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Abstract |

One of the most complicated unsteady flow problems is the analysis of fluid iran-
sients (pressure pulses) in pipelines. In thev past, optimizing procedures for the
design of fluid transmission pipeliﬁes have, accordingly, tended to focus on the
steady state requirements of the syétém. Co,nsideration of transients often takes
place after the fact, if it is done at all. Yet, the factors—such as pipe diameter,
pipe material, wall thickness, valves and their associated controller/actuator sys-
tems, fittings and joints, etc.—which ultimately determine the cost of the system
are tremendously ihﬁuenced by the occurrence and behaviour of transients in the
pipeline. T#is means that any “optimal” design“vyhich fails to properly account for
water hammer effects can be, at best, suboptimal, ar;d in the worst case, completely
inadequate.

| The research described herein constitutes an attempt to formulate some ratio-
nale which will permit the development of optimizing procedures for simple pipeline
systems givi‘ng due consideration to the importance of transient effects in determin-
ing the ultimate pipeline cost. The proposed model is bag,ed on the theory of valve
stroking which,ﬂ for a given physical system with one known or specified boundary
condition, can solve for the unknown boundary condition such that the magnitude
of the head rise or fall in the pipeline is the lowest attainable for that system. This
provides a means of assessing the head-based cost terms that includes the effects
of transients. In addition, the response time of the system is included in the spec-
ification of the known boundary condition, thus permitting the incorporation of a

time-varying, i.e., a control variable.
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It appears that the idealized behaviour of the synthesized boundary condition
\fnay be difficult to achieve in practice. A number of “sibling” approaches to ob-
viate this drawback have been developed. In addition, several innovative methods
and techniques—such as “best-fit” boundary conditions—have been dévis;ad for

obtaining information concerning the sensitivity of the model and its parameters

and variables.
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Chapter 1
Introduction

One of the most complicated unsteady flow problerhs is the analysis of fluid tran-
sients (pressure pulses) in pipelines. In the past, optimizing brocedures for the
design of fluid transmission pipelines have, accordingly, fendéd to focus on the
steady state requirements of the system. Consideration Qf transients often takes
place after the fact, if it is done at all. Yet, the factors—such as pipe diameter,
pipe; material, wall thickness, valves and their associated -controller/actuator sys-
tems, fittings and joints, etc.——w‘hic}.l'ultima,tely determine the cost of the system
are tremendously influenced by the occurrence and behaviour of transients in the
pipeline. This means that any “optimal” design which fails to properly aécoﬂunt for
water ham;ner effects can be, at best, suboptimal, and in the worst case, completely
inadgquate.

When: referring to transient analysis, the term optimal generally denotes certain
synthe.tic valve closure a,r'r‘a.ngements and their resulting tau curves (see Figure 1.3).
The tau curves are functions drescribing the relative size of the valve opening and
_ the variation in the coefficient of discharge as the valve is operated. The procedure
by means of which the tau curves are generated is called wvalve :stroking. Two
distinct, but related, methods of Yafve stroking currently exist—1) stroking for a

s.peéiﬁed head [Ruus, 1966] and 2) stroking in a specified time [Propson]. Unless
| otherwise stated herein valve stroking will always be taken to mean valve stroking

in a specified time.



Valves control the rate of flow in a pipe by converting the potential energy
(static head) of the fluid to kinetic energy (fluid velocity) for the case of a valve
opening, the converse being true for a valve closure. For a valve discharging to the
atmosphere under steady flow conditions, the valve equation is simply an orifice

discharge relation.

’

Qo = CaAv\/2gHo : (1.1)

where Q is the steady state discharge, Hy is the pressure head at the valve (in
other words, the head loss across the valve), A, is the area of the valve opening
and Cy is a discharge coefficient which accounts for real valve losses. For any other

valve setting the flowrate is given by~
Q' = CLAl\/2gH'. (1.2)
Expressing this in a nondimensional form gives

‘ IV ' ‘ C' Al
g—f E— where 7= —=4-%¢

Qo \ Hp CuA, (1.3)

.

In order to alter the rate of flow in a pipe, say from Qo to @', the value of tau
must be changed from 7o to 7. Since instantaneous valve motions are not phy;ically
possible, the changes must take place over some finite period of time and, conse-
queni;ly, the variationAin valve area and coefficient of discharge can be described by
a 7 function. There are an infinite number of possible tau functions which cause the
" system to arrive at the same endpo‘int but with potenfially very different impa.ctsr
on the hy&raulic performance of the system.

Realizing that Q@ = V A (where V is the mean fluid velocity in the pipe) then



going from Q; to Q; means that V; — V; in time At, and therefore

V,-Vi_ AV

At At

The quantity (V2 — V1)/At is the average acceleration of the fluid over the period

At. Instantaneous values of acceleration are given by

-dV
A, =g 70
and , by Newton’s second law, the greater the acceleration, the larger must be
. the imposed forces!. Thus, the more rapidv the valve closure (opening) the more
extreme is the head rise (fall) in the pipeline. For nonoptimal valve motions the
pressure oscillates between the high and low values of head (see 1‘Figure 1.1) created

in response to the valve motjon. These are progressivély damped out by wall and

fluid friction forces, eventually stabilizing at the new steady flow condition.

Valve stroking, on the other hand, produces a highly controlled transient which
ends precisely when the valve motion ceases (see Figure 1.2). Both Figure 1.1 and
Figure 1.2 are fo; the same physical system and valve motion duration, but have
differently shaped tau curves. If one takes a section in the head-trme plane (see
Figure 1.3) through the surface ShOV\;n in Figure 1.1 or Figure 1.2, then the area
under the resulting curve represents the impulse applied to the fluid as it moves

from one flow condition to another.

t to )
‘Fdt=~A| Hdt (1.4)
Jty

iy
where F is the force applied to the fluid, v is the unit weight of the fluid, 4 is the

cross sectional area of the pipe and ¢ is time. The impulse-is related to momentum

1There exists, however, a limit to the amount of head change that can occur even for an instan-
taneous valve motion, i.e., for d¢t = 0. This limiting head cannot exceed +aAV/g.
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Figure 1.1: Three dimensional representation of a transient produced by an arbi-
trary valve closure. Duration of valve motion is 6 seconds. :
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Figure 1.2: Three dimensional representation of a transient produced by valve
stroking. Duration of valve motion is 6 seconds. ' '
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' Figure 1.3: Head-time profiles for pipe quarterpoint, midpoint, three-quarterpoint
and valve end. Tau curve is dotted line. Duration of valve motion is 6 seconds. Top
figure shows variation for an arbitrary tau curve; Bottom figure shows variation
for an optimum tau curve.

by Newton’s second law.

ta ' ‘tg rdv - to
Fdt = / m—dt = [ mdv. (1.5)
ty ty dt ty

For a given system and a given change in the discharge this quantity is a con-
stant. Valve stroking guarantees that, fér a fixed duration valve motion, the change
in fluid momentum will take place with a minimal (or near miﬁima.l) head change.
Furthermore, it ensures that no residual transients occur once the valve motion

is complete, i.e., that the new steady state is fully obtdined. For these reasons
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the closure arrangement producing this controlled transient has been termedr an
optz'mi)tm valve. closure. Insofar as the head change prroduced for certain boundary
conditions (see Section 3.3 for details) is minimized by valve stroking, use of the
-word optimum is correct. In the context of pipeline design, however, these closure
arrangements can in no way be construed as deﬁniné a uniquelyl “best” solution.
Rather, they are only one of many factors which may (or may nc;t) contribute to
| an overall optimal design. |
The research describ;ed herein constitutes an attempt to formulate some ratio- -

nale which will permit the development of .optimizing procedures for simple pipeline
systems which give due consideration to thg importance of transient effects in de-

termining the ultimate pipeline cost. The objectives are listed below.

o The identification of relevant cost parameters and cost variables.

e The development of a conceptual framework within which opfimizing design

procedures can be constructed.

e The formulation of a sensible effectiveness criterion and a meaningful set of

constraints incorporating the cost components.

e The definition of the nature of the cost function and the selection of appro-

priate, efficient methods for its evaluation.

e The consideration of methods which will allow the sensitivity of the solutions

to changes in cost parameters to be explor'ed.

Chapter 2 provides some background on optimization theory, existing pipeline

optimization methods and a description of nonlinear techniques relevant to the .



current inves;tigation. Chapter 3 gives the mathematical and hydraulic theory
fundamental to the development of the conceptual model proposed by fhis study.
Chapter 4 outlines the nature of the problem, describes the\simple system selected
for analysis (constant head ﬁpstream reservoir with single pipe and valve at the
doWnstregm end) and supplies the details of the conceptual model development.
The procedures for testing the validity of the model, along with discussion of find-
ings, changes‘and modifications to the model are presented in Chapter 5. The very
important topic of sensitivity analysis is found in Chapter 6 and final conclusions
and recommendafions issuing out of the investigation are listed in Chapter 7. Two
appendices have been given to provide additional detailed iriformation concerniﬁg
fhe computer programs used in .the model not mentioned in the thesis proper, andb

for the presentation of some important sensitivity plots.



Chapter 2
Literature Review

In this section é bri;af introduction to the concept of optimization is presented-
in conjunction with a, necessarily, 51mp11ﬁed overview of some currently applied
techniques in the field of plpehne optimization. This will also serve as a 11terature
review of the subject area since, with one expeption, no literature really exists on
the topic of pipeline optimization with respect to transients. In the final section,
a description of nonlinear optimiz;ﬁ;ion methods pei‘tinent to this investigation is
_ presented.

The only work known to the author that specifically relates to the idea of
optimization procedures and which includes transient phenomen; in the process is
by [Chiang 1984]. Chiang has developed a procedure \;vhich involves the simulation
of transients in complex piping sys;cems and uses univariate and gradient search
techniques ‘as opéir’nuin—seeking strategies. The media can be gas under pressure,.
liquid or a multiphase continuum. The procedure developed is fairly general and
has a wide applica;bility to mechanical engineering piping systems.

[Wike 1986] refers to control of transients i]."l connection with SCADA system
operatlon but this does not constitute an opt1m1zat10n technique. [Mah 1978] pro-
vides a quite general account of the major methods in use in various pipeline in-
dustries, along with a discussion of steady and unsteady flow analy31s techniques,
and alludes to the fact that tl;ansier;tsz are an important consideration in the design

of any pipeline system. However, he does not provide any information suggesting

9
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how transients might be incorporated into optimization procedures. This_pa.per
has a very extensive bibliography covering the topics of pipeline analysis, design
and optimization methods.

Nonlinear optimization methods in pipeline analysis-and design are also rather |
uncommon. One reference to nonlinear methods [De Poli] was unavailable for
review. Enough information co_uld be garnered from the abstract, however, to
say that it was an application of a penalty function technique for the design and
control of water distribution systems. No consideration of tfansients appears to be
involved. [Chara 1984] has developed a very interesting procedure which can be
used in linear or nonlinear optimization of operating policies for reservoirs. This ‘
method utilizes the concept of transfer-gain and is reportedly superior to dynamic
programming models in terms of its convergence properties and computational
efficiency.

Referencés to other literature in the field of pipeline optimization procedures

will be made in Section 2.2 as the various types of existing techniques are surveyed.

2.1 Optimization Concepts and Theory

Perhaps the best way to introduce the concept of optimization is by means of a

definition.

Optimization Any process which attempts, by considering a number or group of
variables together as interacting components of a system, to obtain a config-
uration of the components which is “better” with respeét to some criterion

than any other combination of some, or all, of the elements, may be called
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an optimization process.

The study of optimization of systems has variously been termed operations research,
systems analysis, and management science. None of these labels is particularly
desériptive or informative in relating the nature of this very important and widely
used body‘ of knowledge. It is essentially an approach to the design, construction
or implementation, maintenance and operation of complex systefns which draws on
the techniques of pure and applied mathematics in order to provide some rational
basis for all types of decision making.

Essential to the integrity of optimization theory is the coricepf of a system and
the belief that some means of defining what is “better” or “best” in terms of that
system is péssible. A system can be thought of as a functional construct divisible
into parts or components which can be integrate.d in various ways to achieve its
function. The object of all optimization processes is to find the combination and ar-
rangement of elements which best fulfils the function according to some established
criteria.

There are seven steps [Deininger 1975} to followin carrying out any systems

analysis study:
1. Formulation of the problem

2. Construction of a mathematical model which describes important system

variables.
3. Definition of a criterion function or measure of merit.

4. Collection of data to allow the estimation of various parameters in the model.
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5. Derivation of optimal solution(s) fhrough formal 'algo:ithms.
6. Testing of the model, ‘the solutions and the sensitivity of the paramet’ers.
7. Implementation of the “best” solution.

Steps 4 and 7 only pertain in the case of an actual application of the-optimiza-
tion procedure. They can be omitted for the purposes of this investigation which
attempts only to develop and evaluate a conceptual implementation of an opti-
mization model. Carrying out the remaining ﬁve steps forms the content of this
thesis and, in subsequent chapters, the logical progression through each phase is

outlined and discussed.

2.2 Existing Pipeline Optimization Techniques and Models

The xscope of the problems to which systems analysis can be applied and the meth-
ods used in its app'lication are far too numerous and varied to be discussed in
any detail here. Rather, two of the fundamental techniques currently used in thée
pipeline industry will be outlined in order to provide some acquaintance with the
basic ideas of optimal pipeline design.

By far the majority of pipeline optimization techniques fall into either one of
two categories—Iinear programming 01Fr dy@amic programming methods. A brief
description of each is given along with a number of related references. The re-
maining optimization methods comprise a variety of techniques such as integ'er
programming, nonlinear techniqt-les and modeling apprc;aches. [Shamir 1979] gives

a reasonébly complete summary of the major techniques used for steady state opti-
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mization of water distribution systems. [Huang 1985| does the same for procedures

commonly used in the oil and gas pipeline industry.

2.2.1 Linear programming

Linear programming has long béen a popular method for optimizing a system which
can be described as a sef of linear equations having the f01:m
maximise z —2' = ¢1z1 + ¢z + -+ cnZn
subject ;co:
a1z + apzrz + -+ a1z, < by

anzy + @z + - 4+ awmz, < b

Am1Zy + GmaZz + r A+ AmeZTn S b

where some of the b’s may be negative! and the problem may also contain equality
consfraints. The value of fhe objective function, z, is determined by the objective
function coefficients (the ¢;’s) and the decision variables (the z;’s). It may also
include an initial consfant term, 2'. The a;;’s are constant coefficients and are
often referred to as the structural coefficients. The structural coeflicients along
with the decision variables and right hand side constants (b’s) form a set of m

linear constraints. In addition, the non-negativity constraints also apply.
T1,Z2y+4+3Tn 2 0

Linear programming is such a powerful method that strenuous effort is often made

to moAdify nonlinear problems so that they may be handled by this linear solution

1In other words they are > constraints.
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technique.

Linear programming is most often applied to single or branching pipe net-
w;)rks. The objective is to minimize the cost, subject to‘ ce;‘tain head and delivery
requirements, by selecting the diameters and lengths of the various segments of the
branches. Let K; denote the consumption at node j. The heads to be maintained
at some or all of the nodes, H;, must lie within a given range, H]'-’“'" to H™**. The
length of each pipe (link) connecting nodes ¢ and j is Li;. - r

For each link a set of candidate diameters is defined and the decision variables,
Xijm, are the lengths of the pipe segment of the m® diameter connecting nodes ¢

and 7. Thus, one set of linear constraints can be formulated as
ZXijm = L,‘j for all (Z,]) ' (21)
m .
Assuming that all the consumptions and that the pipe material (i.e., hydraulic

resistance characteristics) are known in advance, then the discharges, @, in each

link are fixed. Thus, the head loss in the m*" segment of the link is
AH,':,'m = j,'ij,'jm ifOI‘ all (i,j, m) (2.2)

where J is the hydraulic gradieﬁt AH/L = (fQ*/2gDA?).

Beginning from a node, s, in the system for which the head is known, for
exémple a reservoir, and proceeding along any path to node, n, for which the head
must fall within the specified range, the following set of linear constraints can be

generated.

H™ < H, £33 JijmXijm < HP (2.3)
: (i3) ™ / -

The inner summation is over all segments in a link and the outer summation is

over all links along the chosen path.

P
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Many researchers [Shamir 1979] have postulated that the cost of a fixed diame-
ter pipeline is roughly a linear function of its length so that the objéctive function

is formulated as

Z Z CiimXijm (2.4)
(B4) ™ - ‘
where the Cijn, are the objective function cost coefficients. The optimal solution
is obtained by minimizing Equation 2.4 subject to Equations 2.1, 2.3 and non-
negativity of the Xj;n. This technique can be extended to include pumps and
reservoirsr in the system, as well as various kinds of operating and maintenance
costs. 3
The fhajor disgdvantage of linear programming is that it is restricted to prob-
lems for which simple, linear or linearized models can be developed. Some in-
novdtions for more complex flonlinear functions have been proposed by Quindry,

Shamir, Deb, Watanatada and others. Thus far, linear programming use has been

restricted to steady state or quasi-steady state problems.

2.2.2 Dynamic Programming

Dynamic programming is really an algorithmic 6ptimization approach that can be
applied to any problem consisting of well defined, sequential stages. State variables
are defined at each stage which describe the condition of the system at that stage.
Decision variables are input variables which supply information to the system or
specify an action to be taken at the stage to which they apply. Stage return
functions provide some measure. of the effectiveness of va particular decision for
any value of the input state variable. [Snﬁth et al] give an ‘excellent description

of dynamic programming and the reader is referred to this valuable text for more
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. details.

Kally, Liang and others have pioneered the application of dynamic program-
ming in the pipelines area. The method is ﬁot so restrictive as linear programming
but, unfortunately, becomes computationally unwieldy for problems having two or
m.ore state vériables. Many attempts have been made to modify the dynamic pro-
gramming approach in ordér to improve its efficiency, however, the variations tend
to suffer from the same problems or introduce new ones, such as poor convergence

properties, which limit the application of this method to relatively simple éystems.

2.3 Pertinent Nonlinear Optimization Methods

In spite of the fact that this material anticipates somewhat the course of tHe in-
vestigation and might be more appropriately discussed later on, it is included here
since it is gonsistent with the content of this chap'ger.

