
THE UNIVERSITY OF CALGARY

A FRAMEWORK OF A WEB-BASED DISTRIBUTED CONTROL SYSTEM

by

LIAN CHBN

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

MAY 2003

© Lian Chen 2003

UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "A Framework of A Web-based Distributed

Control System" submitted by Lian Chen in partial fulfilment of the requirements of the

degree of Master of Science.

Supervisor, Dr. A. Eberlein
Department of Electrical and Computer Engineering

Dr. D. Westwick
Department of Electrical and Computer Engineering

i t, I/J o)I\-1 LJ(I

Dr. D. J. I. Fry K

Department of Physics and Astronomy

10 ≥F)3

11

ABSTRACT

This thesis describes a framework of a web-based distributed control system (WBDCS)

and the design and implementation of its software using a multi-tier client/server

architecture and distributed object technology.

The objectives of this research are (1) the exploration of a new framework for generic

web-based distributed control systems, (2) the establishment of communication among

distributed computing nodes, (3) the study of connectivity and controllability of on-line

devices, and (4) the evaluation, discussion and implementation of time and event

scheduling for real-time systems.

The prototype that was developed to validate our framework allows the communication

of distributed computing nodes with each other through the Internet/intranet, it helps

visualize real-time process data, and enables the authorized user to configure and monitor

process status and digital devices remotely or locally using a web browser.

Testing of the prototype in a laboratory setting showed satisfactory performance as it was

expected from the design.

111

ACKNOWLEDGMENTS

I wish to express my sincere thanks to my supervisor, professor Dr. Amin Bberlein, who

gave me this excellent opportunity of being a part of this challenging work environment.

His guidance and supervision made this thesis a reality.

I would also like to thank professor Dr. David Fry and professor Dr. David Westwick for

kindly joining the defence committee and reviewing this thesis. Special thanks to Mr. Ed

Evanik for making a lot of lab support for this research work.

Thanks also to the Depaitiiient of Electrical and Computer Engineering at University of

Calgary, NSERC, and AIF for providing financial support for my research.

I am grateful for my family's continuous support and encouragement throughout my

study. I wish to dedicate my work and this thesis to my parents, husband and son.

iv

TABLE OF CONTENTS

APPROVAL PAGE

ABSTRACT

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES X

LIST OF ABBREVIATIONS xiii

1 INTRODUCTION 1

1.1 Real-time Distributed Systems 1

1.2 Background 3

1.3 Objectives 3

1.4 Approach of the Framework 4

1.5 Validation of the Design 5

1.6 Contributions of the Thesis 6

1.7 Organization of the Thesis 6

2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Existing Distributed Control Systems (DCS) 10

2.2.1 Large-scale DCS 10

2.2.2 Small-scale DCS 11

2.2.3 Internet-based DCS 14

V

2.3 Problems and Solutions 16

3 DISTRIBUTED OBJECT ARCHITECTURES 19

3.1 Introduction 19

3.2 Existing Distributed Object Technologies 19

3.2.1 CORBA 20

3.2.2 DCOM 20

3.2.3 RMI 21

3.2.4 Reasons for Choosing CORBA for WBDCS 21

3.3 CORBA Technology 22

3.3.1 Interface Definition Language 23

3.3.2 Object Request Broker 23

3.3.3 CORBA Model 24

4 FRAMEWORK OF WBDCS 28

4.1 Client/Server Architectures 28

4.1.1 Client and Server 28

4.1.2 Two-tier Architecture 29

4.1.3 Three-tier Architecture 29

4.2 Overview of WBDCS 30

4.2.1 Overview of Structure 31

4.2.2 Nodes 32

4.3 The Architecture of WBDCS 33

4.3.1 Web-based Multi-tier Approach 33

vi

4.3.2 Distributed Object Approach 35

4.3.3 Analysis of the Approaches 35

4.3.4 Applet Security Issues 37

4.4 The Design of WBDCS 39

4.4.1 Functional Descriptions 39

4.4.2 Control Algorithms 46

5 REAL-TIME SCHEDULING IN WBDCS 49

5.1 Introduction 49

5. 1.1 Task 49

5.1.2 Real-time Scheduling 50

5.2 Rate Monotonic Algorithm 52

5.3 Fixed Priority Scheduling Model 53

5.4 Real-time Scheduling in WBDCS 55

5.4.1 Priority Assignment 55

5.4.2 Interrupt 56

5.4.3 Time-driven Scheduling 57

5.4.4 Event-driven Scheduling 59

6 A PROTOTYPE OF WBDCS 60

6.1 Introduction 60

6.2 Client Tier 61

6.2.1 Control Applet 61

6.2.2 Database Applet 65

vii

6.3 Middleware 67

6.3.1 CORBA 67

6.3.2 0MG DL 67

6.4 Control Server Tier 70

6.4.1 Digital I/O Server Object 71

6.4.2 Database Management Server Object 71

6.4.3 Control Server Logger 72

6.5 Device Tier 72

6.5.1 PC1215 Card 72

6.5.2 JM and DLL 74

6.5.3 Experiment Kit 76

6.6 Database Tier 77

6.6.1 JDBC 77

6.6.2 InterBase 78

6.7 Deployment 78

7 TESTING AND ANALYSIS 81

7.1 Testing 81

7.2 Analysis 82

7.3 Proposals of Test Plan 83

7.3.1 Rigid Testing on the Prototype 83

7.3.2 Virtual Plant Testing 85

8 CONCLUSIONS AND FUTURE WORK 87

viii

8.1 Summary 87

8.2 Discussion and Future Work 89

8.2.1 Reliability and Speed 89

8.2.2 Scalability and Maintainability 90

8.2.3 Authority and Security 91

REFERENCES 93

ix

LIST OF FIGURES

Figure 1.1 Real-time system 1

Figure 2.1 DeltaV architecture 11

Figure 2.2 Smart DCS 12

Figure 2.3 Fieldbus-based distributed architecture 13

Figure 2.4 New distributed architecture 13

Figure 2.5 System architecture 14

Figure 2.6 CORBA-based control system 15

Figure 2.7 Internet-based monitoring of DCS 16

Figure 3.1 CORBA model 24

Figui'e 4.1 Two-tier architecture 29

Figure 4.2 Three-tier architecture 30

Figure 4.3 System overview 31

Figure 4.4 Nodes in WBDCS 32

Figure 4.5 Architecture of WBDCS 34

Figure 4.6 Web-based multi-tier distributed object architecture 34

Figure 4.7 HOP gateway 38

Figure 4.8 Use case diagram of WBDCS 40

Figure 4.9 Login use case diagram 41

Figure 4.10 Login activity diagram 41

Figure 4.11 Input use case diagram 42

x

Figure 4.12 Input activity diagram 42

Figure 4.13 Output use case diagram 43

Figure 4.14 Output activity diagram 43

Figure 4.15 Query use case diagram 44

Figure 4.16 Query activity diagram 44

Figure 4.17 Configuration use case diagram 45

Figure 4.18 Configuration activity diagram 45

Figure 4.19 Feedback control loop 47

Figure 4.20 PD control response 47

Figure 4.21 On-off control response 48

Figure 5.1 Event-driven scheduler 54

Figure 5.2 Timer-driven scheduler 55

Figure 5.3 Periodic and aperiodic interrupts 56

Figure 5.4 Time-driven scheduling 58

Figure 5.5 Event-driven scheduling 59

Figure 6.1 Architecture of the prototype 60

Figure 6.2 Configuration panel 63

Figure 6.3 Input panel 64

Figure 6.4 Output panel 65

Figure 6.5 Database applet 66

Figure 6.6 DL file 69

Figure 6.7 Control server 70

xi

Figure 6.8 TNT and DLL 75

Figure 6.9 Display circuit 76

Figure 6.10 Signal circuit 77

Figure 6.11 Homepage 79

Figure 6.12 Control applet page 79

Figure 6.13 Database applet page 80

Figure 7.1 Performance testing 84.

Figure 7.2 Virtual plant 85

xii

LIST OF ABBREVIATIONS

API Application Programming Interface

COM Component Object Model

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DCOM Distributed Component Object Model

DCS Distributed Control System

DII Dynamic Invocation Interface

DLL Dynamic Link Library

DSI Dynamic Skeleton Interface

GIOP General Inter-ORB Protocol

GUI Graphical User Interface

110 Input/Output

IDL Interface Definition Language

HOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

IP Internet Protocol

JDBC Java Database Connectivity

JDK Java Development Kit

JNT Java Native Interface

JRMP Java Remote Method Protocol

JVM Java Virtual Machine

Lab VIEW Laboratory Virtual Instrument Engineering Workbench

LAN Local Area Network

MIS Management Information System

OA Object Adapter

OLE Object Linking and Embedding

0MG Object Management Group

OPC OLE for Process Control

ORB Object Request Broker

ORPC Object Remote Procedure Call

PLC Programmable Logic Controller

POA Portable Object Adapter

PPI Programmable Peripheral Interface

RMI Remote Method Invocation

RPC Remote Procedure Call

SCADA Supervisory Control and Data Acquisition System

SQL Structured Query Language

SSL Secure Socket Layer

TCP Transmission Control Protocol

VI Virtual Instrument

WAN Wide Area Network

WBDCS Web-Based Distributed Control System

xiv

1

1 INTRODUCTION

1.1 Real-time Distributed Systems

A real-time system [Bennett94] is any system in which the time at which the output is

produced is significant. This is usually because the input corresponds to some changes in

the physical world, and the output has to relate to the same changes. The lag between

input time and output time must be sufficiently small for acceptable timeliness. Typically

real-time systems consist of controlling subsystems (computer controller) and controlled

subsystems (physical enviromnent). The interactions between the two subsystems are

described by three operations: sampling, processing, and responding (see Figure 1.1). The

computer subsystem continually samples data from the physical environment. Sampled

data is processed immediately by the computer subsystem, and a proper response is sent

to the physical environment. All three operations must be performed within specified

times, which are the time constraints.

r

L.

