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Abstract 

One of the most complicated unsteady flow problems is the analysis of fluid tran-

sients (pressure pulses) in pipelines. In the past, optimizing procedures for the 

design of fluid transmission pipelines have, accordingly, tended to focus on the 

steady state requirements of the system. Consideration of transients often takes 

place after the fact, if it is done at all. Yet, the factors—such as pipe diameter, 

pipe material, wall thickness, valves and their associated controller/ actuator sys-

tems, fittings and joints, etc.—which ultimately determine the cost of the system 

are tremendously influenced by the occurrence and behaviour of transients in the 

pipeline. This mans that any "optimal" design which fails to properly account for 

water hammer effects can be, at best, suboptimal, and in the worst case, completely 

inadequate. 

The research described herein constitutes an attempt to formulate some ratio-

nale which will permit the development of optimizing procedures for simple pipeline 

systems giving due consideration to the importance of transient effects in determin-

ing the ultimate pipeline cost. The proposed model is based on the theory of valve 

stroking which, for a given physical system with one known or specified boundary 

condition, can solve for the unknown boundary condition such that the magnitude 

of the head rise or fall in the pipeline is the lowest attainable for that system. This 

provides a means of assessing the head-based cost terms that includes the effects 

of transients. In addition, the response time of the system is included in the spec-

ification of the known boundary condition, thus permitting the incorporation of a 

time-varying, i. e., a control variable. 
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It appears that the idealized behaviour of the synthesized boundary condition 

may be difficult to achieve in practice. A number of "sibling" approaches to ob-

viate this drawback have been developed. In addition, several innovatikre methods 

and techniques—such as "best-fit" boundary conditions—have been devised for 

obtaining information concerning the sensitivity of the model and its parameters 

and variables. 
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Chapter 1 

Introduction 

One of the most complicated unsteady flow problems is the analysis of fluid tran-

sients (pressure pulses) in pipelines. In the past, optimizing procedures for the 

design of fluid transmission pipelines have, accordihgly, tended to focus on the 

steady state requirements of the system. Consideration of transients often takes 

place after, the fact, if it is done at all. Yet, the factors—such as pipe diameter, 

pipe material, wall thickness, valves and their associated 'controller/actuator sys-

tems, fittings and joints, etc.—which ultimately determine the cost of the system 

are tremendously influenced by the occurrence and behaviour of transients in the 

pipeline. This means that any "optimal" design which fails to properly account for 

water hammer effects can be, at best, suboptimal, and in the worst case, completely 

inadequate. 

When referring to transient analysis, the term optimal generally denotes certain 

synthetic valve closure arrangements and their resulting tau curves (see Figure 1.3). 

The tau curves are functions describing the relative size of the valve opening and 

the variation in the coefficient of discharge as the valve is operated. The procedure 

by means of which the tau curves are generated is called valve stroking. Two 

distinct, but related, methods of valve stroking currently exist-1) stroking for a 

specified head [Ruus, i966} and 2) stroking in a specified time [Propson]. Unless 

otherwise stated herein valve stroking will always be taken to mean valve stroking 

in a specified time. 
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Valves control the rate, of flow in a pipe by converting the potential energy 

(static head) of the fluid to kinetic energy (fluid velocity) for the case of a valve 

opening, the converse being true for a valve closure. For a valve discharging to the 

atmosphere under steady flow conditions, the valve equation is simply an orifice 

discharge relation. 

Qo = CdAV\/2gHo (1.1) 

where Qo is tlie steady state discharge, H0 is the pressure head at the valve (in 

other words, the head loss across the valve), A is the area of the valve opening 

and Cd is a discharge coefficient which accounts for real valve losses. For any other 

valve setting the flowrate is given by 

Q' = CA/2gH'. (1.2) 

Expressing this in a nondimensional form gives 

Q, H' CAJ 
- where 'r =  
H0 CdA 

(1.3) 

In order to alter the rate of flow in a pipe, say from Qo to Q', the value of tau 

must be changed from r0 to r. Since instantaneous valve motions are not physically 

possible, the changes must take place over some finite period of time and, conse-

quently, the variation in valve area and coefficient of discharge can be described by 

a r function. There are an infinite number of possible tau functions which cause the 

system to arrive at the same endpoint but with potentially very different impacts 

on the hydraulic performance of the system. 

Realizing that Q = VA (where V is the mean fluid velocity in the pipe) then 
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going from Q, to Q2 means that V1 - V2 in time At, and therefore 

At At 

The quantity (V2 - V,)/it is the average acceleration of the fluid over the period 

At. Instantaneous values of acceleration are given by 

urn = 'dV — O 
t•o dt 

and , by Newton's second law, the greater the acceleration, the larger must be 

the imposed forces'. Thus, the more rapid the valve closure (opening) the more 

extreme is the head rise (fall) in the pipeline. For nonoptimal valve motions the 

pressure oscillates between the high and low values of head (see Figure 1.1) created 

in response to the valve motion. These are progressively damped out by wall and 

fluid friction forces, eventually stabilizing at the new steady flow condition. 

Valve stroking, on the other hand, produces a highly controlled 'transient which 

ends precisely when the valve motion ceases (see Figure 1.2). Both Figure 1.1 and 

Figure 1.2 are for the same physical system and valve motion duration, but have 

differently shaped tau curves. If one takes a section in the head-time plane (see 

Figure 1.3) through the surface shown in Figure 1.1 or Figure 1.2, then the area 

under the resulting curve represents the impulse applied to the fluid as it moves 

from one flow condition to another. 

ft1 

t2 ft2 

Fdt=-iAjHdt 
t1 

(1.4) 

where F is the force applied to the fluid, "y is the unit weight of the fluid, A is the 

cross sectional area of the pipe and t is time. The impulse' is related to momentum 

'There exists, however, a limit to the amount of head change that can occur even for an instan-

taneous valve motion, i. e., for dt = 0. This limiting head cannot exceed ±aV/g. 
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Figure 1.1: Three dimensional representation of a transient produced by an arbi-

trary valve closure. Duration of valve motion is 6 seconds. 
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Figure 1.2: Three dimensional rep'esentation of a tiansient produced by valve 
stroking. Duration of valve motion is 6 seconds. 
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Figure 1.3: Head-time profiles for pipe quarterpoint, midpoint, three-quarterpoint 
and valve end; Tau curve is dotted line. Duration of valve motion is 6 seconds. Top 

figure shows variation for an arbitrary tau curve; Bottom figure shows variation 

for an optimum tau curve. 

by Newton's second law. 

ft t2 ft2 dv F dt = I m— dt = / m dv. 
1 it, dt Jt 1 

(1.5) 

For a given system and a given change in the discharge this quantity is a con-

stant. Valve stroking guarantees that, for a fixed duration valve motion, the change 

in fluid momentum will take place with a minimal (or near minimal) head change. 

Furthermore, it ensures that no residual transients occur once the valve motion 

is complete, i. e., that the new steady state is fully obtained. For these reasons 



7 

the closure arrangement producing this controlled transient has been termed an 

optimum valve closure. Insofar as the head change produced for certain boundary 

conditions (see Section 3.3 for details) is minimized by valve stroking, use of the 

word optimum is correct. In the context of pipeline design, however, these closure 

arrangements can in no way be construed as defining a uniquely "best" solution. 

Rather, they are only one of many factors which may (or may not) contribute to 

an overall optimal design. 

The research described herein constitutes an attempt to formulate some ratio-

nale which will permit the development of optimizing procedures for simple pipeline 

systems which giye due consideration to the importance of transient effects in de-

termining the ultimate pipeline cost. The objectives are listed below. 

. The identification of relevant cost parameters and cost variables. 

• The development of a conceptual framework within which optimizing design 

procedures can be constructed. 

• The formulation of a sensible effectiveness criterion and a meaningful set of 

constraints incorporating the cost components. 

• The definition of the nature of the cost function and the selection of appro-

priate, efficient methods, for its evaluation. 

• The consideration of methods which will allow the sensitivity of the solutions 

to changes in cost parameters to be explored. 

Chapter 2 provides some background on optimization theory, existing pipeline 

optimization methods and a description of nonlinear techniques relevant to the 
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current investigation. Chapter 3 gives the mathematical and hydraulic theory 

fundamental to the development of the conceptual model proposed by this study. 

Chapter 4 outlines the nature of the problem, describes the simple system selected 

for analysis (constant head upstream reservoir with single pipe and valve at the 

downstream end) and supplies the details of the conceptual model development. 

The procedures for testing the .validity of the model, along with discussion of find-

ings, changes and modifications to the model are presented in Chapter S. The very 

important topic of sensitivity analysis is found in Chapter 6 and final conclusions 

and recommendations issuing out of the investigation are listed in Chapter. 7. Two 

appendices have been given to provide additional detailed information concerning 

the computer programs used in the model not mentioned in the thesis proper, and 

for the presentation of some important sensitivity plots. 



Chapter 2 

Literature Review 

In this section a brief introduction to the concept of optimization is presented' 

in conjunction with a, necessarily, simplified overview of some currently applied 

'techniques in the field of pipeline optimization. This will also serve as a literature 

review of the subject area since, with one exception, no literature really exists on 

the topic of pipeline optimization with respect to transients. In the final section; 

a description of nonlinear optimization methods pertinent to this investigation is 

presented. 

The only work known to the author that specifically relates to the idea of 

optimization procedures and which includes transient phenomena in the process is 

by [Chiang 1984]. Chiang has developed a procedure which involves the simulation 

of transients in complex piping systems and uses univariate and gradient search 

techniques as optithum-seeking strategies. The media can be gas under pressure,, 

liquid or a multiphase continuum. The procedure developed is fairly general and 

has a wide applicability to mechanical engineering piping systems. 

[Wike 1986] refers to control of transients in connection with SCADA system 

operation but this does not constitute an optimization technique. [Mah 1978] pro-

vides a quite general account of the major methods in use in various pipeline in-

dustries, along with a discussion of steady and unsteady flow analysis techniques, 

and alludes to the fact that transients are an important consideration in the design 

of any pipeline system. However, he does not provide any information suggesting 

9 
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how transients might be incorporated into optimization procedures. This paper 

has a very extensive bibliography covering the topics of pipeline analysis, design 

and optimization methods. 

Nonlinear optimization methods in pipeline analysis and design are also rather 

uncommon. One reference to nonlinear methods [De Poli] was unavailable for 

review. Enough information could be garnered from the abstract, however, to 

say that it was an application of a penalty function technique for the design and 

control of water distribution systems. No consideration of transients appears to be 

involved. [Chara 1984] has developed a very interesting procedure which can be 

used in linear or nonlinear optimization of operating policies for reservoirs. This 

method utilizes the concept of transfer-gain and is reportedly superior to dynamic 

programming models in terms of its convergence properties and computational 

efficiency. 

References to other literature in the field of pipeline optimization procedures 

will be made in Section 2.2 as the various types of existing techniques are surveyed. 

2.1 Optimization Concepts and Theory 

Perhaps the best way to introduce the concept of optimization is by means of a 

definition. 

Optimization Any process which attempts, by considering a number or group of 

variables together as interacting components of a system, to obtain a config-

uration of the components which is "better" with respect to some criterion 

than any other combination ofsome, or all, of the elements, may be called 
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an optimization process. 

The study of optimization of systems has variously been termed operations research, 

systems analysis, and management science. None of these labels is particularly 

descriptive or informative in relating the nature of this very important and widely 

used body of knowledge. It is essentially an approach to the design, construction 

or implementation, maintenance and operation of complex systems which draws on 

the techniques of pure and applied mathematics in order to provide some rational 

basis for all types of decision making. 

Essential to the integrity of optimization theory is the concept of a system and 

the belief that some means of defining what is "better" or "best" in terms of that 

system is possible. A system can be thought of as a functional construct divisible 

into parts or components which can be integrated in various ways to achieve its 

function. The object of all optimization processes is to find the combination and ar-

rangement of elements which best fulfils the function according to some established 

criteria. 

There are seven steps [Deininger 1975] to followin carrying out any systems 

analysis study: 

1. Formulation of the problem 

2. Construction of a mathematical model which describes important - system 

variables. 

3. Definition of a criterion function or measure of merit. 

4. Collection of data to allow the estimation of various parameters in the model. 
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5. Derivation of optimal solution(s) through formal algorithms. 

6. Testing of the model, the solutions and the sensitivity of the parameters. 

7. Implementation of the "best" solution. 

Steps 4 and 7 only pertain in the case of an actual application of the optimiza-

tion procedure. They can be omitted for the purposes of this investigation which 

attempts only to develop and evaluate a conceptual implementation of an opti-

mization model. Carrying out the remaining five steps forms the content of this 

thesis and, in subsequent chapters, the logical progression through each phase is 

outlined and discussed. 

2.2 Existing Pipeline Optimization Techniques and Models 

The scope of the problems to which systems analysis can be applied and the meth-

ods used in its application are far too immerous and varied to be discussed in 

any detail here. Rather, two of the fundamental techniques currently used in the 

pipeline industry will be outlined in order to provide some acquaintance with the 

basic ideas of optimal pipeline design. 

By far the majority of pipeline optimization techniques fall into either one of 

two categories—linear programming or dynamic programming methods. A brief 

description of each is given along with a number of related references. The re-

maining optimization methods comprise a variety of techniques such as integer 

programming, nonlinear techniques and modeling approaches. [Shamir 1979] gives 

a reasonably complete summary of the major techniques used for steady state opti-
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mization of water distribution systems. [Huang 1985] does the same for procedures 

commonly used in the oil and gas pipeline industry. 

2.2.1 Linear programming 

Linear programming has long been a popular method for optimizing a system which 

canbe described as a set of linear equations having the form 

maximise z - = c1z1 + c2x2 + + cx 

subject to: 

a11x1 + a12x2 + + czix < b, 

a21z1 + a22x2 + + a2xfl b2 

amixi + a 2x2 + •.. + amnxn <bm 

where some of the b's may be negative' and the problem may also contain equality 

constraints. The value of the objective function, z, is determined by the objective 

function coefficients (the ci's) and the decision variables (the xi's). It may also 

include an initial constant term, z'. The a1's are constant coefficients and are 

often referred to as the structural coefficients. The structural coefficients along 

with the decision variables and right hand side constants (b's) form a set of in 

linear constraints. In addition, the non-negativity constraints also apply. 

xl,x2, ... ,x≥O 

Linear programming is such a powerful method that strenuous effort is often made 

to modify nonlinear problems so that they may be handled by this linear solution 

11n other words they are ≥ constraints. 
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technique. 

Linear programming is most often applied to single or branching pipe net-

works. The objective is to minimize the cost, subject to certain head and delivery 

requirements, by selecting the diameters and lengths of the various segments of the 

branches. Let K3 denote the consumption at node j. The heads to be maintained 

at some or all of the nodes, H, must lie within a given range, H7 to The 

length of each pipe (link) connecting nodes i and j is L22. 

For each link a set of candidate diameters is defined and the decision variables, 

are the lengths of the pipe segment of the rnth diameter connecting nodes i 

and j. Thus, one set of linear constraints can be formulated as 

Xijm=Lij for ail (i,j). (2.1) 

Assuming that all the consumptions and that the pipe material (i.e., hydraulic 

resistance characteristics) are known in advance, then the discharges, Qj, in each 

link are fixed. Thus, the head loss in the m' segment of the link is 

AHijm = jijmXijm for all (i,j,m) (2.2) 

where J is the hydraulic gradient LH/L = (fQ2/2gDA2). 

Beginning from a node, .s, in the system for which the head is known, for 

example a reservoir, and proceeding along any path to node, n, for which the head 

must fall within the specified range, the following set of linear constraints can be 

generated. 

Hmin <H3 ± > JX < H (2.3) 
(ii) m. 

The inner summation is over all segments in a link and the outer summation is 

over all links along the chosen path. 
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Many researchers [Shamir 1979] have postulated that the cost of a fixed diame-

ter pipeline is roughly a linear function of its length so that the objective function 

is formulated as 

Cijm Xijin (2.4) 
(id) m 

where the Cjjm are the objective function cost coefficients. The optimal solution 

is obtained by minimizing Equation 2.4 subject to Equations 2.1, 2.3 and non-

negativity of the Xijm. This technique can be extended to include pumps and 

reservoirs in the system, as well as various kinds of operating and maintenance 

costs. 

The major disadvantage of linear programming is that it is restricted to prob-

lems for which simple, linear or linearized models can be developed. Some in-

novations for more complex nonlinear functions have been proposed by Quindry, 

Shamir, Deb, Watanatada and others. Thus far, linear programming use has been 

restricted to steady state or quasi-steady state problems. 

2.2.2 Dynamic Programming 

Dynamic programming is really an algorithmic optimization approach that can be 

applied to any problem consisting of well defined, sequential stages. State variables 

are defined at each stage which describe the condition of the system at that stage. 

Decision variables are input variables which supply information to the system or 

specify an action to be taken at the stage to which they apply. Stage return 

functions provide some measure. of the effectiveness of a particular decision for 

any value of the input state variable. [Smith et all give an excellent description 

of dynamic programming and the reader is referred to this valuable text for more 
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• details. 

Kally, Liang and others have pioneered the application of dynamic program-

ming in the pipelines area. The method is not so restrictive as linear programming 

but, unfortunately, becomes càmputationally unwieldy for problems having two or 

more state variables. Many attempts have been made to modify the dynamic pro-

gramming approach in order to improve its efficiency, however, the variations tend 

to suffer from the same problems or introduce new ones, such as poor convergence 

properties, which limit the application of this method to relatively simple systems. 

2.3 Pertinent Nonlinear Optimization Methods 

In spite of the fact that this material anticipates somewhat the course of the in-

vestigation and might be more appropriately discussed later on, it is included here 

since it is consistent with the content of this chapter. 

The beauty of nonlinear optimization techniques is that they permit more real-

istic models of actual phenomena to be created and therefore, one supposes, more 

realistic solutions to optimization problems. The difficulty in applying them is that 

these methods are often unreliable and may fail to locate global and local optima 

or, potentially, even feasible solutions. Nevertheless, they can be successfully im-

plemented for many problems and are often the only methods available for truly 

nonlinear problems. 

Nonlinear methods may be broadly classed as methods for functions of a single 

variable (univariate) or methods for functions of two or more variables. Within 

each of these groups two further categories can be defined—gradient techniques 
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and direct search techniques. All of the foregoing procedures require that an initial 

trial point be specified. As it will be later shown, depending upon the system being 

modeled, any or all of these techniques might be employed as optimum-seeking 

strategies. 