The i)ea,uty of nonlinear optimization technidues is that they permit more real-
istic models of actual phenomena to be created and therefore, one supposes, more
realistic solutions to optimization problems. The d_iﬂiculty in applying them is that
these methods are often unreiiable and may fail to locate global and local optima
or, potentially, even feasible solutions. Nevertheless, they can be successfully im-
plemented for many problen.1s and are often the only methods available for truly
nonlinear problems. :

Nonlinear methods may be broadly classed as methods for functioﬂs of a single
variable (univariate) or methods for functions of two or more variables. Within

each of these groups two further categories can be defined—gradient techniques ‘
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-and direct search techniques. All of the foregoing procedures require that an initial
trial point be specified. As it will be later shown, depending upon the system being
modeled, any or all of these techniques might be employed as optimum—seeking

strategies.

2.3.1 Methods for Functions of a Single Variable

Gradient Methods

Numerous texts on numerical or optimization methods can be found which describe
this type of optimizing procedure. They are often referred to as methods for
obtaining the zeroes of a function or, colloquially, as root-ﬁnders. They all involve
evaluating the dérivative(s) of the objective function and therefore can be applied
only to functions that are well-behaved and possess a continuous first -derivé,tive.

Well known examples are the Newton-Raphson and the secant methods.

Direct Search Meth(.)d‘s

Althhough many different search methodé exist, attention here is restricted to the
Method of Golden Section. This method makes use of an interesting property c;f
the Fibonacci constant, F, which can be oBtaiped from the higher order terms of
the series ny41 = Ny — Ny—y by

F=-"0 =T g - 0.618033989. (2.5)
Nry1 ny )

The fact that F? = 1 — F allows the positioning of trial points in such a way that
only a single new point must be added at each iteration, yet the proportions of the
subdivided interval of uncertainty remain constant. Let z; and =3 be the endpoints

of the interval of uncertainty for some arbitrary nonlinear function, f(z), shown in
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Figure 2.1: Method of Golden Sectién.

Figure 2.1. Let two interior points, z3 and z4, be chosen so that

(z2 —z3) = (24 — 21) = F(z2 — 21). (2.6)
The values of the function f(z) are obtained for each of these points. For the sake
of illustration, let f(z3) < f(z4), then the segment T3 Tz may be eliminated from
further consideration. A fourth point is now added to the remaining segment at
x5 such that

(1134 - .’Bs) = F(.’IJ4 - IE]_). (27)

The process is repeated at all subsequent iterations until the interval of uncertainty

has been reduced to some specified tolerance level. It can be demonstrated that
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for n iteratic;ns 3 + n function evéluations must be made and the initial interval of
’uncertainty is reduced by the factor F".

The Method of Golden Section is an extremely efficient search technique and
can be used for loca'ting the optimal point of constrained or unconstrained fur}c—
tions. This method has been used very successfully during this inv‘estigation and
is discussed again in Section 5.3. A more complete descriﬁtion of the procedure

can be found in [Smith et al].

2.3.2 Methods for Func?;_ions of Two or More Variables

The methods available for functions of two or more variables are not fundamentally
different from those for a single variable. However, the complexity of the problem

and the solution methods is far greater than for the univariate case.

Gradient Methods

A number of gradient techniqﬁes have been developed to deal .wi_th nonlinear func-

tions. Most of these employ a constant step size and involve the evaluation of

derivati;res of the function at each trial point, with the objective b‘eing to locate

"the direction of the maximum change in the valuehrof the function. The next trial

point is located by moving a distance s, the step size, in this direction. The process

is continued until no improvement can be made upon the value of the function at |
the current ffalue of s. Thé step size is reduced by some féctor and further iterations

are performed in the same manner. The process is repeated until the value of the

_ step size is reduced below some tolerance level. The method may be generalized
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for n variables where the function to be optimized is
z= f(x) where x=(z1,%s,...,2.)7. - (2.8)

The vector of gradients (for a minimization) is obtained at an initial trial point, -
.XOa by

Xr+1 = Xy — sd, (2.9)

where

Bz/ax,-

d; = -
[T, (92/0:)7]

(2.10)

Direct Search Methods
Search methods can be split into three general groups—enumeration, random
"search and directed vector searches. The choice of a particular method will de-

pend upon the nature of the function and the computer resources available.

Enumeration This is the most time consuming of the direct search methods
but has thc\e distinct advantage of always locating the global optimum, something
that none of the other methods guarantees. In the past, its application has been
restricted to only computationally “small” problems. However, increasingly avail-
able computing power may make this the preferred method for optimizing difficult

functions in the near future.

Random Search As the name implies, this method selects trial points for evalu-
ation of the function bﬁr a random procedure. It is also a time consuming approach
but has been shown to be more efficient than other search methods for many
problems. It also can be used as a means for escaping from a local optimum or

establishing that a solution is indeed global.
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Figure 2.2: Pattern search method.

Directed Vector Search These techniques involve the selection of a set or
sequence of dir(;,ctions according to some strategy, with the search for the optimum
solution proceeding along the chosen d.irections. The direction of searching can be
changed in accordance with the conditions existing at the current location of the -
position vector. | ‘

A popular and relatively efficient set of algorithms belongi}lg to the category
of directed vector searches is called pattern s'eqrch techniques. One such methéd
. is shown in Figure 2.2. The initial starting point for the search may be selected
by any convenient criterion. The search then proéeeds by evaluating the function

at three neighbduring points lying parallel to the major axes at some speciﬁéd
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grid interval. The poinf having the lowest value (for a minimization problem) is
chosen aé the new basepoint and another pattérn search is initiated. The process is
repeated until no i1:nprovement in the value of the objective function can be made
over the current basepoint, which may involve several changés in direction and a
number of pattern searches. The grid interval is reduced and the cycle continued
- until the step sizei has‘ attained some acceptable level of accuracy.

Directed vector search:meth'ods are often debilitated by the presence of local

optima which “trap”r the -search Within: an area and prevent: it from locating the

. global optimum.

2.4 Sﬁmmary

In this chapter a cursory overview of optifniza;tion theory and its application to
‘the field of pipeline analysis and design was presented. A number of nonlinear
optimization methods which are relevant to the investigation have also been intro-
duced. The intention has been only to provide some familiarity with the concepts
of optimization and the current state of the art so that the developments of this
study can be placed in perspective. For a more comprehensive treatment of any of

these topics the reader is referred to the sources given in the bibliogrdphy,



Chapter 3
Mathematic and Hydraulic Preliminaries

3.1 Governing Equations

The fundamental equations governing the flow of liquids in rigid, closed, prismatic,
circular conduits have been developed from consideration of mass c:onsérva,tion
and the equation of motion. Excellent accounts of their dérivation may be found
in [Wylie/Streeter|. The two -fundamenta.l.equations taken together form a pair of

first order, simultaneous, quasi-linear partial differential equations of the hyperbolic

type.
a?
Hi+VH,—-Vsina+ ?J—VZ =0 (3.1)
vVivi -
Vt+VVz+gH,,+f Vi = 0 (3.2)
2D
where

= the piezometric head in the pipe
V = the mean fluid veloci_;cy in the pipe
= the pipe diameter

a = the wavespeed

23
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f = the Darcy-Weisbach friction factor

g = the acceleration due to gravity

z = the distance along the pipe

t = time

o = the angle of inclination of the pipe

The subscripts denote partiai differentiation with respect to the subscript variable.
The V sin « term in Equation 3.1 is generally conside}‘e'd to be a negligible quamtity1

The pressure, P, at any point in the pipe is simply related to the head by\
P = 4(H — z) where z is the elevation of the centerline of the pipe above séme

arbitrary datum and + is the unit weight of the fluid. In these equations several

important assumptions are considered to be true:

1. The pipe is flowing full with the minimum pressure always above the vapour

pressure of the fluid.

2. The velocity is one dimensional and has a uniform distribution over the pipe

‘cross section.

3. The pressure is considered to have a value equal to that existing at the pipe

centerline and is also uniform over the cross section.

4. The frictional resistance of the pipe is the same at any instant as it would be

for the corresponding steady flow condition.

1n the past, it has been suggested that since the V'sina term does not appear in the steady
state equations, it is reasonable to omit it from the dynamic equations. In fact, [Karney, pers.
comm.] it is now believed that this term does not appear in the expression for steady flow due
to an improper formulation of the steady state equations thereby negating that argument. In any
event, provided that V and/or o are not large, the quantity V sinc is insignificant and can be
discarded.
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5. The walls of the pipe are perfectly elastic.

The absolute valile signs on the velocity are necessary to ensure that the pipe wall

shear stresses always oppose the flow.

;‘3.2 " The Method of Characteristics

Equations of the sort indicated in Section 3.1 can be readily transformed into four -
ordinary differential equations which are amenable to solution by the method of
characteristics. In this case, the partial differential equations become

v  gdH _fV|V|

0= wtea T 2D (3:3)
= - V+a (3.4)
Boavea (3.6)

E;:iudtions 3.3 and 3.4 are known as the C* equations while Equations 3.5 and
3.6 are called the C~ equations. Eqﬁations 3.3 and 3.5 are also referred to as
compatibility ‘equations and Equations 3.4 and 3.6 are respectively termed the
positive and negative characteris‘tz'cs. _The significance of these equat:ions can be
explained as follows. Each compatibility expression is valid along a curve described
by its corresponding characteristic. As no mathematical approximations are used
in the derivation of the four ordinary differential equa,tic;ns, every solution of the
original system (Equations 3.1 and 3.2) is valid for the charateristic system, i.e.,
Equations 3.3 through 37.6. 'It can be demonstrated that the converse is also true

[Courant]. Before considering the methods for solving this system of equations, it
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is important to understand some properties regarding uniqueness of solution for

certain problem types in the method of characteristics.

3.2.1 Initial Value Problems

The “normal” method of characteristics solution belongs to this category of prob-
lems. Figure 3.1 shows two arcs, AO and BO, which lie along the C~ and C*
characteristics respectively. The positive characteristic passing through point P
intersects arc AO at A while the negative characteristic going througth intersects
arc BO at B. The intervai AOB is called the domain of dependence and the val-
ues of V and H at P depend only on the initial data along that interval. Ii': can
bé demonsti’a‘ted that, in the region AOBPA, tliis solution is unique. The arrows
(which are drawn along the characteristic directions) on the arcs A0 and BO in-
dicate the number of data which can be prescribed along each arc. The number
of arrows entering the region _AOBPA indicate the number of data which must be .
given along each boundary in order for a unique solﬁtion to exist in the region of
interest. Note that only one datum can be prescribed on each characteristic arc.
For a noncharacteristic cufve, such as AB, two data must be known in order for
the solution at P to be unique. In the customary method of characteristics analysis
two data are specified on the domain of dependence at the points of intersection
with the positive and negative characteristics passing through the point P.

Since no reference to direction or orientation with respect to the z—¢.plane has
been made in this analysis, the same observations are equally true for solutions
proceeding backward in time, i.e., for the point P' in Figure 3.1. The only con-

siderations for a valid and unique solution are the orientation of the initial value
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Figure 3.1: Domain of dependence in the z—¢ plane for an initial value prot;lem.

curves in the solution plane and the nature of the data on those curves.

3.2.2 Boundary Value Problems

"The problem described in ti’lé previous section is used to advance the method .of
characteristics solution through time along a space-like initial arc (line). Likewise,
the solution which forms the basis for thé va;lve stroking procedure is an analogous
case which requires that two data be specified at each boundary point on a time-like

arc (line) in order to promulgate the method of characteristics solution through
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space. A time-like arc is one which has a characteristic direction on either side
of it while a space-like arc has both characterristic directions -on the same side?.
Figure 3.2 shows the situation just described where the interval AOB is the domain
of dependence of P and the region AOBPA contains a uniqﬁe solution for V and’

H at P. Notice that no data may be prescribed along the arbitrary time-like arc

Figure 3.2: Method of characteristics—boundary value problem.

B'P! since it lies within the region of unique solution for this problem. Hence,
the solution along arc B'P' is defined by the same domain of dependence as for P.
" When AO and B'P’ are parallel to the time axis, and arc BO is a noncharacteristic

line parallel to the z-axis, the method of characteristics solution can be advanced

2 A characteristic arc is the limiting case since one characteristic direction is tangent to it.
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through space from one of the boundary value curves. This is the approach taken

in the valve stroking solution of the method of characteristics.

3.2.3 Finite Difference Equations

Equations 3.4 and 3.6 can be furthe; simpiiﬁed if one realizes that normal pressure
wave celerity in most dense fluids is- two or three orders of maénitude grea,ter.
than the mean fluid velocity in ther 1.>ipe1ine. In water, for example, the normal
range of background velocity is from about 1—;1 metres per second while wavespeed
ordinarily falls between 800-1400 metres per second. It is therefore justifiable to

say that the characteristic equations may be reduced to

dz ‘
E = Za. . (3.7)

This results in a computationally efﬁcient: set of finite difference equations due to
the fact that the characteristics are now a pair of complementary st}‘aight lines.
Figure 3.3 shows the z—t plane for a pipeline divided into N equal rqaches, each
Az in length. If a time step is computed as At = Az/a, then the diagonals of
the grid will be the pc;sitive and negative characteristics emanating from each grid
intersection point. Equation 3.3 is valid along the positively sloped characteristic
line AP with both 'V and H known at A. Similarly, Equation 3.5 holds along BP
with both variables known at B. Expressing Equations 3.3 and 3.5 in terms of

« discharge and multiplying each by adt/g = dz/g, produces

f

a
dH + adQ-l— 2gAD2Q|QIdx =0 (3.8)
a f "
—dH + — dz = 0. .
+ R+ 2gAD2QIQI z = 0 (3.9)
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Figure 3.3: z—t grid for single pipeline problems.

Integrating the first equation along its respective characteristic gives

/HP dig+ -2 [Fag+ L /IP QlQldz =0 (3.10)
—_— r = . .
Hy gAlJg, . 29gDA? Jz, ]

The manner in which @ varies with z in th;a last term is not explicitly known so
an approximation is employed in order to evaluate the final integral. A first order
approximation is adequate for most situations (high friction cases being the major
exception), i.e., Qp is assumed to be equal to @4. Noting that, in Figure 3.3, the
points A and B are nodes 7 — 1 and 7 + 1, the following general formulation of

Equations 3.8 and 3.9 results.

C+ . H_p,. = Gp - BQP‘. (3.11)

C™: Hp, = Cy+ BQp, (3.12)

P
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where the constants Cp,Car, B and R are given by

Cp = Hioy+ BQiy — RQi-1]Qii] (3.13)
Cyv = Hiz1 — BQiy1 + RQit1|Qita] (3.14)
. ,
B = — . )
‘ A (3.15)
_ fAz ’
“ R = ;o0 (3.16)

Elimination of Qp, in Equations 3.11 and 3.12 allows Hp, to be evaluated as

Hp, = (Cp -+ CM)/2. (3.17)

Qp, can then be determined by back substitution in either Equation 3.11 or 3.12.
After the first time step, appropriate boundary conditions must be known in order
to comprlete the solution for a specific time interval. Likewise, if more than one
pipe 'exists_ in the system, the boundary conditions at the series connections must

be available. The subject of boundary conditions is discussed in Section 3.3.3.

3.3 Valve Sfroking

Valve stroking differs from the usual time series solution of the method of char-
acteristics in that it is a synthetic rather than a simulation procedure. In other
words, the simulation solution may é:o‘ntinue indefinitely through time and ends
only because an artificial time limit is placed on it. Valve stroking methods, in
contrast, are limited bpth in space and time and essentially allow the qonditions at
a particular boundary to be established for a finite time span. This requires that

both the initial and the final conditions are known for the system. In addition,
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one boundary conditioﬁ is either fully known or specified for the time interval un-
der consideration. Thus, the method of characteristics solution actually proceeds
through space from the known to the unknown boundary condition.

The finite difference equations used for the valve stroking procedures are quite
similar to those used for the initial value problems. They are derived in the same
way but are distingui‘shed by the fact that the equations produce solutions for
points backward in time. If one integrates Equation 3.3 along the characteristic
line from point d to point e shown in Figure. 3.3 and Equation 3.5 from point e to

point f (so that the integrations are both occurring in the positive sense of time)

the following equations result. _ -
C*: H,=H;— B(Q. - Qa) — RQ4|Q4| S (318)
C™: Hy=H, +B(Q;-Q)+RQJQ| (3.19)

For the majority of practical cases no flow. reversal occurs making the absolute

value signs unnecessary and the equations may be solved for Q..
RQd>2 R (Hy— Hy) '
1 \]1+<B 5ot e+ =5 (3.20)

H, can now be directly “ evaluated from Equation 3.18. If the assumption of no

B
Qe—__é

reversal of flow does not hold, Equations 3.18 and 3.19 should be solved by a
numerical technique such as Newton-Raphson. -

The expressions for stroking in the opposite sense are

_ B RQs\? R (H; — Hy)
Q. = I 1—\j1+<—B—> —E(Qd+Qf+——.B——)} (3.21)
H = Hi+ B(Q.-Qu)+ RQ} _ (3.22)
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The manner in which these equations are applied to a system for the two types of

valve stroking will be discussed next.

3.3.1 Valve Stroking in a Specified Time

This application of the method of characteristics was first aevéloped by {Propson].
This is actually the more recent 'method and first appeared some four years after
valve‘stroking for a specified head h;J,d been developed. It is, however, a less
restrictive‘ and simpler method and will therefore be consid'ered first.

Figure 3.4 depicts the z—¢ plane for an arbitrary system. The initial conditions
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tz2L/a W

v . c

“e f +2 ar : / o

o _ A o

- -

- steady flow 5

- - c
-2 o e
<% | 2w Zb
Y o +L/a f C— solurian tranSient 3\_2
> e > RReshes® zone :5

¢

[ direction o
o £ d c* c®
c © 1:L/a 2T

5 & o
o ¥ aVv

. 3 c

£ at S?ecd%g flow e

— o

|oF :

2 < A ¥ ————3} x

—eee 1 c

- Known initial conditions —s
X (distance along pipe?

Figure 3.4: Method of characteristics solution for valve stroking in a specified time.

are known along z for t = 0 and for ¢ = 2L/a+ 2At. There is no significance to the
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fact that, in the figure, the duration of the transient at .the upstream end is 2At. It
can be any number of At’s, the only restriction being that ;che wave cannot return
to the downstream boundary in less than 2L/a seconds. The boundary conditions
are also :speciﬁed at the upstream section, either by the physical rﬁaturerof the
system or arbitrarily by the analyst. The negatively sloped diagonal line is the
negative characteristic emanating from the downstream boundary at time t = 0,
i.e., when the conditions at the downstream end begin to change. The disturbance
reaches the upstream boundary in exactly,i/ a seconds. The positively sloped
diagom‘Ll is the characteristic passing through the downstream section at the time
when the disturbance has just ended. The region bounded by the two characteristic
diagonals is the z‘one of transient fluid flow. The two triangular areas represent
regions of steady fluid flow.