Processing

A

Responding

Sampling

Controlling subsystem Controlled subsystem

Figure 1.1 Real-time system

Real-time systems can be classified into hard real-time systems and soft real-time

systems depending on the consequences of timing constraint violations. Hard real-time

systems must meet their time constraints to avoid disastrous consequences, such as flight

control systems, chemical process *control systems, robot control systems, and telephone

2

switching systems. Soft real-time systems are still considered functionally correct if time

constraints are not seriously violated, such as remote data acquisition systems, airline

ticket reservation systems, and automatic teller machines.

A distributed system [Tsai96] has many processes running on different processors

working toward specific functional requirements. The distributed processes are

coordinated by inter-process communication and synchronization. The processors may be

dispersed geographically or located at one site or in one machine. Distributed systems can

be classified as homogeneous or heterogeneous. The nodes in homogeneous distributed

systems have the same hardware configurations and supporting software. In contrast,

heterogeneous systems have different hardware architectures and/or supporting software.

Distributed systems can also be classified as centralized or decentralized. Centralized

distributed systems have master-slave or server-client relationships between their distinct

computing nodes, and decentralized distributed systems have autonomous computing

nodes.

A real-time distributed control system is a real-time distributed system, which plays an

important role in many industries. Usually these systems are used to monitor and control

industrial process plants, telecommunication systems, manufacturing production lines,

robots, etc.

The development of real-time systems is much more complicated than that of non real-

time ones. This is mainly because they have to meet strict timing constraints. The system

must notice and respond to changes in the physical environment in a timely manner,

usually on the order of milliseconds. The basic requirement for such systems is

timeliness, which sets real-time systems apart from conventional computing systems.

3

1.2 Background

With the advent of the Internet, companies have realized that a whole new market has

opened up to be exploited. Nowadays, industrial network applications are increasingly

based on the Internet, TCP/IP (Transmission Control Protocol / Internet Protocol), and

World Wide Web technologies. However, web-based distributed control systems have

not yet been extensively exploited due to difficulties in coping with the large amount of

required information, the lack of standardized approaches to communicate with on-line

devices, and the unreliability of data transmission on the Internet.

Emerging and maturing infrastructures and technologies for communication and

distributed object management have enabled the integration of heterogeneous

applications that execute on distributed nodes throughout the Internet/intranet. The

fundamental technologies are Microsoft's Distributed Component Object Model

(DCOM), Object Management Group's (0MG) Common Object Request Broker

Architecture (CORBA) and JavaSoft's Java Remote Method Invocation (Java RMI), all

of which support distributed computing, concurrency access, and object communication

across the Internet/intranet. Based on these technologies, a standard-based framework,

Web-Based Distributed Control System (WBDCS) [ChenO2, 03], is proposed in this

research.

1.3 Objectives

This research intends to investigate technologies and standards that can be adopted to

construct a framework of a web-based distributed control system, which takes advantage

of Internet/intranet technologies and the World Wide Web to control and monitor

4

industrial processes. The major envisioned capabilities include distributed computing

nodes communicating with each other via the Intemet/intranet, visualizing real-time

processes and data, and controlling and monitoring industrial process status. In other

words, the supervision and operation of industrial processes can be conducted remotely

or locally using a web browser. An Internet or intranet, as communication media, is

integrated with the devices to control and supervise the operations of industrial processes.

Overall, the objectives of this research are to explore the feasibility of a new framework

and design an architecture for generic web-based distributed control systems, to establish

communication and synchronization among distributed computing nodes, to study

connectivity and controllability of on-line devices and their interactions with users, and to

conduct a time and event scheduling studies for a real-time distributed control system.

1.4 Approach of the Framework

WBDCS is designed to adopt a web-based multi-tier client/server approach and

distributed object computing approach. The web-based multi-tier client/server approach

means that WBDCS is a web application with a multi-tier client/server software

architecture. It is a thin client web application using only HTML pages and applets as

graphical user interfaces (GUIs), which are downloadable from a web server in the

system. As a result of this approach, there is no need to install any client applications on

client machines. The distributed object computing approach used in WBDCS uses

CORBA as middleware to facilitate the communication and interaction between

distributed objects via the Internet/intranet.

5

WBDCS is designed as a decentralized distributed system because there is no node that

plays a central role in the system even though it uses a client/server approach. A node can

be a client if it requests services from other nodes, but it can also be a server when it

provides services to others. CORBA [Vinoski97] enables WBDCS to be a heterogeneous

distributed system because CORBA is a distributed framework designed to support

heterogeneous systems. Nodes in the systems may differ not only by the hardware (CPU

and memory) they use, but also by their operating system and programming language.

A real-time system is a system whose correctness depends not only on its logical

behaviour but also on timing constraints [Tsai96]. Because of the importance of

timeliness in distributed control systems, emphasis has been put on real-time scheduling

for WBDCS. To avoid delays through the Internet, improve reliability of

communication, and speed up real-time response, time-critical parts of the system can be

localized within the nodes. Non time-critical information is accessible and manageable

over the Internet/intranet. From this point of view, WBDCS can be considered as two

parallel subsystems: one is a distributed control subsystem - a hard real-time system, the

other is a centralized supervisory subsystem - a soft real-time system.

1.5 Validation of the Design

A prototype of WBDCS has been implemented and allows the remote control of digital

devices. Resources and devices are dispersed across the Internet/intranet in multiple

computing nodes. An authorized user can access local or remote nodes by using a web

browser to perform control functions, such as real-time data acquisition and visualization,

6

and remote device monitoring and configuration. Testing showed satisfactory

performance as it was expected from the design.

1.6 Contributions of the Thesis

Key contributions of this thesis are as follows:

• Proposed and designed a standard-based framework for a generic web-based

distributed control system, which is a web application using a multi-tier

client/server software architecture and distributed computing technology

(CORBA). It provides a solution to the objectives of designing a portable,

scalable, and maintainable web-based distributed application.

• Defined time-driven and event-driven scheduling behaviours in WBDCS based on

the theory and models proposed by [Liu73] and [Katcher93]. A solution was

proposed that can cope with potentially lower reliability and speed for data

communication on the Internet by processing hard real-time tasks within a node to

ensure timeliness, while soft real-time tasks can be processed and distributed

across the Internet/intranet.

• Implemented a prototype to verify the architecture, performance, scalability and

schedulability of the framework and to evaluate the connectivity and

controllability of online devices.

1.7 Organization of the Thesis

This thesis is organized in 8 chapters. Chapter 1 is a brief introduction into the research

pursued in this thesis. Chapter 2 is an overview of current industrial real-time distributed

control systems and their characteristics. Chapter 3 describes different distributed object

7

architectures that enable distributed computing across the Internet. The architectural

design and structure of WBDCS is detailed in Chapter 4. Chapter 5 discusses time and

event scheduling and priority handling as introduced in WBDCS. Chapter 6 presents the

implementation technologies used in a prototype of WBDCS. Chapter 7 analyzes the

testing results on current prototype and proposes some further test plans for WBDCS.

Finally, in Chapter 8, a summary of this research and its future direction are provided.

8

2 LITERATURE REVIEW

2.1 Introduction

Most real-time systems are inherently distributed and dynamic. In order to reflect these

properties the computer-based control systems, which monitor, control, or simulate

industrial processes must provide adequate means to cope with time, concurrency, and

decentralization. In addition, control systems should still function and be available during

maintenance, or provide fail-safe behaviour. The use of intelligent sensors and actuators

is advisable to reduce data and control traffic and improve the robustness of the control

system. Due to advances in technology, such sensors and actuators can now be built

based on cheap and powerful micro-controllers. Traditional system structures based on

static and hierarchical control do not suffice any longer; instead a new generation of

computer-based control systems is needed based on a cooperation-oriented paradigm.

Industrial control systems can be divided into two groups: traditional Distributed Control

Systems (DCS) and Programmable Logic Controllers (PLC). Current DCS systems use

central Supervisory Control and Data Acquisition (SCADA) systems that communicate

via local networks with numerous controllers, instruments, sensors and actuators. For

many machine control and production processes, systems have generally been designed

using PLCs. Traditionally, systems have been developed as large monolithic software

packages that are generally difficult to reuse in new applications and are notably difficult

to integrate with each other. Data and functionality of one application are not readily

available to other applications, even if the applications are written in the same

programming language and run on the same machine [Lewis97].

9

The emergence of standards in industrial communications such as Fieldbus allows

different types of instruments and control devices to interoperate. In recent years, the

differences between DCS and PLC based systems are starting to disappear, and DCS

instruments and PLCs are beginning to offer similar functionality [Lewis97].