2.3.1 Methods for Functions of a Single Variable 

Gradient Methods 

Numerous texts on numerical or optimization methods can be found which describe 

this type of optimizing procedure. They are often referred to as methods for 

obtaining the zeroes of a function or, colloquially, as root-finders. They all involve 

evaluating the derivative(s) of the objective function and therefore can be applied 

only to functions that are well-behaved and possess a continuous first derivative. 

Well known examples are the Newton-Raphson and the secant methods. 

Direct Search Methods 

Although many different search methods exist, attention here is restricted to the 

Method of Golden Section. This method makes use of an interesting property of 

the Fibonacci constant, F, which can be obtained from the higher order terms of 

the series r+1nr -  ?2'r 1 by 

F = =  1 = 0.618033989, (2.5) 
r+1 nr 

The fact that F2 = 1 - F allows the positioning of trial points in such a way that 

only a single new point must be added at each iteration, yet the proportions of the 

subdivided interval of uncertaintyremain constant. Let x1 and x2 be the endpoints 

of the interval of uncertainty for some arbitrary nonlinear function, 1(x), shown in 
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Figure 2.1: Method of Golden Section. 

Figure 2.1. Let two interior points, x3 and x4, be chosen so that 

(x2 - x3) = (x4 - x1) = F(x2 - x1). (2.6) 

The values of the function f(x) are obtained for each of these points. For the sake 

of illustration, let f(x3) < f(x4), then the segment x4 r2 may be eliminated from 

further consideration. A fourth point is now added to the remaining segment at 

x5 such that 

(x4 - x5) = F(x4 - x1). (2.7) 

The process is repeated at all subsequent iterations until the interval of uncertainty 

has been reduced to some specified tolerance level. It can be demonstrated that 
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for n iterations 3 + ii function evaluations must be made and the initial interval of 

uncertainty is reduced by the factor F'. 

The Method of Golden Section is an extremely efficient search technique and 

can be used for locating the optimal point of constrained or unconstrained func-

tions. This method has been used very successfully during this investigation and 

is discussed again in Section 5.3. A more complete description of the procedure 

can be found in [Smith et all. 

2.3.2 Methods for Functions of Two or More Variables 

The methods available for functions of two or more variables are not fundamentally 

different from thdse for a single variable. However, the complexity of the problem 

and the solution methods is far greater than for the univariáte case. 

Gradient Methods 

A number of gradient techniques have been developed to deal with nonlinear func-

tions. Most of these employ a constant step size and involve the evaluation of 

derivatives of the function at each trial point, with the objective being to locate 

the direction of the maximum change in the value of the function. The next trial 

point is located by moving a distance s, the step size, in this direction. The process 

is continued until no improvement can be made upon the value of the function at 

the current value of .s. The step size is reduced by some factor and further iterations 

are performed in the same manner. The process is repeated until the value of the 

step size is reduced below some tolerance level. The method may be generalized 
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for n variables where the function to be optimized is 

z = f(x) where x=(x1,x2 ) ... ,x) T . (2.8) 

The vector of gradients (for a minimization) is obtained at an initial trial point, 

x0, by 

where 

Xr+1 = Xr - Sdr 

az/am  
di 1 . 

- [:= (8z/8x)2] 

(2.9) 

(2.10) 

Direct Search Methods 

Search methods can be split into three general groups—enumeration, random 

search and directed vector searches. The choice of a particular method will de-

pend upon the nature of the function and the computer resources available. 

Enumeration This is the most time consuming of the direct search methods 

but has the distinct advantage of always locating the global optimum, something 

that none of the other methods guarantees. In the past, its application has been 

restricted to only computationally "small" problems. However, increasingly avail-

able computing power may make this the preferred method for optimizing difficult 

functions in the near future. 

RandomSearch As the name implies, this method selects trial points for evalu-

ation of the function by a random procedure. It is also a time consuming approach 

but has been shown to be more efficient than other search methods for many 

problems. It also can be used as a means for escaping from a local optimum or 

establishing that a solution is indeed global. 
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Figure 2.2: Pattern search method. 

Directed Vector Search These techniques involve the selection of .a set or 

sequence of directions according to some strategy, with the search for the optimum 

solution proceeding along the chosen directions. The direction of searching can be 

changed in accordance with the conditions existing at the current location of the 

position vector. 

A popular and relatively efficient set of algorithms belonging to the category 

of directed vector searches is called pattern search techniques. One such method 

- is shown in Figure 2.2. The initial starting point for the search may be selected 

by any convenient criterion. The search then proceeds by evaluating the function 

at three neighbouring points lying parallel to the major axes at some specified 
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grid interval. The point having the lowest value (for a minimization problem) is 

chosen as the new basepoint and another pattern search is initiated. The process is 

repeated until no improvement in the value of the objective function can be made 

over the current basepoint, which may involve several changes in direction and a 

number of pattern searches. The grid interval is reduced and the cycle continued 

until the step size has attained some acceptable level of accuracy. 

Directed vector search methods are often debilitated by the presence of local 

optima which "trap" the -search within an area and prevent it from locating the 

global optimum. - 

2.4 Summary 

In this chapter a cursoy overview of optimization theory and its application to 

the field of pipeline analysis and design was presented. A number of nonlinear 

optimization methods which are relevant to the investigation have also been intro-

duced. The intention has been only to provide some familiarity with the concepts 

of optimization and the current state of the art so that the developments of this 

study can be placed in perspective. For a more comprehensive treatment of any of 

these topics the reader is referred to the sources given in the bibliography. 



Chapter 3 

Mathematic and Hydraulic Preliminaries 

3.1 Governing Equations 

The fundamental equations governing the flow of liquids in rigid, closed, prismatic, 

circular conduits have been developed from consideration of mass conservation 

and the equation of motion. Excellent accounts of their derivation may be found 

in [ Wylie/Streeter]. The two fundamental equations taken together form a pair of 

first order, simultaneous, quasi-linear partial differential equations of the hyperbolic 

type. 

where 

= 0 
g 

fvlvl  
V+ VV. +gH+ 2D = 0 

H = the piezometric head in the pipe 

V = the mean fluid velocity in the pipe 

d = the pipe diameter 

a = the wavespeed 
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(3.1) 

(3.2) 
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f = the Darcy-Weisbach friction factor 

g = the acceleratioh due to gravity 

x = the distance along the pipe 

t = time 

a = the angle of inclination of the pipe 

The subscripts denote partial differentiation with respect to the subscript variable. 

The V sin a term in Equation 3.1 is generally considered to be a negligible quantity' 

The pressure, P, at any point in the pipe is simply related to the head by 

P = 'y(H - z) where z is the elevation of the centerline of the pipe above some 

arbitrary datum and 'y is the unit weight of the fluid. In these equations several 

important assumptions are considered to be true: 

1. The pipe is flowing full with the minimum pressure always above the vapour 

pressure of the fluid. 

2. The velocity is one dimensional and has a uniform distribution over the pipe 

cross section. 

3. The pressure is considered to have a value equal to that existing at the pipe 

centerline and is also uniform over the cross section. 

4. The frictional resistance of the pipe is the same at any instant as it would be 

for the corresponding steady flow condition. 

'In the past, it has been suggested that since the V sin a term does not appear in the steady 
state equations, it is reasonable to omit it from the dynamic equations. In fact, [Karney, pers. 
comm.[ it is now believed that this term does not appear in the expression for steady flow due 
to an impropef formulation of the steady state equations thereby negating that argument. In any 
event, provided that V and/or a are not large, the quantity V sin a is insignificant and can be 

discarded. 
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5. The walls of the pipe are perfectly elastic. 

The absolute value signs on the velocity are necessary to ensure that the pipe wall 

shear stresses always oppose the flow. 

3.2 The Method of Characteristics 

Equations of the sort indicated in Section 3.1 can be readily transformed into four 

ordinary differential equations which are amenable to solution by the method of 

characteristics. In this case, the partial differential equations become 

dV gdH fVIVI 
- dt adt 2D 

(3.4) 

(3.5) 

V — a. (3.6) 

0 

dx 

dt 

0 

d± 

dt 

=V+a 

dv gdH fVV  
dt adt+ 2D 

Equations 3.3 and 3.4 are known as the C equations while Equations 3.5 and 

3.6 are called the C equations. Equations 3.3 and 3.5 are also referred to as 

compatibility equations and Equations 3.4 and 3.6 are respectively termed the 

positive and negative characteristics. The significance of these equations can be 

explained as follows. Each compatibility expression is valid along a curve described 

by its corresponding characteristic. As no mathematical approximations are used 

in the derivation of the four ordinary differential equations, every solution of the 

original system (Equations 3.1 and 3.2) is valid for the charateristic system, i.e., 

Equations 3.3 through 3.6. It can be demonstrated that the converse is also true 

[Courant]. Before considering the methods for solving this system of equations, it 
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is important to understand some properties regarding uniqueness of solution for 

certain problem types in the method of characteristics. 

3.2.1 Initial Value Problems 

The "normal" method of characteristics solution belongs to this category of prob-

lems. Figure 3.1 shows two arcs, Ad and BO, which lie along the C and C 

characteristics respectively. The positive characteristic passing through point P 

intersects arc AO at A while the negative characteristic going through P intersects 

arc BO at B. The interval AOB is called the domain of dependence and the val-

ues of V and H at P depend only on the initial data along that interval. It can 

be demonstrated that, in the region AOBPA, this solution is unique. The arrows 

(which are dravn along the characteristic directions) on the arcs Ad and BO in-

dicate the number of data which can be prescribed along each arc. The number 

of arrows entering the region AOBPA indicate the number of data which must be 

given along each boundary in order for a unique solution to exist in the region of 

interest. Note that only one datum can be prescribed on each characteristic arc. 

For a noncharacteristic curve, such as AB, two data must be known in order for 

the solution at P to be unique. In the customary method of characteristics analysis 

two data are specified on the domain of dependence at the points of intersection 

with the positive and negative characteristics passing through the point P. 

Since no reference to direction or orientation with respect to the x—t. plane has 

been made in this analysis, the same observations are equally true for solutions 

proceeding backward in time, i.e., for the point F' in Figure 3.1. The only con-

siderations for a valid and unique solution are the orientation of the initial value 
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t 

Figure 3.1: Domain of dependence in the x—t plane for an initial value problem. 

curves in the solution plane and the nature of the data on those curves. 

3.2.2 Boundary Value Problems 

The problem described in the previous section is used to advance the method of 

characteristics solution through time along a space-like initial arc (line). Likewise, 

the solution which forms the basis for the valve stroking procedure is an analogous 

case which requires that two data be specified at each boundary point on a time-like 

arc (line) in order to promulgate the method of characteristics solution through 



28 

space. A time-like arc is one which has a characteristic direction on either side 

of it while a space-like arc has both characteristic directions 0n the same side2. 

Figure 3.2 shows the situation just described where the interval AOB is the domain 

of dependence of P and the region AOBPA contains a unique solution for V and 

H at P. Notice that no data may be prescribd along the arbitrary time-like arc 

t. 

x 

Figure 3.2: Method of characteristics—boundary value problem. 

B'P' since it lies within the region of unique solution for this problem. Hence, 

the solution along arc B'P' is defined by the same domain of dependence as for P. 

When Xd and B'P' are parallel to the time axis, and arc BO is a noncharacteristic 

line parallel to the x-axis, the method of characteristics solution can be advanced 

2A characteristic arc is the limiting case since one characteristic direction is tangent to it. 
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through space from one of the boundary value curves. This is the approach taken 

in the valve stroking solution of the method of characteristics. 

3.2.3 Finite Difference Equations 

Equations 3.4 and 3.6 can be further simplified if one realizes that normal pressure 

wave celerity in most dense fluids is two or three orders of magnitude greater 

than the mean fluid velocity in the pipeline. In water, for example, the normal 

range of background velocity is from about 1-4 metres per second while ivavespeed 

ordinarily falls between 800-1400 metres per second. It is therefore justifiable to 

say that the characteristic equations may be reduced to 

dx 
—=±a. 
dt 

(3.7) 

This results in a computationally efficient set of finite difference equations due to 

the fact that the characteristics are now a pair of complementary straight lines. 

Figure 3.3 shows the x-t plane for a pipeline divided into N equal reaches, each 

i..x in length. If a time step is computed as At = Ax/a, then the diagonals of 

the grid will be the positive and negative characteristics emanating from each grid 

intersection point. Equation 3.3 is valid along the positively sloped characteristic 

line AP with both V and H known at A. Similarly, Equation 3.5 holds along BP 

with both variables known at B. Expressing Equations 3.3 and 3.5 in terms of 

discharge and multiplying each by adt/g = dx/g, produces 

dH+ --dQ+ 2gD2QlQIdX = 0 (3.8) 
gA 

• -dH + ----dQ + 2gAD2 Q1Q1dx = 0. gA 
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Figure 3.3: x-t grid for single pipeline problems. 

Integrating the first equation along its respective characteristic gives 

fHA 

Ii,P 

dH+ -  -  - f'dQ+  f  f'P QIQldx=O.  
gA QA . 2gDA2 A 

(3.10) 

The manner in which Q varies with x in the last term is not explicitly known so 

an approximation is employed in order to evaluate the final integral. A first order 

approximation is adequate for most situations (high friction cases being the major 

exception), i.e., Qp is assumed to be equal to QA. Noting that, in Figure 3.3, the 

points A and B are nodes i - 1 and i + 1, the following general formulation of 

Equations 3.8 and 3.9 results. 

C: Hp1 = Cp - BQp2 (3.11) 

C: HP, = CM + BQp, (3.12) 
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where the constants Cp, CM, B and R are given by 

Cp = H11 + BQ1 - RQ.i!Q.iI 

CM = H+i-BQ+i+RQ+iIQ+iI 

gA 

R fAX 
- 2gDA2 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Elimination of Qp in Equations 3.11 and 3.12 allows Hp1 to be evaluated as 

Hp, = (Gyp + GM)/2. (3.17) 

Qp can then be determined by back substitution in either Equation 3.11 or 3.12. 

After the first time step, appropriate boundary conditions must be known in order 

to complete the solution for a specific time interval. Likewise, if more than one 

pipe exists, in the system, the boundary conditions at the series connections must 

be available. The subject of boundary conditions is discussed in Section 3.3.3. 

3.3 Valve Stroking 

Valve stroking differs from the usual time series solution of the method of char-

acteristics in that it is a synthetic rather than a simulation procedure. In other 

words, the simulation solution may continue indefinitely through time and ends 

only because an artificial time 'limit is placed on it. Valve stroking methods, in 

contrast, are limited both in space and time and essentially allow the conditions at 

a particular boundary to be established for a finite time span. This requires that 

both the initial and the final conditions are known for the system. In addition, 
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one boundary condition is either fully known or specified for the time interval un-

der consideration. Thus, the method of characteristics solution actually proceeds 

through space from the known to the unknown boundary condition. 

The finite difference equations used for the valve stroking procedures are quite 

similar to those used for the initial value problems. They are derived in the same 

way but are distinguished by the fact that the equations produce solutions for 

points backward in time. If one integrates Equation 3.3 along the characteristic 

line from point d to point e shown in Figure 3.3 and Equation 3.5 from point e to 

point I (so that the integrations are both occurring in the positive sense of time) 

the following equations result. 

C: He=Hd—B(Qe—Qd)—RQdlQdI 

0: Hi=He+B(Qi—Qe)+RQeIQeI 

For the majority of practical cases no flow reversal occurs making the absolute 

value signs unnecessary and the equations may be solved for Qe. 

Qe [1_ \ 1+()(Qd+Qf+ B H1) )] (3.20) 

He can now be directly evaluated from Equation 3.19. If the assumption of no 

reversal of flow does not hold, Equations 3.18 and 3.19 should be solved by a 

numerical technique such as Newton-Raphson. 

The expressions for stroking in the opposite sense are 

Qe B [ (RQd  ) 2 R (Qd+Qf+ (HIH  1=  B  - B )] 
He = Hd + B(Q6 - Qd) + RQ (3.22) 

(3.21) 
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The manner in which these equations are applied to a system for the two types of 

valve stroking will be discussed next. 

3.3.1 Valve Stroking in a Specified Time 

This application of the method of characteristics was first developed by (Propson). 

This is actually the more recent method and first appeared some four years after 

valve stroking for a specified head had been developed. It is, however, a less 

restrictive and simpler method and will therefore be considered first. 

Figure 3.4 depicts the x—t plane for an arbitrary system. The initial conditions 
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Figure 3.4: Method of characteristics solution for valve stroking in a specified time. 

are known along x for t = 0 and for t = 2L/a + 2it. There is no significance to the 
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fact that, in the figure, the duration of the transient at the upstream end is 2.zt. It 

can be any number of zt's, the only restriction being that the wave cannot return 

to the downstream boundary in less than 2L/a seconds. The boundary conditions 

are also specified at the upstream section, either by the physical nature of the 

system or arbitrarily by the analyst. The negatively sloped diagonal line is the 

negative characteristic emanating from the downstream boundary at time t = 0, 

i. e., when the conditions at the downstream end begin to change. The disturbance 

reaches the upstream boundary in exactly .L/a seconds. The positively sloped 

diagonal is the characteristic passing through the downstream section at the time 

when the disturbance has just ended. The region bounded by the two characteristic 

diagonals is the zone of transient fluid flow. The two triangular areas, represent 

regions of steady fluid flow. 

The method of characteristics solution is straightforward. Using Equations 3.20 

and 3.18 one solves for Q and H at each spatial node for all time. Once the values of 

the unknown variables have been determined at one physical section, these values 

are used to generate solutions at the next section. Note that it is only necessary 

to solve for Q and H in the transient region of the x—t plane since the upper 

and lower triangles are already known from the initial and final conditions. The 

solution proceeds in this manner until the downstream boundary is reached. 

3.3.2 Valve Stroking for a Specified Head 

This type of valve stroking was first proposed by [Ruus, 1966] as a means of ad-

justing wicket gates for turbines in hydropower installations. The method was 

originally developed as a graphical procedure and splits the transient phenomenon 
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into three distinct phases. In the first phase, shown in Figure 3.5, the head at the 

downstream end is increased to its maximum prescribed value, Hmaz. This phase 

H- H=H+(I-1)Jf -H 
Q1 

J = 2N +1 

C 

J=N+1 

H = 14 

J=1 
1=1 

Q1 Q, QI Q' 
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/ 
/ 
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2 3 4 S 

Figure 3.5: Phase I of valve stroking for a specified head. 

takes 2L/a seconds or, since dt = = L/Na, it requires 2L/a x Na/L = 2N 

time periods. Thus at timestep J = 2N + 1 the hydraulic grade line is straight 

from Hr at the upstream end to Hmaz at the downstream end. Once again, the 

upper and lower triangular regions are areas of steady flow (both [Propson] and 

[Wylie/Streeter] provide proofs for this assertion) and the head at points b, d, f and 
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h are known and equal to Hr + AH. At any given time step, the flow is uniform 

so it can be seen that Qc = Qb, Qe = Qd and Q9. = Qf. Rewriting the positive 

compatibility equation for point a, Qb may be obtained by 

(zH + RQ) 
Qb = Qa B (3.23) 

Applying the same logic to the time steps from J = N + 1 to J = 2N + 1 provides 

all the upstream boundary condition data needed for Phase I. 