The method of characteristics solution is straightforward. Using Equations 3.20
and 3.18 one solves for @ and H at each spatial node for all time. Once the values of
the unknown variables have been determined at one physical section, these values
are used to generate solutions at the next section. Note that it is iny necessa,rs;
to solve for @ and H in the transient region of the z—¢ plane since the upper
and lower triangles are already known from the initial and final conditions. The

solution proceeds in this manner until the downstream boundary is reached.

3.3.2 Valve Stroking for a Specified Head

This type of valve stroking was first proposed by [Ruus, 1966] as a means of ad-
justing wicket gates for turbines in hydropower installations. The method was

originally developed as a graphical procedure and splits the transient phenomenon
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into three distinct phases. In the first phase, shown in Figure 3.5, the head at the

downstream end is increased to its maximum prescribed value, H,,,,. This phase

b— H=H+{U-15H —

4 @ @ @& 2
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Figure 3.5: Phase I of valve stroking for a specified head.

takes 2L/a seconds or, since dt = Az/a = L/Na, it requires 2L/a X-Na/L = 2N
time periods. Thus at timestep J = 2N + 1 the hydrauli; grade line is straight
from H, at the upstream end to Hp,, at the down“stream end. Once again, the
upper and lower triangular regions are areas of steady flow (both [Propson| and

[Wylie/Streeter] provide proofs for this assertion) and the head at points b, d, f and
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h are known and equal to H, + AH. At any given time step, the flow is uniform
so it can be seen that Q. = @,Q. = Q4 and Q, = @y . Rewritihg the positive

compatibility equation for point a, @, may be obtained by

(AH + RQ?)

Qbr= Qa - B

. CE-)

Applying the same logic to the time steps from J = N+1to J = 2N + 1 provides
all the upstream boundary condition data needed for Phase I.

During Phase II the head at the downstream end is held constant at H:
while the flow is progressively varied in accordance with Equation 3.23. W}}en it
has reached its ultimate value the final zone of transient flow is defined by the two
long diagonals in Figure 3.6. vaserve that the three phases are defined by the
changes in héa,d at the downstream end and not by the change in flowrate at the
" upstream end. Thus, the flow continues to change during Phase II and for a portion
of Phase I_II. During this final period of unsteady flow at the downstl.‘eam ‘;and the
head is allowed to a'djust to its terminal level. Figure 3.6 shows the relationship
between the last two phéses. It can be seen that the minimum theoretical time for
valve stroking in this manner is 4L/a seconds.

This procedure provides all the necessary information for the method of char-
acteristics solution to be carried out. it is performed in an identical fashion to that
for valve stroking in a specified time proceeding from the upstream to the down-
stream boundary. Having examined the two methods of obtaining the solutions for
" the unknowns Q ana H for the grid points in the :z:—t‘pla,ne, it is now appropriate

to discuss the relevant boundary conditions.
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3.3.3 Boundary Conditions

A consider'ation of all the possible boundary conditions to which the valve stroking
procedures can be appliéd goes far beyond the scope of this investigation. f‘or
those interested in such details, [Wylie/Streeter| and [Propson] provide thorough
accounts of these. Attention here will be directed to only those conditions pertinent
"to the constant head upstream reservoir pipeline with a valve at the downstream
end. This system contains three possible boundary conditions—the réservoir, the

valve and the series pipe connections (if the pipeline consists of more than one

pipe).

Upstream Reservoir

This boundary condition has already been implicitly discussed in the descriptioh
of the valve stroking methods. In both cases, i.e., stroking in a specified 'time
and stroking for a specified head, the pressure at the upstream end is fixed at the
reservoir head, H,. The flowrate in the steady flow zones is equal to either the
initial or the final flowrate, depending on which zone ié being considered. Only
during the transient phase is there any indeterminacy with respect to the discharge.
[Propson| suggests that, for stroking times < 4L/a, the upstream discharge be var-
ied linearly during the centra_xl transient condition. For stroking times in excess of
4L /a this procedure may not produce the lowest possible head rise for the pipeline,
particularly for systems in which viscous effects are important. The recommended
procedure for solution in these situations is valve stroking for a specified head
wherein the upstream variation in discharge is fixed by the restrictions placed on

the head at the downstream end.
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Neither of these metho_ds of specifying the upstream discharge is sacred and it
must be borne in mind that under certain cifcumstances, it may be desirable to

use some other means of prescribing the flowrate at the reservoir.

Valve at the Downstream End
The relationship between the head, flowrate and the valve motion at the down-
stream end of the pipeline has been mentioned in Section 1. The value of 7 at each

time grid line, i.e., for J = 1,..., (Thas/At) + 1 is

Q41
QO\/ HJ‘\IIH/HO

where N + 1 is the index of the pipe section at the valve. Note that the datum

r(J) = (3.24)

must be taken through the centerline of the valve for this expression to be valid3.

Series Pipe Connections

This type of junction is used to incorporate changes in the pipeline diameter or
other physical properties such as wavespeed, friction factor, type of anchoring,
etc.. Ignoring any minor losses at the connection, the head at the end of one pipé
must equal that at the Beginning of the next pipe. Continuity also says that the
discharges in the two pipes are equal. Thus, the boundary conditions can be very
simply stated as Hyg = Hi’ and Q%s = @ where the subscript NS denotes the
number of sections in the first pipe and the superscript J refers to the time step

. index.

31t would be more proper to say that the datum must be taken at the level of the downstream
reservoir in order for the expression to be correct. Since the valve discharges to the atmosphere the
level of the downstream reservoir is effectively at the centerline of the valve.
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3.3.4 Valve Stroking and Transient Optimization

The question that should be raised at this point is,“What does valve stroking have
to do with optimal design of pipelines?” It has a:lrea,dy been demonstrated that
the concept of optimal pipeline design is very'complex and depends as much on the
particular design goals as it does on the physical parameteré. Nevertheless, certain
fundamental considerations are common to most, if not all, pipeli'ne applications.
For the majority of systems, the dominant pipeline cost is the capital expenée of
the i)ipe and its installation. The cost of the pipe 1s an increasing function of the
volume of material contained in the pipe cross section. Since the internal pressure
. is, for larger pipelines, the overriding factor that determines the amount of material
needed in the pipe. cross section, it is clear that the cost for any given diameter tends
to be minimized if the internal pressure can be reduced to the lowest possible value.
.The valve stroking procedures accomplish éxactly that—they guarantee that, for
a-particular diameter of pipe and Qalve motion du{ation, the maximum internal
pressures are the minimum attainable for that system. Although this is not tile
only consideration involved in minimizing the cost of a pressure line, it assures
that any solution based on the valve stroking procedure will always be “better”
with respect to an infinite number of solutions based on arBitrary valve closures.
That is to say, for every unique valve stroking solution an unlimited nun';ber of
tau curves exist which will produce a larger pressure increase in fhe pipeline. In
spite of the fact 'that valve stroking may not result in a global mipimu.m, it does
provide a rational basis for an optimal design pro_cedure. Even if the suboptimal

solution proves too costly in other respects to be implementable, a good starting
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point has been found from which the designer can proceed using experience and
sound engineering judgement to arrive at a reasonable soiution.

| The valve stroking procedures are also important to the concept of transient
optimization in that they prow}idefa convenient means for inco‘rporating constraints
relating .to control of the syéte,m. Finally, it should be noted that the fo£egoing
‘discussion is only valid if the effectiveness criterion to be optimized is based upon

variables which are functions of the internal pressure in the system.



Chapter 4

Conceptual Optimization Model

4.1 Description of System

The phrase simple pz"pelz'ne systems has already been mentioned but no explanation
has yet been given as to what this actually means. The sysfém which has been
chosen for investigation is the classical constant head upstream reservoir with a
single pipe and a valve discharging to the 'af;mosphere at the hd_ownstream end. A

schematic depiction of this system is shown in Figure 4.1. The following dimen-

sionless quantities are often used in hydraulic transient literature.

“ H, )
hy = — ' ‘ .
1= g, : | (4.1)
(IVO
p = 20, (4.2)

There are a number of advantages, both from the theoretical and practical points

of f/iew, in studying this particular system.

1. Transient analysis is intrinsically complex and difficult, therefore a system
which contains a small number of variables presents fewer irr_lpediments to
the development of a rigorous, analytical model. ‘Furthermore, significant
features of the model are less likely to be obscured or invalidated due to

complex interactions between parameters.

2. This system is generally percieved to be the classical ‘starting' point for all

pipeline transient analyses.

42
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Figure 4.1: Schematic diagram of physical system.

3. Despite its simplicity, the system is very representativé of many real physical
installations, for‘ example, penstocks in a hydro-power facility, a reser‘}oir-
municipal water supply link or a pipeline drawing oil from a large storage
tank to a loading site. Even a pump with a relatively flat characteristic curve

operating at constant speed could be usefully approximated in this way.

4. The valve stroking pr_ocedure's which form the hyciraulic basis for the model

have certain limitations when systems become more complex.
The following assumptions have been made in the transient analysis.

e The system can be divided into homogenous lengths having the following

characterisites:
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— The pipe diameter is constant.

— The wall thickness is constant.

e The valve is located at the downstream end of pipe and the datum is set at
the level of the downstream reservoir (the centerline of the valve for a valve

discharging to the atmosphere).
e The reservoir level remains constant.
e No air pockets exist in the pipe.

o Pipe friction associated with a given unsteady flow follows the quadratic law,

i.e., the D’Arcy-Weisbach law.
o The velocity head is negligible.
¢ Only one valve motion takes place and the motion is a closure.

These assumptions are commonly made in transient analyses and are valid for
most pipeline systems. They are not requirements for the development of the
optimization procedures proposed in this dissertation but ‘do, however, facilitate

the investigation.

4.2 Definition of Cost Factors

It is not essential for the conceptual development of the model to know precise,
practical expressions for the cost terms. In fact, since the actual form of cost

estimating equations used for a particular installation will be highly site and project
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specific, it would be a gross error to propose a model having exact functions which
should apply to all situations. To demonstrate the utilii;y of a model it sufﬁ‘ces
“only to define the parameters which influence the effectiveness criterion and to
determine the manner in which they affect the cost.

The most important factors determining the cost of a pipeline installation are:
o the length of the pipeline

o the diameter (size) of the pipe

o the wall thickness of the pipe

o the pipe material (eg. stee'l, PVC, concrete, etc.)

e the specification of the system boundary conditions (in this case a discharge-

time relation)

‘s the response time of the system (synonomous with the duration of valve

motion for a stroked system).

The significance of each of these factors with respect to the cost function is discussed

separately below.

4.2.1 Pipeline Length

It is clear that the cost of material, placement, maintenance, etc., increases in
proportion to the length of the pipeline. This has significant ramifications in de-
termining the relative importance of unit costs versus siﬁgle item expenditures.

It also impinges directly on the optimization with respect to transients in that it
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establishes the return trip wave travel time (2L /a) for pressure pulses in the sys-
tem. This effectively cdnstra,ins the optimizing.procedure in terms of its minimum
responsé time. The reasons for this are explained in the section on valve stroking
theory (Section 3.3). There are a number of methods already in existence (and
use) to deal with the problem of opfimizing costs associated with pipeline length

(see Section 2).

4.2.2 Pipe Diameter and Wall Thickness

These two factors have been placed under a single heading because they are not
independent of one another. Consider the classical hoop stress equation which

describes the circumferernitial stress in the wall of the pipe.

_YHD;
T 2e

o (4.3)

where + is the unit weight of the fluid, o is the stress in the pipe wall, H is the
‘static pressure and the other variables are defined in Figure 4.2. In terms of the

: required‘wall thickness, Equation 4.3 becomes

YHD;
20

(4.4)

The greater fhe head in the pipe, the thicker the wall must be to withstand the
pressure forces. Even if the pressure in the pipe is held constant and, let us say,
that ¢ cannot increase since this is to be maintained at some specified design value,
Oau, then for a large-r diameter pipe the wall thickness must also be increased.

Compounding this phenomenon is the fact that for a unit increase in pipe

wall thickness, the cross sectional area of the wall increases nonlinearly with pipe
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e=wall thickness

pressure = vH

- Figure 4.2: ﬁoop stress in the wall of a pipe.
diameter. The cross sectional area of the pipe can be expressed as
Ay = %(Di — D}) where D, = D; + 2e. (4.5)
Substituting fox: D, gives .
Ay = (e +eDy) | (4.6)

and replacing e by Equation 4.4 produces

4y = Wf? ((7H>2 N 2’7H) . BT

Oall Oall

The cross sectional area integrated over the length of the pipe is equal to the
volume of material required to withstand the pressure exerted by ther fluid on the
pipe.

It is evident from Equation 4.7 that the wall cross sectional area for a given

head varies as the square of the inner diameter of the pipe. This is by far the
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dominating factor determining the amount of material in the piIV)ﬂe cross section.
The factor enclosed in parentheses shows that, for a given size of pipeline, a unit
increase in the fluid pressure also means that the wall area must be greater for
larger values of D;. For smaller pipe sizes structurgl, bedding, backfill, handling
and wheel loads outweigh internal pressure requirements in terms of dictating the
necessary wall thickness. However, in large diameter pipes, internal pressure is
an important design consideration. It is not surprising then that disproportionate
amounts of additional material are needed to manufacture large pipe; as opposed
to smaller ones for the same design head. Taken together, these two factors mean
that for a unit increase in head more material is required for a safe design in a
larger pipe:.. “

Whjf then, do engineers not design systems usir-1g the smallest possible pipe size
needed to carry the requii‘ed discharge? There can be man'y reasons for ‘ioversizing”
a pipe. Perhaps the most compelling reason for installiﬁg “larger than necessary”
pipes is tile uncertainty of future demands. Itr may be far cheaper to design a
system with capacity in excess of the present need so that costly expansi‘ons might

;be a\;oided at a later time. Another example is the cost represented by increased
" head losses due tofriction resulting from higher fluid velocities in the system. If, for
example, the constant head upstream boundary condition is replaced by a pﬁmp
“(which may also be operating at constant head) then the cost of pumping the fluid
is a function of the head losses experienced by the system. Pumps and pumping
stations are expensive items and it is desirable to reduce costs by designing the
system so that the steady state operating expense is minimized (see Sections 2

and 4.3.4). A further argument in favour of using larger pipe sizes is the adverse

/
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conditions that negative pressures in a pipeline can produce, such as cavitation. If
the head in a pipe is too low the likelihood of subatmospheric pressures developing
in the system increases since even minor transients may prodﬁce significant pressure;
drops. O.ther réasons might be a minimum requiréd delivery pressure either for a
reservoir or to prevent cavitation in a valve un&er steady state conditions.

The capital investment requiréd for pipelines increases for larger pipe sizes due
to the transportation costs and ther expenseé ‘aséociated with machinery, forms and
even manufacturing methods. In addition, associated pipeline and appurtenant
structures, miscellaneous equipment as well as a host of control devices increase
nonlinearly in price as the pipe diameter gets bigger. Valves and their associated
actuator/controllérs become very expensive in larger sizes due to the increased
forces, moments and torque‘acting on them. As a consequence, valves are often
placed in a short section of reduced diameter pipe to decrease the capital expense

while only marginally increasing the operating costs.

4.2.3 Pipe Material

The unit cost of 'pii)es maﬁufactured from different materials is subject to change
depending on market and production conditions. Also, various pipe materials ex-
hibit different types of stress-strain behaviour. Steel, ;for example, is an elastic
material and can withstand a sustained increase in head without sufféring a sig-
nificant reduction in wall thickness (Poisson’s effect). In contrast, a visco-elastic
material such as polyvinyl chloride’,(PVC) can resist high pressures for only a
short period of t.ime due to creep effects increasing the likelihoodrof a rupture.

Differences in the frictional resistance and the elastic modulus of the material have
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important consequences in determining the transient response and, hence, the cost

of the system.

 4.2.4 Specification of the System Boundary Conditions

This topic is discussed in greater detail in Sections 3.3.3 énd 4.4.1. Suffice it to
say here that the manner in which the s-ystem pfoceeds from one set of conditions
to another (normally steady state conditions) has a profound influence on the
transients arising in the system. In certain situations, these boundary conditions
can be easily specified reducing the complexity of the optimization process while
in other circumstances many alternative formulations exist and more elaborate
méthods in the design procedure are needed to cope with them. In either case, the
‘manner in which boundary con(;litions are prescribed has a bearing on the ultima,te‘

" cost of the system.

4.2.5 Response Time of the System

The minimum response time of the system, it has already been stated, is physically
fixed by the wavespeed of the fluid and the length of the pipeline. This is simply
a restriction imposed by the valve stroking procedure itself. There is, however,
no such constraint on the maximum response time of the _system: In general,
it is advantageous in terms of controlling water ha,mmerk to change conditions as
slowly as possible subject to whatever restrictions are imposed on the system.
Unfortunately, virtually all pipeline installations are required to make adjustments
as rapidly as possible either for operational, control or emergency reasons. For

example, turbines in a hydro-power facility must be capable of reacting to a total '
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load rejection by the utilit:,y power grid. This may be due to broken power lines
or"any of a number of other causes. When this occurs, the turbineé, having lost
their brake loads, begin to rotate more and more rapidly. The only way to curb
this runaway situation is to reduce the flow of water through the turbines quickly
and drastically. The natural consequence of this action is to generate powerful
transients in the penstocks. The dilemma is tl}is: if the strength of the pénstocks
is inadequate then more expensive turbomachinery must be purchased in order
to withstand the angular momentum attained before the discharge is reduced.
Conversely, if less expensive generating equipment is to be installed then more
expensive penstocks must be constructed to ensure the safety of the powerhouse;

its equipment and operators.

4.3 Formulation of the Effectiveness Criterion

From the foregoing discussion, it can be observed that the effectiveness criterion
‘must involve a complex interaction of many factors. It can, however, be stated

reasonably succinctly in the following form.

Cost = Material + Placement + Response Time + Operation (4.8)

4.3.1 Pipe Material (Mass)

The amount of material at a particular cross section of pipe is directly linked to
the maximum pressure occuring at that point in the system. This can be thought
of as one contribution from the steady state head and another from the head rise

caused by transients. Figure 4.3 shows clearly the steady state and the maximum
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head envelopes. Generally, however, since the maximum steady state pressure that
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Figure 4.3: Steady state and maximum head lines for simple pipeline system.

can exist in the pipe is the total energy line, this provides a convenient quantity to
which all other heads iﬁ the system can be referred. The maximum value of head
attained at specific sections in the pipe during the transient phase is'calculated by
the valve stroking procedure. The effect of the pipe diameter c;'—.m be accounted for
by use of a pipe diameter factor or PDF (akin to the capacity factor used by cost
engineers for preliminary estimates). Note that the form of the PDF factor is very
similér to Equation 4.7.‘ A cost term having the following form results.
i=n-1 |

C]_ Z (Ahmaz + 1) PDF Az (49)

.1=1 -
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Almaz = (Hmaz — H,)/ H,

H,... = maximum head attained at sectio}L
H, = reservoir head (reference head)

n = the number of sections

PDF = (D/D,.s)?