Control systems have been moved from centralized to distributed control, because the

real-world problems are distributed, as in telecommunication, traffic control or building

automation, and because the implementation has to be flexible and reliable. There is

currently growing interest in new technologies and architectures for exploring the next

generation technologies for distributed control systems. To achieve the higher level of

integration, and to enable the creation of flexible systems will require a completely new

approach to control software architecture design, which is based on the integration of

distributed objects. There are already several well-advanced software technologies in this

area. CORBA is a standard for designing distributed systems. OPC (OLE for Process

Control) based on Microsoft's OLE (Object Linking and Embedding), COM (Component

Object Model), and DCOM technologies allow software components to interoperate

regardless of their location [Lewis97]. Internet and World Wide Web technologies are

also considered for the development of software components in industrial process control

systems.

In the following subsections, we will introduce the concepts, trends, and development of

distributed control system technologies.

10

2.2 Existing Distributed Control Systems (DCS)

2.2.1 Large-scale DCS

Distributed control systems are computer-based control systems in which the main

components are located in different places. These components interact with each other

via a local area network (LAN).

There are off-the-shelf DCSs designed and manufactured by Honeywell [Honeywell],

Siemens [Siemens], and Emerson Process Management [Emerson], etc. Each vendor has

its own method and communication protocol for providing the information and control.

Vendors also provide the required control for modern industrial systems and some can

provide communication links to network systems such as Controlnet, Ethernet,

Devicenet, Profibus, ASI bus, Foundation Fieldbus, Data Highway/Remote I/O, Hart

Protocol, and Modbus RTU [DeckerOl]. These DCSs are designed for process controls in

petrochemical, pulp, food, beverage, and mining industries.

A typical example is DeltaV Digital Automation System [Emerson] as illustrated in

Figure 2.1. The field devices, such as sensors, valves, motors, and pumps, are connected

with different digital communication buses like Fieldbus, HART, and DeviceNet. The

linking devices are gateways or bridges between the field buses and high speed Ethernet.

Operator stations are Windows workstations and server-based PCs. Overall, the DeltaV

digital automation system is a DCS based on Windows workstations and server-based

PCs, Ethernet technology, and bus standards.

The DeltaV suite of engineering tools handles configuration management both locally

and remotely for all aspects of the DeltaV system and intelligent field devices. A global

11

and centralized configuration database coordinates control strategies, process graphics,

history, events, and change management. All DeltaV hardware is automatically

recognized as it is plugged in. The DeltaV operation software provides an easy-to-use

environment for process operations and information access.

37

HUM

Ethérne

& a

Digital HART

I -

0

Hi Fieldbus DeviceNet

Li

Hi Fieldbus

Figure 2.1 DeltaV architecture

Operator Stations

High Speed Ethernet

Linking Devices

Digital Buses

Field Devices

All operations applications are fully remotely accessible anywhere on an Ethernet

network or via modem. The process history view provides continuous trend, event views

and batch views to intuitively present these different types of historical information. By

using digital plant architecture (PantWeb) and plant-wide asset optimization software

(AMS), the DeltaV provides easy access to vital device information for calibration,

configuration, devices audit trail, and advanced diagnostics for predictive maintenance.

Large-scale DCSs, like DeltaV, are usually used to control almost all processes in a big

plant.

2.2.2 Small-scale DCS

A small smart distributed control system [YangO2] is shown in Figure 2.2. The system

includes an industrial PC, several controllers, and a communication interface using RS-

12

485. The PC is an operating station that is used to configure function blocks and monitor

the process. The controller is used to sample data and execute control algorithms.

Communication between the PC and the controllers is implemented in a master-slave

type broadcasting on the communication network. The slave nodes are not allowed to

transmit data without a request from the master, and do not directly communicate with

each other. When a slave needs to send a message to another slave, the message has to be

sent to the master and then the master forwards the message to the receiver.

PC

Communication
Interface

RS-485

Controller Controller Controller

Figure 2.2 Smart DCS

Marti et al. proposed an integrated approach to real-time distributed control systems over

Fieldbus [MartiOl]. A control loop is implemented in a distributed architecture, with

three nodes: a sensor node, a controller node and an actuator node that communicate with

each other across a fieldbus communication network as depicted in Figure 2.3. The

sensor node periodically samples the process and sends the data to the controller node.

The controller node executes a control algorithm and sends the output to the actuator

node.

Marti et al. found that the design shown in Figure 2.3 may decrease the performance of

the control system and even might cause instability of the control system because of time

delays on the network. In order to meet the timing constraints of the real-time system,

13

they redesigned the distributed architecture by combining the controller and actuator into

one node (see Figure 2.4) to reduce time delays between them. The latter design has been

successfully implemented in a real-time fieldbus-based distributed control system. They

concluded that the successful design and implementation of real-time distributed control

systems requires an appropriate integration of the control systems, real-time systems, and

communication systems.

Sensor Controller Actuator

Sampling Computation Actuation

Fieldbus

Figure 2.3 Fieldbus-based distributed architecture

Sensor Controller / Actuator

Sampling
Computation
Actuation

Fieldbus

Figure 2.4 New distributed architecture

A distributed control system is introduced in [Stolen99] for supervising a power supply

system of a telecommunication system as depicted in Figure 2.5. The DCS consists of a

main controller, several distributed units, and a communication network using multi-drop

RS-485 bus with a proprietary communication protocol. The core of the supervision

system is the main controller, which is a micro-controller based unit with communication

ports (RS-232, RS-485) and a user interface. The RS-232 port is intended for higher-level

supervision, typically for remote connection via modem or computer network. The RS-

485 ports are used for communication between the main controller and distributed units.

14

Each distributed unit contains a small micro-controller for data acquisition and control.

Each unit has a unique address. They are connected to the bus and receive both serial

communication and power from the bus. The main controller collects information from

distributed units using the master-slave network and sends the messages to all distributed

units, but only the right unit with the correct address will answer.

RS232 I- (_

Dialup PC with LAN Client PC
Main LAN PowCom PowCom

 -I

Controller / Network serve Alarm Central

RS485

' Alarm '

Interface
Distribution
Interface

r
Battery
Interface

 I

" Mains •

Supervisor 1

Rectifiers
1... N -,

' Remote

Display Unit

t EnvironmenI'
Controller,

Figure 2.5 System architecture

2.2.3 Internet-based DCS

DCOM, CORBA, and Java RMI are well known middleware architectures based on

object-oriented methodologies and have been extensively used in commercial and

military distributed information systems. Since they support communication protocols

that are transparent to operating systems, users can design and manage the whole system

without paying too much attention to the data transmission between remote devices

[KangO2]. In Kang's paper, CORBA-, DCOM-, and Tspace-based distributed control

systems are designed and implemented for performance analysis using I/O object, control

object, broadcasting service and event service. When using middleware as a

communication bus for objects, the delay may be greater than the one introduced by the

Fieldbus, since DCOM, CORBA, and Java RMI have not been designed for the physical

15

device level but for integrating and linking of software components at higher levels.

Therefore, middleware-based systems are likely to be applied to soft real-time areas like

data monitoring systems [KangO2]. According to the results of performance analysis, the

CORBA-based DCS had a shorter response time than DCOM- and Tspace-based

systems, thus CORBA is a more suitable middleware for distributed control systems as

illustrated in Figure 2.6.

Ethernet

-

Sensor object Actuator object

Device driver

Figure 2.6 CORBA-based control system

An Internet-based system is developed in [TanOl, TanO2] to allow monitoring of process

variables with a distributed control system. The core of the web-based DCS is a desktop

computer monitoring the status and performance of processes and equipment that are

wired to the computer. The DCS is based on the ADAM series [TanO2] of intelligent

sensor-to-computer interface modules with built-in microprocessors. The necessary

hardware used in the development of a virtual laboratory at the server end consists of

ADAM network 110 modules and sensors connected to a PC with a RS-232 link as shown

in Figure 2.7.

The overall system involves two subsystems, a client-server application and a backend

LabVIEW VI (Virtual Instrument). The front end involves a client side applet that

presents the user with a GUI displayed in a web browser. Through the browser, users are

able to access the status of the sensors over the Internet. The backend control software, or

16

VI, is written in Laboratory Virtual Instrument Engineering Workbench LabVIEW. The

VI supplies information about sensors to the client applet via a server program running on

the host computer. In this system, sockets are used for communication between the server

and client based on the TCP/IP protocol.

1010
1010

Server

To Sensors
10

RS232/RS485 ADAM I/O
Converter Module

Figure 2.7 Internet-based monitoring of DCS

2.3 Problems and Solutions

The use of microprocessors has proliferated in distributed control systems, but they often

do not work together. Application software should readily communicate with field

devices as well as other applications, but this is not often the case. Making these systems

work together is one of the most pressing needs of process industries.

In the absence of any standard, vendors have developed proprietary hardware and

software solutions. The process control and information systems that are on the market

today have proprietary techniques, interfaces, and APIs in order to exchange information.

The cost of integrating the different systems and the long-term maintenance and support

of such a heterogeneous environment can be significant.

The solution is to adopt a standard that provides real plug-and-play software technology

for process control and factory automation where every system, every device and every

17

driver can freely connect and communicate. Having such a standard would allow open

enterprise-wide communication between systems and devices, from plant floor to

Management Information System (MIS).