During Phase II the head at the downstream end is held constant at H,-, 

while the flow is progressively varied in accordance with Equation 3.23. When it 

has reached its ultimate value the final zone of transient flow is defined by the two 

long diagonals in Figure 3.6. Observe that the three phases are defined by the 

changes in head at the downstream end and not by the change in fiowrate at the 

upstream end. Thus, the flow continues to change during Phase II and for a portion 

of Phase III. During this final period of unsteady flow at the downstream end the 

head is allowed to adjust to its terminal level. Figure 3.6 shows the relationship 

between the last two phases. It can be seen that the minimum theoretical time for 

valve stroking in this manner is 4L/a seconds. 

This procedure provides all the necessary information for the method of char-

acteristics solution to be carried out. It is performed in an identical fashion to that 

for valve stroking in a specified time proceeding from the upstream to the down-

stream boundary. Having examined the two methods of obtaining the solutions for 

the unknowns Q and H for the grid points in the z—t plane, it is now appropriate 

to discuss the relevant boundary conditions. 
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Figure 3.6: Phase II and Phase III of valve stroking for a specified head. 
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3.3.3 Boundary Conditions 

A consideration of all the possible boundary conditions to which the valve stroking 

procedures can be applied goes far beyond the scope of this investigation. For 

those interested in such details, [Wylie/Streeter] and [Propson] provide thorough 

accounts of these. Attention here will be directed to only those conditions pertinent 

to the constant head upstream reservoir pipeline with a valve at the downstream 

end. This system contains three possible boundary conditions—the reservoir, the 

valve and the series pipe connections (if the pipeline consists of more than one 

pipe). 

Upstream Reservoir 

This boundary condition has already been implicitly discussed in the description 

of the valve stroking methods. In both cases, i.e., stroking in a specified time 

and 'stroking for a specified head, the pressure at the upstream end is fixed at the 

reservoir head, Hr. The flowrate in the steady flow zones is equal to either the 

initial or the final flowrate, depending on which zone is being considered. Only 

during the transient phase is there any indeterminacy with respect to the discharge. 

[Propson] suggests that, for stroking times ≤ 4L/a, the upstream discharge be var-

ied linearly during the central transient condition. For stroking times in excess of 

4L/a this procedure may not produce the lowest possible head rise for the pipeline, 

particularly for systems in which viscous effects are important. The recommended 

procedure for solution in these situations is valve stroking for a specified head 

wherein the upstream variation in discharge is fixed by the restrictions placed on 

the head at the downstream end. 
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Neither of these methods of specifying the upstream discharge is sacred and it 

must be borne in mind that under certain circumstances, it may be desirable to 

use some other means of prescribing the fiowrate at the reservoir. 

Valve at the Downstream End 

The relationship between the head, flowrate and the valve motion at the down-

stream end of the pipeline has been mentioned in Section 1. The value of r at each 

time grid line, i.e., for J = 1,..., (T, az/L.t) + 1 is 

(_)J 

T(J) (3.24) 

where N + 1 is the index of the pipe section at the valve. Note that the datum 

must be taken through the centerline of the valve for this expressiontobe valid'. 

Series Pipe Connections 

This type of junction is used to incorporate changes in the pipeline diameter or 

other physical properties such as wavespeed, friction factor, type of anchoring, 

etc.. Ignoring any minor losses at the connection, the head at the end of one pipe 

must equal that at the beginning of the next pipe. Continuity also says that the 

discharges in the two pipes are equal. Thus, the boundary conditions can be very 

simply stated as HNJS = Hf and Qf = Qj where the subscript NS denotes the 

number of sections in the first pipe and the superscript J refers to the time step 

index. 

31t would be more proper to say that the datum must be taken at the level of the downstream 
reservoir in order for the expression to be correct. Since the valve discharges to the atmosphere the 
level of the downstream reservoir is effectively at the centerline of the valve. 
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3.3.4, Valve Stroking and Transient Optimization 

The question that should be raised at this point is," What does valve stroking have 

to do with optimal design of pipelines?" It has already been demonstrated that 

the concept of optimal pipeline design is very-complex and depends as much on the 

particular design goals as it does on the physical parameters. Nevertheless, certain 

fundamental considerations are common to most, if not all, pipeline applications. 

For the majority of systems, the dominant pipeline cost is the capital expense of 

the pipe and its installation. The cost of the pipe is an increasing function of the 

volume of material contained in the pipe cross section. Since the internal pressure 

is, for larger pipelines, the overriding factor that determines the amount of material 

needed in the pipe cross section, it is clear that the cost for any given diameter tends 

to be minimized if the internal pressure can be reduced to the lowest possible value. 

The valve stroking procedures accomplish exactly that—they guarantee that, for 

aparticular diameter of pipe and valve motion duration, the maximum internal 

pressures are the minimum attainable for that system. Although this is not the 

only consideration involved in minimizing the cost of a pressure line, it assures 

that any solution based on the valve stroking procedure will always be "better" 

with respect to an infinite number of solutions based on arbitrary valve closures. 

That is to say, for every unique valve stroking solution an unlimited number of 

tau curves exist which will produce a larger pressure increase in the pipeline. In 

spite of the fact that valve stroking may not result in a global minimum, it does 

provide a rational basis for an optimal design procedure. Even if the suboptimal 

solution proves too costly in other respects to be implementable, a good starting 
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point has been found from which the designer can proceed using experience and 

sound engineering judgement to arrive at a reasonable solution. 

The valve stroking procedures are also important to the concept of transient 

optimization in that they provide -a convenient means for incorporating constraints 

relating to control of the system. Finally, it should be noted that the foregoing 

discussion is only valid if the effectiveness criterion to be optimized is based upon 

variables which are functions of the internal pressure in the system. 



Chapter 4 

Conceptual Optimization Model 

4.1 Description of System 

The phrase simple pipeline systems has already been mentioned but no explanation 

has yet been given as to what this actually means. The system which has been 

chosen for investigation is the classical constant head upstream reservoir with a 

single pipe and a valve discharging to the atmosphere at the downstream end. A 

schematic depiction of this system is shoWn in Figure 4.1. The following dimen-

sionless quantities are often used in hydraulic transient literature. 

hf 
H1 

Hr 
aV0 

= 2gH (4.2) 

(4.1) 

There are a number of advantages, both from the theoretical and practical points 

of view, in studying this particular. system. 

1. Transient analysis is intrinsically complex and difficult, therefore a system 

which contains a small number of variables presents fewer impediments to 

the development of a rigorous, analytical model. Furthermore, significant 

features of the model are less likely to be obscured or invalidated due to 

complex interactions between parameters. 

2. This system is generally percieved to be the classical starting point for all 

pipeline transient analyses. 

42 
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Figure 4.1: Schematic diagram of physical system. 

H  

datum 

3. Despite its simplicity, the system is very representative of many real physical 

installations, for example, penstocks in a hydro-power facility, a reservoir-

municipal water supply link or a pipeline drawing oil from a large storage 

tank to a loading site. Even a pump with a relatively flat characteristic curve 

operating at constant speed could be usefully approximated in this way. 

4. The valve stroking procedures which form the hydraulic basis for the model 

have certain limitations when systems become more complex. 

The following assumptions have been made in the transient analysis. 

• The system can be divided into homogenous lengths having the following 

characterisitcs: 
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- The pipe diameter is constant. 

- The wall thickness is constant. 

• The valve is located at the downstream end of pipe and the datum is set at 

the level of the downstream reservoir (the centerline of the valve for a valve 

discharging to the atmosphere). 

• The reservoir level remains constant. 

• No air pockets exist in the pipe. 

• Pipe friction associated with a given unsteady flow follows the quadratic law, 

i.e., the D'Arcy-Weisbach law. 

The velocity head is negligible. 

• Only one valve motion takes place and the motion is a closure. 

These assumptions are commonly made in transient analyses and are valid for 

most pipeline systems. They are 'not requirements for the development of th 

optimization procedures proposed in this dissertation but do, however, facilitate 

the investigation. 

4.2 Definition of Cost Factors 

It is not essential for the conceptual development of the model to know precise, 

practical expressions for the cost terms. In fact, since the actual form of cost 

estimating equations used for a particular installation will be highly site and project 
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specific, it would be a gross error to propose a model having exact functions which 

should apply to all situations. To demonstrate the utility of a model it suffices 

only to define the parameters which influence the effectiveness criterion and to 

determine the manner in which they affect the cost. 

The most important factors determining the cost of a pipeline installation are: 

• the length of the pipeline 

• the diameter (size) of the pipe 

• the wall thickness of the pipe 

the pipe material (eg. steel, PVC, concrete, etc.) 

• the specification of the system boundary conditions (in this case a discharge-

time relation) 

. the response time of the system (synonomous with the duration of valve 

motion for a stroked system). • 

The significance of each of these factors with respect to the cost function is discussed 

separately below. 

4.2.1 Pipeline Length 

It is clear that the cost of material, placement, maintenance, etc., increases in 

proportion to the length of the pipeline. This has significant ramifications in de-

termining the relative importance of unit costs versus single item expenditures. 

It also impinges directly on the optimization with respect to transients in that it 
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establishes the return trip wave travel time (2L/a) for pressure pulses in the sys-

tem. This effectively constrains the optimizing procedure in terms of its minimum 

response time. The reasons for this are explained in the section on valve stroking 

theory (Section 3.3). There are a number of methods already in existence (and 

use) to deal with the problem of optimizing costs associated with pipeline length 

(see Section 2),-

4.2.2 Pipe Diameter and Wall Thickness 

These two factors have been placed under a single heading because they are not 

independent of one another. Consider the classical hoop stress equation which 

describes the circumferential stress in the wall of the pipe. 

2e 
(4.3) 

where y is the unit weight of the fluid, c is the stress in the pipe wall, H is the 

static pressure and the other variables are defined in Figure 4.2. In terms of the 

required wall thickness, Equation 4.3 becomes 

e = 'yHD1 . (4.4) 
2u 

The greater the head in the pipe, the thicker the wall must be to withstand the 

pressure forces. Even if the pressure in the pipe is held constant and, let us say, 

that a cannot increase since this is to be maintained at some specified design value, 

aajz, then for a larger diameter pipe the wall thickness must also be increased. 

Compounding this phenomenon is the fact that for a unit increase in pipe 

wall thickness, the cross sectional area of the wall increases nonlinearly with pipe 
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pressure = 

e:wal I thickness 

a 

a 

Figure 4.2: Hoop tress in the wall of a pipe. 

diameter. The cross sectional area of the pipe can be expressed as 

A= (D— Dfl 

Substituting for D0 gives 

where D0 = D + 2e. (4.5) 

= 7r(e' + eD1) (4.6) 

and replacing e by Equation 4.4 produces 

AW = 7r Dil ( (,• H ) 2 + 2-yH) 

4 a 
(4.7) 

The cross sectional area integrated over the length of the pipe is equal to the 

volume of material required to withstand the pressure exerted by the fluid on the 

pipe. 

It is evident from Equation 4.7 that the wall cross sectional area for a given 

head varies as the square of the inner diameter of the pipe. This is by far the 
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dominating factor determining the amount of material in the pipe cross section. 

The factor enclosed in parentheses shows that, for a given size of pipeline, a unit 

increase in the fluid pressure also means that the wall area must be greater for 

larger values of D2. For smaller pipe sizes structural, bedding, backfill, handling 

and wheel loads outweigh internal pressure requiiements in terms of dictating the 

necessary wall thickness. However, in large diameter pipes, internal pressure is 

an important design consideration. It is not surprising then that disproportionate 

amounts of additional material are needed to manufacture large pipes as opposed 

to smaller ones for the same design head. Taken together, these two factors mean 

that for' a unit increase in head more material is required for a safe design in a 

larger pipe. 

Why then, do engineers not design systems using the smallest possible pipe size 

needed to carry the required discharge? There can be many reasons for "oversizing" 

a pipe. Peihaps the most compelling reason for installing "larger than necessary" 

pipes is the uncertainty of future demands. It may be far cheaper to design a 

system with capacity in excess of the present need so that costly expansions might 

be avoided at a later time. Another example is the cost represented by increased 

head losses due to friction resulting from higher fluid velocities in the system. If, for 

example, the constant head upstream boundary condition is replaced by a pump 

(which may also be operating at constant head) then the cost of pumping th6 fluid 

is a function of the head losses experienced by the system. Pumps and pumping 

stations are expensive items and it is desirable to reduce costs by designing the 

system so that the steady state operating expense is minimized (see Sections 2 

and 4.3.4). A further argument in favour of using larger pipe sizes is the adverse 
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conditions that negative pressures in a pipeline can produce, such as cavitation. If 

the head in a pipe is too low the likelihood of subatmospheric pressures developing 

in the system increases since even minor transients may produce significant pressure 

drops. Other reasons might be a minimum requird delivery pressure either for a 

reservoir or to prevent cavitation in a valve under steady state conditions. 

The capital investment required for pipelines increases for larger pipe sizes due 

to the transportation costs and the expenses associated with machinery, forms and 

even manufacturing methods. In addition, associated pipeline and appurtenant 

structures, miscellaneous equipment as well as a host of control devices increase 

nonlinearly in price as the pipe diameter gets bigger. Valves and their associated 

actuator/controllrs become very expensive in larger sizes due to the increased 

forces, moments and torque acting on them. As a consequence, valves are often 

placed in a short section of reduced diameter pipe to decrease the capital expense 

while only marginally increasing the operating costs. 

4.2.3 Pipe Material 

The unit cost of pipes manufactured from different materials is subject to change 

depending on market and production conditions. Also, various pipe materials ex-

hibit different types of stress-strain behaviour. Steel, for example, is an elastic 

material and can withstand a sustained increase in head without suffering a sig-

nificant reduction in wall thickness (Poisson's effect). In contrast, a visco-elastic 

material such as polyvinyl chloride .(PVC) can resist high pressures for only a 

short period of time due to creep effects increasing the likelihood of a rupture. 

Differences in the frictional resistance and the elastic modulus of the material have 
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important consequences in determining the transient response and, hence, the cost 

of the system. 

4.2.4 Specification of the System Boundary Conditions 

This topic is discussed in greater detail in Sections 3.3.3 and 4.4.1. Suffice it to 

say here that the manner in which the system proceeds from one set of conditions 

to another (normally steady state conditions) has a profound influence on the 

transients arising in the system. In certain situations, these boundary conditions 

can be easily specified reducing the complexity of the optimization process while 

in other circumstances many alternative formulations exist and more elaborate 

methods in the design procedure are needed to cope with them. In either case, the 

manner in which boundary conditions are prescribed has a bearing on the ultimate 

cost of the system. 

4.2.5 Response Time of the System 

The minimum response time of the system, it has already been stated, is physically 

fixed by the wavespeed of ihe fluid and the length of the pipeline. This is simply 

a restriction imposed by the valve stroking procedure itself. There is, however, 

no such constraint on the maximum response time of the system. In general, 

it is advantageous in terms of controlling water hammer to change conditions as 

slowly as possible subject to whatever restrictions are imposed on the system. 

Unfortunately, virtually all pipeline installations are required to make adjustments 

as rapidly as possible either for operational, control or emergency reasons. For 

example, turbines in a hydro-power facility must be capable of reacting to a total 
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load rejection by the utility power grid. This may be due to broken power lines 

or any of a number of other causes. When this occurs, the turbines, having lost 

their brake loads, begin to rotate more and more rapidly. The only way to curb 

this runaway, situation is to reduce the flow of water through the turbines quickly 

and drastically. The natural consequence of this action is to generate powerful 

transients in the penstocks. The dilemma is this: if the strength of the penstocks 

is inadequate then more expensive turbomachinery must be purchased in order 

to withstand the angular momentum attained before the discharge is reduced. 

Conversely, if less expensive generating equipment is to be installed then more 

expensive penstocks must be constructed to ensure the safety of the powerhouse, 

its equipment and operators. 

.4.3 Formulation of the Effectiveness Criterion 

From the foregoing discussion, it can be observed that the effectiveness criterion 

must involve a complex interaction of many factors. It can, however, be stated 

reasonably succinctly in the following form. 

Cost = Material + Placement + Response Time + Operation (4.8) 

4.3.1 Pipe Material (Mass) 

The amount of material at a particular cross section of pipe is directly linked to 

the maximum pressure occuring at that point in the system. This can be thought 

of as one contribution from the steady state head and another from the head rise 

caused by transients. Figure 4.3 shows clearly the steady state and the maximum 
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head envelopes. Generally, however, since the maximum steady state pressure that 
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Figure 4.3: Steady state and maximum head lines for simple pipeline system. 

can exist in the pipe is the total energy line, this provides a convenient quantity to 

which all other hads in the system can be referred. The maximum value of head 

attained at specific sections in the pipe during the transient phase is calculated by 

the valve stroking procedure. The effect of the pipe diameter can be accounted for 

by use of a pipe diameter factor or PDF (akin to the capacity factor used by cost 

engineers for preliminary estimates). Note that the form of the PD F factor is very 

similar to Equation 4.7. A cost term having the following form results. 

in-1 

Ci> (2hmaz +1)DFL.X (4.9) 
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where 2hmaz = (Hmaz - Hr)/Hr 

Hmaz = maximum head attained at section 

Hr '= reservoir head (reference head) 

n = the number of sections 

PDF = (D/Drei)1 

Drei = the reference pipe diameter 

D = the pipe diameter 

Lx = the reach length 

/3 = an arbitrary exponent 

C1=CMxP 

CM = cost per unit length of D1 

P = scaling factor for unit price flucuations. 

Equation 4.9 takes no account of the stress-strain behaviour of the pipe material. 

4.3.2 Placement 

The placement or installation cost of the pipeline can be simply formulated as 

i=n-1 

C2 E PDFz&x (4.10) 
i=1 

where C2 = CPx P 

CP=the unit cost of installing Dre1 

P=scaling factor for unit price variations. 

It is clear that the placement cost depends primarily on the physical system itself. 

Although this commonly leads to the formulation of a cost term which is a linear 

function of the pipeline length, other factors, such as wall thickness, do introduce 
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nonlinearitiés into the placement cost. For instance, welding costs increase for a 

thicker walled pipe. 