D,.; = the reference pipe diameter

D = the pipe diameter

Az = the reach length

B = an arbitrary exponent

C;=CMxP

" CM = cost per unit length of D,y

P = scaling factor for unit price flucuations.

Equation 4.9 takes no account of the stress-strain behaviour of the pipe material.

4.3.2 Placement

The placement or installation cost of the pipeline can be simply formulated as

where

t=n—1
C; > PDFAz . (4.10)

=1

C2 =CPx P
CP=the unit cost of installing D,

P=scaling factor for unit price variations.

It is clear that the placement cost depends primarily on the physical system itself.

Although this commonly leads to the formulation of a cost term which is a linear

function of the pipeline length, other factors, such as wall thickness, do introduce -
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nonlinearities into the placement cost. For instance, welding costs increase for a

thicker walled pipe.

4.3.3 Response Time

Since the cost associated with this term will most likely be installation dependent,
there is little to gain in terms of insight into the problem by using some complicated
mathematical expression to evaluate it. Even if no spéciﬁc aspect of cost can be
directly attributed to the response tirhe in a parficﬁlar system, fhis generally acts
as a constraint on the objective function. For the purposes of this research the

following arbitrary, monotonically increasing function was used.

(Ca) : - (411)
where
C; = an arbitrary constant. (in cost units)
« = an arbitrary exponent

t, = T./(2L/a)

Valve/ Co:ntroller /Actuator System

If the response time cost term does include specific elements of cost theb;e can be

incorporated directly into the cost function in any manﬁer deemed app'ropriate

by the analyst. As an example, consider the cost of the valve/ cohtfoller/ actuator

sysi‘,em required' at the downstream end of the pipe. A
The cost associated with the control valve is a functioﬁ' of the size of the pipe

and the precision needed to execute the prescribed valve closure arrangement. The
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size of the valve can easily be accounted for by a PDF, but the degree of control

needed in the system is more difficult to evaluate. Since the tau curve essentially

represents the relative motion of the valve, it may be characterized by its velocity

and acceleration components. The more rapid and complex a valve motion is,

the greater the velocities and accelerations the valve system must be capable of

providing. This, in turn, means it will be more expensive. Acceleration is more

expensive to achieve in the acuator as it requires sensitive variable speed drivers.

'The first and second derivatives of the closure arrangement can be respectively

obtained by first and second order Taylor expansions, and in this way, approxima-

tions to the velocities and accelerations occurring during the valve motion may be

obtained. This leéds to the formulation of the following cost term.

where

(VFI(Vma:c - sz’n)lc + VF2(Amaz - Amm)m + C) PDFualue ‘

PDFvalve = (Dvalve/Dref)ﬂ'
Vimee = maximum velocity
Vmin = minimum velociﬁy
A,..; = maximum acceleration
A, = minimum acceleration

k,m and B' = arbitrary exponents

C = the cost of a linear closure system

VF, and VF; = factors expressing the relative
importance of the velocity and

acceleration terms.

(4.12)

* The linear closure cost term, C, (generally the cheapest to attain in practice)
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has been included because the other terms in Equation 4.12 become zero for this
case; i.e., Vinaz — Vinin and Apoz — Anin are equal to zero.

It must be understood that real valves, valve systems and tileir closure char-
acteristics are enormously complex and it is doubtful that any simple or general
formulation could be so easily made. At the same time, it is not necessary.r to do
so in order to incorporate a conceptually valid representation of their effect on the

overall cost of a pipeline system.

4.3.4 Operation

A logical approach to evaluating costs of this type would be to preoptimize them
using one of the steady state techniques described in Section 2. This is appropriate

if either

1. the cost associated with this term is much greater than any other cost com-

ponent, pumping costs on a short, high capacity line for example.

9. the system is too complex to permit the convenient incorporation of steady )

state factors in the transient model.

In either case, a “complete” optimization (one that includes water hammer ef-
fects) can be achieved by performing separate procedures with the transient model
performing e; suboptimization role in the overall process.

In some instances the operational costs may include items not normally thought
of as maintenance expenditures. For example, a reservoir supplying water to an-
other reservoir by gravity does not seem to have any operational costs other than

normal maintenance. However, if the friction losses in the system are thought
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of as a loss of capacity under normal operating coﬁditions, then an operational
consideration ana,l_ogoﬁs to pumping costs can be seen to exist even in this simple
situation. This is intrinsically considered in the simple upstregmrﬁ reservoir system
in the specification of the required discharge, since parameters are selected such
that the discharge constraint is always satisfied. However, this may not be trué
in every sitﬁation and the flowrate itself need not be specified as an equality but
rather as a minimuﬁl required flowrate or a range of dischargés.

As a specific example of an operational cost which éan easily be incorporatedr
into the transient model, consider the power output from a hydroelectric installa-

tion. The equation for the power produced by a turbine is
P = QvH,sn where 7 is the turbine efficiency. (4.13)

Ignoring, for the moment, that the turbine efficiency is not constant, the amount of -
power that can be génerated is a function of the available head and the discharge.
The available head (or net head) is a function of the flowrate and the pipe cross

sectional area (diameter).

. ro? '
Hpee = | Ho — Vel and k = a constant. (4.14)

The discharge is a function of the pipe diameter and the head losses in the wicket
gates. In broad terms, for a larger diameter pipe, more water can pass through the
‘turbine, the lower are the various frictional losses and, hencé, the power output of
the turbine can be increased. A tradeoff exists, tﬁough, between higﬁer pipeline

costs for increased capacity and the value of the power generated.



4.4 Cost Variables

The preceeding sections have focused on the parameters whichrulf,imately deter-
mine the cost of a pipeline system and it has been demonstrated that they can be
used to generate a theoretically meaningful cost function. It is, however, probably
not yet clear exactly how these factors are related to the cost variables per se. Thus

far it has been postulated that
Cost = F{Material, P.lacement,Response Time,Operation}. (4.15)

If we extract the key mathematical and hydraulic variables from these somewhat

nebulous terms a more analytical expression results.
Cost = F{Di, Ahmaz, @ss,te, L, a, boundary condition specification}.  (4.16)

’_l‘hese variablgs have Been deﬁned and discussed at length in Section 3.3.

The heads which ate produced during the transient are completely determined
by the physical system qharacteristics, the initial and final steady states and the
upstream boundary conditions. Likewise, the closure arrangement is fixed by the
manner in which the boundary conditions are specified. Therefore, the only vari-
ables which are not necessarily set by the specification of the system are the dura- °
tion of the transient, t., the. pipe diameter, D;, the wavespeed, a, and the nature
of the boundary conditions. Every other system quantity is either given or can
be derived from these variables, and all of these quantities can be manipulated by
the valve stroking procedure(s). The pipe diameter and the valve motion duration

have been discussed in previous sections.
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4.4.1 Boundary Condition Specification

The importance of the nature of the boundary conditions to the optimization model
cannot be overemphasized. Each cia.ss of problem has its own peculiar dependence
on the way in Which the starfing boundary condition is chosen. In other words,
the spatial and temporal characteristics of that point in the system from which the
valve stroking procedure begins has a profound influence on the dynamic response
of the system. In some instances t.he choice of starting points is obvious and
simple while in others it is completely arbitrary and requires experience, sound
judgement and perhaps even research in order to obtain boundéry conditions which
will provide optimal results.

To illustrate p-recisely what ;uhis entails, consider the following example which
involves the same physical system that has been discussed thus far. In this system,
one can only stroke from the reservoir. This is because one variable, narmelyrthe
head, is fixed at the reservoir. Hence, the only variable which can be manipulated is
the discharge, Q. One means for manipulating t.he discharge is shown in Figure 4.4.
A parabolic discharge factor, 9, ranging between zero and unity can be obtained

as follows.
(Qo—Qy)/2+y
Qo — @y

where y is measured positive upwards and is the difference between the discharge

¢:

(4.17)

at t = t;,/2 and AQ/2. For any given value of 9, the value of the discharge at the

reservoir when the transient phase is half complete (t = t;,/2) is

QO‘Q}'.

> (4.18)

Qlt:t,,/z =

Knowing these three points on the discharge curve, the flowrate at any time during
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Figure 4.4: Specification of the upstream boﬁndary condition by use of a parabolic
discharge function.

the transient phase at the reservoir can be obtained by parabolic interpolation.
Figure 4.5 shows a cost surface for a single pipe diameter resulting from the
application of the model to a fictitious system of the sort being considered here.
Note the very pronounced effect on cost that has been produced by changing the
specification of the upstream boundary condition. It is interesting to see that
the minimum cost for a given stroking ;ime is ;-leost always obtained when 9. =

0.5, i.e., when the variation in the discharge is linear. This is not surprising as

other researchers|Propson| have demonstrated analytically that for stroking times
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Figure 4.5: Cost surface for parabolically varied upstream discharge. This is for a
fixed pipe diameter. Note the distinct “trough” for ¢ = 0.5."

between 2L/a and 4L/a seconds, a linear changein the di.scharge at the reservoir
produces the minimum head rise in a frictionless system. It is instructive that this
is not so for stroking times in excess of 4L/a seconds[Propson|(Karney/Ruus 1985]
and the manner in which the system proceeds from the initial to the final discharge
can be more crucial in these-cases.
This example points out v.ery clearl}; the importance of the boundary condition

specification for the system as a factor affecting the cost of the installation. It also

pfovides some indication of how cc;mplex matters may become in systems with
" boundary conditions having two or more ciegrees of freedom.:

In terms of the simple system being investigated here, it is possible to formulate
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the cost function in terms of the pipe diameter and the response time only.

4.4.2 Wavespeed - : !

In -actuality, the wavespeed, a, represents a convenient means for describing a
number of physical properties of the fluid, the pipe material and the method of

pipe anchoring used for a particular installation. The most general expression for

K/py
=% ‘ 4.19
i \|1+f;_fgc1 (4.19)

where K is the bulk modulus of the fluid, p, is the density of the fluid, E is

the wavespeed is

the elastic modulus of the pipe material, and D and e are the pipe diameter and
wall thickness reépectively. The constant ¢; takes account of the type of support
provided for the pipeline. Typically, three cases are recognized with ¢; defined for
each as follows.
Case a The pipeline is anchored at the upstreain end only.

7 .,

[ 1— —2‘ (4.20)

Case b The pipeline is anchored against longitudinal movement.

cp=1-u? (4.21)

Case ¢ The pipeline has expansion joints throughout.

e =1 o C(4.22)

The Poisson’s ratio for the pipe material is denoted by wu.
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Most commonly, (KD/Ee)c, — 0 and Equation 4.19 simplifies to ¢ = \/—m
which is the expression for the acoustic wavespeed in a fluid. For this reason a
is referred to as the wavespeed. As indicated by Equation 4.19, the situation in a
pipeline is. rather more complicated.

For the majority of hydraulic analyses involving transients, the wavespeed can
be considered to be constant. Even in those cases where some uncertainty exists
regarding the wavespeed, the solutions of the governing equations, with respect to
peak pressures, are relatively insensitive to changes in this parameter. As men-
tioned in Section 3.2, it is not unusual to deliberately vary the wave celerity by
as much as + 15% in order to maintain a constant time step for solution by the
method of characterlstlcs Does the same hold true, however, for the valve stroking
procedure'? Work done by Ruus indicates that maximum and residual pressures
obtained by a system are very sensitivg to non-ideal valve motion, especially in the
final 2L/a seconds.

Another concern in this context relates to the ratio of D/e in Equation 4.19. If
this ratio is changing during the optimization proceés, can the variaﬁion be properly
accounted for by the model? Furthermore, suppose that it is wished to vary the
wall thickness along the length of the pipe to take advantage of the reduction in ‘
maximum pressure which occﬁrs ras one proceeds upstream. In other words, each
pipe reach, L;, could have a different D/e ratio and hence a different wavespeed.
How does this affect the optimization procedure?

The answer to the former question is straightforward. The optimal nature of
the tau curves generated by the valve stroking procedures does not seem to be

particularly sensitive to variations in the wavespeed. Figure 4.6 shows the manner
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in which the heads produced by an optimal valve closure arrangement change when
the actual wavespee'd of the system differs from that used to obtain the optimum
tau curve. In the figure, the maximum head ratio is defined as Hpg, JHE, . where

Hge  is the maximum head occurring for ap and Hopme, is the maximum value of

head achieved for an arbitrary wavespeed. The maximum residual head is H¢ /H,

where H'¢, is the maximum head obtained after the cessation of the valve motion
and H, is the final steady state head at the valve. The dimensionless wavespeed is
simply a/ao.
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Figure 4.6: Sensitivity of optimum tau curve to variations in wavespeed. L = 550
m, p = 0.94, T, = 2.56, ap = 1100 m/s, Qo = 2.0 m®/s, Q; = 1.0 m®/s, H, = 67.7
m, D = 1.5 m, f = 0.010, number of pipe reaches = 8. ’
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The second question is equally easy to answer. If the designer deems it neces-
sary to use variable wavespeeds, they can be trivially handled by the model since
only a single variable need be adjusted at each trial. The piﬁe diameter under
consideration is known for each possib_lé solution and the wall thickness can Bg
evaluated by an iterative scheme provided that some means of relating wall thick-
ness t;) pipe:diameter, internal and external pressures and structurél considerations
is available. The other parameters in Equation 4.19 are all known from the system
specifications. \

Finally, if it is desired to alter the wall thickness along the length of the conduit,
it becomes necessary only to define each sublength as a different pipe in ‘the sys- -
tem. Hence, each reach of pipe can possess a different’ wavespeed and the pipeline
is modeled as a multipipe system. Some adjustment to the wavespeed may be
" necessary, as previously mentioned, in order to maintain a constant time step for
the method of characteristics solution. However, an excellent approximation of the

true system will be obtained.

4.5 Constraints

Equalit}y and inequality constraints can easily be incorporated into nonlinear opti-
mization problems by means of either penalty terms or transitional penalty func-
tions. :These are extra terms added to the objective function which impose a penalty
cost if the constraint is violated. Penalty terms may be expressed in the following

general form.

z = (Pfﬂi|9i{-’151, x27--'7zn}l . (4.23)’
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where
Gi{z1,...,z.} = the ™" constraint function
2 = the penalty cost associated with the ¢*®-constraint
Zi,...,Z, = the cost variables of ﬁhe " constraint

1 for Gi{z1,...,Z.} #0
0 for Gi{z1,...,2n} =0
Ki = a penalty coefficient, eg. 10?

In order to avoid the steep-sided valleys that are sometimes prbduced by penalty
terms of this sort, transitional penalty functions which provide a smoother change
in the cost function are often employed. This is desirable as it re;ults in a cost
surface which is n;lore easily traversed by certain optimum seeking strategies. Tran-

sitional penalty functions have the form
2 = pr; (¥ilmrmdl — 1) ‘ (4.24)

_ Figure 4.7 shows the excessive cost increase that é penalty function generates at
a constraint boundary. The scale is such that the contours of the cost surface are
less prominent making it appear as a low, flat region in the figure. |
Apart from any specific constraints imposed orn the system by design, t}here are
certain restrictions placed on the cost domain by nature itself. With respect to th.e
response time of the system, it has already been mentioned (Section 4.3.3) that
valve stroking theory canﬁot be applied when the duration of valve motion is less
than 2L/a seconds. In practice, this is not a severe restriction since‘ the behaviour
of 'the system is not unduly different for valve r¥10tions taking place in a shorter

period of time. The reason for this is simply that no reflected waves can reach the
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Figure 4.7: Example of a constraint formed by a penalty function.

valve before 2L/a sec.onds have elapsed anyway so no reduction in the maximum
head produced at the valve occurs. Some moderation of head can, however, take
~ place in the pipe upstream from the valve since reflected waves will Be traversing
the length of the pipe starting from the reservoir after L/a seconds have elapsed.
In practice valve motions having a duration less than 2L/a seconds only rarely
take place (undamped check valves being a notable exception).

An upper limit to the valve motion duration can be established by virtue
of the fact that, for changes in the system taking longer than about S(ZL/a)

_seconds[Karney/Ruus 1985], rigid water column theory provides acceptable solu-

tions for unsteady flow problems. This does not mean that the effects of fluid
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elasticity do not exist for longer duration valve motions, but that they are simply
not a requirement for an accurate solution. For these reasons, the model described
herein restricts its attention to only that part of the unconstrained cost domain

which falls between 2L/a <t < 10L/a, i.e.,, 1 <t <5.

4.6 Feasibility

In general, feastbility in the context of optimization refers to that part of the so-
lution domain which does not violate the constraints imposed upon the problem,
either intentionally by the designer or inherently by the physical Worlci. Section 4.5
has already dealt with the latter. However, there are some other restrictions which
define the region of feasibilty insofar as the model being described herein is' con-
cerned. Certain conditio;ls of flow which may occur in practice, or which result

from an inferior formulation of the problem, must also be considered.

o Negative pressures at fhe valve are definitely possible for certain system and
valve configurations. These situations are considered to be unacceptable as
potential solutions and are viewed as infeasible by this model since they would
permit air to be introduced into the pipeline via the valve. Such an occurrence
can normally be handled by placing an accumulator at the downstream end
of the pipe but as this introduces an unnecessary degree of complexity into

the system it will not be considered as a legitimate:solution here.

e Equation 3.20 is not valid for situations involving a reversal of flow. If it
were necessary to incorporate the possibility of negative flows into the model,

Equations 3.18 and 3.19 could be solved numerically using Newton-Raphson
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or some other method.

o A solution which would be optimal with respect to the transient behaviour
of the system can exist, but it may not satisfy the steady state requirements
of the system. Hence, any optimal solution must be able to meet the require-

ments for the desired steady flow characteristics of the system.

4.7 Self-Regulation

It is a relatively simple matter to incorporate the cost of computer analy51s directly
into the optlmlzatlon model. Irrespective of the type of optlmum seeklng strategy
employed by the model, the change in the cost functllon at each move or cycle can
be readily evaluated. If the cost of the computer resources needed to locate the
next improved value of the objective function exceeds, for an arbitrary number
of moves, the improvement in the value of the cost function the program may be
terminated. This is probably most important if the cost of a given system is small
and the computer analysis constitutes a significant prop;)rtion of the overall projeét

cost.



