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Abstract 
 

Objectives: To assess methods of defining comorbidities by comparing risk adjusted mortality 

predictive model fit and performance among newly diagnosed hypertensive population. 

 

Methods: We included nearly all patients 18 year and older with an incident diagnosis of 

hypertension from one Canadian Province. We compared prognostic model performance for Cox 

regression models using Charlson comorbidities as time-invariant covariates (TIC) at baseline 

and time-varying covariates (TVC). Cox regression was used to calculate hazard ratios. Model fit 

and performance was based on the comparison of the AIC and Likelihood Ratio.    

 

Results: All Cox regression time-varying covariate models (TVCMs) outperformed time-

invariant covariate (TIVMs) baseline models, based on a comparison of AIC and Likelihood 

Ratio, regardless of the method used to adjust for individual risk using the Charlson 

Comorbidities. TVCMs included all 17 Charlson comorbidities as individual independent 

variables showed the best fit and performance compared with similar baseline models, AIC 

(1,670,491 to 1,720,126) and Likelihood Ratio (112,941.72 to 63,239.78) respectively.   

 

Conclusion: Accounting for changes in patient comorbidity status over time more accurately 

capture a patient’s health risk and improves predictive model fit and performance over longer 

follow-up periods than traditional baseline method.   
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Chapter One: Study Objective and Significance  

 

1.1 Objective 

 The objective of the study is to use a large population based administrative data to 

compare survival model fit and performance between models adjusting for comorbidities present 

at baseline and models adjusting for longitudinal comorbidity, changes in disease state over a 

longer follow-up period. This study looks at a 12-year follow-up period in a newly diagnosed 

hypertension population in Alberta, Canada.  

 

1.2 Significance 

 Comorbidity is an important component of individual risk and health status. It has been 

shown to be an important determinant of health care utilization, predictive of health outcomes 

and of mortality.  Studies using large administrative data sets to predict death have historically 

adjusted for individual risk on the basis of comorbidities present at the beginning of studies 

(Wang, 2009, Giolo, 2012).  Little is known about the onset of comorbidities or effects of 

medical events during long study follow-up periods, and how the change in individual risk 

reflects on ability to predict survival.  

 

 The Charlson comorbidity index  (CCI), (Charlson, 1987) was developed as a prognostic 

classification and weighting methodology-predicting mortality based on disease burden. The CCI 

has demonstrated prognostic value. Short-term studies predicting 30-day and 1-year mortality 

using time-invariant baseline Charlson comorbidity adjustment have shown good performance. 

Recent studies have suggested that predictive models solely relying on baseline measures of 

comorbidity may have less predictive ability in longer follow-up studies (Giolo, 2012; Kovesdy, 
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2007; Fleishman, 2010;Wong, 2012). Diseases could occur in the follow-up and thus 

longitudinal comorbidity should be considered as predictor of survival (Giolo 2012, Wong 

2012). However, few studies have accounted for changes in disease state after baseline. 

 

Because of variation in the length of follow-up and study populations, there is 

contradictory evidence about the value of time-varying effects and improvement in prognostic 

model performance (Wang 2009, Ahern 2009).    

 

 Our study was aimed to understand the impact of longitudinal comorbidity on patient 

survival. Models accounting for changes in patient comorbidity status over time may more 

accurately capture a patient’s health risk and improve a model’s ability to predict survival over 

long follow-up periods than baseline method.   

 

  

 

 

 

 

 

 

 

 

 



13 

Chapter Two: Background 

 

2.1 Health Care System Performance  

2.1.1 Evaluation of Health System Performance 

 Decision makers at all levels need comparable and meaningful information to make 

policy, operational and clinical decisions. This requires a systematic approach to the assessment 

of health system performance.  Understanding variation between different parts of the health 

system in different subpopulations is vital to evaluating health system delivery, and determining 

factors that drive it. Explaining key factors responsible for variation can lead to improved 

comparability in health outcomes between different parts of the health system and between 

various populations, leading to reductions in inequality and improvements in policies applicable 

to multiple settings (Iezzoni, 2010).  

 A health system includes structures such as facilities, equipment and human resources. 

The system is required to deliver health care services through the efficient use of organizational 

resources and processes focused on activities that are intended to maintain or improve population 

health (Donabedian, 1997).  

 

2.1.2 Conceptual Evaluation Frameworks   

 Various conceptual evaluation frameworks have been proposed to examine health 

services and evaluate quality of patient care (RAND 2010, Donabedian 1997, www.hqca.ca). 

The frameworks support informed policy, and operational and clinical decisions in an effort to 

reduce information asymmetry ensuring evidence based decisions leading to improved patient 

care. The intention of conceptual frameworks is to outline a set of steps, assumptions and 

definitions to guide evaluation processes and activities focused on the measurement of specific 
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objectives. They also define a set of measures and goals that are vital in quantifying 

improvement in the health system. They can focus on defining a common set of definitions and 

conceptual approaches (HQCA, Quality Matrix For Health). 

 Selection of an appropriate conceptual framework largely depends on the alignment 

between the outcomes of research being done and the context provided by the supporting 

framework. Researchers have used various frameworks for evaluation of health system 

performance.  

 

2.1.2.1 Alberta Quality Matrix for Health 

 The Health Quality Counsel of Alberta (HQCA) has developed a conceptual framework 

that summarizes the definition of quality according to six dimensions (Acceptability, 

Accessibility, Appropriateness, Effectiveness, Efficiency and Safety) and an additional four 

dimensions of patient need (Being Healthy, Getting Better, Living with Illness or Disability and 

End of Life). The framework emphasizes a common understanding of the complexity of the 

healthcare system, components that contribute to quality health care and the interrelated nature of 

all six-quality dimensions.  The framework is intended to help individuals and organizations to 

enter into dialogue using a common language and understanding of the foundations of quality 

and how these impact areas of patient need (www.hqca.ca, Alberta Quality Matrix for Health). 

 

 

2.1.2.2 RAND Health Service Planning Framework 

 In 2010, the RAND corporation developed a framework to assess and optimize health 

services planning; RAND report (Framework for assessing, improving and enhancing health 

service planning) identified three core themes required for health system assessment. The three 
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themes include the development of long-term goals and objectives with emphasis on strong 

unified leadership and accountability structures linked to long-term goals and objectives. Most 

importantly, the RAND model emphasizes the need for analytical capacity to support health 

system change with appropriate and relevant information.   

The goal of the framework is to support health system governance through processes and 

tools that inform decision makers to ensure that the current planning approaches taken would 

meet their objectives (RAND, 2010). 

 

2.1.2.3 The Donabedian Model  

The Donabedien framework was developed to support health system research to better 

assess quality of health care. Quality is grouped into three areas: structure, process, and 

outcomes. Structures refer to facilities, equipment and human resource required to deliver health 

care services. Processes are defined as the activities related to the delivery of health services. 

Outcomes are the results of the structures and processes of the medical system, and should be 

easily measured, allowing for precision and validation. Outcome measures should be related to 

recovery, restoration of function, and survival.  Patients’ survival is often selected as an outcome 

measure because it is easily measured and cannot be disputed as an invalid outcome. 

 Donabedian outlined several considerations when outcomes were used as quality of care 

indicators. Researchers need to ensure that metrics are relevant for the conditions being studied, 

and that metrics are sensitive to effectively applied medical intervention. Factors such as severity 

of disease, patient socioeconomic status and care setting should be adjusted to ensure 

comparability of outcomes across jurisdictions. To ensure that we are able to draw valid 

conclusions, factors outside of medical intervention, which have been known to influence patient 

outcomes, need to be included in the analysis (Donabedian 1997).  
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2.2 Disease Severity and Risk Adjustment 

Historically, therapeutic efficacy was evaluated under controlled conditions restricting 

patient eligibility based on the presence or absence of comorbid disease.  Rather than controlling 

for confounding, scientists controlled study eligibility criteria to achieve homogenous patient 

populations (Charlson, 1987). The problem with this approach was that the study findings were 

limited in their generalizability and had difficulty reaching an appropriate sample size.  Clinical 

trials used randomization to control for the effects of confounding to ensure accuracy when 

comparing between various groups. Since observational studies did not randomize patients, risk 

adjustment methods were needed to control for unbalanced distribution of individual level 

confounders such as age, sex, socio-economic status and disease comorbidity known to affect 

outcomes. Risk adjustment was required to ensure that results are comparable between patient 

groups (Charlson, 1987, Nieto, 1996). 

 

2.2.1 Disease severity  

 Clinical outcomes such as mortality may be used in the assessment and comparison of 

competing medical interventions, or more broadly, in observational studies looking at the effects 

of various external or environmental risk factors on overall population survival. Studies strive to 

understand differences in outcomes resulting from therapeutic intervention, quality of care 

delivered or efficiency in the process of care delivery. To ensure that study findings are accurate 

and representative, adjusting for individual patient disease severity is required (Iezzoni, 2010).  

 

 Disease severity refers to the presence and progression of one or more diseases. Disease 

severity and progression could be determined through diagnostic testing, and physical medical 

exams in the assessment of organ and tissue damage (Finlayson, 2004).  
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Determination of disease severity is based on clinical judgment supported by diagnostic 

information (Charlson, 1985). Clinical measures such as blood pressure are indicators of disease 

severity and considered predictors of multiple cardiovascular events and mortality (Parati, 2013, 

Rapsomaniki, 2014). While clinical information is important in assessing severity, it is often 

unavailable and patient case-mix is used as an alternative. Christensen et al. found that using 

case-mix adjustment tools such as the CCI, a proxy for disease burden and severity, performed as 

well as physiologically acute care based measures such as the APACHEII and SAPSIII in 

models predicting mortality (Christensen, 2011).  Patients with multiple chronic conditions have 

a higher risk of death and complications than those with a single condition. Subsequently, high-

risk patients with complications have a high level of functional impairment and disability 

(Iezzoni, 2010). 