4.3.3 Response Time 

Since the cost associated with this term will most likely be installation dependent, 

there is little to gain in terms of insight into the problem by using some complicated 

mathematical expression to evaluate it. Even if no specific aspect of cost can be 

directly attributed to the response time in a particular system, this generally acts 

as a constraint on the objective function. For the purposes of this research the 

following arbitrary, monotonically increasing function was used. 

where 

(C3)) t 

C3 = an arbitrary constant. (in cost units) 

a = an arbitrary exponent 

te = Te/(2L/a) 

(4.11) 

Valve/Controller/Actuator System . 

If the response time cost term does include spedfic elements of cost these can be 

incorporated directly into the cost function in any manner deemed appropriate 

by the analyst. As an example, consider the cost of the valve/controller/actuator 

system required at the downstream end of the pipe. 

The cost associated with the control valve is a function of the size of the pipe 

and the precision needed to execute the prescribed valve closure arrangement. The 
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size of the valve can easily be accounted for by a PDF, but the degree of control 

needed in the system is more difficult to evaluate. Since the tau curve essentially 

represents the relative motion of the valve, it may be characterized by its velocity 

and acceleration components. The more rapid and complex a valve motion is, 

the greater the velocities and accelerations the valve system must be capable of 

providing. This, in turn, means it will be more expensive. Aceleration is more 

expensive to achieve in the acuator as it requires sensitive variable speed drivers. 

The first and second derivatives of the closure arrangement can be respectively 

obtained by first and second order Taylor expansions, and in this way, approxima-

tions to the velocities and accelerations occurring during the valve motion may be 

obtained. This leads to the formulation of the following cost term. 

(VF1(V,naz - + VF2(Amaz - A,)m + c) PDFVaZVC 

where PDFvatve = (Dva1ue/Dref)' 

Vmaz = maximum velocity 

minimum velocity 

A,naz = maximum acceleration 

Amin = minimum acceleration 

k,m and /3' = arbitrary exponents 

C = the cost of a linear closure system 

VF, and VF2 = factors expressing the relative 

importance of the velocity and 

acceleration terms. 

(4.12) 

The linear closure cost term, C, (generally the cheapest to attain in practice) 
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has been included because the other terms in Equation 4.12 become zero for this 

case; i. e., Vmaz - Vmin and Amax - Amin are equal to zero. 

It must be understood that real valves, valve systems and their closure char-

acteristics are enormously complex and it is doubtful that any simple or general 

formulation could be so easily made. At the same time, it is not necessary to do 

so in order to incorporate a conceptually valid representation of their effect on the 

overall cost of a pipeline system. 

4.3.4 Operation 

A logical approach to evaluating costs of this type would be to preoptimize them 

using one of the steady state techniques described in Section 2. This is appropriate 

if either 

1. the cost associated with this term is much greater than any other cost com-

ponent, pumping costs on a short, high capacity line for example. 

2. the system is too complex to permit the convenient incorporation of steady 

state factors in the transient model. 

In either case, a "complete" optimization (one that includes water hammer ef-

fects) can be achieved by performing separate procedures with the transient model 

performing a suboptimization role in the overall process. 

In some instances the operational costs may include items not normally thought 

of as maintenance expenditures. For example, a reservoir supplying water to an-

other reservoir by gravity does not seem to have any operational costs other than 

normal maintenance. However, if the friction losses in the system are thought 
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of as a loss of capacity under normal operating conditions, then an operational 

consideration analogous to pumping costs can be seen to exist even in this simple 

situation. This is intrinsically considered in the simple upstream reservoir system 

in the specification of the required discharge, since parameters are selected such 

that the discharge constraint is always satisfied. However, this may not be true 

in every situation and the fiowrate itself need not be specified as an equality but 

rather as a minimum required fiowrate or a range of discharges. 

As a specific example of an operational cost which can easily be incorporated 

into the transient model, consider the power output from a hydroelectric installa-

tion. The equation for the power produced by a turbine is 

P = Q-IH,,t?7 where 77 is the turbine efficiency. (4.13) 

Ignoring, for the moment, that the turbine efficiency is not constant, the amount of 

power that can be generated is a function of the available head and the discharge. 

The available head (or net head) is a function of the flowrate and the pipe cross 

sectional area (diameter). 

= (Ho - kQ2) and k = a constant. (4.14) 

The discharge is a function of the pipe diameter and the head losses in the wicket 

gates. In broad terms, for a larger diameter pipe, more water can pass through the 

turbine, the lower are the various frictional loses and, hence, the power output of 

the turbine can be increased. A tradeoff exists., though, between higher pipeline 

costs for increased capacity and the value of the power generated. 
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4.4 Cost Variables 

The preceeding sections have focused on the parameters which ultimately deter-

mine the cost of a pipeline system and it has been demonstrated that they can be 

used to generate a theoretically meaningful cost function. It is, however, probably 

not ,ret clear exactly how these factors are related to the cost variables per se. Thus 

far it has been postulated that 

Cost = 1{Material, Placement, Response Time, Operation)- (4.15) 

If we extract the key mathematical and hydraulic variables from these somewhat 

nebulous terms a more analytical exprssion results. 

Cost = Y{D, Ahrwx, Qss, ti,, L, a, boundary condition specification}. (4.16) 

These variables have been defined and discussed at length in Sectibn 3.3. 

The heads which ate produced during the transient are completely determined 

by the physical system characteristics, the initial and final steady states and the 

upstream boundary conditions. Likewise, the closure arrangement is fixed by the 

manner in which the boundary conditions are specified. Therefore, the only vari-

ables which are not necessarily set by the specification of the system are the dura-

tion of the transient, ti,, the pipe diameter, D, the wavespeed, a, and the nature 

of the boundary conditions. Every , other system quantity is either given or can 

be derived from these variables, and all of these quantities can be manipulated by 

the valve stroking procedure(s). The pipe diameter and the valve motion duration 

have been discussed in previous sections. 
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4.4.1 Boundary Condition Specification 

The importance of the nature of the boundary conditions to the optimization model 

cannot be overemphasized. Each class of problem has its own peculiar dependence 

on the way in which the starting boundary condition is chosen. In other words, 

the spatial and temporal characteristics of that point in the system from which the 

valve stroking procedure begins has a profound influence on the dynamic response 

of the system. In some instances the choice of starting points is obvious and 

simple while in others it is completely arbitrary and requires experience, sound 

judgement and perhaps even research in order to obtain boundary conditions which 

will provide optimal results. 

To illustrate precisely what this entails, consider the following example which 

involves the same physical systeip that has been discussed thus far. In this system, 

one can only stroke from the reservoir. This is because one variable, namely the 

head, is fixed at the reservoir. Hence, the only variable which can be manipulated i 

the discharge, Q. One means for manipulating the discharge is shown in Figure 4.4. 

A parabolic discharge factor, ip, ranging between zero and unity can be obtained 

as follows. 

- (Qo - Qj)/2 + y (4.17) 

- QoQ 

where y is measured positive upwards and is the difference between the discharge 

at t = ttr/2 and L1Q/2. For any given value of i/.', the value of the discharge at the 

reservoir when the transient phase is half complete (t = t,/2) is 

QItttr/2 = ' Qo Qj  2 (4.18) 

Knowing these three points on the discharge curve, the flowrate at any time during 
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Figure 4.4: Specification of the upstream boundary condition by use of a parabolic 

discharge function. 

the transient phase at the reservoir can be obtained by parabolic interpolation. 

Figure 4.5 shows a cost surface for a single pipe diameter resulting from the 

application of the model to a fictitious system of the sort being considered here. 

Note the very pronounced effect on cost that has been produced by changing the 

specification of the upstream boundary condition. It is interesting to see that 

the minimum cost for a given stroking time is almost always obtained when , = 

0.5, i. e., when the variation in the discharge is linear. This is not surprising as 

other researchers[Propson] have demonstrated analytically that for stroking times 
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7400 

Figure 4.5: Cost surface for parabolically varied upstream discharge. This is for a 
fixed pipe .diameter. Note the distinct "trough" for b = 0.5.-

between 2L/a and 4L/a seconds, a linear change in the discharge at thereservoir 

produces the minimum head rise in a frictionless system. It is instructive that this 

is not so for stroking times in excess of 4L/a seconds [Propson] [Karney/Ruus 1985] 

and the manner in which the system proceeds from the initial to the final discharge 

can be more crucial in these cases. 

This example points out very clearly the importance of the boundary condition 

specification for the system as a factor affecting the cost of the installation. It also 

provides some indication of how complex matters may become in systems with 

boundary conditions having two or more degrees of freedom. 

In terms of the simple system being investigated here, it is possible to formulate 
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the cost function in terms of the pipe diameter and the response time only. 

4.4.2 Wavespeed 

In actuality, the wavespeed, a, represents a convenient means for describing a 

number of physical properties of the fluid, the pipe material and the method of 

pipe anchoring used for a particular installation. The most general expression for 

the wavespeed is 

K/pm 
i KD 

Ee 

(4.19) 

where K is the bulk modulus of the fluid, ,o is the density of the fluid, E is 

the elastic modulus of the pipe material, and D and e are the pipe diameter and 

wall thickness respectively. The constant c1 takes account of the type of support 

provided for the pipeline. Typically, three cases are recognized with c1 defined for 

each as follows. 

Case a The pipeline is anchored at the upstream end only. 

(4.26) 

Case b The pipeline is anchored against longitudinal movement. 

1 - (4.21) 

Case c The pipeline has expansion joints throughout. 

= 1 (4.22) 

The Poisson's ratio for the pipe material is denoted by A. 
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Most commonly, (KD/Ee)ci -* 0 and Equation 4.19 simplifies to a = JK/p 

which is the expression for the acoustic wavespeed in a fluid. For this reason a 

is referred to as the wavespeed. As indicated by Equation 4.19, the situation in a 

pipeline is. rather more complicated. 

For the majority of hydraulic analyses involving transients, the wavespeed can 

be considered to be constant. Even in those cases where some uncertainty exists 

regarding the wavespeed, the solutions of the governing equations, with respect to 

peak pressures, are relatively insensitive to changes in this parameter. As men-

tioned in Section 3.2, it is not unusual to deliberately vary the wave celerity by 

as much as ± 15% in order to maintain a constant time step for solution by the 

method of characteristics. Does the same hold true, however, for the valve stroking 

procedure? Work done by Ruus indicates that maximum and residual pressures 

obtained by a system are very sensitive to non-ideal valve motion, especially in the 

final 2L/a seconds. 

Another concern in this context relates to the ratio of D/e in Equation 4.19. If 

this ratio is changing during the optimization process, can the variation be properly 

accounted for by the model? Furthermore, suppose that it is wished to vary the 

wall thickness along the length of the pipe to take advantage of the reduction in 

maximum pressure which occurs as one proceeds upstream. In other words, each 

pipe reach, L, could have a different D/e ratio and hence a different wavespeed. 

How does this affect the optimization procedure? 

The answer to the former question is straightforward. The optimal nature of 

the tau curves generated by the valve stroking procedures does not seem to be 

particularly sensitive to variations in the wavespeed. Figure 4.6 shows the manner 
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in which the heads produced by an optimal valve closure arrangement change when 

the actual wavespeed of the system differs from that used to obtain the optimum 

tau curve. In the figure, the maximum head ratio is defined as Hmaz/H az where 

is the maximum head occurring for a0 and Ha is the maximum value of 

head achieved for an arbitrary wavespeed. The maximum residual head is H/Ho 

where is the maximum head obtained after the cessation of the valve motion 

and H0 is the final steady state head at the valve. The dimensionless wavespeed is 

simply a/ao. 
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The second question is equally easy to answer. If the designer deems it neces-

sary to use variable wavespeeds, they can be trivially handled by the model since 

only a single variable need be adjusted at each trial. The pipe diameter under 

consideration is known for each possib.le solution and the wall thickness can be 

evaluated by an iterative scheme provided that some means of relating wall thick-

ness to pipe diameter, internal and external pressures and structural considerations 

is available. The other parameters in Equation 4.19 are all known from the system 

specifications. 

Finally, if it is desired to alter the wall thickness along the length of the conduit, 

it becomes necessary only to define each sublength as a different pipe in the sys-

tem. Hence, each reach of pipe can possess a different wavespeed and the pipeline 

is modeled as a multipipe system. Some adjustment to the wavespeed may be 

necessary, as previously mentioned, in order to maintain a constant time step for 

the method of characteristics solution. However, an excellent approximation of the 

true system will be obtained. 

4.5 Constraints 

Equality and inequality constraints can easily be incorporated into nonlinear opti-

mization problems by means of either penalty.terms or transitional penalty func-

tions. These are extra terms Wadded to the objective function which impose a penalty 

cost if the constraint is violated. Penalty terms may be expressed in the following 

general form. 

Zi = coicI.9{xi,x2,.. . ,x}I (4.23) 
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where 

9{x1,... , x} = the 1th constraint function 

Zi = the penalty cost associated with the ilth constraint 

= the cost variables of the jth constraint 

1 for 9{xi,...,xn}0 
= 

0 for 9{x1,... , x,} = 0 

= a penalty coefficient, eg. 102 

In order to avoid the steep-sided valleys that are sometimes produced by penalty 

terms of this sort, transitional penalty functions which provide a smoother change 

in the cost function are dften employed. This is desirable as it results in a cost 

surface which is more easily traversed by certain optimum seeking strategies. Tran-

sitional penalty functions have the form 

zi = çoic (e19''}1 - i) (4.24) 

Figure 4.7 shows the excessive cost increase that a penalty function generates at 

a constraint boundary. The scale is such that the contours of the cost surface are 

less prominent making it appear as a low, flat region in the figure. 

Apart from any specific constraints imposed on the system by design, there are 

certain restrictions placed on the cost domain by nature itself. With respect to the 

response time of the system, it has already been mentioned (Section 4.3.3) that 

valve stroking theory cannot be applied when the duration of valve motion is less 

than 2L/a seconds. In practice, this is not a severe restriction since the behaviour 

of the system is not unduly different for valve motions taking place in a shorter 

period of time. The reason for this is simply that no reflected waves can reach the 
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20000 

Figure 4.7: Example of a constraint formed by a penalty function. 

valve before 2L/a seconds have elapsed anyway so no reduction in the maximum 

head produced at the valve occurs. Some moderation of head can, however, take 

place in the pipe upstream from the valve since reflected waves will be traversing 

the length of the pipe starting from the reservoir after L/a seconds have elapsed. 

In practice valve motions having a duration less than 2L/a seconds only rarely 

take place (undamped check valves being a notable exception). 

An upper limit to the valve motion duration can be established by virtue 

of the fact that, for changes in the system taking longer than about 5(2L/a) 

seconds[Karney/Ruus 1985], rigid water column theory, provides acceptable solu-

tions for unstead flow problems. This does not mean that the effects of fluid 
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elasticity do not exist for longer duration valve motions, but that they are simply 

not a requirement for an accurate solution. For these reasons, the model described 

herein restricts its attention to only that part of the unconstrained cost domain 

which falls between 2L/a ≤ t ≤ 1OL/a, i. e., 1 ≤ t < 5. 

4.6 Feasibility 

In general, feasibility in the context of optimizatiPn refers to that part of the so-

lution domain which does not violate the constraints imposed upon the problem, 

either intentionally by the designer or inherently by the physical world. Section 4.5 

has already dealt with the latter. However, there are some other restrictions which 

define the region of feasibilty insofar as the model being described herein is con-

cerned. Certain conditions of flow which may occur in practice, or which result 

from an inferior formulation of the problem, must also be considered. 

• Negative pressures at the valve are definitely possible for certain system and 

valve configurations. These situations are considered to be unacceptable as 

potential solutions and are viewed as infeasible by this model since they would 

permit air to be introduced into the pipeline via the valve. Such an occurrence 

can normally be handled by placing an accumulator at the downstream end 

of the pipe but as this introduces an unnecessary degree of complexity into 

the system it will not be considered as a legitimate solution here. 

• Equation 3.20 is not valid for situations involving a reversal of flow. If it 

were necessary to incorporate the possibility of negative flows into the model, 

Equations 3.18 and 3.19 could be solved numerically using Newton-Raphson 
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or some other method. 

• A solution which would be optimal with respect to the transient behaviour 

of the system can exist, but it may not satisfy the steady state requirements 

of the system. Hence, any optimal solution must be able to meet the require-

ments for the desired steady flow characteristics of the system. 

4.7 Self-Regulation 

It is a relatively simple matter to incorporate the cost of computer analysis directly 

into the optimization model. Irrespective of the type of optimum seeking strategy 

employed by the thodel, the change in the cost function at each move or cycle can 

be readily evaluated. If the cost of the computer resources needed to locate the 

next improved value of the objective function exceeds, for an arbitrary number 

of moves, the improvement in the value of the cost function the program may be 

terminated. This is probably most important if the cost of a given system is small 

and the computer analysis constitutes a significant proportion of the overall project 

cost. 



Chapter 5 

Model Testing 

The model as described in Chapter 4 is an abstract, hypothetical formulation of 

a generalized mathematical framework which allows for many different implemen-

tations of the model depending upon the peculiar needs or desires of the analyst. 

In this chapter a number of specific versions of the model are described in con-

junction with the particular aspects of the investigation for which they were used. 

Hence, in the discussion that follows, the term model should not be understood to 

indicate some static optimization construction. Rather, it should be realized that 

the outcome of various testing stages has influenced the form. and use of the model 

in the latter phases. The model is first described as itwas initially conceived and 

subsequent changes) are related as they took place during the evolution of the final 

model concept. 

All of the computer versions of the model' described were coded in Fortran 77 

and have been implemented on the Honeywell DPS8/6 computer at the University 

of Calgary. A partial, vectorized version of the model was also written in Fortran 

and ruh on the University of Calgary's CYBER 205 computer2. 

'The various versions of the model are referred to as TOM1, TOM2, etc., where TOM is an 
acronym for Transient Optimization Model. 

'Descriptions of the various programs and versions of TOM can be found in Appendix A. 
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5.1 Verification of Valve Stroking Algorithm 

The valve stroking, algorithm itself will not be described since a complete account 

of this is given by [Wylie/Streeter]. Interested readers are referred to this excellent 

text for details concerning computerization of both types of valve stroking. 

The validity of the optimization model is completely dependent upon the ac-, 

curacy and correctness of the valve stroking procedures since these are the means 

by which the physical nature and the hydraulic performance of the system are 

assessed. Two methods for testing the valve stroking algorithms were used: 

1. The optimum closure curve produced by the valve stroking program can be 

used as the input for another program that performs ordinary method. of 

characteristics time simulation and is known to generate correct results. 

