn · γm)(i) =


γn(i+m0(γn,−1)) for i ≥ 0,

γm(i+m0(γm,+1)) for i ≤ 0,

=


γn(i+ 0) for i ≥ 0,

γm(i− 5m) for i ≤ 0,

=



[0] for i ≥ −5n,

[(−i) mod 5] for 0 ≤ i ≤ −5n,

[(−i+ 5m) mod 5] for 5m ≤ i ≤ 0,

[0] for i ≤ 5m,

=


[0] for i ≥ −5n,

[(−i) mod 5] for 5m ≤ i ≤ −5n,

[0] for i ≤ 5m.

Thus γn ·γm(i+ 5m) = γn+m(i), and γn ·γm ∼ γn+m by the Shifting Lemma (5.4).

– Case 3: Suppose n ≥ 0,m < 0. By Lemma 7.5, γn ∼ γ−n and γm ∼ γ−m. By

Case 1, if n+m ≥ 0, then γn = γn+m−m ∼ γn+m · γ−m. By Case 2, if n+m < 0,

then γm = γ−n+n+m ∼ γ−n · γn+m. Thus

γn · γm ∼ γn · γ−m ∼ γn+m · γ−m · γ−m ∼ γn+m if n+m ≥ 0,

and

γn · γm ∼ γ−n · γm ∼ γ−n · γ−n · γn+m ∼ γn+m if n+m < 0.

– Case 4: Suppose that n < 0,m ≥ 0. Again by Lemma 7.5, γn ∼ γ−n and

γm ∼ γ−m. By Case 2, if n + m < 0, then γn = γn+m−m ∼ γn+m · γ−m. By Case
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1, if n+m ≥ 0, then γm = γ−n+n+m ∼ γ−n · γn+m. Thus

γn · γm ∼ γn · γ−m ∼ γn+m · γ−m · γ−m ∼ γn+m if n+m < 0,

and

γn · γm ∼ γ−n · γm ∼ γ−n · γ−n · γn+m ∼ γn+m if n+m ≥ 0.

Therefore, ϕ(n+m) = [γn+m] = [γn · γm] = [γn] · [γm] = ϕ(n) · ϕ(m) for all n,m ∈ Z.

• Surjective: We show that if [f ] ∈ B1(C5, [0])/ ∼, then there exists n ∈ Z such that

ϕ(n) = [f ].

Let [f ] ∈ B1(C5, [0])/ ∼. Then f is a stable graph homomorphism with f(m0(f,−1))

= f(m0(f,+1)) = [0]. Hence, there exists a unique lift f̃ : I∞ → I∞ with f̃(m0(f,−1))

= 0 and f = p ◦ f̃ . Since f(m0(f,+1)) = [0], it follows that p(f̃(m0(f,+1))) = [0],

so f̃(m0(f,+1)) mod 5 = 0. Thus there exists n ∈ Z such that f̃(m0(f,+1)) = 5n.

Hence, by the Lemma 7.7, we have that f̃ ∼ γ̃n, which implies that there exists a graph

homotopy H : I2∞ → I∞ from f̃ to γ̃n. Since H and p5 are graph homomorphisms, the

composition p5 ◦H : I2∞ → C5 is a graph homomorphism. We now show that p5 ◦H is

a graph homotopy from f to γn by verifying conditions (a)-(c) of Definition 4.12

(a) By the definitions of f̃ and γ̃n,

f̃(m0(f̃ ,−1)) = γ̃n(m0(γ̃n,−1)) = 0

and

f̃(m0(f̃ ,+1)) = γ̃n(m0(γ̃n,+1)) = 5n.

Since p5 is a graph homomorphism, p5(f̃(m0(f̃ ,−1))) = p5(γ̃n(m0(γ̃n,−1))) = [0]

and p5(f̃(m0(f̃ ,+1))) = p5(γ̃n(m0(γ̃n,+1))) = [0]. Therefore, α1
−1(f) = α1

−1(γn)

and α1
+1(f) = α1

+1(γn).
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(b) Since H is a graph homotopy from f̃ to γ̃n, α1
−1(H)(j) = H(m0(H,−1), j) = 0 and

α1
+1(H)(j) = H(m0(H,+1), j) = 5n for all j ∈ Z. Thus (p5 ◦H)(m0(H,−1), j) =

[0] = p5◦f̃(m0(f̃ ,−1)) = (p5◦γ̃n)(m0(γn,−1)) and (p5◦H)(m0(H,+1), j) = [0] =

(p5 ◦ f̃)(m0(f̃ ,+1)) = p5 ◦ γ̃n(m0(γn,+1)) for all j ∈ Z. Therefore, α2
−1(p5 ◦H) =

β1
1α

1
−1(f) = β1

1α
1
−1(γn) and α2

+1(p5 ◦H) = β1
1α

1
+1(f) = β1

1α
1
+1(γn).

(c) Since H(i,m0(H,−2)) = f̃(i) and H(i,m0(H,+2)) = γ̃n(i) for all i ∈ Z, it follows

that p5 ◦H(i,m0(H,−2)) = p5 ◦ f̃(i) and p5 ◦H(i,m0(H,+2)) = p5 ◦ γ̃n(i) for all

i ∈ Z. Thus α2
−2(p5 ◦H) = f and α2

+2(p5 ◦H) = γn.

Therefore, p5 ◦ H is a homotopy from f to γn, so it follows that [f ] = [γn]. Hence,

ϕ(n) = [f ].

• Injective: We show that if ϕ(n) = ϕ(m), then n = m.

Let ϕ(n) = ϕ(m). Then [γn] = [γm], which implies that γn ∼ γm. Therefore, there

exists a graph homotopyH : I2∞ → C5 from γn to γm. By the Homotopy Lifting Property

(6.11), there is a graph homotopy H̃ : I2∞ → I∞ from γ̃n to γ̃m. Thus γ̃n ∼ γ̃m, and it

follows that α1
+1(γ̃n) = α1

+1(γ̃m). Therefore, γ̃n(m0(γn,+1)) = γ̃m(m0(γm,+1)). Hence

it follows that 5n = 5m, which implies that n = m.

Thus ϕ is an isomorphism, and (B1(C5, [0])/ ∼) ∼= Z.

Since (B1(C5, [0])/ ∼) ∼= Z, it follows by Theorem 7.1 that C5 is not A-contractible. The

proof of Theorem 7.8 can also be slightly altered to show that (B1(Ck, [0])/ ∼) ∼= Z for any

k ≥ 5, and thus that the cycle Ck is not A-contractible for k ≥ 5. This proof cannot be used

for the cycles C3 and C4, however, because the Homotopy Lifting Property (6.11) does not

hold for graphs containing 3-cycles or 4-cycles.
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Appendix A

The image in Figure 1.1 is used in accordance with Imgur’s user policy, which we have

included below.
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