Introduction

The rapid market penetration of medium- and high-resolution bitmapped displays has highlighted
the practical difficulty of manipulating low-resolution digital halftone images (Perry & Wallich, 1985;
Stoffel & Moreland, 1981). Most such devices are used primarily for presenting text and therefore
have only one bit/pixel display capacity (Baldauf, 1985). Nevertheless it is occasionally useful to be
able to show continuous-tone pictures, and several techniques for digital halftoning have been reported
(Limb, 1969; Jarvis er al, 1976; Witten & Neal, 1982). Although present and projected screen
resolutions obviate high-quality rendering, the rough representations that are possible have many
applications. Easily recognizable facsimiles of human faces, for example, can be depicted on a binary
matrix as small as 75x90 (Klein & Metz, 1978). Unfortunately once an image has been converted to
the halftone representation it becomes very difficult to manipulate and is effectively frozen (Stoffel,
1982). This paper addresses the important problem of scaling pictures which are intended for display
in halftone format.

The picture to be scaled may be presented in either greyscale or bilevel form. In the first place,
of course, any photographic pictures will have been digitized into a greyscale representation. However,
in many situations this representation may have been converted to a bilevel one through any of a
number of halftoning techniques, and it may be impossible or inconvenient to obtain the original
greyscale digitization. A major result of this research is that reduction from a bilevel representation
need not be significantly inferior, in terms of the perceptual result, than scaling from a greyscale
original. Thus if pictures are to be displayed on a bitmapped screen in a variety of different sizes, they
can be halftoned in the maximum-size format and reduced directly from this bilevel version when
required. The greyscale original can safely be discarded, offering significant savings in storage and
handling costs because only one version need be saved. Consequently, although the techniques
presented here permit scaling from either greyscale or bilevel images to a bilevel halftone, we
emphasize the use of bilevel source images since this is likely to be the most popular mode in practice.

The next section introduces basic concepts of discrete raster images and discusses the general
problem of scaling halftones. Following that we summarize the standard treatment of the interpolation
problem as it applies to continuous-tone images. The subsequent section applies interpolation to
bilevel images. One ubiquitous problem in image processing is the appearance of unwanted moire
fringes and other artifacts, and this is avoided by the use of a Peano scan as described next. Finally
we present and discuss some representative results of the scaling method that has been developed.

Scaling raster images

A raster image is a two-dimensional array of pixels which are sampled values of a continuous
original picture. Sampling in the spatial domain alone yields the continuous-tone raster representation
of the picture, where each pixel is assigned a real number to describe its intensity (see Figure 1).
However, any given output device can show only a finite number of shades of grey at each pixel, and
therefore the intensity must be quantized to one of the grey levels which are available on the display.
Such a representation, quantized in intensity as well as spatially sampled, is known as a greyscale
image. Its fidelity depends on the number of available grey levels and the method by which
quantization is performed. Typically there are 256 levels, represented by integers; quantization is by
rounding or truncation to the nearest level; and no degradation is noticeable between the continuous-
tone and quantized versions.



In the case of an output device which is only capable of showing two levels of grey (ie either
black or white), however, the quantization error becomes very significant. In general it is not sufficient
simply to round the intensity value to the nearest level. Instead a halftone representation is used to
approximate the greyscale picture by varying the density of dots over each small local area. This can
produce the same perceptual effect as a continuous-tone original because of the trade-off between
greyscale sensitivity and frequency response of the human eye (Stoffel & Moreland, 1981).

Several methods have been reported for scaling binary images, but all are tailored to such
applications as fonts, icons, and other drawings which are inherently bilevel (Abdou & Wong, 1982;
Casey et al, 1982; Ulichney & Troxel, 1982). Such algorithms identify higher-level features, notably
outlines or edges, apply interpolation to them, and reconvert the scaled image description to pixel form.
However, there is a world of difference between images which are inherently bilevel and ones which
are halftoned representations of continuous-tone pictures. In a halftone the dot pattern provides local
approximations to the tones of the original picture. Unlike inherently bilevel pictures, description in
the language of outlines is meaningless. Even if higher-level features could be identified, they would
not necessarily convey any information about the image, but could be artifacts of the halftoning
process. Thus existing scaling algorithms are simply inappropriate for halftone pictures.