2. Experimental data for a valve-stroked closure can be used as a check on the 

accuracy of the transient response predicted by thë'valve stroking subroutine. 

Figure 5.1 shows the results 'of one test of the former type. Actual numerical 

results are given in Table 5.1. Several similar tests were performed on a number 

of different systems and in each case the method of characteristics simulation gave 

a system response identical to that predicted by the valve stroking program. 

For the latter test, data used by [Propson] in the experimental verfication of his 

valve stroking procedure were utilized. The specification of the system variables 

conformed to the laboratory setup and the output of the valve stroking program 

(Figure 5.2) is compared with the results (both predicted and experimental) ob-

tained by [Propson]. Note that the agreement here, although good, is not perfect. 
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Figure 5.1: Comparison of system response predicted by valve stroking program 

and ordinary method of characteristics simulation. Top figure—valve stroking re-
sponse (head in meters); Bottom figure—method of characteristics simulation re-

sponse. 'Hr = 67.7 m, Qo =1 m3/s, Q,r = 0 m3/s, T = 3 s, D = 0.75 m, f = 0.010, 
a = 1100 m/s and L = 550 m, number of pipe reaches= 8. Variation in discharge 

at the reservoir end is linear with time. 
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Valve Stroking MOCI Simulation 

Time (s) T  Head (m) Q (m3/s) Time (s) Head (m) Q (m3/s) 

0.00 1.000 65.78 1.00 0.00 65.78 1.00 

0.25 0.840 81.78 0.937 0.25 81.78 0.937 

0.50 0.717 97.82 0.874 0.50 97.82 0.874 

0.75 0.617 113.89 0.811 0.75 113.89 0.811 

1.00 0.533 129.99 0.749 1.00 129.99 0.749 

1.25 0.443 130.33 0.624 1.25 130.33 0.624 

1.50 0.354 130.60 0.499 1.50 130.60 0.499 

1.75 0.265 130.82 0.374 1.75 130.82 - 0.374 

2.00 0.177 130.98 0.249 2.00 130.98 0.249 

2.25 0.141 115.21 0.187 2.25 115.21 0.187 

2.50 0.102 99.40 0.125 2.50 99.40 0.125 

2.75 0.055 83.56 0.062 2.75 83.56 0.062 

3.00 0.000 67.70 0.000 3.00 67.70 0.000 

Table 5.1: Comparison of system response predicted by valve stroking program and 
ordinary method of characteristics simulation. Heads and discharges are taken at 

the valve end. Hr _67.7rfl,Qo 1m3/s,Qf0ms/5,Tc 35,DO 7Sm, 

f = 0.010, a = 1100 m/s and L = 550 m, number of pipe reaches = 8. Variation 

in discharge at the reservoir end is linear with time. 

aMethod of 'Characteristics  For both valve stroking and method of characteristics. 
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This is likely due to the fact that [Propson] has used a second order approximation 

to evaluate the friction term in Equation 3.10. In addition, [Propson] does not 

assume that fully developed turbulent flow exists and accounts for the variation of 

f with Reynolds number. 

The foregoing tests do not absolutely guarantee the correctness of the valve 

stroking algorithms. They do provide, however, strongsupport for the assertion 

that the formulation and implementation of the valve stroking procedures is, in 

all likelihood, valid. Having established, as well as is possible, the verity of the 

hydraulic component of the optimization model, further testing of the model is 

now appropriate. 

5.2 Validity of Cost Variables 

5.2.1 Pipe Diameter 

No testing has specifically been done to demonstrate the importance of pipeline 

diameter as a valid decision variable. A glance at any of the literature dealing with 

the topic of pipeline optimization will attest to the importance of this variable 

as a major factor affecting the cost of a pipeline installation. The problem, in 

fact, is only to determine what other factors apart from the pipe diameter should 

be included as key decision variables in the optimization process. The following 

sections concern themselves with this issue and the validity of pipe diameter as a 

cost variable is accepted a priori. 
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5.2.2 Boundary Condition Specification 

The specification of the known boundary condition for the valve stroking procedure 

has already been mentioned in Section 3.3.3. It was stated that, for the simple 

system considered in this investigation, the optimal solution almost always occurred 

when the variation in the discharge at the reservoir during the transient phase was 

linear with respect to time. For this system, the reservoir end is the only boundary 

condition which can be fully specified. This must be so because the head at the 

upstream end is fixed by the level of the water in the reservoir. It would make no 

sense to prescribe conditions at some other physical location in the system since the 

valve stroking procedure could produce values of head at the reservoir end of the 

pipe that would be inconsistent with the assumption of a constant reservoir water 

level. Therefore, the only consideration in specifying completely the conditions at 

this boundary is the manner in which the discharge varies with time in going from 

the initial to the final flowrate. 

Referring to Figure 4.4, it can be seen that a linear time-discharge relation 

produces sharp discontinuities in the slope of the discharge curve at the beginning 

and the end of the valve motion. It seems intuitive that by eliminating one or both 

of these instantaneous changes in the fluid velocity, some amelioration of the head 

rise produced in the system might be achieved. The parabolic discharge function 

was devised as a means of testing this hypothesis. The objective function used was 

simply the sum of the individual cost terms given in Chapter 4 i. e., 

Mass Placement 
 -  - Duration 
i=n-1 i=n-1 

Cost = C1 E (thmaz + 1) PDF ix+C2 E PDFx+ (C3)t 
i=1 i=l 
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Valve System 

+(VF1(Vmaz - Vmin)k + VF2(Amaz - Amin) m + c) PDFvaive (5.1) 

The values of the various constants used in Equation 5.1 are: C1 = 1.0, C2 = 4.0, 

/3 = 1.5, Dref = 0.5 m, C3 = 7.0, a = 0.8, VF1 = 50.0, VF2 = 80.0, C= 0.0, ,3 ' = 1.5, 

k = 1.3, in = 2.0. 

Note that no cost term for the operating expenses has been included. This 

would simply introduce an extra mathematical relation that provides no additional 

information. In any case, it can be considered to be accounted for in the mass 

and/or placement cost expressions. For that matter, interactions between some 

cost factors could permit the combination of other terms, such as the mass and 

placement expressions. The cost function was evaluated for discrete combinations  

of stroking time and Li . Figure 4.5 shows a cost surface generated by the model 

for a given diameter of pipe, with the parabolic discharge factor, 0 and stroking 

time as the decision variables. Several tests for .different pipe diameters, initial 

and final flowrates, wavespeeds and friction factors were performed to determine 

if any reduction in system heads (costs) was possible. In virtually all cases no 

improvement could be obtained by altering the flowrate in this manner. Table 5.2 

shows some typical cost resultsfor one such numerical experiment. Note that for 

= 0.5 the discharge-time relation is linear. Only for stroking times in excess of 

4L/a seconds was any evidence found to support the contention that a nonlinear 

variation in discharge could give some improvement in the objective function. For 

those instances in which the cost function showed some improvement, the value 

• 31t should be mentioned that the program TOM1 which was used to generate the cost surfaces 

constitutes the simplest optimization model, i.e., enumeration of all feasible solutions. 



18 

Discharge 

Factor 1' 

Stroking Time T (seconds) 

1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 

0.000 1084 9107 7851 7407 7207 7201 7324 7678 

0.125 9245 8136. 7420 7035 6850 6836 6991 7383 

0.250 8217 7484 7009 6728 6597 6602 6772 7183 

0.375 7731 7063 6643 6430 6347 6387 6584 7014 

0.500 7611 6904 6400 6201 6141 6202 6417 6863 

0.625 7890 7155 6663 6408 6304 6333 6522 6950 

0.750 8155 7440 6984 6692 6549 6546 6710 7117 

0.875 8450 7784 7316 6997 6831 6800 6937 7320 

1.000 8832 8220 7651 7353 7165 7101 7205 7558 

Table 5.2: Objective function cost (arbitrary units) for parabolic discharge relation. 

Hr = 67.7 rn, Qo =2 m3/s, Qf = 1 m3/s, D = 0.75 m, f = 0.010, a = 1100 m/s 
and L = 550 rn, number of pipe reaches = 2. 

of & was very close to 0.5, i.e., the discharge curve was nearly linear. [Propson] 

has shown mathematically that for a frictionless system, and for stroking times less 

than 4L/a seconds, that the minimum system heads are obtained when the flowrate 

varies linearly with time. The tests performed in this investigation support this 

assertion. 

These results are perhaps not surprising if one considers the nature of hyper-

bolic differential equations. Sharp wave fronts which exhibit little or no dispersion 

are typical for the solutions of these differential equations by the method of char-

acteristics, hence the instantaneous changes in fluid velocity that take place are 

not at all unrealistic. The significance of these numerical tests is that, for the con-

stant head upstream reservoir system, the specification of the upstream boundary 

condition can be reduced to a linear variation of the discharge during the transient 

phase. In other words, the discharge function need not be considered as a decision 
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variable in order to find the optimal value of the objective function. It is important 

to realize that this is not necessarily, so for other systems. 

5.2.3 Valve Closure Time 

Two cost terms have been associated with the valve motion in the formulation of 

the objective function given in Equation 5.1. The first term is simply intended to 

represent the fact that, for critical control operations, the shortest possible duration 

should provide the greatest cost benefit. As the length of the control operation is 

increased, it is reasonable to expect the cost benefits to decrease. The second term 

in the objective function relates specifically (as described in Section 4.3.3) to the 

cost of the valve and its associated actuator/ controller mechanism. Intuitively, one 

supposes that this term ought to behave in a similar manner, i. e., that the cost of 

the valve system is a decreasing function of time. In ,Figure 5.3 the individual 

cost terms for an arbitrary pipeline system are plotted. The units of cost bear no 

relation to real costs and are producea by using Equation 5.1. They do, however, 

give an indication of the nature of the individual cost components and of the 

objective function itself. The mass  cost term is, as one would expect, a nonlinear, 

decreasing function of time. The placement cost term is constant for a given 

pipeline diameter and length. The respone time cost term is of course, by design, 

a nonlinear, monotonically increasing function of time. The valve system cost term 

is also nonlinear, but quite surprisingly, is not a gradually decreasing function of 

time. Rather, it exhibits extremely high values for valve closure times near the 

'The expression head cost term is synonomous with the mass cost term. 
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minimum stroking time of 2L/a + At seconds', then rapidly drops becoming very 

fiat thereafter. This would seem to indicate that only for quite rapid valve motions 

does a cost term of this sort exert a significant influence on the overall behaviour of 

the objective function. It is justifiably arguable whether the proposed expression 

for the cost of the valve/controller/actuator is a realistic representation of the 

actual cost behavior of these system components. Regardless of this, the function 

demonstrates clearly that the valve stroking phenomenon is highly complex and 

cannot be thoughI of in oversimplified terms. It behaves in a manner which is not 

always in accordance with one's intuition and is not easily predictable. Figures 5.4 

through 5.7 show the head-time curves and tau curves for various stroking times. 

In addition, the Values of the head cost term and the valve system cost term are 

shown. 

As an aside, it is worth mentioning that as the number of computational reaches 

increases, thereby producing a smaller time step, the accuracy of the velocity and 

acceleration approximations is improved. The valve system cost term can be quite 

sensitive to changes in the error of the numerical approximations depending on the 

values of the constant coefficients and exponents used in the cost function. Hence, 

one should pay strict attention to the size of the error terms generated by numerical 

approximations and select the number of pipe reaches, i. e., the time step, such that 

the accuracy of the approximations is consistent with the formulation of the cost 

term. 

It is doubtful whether or not the complex valve motions required by the valve 

'The At seconds of extra time is necessary to ensure that the change in fluid velocity at the 
reservoir does not occur instantaneously. Although this is theoretically possible, such an event 

cannot occur in fact. 
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stroking procedure can be both accurately and economically reproduced by actual 

valve systems. This also raises some important questions regarding the sensitiv-

ity of the valve stroking solutions to departures from the idealized valve closure 

arrangements. These issues will be addressed in some depth in the section on sen-

sitivity analysis (Section 6). For now, it will be assumed that either the optimal 

tau curves can be practically achieved or that the ideal solution provides a quasi-

optimal point which can then be modified by some means so that a practicable 

approximation to the solution can be implemented. This being the case, it is now 

possible to formally define the algorithm which constitutes the optimal solution 

procedure. 

5.3 Prototype Model 

The optimization problem can be seen to be reducible to a nonlinear, bivariate 

cost function with valve closure time, *Tc, and pipe diameter, D1, as its principal 

decision variables. The model which has been devised and used as a basis for all 

subsequent versions of TOM will be described in an algorithmic format. This 

form of the model has been coded as the Fortran program TOM2. 

In the previous section, it has been discovered that the cost function is a nonlin-

ear, three dimensional, continuous cost surface. Although the nonlinear methods 

outlined in Section 2.3 for functions of two or more variables could be applied 

to this problem, they are generally not very efficient and do not always guaran-

tee that a global optimum will be found. It is important to realize as well that, 

although the cost expression is a continuous function of valve closure time, only 
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discrete values of the stroking time may be used. This results from the fact that 

in order for solution by the method of characteristics to be possible, the closure 

time must some multiple of the time step. Naturally, by making the time step 

arbitrarily small, a closer approximation to a continuous function can be achieved. 

In practice, however, it might be computationally uneconomical to use such small 

time steps and' a reasonable degree of accuracy can be obtained without recourse 

to minute increments of time. In any case, the size, of the time step required to 

generate an adequate number of points on the tau curve will usually provide a 

reasonably "continuous" cost function. 

Furthermore, as pipes are not normally available in a continuous range of sizes, 

the pipe diameter may be treated as a discrete variable thus simplifying the prob-

lem and permitting a more reliable and efficient method of solution to be used. 

Steady state requirements usually restrict the number of possible pipe diameters 

to a relatie1y narrow range. The customary approach in many pipeline optimiza-

tion procedures is, therefore, to generate a list of candidate diameters which can 

each be treated as a separate optimization problem. Thus, a set of local optimal 

solutions can be generated using univariate techniques and the global optimum can 

be selected from these by inspection. Examination of the cost function given by 

Equation 5.1 and shown in Figure 5.3 reveals that it does not have a continuous 

first derivative. Gradient methods are unsuitable for the solution of such a func-' 

tion and recourse must be taken to univariate search techniques. One of the most 

efficient and reliable of these is the "Method of Golden Section." This procedure is 

described, in Section 2.3.1 and a complete discussion of the method is -provided by 

[Smith et al]. This technique, in a modified form which deals with the discretized 
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nature of the cost function, has been used in the current model. 

Figure 5.8 is a schematic depiction of the prototype optimization model. The 

procedure is summarized in the following algorithm6. 

Algorithm—i 

Step 1 Input Qo,Qf,Hr, Li, zi,fi,ai,n, number of pipes i, objective function con-

stant coefficients and exponents, and list of candidate diameters, D, where 

j1, ... ,fl2. 

Step 2 Adjust wavespeeds to maintain constant time step if more than one pipe 

exists in system. Set Cost0t = oo, initialize D,,Pt and TPt. 

Step 3 For D5, j = 1,... ,m, do Steps 4-5. 

Step 4 Compute steady state hydraulic grade lines for Dj and check feasibility 

and/or required head constraints. 

• if HSS is infeasible: j = j + 1, go to Step 3. 

• if Hss is feasible: continue. 

Step 5 Use Method of Golden Section to find optirhal stroking time, T0Pt. 

• if CostD1 < COStD_ 1, COStopt = CostD , T,Pt = D, pt  D1. 

Step 6 Output Cost0t, D,pt and T0t. 

6The subscripts and superscripts opt refer to the optimal values of their respective variables. 
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PHYSICAL SYSTEM INPUTS 
Initial Discharge 
Final Discharge 
Reservoir Head 
Pipe Length and 
Topology 
Pipe Material (Steel. 
Concrete, etc.) 
Friction Factor 
Waves peed 
Candidate Diameters 

SENSITIVITY 
SCHEMATIC 
Figure 6.1 

YES 

NO 

INITIALIZE MODEL 
PARAMETERS 

SELECT INITIAL DIAMETER 

NO 

CHECK FEASIBILITY OF 
STEADY STATE 

YES 

SELECT TRIAL VALUE(S) 
OF STROKING TIME 

SENSITIVITY ANALYSIS? 

OPTIMAL COST = mln{COSTD1} 

NO. 

MORE CANDIDATE 
DIAMETERS? 

YES 

11 YES 

SELECT NEXT 
CANDIDATE DIAMETER 

VALVE STROKING 
PROCEDURE 

EVALUATE COST 
FUNCTION FOR 

SYSTEM RESPONSE 

TEST FOR OPTIMALITY NO 

Figure 5.8: Schematic diagram of prototype optimization model 
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In words, the model functions in the following manner. The description of 

the physical system forms the input to the model. Constraints are incorporated 

implicitly by certain system inputs or explicitly as conditional switches in the 

Fortran program. For example, if a minimum downstream head of 30 m is required, 

the head at the valve produced by the steady state computations is tested to ensure 

that this restriction is satisfied for the pipe diameter being considered. If the 

steady flow conditions are found to be feasible, the program proceeds to locate the 

minimum cost solution for that candidate diameter using the Method of Golden 

Section. Each candidate diameter is processed in this fashion with the improved 

local optimal values of the objective function and the valve closure time being 

updated after each trial. Once the complete list of feasible diameters has been 

analysed the optimal values of the cost, pipeline diameter and stroking time are 

known. 

It is appropriate to include the Method of Golden Section algorithm here also 

since the details of its implementation are different from those ordinarily employed 

due to discretization of the cost function. This algorithm comprises Step 5 of 

Algorithm 1. 

Algorithm-2 

Step 1 Input as in Step 1 of Algorithm 1 and tolerance  €. 

'Ordinarily the value of 6 will be equal to the time step. 
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Step 2 Set the following: 

Fibonacci factors Fl = 1.6180339 

Function 

Intervals 

F2 = 0.6180339 

= V.i it 
TG = 2L/a- At 

Tl=TG 

([R] denotes integer part of R) 

(initial coarse search interval) 

T2 = rr{Fi, 1} 

Times Ti-2L/a+Lit 

T2=T1+T 

Step 3 Evaluate objective function (Equation 5.1) to obtain COStT1, COStT2. 

Step 4 Set T4 = T2 + T2 and compute Co5tT4 . (Start coarse search procedure.) 

. While COStT4 < COStT2 : (i. e., while function is decreasing) 

Set 

Step 5 SetT2 = 

Co5tT1 = COStT2 

COStT2 = COStT4 

T1=T2 

T2 = IT{F1,T2} 

(initialize search procedure) 

= JT{F2, 2} 

Compute COStT3 
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Step 6 While T1 > €: 

• If COStT3 < Co.StT2, Discard segment T1T2 by setting 

COStT1 = COStT2 

COStT2 = COStT3 

Go to Step 5. 