OPC [OPC] and CORBA [0MG] are two industrial standards for integrating software

that have been written on different systems and in different languages. OPC is an industry

standard created with the collaboration of a number of leading worldwide automation and

hardware/software suppliers working in cooperation with Microsoft. The organization

that manages this standard is the OPC Foundation. The Foundation has over 290

members from around the world, including nearly all of the world's major providers of

instrumentation and process control systems.

CORBA is another industrial standard defined by 0MG for distributed object systems.

The 0MG founded in 1989 is the world's largest computer industry consortium, with

over 800 members, including almost all the major vendors and developers of distributed

object technology, including platform, database, and application vendors as well as

software tool and corporate developers. The goal of the 0MG is to develop, adopt, and

promote a standard architectural framework for the development and deployment of

distributed object-oriented applications in heterogeneous environments.

OPC [Janke99] defined a standard set of objects, interfaces and methods for use in

process control and manufacturing automation applications to facilitate interoperability

based on Microsoft's OLE, COM and DCOM technologies.

Although OPC is widely used in automation industries, the core technologies used in

OPC is COM and DCOM. According to the performance analysis in [Kang02], DCOM is

not suitable for distributed control systems due to longer delay time between objects as

18

compared to CORBA. Although Microsoft claims to have improved the object model to

increase performance, benchmark tests indicate otherwise. Benchmarks incorporating

network communication and simple method invocation show DCOM to be almost 20%

slower than CORBA [Lewandowski98].

For these reasons, CORBA was chosen as the distributed object architecture for the

synchronization and communication between client side and server side applications in

the design of WBDCS in this thesis.

19

3 DISTRIBUTED OBJECT ARCHITECTURES

3.1 Introduction

Business and industrial applications have evolved over a period of time from a relatively

rigid monolithic architecture to an extremely flexible, highly decentralized distributed

one. Application architectures have offered increasing robustness and reliability because

of the development of distributed object computing, which extends an object-oriented

programming system by allowing objects to be distributed across a heterogeneous

network. These objects may be dispersed on different computers throughout a network,

but they appear as though they were local to the application.

There are various reasons for developing applications in a distributed manner. Some

applications must execute on multiple computers because the data that the application

accesses exist on multiple computers. Some applications execute on multiple computers

in order to take advantage of multiple processors computing in parallel to solve special

problems. Some applications execute on multiple computers because users of the

application are dispersed and interact with each other via the network. A distributed

application can take advantage of the scalability and heterogeneity of the distributed

object technologies.

3.2 Existing Distributed Object Technologies

Three of the most popular distributed object paradigms are Microsoft's DCOM, OMG's

• CORBA and JavaSoft's Java R.MI. We will briefly introduce each of them in the

following subsections.

20

3.2.1 CORBA

CORBA relies on an Internet Inter-ORB Protocol (flOP) for remote objects invocation.

The core of CORBA is the Object Request Broker (ORB) that acts as an object bus over

which objects transparently interact with other objects located locally or remotely

[Vinoski97]. Each CORBA server object has an interface and exposes a set of methods.

To request a service, a CORBA client acquires an object reference to a CORBA server

object. The client can make method calls to the object reference as if the CORBA server

object resided in the client's address space. The ORB is responsible for all mechanisms to

find the object's implementation, prepare it to receive the requests, communicate the

requests to it and carry the reply back to the client. A CORBA object interacts with the

ORB through either an Object Adapter (OA) or an ORB interface.

3.2.2 DCOM

DCOM is a distributed extension to COM. DCOM relies on a protocol called Object

Remote Procedure Call (ORPC) to support remote objects. A DCOM server object can

support multiple interfaces each representing a different view or behaviour of the object.

A DCOM client interacts with a DCOM server object by acquiring a pointer to one of the

server object's interfaces and invoking the methods through that pointer, as if the server

object resided in the client's address space. Since the COM specification is at the binary

level, it allows DCOM components to be written in different programming languages

such as C++, Java, Delphi, and Visual Basic. DCOM can be used on a platform as long as

it supports COM services. DCOM is heavily used on the Windows platform.

21

3.2.3 RivIl

Java RMI is based on the Java Remote Method Protocol (JRMIP). Java relies heavily on

Java object serialization, which allows objects to be marshaled as a stream. Since Java

object serialization is specific to Java, both the RMI server and the client objects have to

be written in Java. Each RMI server object defines an interface that can be used to access

the server object outside of the current Java Virtual Machine (JVM) and on another

machine's JVM. The interface exposes a set of methods that are indicative of the services

offered by the server object. For a client to locate a server object for the first time, RIVET

uses a naming mechanism called an RMlRegistry that runs on the server machine and

holds information about available server objects. An RMI client acquires an object

reference to an RIVET server object by looking for a server object reference and invoking

methods on the server object as if the RMI server object resided in the client's address

space. RIvIT can be used on diverse operating system platforms as long as these platforms

are JVM enabled.

3.2.4 Reasons for Choosing CORBA for WBDCS

CORBA has several primary benefits, among them language-, vendor-, and operating-

system independence. CORBA ORBs are available on every major operating system in

use today. CORBA ORBs also exist to bind to a wide variety of languages including

C++, Ada, COBOL, Smalltalk, and Java. Using HOP, a CORBA ORB developed by one

vendor can retrieve and manipulate objects obtained from a remote ORB developed by

another vendor.

22

DCOM, like CORBA, is a language-independent distributed object technology. Since

DCOM runs mainly on Microsoft operating systems, DCOM is less portable than

CORBA. Several barriers to porting DCOM to other platforms exist. For example,

DCOM relies on the Windows NT security model to provide system security; it is unclear

what will provide security when DCOM is used on other platforms. In contrast, CORBA

uses a universal security mechanism that will work on all platforms, regardless of

operating-system-level security [Lewandowski98].

Unlike CORBA and DCOM, Java RMI is a language-dependent distributed object

technology. It is most suitable when a system purely consists of Java objects that need to

communicate on a distributed system. In our research, we propose a web-based

distributed control system framework that is independent of programming languages and

operating system platforms. Therefore, both Java RMI and DCOM are not suitable

solutions.

The primary goal of CORBA is to provide software developers with a means for

developing systems that are not reliant on a single operating system and/or programming

language. Although a number of different technologies exist for building distributed

client/server applications on the web, CORBA has made itself the most generally

applicable choice for our WBDCS with its features and broad industry support. In the

following section, we will introduce CORBA in more detail.

3.3 CORBA Technology

CORBA is a standard defined by 0MG for distributed object systems. The goal of the

0MG is to develop, adopt, and promote a standard architectural framework for the

23

development and deployment of distributed object-oriented applications in heterogeneous

environments.

3.3.1 Interface Definition Language

The basic CORBA paradigm is to support requests for services provided by a distributed

object. Services that an object provides are given by its interfaces defined by OMG's

Interface Definition Language (IDL).

JDL is a declarative language for defining interfaces of CORBA objects. Its syntax is

similar to C and C++, but cannot directly be complied into a binary program. Instead,

DL is intended to be an intermediary language to define the interfaces that a client will

use and a server will implement. DL is best thought of as a "contract" between the

system that makes use of an object and a system that implements an object.

DL declarations are compiled with an DL compiler and converted to their associated

representations in the target programming languages according to the standard language

mapping. For example, idlj within J2SE 1.3 is an JDL-to-Java compiler that automatically

maps an DL file to the Java programming language and generates all Java language stub

and skeleton source files, along with the infrastructure code for connecting to the ORB.

3.3.2 Object Request Broker

A core in CORBA is the Object Request Broker (ORB), which is an object bus (software

bus) for connecting objects between remote address spaces. The ORB's responsibilities

are establishing a communication channel between a client and a remote server object,

marshaling the parameters sent by the client or server object to a network, unmarshaling

the parameters received by the client or server object from the network, and managing

24

concurrency of simultaneous requests from multiple clients. In short, ORB locates the

remote object on the network, passes the request to the object, waits for the results and

sends those results back to the client.

3.3.3 CORBA Model

Figure 3.1 illustrates the components in CORBA [BroseOl]. All of them collaborate to

provide the portability, inteioperability, and transparency of CORBA. Each component in

the model is described briefly in the following.

Client

DII
IDL

Stubs
ORB

Interface

Object
(Servant)

IDL
Skeleton

DSI Object
Adapter

(ilO) QRBCOIO

Figure 3.1 CORBA model

• Client

A client is a program that uses CORBA object references to invoke the operations on the

objects. Objects can be remote or local to the client. Accessing a remote object is as

simple as calling a local object because a client has a local reference to the remote object.

• Object

An object is an instance of an IDL interface. The object is identified by an object

reference, which uniquely names the instance across servers. An object ID associates an

object with its servant implementation, and is unique within the scope of an object

25

adapter. An object has one or more servants associated with it for implementing the

interface.

• Servant

A servant implements the operations defined in an IDL interface. In an object-oriented

programming language, servants are implemented using one or more objects. A client

never interacts with a servant directly, but always through an object.

• ORB Core

The ORB core provides a mechanism for transparently communicating client requests to

target object implementations. The ORB core simplifies distributed programming by

decoupling the client from the details of the method invocations. This makes client

requests appear like local procedure calls.