.Chapter 5

Model Testing

The model as described in Cha,ptef 4 is an abstract, hypothetical formulation of
a generalized mathematical framework which allows for many different impleﬁlen-
tations of the model depending upon the peculiar needs or desires of the analyst.
In this chapter a number of specific versions of tile model are described in con-
junction with the particular aspects of the investigation for which they were used.
Hence,)in the discussion that follows, the term model should not be unaérstood to
indicate some sta,.tic optimization construction. Rather, it should be realized that
the outcome of various testing stages has influenced the form and use of the model
in the latter phases. The model is first described as it was initially conceived and °
subsequent changes are related as they took place during the evolution of the final
model concept. |

All of the computér versions of the model® described were coded in Fortran 77
and have been implemented on the Honeywell DPS8/6 computer at the University
of Calga,ry. A partial, vectorized version of the model was also written in Fortran

and run on the University of Calgary’s CYBER 205 computer?.

IThe various versions of the model are referred to as TOM1, TOM2, etc., where TOM is an
acronym for Transient Optimization Model.
ZDescriptions of the various programs and versions of TOM can be found in Appendix A.

70
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5.1 Verification of Valve Stroking Algorithm

The valve stroking algorithm itself will not be described since a co’mplete account
of this is given by [Wylie/Streeter]. Interested readers are referred to this excellent
text for details concerning computerization of both types of valve stroking.

The validity of the optimi’zation model is completely dependent upon the ac-.
curacy and correctness of the valve stroking procedures since these are the means
by which the physical nature and the hydraulic performance of the system are

assessed. Two methods for testing the valve stroking algorithms were used:

1. The optimum closure curve produced by the valve stroking program can be
used as the input for another program that performs ordinary method of

characteristics time simulation and is known to generate correct results.

2. Experimental data for a valve-stroked closure can be used as a check on the

accuracy of the transient response predicted by the'valve stroking subroutine.

Figure 5.1 shows the results of one test of the former type. ‘Actual numerical
results are given in Table 5.1. Several similar tests were performed on a number
of different systems and in each case the method of characteristics simulation gave
a system response identical to that predicted by the valve stroking program.

For the latter test, data used by [Propson| in the experimental verfication of his
valve stroking procedure were utilized. The specjﬁcation of the system variables
conformed tb the laboratory ‘setup and the output of the valve stroking program
(Figure 5.2) is compared with the results (both predicted and experimental) ob-

tained by |Propson]. Note that the agreement here, although good, is not perfect.
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Figure 5.1: Comparison of system response predicted by valve stroking program
and ordinary method of characteristics simulation. Top figure—valve stroking re-
sponse (head in meters); Bottom figure—method of characteristics simulation re-
sponse. H, = 67.7m, Qo =1 m®/s, Q; = 0m?/s, T, = 3s, D = 0.75 m, f = 0.010,
a = 1100 m/s and L = 550 m, number of pipe reaches'= 8. Variation in discharge
at the reservoir end is linear with time. '



[ Valve Stroking | MOC? Simulation |
Time (5) | | Head (m) [ Q (m®/s) || Time (s) Head (m) | Q (m®/s)
0.00 1.000 65.78 1.00 0.00 65.78 1.00
0.25 0.840 81.78 0.937 0.25 81.78 0.937
0.50 0.717 97.82 0.874 0.50 97.82 0.874
0.75 0.617 113.89 0.811 0.75 113.89 0.811
1.00 0.533 129.99 0.749 1.00 129.99 0.749
1.25 0.443 130.33 0.624 1.25 130.33 0.624
1.50 | 0.354 130.60 0.499 1.50 130.60 0.499
1.75 0.265 130.82 0.374 1.75 130.82 - 0.374
2.00 - | 0.177 130.98 0.249 2.00 130.98 0.249
2.25 0.141 115.21 0.187 2.25 115.21 0.187
2.50 0.102 99.40 0.125 2.50 99.40 0.125
2.75 0.055 83.56 0.062 2.75 83.56 0.062
3.00 0.000 67.70 0.000 3.00 67.70 0.000
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Table 5.1: Comparison of system response predicted by valve stroking program and
ordinary method of characteristics simulation. Heads and discharges are taken at
the valve end. H, = 67.7 m, Qo =1 m®/s, @y =0 m3/s, T. = 3 s, D = 0.75 m,
f = 0.010, ¢ = 1100 m/s and L = 550 m, number of pipe reaches = 8. Variation
in discharge at the reservoir end is linear with time. :

aMethod of Characteristics

bTor both valve strok

ing and method of characteristics.
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This is likely aue to the fact that [Propson| has used a second order approximation
to evaluate the friction term in EQuaﬁiQn 3.10. In addition, [Propson| does not
assume that fully developed turbulent flow exists dﬁd accounts for the variation of
f with Reynoids number.
| The foregoing tests do not absolutgly guarantee the correctness of the valve
stroking algorithms. They do provide, however, strong support for the assertion
that the formulation and implementation of the valve stroking proced;lres is, in
all likelihood, valid. Having established, as well as is possible, the verity of the
hydraulic component of the optrimization model, further testing of the model is

now appropriate.

5.2 Validity of Cost Variables

5.2.1 Pipe Diameter

No testing has speciﬁcélly been done to demonstrate the importance of pipeline
d_iameter as a valid decision vrariable.'A glance at any of the literature dealing with
the topic of pipeline optimization will attest to the irﬁpor'tance of this variable
as a major factor affecting the cost of a pipeline installation. The problem, in
fact, is only to determine what other factors ’apart from the pipe diameter should
be included as key decision variables in the optimization process. The following
sections concern themselves with this issue and the validity of pipe diameter as a

cost variable is accepted a priori.
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from [Wylie/Streeter]) and valve stroking procedure (bottom figure). Top figure
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5.2.2 Boundary Condition Specification

The specification of the known boundary condition for the \}alve stroking procedure
has already been mentioned in Section 3.3.3. It was stated that, for the simple
system considere;d in this investigation, the optimal solution almost always occurred
when the va:riation in the discharge at the reservoir during the trgnsient phase was
linear with respect to time. For this system, the reservoir end is the only boundary
condition which can be fully specified. This must be so because the head at the
upstream end is fixed by the level of the water in the reservoir. It would make no
sense to prescribe conditions at some other physical location in the system since the
valve stroking procedure could produce values of head at the reservoir end of the
pipe that would Be inconsistent with the assumption of a constant reservoir water
level. Therefore, the only consideration in specifying completely the‘ conditions at
this boundary is the manner in which the discharge varies with time in going from
the initial to the final flowrate.

Referring to Figure 4.4, it can be seen that a linear time-discharge relation
produces sharp discontinuities in the slope of the discharge curve at the beginning
and the end of the val\}e motion. It seems intuitive that by eliminating one or both
of these instantaneous changes in the fluid velocity, some amelioration of the head
rise produced in the system might be achieved. The parabolic discharge function
was devised as a means of testing this hypothesis. The objective function used was
simply the sum of ﬁhe individual cost terms given in Chapter 4 i.e., |

Mass Placement

— — — —  Duration
t=n-1 t=n-—1

. r—-"a\
Cost=Cy >, (Ahmaz+1)PDF Az+Cy Y PDFAz+ (Cs)*

=1 =1
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" Valve System
+ (VFI(Vmaz - Vmin)k + VFZ(Amaz - Amm)m + C) PDFvalue (51)

The values of the various constants used in Equation 5.1 are: C; = 1.0, C; = 4.0,
8 =1.5, Doy = 0.5m, C3 = 7.0, a = 0.8, VF; = 50.0, VF, = 80.0, C= 0.0, B = 1.5,
k=1.3,m=2.0.

Note that no cost term for the operating expenses has been included. This
would simply introduce an extra mathematical relation that provides no additional
information. In any case, it can be considered to be accounted for in the mass
and/or placement cost expressions. For that matter, interactions between some
cost factors could permif the combination of other terms, such as the mass and
placement expressions. The cost function was evaluated for discrete combinations?
of stroking time and ¢ . Figure 4.5 shows a cost surface generated by the model
for a given diameter of pipe, with the parabolic discharge factor, ¥ and stroking
time as the decision variables. Several tests for ,diffeljént pipe diametei‘s, initial
and final flowrates, wavespeeds and friction factors were performed to determine
if any reduction in system heads (costs) was possible. In virtually all cases no
improvement could be obtained by altering the flowrate in this manner. Table 5.2
shows some typical cost results.for one such numerical experiment. Note that for
¥ = 0.5 the discharge-time relation is linear. Only for stroking times in excess of
4L/a seconds was any evidence found to support the contention that a nonlinear
variation in discharge could give some improvement in the objective function. For

those instances in which the cost function showed some improvement, the value

* 31t should be mentioned that the program TOM1 which was used to génerate the cost surfaces
constitutes the simplest optimization model, i.e., enumeration of all feasible solutions.
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Discharge Stroking Time T, (seconds)
Factor ¢ | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 4.50 | 5.00

0.000 1084 | 9107 | 7851 | 7407 | 7207 | 7201 | 7324 | 7678
0.125 9245 | 8136 | 7420 | 7035 | 6850 | 6836 | 6991 | 7383
0.250 8217 | 7484 | 7009 | 6728 | 6597 | 6602 | 6772 | 7183
0.375 7731 | 7063 | 6643 | 6430 | 6347 | 6387 | 6584 | 7014
0.500 7611 | 6904 | 6400 | 6201 | 6141 | 6202 | 6417 | 6863 |
0.625 7890 | 7155 | 6663 | 6408 | 6304 | 6333 | 6522 | 6950
0.750 81557 | 7440 | 6984 | 6692 | 6549 | 6546 | 6710 | 7117
0.875 8450 | 7784 | 7316 | 6997 | 6831 | 6800 | 6937 | 7320
1.000 8832 | 8220 | 7651 | 7353 | 7165 | 7101 | 7205 | 7558

Table 5.2: Objective function cost (arbitrary units) for parabolic discharge relation.
H, =67.7m, Q =2 m®/s, @y = 1 m®/s, D = 0.75 m, f = 0.010, ¢ = 1100 m/s
and L = 550 m, number of pipe reaches = 2. =

of ¢ was very close to 0.5, i.e., the discharge curve was nearly linear. [Propson]
has shown mathematically that for a frictionless system, and for stroking times less
than 4L/a seconds, that the minimum system heads are obtained when the flowrate
varies linearly with time. The tests performed in this investigation sﬁpport this -
assertion.

_These results are perhaps not surprising if one considers the nature of hyper-
bolic differential equations. Sharp wave fronts which exhiEit little or no diépersion
are typical for the solutions of these differential equat;ions by the method of char-
acteristics, hence the instaﬂtaneous changes in fluid velocity that take place are
not at all unrealistic. The significance of these numerical tests is that, for the con-
stant head upstream reservoir system, the sbeciﬁcation of the upstream :boundary
condition can be reduced to a linear variation of the dischargé_during the transient

phase. In other words, the discharge function need not be considered as a decision



79

variable in order to find the optimal value of the objective function. It is important

to realize that this is not necessarily. so for other systems.

5.2.3 Valve Closure Time

Two cost terms have been associated with the valve motion in the formulation of
the objective function given in Equa:tion 5.1. The first tefm is'simply intended to
represent the fact that, for critical control operations, the shortest possible duration
should provide the greatest cost benefit. As the length of the control operation is
increased, it is reasonable to expect the cost benefits to decrease. The second term
in the objective function relates spéciﬁcally (as described in Section 4.3.3) to the
cost of the valve. and its associated actuator /controller mechanism. Intuiti\}ely, one
_ supposes that this term ought to behave in a similar manner, i. e., that the cost of
the valve system is a decreasing function of time.  In Figure 5.3 the individual
cost terms for an arbitrary pipeline system are plotted. The uﬁits of cost bear no
relation to real costs and are produced by using Equation 5.1. They do, however,
give an indication of the nature of the individual cost components and of the
~ objective function itself. The mass? cost term is, as one would expect, a nonlinear,
dec;‘easing function of time. The placement cost term is constant for a given
pipeline diameter and length. The response time cost term is of course, by design,
a nonlinear, monotonically increasing function of time. The valve system cost term
is also nonlinear, but quite surprisingly, is not a gradually decreasing function of

time. Rather, it exhibits extremely high values for valve closure times near the

4The expression head cost term is synonomous with the mass cost term.
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minimum stroking time of 2L/a + At seconds®, then rapidly drops becoming very
‘flat thereafter. This would seem to indicate that only for quite rapid valve motions
does a cost term of this sort exert a signiﬁcant influence on the overall behaviour of
the objective fﬁnction. It is justifiably arguable whether the proposed expression
for the cost of the valve/controller/actuator is a realistic representation of the
actual cost behavior of these system components. Regardless of this, the function
demonstrates clearly that the valve stroking phenomenon is highly complex and
cannot be thought of in oversimplified terms. It behaves in a manner which is not
always in accordance with one’s intuition arld is not easily predictable. Figures 5.4
through 5.7 show the head-time curves and tau curves for various stroking times.
In addition; the values of the head cost term and the valve system cost term are
shown.

As an aside, it is worth mentioning that as the number of combutationél reaches
'increas'es, ‘thereby producing a smaller time step, the accuraéy of the velocity and
accéleration approximations is improved. The valve syséem cost term can be quite
sensitive to changes in the error of the numerical approximations depending on the
values of the constant coefficients and exponents used in the cost function. Hence,
one should pay strict attention to the size of the error terms generated by numerical
approximations and selecf, the number of pipe reaches, i.e., the time step, such that
the accuracy of the approximations is consistent with the formulation of the cost
term.

Tt is doubtful whether or not the complex valve motions required by the valve

5The At seconds of extra time is necessary to ensure that the change in fluid velocity at the
reservoir does not occur instantaneously. Although this is theoretically possible, such an event
" cannot occur in fact. '
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J

stroking procedure'can be both accurately and economically reproduced by actual
valve. systems. This also raises some important questions regarding the sensitiv-
ity of the valve stroking solutions to departures from the idealized valve closure
arrangements. These issues will be addressed in some depth in the section on sen-
sitivity analysis (Section 6). For now, it will be assumed that either the optimal
tau qui‘ves can be practically achieved or that the ideal solution provides a quasi-
optimal point which can then be modified by some means so that a practicable
approximation to the solution can be implemented. This being the case, it is now
possible to formally define the algorithm Whi.ch constitutes the optirﬁal solution

procedure.

5.3 Prototype Model

The optimization problem can be seen to be reducible to a nonlinear, bivariate
cost function with valve closure time; ‘T,, and pipe diameter, D;, as its principal
decision variables. The model which has been devised and used as a basis for all
.Subsequent versions'of TOM will be described in an algorithmic format. This
form of the model has been coded as the Fortran program TOM2.

In the previous section, it has been discovered that the cost function is a nonlin-
ear, three dimensional, continuous cost surface. Although the nonlinear methods
outlined in Section 2.3 for functions of tWo or more variables could be applied
to this problem, they are generally not very efficient and do not always guaran-
tee that a global optimum will be found. It is important to realize as well that,

although the cost expression is a continuous function of valve closure time, only
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discrete values of the stroking time may be used. This results from the fact that
in order for solution by the method of characteristics to be poésible, the closure
time must some multiple of the time step. Naturally, by making the time step
arbitrarily small, a closer approximation to a continuous function can be achieved.
In practice, however, it might be computationally uneconomical to use such small
time steps and a reasonable degree of accuracy can be obtained without recourse
“to minute increments of time. In any case, the size of tﬁe time step required to
generate an adequaté number of points on the tau curve will usually provide a
reasonably “continuous” cost function.

Furthermore, as pipes are not normally available in a continuous range of sizes,
the pipe di#netef may be treated as a discrete variable thus simplifying the prob-
lem and permitting a more reliable and efficient method of solution to be used.
Steady state requirements usually restrict the number of possible pipe diameters
to a relatively narrow range. The customary approach in many pipeline opti\mi.za-
tion procedures is, therefore, to generate a list of candidate¥ diameters which can
each be treated as a separate optimization problem. ’i‘hus, a ‘set of local optimal
solutions can be generated using univariate techniques and the global optimum can
be selected from these by inspection. Examination of the cost function given by
Equation 5.1 and shown in Figure 5.3 reveals that it does not have a continuous
first derivative. Gradient methods are unsuitable for the solution of such a func-’
tion and recourse must be taken to univariate éearch techniques. One of the most
efficient and reliable of these is the “Method of Golden Section.” This procedure is
described, in Section 2.3.1 and a complete discussion of the method is-provided by

[Smith et al]. This technique, in a modified form which deals with the discfetized
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nature of the cost function, has been used in the current model.
Figure 5.8 is a schematic depiction of the prototype optimization model. The

procedure is summarized in the following algorithm®.

Algorithm—1

Step 1 Input Qo,Qy, H,, L, z;, fi, a;,n, number of ﬁipes 1, objective function con-

stant coefficients and exponents, and list of candidate diameters, D;, where

7=1...,m.

Step 2 Adjust wavespeeds to maintain constant time étep if more than one pipe

exists in syétem. Set Costop = 00, initialize D,y and TP,
Step 8 For D;, j=1,...,m, do Steps 4-5.

Step 4 Compute steady state hydraulic grade lines for D; and check feasibility

and/or required head constraints.

o if Hgg is infeasible: 7 =7+1, go to Step 3.

o if Hggs is feasible: continue.
Step 5 Use Method of Golden Section to find optimal stroking time, Tort,
e if Costp; < Costp,_,, Costey = Costp;, TPt = T?, Dop = Dj.

Step 6 Output Costopt, Dop and TP,

6The subscripts and superscripts opt refer to the optimal values of their respective variables.
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In words, the model functions in the fé)llowing manner. The description of
the physical system forms the input to the model. Constraints afe incorporated
implicitly by certain system inputs or explicitly as conditional switches in the
Fortran program. For example, if a minimum downstream head of 36 m is required,
the head at the valve produced by the steady state computations is tested to ensure
that this restriction is satisfied for the pipe diameter being considered. If the
steady flow conditions are found to be feasible, the proéram proceeds to locate the
minimum cost solution for that candidate diameter using the Method of Golden
Section. Fach candidate diameter is proceséed in this fashion with the improved
local optimal values of the objective function and the valve closure time being
updated after each trial. Once the complete list of feasible diameters has been
analysed the optimal values of the cost, pipeline diameter and stroking time are
known. .

It is appropriate to include the Method of Golden Section algorithm here also
since the details of its implementation are different frorq those ordinarily employed
due to discretization of the cost function. This algorithm com.prises Step 5 of

Algorithm 1.