 

2.2.2 Disease Classification and Patient Case-mix 

 Classification of disease and causes of death evolved from Bertillons Classification of 

Cause of Disease. Through an iterative process, disease classification underwent various 

revisions. Eventually, diseases and causes of death were included in the International 

Classification of Death and Disease (ICD)(Dean, 2007). The ICD system evolved to form a 4-

digit classification system in ICD 9.  Subsequently, a 5-digit ICD 9 CM classification was 

developed to increase specificity and capture new disease categories (Iezzoni, 2010).  Most 

recently the ICD 10 was adopted and deployed in the Canadian acute care system (CIHI, 2001). 

The system enabled very detailed disease classification, and supported administrative, clinical 

and epidemiological reporting (Dean, 2007). 
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 Increasing complexity of the ICD has made it difficult for researchers to identify a 

reasonable number of potential risk factors that could be used to account for patient risk.  

In response to the increasing complexity of the ICD, alternative methods were created to group 

highly variable and complex patients into a smaller number of manageable and clinically 

meaningful categories. These categories could be used to measure and evaluated health care 

costs, utilization and patient outcomes (Iezzoni, 2010; Fetter, 1980) 

 

 Patient case-mix groups patients into homogenous groups according to specific risk 

factors using clinical and administrative health data (CIHI, 2001). Various methods of case-mix 

have been used for risk adjustment.  The adjustment is for accounting for various risk factors that 

affect specific outcomes over a defined period of time (Greenfield, 1994). Selection and use of 

case-mix methods depends on study outcomes and objectives.  

 

2.2.2.1 Diagnosis Related Groups (DRGs)  

 In 1980, Fetter et al. developed Diagnosis Related Groups (DRGs) based on ICD9 CM 

diagnosis and procedure information from abstracted hospital discharge data. The DRG system 

classifies patients into clinically meaningful groups based on similar resource use for given 

service events. The primary users of the DRG system are hospital administrators who are 

interested in improving their understanding of inpatient services, processes, cost accounting, 

budgeting, and quality improvement. 

 

2.2.2.2 Case Mix Groups (CMGs) 

 Similarly, Case Mix Groups (CMG), a Canadian risk adjustment method assigned 

patients to homogeneous patient groups based on routinely collected hospital discharge data.  
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Patients are assigned to a manageable number of patient categories, each category containing 

clinically similar patients consuming comparable resources (CIHI). Both CMGs and DRGs are 

used to classify episodes of patient care with associated weightings to estimate relative cost of 

each service (Manitoba Centre for Health Policy, Concept: Case Mix Groups (CMGs™) versus 

Diagnosis Related Groups (DRGs™). 

 

2.2.2.3 Adjusted Clinical Groups (ACGs) 

 The John’s Hopkins ACG case-mix system is a statistically validated tool that has been 

used by researchers, health system administrators and clinicians. The goal of the tool is to 

evaluate current resource use, as well as to predict future healthcare utilization.  ACGs assign 

patients to one of 32 mutually exclusive diagnostic clusters using ICD 9, 9-CM, 10, and 10-CM 

as part of five clinical dimensions. Patients within each group are expected to have similar 

morbidity and are expected to use similar level of healthcare resources. The ACGs can be further 

collapsed into Resource Utilization Bands (RUBs), classes categorizing patients to one of six 

groups ranging from 1- Non-User to 5 - Very High. The ACGs is developed to support 

comparability of health system utilization across aggregate patient groups. In 2002, the Manitoba 

Centre for Health Policy validated its use using Canadian health data. Reid et al concluded that 

the ACG was correlated with premature death, socio-economic status and physician use (Reid, 

2002).  

 

Similar to ACGs, Clinical Risk Groups (CRGs) apply diagnosis and procedure data to 

categorize individuals into mutually exclusive severity adjusted risk groups. CRGs are used for 

risk assessment to better understand resource use, control costs and improve quality of care. Both 

ACGs and CRGs are considered population based risk assessment models, and are used to ensure 
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appropriate funding allocation to reduce treatment inequality and to prevent patient selection 

based on financial incentives (http://solutions.3m.com). 

 

 Unlike DRGs and CMGs which classified inpatient service events and could be deemed 

limited considering the rarity of inpatient admission, ACGs and CRGs are considered population 

based classification systems, offering a more comprehensive assessment of patient risk by using 

diagnosis and procedure information for each patient recorded across the continuum of care 

using multiple information sources including physicians claims, DAD and Ambulatory care data 

over a longer period of time (Dean, 2007).  

 

2.2.2.4 Charlson Comorbidity Index (CCI)  

 In  1987 Charlson et al. developed a predictive risk model that assigned individual risk at 

the time of enrolment into therapeutic trials based on presence or absence of specific disease 

comorbidities.  Charlson et al. identified a series of comorbid conditions that were shown to have 

an independent association with a higher risk of death. Comparing 1-year mortality rates for each 

disease, weights were assigned based on the relative risk (RR) of death for each comorbidity. 

The weighted scores where then added and originally reported patients as having one of the 

following scores:  0,1-2,3-4 to >=5. The study reported a stepwise increase in 1-year mortality 

rates of 12%, 26%, 52% and 85% respectively (Charlson, 1987).  The study assigned outcomes 

based on an individual weighted risk scores predictive of death during a 1-year follow-up period. 

This risk-adjustment methodology allowed studies to be more inclusive of their patient 

populations and subsequently generalizable with improved study sample sizes. 

 The CCI that was initially developed using clinical data has been subsequently translated 

to use ICD data. Since then, large administrative databases have promoted adoption of CCI. A 
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systematic review of 54 comorbidity indices comparing short-term and long-term mortality and 

concluded that comorbidity adjustment improves prognostic model performance over adjustment 

for age and sex alone (Sharabiani, 2012). Of the 54 papers reviewed, the CCI is the most 

frequently cited index. 

 

2.2.2.5 Selecting a risk adjustment model 

 

When selecting a risk adjustment model, researchers need to understand how risk is 

defined. An appropriate definition of risk needs to be considered to ensure that the study 

achieves its objective. The definition is related to outcomes. Outcomes could be broadly 

classified into three areas, 1) clinical outcomes of care, 2) resource use, and 3) patient-reported 

outcomes.  Once researchers understand their study outcome, they can select a specific risk 

adjustment method that ensures their findings are comparable within and across their study 

populations, and potentially generalizable to other research (Iezzoni, 2010).  

 

2.2.3 Comorbidity Adjustment in Statistical Models 

 

 Charlson comorbidities have been incorporated into regression models in several 

different ways. Some studies include each disease as a single dichotomous variable (present or 

absent) within regression models, while other studies have opted to use summary measures such 

as the CCI, or the count of Charlson comorbidities (Austin, 2003).  

 Summary measures for the CCI were built from individual weighted scores for each of 17 

Charlson comorbidities assigned based on the original relative risk of 1-year mortality by 

Charlson et al.  In 2011, Quan et al. developed an updated Charlson comorbidity score, 
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concluding that the original CCI should be updated to account for advances in chronic disease 

management and improvements in treatment and technology. Their study found that 12 

comorbidities continued to be associated with 1-year mortality and proposed an updated 

summary score using 12 of the original 17 comorbidities to calculate an updated CCI yielding 

similar prognostic characteristics (Quan, 2011).   

 Summary measures may also include the count of Charlson comorbidities, and have also 

been used to adjust for patient risk.  Fleishman et al. found the summary measure is least able to 

predictive mortality  (Fleishman, 2010). 
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2.3 Survival Analysis 

Figure 1. Survival Analysis Design (D – Death, C- Censored, 0-absence of disease, 1-
presence of disease) 

            

 

2.3.1 Survival Analysis Background 

 Survival analysis can be defined as a set of statistical methods looking at elapsed time 

between the beginning of a study and the occurrence of one or more events of interest. Studies 

are characterized by a start date and end date. Sometimes survival analysis is referred to as time 

to event analyses. Using survival analysis, researchers compare the effectiveness of various 

medical or surgical interventions, and changes in health policy.   

The conceptual model presented in Figure 1, shows a sample cohort of patients (patient 1 

to patient n). The study observation period starts at time 1 (start of the study) and finishes at time 

2 (end of the study). Patient comorbidities can be defined in one of two ways (A and B). A) 

Time-invariant covariate baseline method (TIVM) - the baseline definition of patient 

comorbidities is based on a period of time up to and including the start of the study observation 
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period. This time frame includes various look back periods. Once the study begins, comorbidities 

defined at baseline are static through out the study. B) Time-varying covariate model (TVCM) – 

the period of defining comorbidities includes the baseline comorbidity assessment and changes 

in disease state over the remaining study follow-up, until a patient is lost to follow-up, died, exits 

the study or the study finishes.  

 

2.3.2 Failure (Event) 

 Death or failure (Figure 1. D- death) is an event in survival analysis (Kleinbaum, 2012). 

Researchers are interested in the occurrence of an event over the elapsed period between the 

beginning of the study and in the remaining study period from diagnosis. Survival time or time to 

event is the primary variable of interest and helps researchers to understand the differences in 

survival characteristics among various patient populations. 

 

2.3.3 Censoring 

 There are various instances where patient data in a survival analysis may be censored, or 

considered incomplete. Censoring of patient information, identified in Figure 1 as C-censoring, 

means that researchers are unsure of exact survival time for the individuals in the study. This 

occurs if a patient is lost to follow-up, or chooses to withdraw from the study in the study period. 

Censoring occurs if a patient does not experience the event of interest before the end of the 

study. Even though a patient may be censored, their survival time prior to censorship is still 

incorporated in to the calculation of survival probabilities and contributes to assessment of 

population survival. 
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Figure 2. Comparison of Kaplan-Meier survival estimated for patients Diagnosed with 
metastatic cancer as compared to patients without the diagnosis. 
 