When a client invokes an operation on an object, the ORB core is responsible for

delivering the request to the object and returning a response to the client. For a remote

object, the ORB core communicates through HOP, which runs on top of TCP/IP. Usually

the ORB core is implemented as a run-time library linked into both client and server

applications.

• ORB Interface

An ORB is a logical entity that may be implemented in various ways (such as one or

more processes or a set of libraries). To decouple applications from implementation

details, the CORBA specification defines an abstract interface for an ORB. This interface

provides standard operations, which initialize and shutdown the ORB, convert object

references to strings and vice versa, and create argument lists for requests made through

the Dynamic Invocation Interface (DII).

26

• IDL Stub and DL Skeleton

An IDL stub, generated by an IDL compiler, is a client-side object that makes a particular

CORBA server interface available to a client. An IDL skeleton, which is also generated

by an IDL compiler, is a server-side object that provides the framework on which the

server implementation code for a particular interface is built. Client stub and server

skeleton serve as a sort of glue that connects language independent DL interface

specifications to language specific implementation code.

• Dynamic Invocation Interface (DII)

This interface allows a client to access the underlying request mechanisms provided by

an ORB. Applications use the DII to issue requests to objects without requiring IDL

interface-specific stubs to be linked in. Unlike IDL stubs, which only allow Remote

Procedure Call (RPC) requests, the DII also allows clients to make non-blocking deferred

synchronous (separate send and receive operations) and one-way (send only) calls.

• Dynamic Skeleton Interface (DSI)

This is the server side's interface similar to the client side's DII. The DSI allows an ORB

to deliver requests to an object implementation that does not have compile-time

knowledge of the type of the object. The client making the request has no idea whether

the implementation is using the type-specific IDL skeletons or is using the dynamic

skeletons.

• Portable Object Adapter (POA)

The CORBA specification defines the concept of an object adapter. It is a framework for

implementing CORBA objects and provides a comprehensive set of interfaces for

managing object references and servants. The code written using the POA [0MG97]

27

interfaces is now portable across ORB implementations and has the same semantics in

every ORB that is compliant to CORBA 2.2 or above [BroseOl]. According to the

CORBA specification, the purpose of a POA is to dispatch incoming invocation requests

to the correct servant. It associates a servant with objects, de-multiplexes incoming

requests to the servant, and collaborates with the IDL skeleton to dispatch the appropriate

operation call on that servant.

. Internet Inter-ORB Protocol (flOP)

The Internet Inter-ORB Protocol is a TCP/IP implementation of the General Inter-ORB

Protocol (GIOP). The GIOP specification defines how ORBs communicate, including

how messages are sent, how byte ordering is done for integers and floating point

numbers, and how parameters are marshaled for remote object invocations.

With CORBA it is possible to build a client application using one vendor's ORB and IDL

compiler, build a server or object implementation with a second vendor's ORB and DL

compiler, and create a set of common services for both client and server with yet a third

vendor's ORB and DL compiler. HOP allows each of the three different vendor's

products to communicate with each other using a standard set of protocol semantics

[Zukowski98].

28

4 FRAMEWORK OF WBDCS

4.1 Client/Server Architectures

In general, web applications have either two-tier or three-tier client/server architectures.

The two-tier architecture was developed in the 1980s from the file server software

architecture design. Its intention is to improve usability by supporting a form-based user

interface. It also improves flexibility and scalability by allocating the two tiers over the

computer network. The three-tier (multi-tier) architecture emerged in the 1990s, with a

middle tier in-between the user interface and the data management server. This middle

tier provides process management and is the place where the business logic and rules are

executed. Compared with the two-tier architecture, the multi-tier architecture increases

the scalability and flexibility of web applications.

4.1.1 Client and Server

Generally, computers on a network can be categorized into two types: clients and servers.

Typically, a client is an application that runs on a personal computer or workstation and

relies on a server to perform some operations. A server is a computer or device on a

network that manages network resources and provides services. For example, a file server

is a computer dedicated to storing files. Any user on the network can store files onto the

server. A print server is a computer that manages one or more printers, and a network

server is a computer that manages network traffic. This means, machines that provide

services to other machines are servers. The machines that connect to those services are

29

clients. For instance, a database server accepts requests for data from clients and returns

the results to the clients. The clients manipulate the data and present results to the user.

4.1.2 Two-tier Architecture

In a two-tier architecture of software systems (see Figure 4.1) server software runs on a

large server machine. Client machines connect to the server via a network and make

requests of the server as necessary. In this approach, each client machine needs client

software installed locally. It works well in relatively homogeneous environments, where

application logics (business rules) do not change very often.

W,
Client

Presentation logic
and business rules

11 Do DO
Server

Database

Figure 4.1 Two-tier architecture

The two-tier architecture improves flexibility and scalability by distributing the two tiers

over the network. However, there are obvious limitations with the two-tier software

architecture. For example, the client requires a custom application to be written that then

needs to be deployed on every client machine. Since the presentation logic and business

rules are usually located in the client application, even the smallest change to an

application might require a complete rollout to the entire system.

4.1.3 Three-tier Architecture

The three-tier architecture consists of three well-defined and separate processes, each

running on a different platform as shown in Figure 4.2. The first tier is referred to as the

30

user interface, which runs on the user's computer (the client). The middle tier consists of

the application or business logic, which runs on a server and is often called application

server. The other tier contains the data that is needed for the application, which is usually

a database management system (DBMS) that stores the data required by the middle tier.

This tier runs on another server called the database server.

The three-tier design has many advantages over the traditional two-tier system. For

example, separating presentation logic from business rules makes it easier to modify or

replace one tier without affecting the others.

Client
Presentation logic

Middle Tier Server
business rules

11
Server

Database

Figure 4.2 Three-tier architecture

The three-tier architecture has been used successfully since the early 1990s in

commercial and military distributed client/server environments, where distributed

information computing is required in a heterogeneous environment.

4.2 Overview of WBDCS

WBDCS is a multi-tier web application using CORBA as a distributed object framework.

This means that it is designed and implemented using a multi-tier client/server

architecture with distributed object technology. Unlike many other web applications,

WBDCS is a specific web application for industrial process control and production

monitoring. Therefore, the architecture of WBDCS is different from those of generic web

31

applications even though it adopts some of the existing technologies, such as multi-tier

client/server architectures, and distributed object technologies.

4.2.1 Overview of Structure

An overview of the application architecture is shown in Figure 4.3. WBDCS is viewed as

a collection of computer nodes that are communicating and cooperating to reach a

common goal. The nodes in WBDCS are geographically dispersed across the

Internet/intranet. Nodes can be homogeneous or heterogeneous. We adopted the

heterogeneous architecture, because nodes in WBDCS may have different hardware

architectures and software configurations, such as PCs running Windows and Sun

workstation running Solaris. The devices that are connected to nodes may be different

such as controllers, data acquisition systems, radio remote control devices, DCS, and

DBMS. A homogeneous system can be considered a special case of the heterogeneous

systems.

Data
.- -

Node 1 DCS Node 2 Remote Control Node 3

 Internet/lntran.

Iffl1,
=

Controller Node 4 Node n

Figure 4.3 System overview

Data Acquisition

32

The system also allows users to integrate their existing applications, such as PLC, DCS,

into a web-enabled distributed system by wrapping them with CORBA objects. These

objects can then make calls to legacy systems and expose them to the Intemet/intranet.

4.2.2 Nodes

The nodes in WBDCS are PCs and/or workstations connected to one or more devices.

Each node may have different hardware and software configurations with different

devices connected. This allows WBDCS to be a flexible heterogeneous system. All nodes

in WBDCS can communicate with each other across the Internet/intranet. A node can be

a client when it is sending a request to another node; on the other hand, it can also be a

server when it provides a service to other nodes in the system. A client node does not

need to install any client application in order to be able to access any other nodes because

the system is designed using applets as GUIs that are automatically downloaded from a

web server in WBDCS.

nternet/Intran

Figure 4.4 Nodes in WBDCS

For example, there are n nodes as depicted in Figure 4.4. Node 1 connects to the

controllers via their I/O module and node n connects to a data acquisition system via its

I/O module. Node 1 and node n are different control and monitoring systems. Node 1 can

33

be a client of node n, when a user opens a web browser on node 1 and types the URL of

node n in the browser, the user will be able to download the applets as GUIs from a web

server of the system and can make any requests for services provided by node n. At this

moment, node 1 is a client and node n is a server.

4.3 The Architecture of WBDCS

WBDCS is designed using a web-based multi-tier client/server software architecture and

CORBA technology. As mentioned in section 4.1, two-tier architectures have problems

with maintainability. The need to install the client application on every client machine

can be costly depending on how many clients there are and how often updates will be

made. The web-based multi-tier distributed object architecture attempts to address this

issue.

4.3.1 Web-based Multi-tier Approach

WBDCS is designed using a multi-tier client/server software architecture with a web

application approach. It consists of a web server and an HOP gateway, control servers,

devices, and a database. Its architecture is depicted in Figures 4.5 and 4.6 using different

points of view. It is a multi-tier web application, which includes a client tier, a middle

tier, and a data tier as illustrated in Figure 4.6.