Algorithm—-2

Step 1 Input as in Step 1 of Algorithm 1 and tolerance’ .

7Ordinarily the value of ¢ will be equal to the time step.
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Step 2 Set the foll&wing:
Fibonacci factors F'1 = 1.6180339

F2 =0.6180339

Function FT = [Ezf—"-_' At (| R]| denotes integer part of R)
Intervals Te = 2L/a— At (initial coarse search interval)
T =Ts

T, = FT{F1,T1}
Times Ty, =2L/a+ At
T: =.T1 +Te

Step 3 Evaluate objective function (Equation 5.1) to obtain Costr,, Costr,.

Step 4 Set Ty = T2 + T and compute Costr,. (Start coarse search procedure.)

e While Costr, < Costy, : (. e., while function is decréasing)
Set Ty =T,
T = Ty

Costr, = Costr,
Costr, = C:’ostT4
Ty =T
T, = FT{F1,T5}
Step 5 Set T, =T} (initialize search procedure)
Ty = FT{F2,Ty}
Ts =Ty — To

Compute Costr,



Step 6 While T} > ¢

o If Costy, < Costr,, Discard seginent jﬁz by setting
Ty =T
T,=T;s
Costr, = Costr,
CbstT2 = Costr,
Go to Step 5.
¢ Else discard segment T;i by sefting
T =1T;
Tz =T
C'ostT;: Costr,
Costr, = Costr,
T.=T
T,=Ty+T
Ty = FT{F2,T\}

Compute Costr,

Step 7 Compare the final two function values and select the lower one.

o If Costy, < Costr,, then set Cost,p = Costr,, TP = T.

c

o Else set Cost,p; = Costr,, TP = Ts.

Step 8 Oﬁtput optimum cost, Cost,y;, and optimal stroking time, Tort.

STOP (procedure completed successfully)
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Diameter Stroking Time T, (seconds) _

D; (m) | 1.50 ] 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 4.50 | 5.00
0.50 5130 | 4580 | 4077 | 3860 | 3791* | 3847 | 4058 | 4501
0.75 7182 | 6727 | 6293 | 6113 | 6066 | 6137 | 6359 | 6811
1.00 0691 | 9297 | 8919 | 8767 | 8737 | 8820 | 9050 | 9508
1.50 15920 | 15600 | 15290 | 15180 | 15170 | 15270 | 15510 | 15970

Table 5.3: Objective function costs (arbitrary units) by enumeration. H, = 67.7
m, Qo =2 m®/s, Q5 = 1 m®/s, f = 0.010, a = 1100 .m/s and L = 550 m, number
of pipe reaches = 2. :

The accuracy and validity of the solutions produced by this version of the model
(program TOMZ2) have been tested by enumerating all feasible solutions for a given
system and comparing the results to the solution predicted by the model. In every
case the same optimal point results. Table 5.3 shows a summary of the results
produced by enumeration of feasible solutions. The output from TOM?2 is listed

below.

OPTIMAL VALVE STROKING

NUMBER OF PIPES = 1

NUMBER OF REACHES ON LAST PIPE 2

INITIAL STEADY STATE DISCHARGE 2.000

FINAL STEADY STATE DISCHARGE = 1.000

RESERVOIR HEAD = 67.700

TIME OF TRANSIENT COMPUTATION= 6.00

TIME STEP FOR STORING HEAD CHANGE DURING TRANSIENT = 0.0 SEC.

"

PIPE Nb LENGTH WAVE VEL. FRICTION FACTOR
( m) ( m/s )

1 550.00 1100.0 0.010

s%%%% PIPE TO BE STROKED FIRST IS PIPE. 1 #®xxx

DIAMETER IS 0.50 m.



PIPE NO ADJUSTED WAVE VEL NO. OF REACHES
( m/s )
1 1100.0 - 2
COST = 3790.7 TSTROKE = 3.50

DIAMETER IS 0.75 m.

PIPE NO ADJUSTED WAVE VEL NO. OF REACHES.
( m/s )
1 ) 1100.0 2
COST = 6065.7 TSTROKE = 3.50

DIAMETER IS 1.00 m.

PIPE NO ADJUSTED WAVE VEL NO. OF REACHES
( m/s )
1 1100.0 2
COST = 8737.0 TSTRCKE = 3.50

DIAMETER IS 1.50 m.

PIPE NO ADJUSTED WAVE VEL NO. OF REACHES
( m/s )
1 1100.0 2
COST = 15160.0 ) TSTROKE = 3.25
OPTIMAL COST = 3790.7 FOR STROKING TIME OF 3.50 s

AND A DIAMETER OF 0.5 m.

" The optimal solution by inspection of Table 5.3 is marked by an asterisk.
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can be seen that this value agrees with that produced by the model TOM2. It
is instructive to note that the optimal solution occurs for the smallest feasible
diameter in the list of candidate pipe sizes. This is not surprising if one recalls
the relationships Between pipe diameter, wall thickness, ho;)p stress and internal
pressure, which were described in Section 4.2.2. The inclusion of a steady staté
power cost term will force the solutions towar‘ds larger diameter pipes if the power
costs in the system are significant.

In summary, the model TOM2 has been been shown to be mathematically well
formulated and encoded, and the solutions it produces appear to be valid within
Ythe context of the model. However, it can well be argued that the idealized nature
of the solution, ideal, that is, with respect to the solvéd-for boundary condition,
Iﬁay be unattainable in practical terms. In many cases this is likely to be true since
the valve stroking procedure knows no restrictions in terms of realistic valve mo-
tions and therefore often produces optimal tau curves of a complex and impractical
nature. Interestingly enough, in the majority of the physical systems examined,
-the optimal closure arrangements have been found to reasonably conform to cer-
tain readily obtainable, “off-the-shelf” valve closures. This suggests an alternate
approach to the optlmlzatlon process in which the ideal boundary condition is re-
placed by some approximate form of the closure arrangement which gives the best
- system performance subject to the constraints of the problem. This topic is dealt

with in the following section.
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5.4 Best Fit Model

During the course of the investigation it was observed that most of the optimal
tau curves generated by the model TOM2 could be reasonably approximated by
either one of two sorts of common valve closure arrangements— equal percentage or
bilinear closures. This prompted the development of another version of ’phe ‘model
which has been encoded in the Fortran 77 program TOMS3.

The reasoning underlying this particular formulation is as follows. Since the
cost term (Equation 4.12) poses some difficulty in terms of its ability to accurately
represent the true cost of a valve system required to faithfully reproduce the ideal-
ized boundary cor}dition, it is logical to remove it from the cost function altogether.
The effect on the behaviour of the cost function is not extreme as can be seen by
comparing Figure 5.9 with Figure 5.3, which have been produced from identical
physical systems. The only difference between the two is that the valve system
cost term has been removed from the cost functiqn of Figure 5.9.

In light of the fact that whatever optimal tau curve the model generates is likely
to be complex, and therefore unecohomic, a more practical suboptimal solution
can perhaps be obtained by simply fitting the optimal closure curve with an easily
achievable, less costly tau curve. Except in cases where residual heads are of the
utmost importance, i.e., a high degree of transient control is required in reaching
and maintaining the new flow conditions, satisfactory system performance can be
provided by a “best fit” closure. |

Thus, this version of the model optimizes the physical system as before, but

without regard to the valve system cost. Having found a solution which is still op-
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timal in all other respects, the model simply fits the optimal tau curve with various
practical closures and assesses the cost of each alternative. The fitted tau curves
are used, along with the relevant system data, as the input for a progrém (subrou-
tine) which performs ordinary method ;)f characteristics time series simulation a;ld
which produces the new system response as its output. Using this information the
objective function can be reevaluated. The details of the procedures developed for
fitting different types of valve closures to the optimal tau curves are described in
subsequent sections.

Some general comments which apply t'o all of the fitting techniques developed
in this investigation can be made. The fitting process is only applied to the portion
of the tau curve .occuring before the final 2L/a seconds. The last 2L/a seconds of
the closure curve are simply replaced with a straight line from the fitted value of
7 at T, — 2L/a seconds to the final value of 7. The fitting procedures are simplified
by the fact that the initial and final values of tau must take their original values
in order to produce the initial-and final flow conditions.

Figure 5.10 shows the head-time curves and the tau curve for a valve stroked
system. The various ﬁtted tau curve results are displayed in Figures 5.12 through

5.16 for comparisqn. For reference purpuoses, Table 5.4 provides the actual numer-
ical values of the tau curve to be fit. It is prudent:at this point to refrain from
attempting to make any generalizations regarding the natﬁre and performance of
the various fitted boundary conditions siﬂce the results for each type of fit can
differ considerably depending on the values of the system parameters p, H,, I,
Qo and Qf; f, a, L and D; (see Figures B.l through B.14). As well, it should be

stated that, although a correlation coefficient was derived and examined during the
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. Figure 5.10: Valve stroked system response. H, = 67.7 m, D,y = 0.75 m, ToFt =3
s,Qo=1m?/s,Q; =0 m®/s, a = 1100 m/s, f = 0.010, L = 550 m, number of
_ pipe reaches = 8. All heads in meters, time in seconds.

Time (s) || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50
Tau || 1.000 | 0.840 | 0.717 | 0.617 | 0.533 | 0.433 | 0.354
TIME (s) || 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00 | 3.25
Tau | 0.265 | 0.177 | 0.141 | 0.102 | 0.055 | 0.000 | 0.000

Table 5.4: Tau values for valve stroked system.
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investigation, it did not provide a good indication of the system r’espor;se, particu-
larly for the minimum head fitting procedures. This is not surprisirig considering‘
Ruus’s statement [B. W. Karney, pers. comm.] that deviations from the optimum
tau values during the final 2L/a seconds of closure affect the head rise far more
than deviations prior to the last 2L/a seconds. It was founa that the ability of the
fitted boundaryrcondition to reproduce the ideal system response could be better
measured by ‘dimensionles§ head rise parameters. These are described in detail in
the section on sensitivity analysis and, as little benefit is to be had by repeating
that discussion here, no further mention of them) shall be made in t};e ‘current

section.

5.4.1 Equal Percentage Fits

The equal percentage closure has been coined the “poor man’s <;ptimum closure.”
It can be approximately produced by a V-notch ball valve using a linear driver.
Figure 5.11 shows a number of equal percentage closure curves aﬂ having the same
time of closure. An expression describirig the manner in which tau varies with time

during an equal percentage closure is
7 = 10™(T/7) , (5.2)

where m is a negative exponential parameter and the other quantities have been .
previously defined. The parameter m is a function of hy,t., 0, and Ahmas, as well
as whether or not the closure is from a full or part.ial valve opening. Note that
the equal peréentage curves can only‘ approach the final value of 7 asymtotically.

)

For this reason a linear portion is substituted during the final 2L /a seconds of
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Figure 5.11: Equal percéntage closure curves. (Excerpted from [Karney/Ruus
1985)). -

the closure _time. For a more complete Kdiscussion of equal percentage closures the
interested reader is referred to [Karney/Ruus 1985]. |

For the purposes of the model TOMS3, the object of the equal percentage fitting
procedures is to determine the value of the exponential factor m. Two different
equal pecentage fitting methods have been used—Ileast squares regression fitting

and minimum head (equal peak) fitting.

Equal “Percentage Regression Fit
In deaiing with regression analysis it simplifies matters a great deal if natural log-
arithms are used. In the following discussion the exponential factor m is converted

to its equivalent natural logarithmic value by

! m
m = .
2.3026

(5.3)
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_ Hence, the expression for tau now becomes
r = em (/T o (5.4)

" Tt is very often the case in least squares regression that no exact solution to the-
normal equation(s) exists when the approximating function is an exponential re-

lation. This is true of Equation 5.4 for which the expression for the error sum of

squares is

i=n ‘ -

[ 2 -
E=> (T; —e™ (T"/T°‘)) : (5.5)

i=1 .

where n is the number of time grid points over which the tau function is fit, i.e.,
T, —2L]a
= —— 41,
NI

It is trivial to show that the normal equation is
I —0=2Y (n — e TIT) (—(Ty/T.)ém ) (5.6)

for which no exact solution can be found. It is, however, possible, to obtain an ap-

proximate solution to the problem by taking the natural logarithm of Equation 5.4,

T;

Inm = m" <E) (5.7)

for which the solution to the normal equations is

" ::?((T’/Tc) In Ti)
i1 (Li/Te)?

(5.8)

A further refinement has been added in the model TOMS3 by using the' Newton-

Raphson procedure to improve upon the least squares estimate of the value of m'.
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Time (s) || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50
Tau | 1.000 | 0.841 | 0.708 | 0.595 | 0.501 | 0.421 | 0.354
TIME (s) || 1.756 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00 | 3.25
Tau | 0.298 | 0.251 | 0.188 | 0.125 | 0.063 | 0.000 | 0.000

Table 5.5: Tau values for least squares regression fit.

The best value of m' in terms of minimizing the error sum of squares will be a zero

of Equation 5.6. If we let Equation 5.6 be denoted by ¥, then

i=n

i=n N 2 .
7=3 () e
¢ i=1

’—’"i)z 2 (T3/T.)
— ) emilte (5.9)
=1 T

[

is the first derivative of . Thus, the procedure is simply to iterate by

, _ F(mi)
T F ()

M,y = (5.10)

until a suitable degree of accuracy has been reached. The initial estimate of m' is
provided by the least squares approximation. The final step in the process is to
convert m' to m by Equation 5.3.

Figure 5.12 shows the head-time plot and tau curve for the least squa;és regres-

sion fit of the optimum system of Figure 5.10. Tau values are given in Table 5.5.

Minimum Head (Equal Peak) Fit

The rationale for this particular fitting procedure is not difficult to comprehend if
the discussion in Section 1 regarding the relafionship between the impulse applied
to the fluid and the area under the head-time curve is recalled (see Equation 1.4). At
that time it was bostﬁlated that the shape of the head-time profile Which minimized

the system head rise would be that which most closely resembled a rectangle.



102

150 4= 1
/2 RN - 0.75
100 ‘.,:'/" ~—"as ‘d\ ]
'I \\~ ’v' L/ >
a //,,,'---— ~. \~--'/'/_ % legend
S s A A— R 0.50 O
. ¥l 3 5 O Q.POINT
50 . i = o M. POINT
...... - 0.25 & 3Q. POINT
. S vV VALVE END
I I I 0 o. TAU CURVE
0.0 1.0 2.0 3.0 4.0
TIME

Figure 5.12: System response for equal percentage regression fit. H, = 67.7 m,
Dopt = 0.75 m, T?"* = 3's, Qo = 1 m®/s, Q; = 0 m®/s, a = 1100 m/s, f = 0.010,
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds.

Examination of Figures 5.13 and 5.16 show that this is indeed the. case. Moreover,
it can be seen that by maintaining the head at or near its maximum value until
the valve motion is complete means that some of the impulse is still beiﬁg applied
beyond the valve closure time. Consequently, an, often, even lower value of the
head rise can be achieved by this type of closure than can be obtained by the valve
stroking procedure itself. This may seem surprising since valve stroking has alwaYs
been thought of as guaranteeing the lowest possible head rise for a given system
undergoing a change in flow conditions. However, the valve stroking method has
placed upon it the additional restriction that no residual transients occur once
the valve motion has ceased. Since the minimum head fitting procedure is not

subject to this constraint, it is sometimes possible to reduce the maximum head
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" Figure 5.13: System response for equal percentage minimum head fit. H, = 67.7
m, Dopt = 0.75 m, T = 3's, Qo = 1 m3/s, Qf = 0 m®/s, a = 1100 m/s, f = 0.010,
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds

Time (s) || 0.00 | 0.25 | 0.50 ] 0.75 | 1.00 | 1.25 | 1.50
Tau | 1.000 | 0.861 | 0.741 | 0.638 | 0.549 | 0.473 | 0.407

TIME (s) || 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00 | 3.25
Tau 0.350 | 0.301 | 0.226 | 0.151 | 0.075 | 0.000 | 0.000

Table 5.6: Tau values for equal percentage minimum head fit.

to a value below the valve stroking head rise. For systems in which the prospect
of some residual transient behaviour is not crucial, this type of closure may offer a
superior alternative. These comments apply equally to any type of minimum head

fit including the bilinear tau curve described in Section 5.4.2. "
The minimum head exponential parametef is obtained using the standard Method
of Golden Section described in Section 2.3.1. The depéndent variable is the maxi-

mum system head and the independent quantity is the factor m. The trial value of
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Figure 5.14: Relationship between the exponential parameter m and the system

head rise.

m is used to produce the tau curve input for a subroutine which performs ordinary

method of characteristics time series simulation and generates the system response:

The quantity to be minimized is the maximum head rise. Figure 5.14 shows a plot

of the maximum head rise, Ahpqz, and the error sum of squares, F, for different

values of m. The arrow indicates the direction of decreasing value of m. Each point

oh the curve represents a change of a constant Am from neighbouring points. It

is easy to see from this diagram that a single critical point exists with respect to

m corresponding to a minimum value of the head rise. The existence of a single

“critical value of m for the minimum head and another for the minimum error, F,
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has been observed in every case that was studied. The points corresponding to the
values of m associated with least squares and minimum head fits are marked with
symbols. The starting values of m and Ah,,,,; are provided by the least squares
regression parameters. A suitable value for the increment in m for conducting the
coarse search was found to be m/5.

Figure 5.14 and others like it will be discu’ssed in more depth in the section on
sensitivity methods. It has been included here only to demonstrate the relationship

between the exponential factor m and the system head rise.

5.4.2 Bilinear Fits

The bilinear fit, as the name suggests, simply splits the tau curve into two linear
portions. The first linear portion extends from 0 < ¢t < T, — 2L/a seconds. The
second segment obtains from T, — 2L/a < t < T,. The form of the approximating

equations.are

ait + 7o if0<t<T.—2L/a
T = , (5.11)
asAt+1p ifT,—2L/a<t<T, '
where
T; — Ty
2L/a "

The fitting procedures determine the value of a; and once this is known the pa-

ro=at' +7, ('=T.,—2L/a) and a;=

rameters for the last segment may be calculated.

Least Squares Regression Fit

The regression equations for the bilinear fit are very simple.

=2 (T/T)n — TN (LT
it (T/T)?

(5.12)
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Figure 5.15: Sysfem response for least squares bilinear regression fit. H, = 67.7 m,
Dopt = 0.75 m, TP = 3's, Qo = 1 m®/s, Qs = 0 m*/s, @ = 1100 m/s, f = 0.010,
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds.