• Else discard segment T3T4 by setting 

T3=T2 

COStT4 = COStT3 

COStT3 = Co8tT2 

T2=T1 

T2=T1+ 1 

= T{F2, 1} 

Compute COStT2 

Step 7 Compare the final two function values and select the lower one. 

• If COStT2 < CO8tT3, then set Cost0t = COStT2, T0pt = T2 

• Else set Cost0t = COStT3, T,0Pt = T3. 

Step 8 Output optimum cost, Cost, and optimal stroking time, TPt. 

STOP (procedure completed successfully) 
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Diameter 

D, (m) 

Stroking Time T (seconds) 

1.50 1 2.00 2.50 3.00 3.50 4.00 4.50 5.00 

0.50 5130 4580 4077 3860 3791* 3847 4058 4501 

0.75 7182 6727 6293 6113 6066 6137 6359 6811 

1.00 9691 9297 8919 8767 8737 8820 9050 9508 

1.50 15920 15600 15290 15180 15170 15270 15510 15970 

Table 5.3: Objective function costs (arbitrary units) by enumeration. Hr = 67.7 
M, Qo =2 m3/s, Qr = 1 m3/s, f = 0.010, a = 1100 m/s and L = 550 m, number 

of pipe reaches = 2. 

The accuracy and validity of the solutions produced by this version of the model 

(program TOM2) have been tested by enumerating all feasible solutions for a given 
system and comparing the results to the solution predicted by the model. In every 

case the same optimal point results. Table 5.3 shows a summary of the results 

produced by enumeration of feasible solutions. The output from TOM2 is listed 

below. 

OPTIMAL VALVE STROKING 

NUMBER OF PIPES = 1 

NUMBER OF REACHES ON LAST PIPE = 2 

INITIAL STEADY STATE DISCHARGE = 2.000 

FINAL STEADY STATE DISCHARGE = 1.000 

RESERVOIR HEAD = 67.700 

TIME OF TRANSIENT COMPUTATION 6.00 

TIME STEP FOR STORING HEAD CHANGE DURING TRANSIENT = 0.0 SEC. 

PIPE NO LENGTH WAVE VEL. FRICTION FACTOR 

(in) (mis) 

1 550.00 1100.0 0.010 

>><><>< PIPE TO BE STROKED FIRST IS PIPE, 1 

DIAMETER IS 0.50 in. 
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PIPE NO ADJUSTED WAVE VEL NO. OF REACHES 

(mis) 

1 1100.0 2 

COST = 3790.7 TSTROKE = 3.50 

DIAMETER IS 0.75 in. 

PIPE NO ADJUSTED WAVE VEL NO. OF REACHES 

C rn/s ) 
1 1100.0 2 

COST = 6065.7 TSTROKE = 3.50 

DIAMETER IS 1.00  

PIPE NO ADJUSTED WAVE VEL NO.. OF REACHES 

1 1100.0 2 

COST = 8737.0 TSTROKE = 3.50 

DIAMETER IS 1.80 in. 

PIPE NO ADJUSTED WAVE VEL NO. OF REACHES 

rn/s ) 
1 1100.0 2 

COST = 15160.0 TSTROKE = 3.25 

> x 

OPTIMAL COST = 3790.7 FOR STROKING TIME OF 3.50 s 

AND A DIAMETER OF 0.5 in. 

The optimal solution by inspection of Table 5.3 is marked by an asterisk. It 
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can be seen that this value agrees with that produced by the model TOM2. It 

is instructive to note that the optimal solution occurs for the smallest feasible 

diameter in the list of candidate pipe sizes. This is not surprising if one recalls 

the relationships between pipe diameter, wall thickness, hoop stress and internal 

pressure, which were described in Section 4.2.2. The inclusion of a steady state 

power cost term will force the solutions towards larger diameter pipes if the power 

costs in the system are significant. 

In summary, the model TOMZ has been been shown to be mathematically well 

formulated and encoded, and the solutions it produces appear to be valid within 

the context of the model. However, it can well be argued that the idealized nature 

of the solution, iaeal, that is, with respect to the solved-for boundary condition, 

may be unattainable in practical terms. In many cases this is likely to be true since 

the valve stroking procedure knows no restrictions in terms of realistic valve mo-

tions and therefore often produces optimal tau curves of a complex and impractical 

nature. Interestingly enough, in the majority of the physical systems examined, 

the optimal closure arrangements have been found to reasonably conform to cer-

tain readily obtainable, "off-the-shelf" valve closures. This suggests an alternate 

approach to the optimization process in which the ideal boundary condition is re-

placed by some approximate form of the closure arrangement which gives the best 

system performance subject to the constraints of the problem. This topic is dealt 

with in the following section. 
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5.4 Best Fit Model 

During the course of the investigation it was observed that most of the optimal 

tau curves generated by the model TOM2 could be reasonably approximated by 

either one of two sorts of common valve closure arrangements—equal percentage or 

bilinear closures. This prompted the development of another version of the model 

which has been encoded in the Fortran 77 program TOM3. 

The reasoning underlying this particular formulation is as follows. Since the 

cost term (Equation 4.12) poses some difficulty in terms of its ability to accurately 

represent the true cost of a valve system required to faithfully reproduce the ideal-

ized boundary condition, it is logical to remove it from the cost function altogether. 

The effect on the behaviour of the cost function is not extreme as can be seen by 

comparing Figure 5.9 with Figure 5.3, which have been produced from identical 

physical systems. The only difference between the two is that the valve system 

cost term has been removed from the cost function of Figure 5.9. 

In light of the fact that whatever optimal tau curve the model generates is likely 

to be complex, and therefore uneconomic, a more practical suboptimal solution 

can perhaps be obtained by simply fitting the optimal closure curve with an easily 

achievable, less costly tau curve. Except in cases where residual heads are of the 

utmost importance, i. e., a high degree of transient control is required in reaching 

and maintaining the new flow conditions, satisfactory system performance can be 

provided by a "best fit" closure. 

Thus, this version of the model optimizes the physical system as before, but 

without regard to the valve system cost. Having found a solution which is still op-
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Figure 5.9: Objective function cost terms without valve system. Hr = 67.7 m, 
Qo =2 m3/S, Qr = 1 m3/s, D = 0.75 m, f = 0.010, a = 1100 m/s and L = 550 m, 
number of pipe reaches = 2. 
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timal in all other respects, the model simply fits the optimal tau curve with various 

practical closures and assesses the cost of each alternative. The fitted tau curves 

are used, along with the relevant system data, as the input for a program (subrou-

tine) which performs ordinary method of characteristics time series simulation and 

which produces the new system response as its output. Using this information the 

objective function can be reevaluated. The details of the procedures developed for 

fitting different types of valve closures to the optimal tau curves are described in 

subsequent sections. 

Some general comments which apply to all of the fitting techniques developed 

in this investigation can be made. The fitting process is only applied to the portion 

of the tau curve occuring before the final 2L/a seconds. The last 2L/a seconds of 

the closure curve are simply replaced with a straight line from the fitted value of 

r at T - 2L/a seconds to the final value of T. The fitting procedures are simplified 

by the fact that the initial and final values of tau must take their original values 

in order to produce the initial and final flow conditions. 

Figure 5.10 shows the head-time curves and the tau curve for a valve stroked 

system. The various fitted tau curve results are displayed in Figures 5.12 through 

5.16 for comparison. For reference purposes, Table 5.4 provides the actual numer-

ical values of the tau curve to be fit. It is prudent at this point to refrain from 

attempting to make any generalizations regarding the nature and performance of 

the various fitted boundary conditions since the results for each type of fit can 

differ considerably depending on the values of the system parameters p, Hr, T, 

Qo and Q-, f, a, L and D (see Figures B.1 through B.14). As well, it should be 

stated that, although a correlation coefficient was derived and examined during the 
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• Figure 5.10: Valve stroked system response. Hr = 67.7 m, D.pt = 0.75 m, T°P 3 
s, Qo = 1 m3/s, Qf = 0 m3/s, a = 1100 m/s, f = 0.010, 1, = 550 m, number of 
pipe reaches = 8. All heads in meters, time in seconds. 

Time (s) 0.00 • 0.25 0.50 0.75 1.00 1 1.25 1.50 

Tau 1.000 0.840 0.717 0.617 0.533 0.433 0.354 

TIME (s) 1.75 2.00 2.25 2.50 2.75 3.00 3.25 

Tau 0.265 0.177 0.141 0.102 0.055 0.000 0.000 

Table 5.4: Tau values for valve stroked system. 
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investigation, it did not provide a good indication of the system response, particu-

larly for the minimum head fitting procedures. This is not surprising considering 

Ruus's statement [B. W. Karney, pers. comm.] that deviations from the optimum 

tau values during the final 2L/a seconds of closure affect the head rise far more 

than deviations prior to the last 2L/a seconds. It was found that the ability of the 

fitted boundary condition to reproduce the ideal system response could be better 

measured by dimensionless head rise parameters. These are described in detail in 

the section on sensitivity analysis and, as little benefit is to be had by repeating 

that discussion here, no further mention of them shall be made in the current 

section. 

5.4.1 Equal Percentage Fits 

The equal percentage closure has been coined the "poor man's optimum closure." 

It can be approximately produced by a V-notch ball valve using a linear driver. 

Figure 5.11 shows a number of equal percentage closure curves all having the same 

time of closure. An expression describing the manner in which tau varies with time 

during an equal percentage closure is 

= 10-(TIT,) (5.2) 

where m is a negative exponential parameter and the other quantities have been 

previously defined. The parameter m is a function of h1, t, p, and ihmaz, as well 

as whether or not the closure is from a full or partial valve opening. Note that 

the equal percentage curves can only approach the final value of r asymtotically. 

For this reason a linear portion is substituted during the final 2L/a seconds of 
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Figure 5.11: Equal percentage closure curves. (Excerpted from [Karney/Ruus 

1985]). 

the closure time. For a more complete discussion of equal percentage closures the 

interested reader is referred to [Karney/Ruus 1985]. 

For the purposes of the model TOM3, the object of the equal percentage fitting 

procedures is to determine the value of the exponential factor m. Two different 

equal pecentage fitting methods have been used—least squares regression fitting 

and minimum head (equal peak) fitting. 

Equal Percentage Regression Fit 

In dealing with regression analysis it simplifies matters a great deal if natural log-

arithms are used. In the following discussion the exponential factor m is converted 

to its equivalent natural logarithmic value by 

rn 
M  = 2.3026 

(53) 
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Hence, the expression for tau now becomes 

T  em'(T1T4. (5.4) 

• It is very often the case in least squares regression that no exact solution to the 

normal equation(s) exists when the approximating function is an exponential re-

lation. This is true of Equation 5.4 for which the expression for the error sum of 

squares is 

2 
(5.5) 

where n. is the number of time grid points over which the tau function is fit, i. e., 

T-2L7a 1 Ti— +At  

It is trivial to show that the normal equation is 

dE 

dm' 

i=?2 

= 0 = 2 E (r - e '(T1T)) 

i=1 

(5.6) 

for which no exact solution can be found. It is, however, possible, to obtain an ap-

proximate solution to the problem by taking the natural logarithm of Equation 5.4, 

Inn = m ( TV Ti 

for which the solution to the 'normal equations is 

- >1 ((T1/T) in r) 

M - >(T/T)2 
(5.8) 

A further refinement has been added in the model TOM3 by using the Newton-

Raphsön procedure to improve upon the least squares estimate of the value of m'. 
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Time (s) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Tau 1.000 0.841 0.708 0.595 0.501 0.421 0.354 

TIME (s) 1.75 2.00 2.25 2.50 2.75 3.00 3.25 

Tau 0.298 0.251 0.188 0.125 0.063 0.000 0.000 

Table 5.5: Tau values for least squares regression fit. 

The best value of m' in terms of minimizing the error sum of squares will be a zero 

of Equation 5.6. If we let Equation 5.6 be denoted by 7, then 

2 .T2 /T\ 2 

l = i T 
rjem'(T/T + 2 -) e2m'(Tu/T.,) 

is the first derivative of F. Thus, the procedure is simply to iterate by 

rnk I(in) 
- 

(5.9) 

(5.10) 

until a suitable degree of accuracy has been reached. The initial estimate of m' is 

provided by the least squares approximation. The final step in the process is to 

convert m' to m by Equation 5.3. 

Figure 5.12 shows the head-time plot and tau curve for the least squares regres-

sion fit of the optimum system of Figure 5.10. Tau values are given inTable 5.5. 

Minimum Head (Equal Peak) Fit 

The rationale for this particular fitting procedure is not difficult to comprehend if 

the discussion in Section 1 regarding the relationship between the impulse applied 

to the fluid and the area under the head-time curve is recalled (see Equation 1.4). At 

that time it was postulated that the shape of the head-time profile which minimized 

the system head rise would be that which most closely resembled a rectangle. 
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Figure 5.12: System response for equal percentage regression fit. Hr = 67.7 m, 
D0 = 0.75 m, = 3 s, Qo = 1 m3/s, Qj' = 0 m3/s, a = 1100 m/s, f = 0.010, 
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds. 

Examination of Figures 5.13 and 5.16 show that this is indeed the case. Moreover, 

it can be seen that by maintaining the head at or near its maximum value until 

the valve motion is complete means that some of the impulse is still being applied 

beyond the valve closure time. Consequently, an, often, even lower value of the 

head rise can be achieved by this type of closure than can be obtained by the valve 

stroking procedure itself. This may seem surprising since valve stroking has always 

been thought of as guaranteeing the lowest possible head rise for a given system 

undergoing a change in flow conditions. However, the valve stroking method, has 

placed upon it the additional restriction that no residual transients occur once 

the valve motion has ceased. Since the minimum head fitting procedure is not 

subject to this constraint, it is sometimes possible to reduce the maximum head 



103 

150 

125 

0.75 

> 100 .. w .- - --- . legend 

<   0.50 
, .. 0 Q. POINT 75-  

0 M.POINT 50 

25 

0-
0.0 1.0 2.0 

TIME 
3.0 

0.25 a 30. POINT 

0 
4.0 

VALVE END 

0 TAU CURVE 

Figure 5.13: System response for equal percentage minimum head fit. Hr = 67.7 
M, D,pt = 0.75 m, = 3 s, Qo = 1 m3/s,Qf= 0 m3/s, a = 1100 m/s, f = 0.010, 
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds 

Time (s) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Tau 1.000 0.861 0.741 0.638 0.549 0.473 0.407 

TIME (s) 1.75 2.00 2.25 2.50 2.75 3.00 3.25 

Tau 0.350 0.301 0.226 0.151 0.075 0.000 0.000 

Table 5.6: Tau values for equal percentage minimum head fit. 

to a value below the valve stroking head rise. For systems in which the prospect 

of some residual transient behaviour is not crucial, this type of closure may offer a 

superior alternative. These comments apply equally to any type of minimum head 

fit including the bilinear tau curve described in Section 5.4.2. 

The minimum head exponential parameter is obtained using the standard Method 

of Golden Section described in Section 2.3.1. The dependent variable is the maxi-

mum system head and the independent quantity is the factor n-i. The trial value of 
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Figure 5.14.-.Relationship between the exponential parameter m and the system 

head rise. 

in is used to produce the tau curve input for a subroutine which performs ordinary 

method of characteristics time series simulation and generates the system response. 

The quantity to be minimized is the maximum head rise. Figure 5.14 shows a plot 

of the maximum head rise, hmaz, and the error sum of squares, E, for different 

values of in. The arrow indicates the direction of decreasing value of m. Each point 

oh the curve represents a change of a constant Am from neighbouring points. It 

is easy to see from this diagram that a single critical point exists with respect to 

m corresponding to a minimum value of the head rise. The existence of a single 

critical value of m for the minimum head and another for the minimum error, E, 
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has been observed in every case that was studied. The points corresponding to the 

values of in associated with least squares and minimum head fits are marked with 

symbols. The starting values of m and hmaz are provided by the least squares 

regression parameters. A suitable value for the increment in in for conducting the 

coarse search was found to be rn/S. 

Figure 5.14 and others like it will be discussed in more depth in the section on 

sensitivity methods. It has been included here only to demonstrate the relationship 

between the exponential factor in and the system head rise. 

5.4.2 Bilinear Fits 

The bilinear fit, as the name suggests, simply splits the tau curve into two linear 

portions. The first linear portion extends from 0 ≤ t ≤ T - 2L/a seconds. The 

second segment obtains from T - 2L/a < t ≤ T. The form of the approximating 

equations. are 

T= 

where 

alt +ro if0<t<T-2L/a 

a2zt+rs if T - 2L/a < t < T 

Tt1 = a1t' + ro, (t' = T, - 2L/a) and a2 = 2L/ 

The fitting procedures determine the value of a1 and once this is known the pa-

rameters for the last segment may be calculated. 

Least Squares Regression Fit 

The regression equations for the bilinear fit are very simple. 

a1 = 
- 

(5.12) 
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Figure 5.15: System response for least squares bilinear regression fit. Hr = 67.7 m, 
D,,pt = 0.75 m, T,Pt = 3 s, Qo = 1 m3/s, Qf = 0 m3/s, a = 1100 m/s, f = 0.010, 
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds. 

Time (s) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Tau 1.000 0.891 0.781 0.672 0.563 0.453 0.344 

TIME (s) 1.75 2.00 2.25 2,50 2.75 3.00 3.25 

Tau 0.235 0.125 0.094 0.063 0.031 0.000 0.000 

Table 5.7.: Tau values for least squares bilinear regression fit. 

Since no transformations are involved in the approximating function, these equa-

tions are exact. Figure 5.15 shows the response of the system of Figure 5.10 to the 

bilinear regression tau curve. Again, for reference, Table 5.7 gives the actual tau 

values for this fit. 
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Figure 5.16: System response for' minimum head bilinear fit. Hr = 67.7 m, 

A pt = 0.75 m, = 3 s, Qo= 1 m3/s, Qf = 0 M3 /s, a = 1100 m/s, f = 0.010, 
L = 550 m, number of pipe reaches = 8. Head is in meters, time in seconds. 

Time (s) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Tau 1.000 0.916 0.832 0.748 0.664 0.580 0.495 

TIME (s) 1.75 2.00 2.25 2.50. 2.75 3.00 3.25 

Tau 0.411 0.327 0.245 0.164 0.082 0.000 0.000 

Table 5.8: Tau values for minimum head bilinear fit. 

Minimum Head Bilinear Fit 

The procedure for the bilinear minimum head fit is analogous to that for the 

equal percentage one. The only difference lies in the equations that are used for 

generating the tau values, which are given as Equation 5.11. 