The web server (Apache HTTP Server or VisiBroker Gatekeeper) is where the applets are

located. The HOP gateway (VisiBroker Gatekeeper) is an OMG-CORBA compliant

GIOP proxy server, which enables CORBA clients and servers to communicate across

networks, while still conforming to security restrictions imposed by Internet browsers,

firewalls and Java sandbox security. It will be detailed in subsection 4.3.4.

34

— Ism

Database Server

Controller Node m Node n

Web Server
HOP Gateway Client

Internet/Intranot. I

III

Data Acquisition

Figure 4.5 Architecture of WBDCS

Devices

Data Tier Client Tier

Web Server
HOP Gateway

Middle Tier

Control Server

Database Server

Figure 4.6 Web-based multi-tier distributed object architecture

The control servers are usually located in nodes. They are the middle tier between client

and data tiers. They provide two parts of services. One is control service; the other is

information management service. The control service includes sampling, processing and

responding services. The information management service includes storing real-time data

into the database and updating real-time data on client GUIs in a certain period of time.

A user may access the application by navigating to the node's URL using a web browser

on a client machine. Applets are downloaded from the web server and run in a user's

browser. The prime advantage of this web-based approach is that all code associated with

the client tier is downloaded dynamically from the web server. There is usually no need

35

to install any application-specific software on the client machine. This greatly reduces

long-term maintenance costs.

4.3.2 Distributed Object Approach

A distributed object system is a system in which all entities are modeled as objects. It is a

popular paradigm for object-oriented distributed applications. CORBA is a standard

framework for distributed object systems. It allows a distributed, heterogeneous

collection of objects to interoperate across a network.

Distributed object technology allows large server programs to be broken down into

several smaller server objects. Each object can potentially reside on a different machine

on the network. Server objects can even be run on small desktop computers rather than on

a large server machine. Since distributed objects allow applications to be split into

lightweight pieces that can be executed on separate machines, less powerful machines

can run heavily demanding applications [Lewandowski98].

WBDCS uses CORBA as its distributed object framework. This approach offers an

improvement in the scalability of the system. Many distributed object frameworks that

are discussed in previous chapters support one or more forms of object pooling, which is

a critical feature for implementing scalable distributed object systems.

4.3.3 Analysis of the Approaches

The growing popularity of distributed object technologies has been driven by several

problems with the two-tier client/server approach, which include the following:

• Scalability - This term refers to how easily a particular solution can be extended

from a small-scale application to a large-scale one. Many applications work well

36

with just a few functions and users, but fall apart when having to support large

numbers of functions and users. Also, some applications perform well on a Local

Area Network (LAN), but may not work well on a Wide Area Network (WAN).

Maintainability - This term refers to how costly it is to administer a particular

solution, which includes costs associated with updating the software and

distributing updated versions to client machines.

By using web-based distributed object technologies, the above problems can be

minimized and sometimes eliminated. There is usually no need to design complex

infrastructure software that improves scalability and maintainability: the necessary

infrastructure already exists, and web-based distributed object technologies take

advantage of that fact.

As described above, the advantages of using a web-based distributed object solution are

obvious. However, there are also disadvantages compared to a two-tier client/server

solution. The two-tier solution is the simplest approach: client applications talk directly to

servers. The web-based distributed object approach requires the use of web servers, web

browsers, and intermediate server objects. The extra layers of software improve the

scalability and maintainability of the system, but at the cost of simplicity.

There are also disadvantages compared to a non web-based distributed object solution.

The primary means of dynamically downloading code into a browser used in this system

are Java applets. Using Java applets introduces the following disadvantages:

• Security - Running an applet using a browser has certain security restrictions.

Therefore, most dynamically downloaded applet code cannot do all of the things

37

that a standalone client application can do. This issue will be discussed in the

following subsection.

• Performance during initialization - Because client application code must be

downloaded from a web server, initialization time is much longer than that of a

standalone application.

• Increased network traffic - Downloading an applet (thin client) from a web server

usually increases network traffic compared to a standalone version of the same

client application installed on a client machine. But it might not increase the traffic

if a client application contains both presentation logic and business rules like the

two-tier client/server solution in section 4.1.

• Run-time performance - Java "bytecode" was designed to work in any browser on

any platform. It must be interpreted by the JVM in a browser, and converted to

native machine instructions. This conversion process could potentially decrease

performance of applications. Standalone applications are usually in the form of

compiled code, which requires no interpreter.

In most cases, these disadvantages are acceptable given the great number of advantages.

4.3.4 Applet Security Issues

Applets are used as client GUIs by dynamically downloading from the web server in

WBDCS. In addition to the disadvantages mentioned above, there are some primary

security restrictions imposed on Java applets such as file I/O, printing and network

access. It is referred to as the Java "Sandboxing" security model, which limits the

38

applets' effectiveness in distributed object applications. Network access restrictions are

as follows:

• An applet can only establish network connections with the host that served the

applet.

• An applet can only accept network connections from the host that served the

applet.

In other words, Java "Sandboxing" security prevents Java applets from communicating

with server objects located on servers other than the ones running on the host from which

the applets were downloaded.

These network restrictions create a big problem for CORBA application. CORBA

provides location transparency, that is, as long as a client holds an Interoperable Object

Reference (bR), it can invoke operations on a server object, regardless of the location of

the server object. Applet sandboxing breaks CORBA location transparency [BroseOl].

Client Applet

roxy -

Download
Applet

Web Server

° °

'lop
HOP Gateway

Client Gatekeeper
Host Host

'lop

Figure 4.7 HOP gateway

Server

,- Object
'-Jmplementatin-'

0

Server
Host

These restrictions can be solved by using an HOP gateway on a web server as illustrated

in Figure 4.7, such as VisiBroker Gatekeeper. The HOP gateway acts as a proxy for the

CORBA object by sending requests to the object and passing responses back to the

39

applets. Without the HOP gateway, Java applets will only be able to use references to

objects that reside on the web server host.

4.4 The Design of WBDCS

The software architecture of WBDCS is not only concerned with structure and behaviour,

but also with usability and functionality. By using UML, the system architecture can be

modeled from different perspectives in order to visualize, specify, construct, and

document the system.

4.4.1 Functional Descriptions

The use cases of the system describe aspects of behaviour of the system as seen by its end

users or testers. UML allows the static aspects of the system to be captured in use case

diagrams and the dynamic aspects of the system to be captured in activity diagrams.

A use case diagram [Booch99] is a description of a set of sequences of actions. An actor

represents a coherent set of roles that users of use cases play when interacting with these

use cases. Typically, an actor represents a role that a human, a hardware device, or even

another system plays.

An activity diagram [Booch99J is one kind of UML diagram used for modeling the

dynamic aspects of a system. It emphasizes the flow of control from activity to activity.

An activity is an ongoing non-atomic execution within a state machine. Activities

ultimately result in some action, which is made up of excitable atomic computations that

result in a change in state of the system or the return of a value.

As illustrated in Figure 4.8, there are four actors in WBDCS. The user represents a role

that interacts with the system. The database is an information management system, which

40

stores the configuration and operation information of the system. The sensor is a device

that measures process variables from a physical environment. The actuator is a device

that performs an action towards the physical environment.

User

bject

Output Actuator Object

Input Sensor Object

Figure 4.8 Use case diagram of WBDCS

 1• -t
Database

Actuator

Sensor

Sensor, control, actuator, and DB objects are made up of CORBA server objects called

the control server tier in WBDCS. The sensor object is responsible for acquiring data

from the sensor, passing them to the control object and user. The actuator object is

responsible for writing data from the user or control object to the actuator. The control

object is a controller that processes sampled data and produces a response to the actuator

object. The DB object is responsible for collecting data from the control object and for

storing them in a database.

Login, query, configuration, output, and input are the client tier in WBDCS. Five use

cases have been identified in Figure 4.8. These use cases will be described in detail in the

following subsections.

41

4.4. 1.1 Login

In this use case, a user has to login the system before using it. The user's information

will be verified to make sure that the user has the authority to use the system.

User Login DB Object

Figure 4.9 Login use case diagram

7
(Ask user for name and
\ password ,f'

V

(Send them to DB Obje)ct

V

Database

(Check them In database)
NO Prompt a message for user

retry

YES

(Prompt a welcome message
YES

Figure 4.10 Login activity diagram

In Figures 4.9 and 4. 10, a user is the actor who initializes the use case. The user name and

password will be sent to the DB server object via the network, and the DB object will

check if they are the same as the ones stored in the database. The DB object will notify

the user about the result of the check in one of two possible ways: one is the welcome

42

information, which means the user information is valid; the other is a warning message,

which means that user name and/or password were wrong.

4.4.1.2 Input

The input process, as depicted in Figures 4.11 and 4.12, is defined as reading data from

the sensor. In this use case, the user will first select the input channels and then send an

input request to the sensor object. The sensor object will get the data from sensor and

send them back to the user.

Input Sensor Object
User Sensor

Figure 4.11 Input use case diagram

Select input channels)

V

(Send input request to
Sensor Object ,)

Read input data

V CDisplay results

Figure 4.12 Input activity diagram

43

4.4.1.3 Output

The output process, as illustrated in Figures 4.13 and 4.14, is defined as writing data to an

actuator. In this use case, the user first selects the output channels and sets the output

values, and then sends an output request to the actuator object, which will write the

output data to the actuator.