Time (s) || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50
Tau || 1.000 | 0.891 | 0.781 | 0.672 | 0.563 | 0.453 | 0.344

TIME (s) || 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00 | 3.25
Tau 0.235 | 0.125 | 0.094 | 0.063 | 0.031 | 0.000 | 0.000

Table 5.7: Tau values for least squares bilinear regression fit.

Since no transformations are involved in the approximating function, these equa-
tions are exact. Figure 5.15 shows the respdnse of the system of Figure 5.10 to the

bilinear regression tau curve. Again, for reference, Table 5.7 gives the actual tau

values for this fit.
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Figure 5.16: System response for- minimum head bilinear fit. H, = 67.7 m,

Doy = 0.75 m, T = 3 s, Qo= 1 m®/s, Q; = 0 m%/s, a = 1100 m/s, f = 0.010,
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds.

Time (s) || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50
Tau || 1.000 | 0.916 | 0.832 | 0.748 | 0.664 | 0.580 | 0.495
TIME (s) | 1.75 | 2.00 | 2.25 | 2.50.] 2.75 | 3.00 | 3.25
Tau | 0.411 | 0.327 | 0.245 | 0.164 | 0.082 | 0.000 | 0.000

Table 5.8; Tau values for minimum head bilinear fit.

Minimum Head Bilinear Fit
The procedure for the bilinear minimum head fit is analogous to that for the
~equal percentage one. The only difference lies in the equations that are used for

generating the tau values, which are given as Equation 5.11.

Figure 5.16 and Table 5.8 show the details of the system response and tau curve

for the bilinear minimum head fit of the system shown in Figure 5.10.
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5.5 Extensions for Multi-diameter Pipelines

Although the developments outlined in the previous sections have been restricted
to a single diameter pipeline, the~procedur:es can be extended to systems containing
pipes of different diameters.

For the general case of n possible pipe diameters and pipe segment lengths,
the solution space has n® + 1 dimensions, the extra decision variable being the
response time of the system. The direct sgarch techniques described in Section 2.3.2
provide a suitable solution method for this general problem. Bgy using the linear
programming methods outlined in Section 2.2.1, an excellent approximation to the
solution can be obtained based on the steady state characteristics of the system.
This solution may then be uséd as a starting point for the nonlinear technique.

A simpler, but not unrealistic, multi-diameter problem involves a pipeline sys-
tem in which the pipe diameters ha.vé a fixed relationship. For example, a pipeline
may be composed of n pipes where the diametérs are related by an expression of

the following kind.

Dii1 =kD; where k is a constant factor. (5.13)
The solution to a problem of this sort can readily be obtained by the univariate
methods proposed in this dissertation.
5.6 Summary

In taking the conceptual, mathematical model of Section 4 from its neophyte stages,

and by virtue of the investigations conducted, through an evolutionary process
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which allowed the development of a collection of models providing a fiexible tool
~with which the designer/analyst can interact, it is evident that the outcome of the
study has been a heuristic model(s). The “larger” model embodies a number of
similar sub-modéls, each of which incorporates a specific approac.h to the problem.
It also has within‘it several layers of analytic suboptimization procedures. The
basic analytic mode.l rests on the assumption that provided the s;)ll_ltion can be
accomplished by the implementation of idealized boundary_condition behaviour,
a “true” optimal solution exists and can be found by a mathematical process. If
the problem is such that this may or may not be true, as is more likely to be the
case, additional rules and procedures (for example, the fitted boundary condition
solution(s)) may be utilized by means of Whi.ch other suboptimal solutions can
be discovered. Obviously, ;aLs knowledge of the processes (and their problems) by
which solutions, optimal, suboptimal, or even feasible, are sought increases, more
appropriate ‘rules and procedures will be developed. For instance, simply because
the valve stroking procedure allows one to arrive at an ideally optimal solution,
does not necessarily mean that this is the best possible point for selecting an
apl;roximate solution. Perhaps _ea,c.h valve stroking solution could be.fit by any
number of practicable approximating closure arrangements so that a number of
equally good nonideal solutioﬁs might be established. It is not difficult to postulate
other variations that might prove to be valuable techniques for locating better
solutions in optimizing pipeline designs while incorporating t‘ransient phenomena.

One final aspect of the optimization process‘ needs to be addressed—sensitivity
analysis. Without the means to assess the impact on the model s'olutions, of

changes in the cost function, the constraints or their associated parameters and
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variables, the utility of such a model is not particularly viable.- The world is a
highly dynamic place and decisions made on the basis of static information are
likely to be unsound. The following section describes some of the procedures and

techniques developed to provide answers to the question, “What if...?”



Chapter 6
Sensitivity Analysis

No optimization process is complete without methods for assessing the sensitivity
of the model solutions to changes in the parameters, cénstraints or the objective
function. Not only do the actual conditions inﬁuéncing the problem change but
there is always some inaccuracy, uncertainty, or even error, introduced whenever
a physical phenomenon is described in purely mathematical terms. In order to
‘evaluate their significance, in terms of providiﬁg information for decision making,
some means of e}.(plofing the ramifications of such changes is mandatory. In this
section, a number of techniques and ideas for acquiring sensitivity infbrmation will
be described. A general account of sensitivity analysis procedures is given, followed

By explanations of the more specific methods and the situations to which they may

apply.

6.1 General Sensitivity Procedures

In dealing with complex, integrated analytic or heuristic optfmization models, it
is difficult to find rigorous, mathematical techniques—such as exist-for linear pro-
gramming models—for conductingrsensitivity studies. More often, direct, iterative,
interactive methods must be used in order to extract information regarding the ef-
fécts of changing system conditions on thé model solutions. Figure 6.1 shows the

interrelationships of the various sensitivity elements devised in this investigation.

111
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It can be readily seen that the sensitivity process comprises many individual com-
ponents interacting with one another in a complex'fashion. Various parts and
paths may be followed depending upon the nature of the problem and the type of
sensitivity information being sought. |

The most direct approach to sensitiv_ityr analysis cdnstitutes the top loop of the
schematic in Figure 6.1, in which one simply makes whatever changes are desired to
the model itself and produces a new solution for the modified system. The degree
of departure from the ofiginal solution indicates how much the original solution has
been affected by the alteration of the system®. This is appropriate if the changes
affect only the values of the decision variables and the objective function. In other
words, when the objective function, the constraints or their parameters have been
modified.

A similar procedure can be applied if changes are made to the obtimal values
of the decision variables and the parameters which influence them. For exampie, if
the idealized boundary condition solution is altered in some manner, the modified
tau curve can be used as input for the ordinary method of characteristics time
series simulation to generate a new system response. The information generated
from this procedure can be used to aésess the changes in the cost function or the
validity of constraints, etc..

The sensitivity procedures outlined in the schematic also show three additional
processes—stochastic treatment of closure curves, equivalent system approxima-

tions and variation of the “best-fit” tau curve parameters. These are techniques

1In Figure 6.1 the arrows entering the OPTIMIZATION MODEL box generally indicate that
the objective function is to be reevaluated.
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Figure 6.1: Schematic diagram of components of sensitivity analysis.
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intended to allow a more specific type of sensitivity analysis pertaining to the cost
and hydraulic performance of the system to be analysed. The following sections '

discuss each in turn.

6.2 Stochastic Treatment of Valve Closure Curvés

In practice, no tau curve can be executed with perfect accuracy because of either
the physical limitations of the valve system or anomalies introduced by pov;fer fluc-
tuations, maintenance problems and other unforeseen or unpredictable events. For
many problems of this nature, random departures of the {(alve system from its
ideal or anﬁicipaped behaviour can be; expected tor occur. How do these discrep-
ancies affect the system performance? A simple procedure for evaluating minor,
random flucuations in the tau curve would be to simulate the system résponse us-
ing ordinary metho;i of characteristics time geries simulation. The tau curve can
be subjected to some form of stochastic treatment and the deviant tau curves used
as the input for the simulation procedure.

'This approach is appropriate for installations in which a high degree of control
is required for the safe and proper functioning of the system. Generally, however,
it is more ir-nporta,nt to determine by how much the ‘closure arrangement can be

varied before the solution becomes nonoptimal. The general procedures given in

the previous section are more suitable for obtaining this kind of information.
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6.3 Approximation by an Equivalent System

Very often, in conducting transient analyses, it happens that it is convenient or
necessary to use a simplified representation of the pipeline system. Many factors,
such as bedding or anchoring conditions, frictional resistance, etc., are not known
with certainty. Important parameters, wavespeed for instance, and hence the sys-
tem behaviour, can be affected by minor variations in the hydraulic properties
of the system. In fact, such variations always exist in real installations and any
mathematical model used to represent the physical pipeline is, in actuality, only
an approximation to the thing itself. Moreover, known physical discontinuities in
system propertiés may force the designer to adopt a sirﬁpliﬁed representation in
ordér to carry out the analytical procedures. For example, if a fibre-reinforced
polyester pipeline has a very short steel section, perhaps at a river crossing, an
unreasonably small time step might be needed in order to a:pply the method of
chara,cteri.stics for transient analysis.

One technique for accomodating the aforementioned difficulties is to create an
equivalent system which spans minor variations in system properties while main-
taining the numerical requirement of a common time step. The physical length,
the momentum distribution and the headloss in the pipeline are retained while °
wavespeed, frictional resistance and cross sectional area are converted to “equiva-
lent” values. The procedures for carrying out an equivalent system conversion are
well known and a full account of these is given by [Wylie/Streeter]. If a variable
property system is to be optimized according to the methods put forward in this

investigation, in other words, having a single diameter and a constant time step, it
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must first be transformed into an equivalgnt ‘system. This equivalent system can
then be pptimized in the usual manner. |

Having obtained a solution for the problem, the question arises, “How sensitive
is the solution to the approximations made in order to facilitate the modeling pfo-
cess?” The way in which the sensitivity of the actual system to the “approximate”
optimal' solution is tested, is simply to simulate the response produced in the ac-
tual system by the tau curve generated for the equivalent systerﬁ represeﬁta,tion by
the optimization model. Figure 6.2 shows the ideal valve stroking response of an
equivalent system. Figure 6.3 shows the response produced by the same “optimal”
tau curve in the actual system. The values of the various hydraulic parameters for
both systems can be calculated from the data given in the figure captions and the

equations in [Wylie/Streeter).

6.4 Sensitivity of “Best-fit” Tau Curves

Sections 6.2 and 6.3 have been included for the sake of providing a complete de-
s<.:ription of sensitivity procedures. The met}iodg outlined in the current section
Jhave been given more attention because they are considered to be of greater prac-
tical concern. The concept of fitting the idealized boundary condition solution by
various standard closures has been explained i_n Section 5.4. The objective of the
sensitivity studies in this connection has been to find some method for evaluating
the effect of variation in the parameters of the approximatiﬁg equations on the

system performance. In addition, a logical and informative means of presenting

the sensitivity information was desired. Both goals have been achieved with a high
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Figure 6.2: Equivalent system response. H, = 100 m, Qo =2 m®/s, Q; = 0 m®/s,
f = .01735, a = 1035 m/s and L = 2300 m, T, = 8.889 s and number of sections
= 4. . ‘

degree of success.
The performance indicators that were selected as being the most meaningful
are the dimensionless maximum head rise, Ahmaqz, and the dimensionless maximum

residual head rise, Ah[3

Hmaz—Hr
Abhpegz = ——— 6.1
. (6.1
Hres — H
A res —_ maz r .
thaz ————————Hr (6.2)

The former is the maximum head rise obtained in the system during the valve
motion and the latter is the maximum head rise obtained after the valve motion
has ended. Thesg quantities have been made dimensionless by referring them to the
reservoir head. The reasons for selecting the reservoir head as a reference quantity

are
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Figure 6.3: Actual system response. H, = 100 m, Qo =2 m?/s, Q; = 0 m3/s,
number of pipes = 3, fi = .02, a; = 1000 m/s, D; = 1.2 mand L; = 1000 m, f; =
.01, a3 = 1200 m/s, D; = 1.0 m and L; = 800 m, fs = .015, as = 900 m/s, D3 =
0.8 m and L3 = 500 m. Pipes are numbered consecutively from the reservoir and
the equivalent reach length was taken as 2300 m.
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1. It provides an absolute frame of reference so that the sensitivity of different

systems may be more readily compared.

2. The valve motions which are of critical interest are most often complete
closures from full or partial openings. This means that the final steady state

is also equal to the level of water in the Teservoir.

The dimensionless maximum head rise for the ideal valve stroked system is de-
noted by Ah%®t_. Comparing the values of Ah,,, and AR provides some measure
of how close to optimal the response is in terms of maximum internal pressure. It
does not indicate, however, the shape of the head-time profiles, although this can
be inferred from the agreement between the two values. The paran';eter AR
indicates how fully the new flow conditions have been obtained.

These parameters arer used in conjunction with the dimensionless system pa-
rameters p, hy and ¢, (defined in Section 4.1) to provide a fairly complete nondi-
mensional representation of the system and its sensitivity to changes in the be;st-ﬁt
pérameters m and a; defined in Section 5.4. The values of Ahy,, and AR
for a series of m or a; values are ‘plotgted as dependent variables against the error
sum of squares, E, for a particular type o:f fit. Figures 6.4 and 6.5 are examples
of such curves for the equal percentaée and bilinear regression fits. Several more
sensitivity plots can be found in Appendix B. The values of ¢, and p are typical for
many pipeline installations. The figures show sensitivity curves for a wide range
of frictional values.

Each dot on the plot represents one value of the fitting parameters seperated

by a constant amount from each neighbouring point. The arrow indicates the di-
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rection in whic}} the fit parameter is decreasing, i.e., increasing in absolute value.
Depending upon the values of p, hy, t., the shape of the optimum tau curve and the
type of approximating function, the sensitivity curves can differ remarkably. In vir-
tually every case, however, the curves éxhibit two distinct global minima—one with
respect to the error sum of squares corl_'esponding to the “true” value of the least
squares regression parameter, and another Witi‘l respect to Ahm;w corresponding tc;
the value of the minimum head fit parameter.

These plots demonstrate quite clearly that the minimum head closure is seldom
the same as the minimum error closure. Those tau curves which more closely
approximate the closure arrangement over its latter portion produce lower head
rises in the system. They also show that it is not uncommon for the minimum head
fit to produce head rises that are lower than can be obtained by valve stroking
" itself. The plots for the maximum residual head rise are also shown below its'
corresponding maximum head rise plot. In general, the plots indicate that the
least error fits usually are associated with a lower residual head while the minimum
head fits tend to have higher values of residual head. This can be misleading
since, in some cases, the maximum residual head occurs at the end of the valve
motion. Thereafter, the head declines to near the final steady state head with only
fﬁinor periodic oscillations in the head persisting. This is actually a fairly desirable
situation if one need not have fully ébt.aiﬁed the new flow condition at the moment
the valve motion ends. Perhaps a preferable alternative in evaluating AhJ:;, would
be to look for the maximum residual head starting L/a seconds after the valve
motion has ceased. This would restrict the consideration of residual head values

to those occuring periodically rather than those occurring during a more or less
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linear reduction :from the maximum head to values nearer the final steady state.
The sensitivity plots presented in this section provide a great deal of information
to the analyst in a concise and coherent format. Almost at a glance, one can see
what the most effective approximate valve motions are likely to be, both in terms
of maximum heads and maximum residual heads. The slope of t};e,curves also
conveys information regarding which ranges of fit parameters producé the least
change in the head rise for an incremerital error. It is not difficult to imagine that,.
if such curves were available for a wide range of sysfem parameters and different
types of valve closures, they could provide valuable guidance in selecting commonly
available valve closures which provide more “optimal” system performance than

could be had by some arbitrary selection.

6.5 Summary

Sensitivity studies are crucial to the valid and successful implementation of ahy
optimization process. This section has introduced a few ideas reéarding some actual
and some potential methods for obtainipg vaﬁous types of sensitivity information.
Of particular interest are the general methods and the sensitivity curves developed
for evaluating the performance of the various “best-fit” tau curves. These provide
a fairly complete and workable set of sensitivity tools for the analyst and should
make the viability of the model developed in this investigation a more tenable

proposition.



Chapter 7
Conclusions and Recommendations

In the past, optimization techniques have focused on the steady state aspects of
pipelines :txlfnost excl.usiw;'ely. Time-varying characteristics of pipelines are either
ignoréd or treated in a quasi-steady state manner. The internal pressures that the
pipe must withstand are of paramouﬁt importance in determining the cost o.f the
pipeline. Since the cap}tal cost of the pipeline represents the greatest cost compo-
nent of most pipeline installations, it seems illogical to neglect fluid transients as
the heads p'roducea by these shock phenomena can be many times greater than the
anticipated steady state design pressures. The present investigation has attempted
to formulate some rationale by means of which optimizing design procedures that
properly account for the effect of transientrs in pipelines can be developec}. More

precisely, the objectives have been:
o The identification of relevant cost parameters and cost varjables.h

e The development of a conceptual framework within which optimizing design

" procedures can be constructed.

¢ The formulation of a sensible effectiveness criterion and a meaningful set of

constraints incorporating the cost components.

o The definition of the nature of the cost function and the selection of appro-

priate, efficient methods for its evaluation.
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e The consideration of methods which will allow the sensitivity of the solutions

to changes in cost parameters to be explored.

The outcome of this investigation has been successful in accomplishing these goals
and positive in identifying numerous areas of interest for potential future work.

Specific conclusions arising from the study are:

1. The model(s) developed and described in this investigation comprise a heuris-
tic approach to the problem of cost optimization of pipelines with respect to
hydraulic transients. They require interaction and input from the designer

in order to be fully utilized.

2. If one accepts the premise that no residual transients should occur once the
valve motion is complete, then the model TOM?2 based entirely on valve
stroking theory is a rigorous mathematical model for optimization with re-

spect to transients.

3. The problem of cost optimization of a pipeline is a highly nonlinear, complex

function of many variables.

4. The model(s) employ valid algorithms and produce mathematically correct .

solutions.

5. The optimal solution in the ideal boundary condition model (TOM2) almost
| always occurs whe_n the variation in the discharge during the transient phase
is a linear function of time. This is true for the case of a valve closure in the
system composed of a constant head upstream reservoir, single pipe with a

valve at the downstream end.
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6. Practicable, commonly available valve closure systems can often closely ap-
proximate the idealized boundary condition behaviour. In particular, optimal
tau curves often resemble equal percentage or bilinear valve closure arrange-

ments. .

7. If the restriction imposed by the valve stroking procedure, that the final flow
conditions be fully achieved precisely when the valve motion ends, is removed,
then it is often possible to obtain a lower value of maximum head rise, Al 44,

in the system than is obtainable by valve strdking.