 

 

2.3.4 Univariate Survival Analysis  (Kaplan- Meier survival curves)  

 Researchers are able to calculate both survivor function and hazard functions to help 

them understand patient mortality. The survivor function gives the probability that a person 

survives longer than a specific time.  Data is typically presented in the form of survivor tables or 

graphically in a survivor curve. Kaplan-Meier curves (K-M), a simple univariate analysis, can be 

used to compare survival curves by splitting the cohorts of patients into two or more groups 

using a single categorical variable (Figure 2). Using the Log-Rank test, a test of statistical 

significance, we can test differences in the survival characteristics between two or more K-M 

curves. The K-M method is useful to determine if independent variables have a statistical 

association with patient survival and should be included in a multivariate analysis. However, 
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these models are limited because they only allow the use of one independent categorical variable 

at a time. 

 

2.3.5 Hazard Function and Hazard Ratio 

 Survival data allows us to calculate the Hazard function (HF). The HF is another way to 

explore patient survival and is defined as a rate and probability of an event (death) at a specific 

time. The HF is analogous to the rate of speed per unit time (km/h).  It can be graphically 

represented to help us understand the probability of death for patients at any point over a study 

period. The HF can be used to derive the shape of the survival and cumulative hazard curves. 

Depending on the patient population or patient intervention, the HF can be constant or change 

over time.  To illustrate this relationship we can use a 2012 European study conducted in 28 

countries looked at 60-day patient survival rates for inpatient non-cardiac surgery. The study 

found higher then expected 60-day mortality rates that decreased over time (Pearse, 2012). In 

this scenario, we would expect the post-surgical hazard rate to be very high initially, and 

dropping over time. Survival probabilities would reflect this, initially dropping quickly because 

of high mortality, then flattening out over time (Figure 2. Diagnosed Patients).     

The HF is used to calculate Hazard Ratios (HRs). The HR is a ratio of the rate of death 

per unit time comparing one population to another. It can be calculated using two or more levels 

of any explanatory variable and is typically used to compare the rate of death between baseline 

and intervention populations.  
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2.3.6 Multivariate analysis, Survivor Curves and Hazard Rate 

 The Cox Proportional Hazards Regression model allows us to study more complex 

relationships between our independent study variables and survival time. The HR, the primary 

measure of effect in a Cox regression model describes the increase in relative hazard and 

quantifies the impact of each independent variable on patient survival while accounting for 

confounding of all other independent variables in the regression model.  

 

 A key assumption of the Cox Proportional Hazard Model is that covariates are 

multiplicative relative to the baseline hazard. For example, a treatment may reduce patient death 

by half at any given time relative to the baseline hazard. This relationship does not vary in the 

study period, making the baseline and treatment survival curves proportional. The model 

assumption dictates that the HR must be constant over time. In the case of K-M survival curves 

this can be visually interpreted by seeing if the survival curves of two groups cross (Kleinbaum, 

2012).   

 

 Evaluating statistical performance of our prognostic models allows us to understand how 

well our predicted outcomes measure up relative to actual patient outcomes.  This gives us a 

basis for model comparison.  

Model fit and performance is concerned with the comparison of nested and non-nested 

models. Nested models are derived from one another and include an increasing number of 

predictive variables. Non-nested models on the other hand are unrelated and use a completely 

different set of independent variables to predict outcomes.  

Tests of model fit are derived from the likelihood function. This is an iterative process 

that is used to calculate model coefficients by testing for the maximum likelihood, and ensures a 
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statistical model most likely to fit the data.  The maximum likelihood function is used to derive 

two tests of model fit and performance, the Likelihood Ratio (LR) test and the Akaike 

Information Criterion Statistic (AIC). The LR test compares the fit of two models using changes 

of models log-likelihood. Using this test we can determine if the addition or deletion of 

predictive variable improves model fit. AIC allows us to look at the relative loss of information, 

and assess goodness-of-fit between nested or non-nested models. This enables a comparison of 

relative strength of one model over another. The AIC penalizes complexity and over-fitting of 

statistical models to compensate for the addition of predictive variables that naturally raises the 

maximum likelihood. Relative probability of information loss may be calculated using the AIC 

values from each model using the following formula exp(AICmin- AICi)/2. The resulting value is 

used to comment on the model probability to minimize information loss relative to the model 

with the lowest AIC.   

 

 Studies have used the C-statistic as a measure of a model’s ability to discriminate in 

assigning a binary outcome. Discrimination refers to a model’s ability to predict individuals who 

experience and those who don’t experience a dichotomous outcome such as death. Models with 

excellent discrimination should assign higher probability of mortality to those patients who 

actually died. The concordance statistic compares pairs of individuals. Each member in a pair is 

assigned a probability of death. Then model probabilities are compared to assess concordance 

with actual observed outcomes. Within each pair a better models should assign a higher 

probability of death to patients experiencing the outcome (concordant pair). When the reverse 

happens, pairs are considered discordant while ties are treated as ties.  The following formula: C-

index = (concordant pairs + ½ tied pairs)/all pairs is able to quantify a model’s ability to predict 
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death  (Tripepi Part I, 2010).  The C-statistic ranges between 0.5 and 1, where value close to 0.5 

indicates that the model predicts death no better than chance while 1 is perfect prediction.  

Previous studies have suggested that C-statistics of 0.7-0.8 should be considered as acceptable 

and 0.8-0.9 as excellent (Scheeweiss, 2001).  In addition to comparing prognostic model 

performance based on discrimination, calibration is used to compare how well prognostic models 

correctly estimate the probability of a given event across a range of prognostic estimates (Tripepi 

part II, 2010).   This methodology compares the predicted probability of an outcome estimated 

by a prognostic model to the real observed probability of the outcome.  Patients are group into 

deciles based on their estimated probability of death. The sum of predicted and observed deaths 

is calculated and the model is assessed using the Hosmer-Lemeshow test (H-L test). Good model 

calibration is supported by a non-significant low p-value indicating that the predicted and 

observed numbers of deaths across deciles are not statistically different.  Finally, studies look at 

potential improvements in calibration by calculating the Net Reclassification Improvement. Net 

reclassification improvement is used to compare gains in prognostic accuracy of a given model 

when new covariates are added to the previous predictive model (Tripepi part II, 2010).  

 

 

2.4 Literature review on modeling 

 To the best of our knowledge our literature review shows limited, and in some cases 

contradictory evidence that comorbidity defined as a time-varying covariate improves predictive 

model performance (See Table 1). The table shows the variation in study design might cause 

difficulties in generalizing findings from one clinical setting to another. 
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Stukenborg et al. compared two risk adjustment methods, the Deyo Adaptation of the 

CCI and Elixhauser Method (Stukenborg, 2001). Their study compared model performance 

based on comorbidity risk adjustment determined at baseline, at the time of the index 

hospitalization with model based on historical data from prior hospitalizations (Stukenborg, 

2001). Using the C-statistic, they concluded that information from prior hospitalization 

marginally improved model performance.  

 

 Granau et al., a Canadian survival study comparing comorbidity adjustment methods for 

post acute myocardial infarction (AMI) patients using administrative data and focusing on long-

term mortality. Comorbidity risk adjustment tools included OAIMPR and D’Hoore adaptation of 

the CCI. The study concluded that the presence of specific comorbidities and comorbidities 

emerging over time should be considered when individual risks are adjusted.   

Ahern et al. used the CCI as a measure of comorbidity to investigate the TVC effects on all cause 

mortality among patients with breast cancer. The study compared HRs per unit increase between 

baseline method of defining CCI and the method of defining CCI based on as time-varying 

covariates. The study concluded that there was no statistical difference in the HRs between these 

two methods  (Ahern, 2009). 

 

 Wang et al. compared the fit and performance of 11 predictive models using the Romano 

adaptation of the CCI. Cox regression models were fit using baseline and time-varying covariate 

methods. The study found longitudinal comorbidity, using baseline and prior year rolling 

comorbidity, improved cox regression model fit and performance compared with baseline. While 

the study concluded improvements in model fit and performance using the TVCM comparing 
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AIC and LR, the improvement was marginal.  That raised questions if capturing changes in 

comorbidity over time is meaningful or not in analysis. 

 

 In 2011, Porta et al. compared various methods of risk adjustment in patients diagnosed 

with myelodysplastic syndrome (MDS). They included a comparative analysis and validation of 

a new TVCM using a MDS -specific comorbidity index (MDS-CI). Performance of the new 

methods was compared with existing risk adjustment methods, Hematopoietic cell 

transplantation comorbidity index (HCT-CI) and the CCI. The MDS-CI index was found to work 

better then the CCI in the MDS population. The study found no significant difference between 

the MDS-CI for baseline and TVCM case-mix adjustment.  

 

 Giolo et al. quantified the impact of modeling heart failure survival using a TVCM. The 

study found that the implementation of TVC reduced bias and improved specificity of prognostic 

models. The authors also concluded that the findings of the study had limitations because of the 

lack of validated analytical procedures to compare TVCM and TIVM prognostic performance 

(Giolo, 2012).  Sattar et al. looked the effects of diabetes on cause specific and all-cause 

mortality in patients with end stage renal disease.  The study found that the risk of death 

associate with diabetes in an ESRD population increased with time and concluded that TVCMs 

improved model performance by capturing changes in disease comorbidity not captured by 

baseline models (Sattar, 2012).  
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Table 1: Literature review 

 Study Objectives  Study Population   Method(s) of 
Comorbidity 
adjustment  

Study 
Statistics 

Conclusion 
 

 
Wang et 
al. 2009 

 
To evaluate the 
performance of to 
longitudinal 
comorbidity 
measurement in 
predicting survival.  