It seems clear that any reducing technique for halftone pictures must proceed by performing an
integration operation on the source image, scaling the integrated version, and re-converting the scaled
version to the bilevel representation for display (Pratt, 1978). Any interpolation scheme which does
not involve integration and instead operates on a purely local basis runs the risk of slipping between
the cracks and missing important features by accident. Ideally, perhaps, one could use precise
knowledge of the original halftoning process to recomstruct an integrated version which closely
approximates the greyscale image that is being represented. This work, however, makes the (realistic)
assumption that such knowledge is unavailable. Moreover, because scaling from an original greyscale
version is only marginally better than scaling from a halftone, such knowledge would make little
difference to the result.

Figure 1 depicts the various image representations and transformations that have been mentioned.
This paper is concerned with the two reducing transformations (shown as thick lines), and the
development applies equally to reduction from the greyscale or bilevel representations.

Interpolation

Scaling a sampled function, whether two-dimensional or otherwise, is equivalent to resampling
the original continuous function. This can be accomplished by first reconstructing the original, and
then sampling it on a different set of points. The two processes are usually performed in a single step
by interpolation, as discussed in detail by Pratt (1978). Here we take a slightly different approach by
integrating over each pixel-sized square. The purpose of this is to ensure that the overall picture
intensity is preserved exactly.

Consider a continuous intensity function f (x, y) sampled at unit intervals along the x and y axes
in an mxn grid. The resulting representation is an array of intensity values f (i, j), i =0 - m-1,
7 =0---n-1. The energy of an individual pixel is
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since each pixel occupies a unit square.

Magnification or reduction is equivalent to a change of scale, replacing the original mxn grid
with a new MxN one. The ideal re-sampled set of values will be
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{fG,jy 1 i=0---m-1,j=0---n-1}, an interpolating function g(x, y) should be chosen and the
original function approximated by a sum of the sampled values weighted by g(x, y) translated to center
at the individual points:
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A number of interpolating functions are possible, such as sinc, Gaussian, cubic spline, bilinear,
and uniform. Naturally there is a trade-off between complexity (manifested in computation time) and
interpolation error, as discussed in detail by Pratt (1978). In most cases the interpolating function is
“‘separable’’, in other words its effects in the x and y directions are independent: g(x, y) = A(x) h(y).
Once the continuous function f " (x, y) has been reconstructed, scaling can be performed by resampling
at the new grid points X;, ¥; to yield a new set of values f*(X;, Y,).

The total energy of an individual pixel in the new grid will be
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in terms of the original sampled function values f (i, j). Assuming that the interpolating function is
separable, and interchanging the order of integration and summation, this can be re-written
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This expression will of course be a real number and results in a greyscale picture. For bilevel
presentation it is necessary to reconvert it back to halftone.



Combining interpolation with halftoning

It is possible to combine the operations of interpolation, integration and halftoning into a single
process. The pixels in the target image are mapped on to the original and visited one after another.
An estimate is made of the blackness, or energy, of the corresponding area of the original image.
These estimates are summed, and if the total so far exceeds a pre-determined threshold value, the
current target pixel is blackened and the total reduced by a corresponding amount. The effect is to
maintain a running estimate of the error between the integrated energy of the pixels already visited in
the target image and the integrated energy of the same area in the original. Pixel values are chosen to
minimize the accumulated error at each stage.

Here is a fragment of Pascal code for the operation on one pixel, with coordinates X/, YJ. The
reconstructed continuous intensity function F'(X;,Y;) is called Fstar(XI, YJ), and its calculation
according to the expression derived above will be discussed shortly.

const threshold = - --
var  error, X1, YJ : integer;

error := error + Fstar(XI, YJ);
if error > threshold
then
begin
set(X1, YJ); {* wrn on pixel XI, YJ *}
error = error — threshold
end
else
reset(X1, YJ); {* turn off pixel XI, YJ *}

Threshold is chosen so as to equalize the intensities of the target and original images, and is set to the
energy of a black area whose size is that of one pixel in the new image. It is easy to verify that this is
(mxn)/(MxN) times the greyscale value of a black pixel, assuming (as is conventional) that the
interpolation function is normalized to integrate to 1.