Figure 5.16 and Table 5.8 show the details of the system response and tau curve 

for the bilinear minimum head fit of the system shown in Figure 5.10. 
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5.5 Extensions for Multi-diameter Pipelines 

Although the developments outlined in the previous sections have been restricted 

to a single diameter pipeline, the procedures can be extended to systems containing 

pipes of different diameters. 

For the general case of n possible pipe diameters and pipe segment lengths, 

the solution space has n2 + 1 dimensions, the extra decision variable being the 

response time of the system. The direct search techniques described in Section 2.3.2 

provide a suitable solution method for this general problem. By using the linear 

programming methods outlined in Section 2.2.1, an excellent approximation to the 

solution can be obtained based on the steady state characteristics of the system. 

This solution may then be used as a starting point for the nonlinear technique. 

A simpler, but not unrealistic, multi-diameter problem involves a pipeline sys-

tem in which the pipe diameters have a fixed relationship. For example, a pipeline 

may be composed of n. pipes where the diameters are related by an expression of 

the following kind. 

D+1 = kD where k is a cOnstant factor. (5.13) 

The solution to a problem of this sort can readily be obtained by the univariate 

methods proposed in this dissertation. 

5.6 Summary 

In taking the conceptual, mathematical model of Section 4 from its neophyte stages, 

and by virtue of the investigations conducted, through an evolutionary process 
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which allowed the development of a collection of models providing a flexible tool 

with which the designer/ analyst can interact, it is evident that the outcome of the 

study has been a heuristic model(s). The "larger" model embodies a number of 

similar sub-models, each of which incorporates a specific approach to the problem. 

It also has within it several layers of analytic suboptimization procedures. The 

basic analytic model rests on the assumption that provided the solution can be 

accomplished by the implementation of idealized boundary condition behaviour, 

a "true" optimal solution exists and can be found by a mathematical process. If 

the problem is such that this may or may not be true, as is more likely to be the 

case, additional rules and procedures (for example, the fitted boundary condition 

solution(s)) may be utilized by means of which other suboptimal solutions can 

be discovered. Obviously, as knowledge of the processes (and their problems) by 

which so1ution, optimal, suboptimal, or even feasible, are sought increases, more 

appropriate rules and procedures will be developed. For instance, simply because 

the valve stroking, procedure allows one to arrive at an ideally optimal solution, 

does not necessarily mean that this is the best possible point for selecting an 

approximate solution. Perhaps each valve stroking solution could be. fit by any 

number of practicable approximating closure arrangements so that a number of 

equally good nonideal solutions might be established. It is not difficult to postulate 

other variations that might prove to be valuable techniques for locating better 

solutions in optimizing pipeline designs while incorporating transient phenomena. 

One final aspect of the optimization process needs to be addressed—sensitivity 

analysis. Without the means to assess the impact on the model solutions, of 

changes in the cost function, the constraints or their associated parameters and 
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variables, the utility of such a model is not particularly viable." The world is a 

highly dynamic place and decisions made on the basis of static information are 

likely to be unsound. The following section describes some of the procedures and 

techniques developed to provide answers to the question, "What if. ..?" 



Chapter 6 

Sensitivity Analysis 

No optimization process is complete without methods for assessing the sensitivity 

of the model solutions to changes in the parameters, constraints or the objective 

function. Not only do the actual conditions influencing the problem change but 

there is always some inaccuracy, uncertainty, or even error, introduced whenever 

a physicl phenomenon is described in purely mathematical terms. In order to 

evaluate their significance, in terms of providing information for decision making, 

some means of exploring the ramifications of such changes is mandatory. In this 

section, a number of techniques and ideas for acquiring sensitivity information will 

be described. A general account of sensitivity analysis procedures is given, followed 

by explanations of the more specific methods and the situations to which they may 

apply. 

6.1 General Sensitivity Procedures 

In dealing with complex, integrated analytic or heuristic optimization models, it 

is difficult to find rigorous, mathematical techniques—such as existfor linear pro-

gramming models—for conducting sensitivity studies. More often, direct, iterative, 

interactive methods must be used in order to extract information regarding the ef-

fects of changing system conditions on the model solutions. Figure 6.1 shows the 

interrelationships of the various sensitivity elements devised in this investigation. 

111 
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It can be readily seen that the sensitivity process comprises many individual com-

ponents interacting with one another in a complex fashion. Various parts and 

paths may be followed depending upon the nature of the problem and the type of 

sensitivity information being sought. 

The most direct apprpach to sensitivity analysis constitutes the top loop of the 

schematic in Figure 6.1, in which one simply makes whatever changes are desired to 

the model itself and produces a new solution for the modified system. The degree 

of departure from the oiiginal solution indicates how much the original solution has 

been affected by the alteration of the system'. This is appropriate if the changes 

affect only the values of the decision variables and the objective function. In other 

words, when the objective function, the constraints or their parameters have been 

modified. 

A similar procedure can be applied if changes are made to the optimal values 

of the decision variables and the parameters which influence them. For example, if, 

the idealized boundary condition solution is altered in some manner, the modified 

tau curve can be used as input for the ordinary method of characteristics time 

series simulation to generate a new system response. The information generated 

from this procedure can be used to assess the changes in the cost function or the 

validity of constraints, etc.. 

The sensitivity procedures outlined in the schematic also show three additional 

processes—stochastic treatment of closure curves, equivalent system approxima-

tions and variation of the "best-fit" tau curve parameters. These are techniques 

11n Figure 6.1 the arrows entering the OPTIMIZATION MODEL box generally indicate that 
the objective function is to be reevaluated. 
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Figure 6.1: Schematic diagram of components of sensitivity analysis. 
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intended to allow a more specific type of sensitivity analysis pertaining to the cost 

and hydraulic performance of the system to be analysed. The -following sections 

discuss each in turn. 

6.2 Stochastic Treatment of Valve Closure Curves 

In practice, no tau curve can be executed with perfect accuracy because of either 

the physical limitations of the valve system or anomalies introduced by power fluc-

tuations, maintenance .problems and other unforeseen or unpredictable events. For 

many problems of this nature, random departures of the valve system from its 

ideal or anticipated behaviour can be expected to occur. How do these discrep-

ancies affect the system performance? A simple procedure for evaluating minor, 

random flucuations in the tau curve would be to simulate the system response us-

ing ordinary method of characteristics time series simulation. The tau curve can 

be subjected to some form of stochastic treatment and the deviant iau. curves used 

as the input for the simulation procedure. 

This approach is appropriate for installations in which a high degree of control 

is required for the safe and proper functioning of the system. Generally, however, 

it is more important to determine by how much the closure arrangement can be 

varied before the solution becomes nonoptimal. The general procedures given in 

the previous section are more suitable for obtaining this kind of information. 
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6.3 Approximation by an Equivalent System 

Very often, in conducting transient analyses, it happens that it is convenient or 

necessary to use a simplified representation of the pipeline system. Many factors, 

such as bedding or anchoring conditions, frictional resistance, etc., are not known 

with certainty. Important parameters, wavespeed for instance, and hence the sys-

tem behaviour, can be affected by minor variations in the hydraulic properties 

of the system. In fact, such variations always exist in real installations and any 

mathematical model used to represent the physical pipeline is, in actuality, only 

an approximation to the thing itself. Moreover, known physical discontinuities in 

system properties may force the designer to adopt a simplified representation in 

order to carry out the analytical procedures. For example, if a fibre-reinforced 

polyester pipeline has a very short steel section, perhaps at a river crossing, an 

unreasonably small time step might be needed in order to apply the method of 

characteristics for transient analysis. 

One technique for accomodating the aforementioned difficulties is to crate an 

equivalent system which spans minor variations in system properties while main-

taining the numerical requirement of a common time step. The physical length, 

the momentum distribution and the headloss in the pipeline are retained while 

wavespeed, frictional resistance and cross sectional area are converted to "equiva-

lent" values. The procedures for carrying out an equivalent system conversion are 

well known and a full account of these is given by [Wylie/Streeter]. If a variable 

property system is to be optimized according to the methods put forward in this 

investigation, in other words, having a single diameter and a constant time step, it 
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must first be transformed into an equivalent system. This equivalent system can 

then be optimized in the usual manner. 

Having obtained a solution for the problem, the question arises, "How sensitive 

is the solution to the approximations made in order to facilitate the modeling pro-

cess?" The way in which the sensitivity of the actual system to the "approximate" 

optimal solution is tested; is simply to simulate the response produced in the ac-

tual system by the tau curve generated for the equivalent system representation by 

the optimization model. Figure 6.2 shows the ideal valve stroking response of an 

equivalent system. Figure 6.3 shows the response produced by the same "optimal" 

tau curve in the actual system. The values of the various hydraulic parameters for 

both systems can be calculated from the data given in the figure captions and the 

equations in [ Wylie/Streeter]. 

6.4 Sensitivity of "Best-fit" Tau Curves 

Sections 6.2 and 6.3 have been included for the sake of - providing a complete de-

scription of sensitivity procedures. The methods outlined in the current section 

,have been given more attention because they are considered to be of greater prac-

tical concern. The concept of fitting the idealized boundary condition solution by 

various standard closures has been explained in Section 5.4. The objective of the 

sensitivity studies in this connection has been to find some method for evaluating 

the effect of variation in the parameters of the approximating equations on the 

system performance. In addition, a logical and informative means of presenting 

the sensitivity information was desired. Both goals have been achieved with a high 
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Figure 6.2: Equivalent system response. Hr = 100 m, Qo =2 m3/s, Qf = 0 m3/s, 
f = .0173 5, a = 1035 m/s and Ii = 2300 m, T = 8.889 s and number of sections 
=4. 

degree of success. 

The performance indicators that were selected as being the most meaningful 

are the dimensionless maximum head rise, A hmax, and the dimensionless maximum 

residual head rise, Ahres 

hmaz = 

Ahre3 - maz 

fimax - Hr 

Hr 
ures TI 
21max ' r  

Hr 

(6.1) 

(6.2) 

The former is the maximum head rise obtained in the system during the valve 

motion and the latter is the maximum head rise obtained after the valve motion 

has ended. These quantities have been made dimensionless by referring them to the 

reservoir head. The reasons for selecting the reservoir head as a reference quantity 

are 
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Figure 6.3: Actual system response. Hr = 100 m, Qo =2 m3/s, Qf = 0 m3/s, 
number of pipes = 3, fi = .02, a1 = 1000 m/s, D1 = 1.2 m and L1 = 1000 m, 12 = 
.01, a2 = 1200 m/s, D2 = 1.0 m and L2 = 800 m, f3 = .015, a3 = 900 m/s, D3 = 
0.8 m and L3 = 500 m. Pipes are numbered consecutively from the reservoir and 

the equivalent reach length was taken as 2300 m. 
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1. It provides an absolute frame of reference so that the sensitivity of different 

systems may be more readily compared. 

2. The valve motions which are of critical interest are most often complete 

closures from full or partial openings. This means that the final steady state 

is also equal to the level of water in the reservoir. 

The dimensionless maximum head rise for the ideal valve stroked system is de-

noted by Comparing the values of ihmaz and Lh° provides some measure ma 

of how close to optimal the response is in terms of maximum internal pressure. It 

does not indicate, however, the shape of the head-time profiles, although this can 

be inferred from the agreement between the two values. The parameter max 

indicates how fully the new flow conditions have been obtained. 

These parameters are used in conjunction with the dimensionless system pa-

rameters p, hf and t (defined in Section 4.1) to provide a fairly complete nondi-

mensional representation of the system and its sensitivity to changes in the best-fit 

parameters in and a1 defined in Section 5.4. The values of Ihmaz and zh max 

for a series of m or a1 values are plotted as depndent variables against the error 

sum of squares, E, for a particular type of fit. Figures 6.4 and 6.5 are examples 

of such curves for the equal percentage and bilinear regression fits. Several more 

sensitivity plots caii be found in Appendix B. The values of t and p are typical for 

many pipeline installations. The figures show sensitivity curves for a wide range 

of frictional values. 

Each dot on the plot represents one value of the fitting parameters seperated 

by a constant amount from each neighbouring point. The arrow indicates the di-
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rection in which the fit parameter is decreasing, i. e., increasing in absolute value. 

Depending upon the values of p, h, t, the shape of the optimum tau curve and the 

type of approximating function, the sensitivity curves can differ remarkably. In vir-

tually every case, however, the curves exhibit two distinct global minima—one with 

respect to the error sum of squares corresponding to the "true" value of the least 

squares regression parameter, and another with respect to Lhmaz corresponding to 

the value of the minimum head fit parameter. 

These plots demonstrate quite clearly that the minimum head closure is seldom 

the same as the minimum error closure. Those tau curves which more closely 

approximate the closure arrangement over its latter portion produce lower head 

rises in the system. They also show that it is not uncommon for the minimum head 

fit to produce head rises that are lower than can be obtained by valve stroking 

itself. The plots for the maximum residual head rise are also shown below its 

corresponding maximum head rise plot. In general, the plots indicate that the 

least error fits usually are associated with a lower residual head while the minimum 

head fits tend to have higher values of residual head. This can be misleading 

since, in some cases, the maximum residual head occurs at the end of the valve 

motion. Thereafter, the head declines to near the final steady state head with only 

minor periodic oscillations in the head persisting. This is actually a fairly desirable 

situation if one need not have fully obtained the new flow condition at the moment 

the valve motion ends. Perhaps a preferable alternative in evaluating ma would 

be to look for the maximum residual head starting L/a seconds after the valve 

motion has ceased. This would restrict the consideration of residual head values 

to those occuring periodically rather than those occurring during a more or less 
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linear reduction from the maximum head to values nearer the final steady state. 

The sensitivity plots presented in this section provide a great deal of information 

to the analyst in a concise and coherent format. Almost at a glance, one can see 

what the most effective approximate valve motions are likely to be, both in terms 

of maximum heads and maximum residual heads. The slope of the - curves also 

conveys information regarding which ranges of fit parameters produce the least 

change in the head rise for an incremental error. It is not difficult to imagine that, 

if such curves were available for a wide range of system parameters and different 

types of valve closures, they could provide valuable guidance in selecting commonly 

available valve closures which provide more "optimal" system performance than 

could be had by some arbitrary selection. 

6.5 Summary 

Sensitivity studies are crucial to the valid and successful implementation of any 

optimization process. This section has introduced a few ideas regarding some actual 

and some potential methods for obtaining various types of sensitivity information. 

Of particular interest are the general methods and the sensitivity curves developed 

for evaluating the performance of the various "best-fit" tau curves. These provide 

a fairly complete and workable set of sensitivity tools for the analyst and should 

make the viability of the model developed in this investigation a more tenable 

proposition. 



Chapter 7 

Conclusions and Recommendations 

In the past, optimization techniques have focused on the steady state aspects of 

pipelines almost exclusively. Time-varying characteristics of pipelines are either 

ignored or treated in a quasi-steady state manner. The internal pressures that the 

pipe must withstand are of paramount importance in determining the cost of the 

pipe1in. Since the capital cost of the pipeline represents the greatest cost compo-

nent of most pipeline installations, it seems illogical to neglect fluid transients as 

the heads produced by these shock phenomena can be many times greater than the 

anticipated steady state design pressures. The present investigation has attempted 

to formulate some rationale by means of which optimizing design procedures that 

properly account for the effect of transients in pipelines can be developed. More 

precisely, the objectives have been: 

. The identification of relevant cost parameters and cost variables. 

• The development of a conceptual framework within which optimizing design 

procedures can be constructed. 

• The formulation of a sensible effectiveness criterion and a meaningful set of 

constraints incorporating the cost components. 

• The definition of the nature of the cost function and the selection of appro-

priate, efficient methods for its evaluation. 
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. The consideration of methods which will allow the sensitivity of the solutions 

to changes in cost parameters to be explored. 

The outcome of this investigation has been successful in accomplishing these goals 

and positive in identifying numerous areas of interest for potential future work. 

Specific conclusions arising from the study are: 

1. The model(s) developed and described in this investigation comprise a heuris-

tic approach to the problem of cost optimization of pipelines with respect to 

hydraulic transients. They require interaction and input from the designer 

in order to be fully utilized. 

2. If one accepts the premise that no residual transients should occur once the 

valve motion is complete, then the model TOM2 based entirely orf valve 

stroking theory is a rigorous mathematical model for optimization with re-

spect to transients. 

3. The problem of cost optimization of a pipeline is a highly nonlinear, complex 

function of many variables. 

4. The model(s) employ valid algorithms and produce mathematically correct 

solutions. 

5. The optimal solution in the ideal boundary condition model TOM2) almost 

always occurs when the variation in the discharge during the transient phase 

is a linear function of time. This is true for the case of a valve closure in the 

system composed of a constant head upstream reservoir, single pipe with a 

valve at the downstream end. 
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6. Practicable, commonly available valve closure systems can often closely ap-

proximate the idealized boundary condition behaviour. In particular, optimal 

tau curves often resemble equal percentage or bilinear valve closure arrange-

ments. 

7. If the restriction imposd by the valve stroking procedure, that the final flow 

conditions be fully achieved precisely when the valve motion ends, is removed, 

then it is often possible to obtain a lower value of maximum head rise, 1≥.hmaz, 

in the system than is obtaiftable by valve stroking. 

8. The parameters /hmax and Ah are good indicators of the characteristics 

and peforxñance of non-ideal boundary conditions (tau curves). 

Many problems have been overcome, much information has been gathered and 

some new ideas, methods and approaches to the optimization of simple pipelines 

have been developed. Many more problems have not been solved, our knowledge is 

still very incomplete and, no doubt, some better or improved techniques for incor-

porating transient phenomena into optimization procedures will be forthcoming. 

The following suggestions for future research can be made. 

The model(s) should be tested by attempting to apply it to an actual pipeline, 

installation. 

• More information is needed in order to clarify which variables are impor-

tant in characterizing the performance and cost of valve system options. Is 

this possible given the current state of valve system technology? Will the 

developments in electronic controllers, power electronics or computer aided 
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manufacture of valves permit the economic production of accurate, dedicated 

systems for critical valve motion? 

• We can be reasonably certain that the ideal boundary condition solution rep-

resents a global optimum since, foreach point in the solution domain, only 

one uniquely optimal tau curve exists. However, if non-ideal boundary con-

ditions are employed, can the existence of a global optimum be assured? Can 

any general guidelines be established to determine which type of non-optimal 

valve motion will provide the best results for a given set of dimensionless 

pipeline parameters? 

• Can the ideas and methods presented for the upstream reservoir, single pipe 

and downstream valve system be readily applied to other types of boundary 

conditions or to more complex systems? 