 
44,016 Cancer free 
individuals, 66 years or 
older enrolled in 
Medicare between 1991 
and 1999 and followed 
for at least 1-year 

 
Romano adaptation 
of the Charlson 
Comorbidity Index 

 
Likelihood 
Ratio, AIC 

 
Longitudinal comorbidity is 
an important predictor of 
survival 

 
Ahern et 
al. 2009 

 
To examine if 
longitudinal 
comorbidities acquired 
after baseline influences 
the HR for all-cause 
mortality compared 
with analysis using 
baseline comorbidity 

 
865 women diagnosed 
with early breast cancer 
between 1996 and 1999 

 
Charlson 
Comorbidity Index 

 
Comparison 
of Hazard 
ratios and 
confidence 
intervals 

 
HRs were the same for 
baseline comorbidities oand 
for models accounting for 
acquired comorbidity over 
the study follow-up 

 
Sattar et 
al. 2012  

 
The Study examines the 
influence of diabetes 
risk of death in diabetic 
patients in a 
hemodialysis study  

 
823 diabetic patients in 
a hemodialysis study 
between March 1995 
and October 2000 

 
Index of Coexistent 
Disease (ICED), 
Index of Disease 
Severity (IDS), Index 
of Physical Severity 
(IPI) 

 
Hazard 
Ratios, PH 
test 
(Schoenfeld 
Residuals)  

 
Risk of death among 
diabetes patients in ESRD 
increase over time Time-
Varying covariate model 
improves performance.  

 
Granau et 
al.  2005 

 
The study examines 
methods of risk 
adjustment in patients 
with AMI 

 
4,874 patients >= 66 
years of age who had an 
AMI in 1994 or 1995 
followed for <=5-years 

 
Ontario AMI 
prediction Rule 
(OAMIPR),  
D’Hoore adaptation 
of the Charlson 
Comorbidity Index, 
Total number of 
distinct comorbidities 

 
Logistic 
Regression, 
C-statistic 
and R2 

 
The AMI specific 
Comorbidities adjustment 
model, OAIMIPR out 
performed the CCI. Both 
comorbidity indexes showed 
that   emerging comobidities 
over time contribute to risk 
prediction  

 
Porta et al. 
2011 

 
The study examined the 
prognostic impact of 
comorbidity adjustment 
aimed at improving risk 
assessment using 
baseline vs. time 
dependent assessments. 

 
840 patients diagnosed 
with myelodysplastic 
syndrome. 540 patients 
used as a validation 
cohort. 

 
Myelodysplastic 
syndrome 
comorbidity index 
(MDS-CI), 
WHO-Classification 
Based Prognostic 
Scoring 
System(WPSS) 

 
HRs, 
LR and AIC, 
comparing 
model’s 
goodness of 
fit and 
complexity 

 
Comorbidities had a 
significant impact patient 
risk stratification. Time 
dependent assessment did 
not show improvement over 
baseline models. 

 
Chang et 
al. 2010 

 
To evaluate clinical 
characteristics of  
patients on 
hemodialysis. To 
determine if accounting 
for updated comorbidity 
assessment over time 
yields an improved 
association with 
mortality over baseline 
comorbidity alone 

 
1846 Hemodialysis 
patients between 18 
years of age and 80 
years of age enrolled 
between March 1995 
and October 2000 and 
followed for a median 
of 2.5 years. 

 
Index of Coexistent 
Disease (ICED), 
Index of Disease 
Severity (IDS), Index 
of Physical Severity 
(IPI) 

 
Hazard 
Ratios, X2,  

 
Updated assessment of 
comorbidity predictive 
model ability in 
Hemodialysis 
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Chapter Three: METHODS 

 

3.1 Study Design and Period  

 We used a survival analysis design to understand the impact of Charlson comorbidities 

used as TVC in predicting mortality in Alberta patients with newly diagnosed hypertension. 

Patients with newly diagnosed hypertension were selected as a subset of a previous national 

study and were identified for a 12-year period between April 1 1997 and March 31 2009, and 

having at least one year of comorbidity data. Hypertensive patients that we identified with an 

index date between April1 1994 and March 31 1997, three years prior to the beginning of the 

study, or 30 days following the diagnosis of hypertension were considered to be part of the 

washout period and were excluded from the study.   

 

3.2 Data Sources and Linkages 

 We linked Alberta’s administrative healthcare data sources using an anonymous unique 

person identifier using methods previously described (Quan, 2013). Administrative databases 

used in the study included: (1) Hospital discharge abstracts (DAD), (2) Provincial health care 

insurance registry, Alberta Health Care Insurance Plan (AHCIP), (3) Physician billing claims, 

and (4) Vital Statistics.  

 

3.2.1 Alberta Health Care Insurance Plan   

 The AHCIP is used for demographic information including personal health number 

(PHN), date of birth, sex, postal code and address for all Albertans residents.  The AHCIP is 

administered and funded by Alberta Health (AH) and provides coverage for insured hospital and 

physician services for new and returning Alberta residents. The registry did not include 
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individuals who are not eligible for the AHCIP. This includes members of the Royal Canadian 

Mounted Police, armed forces, expatriates, visitors, travelers and inmates. AHCIP is one of two 

data source used for population counts. This is relevant and insures that researchers know that 

underlying patient population tables are reliable and reconcilable to one another. Combining 

AHCIP registry data with census data is supported by a 2009 Alberta Health (AH) study.  AH 

conducted a systematic comparison of AHCIP and census to investigate potential differences 

between datasets. The study concluded that there was only 0.1 percent difference in population 

counts and differences became larger when smaller sub-populations were compared. Comparison 

of age and sex groups in total population yielded difference of less than 2 percent. The study 

found that the AHCIP registry had higher population counts for children and lower counts for 

seniors compared with census. Possible reasons for the difference included differences in 

inclusion criteria, geographical assignment interprovincial migration and uninsured populations 

(Alberta Health and Wellness, 2009). Residents could formally opt out of the AHCIP 

(www.health.alberta.ca/AHCIP). In 2012, 216 out of 3.9 million, <1% of Albertans chose to opt 

out (Alberta Health 2011-2012) 

 

 The AHCIP dataset was used to identify patients 18 years of age and older enrolled in the 

plan between April 1 1997 and March 31, 2009.  The identified population was linked to 

Physician Claims, DAD and Vital Statistics databases using PHN (Li, 2006).  
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3.2.2 Alberta Postal Code File  
 

 The analysis of health data involves the use of geographic areas and boundaries. The 

Alberta postal code file includes a mapping of all Alberta based geographies including census 

divisions, census subdivisions, counties, health regions, Regional health authorities (RHAs) and 

Dissemination Areas (DAs).  Canada Post provides these data to AH who in turn makes this data 

available to Alberta Health Services (AHS) and other partners.  

 

 We used the postal code file to link Alberta residents to the 2006 Canadian census 

dissemination area (DAs). Patient socio-economic status was derived using median household 

income as a proxy assigning patients with postal codes within a specific DA. Given that 

individual level income varies within the geographic area, assigning a median household income 

to each individual within a DA raises concerns over ecological fallacy. Ecological fallacy is an 

associations or interpretation of statistics applied to individuals when those associations or 

interpretations were developed based on the group to which those individuals belong. Studies 

have looked at comparison between household income and individual income and found that a 

decline in household income was associated with a progressive decline in survival, but did not 

find the trend when individual income was used (Southern, 2006).  However, other studies 

showed an ongoing association between mortality and median household income, supporting the 

use of  median income as a valuable proxy for socio-economic status (Southern, 2005) 

 

3.2.3 Physician Claims  

 The Physician Claims data set is collected as part of a routinely submitted fee-for-service 

physicians remuneration system to the AHCIP. The data collected includes information on 
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provider, patients and services. Providers submit up to 3 ICD-9 diagnosis codes for each patient 

visit. Alberta physicians submitted their services to Albertan residents who have registered under 

the AHCIP.   

 

The validity and use of physician claims data in research has been called into question 

because of the introduction of alternative payment models. A recent study by Cunningham et al. 

compared the face validity of submitted claims by physicians remunerated under the fee for 

service (FFS) model, receiving reimbursement for submitting claims outlining delivered clinical 

services, as compared to Alternate Payment Plans (APP), where physicians received fix 

remuneration independent of the volume of services delivered. Physicians operating under the 

APP model that required them to submit shadow billings, not for reimbursement but to track 

services delivered, submitted less than half of the claims compared with their FFS counterparts. 

This raised the issue of data accuracy.  Face validity was found to vary between reimbursement 

models, requiring policy to protect accurate data collection. The study concluded that physician 

claims data were valuable and supported health research, surveillance and the development of 

health care policy (Cunningham, 2014) 

 

3.2.4 Discharge Abstract Database  

 The discharge abstract database contains all acute care inpatient visit information, from 

time of admission until discharge or death. Clinical visit information for all patients discharged 

from Alberta hospitals was abstracted and recorded. DAD includes administrative, clinical and 

diagnostic data, capturing up to 25 diagnoses, which are coded in ICD-9, ICD-9 Clinical 

Modification (ICD-9-CM) or after 2002, ICD-10 Clinical Modification (i.e. ICD-10-CA).  
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 We used the DAD data in combinations with the physician claims data set to identify 

incident hypertensive patients as well as the onset of chronic conditions before and after the 

index hypertension date. 

 

3.2.5 Alberta Vital Statistics File 

 The vital statistics file is a registration of all vital events occurring in Alberta and 

includes a date and cause of death. All Alberta deaths are legally required to be registered and 

form a permanent legal record of death (http://www.servicealberta.ca/1148.cfm). Because 

registration of death is legally required for settling estate matters and legal burial or disposal of a 

body, the Alberta vital statistics file has a low error rate of  <0.1% (Statistics Canada Vital 

Statistics, Death database) Abstracted health data was linked to vital statistics using a 

combination of surname, sex and date of birth (Li, 2006). Li et al. found high linkage rates 

between vital statistics and AHCIP and between Vital Statistics and the DAD, 96.9% and 98.9 

respectively.  