8. The parameters Ahmas and AhL:  are good indicators of the characteristics

and performance of non-ideal boundary conditions (tau curves).

Many problems have been overcome, much information has been gathered and
some new ideas, methods and approaches to the optimization of:simple pipélines
have been developed. Many more problems have not been solved, our knowledge is
still very incomplete and, no doubt, some better or improvéd techniques for incor-

porating transient phenomeha into optimization procedures will be forthcoming.

The following suggestions for future research can be made.

¢ The model(s) should be tested by attempting to apply it to an actual pipeline,

installation.

e More information is needed in order to clarify which variables are impor-
tant in characterizing the performance and cost of valve system options. Is
this possible given the current state of valve system technology? Will the

developments in electronic controllers, power electronics or computer aided
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manufacture of valves permit the economic production of accurate, dedicated

systems for critical valve motion?

We can be reasonably certain that the ideal boundary condition solution rep-
resents a global optimum since, for each point in the solution domain, only:
one uniquely optirﬁal tau curve exists. However, if non-ideal boundary con-
ditions aré employed, can the existence of a global optimum be assured? Can
any general guidelines be established to determine w—hich type of non-optimal
valve motion will provide the best results for a given set of dimensionless

~

pipeline parameters? '

Can the ideas and methods presented for the upstream reservoir, single pipe
and downstream valve system be readily applied to other types of boundary

conditions or to more complex systems?

Clearly, this investigation constitutes only the barest of beginnings for what

promises to be a challenging and important area of research and development. This

work will be considered to have been a worthwhile effort if it does nothing more

than kindle the interest of others, both researchers and practicing professionals,

and encourages them to take further steps in the direction initiated by the work of

Yao-Chung Chiang and the present study: that is, towards the development of a

more comprehensive set of tools with which concerned and dedicated professionals

can advance the state of beneficial technology and, hopefully, the condition of all

-

mankind.
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Appendix A
Program Descriptions

The following information has been largely extracted from the document@tion of
each of the programs listed in this appendix. Copies of any of these programs are
available from the authors. The graphics segments contained in the programs uti-
lize the DISSPLA (version 9.0 or higher) graphics package from Integrated Software

Sytems Corporation of San Diego, California.

A.l Optimfzation by Enumeration—Model TOM1

AUTHORS: B.W. KARNEY, D.A. McINNIS
DATE: 24 MARCH 1986

METHOD: This program calculates transient heads and discharges
in a series pipeline due to valve motion at the downstream end.
In addition, the dimensionless valve parameter, TAU, required
to produce the transient caused by the prescribed boundary
conditions is calculated. The Method of éharaqteristics is
used to produce the solution by generating the interior values
of head and discharge for all time successively at each

physical, computational section. Inpﬁtslinclude the specified
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duration of the trans?ent (TSTROKE), the initial and final
steady state head (ﬁO and HF) and discharge (Q0 and QF) and the
transient discharge at the upstream section for the duration of
the transient. The upstream head may be specified as a
constant reservoir head (HRES) or alternately be input as
discrete values at specific times. Thé variation in the
flowrate during the transient phase is a parabolic function of
time and the initial and final discharges. Parémepers
describing the physical nature of the system include pipe
lengths: diameters, D’Arcy - Weisbach friction factors and
wavespeeds. Heéd losses at series pipe connections are
considered to be negligible. It is assumed that the valve
discharges to the étmosphere and that the hydraulic grade line 7

datum is set at the level of the valve.

An additional feature of the program permits the user to
generate output in graphical form as three dimensional
time-space-head diagrams, summary profiles of head vs. time
and head vs. distance, or any desired combination of these
three types of graphs. The character input designations forr

the various graph types are:

HDT - 3 dimensional head-distance-time

H_T - summary plot of head vs. time at
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valve, 3/4 point, midpoint and 1/4 point
H_D - summary plot of head vs. distance for

‘ steady flow, maximum head and minimum head

The graphical output may be directed to either a terminal or a

plotting device segment by specifying respectively "TERM" or

"PLOT" in the plot data input file.

This program is structured in six blocks:

STRUCTURE:

BLOCK 1 - Reading and writing the input-data

BLOCK 2 - Calculation of pipe constants and steady state conditions.

BLOCK 3 - Transient state calculation

BLOCK 4 - Memory storage update )

BLOCK 5 - Determination of maximum and minimum heads

BLOCK 6 - Final print summary

SUBROUTINES:

PARAB - Parabolic interpolation scheme for valve closure

PRELIM - Sets up arrays for storing plot information and computes
the interpolation scheme for obtaining plot values

STORES - Stores the values to be plotﬁed at times consistent

with the grid mesh size



PLOT3D - Produces the actual plots or plotting files

RTRIM

PRIMARY VARIABLES

REAL:

- Returns the length of a character string trimmed of

- trailing blanks

A

AR‘

B

D

DT
DTHEAD
F

FF

G

H
HARRAY

HLIMIT

HMAX
HMIN
HP

HPM1

HRES

wave speed

pipe area

A/ (G=AR)

pipe diameter

time step

time increment for storing discrete inéut heads
Darcy-Weisbach friction factor

FxL/ (2%N*GxD%AR%%2)

acceleration due to gravity

known head at section stroked firstr

array for storing all values of head

allowable max. or min. head for alternate ﬁethod
of valve stroking (Ruus) - not implemented yet
vector for maximum head at each section’

vector for minimuﬁ head at each section

unknown head at a section (to bé calculated)
known head at previous timestep

steady state reservoir head

137,
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HTMAX = maximum head rise

HTMIN = minimum head rise

HTRANS = discrete input values of head

L = pipe length

Q = known discharge at sectiqn stroked first
QARRAY = array for storing all discharges

QF = final steady state discharge

Q0 = initial steady state discharge

QP = ﬁnknown‘discharge at a section (to be calculated)
QPM1 = known head at previous se;tion

T = time from start of transient at valve
TAUPLT = vector for storing TAU curve

TSTROKE = time interval for computation of transients

i for SI and 2 for FPS

|

INTEGER: IUNITS

IPRINT = print block repeated every IPRINT time steps

M = number of points on tabulated tau curve (Y)

N = number of reaches in a pipe

NP = number of pipes in sfstem

NPMAX = maximum nﬁmber of pipes in system

NRLP = number of reaches in last pipe (used to find DT)
NSECM = maximum number of sections in one pipe

PIPE = pipe to be stroked first (usually 1,

i.e., upstream)
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Number of »-T, CPU
Pipe Reaches | Grid Size | Time (s)

2 17 x 17 5.774

4 33 x 33 58.33

8 65 X 65 737.0

Table A.1: TOMI1 computer run times ori Honeywell DPS8/6. Total number of
solution points evalyated is given by the expression in the center column.

FORMAT FOR DATA FILE (opt_data):

LINE

DESCRIPTION

TITLE (60 CHARACTERS OR LESS)

GRAPHICS SELECTION

‘NP NRLP IPRINT IUNITS

Q0 QF HRES PIPE

DTHEAD M HTRANS(M).....
L({1) D(1) AQ) F@)-

L(ID D(I)" A1) F(D)

Table A.1 shows the performance of the program in terms of central processing

unit (CPU) usage for a number of complete runs, but without any graphical output

being generated.
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A.2 Optimization by Univariate Search—Models TOM2

and TOM3

AUTHORS: B.W. KARNEY, D.A. McINNIS
DATE: 4 JULY 1986

METHOD: This program calculates‘transienﬁ heads and discharges
~in a series pipeline due:to¥valvé motion at the downstream end.
In addition, the dimensionless valve parameter, TAU, required
to produce)the'trahsient caused by the prescribed boundary
condifions is ealculated. rThe Method of Characteristics is
used to produce the solution by generating the interior values
of head and discharge for all time successively at each
physical, computational section. Inpﬁts include initial and
final steady state heads (HO,HF) and dischafées (Q0 and QF) and
the transient discharge at the upstream section for the

" duration of the transient. The upstream head may be specified
as a constant reservoir head (HRES) or alternately be input as
discrete values at specific times. The variation in the
flowrate during the transient phase is.a linear function of-.
time and the initial énd final.discharges. Parameters
describing the physical naturé of the system include pipe

lengths, diameters, D’Arcy - Weisbach friction factors and
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wavespeeds. Head losses at series pipe connections are
considered to be negligible. - It is assumed that the valve
discharges to the atmosphere and that the hydraulic grade line

datum is-set at the level of the valve.

The model uses the information generated by the valve stroking
procedure to evaluate an effectiveness criterion (cost of
éystem) including terms for steady state power cost, pipe size,
length and wall thickness costs, any time dependent costs (i.e.
response time) as well as the cost of the associatea ‘ |
valve/conﬁrollér/actﬁator system. Since "optimal" closures as
given by'valve §troking are generally not economically feasible
in practice, the model generates information regarding the
substitution of commonly available valve closure systems
(linear, equal percentage and minimum head equal peak) for the

theoretical valve closure.

The valve closure information genefated by the activities of
the model are placed in a file called "tau". This information
caﬂ be incorporated in a data. file of the same fype as is used
by the subroutine VALVE (or the program VALVE) to produce
sgnsitivity plots summérizing the response of‘the system to
departures from the linear, eqﬁal percentage and optiﬁum

closure arrangements.. The program which produces these plots
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is called "errplot.fortran".

An additional featuré of the program permits the user to
generate output in graphical form as three dimensional
time-space-head diagrams, summary Profiles of head vs. time
and head vs. distance, or any desired combination of these
three types of graphs. The character input designations for

the various graph types are:

HDT - é dimensional head-distance-time
H.T - summary plot of head vs time at

valve, 3/4 point, midpoint and 1/4 point
H_D - summary plot of head vs distance for

steady flow, maximum head and minimum head

The graphical output may be directed to either a terminal or a
plotting device segment by specifying respectively "TERM" or

"PLOT" in the plot data input file.
SUBROUTINES:
GOLDEN - Optimizes the nonlinear cost function

GOLDEN2 - Determines the exponent associated with the minimum

" head equal-percentage closure by minimizing the
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head rise in the system

‘COST - Calls the individual cost term subroutines (user defined)
and evaluates the cost function

VALSTRK - Produces the transient head and valve motion information
used to evaluate the associated cost terms

LSQ - Fits linear and equal percentage regression curves to
the "optimal" closure.

VALVE - Using the "fitted" closure.curves produces new tréﬁsient

 head information to reevalvuate the cost function
STOREV - interpolates values in the time dimension for plotting
PRELIM - Sets up arrays for storing plbt information and compufes

the interpolation scheme for obtaining plot values
STORES - Stores the values to be plotted at times consistent

with the grid mesh size '

PLOT3D - Produces the actual plots or plotting files

RTRIM Returns the length of a character string trimmed of

trailing blanks

PRIMARY VARIABLES

REAL: A = wave speed
‘ZAR = pipe area
B = A/GxAR
D = pipe diameter



DT
DTHEAD
F

FF

G

H

HA

HLIMIT

HMAX
HMIN
HP

HPM1

HRES

HTMAX -

-'HTMIN
HTRANS
) .
Q

QA

QF

Qo

QP
QPM1

time step

time increment for storing discrete inpuf:heads
Darcy-Weisbach friction factor

FxL/ (2%N#G*D*AR%%2)

acceleration due to gravity

known head at section stroked first

array for storing all values of head

allowable max. or min. head for alternate method
of valve stroking (Ruus) - not iﬁplemented yet
vector for maximum head at each section

vector for minimum head at each section

unknown head at a section (to be calculated)
known head at previous timestep

steady stéte reservoir head

maximum head rise

minimum head rise

discrete input values of head

pipe length

known discharge at section stroked first

array for storing all discharges

final steady state discharge

initial steady state discharge

unknown discharge at a section (to be calculated)

known head at previous section
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T = time from_start of transient at valve

TAUPLT vector for storing TAU curve

TSTROKE = time interval for computation of transients

INTEGER: IUNITS

1 for SI and 2 for FPS

IPRINT = print block repeated every IPRINT time steps

M = number of points on tabulated tau curve (Y)
N = number of reaches in‘a pipe

NP = number of pipes in system

NPMAX = maximum number of pipeé in system

.ﬁRLP. = number of reaches in last pipe (used to

find DT)-

NSECM = maximum number of sections in one:pipe
" PIPE = pipe to be stroked first (usually 1,

\

i.e., upstream)

FORMAT FOR DATA FILE (opt_data):

LINE DESCRIPTION

1 TITLE (60 CHARACTERS OR LESS)
2 GRAPHICS SELECTION

3 NP NRLP IPRINT IUNITS

4 Q0 QF HRES TLAST PIPE
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5 DTHEAD M HTRANS(M).....
6 L(1) A1) FQ)
+ L(I) AT F(D

Table A.2 provides some indication of the program performance with respect

to the problem size.

Program || Number of CPU
(Model) || Pipe Reaches | Time (s)

TOM2 2 0.709

4 2.269

8 10.08

- 16 40.71

TOMS3 2 2.660

4 7.820

8 26.04

16 94.26

Table A.2: TOM2 and TOMS3 computer run times on Honeywell DPS8/6.

A.3 Method of Characteristics Simulation—Program VALVE
AUTHOR: B.W. KARNEY
DATE: 3 OCTOBER 1985

REVISED BY DUNCAN McINNIS, FEBRUARY/1986

REVISED BY BRYAN KARNEY, MAY/1986



METHOD: This program calculates the transient head and
"discharge in a seriesdpipe system caused by opening or closing
a valve at the downstream end. The Method of Characteristics
is used based on a specified time @ncrement and calculations
are continued for a specified time interval (TLAST). Initial
conditions are defined by a steady state discharge (Q0) and an
upstream reservoir head (HRES) which is considered constant for
the duration of the transients. Inputs include the known:valve
motion, the physical description of the pipe system and the
value of the basic hydraulic parameters such as the
Darcy-Weisbach friction factors for each pipe. Head.losses at
series pipe connections are considered negligible. It is
assumed that the valve discharges to the atmosphere and that
the hydraulic grade line datum i; set at the level of the

valve.
FEBRUARY REVISIONS

An additional feature of the program permits the user to
generate'output in graphical form as threerdimensional
time-space-head diagrams, summary profiles of head vs time and
head vs distance, or any desired combination of these three

types of graphs. The character input designétions for the
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various graph types are:

"HDT - 3 dimensional head-distance-time
H_T - summary plot of head vs time at

valve, 3/4 point, midpoint and 1/4 point
H_D - summary plot of head vs distance for

steady flow, maximum head and minimum head

The graphical output may be directed to either a terminal or a
plotting device segment by specifying respectively "TERM" or

"PLOT" in the plot data input file.
MAY REVISIONS

All control statements formerly used to jump do loops when the
do counter values were zero have been eliminated;r This means -
the program must now be compiled with the ’ansi77’ option

invoked (ansi66 always processes a loop at least once).
STRUCTURE: This  program is structured in six blocks:
BLOCK 1 - Reading and writing the input data

BLOCK 2 - Calculation of pipe constants and steady state conditions

BLOCK 3 - A print block
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BLOCK 4 - Transient state calculation
BLOCK 5 - Memory storage update

BLOCK 6 - Final print summary

SUBROUTINES:
PARAB - Parabolic interpolation scheme for valve closure
PRELIM - Sets up arrays for storing plot information and compufes

the interpolation scheme for obtaining plot values

Stores the values to be plotted at times consistent

STORES -
with the grid mesh size
PLOT3D - Produces the actual plots or plotting files
RTRIM - Returns the length of a character string trimmed of

trailing blanks

PRIMARY VARIABLES

REAL: A = wave speed
AR = pipe area
B = A/(G*AR)
D = pipe diameter
DT = time step
DTAU =.time step for storing valve’s tau curve

F = Darcy-Weisbach friction factor
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FF = FxL/(2%N*GxD*AR**2)

G = acceleration due to gravity
H = known head at a section
HP = unknown head at a section (to be calculated)
HRES = steady state reservoi? head
HTMAX = maximum head rise
HTMIN = minimum head rise
L = pipe length
Q = known discharge at a section
QP = unknown discharge at a section (to be calculated)
QO’ ‘ ='initia1 steady state discharge
T = time from start of transients |
" TLAST = time interval for computation of transients
TAUF = final valve position
TAUO = initial valve position
TV = valve closure time

VALVE1= Hss/Qss**2 - valve constant at full gate opening

Y = actual tabulated valve oﬁeration curve (tau values)

n

INTEGER: IUNITS 1 for SI and 2 for FPS

IPRINT = print block repeated every IPRiNT time steps
K = print counter (ised with IPRINT)

M = number of points on tabulated tau curve (V)
N = number of reaches in a pipe
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NP - = number of pipes in system

X

NPMAX

maximum number of pipes in system

NRLP

number of reaches in last pipe (used to find DT)

NSECM maximum number of sections in one pipe

NORMAL INPUT FORMAT %0k

TITLE

GRAPHICS HDT H_T | H_D
NP NRLP  IPRINT  IUNITS

"0 HRES ~ TLAST

VALVEL ~TAUO TAUF TV DTAU M
Mo [ Y(D ]

N x [ L D A F1.
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Sensitivity Plots
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Figure B.1: “Best-fit” sensitivity plots. Frictionless system. Rapid equal percent-
age closure.
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Figure B.2: “Best-fit” sensitivity plots. Frictionless system. Rapid bilinear closure.
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Figure B.3: “Best-fit” sensitivity plots. Low friction system. Rapid equal percent-

age closure.
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Figure B.4: “Best-fit” sensitivity plots. Low friction system. Rapid bilinear clo-
sure.
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Figure B.5: “Best-fit” sensitivity plots. High friction system. Rapid equal percent-

age closure.
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Figure B.6: “Best-fit” sensitivity plots. High friction system. Rapid bilinear clo-

sure.
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Figure B.7: “Best-fit” sensitivity plots. Very high friction system. Rapid equal
percentage closure.
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Figure B.8: “Best-fit” sensitivity plots. Very high friction system. Rapid bilinear
closure.
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Figure B.9: “Best-fit” sensitivity plots. Frictionless system. Moderate equal per-
centage closure. '
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Figure B.10: “Best-fit” sensitivity plots. Frictionless system. Moderate bilinear
closure.
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Figure B.11: “Best-fit” sensitivity plots. Low friction system. Moderate equal

percentage closure.
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Fiigure B.12: “Best-fit” sensitivity plots. Low friction system. Moderate bilinear

closure.
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Figure B.13: “Best-ﬁt” sensitivity plots. Medium friction system. Moderate equal
percentage closure. ”
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Figure B.14: “Best-fit” sensitivity plots: Medium friction system. Moderate bilin-

ear closure.