Output Actuator Object
User Actuator

Figure 4.13 Output use case diagram

(Select output channels an
change output data)

V

(Send output request t
Actuator Object }

V (Write data out)

Figure 4.14 Output activity diagram

4.4.1.4 Query

The querying process, as shown in Figures 4.15 and 4.16, is defined as querying

historical data from the database. In this use case, the user will first select information to

be searched, and then the request is sent to the DB server object. The DB object will

access the database, find the requested data, and send them back to the user.

44

X K D*--• D4-•

Query DB Object
User Database

Figure 4.15 Query use case diagram

ESelect information to b
searched

(Send to DB Object)
V

(Select dataset from databa

V

(Send dataset back to cIie)

(Display results)

Figure 4.16 Query activity diagram

4.4.1.5 Configuration

The configuration process is defined as configuring the working modes of the controller

(control object) and making the control loop work properly as depicted in Figures 4.17

and 4.18. In this use case, the user can select control algorithms, change set point (a

desired value for a controlled variable), and switch the controller from manual to

automatic mode, and vice versa.

45

User
Configuration

DB Object

Ono
Contro object Actuator Object

4= 0
Sensor Object

Figure 4.17 Configuration use case diagram

7 (Configure controller)
V

Send to Control Objec

V

 (Get PV from Sensor Object

V

YES

NO

Control algorithm

 (Send controller output io
Actuator Object ,

Figure 4.18 Configuration activity diagram

Database

Actuator

Sensor

In automatic mode, the controller will cooperate with the sensor, actuator, and DB objects

to ensure that a physical process is controlled successfully. The sensor object samples the

process variable (PV) measured by the sensor and passes it to the control object. The

46

control object compares the PV with a desired value or set point (SF) and produces an

output using a certain control algorithm, and sends the output to the actuator object. The

actuator object manipulates the actuator according to the output of the controller. These

control procedures execute continuously to maintain the physical process under control.

The DB object will store the configuration and operation information in the database.

4.4.2 Control Algorithms

There are many existing control algorithms that can be adopted and implemented in the

controller (control object) of WBDCS. In the following subsections, we will introduce

two of the most popular control algorithms.

4.4.2.1 PU) Control

PU) (Proportional + Integral + Derivative) is a well-established control algorithm, which

is commonly used in process industry. A single-input and single output feedback control

system consists of a sensor, a controller, an actuator and a process as illustrated in Figure

4.19. The goal of this loop is to maintain the level in the tank at certain value. SF is a

predetermined value for the level. PV is the actual level measured by the sensor. Again,

the control loop is to maintain PV at a predetermined SF. The P11) control algorithm is

described by Equation (4.1):

e(t)=FV—SF

m(t) = m + Kc[
0

e(t) + Kd de(t) dt Je(t)dt]

Where:

P = Process variable, a measured value for controlled variable

47

SF = Set point, a predetermined (desired) value for controlled variable

m(t) = output from the controller in %

mo = manual reset

K = controller proportional gain

e(t) = error signal to the controller in %

Kd = controller derivative gain in minute

K, = controller integral gain in 1/minute

process

SP

sensor controller

SP

m
actuator

Figure 4.19 Feedback control loop

PV

Figure 4.20 PID control response

t

The principle of this control algorithm is: whenever PV> SP, the controller will open the

control valve a little bit; whenever PV< SF, the controller will close the control valve a

little bit in order to maintain PV = SF. For example, if the level in the tank changes due

48

to some disturbances, the control loop will respond immediately to ensure PV approaches

SF. Figure 4.20 illustrates the dynamic response of the PD control loop.

4.4.2.2 On-Off Control

The most rudimentary form of regulatory control is on-off control [SvrcekoO]. An

example of on-off control is a home heating system. Wherever the temperature goes

above the set point, the heating system shuts off, and the temperature drops below the set

point, the heat system turns on. This control algorithm is shown by Equation (4.2).

m(t)=0% ifPV>SP

M(t) if PV<SP (4.2)

100%

0%

Figure 4.21 On-off control response

The controller output is equal to 0% whenever PV exceeds SF. The controller output is

100% whenever PV is below SF. The ideal dynamic response of the on-off control loop is

depicted in Figure 4.21. For simplicity, hysteresis is not considered in the example.

There are different control algorithms for different physical environments. WBDCS

allows the implementation of different control algorithms in the control object, i.e., the

system allows different controller to be implemented.

49

5 REAL-TIME SCHEDULING IN WBDCS

5.1 Introduction

Distributed control systems are widely used for controlling and monitoring industrial

processes. Usually, these systems are real-time systems that are characterized by the need

for timing constraints. In other words, a real-time system is a system the correctness of

which depends on meeting logical requirements as well as timing constraints. This kind

of system can be characterized by the following features [Tsai96]: continuous operation,

stringent timing constraints, asynchronous process interaction, unpredictable race

conditions, non-deterministic execution, and multiple threads of process interaction. In

summary, real-time systems are different from non real-time systems by their timing

constraints, which means that timeliness is a main feature of real-time systems.

5.1.1 Task

A task in a real-time system is a thread of execution performing a specific function. For

example, a task could be a simple thread polling a serial port to check if any data have

arrived. This means that a computer periodically asks (polls) the various sensors to see if

action is required. A real-time task can be classified as periodic or aperiodic depending

on its arrival pattern, or as soft or hard based on its deadline.

In a real-time system, each of the tasks must complete execution before some fixed time

has elapsed since its request. This fixed time is known as the deadline of the task. If

meeting a given tasks' deadline is critical to the system's operation, the task is called a

50

hard real-time task. If occasionally missing deadlines of a particular task does not

adversely affect the system's performance it is a soft real-time task.

A hard real-time task must satisfy the deadlines on each and every occasion. An example

would be a system that checks the temperature in a chemical plant process. The

temperature is sampled every 10 ms, the control calculation is carried out, and the output

value is sent to the temperature regulator (actuator). This task must be performed within a

certain time.

For a soft real-time task, an occasional failure to meet a deadline does not compromise

program correctness. An example of a soft real-time task is an automatic bank teller

machine. An event is initiated when a customer inserts a card into the machine. The

machine response will be specified in terms of an average response time of say, 15

seconds. The actual response time may vary from time to time.

Tasks with regular arrival times are called periodic. A common use of periodic tasks is to

process sensor data. For example, a temperature monitor of a reactor should be read

periodically to detect any changes promptly. Tasks with irregular arrival times are

aperiodic tasks. They are used to handle the processing requirements of random events

such as operator requests.

5.1.2 Real-time Scheduling

Scheduling techniques hold great promise as a means to maintain timing correctness of a

real-time system. A scheduling algorithm is a set of rules that determines a task to be

executed at a particular time slot. A scheduler in a real-time system provides

predictability to the system and coordinates resources to meet the timing constraints of

51

the system. A scheduling algorithm is said to be static if the priorities of the individual

tasks are fixed. These priorities could be assigned based on the worst-case execution time

of tasks, the period of tasks, or the criticality of the task. A scheduling algorithm is said to

be dynamic if the priorities of individual tasks might change from request to request

[Liu73].

The major real-time scheduling techniques that have been proposed are priority-driven

preemptive and non-preemptive scheduling algorithms, such as the Rate Monotonic (RM)

algorithm [Liu73, Lehoczky89] and the Earliest Deadline First (EDF) algorithm [Liu73].

Preemptive refers to the way a currently executed task is interrupted if a request for any

higher priority task occurs. This means that whenever there is a request from a task of

higher priority, the running task is immediately interrupted and the newly requested task

is started.

RM is a static (fixed) priority-driven preemptive scheduling algorithm, in which priorities

are assigned according to the request rate (frequency) of tasks. That is, tasks with higher

frequency will have higher priority. EDF is a dynamic priority and both a preemptive as

well as a non-preemptive scheduling algorithm, in which the task with the nearest

deadline for its current request has the highest priority. This means that the EDF

algorithm has to calculate the priorities of tasks dynamically. In contrast, the priorities of

tasks do not change with time in the RM algorithm.

Most real-time applications in industry have used a fixed priority preemptive scheduling

(RM) algorithm. Therefore, RM is also adopted as the scheduling algorithm in WBDCS.

The next section describes one of the most common static priority real-time scheduling

algorithms, the Rate Monotonic algorithm.

52

5.2 Rate Monotonic Algorithm

Liu and Layland [Liu73] presented an optimum static priority scheduling algorithm

known as the Rate Monotonic (RM) algorithm. In this algorithm; priorities are assigned

according to the request rate (frequency) of tasks. Specifically, tasks with higher request

rates will have higher priorities.

A task set is said to be schedulable if all its deadlines are met, that is, if every periodic

task finishes its execution before the end of its period. Tasks are said to be independent if

requests for a certain task do not depend on the initiation or the completion of requests

for other task. A necessary condition for schedulability of a given task set is that the sum

of the processor utilization of all the tasks is less than or equal to 1. Using {Liu73,

Sha9O],

A set of n independent periodic tasks, r , can be characterized by the following

equations using RM algorithm:

I;

i=1,2,3,•..,n

1
mln(k))ER, C) j

j=1

Where,

Ri={(kl)i(l≤k≤i)l__l...[J.L]}

U(n) = the total processor utilization

C, = the execution time of task

(5.1)

(5.2)

53

Tj = the period of task z

RM guarantees that any task set to be schedulable if equation (5.1) holds, and each task is

schedulable if equation (5.2) holds.