 

 We linked Census data to all other administrative data sets using the AHCIP Alberta 

residential postal code. Alberta residential postal codes were linked to the Census data using 

Dissemination Area (DA), the smallest identified geographic area in the Canadian Census file. 
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Figure 3. Administrative data set and linkage relationships 

 

 

3.3 Study Population  

3.3.1 Inclusion Criteria 

 The study population is a subset of a larger national hypertension study using incident 

hypertension cases (Quan, 2013).  The study included all adults who were residents of the 

Province of Alberta, were age 18 years and older, and registered in the AHCIP on April 1, 1997 

(Figure 6). The AHCIP was linked with physician claims and DAD using PHN to identify newly 

diagnosed hypertensive Albertans using a validated ICD case definition (Quan, 2009). The 

previously defined case definition identified patients with 2 physician claims within 2 years or 1 

hospital discharge within a 3-year observation period. The index hypertension diagnosis was 

considered to be the discharge date or the initial claim date, whichever was earliest. The case 

definition had a high specificity (95% to 97%) and but low sensitivity (66% to 72%), potentially 

under sampling low risk hypertensive patients (Quan, 2009). Cases were defined using both 

ICD-9 (401.x, 402.x, 403.x, 404.x or 405.x) and ICD10-CA (I10.x, I11.x, I12.x, I13.x or I15.x).   
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  Newly diagnosed hypertensive patients between April 1 1997 and March 31 2009 having 

at least one year of comorbidity data were considered part of the study. However, hypertensive 

patients identified with an index date between April 1 1994 and March 31 1997 were part of the 

washout period. The washout period is the period leading up to the start of the study. Researchers 

use the washout period to identify prevalent hypertension cases to be excluded. This ensures 

consistency with the incident hypertensive case definition.  

 

 The case definition used to identify newly diagnosed hypertensive patients was based on 

a combination of DAD, and physician claims. The use of drug and blood pressure data while 

useful in identifying patients with hypertension was rarely available, systematically collected, or 

followed longitudinally. This selection strategy may have under-sampled low risk hypertensive 

patients. These patients may have been unaware of their condition, and less likely to seek and 

receive medical care, and be captured within one of the administrative data sets (Quan, 2013).    

 

 A subsequent study looking an alternative methods of identifying and reporting incidence 

and prevalence of hypertension, found that self-reported surveys such as the Canadian 

Community Health Survey (CCHS) underestimated hypertension prevalence (18% vs. 23 %). 

Although administrative data did not capture individuals who did not contact universal health 

care system, the sampling strategy of the CCHS survey, reported lower prevalence than 

administrative data (Quan, 2013; Quan, 2014). The lower hypertension prevalence was attributed 

by the lower likelihood of patient’s response from patients in institutions. These people were the 

least healthy. The low prevalence was also related to recall bias and unawareness of hypertension 
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among patients who received blood pressure medication and perceived that they were not 

hypertensive.  

 

3.3.2 Exclusion Criteria 

 We excluded patients from the study if they met any of the following criteria.   

1) age less than 18 years 2) hypertensive patients diagnosed in the washout period (between 

April1 1994 and March 31 1997);  3) having  myocardial infarction, heart failure or stroke during 

the 3 years leading up to the study or within 30 days following the diagnosis of hypertension;  4)  

died the same day that they were diagnosed with hypertension; 5) patients with less then 1-year 

of comorbidity data (Quan, 2013).  

 

 

3.4 Study Variables 

3.4.1 Dependent Variable 

 The outcome variable was all-cause mortality between April 1 1997 and March 31 2009. 

We followed patients from diagnosis until death or the end of the study (March 31 2009), which 

ever came first.  Survival time was calculated as time between the initial hypertension diagnosis 

date and date of death and for censored patients, between diagnosis and loss to follow-up, 

withdrawal from the study or the end of the follow-up. Deaths were identified from Vital 

Statistics  (Li, 2006). 
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3.4.2 Independent Variables 

 Our primary independent variables of interest were 17 Charlson comorbidities present at 

baseline and between April 1 1997 and March 31 2009. Comorbidities were derived from the 

physician claims, and DAD databases. We included age and sex from the provincial health 

insurance registry data. We assigned median household income quintiles (Q1 to Q5), a proxy for 

socioeconomic status, and rural or urban residential location based on their residential postal 

code, mapped to 2006 Statistics Canada Census data.  

 

 The onset of a patient’s disease comorbidity was determined as the earliest date of 

diagnosis obtained from DAD and physician claims data following a patient’s index of 

hypertension diagnosis date (see Appendix A, and B). If more than one record was identified for 

the same condition, we chose the first date of service as date of chronic condition. Survival time 

was the number of days between the initial hypertension diagnosis and the end of the study 

period (March 31 2010) or date of death, whichever came first.  We used last observed carry 

forward (LOCF) for each comorbidity in our TVCMs. Once identified, each condition was 

considered ongoing (Wang, 2009). 
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Figure 4.  Capture of disease comorbidity comparing baseline with time-varying covariate 
method. 
 

 

 

 The primary difference between baseline and TVCMs was that TVCMs enabled us to 

capture the onset of comorbidity along with time at risk in the period between diagnosis and the 

remainder of the study (Figure 4). Patient outcomes (death) were consistent between TIVM and 

TVCM while the assessment of comorbidity varied between models.  

We included 17 comorbidities at baseline, coding each variable with a dichotomous 

status, present or absent, if identified within a year, prior to the initial hypertension diagnosis 

date.  We captured time varying comorbidities as serial measurements for each patient. We 

divided each patient’s follow-up period into a sequential series of time windows.  Each time 

window started with the onset of a new chronic condition, and represented an increase in disease 

burden. Comorbidities were assumed to persist and were counted over the remaining study 

period from diagnosis or until death, whichever came first. Using a two-step process, we 

calculate the time-varying impact of each comorbidity on survival. First, a Cox analysis was 

carried out to calculate the hazard ratio for each follow-up time window. Then a single weighted 

average HR was calculated based on the series of shorter time windows (Figure 11).  
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Table 2. Four alternative methods of comorbidity adjustment used for regression models 

Methods Description (Number of Variables) 
Individual Comorbidities  
     1. 17 Individual Comorbidities 17 dichotomous variables Should we include all the 

conditions  
Weighted Methods   
     2.Original Charlson Weighting One variable summary measure (0 to 24 maximum) 
     3. Updated Charlson Weighting One variable summary measure (0 to 24 maximum) 
Count of Conditions    
     4. Count of up to 17 Conditions  One variable summary measure  (0 to 17 conditions)  

 

 

 We used four methods to adjust for patient case-mix, for both baseline and TVCMs, 

using 17 individual comorbidities and 3 summary measures (Table2). We included individual 

weighted scores for each of 17 comorbidities assigned based on the original relative risk of 1-

year mortality by Charlson et al.  We also used an updated CCI proposed in a recent study 

(Quan, 2011). The study concluded that the original CCI should be updated to account for 

advances in chronic disease management and improvements in treatment and technology. Their 

study found that 12 comorbidities continued to be associated with 1-year mortality and proposed 

an updated summary score using 12 of the original 17 comorbidities to calculate an updated CCI 

yielding similar prognostic characteristics.  We also used a count of Charlson comorbidities, 

while Fleishman et al. found this measure to be the least predictive of mortality, it is also the 

easiest to calculate and implement. 

 

3.5 Ethical Approval 

The Conjoint Health Research Ethics Boards of the University of Calgary (CHREB) 

approved the study. 



44 

3.6 Statistical Analysis 

 A 5% significance level (p<0.05) was considered statistically significant for all tests. 

Univariate and multivariate Cox regression analyses were performed using Stata/IC 12.1 for Mac 

(64-bit Intel), Revision 25 Nov 2013 Copyright 1985-2011 StataCorp LP 

 

3.6.1 Descriptive Statistics 

 We performed and reported demographic and socio-economic characteristics of our 

newly diagnosed hypertensive patients. Our summary included mean age, sex, socio-economic 

status, area of residence, mortality rate, median years of follow-up, and all-cause mortality.  

 

3.6.2  Univariate Analysis  

Univariate analysis was carried out using both the K-M survival estimates and Cox 

regression to determine the difference in median survival between two or more groups for each 

categorical covariate. We reported median survival time and association with mortality for each 

Charlson comorbidity. Our univariate analysis could not report median survival time for eight 

comorbidities. This indicated that half of the patients were still alive at the end of the study and 

that alone these comorbidities did not materially impact patient survival unless present in 

combination with other comorbidities. Continuous variables such as age were converted into 

groups. Statistically significant differences in the survival estimates were determined using the 

log-rank test p-values (p<0.05). 
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3.6.3 Multivariate Analysis 

 

 Using the findings of the univariate analyses we determined independent variables that 

were included in our multivariate Cox regression models.  The univariate and multivariate Cox 

proportional hazard models were used to calculate unadjusted hazard ratios (HR) and adjusted 

hazard ratios (aHR) respectively, including 95% Confidence Intervals (95% CI) for baseline and 

TVCMs. Each model used 4 alternative methods adjusting for CCI, along with controlling for 

other potential confounders, including age, sex, median household income, and area of residence. 

All models included all comorbidity variables regardless of significance to ensure consistency 

with other CCI studies.   

 

 Eight multivariate prognostic survival models were fit, 4 models using the traditional Cox 

regression, recording comorbidities at baseline, and 4 TVCM Cox regression models, which 

includes baseline comorbidity as well as changes in disease status in the remaining study period 

from diagnosis.  

 

3.6.3.1 Time Invariant Baseline Cox Regression Models (TIVM)  

 

Model 1: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), individual Charlson comorbidities (myocardial infarction, congestive 

heart failure, peripheral vascular disease, cerebrovascular disease, hemiplegia or paraplegia, 

dementia, chronic pulmonary disease, rheumatologic disease, peptic ulcer disease, diabetes 

without chronic complications, diabetes with chronic complications, renal disease, any 
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malignancy, including leukemia and lymphoma, metastatic solid tumor, mild liver disease, 

moderate or severe liver disease, AIDS/HIV). All comorbidities were defined at the start of the 

study. 

 

Model 2: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and original Charlson weighting. All comorbidities were defined at the 

start of the study. 

 

Model 3: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and updated Charlson weighting. All comorbidities were defined at the 

start of the study. 