Clearly, this investigation constitutes only the barest of beginnings for what 

promises to be a challenging and important area of research and development. This 

work will be considered to have been a worthwhile effort if it does nothing more 

than kindle the interest of others, both researchers and practicing professionals, 

and encourages them to take further steps in the direction initiated by the work of 

Yao-Chung Chiang and the present study: that is, towards the development of a 

more comprehensive set of tools with which concerned and dedicated professionals 

can advance the state of beneficial technology and, hopefully, the condition of all 

mankind. 
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Appendix A 

Program Descriptions 

The following information has been largely extracted from the documentation of 

each of the programs listed in this appendix. Copies of any of these programs are 

available from the authors. The graphics segments contained in the programs uti-

lize the DISSPLA (version 9.0 or higher) graphics package from Integrated Software 

Sytems Corporation of San Diego, California. 

A.1 Optimization by Enumeration—Model TOM1 

AUTHORS: B.W. KARNEY, D.A. McINNIS 

DATE: 24 MARCH 1986 

METHOD: This program calculates transient heads and discharges 

in a series pipeline due to valve motion at the downstream end. 

In addition, the dimensionless valve parameter, TAU, required 

to produce the transient caused by the prescribed boundary 

conditions is calculated.' The Method of Characteristics is 

used to produce the solution by generating the interior values 

of head and discharge for all time successively at each 

physical, computational section. Inputs include the specified 
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duration of the transient (TSTROKE), the initial and final 

steady state head (HO and HF) and discharge NO and QF) and the 

transient discharge at the upstream section for the duration of 

the transient. The upstream head may be specified as a 

constant reservoir head (HRES) or alternately be input as 

discrete values at specific times. The variation in the 

flowrate during the transient phase is a parabolic function of 

time and the initial and final discharges. Parameters 

describing the physical nature of the system include pipe 

lengths, diameters, D'Arcy - Weisbach friction factors and 

wavespeeds.., Head losses at series pipe connections are 

considered to be negligible. It is assumed that the valve 

discharges to the atmosphere and that the hydraulic grade line 

datum is set at the level of the valve. 

An additional feature of the program permits the user to 

generate output in graphical form as three dimensional 

time-space-head diagrams, summary profiles of head vs. time 

and head vs. 

three types 

the various 

distance, or any desired combination of these 

of graphs. The character input designations for 

graph types are: 

HDT - 3 dimensional head-distance-time 

H_T - summary plot of head vs. time at 
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valve, 3/4 point, midpoint and 1/4 point 

H_D - summary plot of head vs. distance for 

steady flow, maximum head and minimum head 

The graphical output may be directed to either a terminal or a 

plotting device segment by specifying respectively "TERM" or 

"PLOT" in the plot data input file. 

STRUCTURE: This program is structured in six blocks: 

BLOCK 'l Reading and writing the input' data 

BLOCK 2 - Calculation of pipe constants and steady state conditions. 

BLOCK 3 Transient state calculation 

BLOCK 4 - Memory storage update 

BLOCK 5 Determination of maximum and minimum heads 

BLOCK 6. -  Final print summary 

SUBROUTINES: 

PARAB - Parabolic interpolation scheme for valve closure 

PRELIM - Sets up arrays for storing plot information and computes 

the interpolation scheme for obtaining plot values 

STORES - Stores the values to be plotted at times consistent 

•with the grid mesh size 
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PLOT3D - Produces the actual plots or plotting files 

RTRIM - Returns the length of a character string trimmed of 

trailing blanks 

PRIMARY VARIABLES 

REAL: A = wave speed 

AR = pipe area 

B = A/(G*AR) 

D = pipe diameter 

DT = time step 

DTHEAD = time increment for storing discrete input heads 

F = Darcy-Weisbach friction factor 

FF = F*L/(2*N*G*D*AR*2) 

0 = acceleration due to gravity 

H = known head at section stroked first 

HARRAY = array f0r storing all values of head 

HLIMIT = allowable max. or mm. head for alternate method 

of valve stroking (Ruus) - not implemented yet 

HMAX = vector for maximum head at each section 

HMIN = vector for minimum head at each section 

HP = unknown head at a section (to be calculated) 

HPM1 = known head at previous timestep 

HRES = steady state reservoir head 
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HTMAX = maximum head rise 

HTMIN = minimum head rise 

HTRANS = discrete input values of head 

L = pipe length 

Q = known discharge at section strbked first 

QARRAY = array for storing all discharges 

QF = final steady state discharge 

QO = initial steady state discharge 

QP = unknown discharge at a section (to be calculated) 

QPM1 = known head at previous section 

T time from start of transient at valve 

TAUPLT = vector for storing TAU curve 

TSTROICE = time interval for computation of transients 

INTEGER: IUNITS = 1 for SI and 2 for FPS 

IPRINT = print block repeated every IPRINT time steps 

M = number of points on tabulated tau curve (Y) 

N = number of reaches in a pipe 

NP = number of pipes in system 

NPMAX = maximum number of pipes in system 

NRLP = number of reaches in last pipe (used to find DT) 

NSECM = maximum number of sections in one pipe 

PIPE = pipe to be stroked first (usually 1, 

i.e., upstream) 
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Number of TTc CPU 
Pipe Reaches Grid Size Time (s) 

2 17 x 17 5.774 

4 33 x 33 58.33 

8 65 x 65 737.0 

Table A.1: TOM1 computer run times on Honeywell DPS8/6. Total number of 
solution points evaluated is given by the expression in the center column. 

FORMAT FOR DATA FILE (opt-data): 

LINE DESCRIPTION 

1 

2 

3 

4 

5 

6 

+ 

TITLE (60 CHARACTERS OR LESS) 

GRAPHICS SELECTION 

NP NRLP IPRINT IUNITS 

QO QF HRES PIPE 

DTHEAD M HTRANS(M)   

L(1) D(1) A(1) F(1) 

L(I) D(I) A(I) F(I) 

Table A.1 shows the performance of the program in terms of cntral processing 

unit (CPU) usage for a number of complete runs, but without any graphical output 

being generated. 
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A.2 Optimization by Univariate Search—Models TOM2 

and TOM3 

AUTHORS: B.W. KARNEY, D.A. McINNIS 

DATE: 4 JULY 1986 

METHOD: This program calculates transientT heads and discharges 

in a series pipeline due. to valve motion at the downstream end. 

In addition, the dimensionless valve parameter. TAU, required 

to produce the transient caused by the prescribed boundary 

conditions is calculated. The Method of Characteristics is 

used to produce the solution by generating the interior values 

of head and discharge for all time successively at each 

physical computational section. Inputs include initial and 

final steady state heads (HO,HF) and discharges (QO and QF) and 

the transient discharge at the upstream section for the 

duration of the transient. The upstream head may be specified 

as a constant reservoir head (HRES) or alternately be input as 

discrete values at specific times. The variation in the 

flowrate during the transient phase isa linear function of 

time and the initial and final discharges. Parameters 

describing the physical nature of the system include pipe 

lengths, diameters, D'Arcy - Weisbach friction factors and 
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wavespeeds. Head losses at series pipe connections are 

considered to be negligible. It is assumed that the valve 

discharges to the atmosphere and that the hydraulic grade line 

datum is set at the level of the valve. 

The model uses the information generated by the valve stroking 

procedure to evaluate an effectiveness criterion (cost of 

system) including- terms for steady state power cost, pipe size, 

length and wall thickness costs, any time dependent costs (i.e. 

response time) as well as the cost of the associated 

valve/controller/actuator system. Since " optimal" closures as 

given by valve stroking are generally not economically feasible 

in practice, the model generates information regarding the 

substitution of commonly available valve closure systems 

(linear, equal percentage and minimum head equal peak) for the 

theoretical valve closure. 

The valve closure information generated by the activities of 

the model are placed in a file called "tau". This information 

can be incorporated in a data' file of the same type as is used 

by the subroutine VALVE (or the program VALVE) to produce 

sensitivity plots summarizing the response of the system to 

departures from the linear, equal percentage and optimum 

closure arrangements. The program which produces these plots 
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is called " errplot.fortran". 

An additional feature of the program permits the user to 

generate output in graphical form as three dimensional 

time- space-head diagrams, summary profiles of head vs. time 

and head vs. distance, or any desired combination of these 

three types of graphs. The character input designations for 

the various graph types are: 

HDT - 3 dimensional head-distance- time 

H...T - summary plot of head vs time at 

valve, 3/4 point, midpoint and 1/4 point 

H_D - summary plot of head vs distance for 

steady flow, maximum head and minimum head 

The graphical output may be dircted to either a terminal or a 

plotting device segment by specifying respectively "TERM" or 

"PLOT" in the plot data input file. 

SUBROUTINES: 

GOLDEN - Optimizes the nonlinear cost function 

GOLDEN2 - Determines the exponent associated with the minimum 

head equal-percentage closure by minimizing the 
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head rise in the system 

COST - Calls the individual cost term subroutines (user defined) 

and evaluates the cost function 

VALSTRK - Produces the transient head and valve motion information 

used to evaluate the associated cost terms 

LSQ - Fits linear and equal percentage regression curves to 

the "optimal" closure. 

VALVE - Using the "fitted"-closure- curves produces new transient 

head information to reevalvuate the cost function 

STOREV - interpolates values in the time dimension for plotting 

PRELIM - Sets up arrays for storing plot information and computes 

the interpolation scheme for obtaining plot values 

STORES - Stores the values to be plotted at times consistent 

with the grid mesh size 

PLOT3D - Produces the actual plots or plotting files 

RTRIM - Returns the length of a character string trimmed of 

trailing blanks 

PRIMARY VARIABLES 

REAL: A = wave speed 

AR pipe area 

B = A/G*AR 

D = pipe diameter 
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DT = time step 

DTHEAD = time increment for storing discrete input heads 

F = Darcy-Weisbach friction factor 

FF = F*L/(2*N*G*D*AR**2) 

G = acceleration due to gravity 

H = known head at section stroked first 

HA = array for storing all values of head 

HLIMIT = allowable max. or mm. head for alternate method 

of valve stroking (Ruus) - not implemented yet 

HIvIAX. = vector for maximum head at each section 

HMIN = vector for minimum head at each section 

HP = unknown head at a section (to be calculated) 

HPM1 = known head at previous timestep 

HRES = steady state reservoir head 

HTMAX = maximum head rise 

HTMIN = minimum head rise 

HTRANS = discrete input values of head 

L = pipe length 

Q = known discharge at section stroked first 

QA = array for storing all discharges 

QF = final steady state discharge 

QO = initial steady state discharge 

QP = unknown discharge at a section (to be calculated) 

QPM1 = known head at previous section 
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T = time from start of transient at valve 

TAUPLT = vector for storing TAU curve 

TSTROKE = time interval for computation of transients 

INTEGER: IUNITS = 1 for SI and 2 for FPS 

IPRINT = print block repeated every IPRINT time steps 

M = number of points on tabulated tau curve (Y) 

N = number of reaches in a pipe 

NP = number of pipes in system 

NPMAX = maximum number of pipes in system 

NRLP = number of reaches in last pipe (used to 

find DT)' 

NSECM = maximum number of sections in one pipe 

• PIPE = pipe to be stroked first (usually 1, 

i.e., upstream) 

FORMAT FOR DATA FILE (opt-data): 

LINE DESCRIPTION 

1 TITLE (60 CHARACTERS OR LESS) 

2 GRAPHICS SELECTION 

3 NP NRLP IPRINT IUNITS 

4 QO QF HRES TLAST PIPE 
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5 

6 

+ 

DTHEAD M HTRANS(M)   

L(1) A(1) F(1) 

L(I) A(I) F(I) 

Table A.2 provides some indication of the program performance with respect 

to the problem size. 

Program 

(Model) 

Number of 

Pipe Reaches 

CPU 

Time (s) 

TOM2 2 0.709 

4 2.29 

8 10.08 

16 40.71 

TOM3 2 2.660 

4 7.820 

8 26.04 

16 94.26 

Table A.2: TOM2 and TOM3 computer run times on Honeywell DPS8/6. 

A3 Method of Characteristics Simulation—Program VALVE 

AUTHOR: B.W. KARNEY 

DATE: 3 OCTOBER 1985 

REVISED BY DUNCAN McINNIS, FEBRUARY/1986 

REVISED BY BRYAN KARNEY, MAY/1986 
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METHOD: This program calculates the transient head and 

discharge in a series pipe system caused by opening or closing 

a valve at the downstream end. The Method of Characteristics 

is used based on a specified time increment and calculations 

are continued for a specified time interval MAST). Initial 

conditions are defined by a steady state discharge ( QO) and an 

upstream reservoir head (FIRES) which is considered constant for 

the duration of the transients. Inputs include the known valve 

motion, the physical description of the pipe system and the 

value of the basic hydraulic parameters such as the,, 

Darcy-Weisbach friction factors for each pipe. Head.losses at 

series pipe connections are considered negligible. It is 

assumed that the valve discharges to the atmosphere and that 

the hydraulic grade line datum is set at the level of the 

valve. 

FEBRUARY REVISIONS 

An additional feature of the program permits the user to 

generate output in graphical form as three dimensional 

time- space-head diagrams, summary profiles of head vs time and 

head vs distance, or any desired combination of these three 

types of graphs. The character input designations for the 
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various graph types are: 

HOT - 3 dimensional head-distance-time 

H.T - summary plot of head vs time at 

valve, 3/4 point, midpoint and 1/4 point 

H...D - summary plot of head vs distance for 

steady flow, maximum head and minimum head 

The graphical output may be directed to either a terminal or a 

plotting device segment by specifying respectively " TERM" or 

"PLOT" in the plot data input file. 

MAY REVISIONS 

All control statements formerly used to jump do loops when the 

do counter values were zero have been eliminated. This means 

the program must now be compiled with the ' ansi77' option 

invoked (ansi66 always processes a loop at least once) . . 

STRUCTURE: This program is structured in six blocks: 

BLOCK 'l - Reading and writing the input data 

BLOCK 2 - -Calculation of pipe constants and steady state conditions 

BLOCK 3 - A print block 
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BLOCK 4 - Transient state calculation 

BLOCK 5 - Memory storage update 

BLOCK 6 - Final print summary 

SUBROUTINES: 

PARAB Parabolic interpolation scheme for valve closure 

PRELIM - Sets up arrays for storing plot information and computes 

the interpolation scheme for obtaining plot values 

STORES - Stores the values to be plotted at times consistent 

with the grid mesh size 

PLOT3D Produces the actual plots or plotting files 

RTRIM Returns the length of a character string trimmed of 

trailing blanks 

PRIMARY VARIABLES 

REAL: A wave speed 

AR = pipe area 

B = A/(G*AR) 

D = pipe diameter 

DT = time step 

DTAU = time step for storing valve's tau curve 

F = Darcy-Weisbach friction factor 
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FF 

G 

H 

HP 

= F*L/(2*NGD*AR**2) 

= acceleration due to gravity 

= known head at a section 

= unknown head at a section (to be calculated) 

HRES = steady state reservoir head 

HTMAX = maximum head rise 

HThIIN = minimum head rise 

L = pipe length 

Q = known discharge at a section 

QP = unknown discharge at a section (to be calculated) 

qo = initial steady state discharge 

T = time from start of transients 

TLAST = time interval for computation of transients 

TAUF = final valve position 

TAUO = initial valve position 

TV = valve closure time 

VALVE1 Hsslqas**2 - valve constant at full gate opening 

Y = actual tabulated valve operation curve (tau values) 

INTEGER: IUNITS = 1. for SI and 2 for FPS 

IPRINT = 

'K = 

NI = 

N = 

print block repeated every IPRINT 

print counter (used with IPRINT) 

number of points on tabulated tau 

number of reaches in a pipe 

time steps 

curve (Y) 
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NP = number of pipes in system 

NPMAX = maximum number of pipes in system 

NRLP = number of reaches in last pipe (used to find DT) 

NSECM = maximum number of sections in one pipe 

NORMAL INPUT FORMAT *** 

1: TITLE 

2: GRAPHICS HOT H_T I-I_D 

3: NP NRLP IPRINT IUNITS 

4: QO HRES ' TLAST 

5: VALVE1 TAUO TAUF TV DTAU NI 

6: NI * [ Y(I) ] 

7: NP * C L D A F 3 
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Figure B.1: "Best-fit" sensitivity plots. Frictionless system. Rapid equal percent-

age closure. 
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Figure B.2: "Best-fit" sensitivity plots. Frictionless system. Rapid bilinear closure. 
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Figure B.3: "Best-fit" sensitivity plots. Low friction system. Rapid equal percent-

age closure. 
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Figure B.4: "Best-fit" sensitivity plots. Low friction, system. Rapid bilinear clo-
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157 

Lhm ax 

A' ' res 
max 

4.0 

3.8 

3.6 

3.4 

3.2 

3.0.. 

3.5 

3.0 

2.5 

2.0 

1.5 

/ 
LI' 

p=2.O 

t = 1.06 

hf=0.6 

Ah opt 
max = 2.0 

29 Regression Fit 

ED Min. Head Fit 

0.02 0.04 0.06 0.10 

V 

V 
0.02 0.04 0.06 

E   
0.08 0.10 

Figure B.5: "Best-fit" sensitivity plots. High friction system. Rapid equal percent-
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Figure B.6: "Best-fit" sensitivity plots. High friction system. Rapid bilinear clo-
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Figure B.7: "Best-fit" sensitivity plots. Very high friction system. Rapid equal 
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Figure B.8: "Best-fit" sensitivity plots. Very high friction system. Rapid bilinear 

closure. 
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Figure B.9: "Best-fit" sensitivity plots. Frictionless system. Moderate equal per-

centage closure. 
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Figure B.10: "Best-fit" sensitivity plots. Frictionless system. Moderate bilinear 

closure. 
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Figure B.11: "Best-fit" sensitivity plots. Low friction system. Moderate equal 

percentage closure. 



164 

Ah max 

1.0 

0.8 

0.6 

0.4 

0:2 

1.0 

0.8 

0.6 

res 0.4 

' 'max 

0.2 

0.0 
0.02, 0.03 

E   

J 
tc 

hf 

2.00 

0.2 

max 

zz Regression Fit 

Mm. Head Fit 

0.01 0.02 

E 
0.03 0.04 

 No-

0.05 

0.01 0.04 0.05 

Figure B.12: "Best-fit" sensitivity plots. Low friction system. Moderate bilinear 

closure. 
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Figure B.13: "Best-fit" sensitivity plots. Medium friction system. Moderate equal 

percentage closure. 
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Figure B.14: "Best-fit" sensiti\Tity plots. Medium friction system. Moderate bilin-

ear closure. 