The code works as follows. Error should be initialized anywhere between O and threshold.
Fstar will return a value in the same interval. At the end of the code error will once again lie in that
interval. It represents the cumulative discrepancy between the interpolated pixel values already
encountered and the pixel values deposited so far, and the effect of the if statement is to keep this
discrepancy always between O and threshold. Since 0 and threshold are the energies of white and black
pixels respectively, the cumulative blackness of the bilevel image is always accurate to within one
pixel.



Scanning the image

Any scanning regime that visits each target pixel exactly once will suffice to minimize the
overall intensity error and preserve the total brightness of the picture. However, a good method will
minimize the error over every area of the image, no matter how small. It will also suppress spurious
texture patterns, along with moire fringes and other artifacts. Finally, negligible computation should be
necessary to locate the next pixel.

The Peano scan exhibits these desirable properties (Peano, 1890; Hilbert, 1891; Witten & Wyvill,
1983), and has been used to good effect in a number of image processing applications (eg Witten &
Neal, 1982; Stevens et al, 1983; Lempel & Ziv, 1986). It divides the plane into four quadrants and
visits all pixels within one quadrant before moving on to the next. This property holds recursively,
each quadrant being subdivided into four, right down to individual pixels (Figure 2).

The algorithm given above ensures that the cumulative energy of the bilevel image is always
within one pixel’s worth of the cumulative energy of the original over any continuous segment of the
scan. The fact that the Peano curve exhausts each recursively-defined quadrant before moving on to
the next means that the total energy over every quadrant is accurate to within one pixel. This is a
remarkable guarantee that the cumulative error introduced by the algorithm is low over both large and
small regions of the image.

Interpolating functions

The process of scaling can be done in a single pass using the Peano scan. The code fragment
given above will be executed M XN times, once for each pixel in the target. Each time, the function
Fstar must be executed, involving the calculation of expression (1). (Note that henceforth the
interpolation function is assumed separable.) The integrals of # can be calculated in advance for each
pair (/, i) and (J, j), and stored for use when scaling pictures. Even so the execution of Fstar will
involve the evaluation of the double sum, one operation for each pixel of the source image. In
practice, however, this enormous computation is avoided by sharply truncating the interpolating
function A. This also reduces the number of integrals of 4 that must be stored, for if A(x) is zero for
|x |> k, then
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is non-zero only when X; 95—k <i < X5 +k.

We have experimented with three interpolating functions, nearest neighbor, average intensity,
and bilinear. More sophisticated interpolation is inappropriate because of the high granular noise
exhibited by all halftone images.



Nearest neighbor interpolation, the crudest method, is used as a basis for evaluating the other
schemes. Figure 3 illustrates the new, scaled grid superimposed in thick lines on the original one.
Nearest neighbor takes the closest original pixel to the center of the new one and uses its value (black
or white) for the new pixel. It requires no multiplications, since normalization can be accomplished by
choosing the threshold to be 1, the energy of a black pixel.

Average intensity interpolation estimates the energy throughout the area covered by the new
pixel. This involves not only summing over a number of old pixels, but also weighting partially-
covered pixels in accordance with their overlap area. For example, in Figure 3 nine pixels are
involved, one having a full contribution and the others partial ones. This scheme corresponds to the
interpolating function

h(x)=1 -05<x <+0.5
0 otherwise,

and the integrals of # provide weights which account correctly for the contributions of partially-
covered pixels. Note that no smoothing is introduced: the area attributed to one (old) pixel does not
overlap with that of any other.