 

Model 4: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and count of conditions at baseline. All comorbidities were defined at 

the start of the study. 
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3.6.3.2 Time Varying Covariate Models (TVCM) 

 

Model 5: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and individual Charlson comorbidities. Comorbidities were identified 

throughout the study follow-up period. Once identified, each condition was assumed to persist in 

the remaining study period after diagnosis. 

 

Model 6: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and original Charlson weighting. Comorbidities were identified 

throughout the study follow-up period. Once identified, each condition was assumed to persist in 

the remaining study period from diagnosis. 

 

Model 7: The dependent variable was time to event (years) and the independent variables were 

age (continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and updated Charlson weighting. Comorbidities were identified 

throughout the study follow-up period. Once identified, each condition was assumed to persist in 

the remaining study period from diagnosis. 
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Model 8:  

The dependent variable was time to event (years) and the independent variables were age 

(continuous), sex (male, female), median household income quintiles (q1 to q5), area of 

residence (rural, urban), and count of conditions at baseline. Comorbidities were identified 

throughout the study follow-up period. Once identified, each condition was assumed to persist in 

the remaining study period from diagnosis.  

 

3.6.4 Assessment of Proportional Hazards 

A typical assessment of proportional hazards would include both empirical and visual 

inspections. The Schoenfeld residuals can be interpreted as the observed minus the expected 

values of the covariates at each failure time (Figure 5). If residuals were random they would not 

exhibit a pattern at each failure time, indicating that there is no evidence that the covariate is 

changing with time; In other words it met the proportional hazard assumption (Hosmer and 

Lemeshow 1999). 

 

 Our assessment of the proportional hazards assumption had to consider our large study 

sample size, which would detect even very small slopes in the Schoenfeld residuals over time at 

a 5% two-side significance level. We pre-specified that the PH criterion would be met if the 

coefficients of the slope were within 0 ± 0.05. In sensitivity analyses we checked if the log-HRs 

differed by more than 10% when time was split in quarterly segment. 
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Figure 5. Assessment of Proportional hazards for a Covariate (Urban/ Rural) using 
Schoenfeld residuals 
 

 

 

Chapter Four: Results 
 

4.1 Study Population Characteristics 

 Descriptive statistics for all study variables included in (Table 3) show that newly 

diagnosed patients with hypertension (n=453,734) predominantly lived in an urban setting 

(80.7%) and 50.6% were male. The median age was 57.5 and 67.9% were younger than 65 years. 

There were 29,717(6.5%) patients with missing information on income quintile. The median 

follow-up time and interquartile range was 5.75 (5.74- 5.76) years, with an overall population 

mortality of 21.53% (95% CI 21.44 -21.62). 
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Figure 6. Study Population derivation for newly diagnosed Alberta hypertensive patients 
18 years and older identified between April 1 1997 and March 31 2009. 
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Table 3. Study population characteristics 

  Number (%) 
 
Total Patients 453,734 100 
      
Age, years     

20-49 139,110 30.6 
50-64 168,998 37.2 
65-74 81,930 18.1 
75+ 63,696 14.0 
Mean (SD) 57.52(14.63)  

 
Median Income quintile   

 

1 (Lowest) 91,891 20.3 
2 86,694 19.1 
3 84,876 18.7 
4 81,269 17.9 
5 (Highest) 79,287 17.5 
Missing 29,717 6.5 
Total 453,734 100.0 

 
Number of Charlson 
Comorbidities at baseline 

  

0 285,417 63.2 
1-2 140,101 28.1 
>=3 28,216 8.7 
Total 453,734 100 

 
Region of Residence   

 

Urban 366,226 80.7 
Rural 86,253 19.0 
Missing 1,255 0.3 

 
Mortality Rate (%) 21.53 (21.44-21.62) 

 

 
Duration of Follow-up   

 

Median Years (IRQ) 5.75 (5.74-5.76)  
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4.2 Disease prevalence at baseline and at the end of study period  

   

 We found the prevalence of Charlson Comorbidities differed substantially between 

baseline and the end of the study period (Table 4 and Table 5).  The TIVMs underestimated the 

number of individuals with one or more Charlson comorbidities by 23.6% compared with 

TVCMs. At the end of study, disease prevalence for each comorbidity increased dramatically 

using the TVCM, ranging from 1.74 times (chronic obstructive pulmonary disease) to 3.81 times 

(metastatic solid tumors)(Table 4).   

 

Table 4. Prevalence of 17 individual Charlson comorbidities at baseline and at the end of 
the study 
 

  
        Baseline 
         n           (%) 

At End of Study 
           n          (%) 

 
Charlson Comorbidities        

Myocardial infarction 27,304 (6.02) 53,774 (11.85) 
Congestive heart failure 26,041 (5.74) 60,426 (13.32) 
Peripheral vascular disease 13,399 (2.95) 33,863 (7.46) 
Cerebrovascular disease 23,881 (5.26) 56,297 (12.41) 
Hemiplegia or paraplegia 3,738 (0.82) 8,536 (1.88) 
Dementia 8,890 (1.96) 31,659 (6.98) 
Chronic pulmonary disease 70,227 (15.48) 122,785 (27.06) 
Rheumatologic disease 8,161 (1.80) 18,223 (4.02) 
Peptic ulcer disease 11,674 (2.57) 27,142 (5.98) 
Diabetes without chronic complications 31,098 (6.85) 58,389 (12.87) 
Diabetes with chronic complications 7,503 (1.65) 23,390 (5.16) 
Renal disease 10,231 (2.25) 34,560 (7.62) 
Any malignancy, including leukemia and 

lymphoma 26,853 (5.92) 69,637 (15.35) 
Metastatic solid tumor 4,784 (1.05) 18,231 (4.02) 
Mild liver disease 6,524 (1.44) 16,860 (3.72) 
Moderate or severe liver disease 968 (0.21) 2,782 (0.61) 
AIDS/HIV 230    (0.05) 407 (0.09) 
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Table 5. Population distribution by number of Charlson comorbidities at baseline and at 
the end of the study period    
 

Number of Charlson Comorbidities          Baseline 
                n        (%) 

     At End of Study 
                    n       (%) 

0 285,417 (63.2) 179,802 (39.6) 
1-2 140,101 (28.1) 181,353 (40.0) 
>=3 28,216 (8.7) 92,579 (20.4) 
Total 453,734 (100) 453,734 (100) 

 

 

4.3 Univariate Assessment of Median Survival  

 Univariate Cox Regression was used to determine the difference in median survival 

between categories of each independent variable. This allowed us to report median survival times 

for individual variables and their association with patient mortality (Table 6).  

A non-reportable endpoint (NR) indicated a median survival time longer than the 12-year study 

follow-up for a given population. 

 

 Patient survival was affected by all 21 independent variables. However, only 10 

comorbidities were able to report a median survival time. Comorbidities associated with the 

shortest median survival time included metastatic solid tumors (n=4784) with median survival 

time of 2.17 [1.97-2.39] years, dementia (n=8,890) with 3.67 [3.58-3.79] years median survival 

and moderate or sever liver disease (n=968) with median survival time of 4.10 [3.72-5.15] years. 

Comorbidities associated with increased mortality included hemiplegia and paraplegia 7.90 

[7.51-8.43], renal disease 8.67 [8.34-9.08], cerebrovascular disease 9.84 [9.58-10.14], peripheral 

vascular disease 9.16 [8.80-9.44], malignancy 10.38 [10.00- 10.73]. 
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Table 6. Univariate Cox regression reporting median survival time (years)   

Variable  Number  Median Survival Time 
(95% CI) P (log-rank) 

Sex       
    Male 229,553 NR [NR-NR] <0.001 
    Female 224,181 NR [NR-NR]   
Age 65       
   <65 145,626 NR [NR-NR] <0.001 
   >=65 308,108     
Urban       
   Urban 366,226 NR [NR-NR] <0.001 
   Rural 86,253 NR [NR-NR]   
Median Income quintile       
1 (Lowest) 91,891 NR [NR-NR] <0.001 
2 86,694 NR [NR-NR]   
3 84,876 NR [NR-NR]   
4 81,269 NR [NR-NR]   
5 (Highest) 79,287 NR [NR-NR]   
Myocardial infarction       
    Yes 27,304 NR [11.73-NR] <0.001 
    No  426,430 NR [NR-NR]   
Congestive heart failure       
    Yes 26,041 NR [NR-NR] <0.001 
    No  427,693 NR [NR-NR]   
Peripheral vascular disease       
    Yes 13,399 9.16[8.80-9.44] <0.001 
    No  440,335 NR [NR-NR]   
Cerebrovascular disease       
    Yes 23,881 9.84 [9.58-10.14] <0.001 
    No  429,853 NR [NR-NR]   
Hemiplegia or paraplegia       
    Yes 3,738 7.90 [7.51-8.43] <0.001 
    No  449,996 NR [NR-NR]   
Dementia       
    Yes 8,890 3.67 [3.58-3.79] <0.001 
    No  444,844 NR [NR-NR]   
 
Chronic pulmonary disease       

    Yes 70,227 NR [NR-NR] <0.001 
    No  383,507 NR [NR-NR]   
Rheumatologic disease       
    Yes 8,161 NR [NR-NR] <0.001 
    No  445,573 NR [NR-NR]   
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Table 6. Univariate Cox regression reporting median survival time (years)  (Continued) 

Variable  Number  Median Survival Time 
(95% CI) P (log-rank) 

Peptic ulcer disease       
    Yes 11,674 NR [NR-NR] <0.001 
    No  442,060 NR [NR-NR]   
Diabetes without chronic 
complications       

    Yes 31,098 NR [NR-NR] <0.001 
    No  422,636 NR [NR-NR]   
Diabetes with chronic 
complications       

    Yes 7,503 NR [NR-NR] <0.001 
    No  446,231 NR [NR-NR]   
Renal disease       
    Yes 10,231 8.67 [8.34-9.08] <0.001 
    No  443,503 NR [NR-NR]   
Any malignancy, including 
leukemia and lymphoma       

    Yes 26,853 10.38 [10.00-10.73] <0.001 
    No  426,881 NR [NR-NR]   
Metastatic solid tumor       
    Yes 4,784 2.17 [1.97-2.39] <0.001 
    No  448,950 NR [NR-NR]   
Mild liver disease       
    Yes 6,524 NR [NR-NR] <0.001 
    No  447,210 NR [NR-NR]   
Moderate or severe liver disease       
    Yes 968 4.10 [3.72-5.15] <0.001 
    No  452,766 NR [NR-NR]   
AIDS/HIV       
    Yes 230 NR [NR-NR] <0.001 
    No  453,504 NR [NR-NR]   
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Figure 7. Kaplan-Meier Survival Estimates for patients with (0,1-2,3+) Chronic conditions 
based in baseline disease assessment.  
 

 

 
 
Figure 8. Kaplan-Meier Survival Estimates for patients with (0,1-2,3+) Chronic conditions 
based on disease assessment at the end of the study period. 
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Figure 9. Unstratified Kaplan-Meier Survival Estimates for the entire study population 
 

 

 

The association between each comorbidity and mortality varied substantially between 

baseline data and data in the remaining study period from diagnosis (Table 7).   aHR estimates 

for 7 comorbidities increased from the baseline to TVCM, myocardial infarction, congestive 

heart failure, cerebrovascular disease, hemiplegia/paraplegia, mild or sever liver disease, cancer, 

metastatic solid tumors). Six comorbidities show decrease in the estimate of aHR indicating a 

potential reduction in the comorbidity contributions to mortality in the near term.  
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Table 7. Comparison of crude and adjusted hazard ratios between the baseline and 
TVCMs for all 17 individual Charlson comorbidities 
 

 Baseline TVCM 
 cHR* (95%CI) aHR** (95%CI) cHR* (95%CI) aHR**(95%CI) 

 Sex (Male) 1.15 (1.14-1.17) 1.23 (1.22-1.26) 
  

1.15 (1.14-1.17) 1.15 (1.14-1.17) 
 Age 1.05 (1.05-1.06) 1.04 (1.04-1.04) 1.06 (1.05-1.06) 1.03 (1.03-1.03) 
Area of Residence         
  Urban 1.01 (.99-1.03) 1.10 (1.08-1.12) 1.01 (.99-1.03) 1.09 (1.07-1.11) 
Income Quintile  

        (Compared to 1- Lowest) 
2 .88 (.86-.90) .95 (.93-.98) .88 (.86-.90) .97 (.95-.99) 
3 .81 (.79-.83) .92 (.90-.94) .81 (.79-.83) .94 (.92-96) 
4 .69 (.67-.71) .86 (.85-.89) .69 (.67-.71) .91 (.88-.95) 
5 – Highest Income Quintile  .65 (.63-.66) .85 (.82-.87) .65 (.63-.66) .93 (.90-.95) 
Charlson Comorbidities         
Myocardial infarction 2.2 (2.15-2.25) 1.07 (1.05-1.1) 2.89 (2.84-2.94) 1.2 (1.18-1.22) 
Congestive heart failure 4.19 (4.11-4.27) 1.77 (1.73-1.81) 5.21 (5.13-5.29) 1.88 (1.84-1.92) 
Peripheral vascular disease 2.99 (2.9-3.07) 1.24 (1.2-1.28) 3.31 (3.24-3.38) 1.16 (1.14-1.19) 
Cerebrovascular disease 2.87 (2.8-2.93) 1.28 (1.24-1.31) 3.65 (3.59-3.72) 1.41 (1.38-1.43) 
Hemiplegia or paraplegia 7.64 (7.43-7.85) 2.36 (2.29-2.43) 8.82 (8.66-8.98) 2.89 (2.83-2.95) 
Dementia 1.88 (1.85-1.91) 1.31 (1.29-1.34) 2.16 (2.12-2.19) 1.3 (1.28-1.32) 
Chronic pulmonary disease 1.69 (1.61-1.76) 1.18 (1.13-1.24) 1.62 (1.56-1.67) 1.03 (0.99-1.07) 
Rheumatologic disease 1.67 (1.61-1.73) 1.1 (1.06-1.14) 2.02 (1.96-2.07) 1.1 (1.08-1.13) 
Peptic ulcer disease 2.31 (2.21-2.42) 1.69 (1.6-1.78) 2.66 (2.58-2.74) 1.56 (1.51-1.62) 
Diabetes without chronic 
complications 2.18 (2.13-2.23) 1.3 (1.27-1.33) 2.16 (2.12-2.2) 1.1 (1.07-1.12) 
Diabetes with chronic 
complications 3.27 (3.14-3.4) 1.41 (1.35-1.48) 3.8 (3.71-3.9) 1.27 (1.23-1.31) 
Renal disease 3.45 (3.28-3.62) 1.44 (1.36-1.52) 4.18 (4.04-4.33) 1.36 (1.31-1.41) 
Any malignancy, including 
leukemia     and lymphoma 3.52 (3.41-3.64) 1.63 (1.57-1.69) 4.78 (4.68-4.87) 1.72 (1.69-1.76) 
Metastatic solid tumor 3.11 (3.04-3.18) 1.5 (1.47-1.54) 4.49 (4.42-4.57) 1.87 (1.83-1.90) 
Mild liver disease 5.7 (5.23-6.21) 1.97 (1.79-2.17) 7.1 (6.73-7.49) 2.1 (1.98-2.23) 
Moderate or severe liver disease 8.34 (8.04-8.65) 3.58 (3.43-3.73) 13.26 (12.99-13.53) 5.15 (5.03-5.28) 
AIDS/HIV 1.86 (1.42-2.44) 1.72 (1.28-2.31) 2 (1.62-2.46) 1.65 (1.32-2.06) 

**aHR - Adjusted Hazard Ratio-adjusted model included sex age area of residence and median household income 
 
  

 The statistical performance between 4 time invariant and 4 time dependent models is 

presented in Table 8. Generally, improved model performance is evident by increases in the LR 

score accompanied by a decrease in AICs scores.  

  

 A comparison of LRs for nested Cox regression models showed that models including all 

17 Charlson comorbidities as individual covariates outperformed regression models using 

summary measures (Table 8). These results were consistent in nested model comparisons for 
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both TIVMs and TVCMs. Based on these findings; we compared the best TIVM and TVCM, 

which included all 17 Charlson comorbidities as individual covariates. The TVCM outperformed 

the baseline model achieving the highest LR = 112,941.72 and lowest AIC = 1,670,491 (Table 

8).  

 

Table 8. Comparison of model fit and performance between baseline and TVCMs using 
(Likelihood Ratio and AIC) 
 

       Baseline     TVCM 
Modeling Methods Likelihood 

Ratio 
AIC Likelihood 

Ratio 
AIC 

Individual Comorbidities   
1. 17 Individual Conditions                                 
(17 variables)  63,239.78 1,720,126 112,941.72 1,670,491 

Weighting Method     
2. Original Charlson Weighting 

Method (one variable) 60,217.07 1,723,116 104,264.62 1,679,069 
3. Updated Charlson Weighting 

Method (one variable) 58,723.42 1,724,610 106,169.71 1,677,164 
Count of Conditions      

4. Count of up to 17 conditions            
(one variable) 

58,674.36 1,724,769   91,986.08 1,691,347 
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Chapter Five: Discussion 

 

 

  Our study used a large number of hypertensive patients to compare survival model fit and 

performance between two methods of defining comorbidities, baseline and TVC. The TVC 

method captured changes in disease state in the time between hypertension diagnosis and the 

remainder of the study. We analyzed 475,345 newly diagnosed hypertension patients within 12 

years in Alberta, Canada.  Our study highlighted that the prevalence of comorbidities was much 

higher using TVC methods than baseline methods and TVCM performs slightly better than 

baseline method model. 

The prevalence of Charlson comorbidities differed substantially between baseline and the 

conclusion of the study follow-up. Baseline models underestimated comorbidities by 23.6%. 

This was consistent with another study that evaluated different approaches to longitudinal 

comorbidity measurement (Wang, 2009).  A possible reason includes additional diagnoses 

captured from visits over a longer follow-up period.  We compared K-M survival curves between 

baseline and TVCMs to visually assess the effect of misclassification of patient comorbidities 

and raised awareness to potential errors in reporting.  

 Surprisingly, we did not notice a large difference in model fit and performance between 

baseline model and TVCMs even if occurrence of comorbidities in the study period was 

captured.   This was related to length of study follow-up and the sensitivity of mortality as an 

outcomes measure among newly diagnosed hypertensive patients. 
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Hypertension is not a cause of mortality; rather, it is on a causal pathway. Hypertension is 

a leading risk factor for chronic conditions or medical events associated with mortality 

(Rapsomaniki, 2014). To capture mortality well from hypertension diagnosis, we need long term 

of follow-up. We used our non-stratified KM survival estimate to project a 20-year median 

survival time for study population (Figure 9). Combining this figure with median patient follow-

up time of 5.75 years. We concluded that it would be difficult to capture mortality in a 

population living on average 14.25 years longer than the median patient follow-up time. These 

findings were supported by our literature review. We observed that studies with more stable, 

healthier populations were less likely to conclude dramatic improvements in model performance 

between TIVM and TVCMs, as compared to studies with high-risk patient populations. Future 

studies should consider a comparison of median patient follow-up time and median population 

survival time to determine the frequency and sensitivity of outcomes within the specific study 

population. This would allow us to consider model improvements in the context of similar study 

populations.  

A possible alternative to increasing the length of the follow-up is to select outcome 

measures sensitive to change over shorter study follow-up periods; including measures such as 

patient satisfaction or patient related symptoms as outcomes. This highlights the importance of 

understanding the natural history and etiology of a disease and the need to consider the 

sensitivity of outcomes measures and length of study follow-up for specific study populations.  