For reduction down to a scaling factor of 0.5, at least 4 and at most 9 old pixels contribute to
each new one. In general, an average of (1+% ) (1+—1%) old pixels contribute to each new one. The

calculation of (1) requires one addition and two multiplications for each old pixel (i, j) in the
summation,

Bilinear interpolation is accomplished by the function

h(x)=1-|x| x| <1
0 otherwise.

This performs smoothing by including some energy outside the region covered by the new pixel. It
also weights energy at the center of each pixel more heavily than that at the edges. Because its spread
is wider than that of the average intensity method, the number of old pixels that contribute to each new

one increases to (2+%)(2+—1% ). As before, the interpolation coefficients are evaluated using the

integrals of expression (1).

Results

Figures 4-6 show a number of examples of reduction using the scaling method developed. In
each case the upper picture shows the halftoned version of a 256x256 original image. All halftones use
the Peano scan technique reported earlier (Witten & Neal, 1982). The other images in each Figure are
scaled to 192x200 pixels. At the left is the result of scaling the halftoned version directly; on the right
is the result of scaling the original greyscale image. The method developed above is used for
reduction in both cases. Because the original greyscale values are preserved, very much more



information is used to produce the rightmost pictures than the leftmost ones.

Pictures (b) and (c) of Figure 4 illustrate the problems that occur with nearest-neighbor
interpolation — which is not really “‘interpolation’” at all. Each target pixel depends upon just one
source pixel, and line segments are missing from various parts of the circles. Pictures (d) and (e)
show how average-intensity interpolation solves the problem by producing much more uniform lines.
When rendered using bilinear interpolation (not shown) the circles remained uniform but appeared
noticeably fuzzier because of the smoothing effect. On all other pictures the bilinear method achieved
no perceptible improvement in picture quality, despite its higher computational cost. Consequently the
remaining figures were all produced using the average-intensity method.

Figure 5 shows a striped pattern which emphasizes the difference between scaling from a
halftone (b) and scaling from a greyscale image (c). Both versions are quite acceptable, and artifacts
are avoided. However, slightly higher frequency resolution is apparent in (b). In fact, considering the
very much greater amount of information available in the greyscale original, it is astonishing that the
effect is not more marked. That the difference is minimal in practice is illustrated by Figure 6 which
shows a portrait. It is doubtful whether anything is lost by working from the halftone instead of the
greyscale original.

In all cases it is evident that the overall intensities of the original and scaled versions are the
same, If desired, the brightness can easily be altered by adjusting the threshold.

Conclusions

A method has been described which enables a halftone image to be reduced to an arbitrary size,
which may be different in x and y. It combines in a single step interpolation, integration and
reconversion into halftone. The Peano scan is used to visit the pixels one by one and guarantees that
the intensity error is minimized over both large and small areas of the image. Another benefit is that
spurious textured patterns and other artifacts are suppressed. The amount of computation involved is
small and realistic, involving just a few multiplications for each pixel of the reduced image.
Satisfactory results have been obtained with the simple ‘‘average intensity’’ interpolating function.

A striking result of the work is that the reduced pictures are not noticeably different whether one
begins with a bilevel or greyscale original. Consequently if pictures are sometimes viewed on a
bitmapped screen at a given size and sometimes reduced, little is lost by discarding the greyscale
original and reducing directly from the maximum-size bitmap.
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Captions for figures

Figure 1
Figure 2
Figure 3
Figure 4

Figure S

Figure 6

Image representations and transformations

Peano curves covering rasters of various sizes

How the new, scaled, grid relates to the original one

Circles

(a) Halftone version of original image

(b) Reduced directly from the halftone (nearest-neighbor interpolation)
(¢) Reduced from the greyscale original (nearest-neighbor interpolation)
(d) Reduced directly from the halftone (average-intensity interpolation)
(e) Reduced from the greyscale original (average-intensity interpolation)
Stripes

(a) Halftone version of original image

(b) Reduced directly from the halftone (average-intensity interpolation)
(c) Reduced from the greyscale original (average-intensity interpolation)
Portrait

(a) Halftone version of original image

(b) Reduced directly from the halftone (average-intensity interpolation)
{c) Reduced from the greyscale original (average-intensity interpolation)
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