TVCM captured incremental changes in disease state over time based on the serial 

measurements method (Dekker, 2008)(Figure 11).  Based on this we interpreted aHRs for 

TVCMs as the relatively short-term effects of the risk of death for patients with a specific 

comorbidity as compared to those without that comorbidity. aHRs for TVCMs are considered 
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short-term predictors of death as compared to baseline aHRs, which look at risk of death over the 

long term ignoring disease occurrence in the follow-up period (Figure10).  Baseline survival 

models captured disease at a single point in time. As a result, the interpretations of aHRs for each 

chronic condition, collected at a single point in time, were attributed to the entire study period 

(Dekker, 2008). This allowed us to quantify the long-term effects of each condition on mortality 

over the entire 12-year study (Figure 10). TVCMs use an alternative method of calculating aHRs. 

We calculated a series of measures, breaking up the patient follow-up time into smaller time 

windows. The start of each time window coincides with the onset of each additional disease and 

represents an increase in risk (Figure 11).  First, aHRs were calculated for each time window 

using a Cox regression analysis.  Then a single weighted aHR for the entire study period is 

calculated using all the aHRs in the previous step.  This allowed TVCMs to incorporate disease 

onset, changes in patient severity and exposure time, more accurately reflecting overall patient 

risk. 

 Our baseline model (Figure 7), showed that patients with 3 or more comorbidities had a 

median survival of over 5 years. Patients were then correctly classified using the count of chronic 

conditions from the end of the study.  The net effect of reclassification was to increase the 

average number of comorbidities for each patient while patient survival time remained the same. 

As expected, the result of correctly classifying patients was seen in the increased median survival 

and visually confirmed by flatter survival curves (Figure 7 and Figure 8). Specifically, patients 

with 3 or more conditions, considered most sick, doubled their median survival time to over 10 

years from the original baseline figure. This increase in median survival gave us further evidence 

that our 12-year study follow-up period was not a long enough to observe variation in mortality 

based on comorbidity. These findings have implications for existing and future studies using 
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baseline assessment of comorbidity and highlight how disease misclassification could lead to 

errors in reporting. 

Comparison between individual and summary measures shows that predictive models 

adjusting for all 17 individual comorbidities outperformed models using summary measures. 

Literature shows mixed results.  Austin et al. validated the performance and use of summary 

measures like the CCI and Elixhauser score as substitutes for the use of individual comorbidities 

(Austin 2013). Sundararajan et al reported that using individual comorbidities performed better 

than the CCI, while Lieffer et al. reported opposing results (Sundararjan 2007, Lieffer 2011). 

Ghali et al. suggested that summary measures calculated using study specific data had superior 

performance (Ghali, 1996). Acknowledging variation in the literature, case mix adjustment using 

summary scores continues to be important in research for studies with small sample sizes.  

 

Figure 10.  Long-term effects on baseline risk factors on mortality 
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Figure 11.  Effect of time-varying risk on Mortality (Dekker, 2008) 

   

  

  Our comparisons and interpretations of aHRs between models took into consideration 

the natural history and etiology of each of the 17 Charlson comorbidities.  Comorbidities with 

higher aHRs in TVCMs compared to baseline were considered to have higher risk or mortality in 

the short-term verses the entire study follow-up. Consistent with this interpretation, the aHRs for 

hemiplagie or paraplegia (2.36(2.29-2.43), 2.89(2.83-2.95) baseline and TVCM respectively, 

were interpreted as a higher risk of death immediately following the onset of a disease or 

condition (Table 7). Supporting this interpretation, Divanoglou et al., reported that the highest 

mortality rate for hemiplagie or paraplegia was within the 1-year of injury, with a 1-year 

mortality of 18.8% (Divanoglou, 2010). Conversely, a higher COPD aHR in the baseline model 

could be interpreted as patients experiencing a lower risk of death over the short term, with 

increasing risk over time. Shah et al. demonstrated that the natural history of COPD was slow to 

develop, with patients initially seeing minimal decline followed by an increased severity over the 

long-term.  
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Chapter Six: Limitations 

  

Our study focused on a newly diagnosed hypertensive patient population, a relatively 

healthy population requiring a long-term follow-up to observe mortality as outcome. Patients 

with newly diagnosed hypertension were identified for a 12-year period between April 1 1997 

and March 31 2009. Patients had a median follow-up time of 5.75 years, well short of median 

survival for most patients in the study (Median survival time of over 20 years). This resulted in 

poor capture of patient outcomes (death), contributing to limited improvements in model 

performance. Future research studies using mortality as a study outcome should focus on 

populations with a high risk of death. This would include patients with acute conditions or post 

intervention patient population where chronic disease burden is known to impact patient 

survival.   

 Use of administrative datasets may underestimate the identification of comorbidities in a 

relatively healthy, newly diagnosed hypertensive populations. Without blood pressure 

measurement, asymptomatic hypertensive patients may not seek primary or acute care, excluding 

them from our study.  

 Our study median follow-up period of 5.75 years was not long enough to capture 

mortality. Future studies should also consider a comparison of median follow-up time and 

median survival time for a given study population. 
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Chapter Seven: Conclusion 

 

To the best of our knowledge this is the first large scale, population based Canadian study 

using administrative data investigating the onset of chronic disease over time and it’s impact on 

predicting patient mortality. In an incident population of newly diagnosed hypertensive adults we 

were able to show that accounting for changes in patient comorbidity over time more accurately 

reflected a patient’s health risk. This leads to slight improvement in predictive model fit and 

performance.   

 Future research may improve understanding and support for the use of TVCMs to 

determine the impact of chronic disease on patient survival/prognosis of disease through 

comparing 1) longer and shorter observation periods to determine the exact effect of length of 

study follow-up on HRs and 2) the use of alternative outcome variables that are more sensitive.     
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Appendix A. ICD-9 Charlson Comorbidities  

Comorbidities  ICD-10 Codes 
Myocardial infarction  410.x, 412.x 
Congestive heart failure  398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 

404.13, 404.91, 404.93, 425.4–425.9, 428.x 
 

Peripheral vascular disease  093.0, 437.3, 440.x, 441.x, 443.1–443.9, 47.1, 557.1, 
557.9, V43.4 
 

Cerebrovascular disease  362.34, 430.x–438.x 
Dementia  290.x, 294.1, 331.2 
Chronic pulmonary disease  416.8, 416.9, 490.x–505.x, 

506.4, 508.1, 508.8 
Rheumatic disease  446.5, 710.0–710.4, 714.0–714.2, 714.8, 725.x 

 
Peptic ulcer disease  531.x–534.x 
Mild liver disease  070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.6, 

070.9, 570.x, 571.x, 573.3, 573.4, 573.8, 573.9, V42.7 
 

Diabetes without chronic 
complication  

250.0–250.3, 250.8, 250.9 

Diabetes with chronic 
complication  

250.4–250.7 

Hemiplegia or paraplegia  334.1, 342.x, 343.x, 344.0– 
344.6, 344.9 
 

Renal disease  403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 
404.92, 404.93, 582.x, 583.0–583.7, 585.x, 586.x, 
588.0, V42.0, V45.1, V56.x 

Any malignancy, including 
lymphoma  
and leukemia, except 
malignant neoplasm of skin  

140.x–172.x, 174.x–195.8, 
200.x–208.x, 238.6 

Moderate or severe liver 
disease  

196.x–199.x 

Metastatic solid tumor  042.x–044.x 
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Appendix B. ICD-10 Charlson Comorbidities  

Comorbidities  ICD-10 Codes 
Myocardial infarction  I21.x, I22.x, I25.2  
Congestive heart failure  I09.9,I11.0, I13.0, I13.2, I25.5, I42.0,  

I42.5-I42.9, I43.x, I50.x, P29.0  
Peripheral vascular disease  I70.x, I71.x, I73.1, I73.8, I73.9, I77.1,  

I79.0, I79.2, K55.1, K55.8, K55.9,  
Z95.8, Z95.9  

Cerebrovascular disease  G45.x, G46.x, H34.0, I60.x--I69.x  
Dementia  F00.x--F03.x, F05.1, G30.x, G31.1  
Chronic pulmonary disease  I27.8, I27.9, J40.x--J47.x, J60.x--J67.x,  

J68.4, J70.1, J70.3  
Rheumatic disease  M05.x, M06.x, M31.5, M32.x--M34.x,  

M35.1, M35.3, M36.0  
Peptic ulcer disease  K25.x--K28.x  
Mild liver disease  B18.x, K70.0--K70.3, K70.9,  

K71.3--K71.5, K71.7, K73.x, K74.x,  
K76.0, K76.2--K76.4, K76.8, K76.9,  
Z94.4  

Diabetes without chronic 
complication  

E10.0, E10.l, E10.6, E10.8, E10.9,  
E11.0, E11.1, E11.6, E11.8, E11.9,  
E12.0, E12.1, El2.6, E12.8, El2.9,  
E13.0, E13.1, E13.6, E13.8, E13.9,  
E14.0, E14.1, E14.6, E14.8, E14.9  

Diabetes with chronic 
complication  

E10.2--E10.5, E10.7, E11.2, E11.5,  
E11.7, E12.2--E12.5, E12.7,  
E13.2--E13.5, E13.7, E14.2--E14.5,  
E14.7  

Hemiplegia or paraplegia  G04.1, G11.4, G80.1, G80.2, G81.x,  
G82.x, G83.0--G83.4, G83.9  

Renal disease  I12.0, I13.1, N03.2--N03.7,  
N05.2--N05.7, N18.x, N19.x, N25.0,  
Z49.0--Z49.2, Z94.0, Z99.2  

Any malignancy, including 
lymphoma  
and leukemia, except 
malignant neoplasm of skin  

C00.x--C26.x, C30.x--C34.x,  
C37.x--C41.x, C43.x, C45.x--C58.x,  
C60.x--C76.x, C81.x--C85.x, C88.x,  
C90.x--C97.x  

Moderate or severe liver 
disease  

I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9, 
K76.5, K76.6, K76.7  

Metastatic solid tumor  C77.x--C80.x  
 