Most commercial real-time operating systems use the above fixed priority preemptive

schedulers.

5.3 Fixed Priority Scheduling Model

Katcher, Arakawa and Strosnider [Katcher93] presented a model for fixed priority

schedulers. Their model is an extension of the mathematical scheduling framework of

Lehoczky, Sha and Ding [Lehoczky89], which expands on the work of Liu and Layland

[Liu73].

In [Katcher93], Katcher et al. derived a set of extended schedulability analysis equations

for different scheduling implementations in modern real-time operating systems. Their

work classified real-time operating systems into two generic implementations: event-

driven and timer-driven. Event-driven implementations rely on an external hardware

device to generate interrupts. Timer-driven implementations use periodic timer interrupts

from a programmable timer. Figure 5.1 and Figure 5.2 depict the differences between

timer-driven and event-driven scheduling models.

They further categorized event-driven implementations into: integrated and non-

integrated interrupt event-driven scheduling. In an integrated interrupt event-driven

scheduling implementation, all tasks are initiated by external interrupts. An interrupt is

posted to the processor at the beginning of a task period. The hardware interrupt priority

54

is matched with software task priority and the interrupt will only be served if the

currently executing task is of lower priority. Otherwise, it will remain pending.

In a non-integrated interrupt event-driven scheduling implementation, all tasks are

initiated by external interrupts. Every time a new task arrives the current task is

interrupted. In other words, the priority of the interrupt associated with a task's arrival

has no correspondence to the software priority of that task, and is thus "non-integrated".

If the arriving task has a priority higher than the executing task, preemption will occur.

On the other hand, if the arriving task has a lower or equal priority it will not preempt the

current task, but will still cause an interrupt service routine and scheduler execution.

Once the scheduler completes execution, processing of the current task will continue.

Event-Driven

External hardware
interrupts scheduler

Priority inversion is not
allowed

Integrated

Priority inversion is
allowed

Non-Integrated

Figure 5.1 Event-driven scheduler

Timer-driven implementations are classified as: timer-driven scheduling and timer-driven

scheduling with counter. Timer-driven scheduling uses the interrupts from a periodic

timer to interrupt execution and to invoke the scheduler. In timer-driven scheduling with

counter, a counter is used to limit the number of scheduling points. At every scheduling

point, a counter is initialized with the number of clock ticks to the next task deadline. On

55

every timer interrupt, the counter is decremented and the scheduler is invoked as the

counter expires.

Timer-Driven

Periodic timer interrupts
scheduler

Scheduler is invoked a
every clock tick

Scheduler Is invoked
when counter--O

Basic Counter

Figure 5.2 Timer-driven scheduler

The above work provides a methodology for incorporating the costs of scheduler

implementations for fixed priority scheduling algorithms in a uni-processor environment.

5.4 Real-time Scheduling in WBDCS

In WBDCS, two kinds of real-time scheduling have been defined: time-driven and event-

driven scheduling, which is based on the theories and models of Katcher, Arakawa and

Strosnider [Katcher93] and Rate Monotonic algorithm and rate monotonic priority

assignment [Liu73].

5.4.1 Priority Assignment

In WBDCS, the priorities of the tasks are assigned based on relative importance of both

periodic and aperiodic tasks. Higher priority is assigned to strictly timing dependent

variables, such as alarms, emergency processing requests from operator stations,

emergency processing routines. Lower priority is given to loose timing dependent

56

variables, such as routine inputting, outputting, configuring, and querying requests from

operator stations.

For periodic tasks, rate-monotonic priority assignment is adopted. The tasks with higher

request frequency are assigned higher priorities. While for aperiodic tasks, priority

assignment is only based on how critical a task is. For example, an alarm event is an

aperiodic and emergency task, and the system and operators have to respond and process

it immediately. Usually emergency tasks have highest priorities in the task set. Routine

requests from operators have lowest priorities in the task set.

5.4.2 Interrupt

The real-time scheduling activity of WBDCS is modeled in Figure 5.3. This part of the

system is designed to handle interrupts from both clients and devices. Time-driven

periodic interrupts and event-driven aperiodic interrupts are introduced on both client

side and device side.

Time-driven
periodic interrupts

Event-driven
aperiodic interrupts

Clients

Wait invocation
from clients!

devices

Time-driven
periodic interrupts

Event-driven
aperiodic interrupts

Control Server I devices

Figure 5.3 Periodic and aperiodic interrupts

On the client side, time-driven periodic interrupts are produced by the programmable

timers (software timers) for updating process data and displaying them on GUIs. Event-

57

driven aperiodic interrupts are initiated by the users for submitting their requests of input,

output, configuration, and query.

On the device side, time-driven periodic interrupts are produced by the programmable

timers (software timers) in the drivers of devices or hardware timers on the devices.

Those timers are responsible for sampling process data at certain points in time. Event-

driven aperiodic interrupts are initiated by the interrupt requests from hardware, such as

I/O devices. For example, alarm signals will wake up the control server when the level

control system in Figure 4.19 is out of control (level is too high or too low). These signals

need to be processed immediately and have highest priorities.

5.4.3 Time-driven Scheduling

Time-driven scheduling is based on continuous and periodic activities, such as data

acquisition (sampling) and real-time information updating. In the time-driven approach,

processing is initiated by periodical interrupts of a system clock. When a timer timeout

occurs, an internal transition associated with the operational state is triggered [Selic99].

In the prototype of WBDCS, three programmable timers (software timers) are designed

and implemented in control.dll (see section 6.5 for details) on the device side, which are

running in different threads with different priority levels. Time-driven scheduling is

triggered by interrupts of the periodic timers. Different timers are responsible for

scanning and sampling the different groups of sensors. Each timer has been assigned a

priority level on the basis of its request frequency.

58

Ti

Task Arrival V3

A

0

(L

TimerInterrupts
Ti T2 T3 Ti Ti T2 Ti T3

Ti

V3

Task 1 Active

 Task 2 Active

'4,4
'.4 Task 3 Active

Idle

Figure 5.4 Time-driven scheduling

Figure 5.4 shows a test result of fixed priority scheduling for the time-driven interrupts in

the prototype of WBDCS. Let r1, r2, and z-3, denote a priority-ordered task set, which are

the tasks to be executed during interrupts of Timer], Timer2, and Timer3, respectively.

During the interrupt of Timer], vj will be executed and during the interrupt of Timer2, r2

will be executed, and so on. Let T1, T2, and T3, denote the actual start points of Timer],

Timer2, and Timer3 interrupts. r1 has a highest request rate i.e., Timer] has the highest

priority level, while Tinzer3 has the lowest priority level. If Timer], Timer2, and Timer3

interrupt requests occur at the same time, r1 will be executed immediately because it has

the highest priority. After r1 is completed r2 can start to be executed, and then r. T1, T2,

and J'3 show the actual start points of each interrupt. In time-driven scheduling the

request for any task will occur periodically.

59

5.4.4 Event-driven Scheduling

Event-driven scheduling is based on discrete or aperiodic activities, such as alarms,

emergency processing routines, and operator routine requests. In the event-driven

approach, processing occurs in discrete steps, triggered by the arrival of the events.

Task Arrival T2

0

0

Interrupt

Interrupt Interrupt

VA

Task 1 Active

Task 2 Active

Task 3 Active

Idle

Figure 5.5 Event-driven scheduling

For example, let r, r, and r3, denote a set of priority-ordered tasks with 13 being the task

with the lowest priority. Consider a particular request for r2 that occurs at the beginning

of the period as illustrated in Figure 5.5. r2 will be executed immediately because there is

no other task executing at this moment. Requests for r1 and r3 subsequently occur.

Clearly, the preemption of r2 by r1 will cause a certain amount of delay in the completion

of the request for r2. After the highest priority task rj is completed r2 can be continued.

Although the request for z has already occurred, it will not be executed until the requests

for rj and z have be executed because r3 has the lowest priority in this task set. In event-

driven scheduling the request for any task arrives randomly, as a result of operator

actions or aperiodic events.

60

6 A PROTOTYPE OF WBDCS

6.1 Introduction

A prototype of WBDCS has been implemented based on the architectural design in

Chapter 4. It consists of control and database applets that act as client GUIs, a control

server that manages data input/output (I/O) and information archives, a digital I/O card

(PC1215) that performs data I/O, an experiment kit that displays output signals and

generates input signals, and a relational database that stores configuration information

and I/O data. The implementation architecture is depicted in Figure 6.1.

Database
Applet

Control
Applet

4 C
0
R
B

 'A

.4

 10, Database
Manager

A

V

Digital I/O

4

4

J
D
B
C

1

.4 Database

J
N
D
L
L

Database Tier

1—
PCI —*
215

Display
/Signal

Client Tier Middleware Control Server Tier Device Tier

Figure 6.1 Architecture of the prototype

The prototype of WBDCS is a multi-tier web application. The control and database

applets represent the client tier; digital 110 (I/O server object) and database manager (DB

server Object) are located in the control server tier; the database and controlled devices

are the data tier of this application.

In addition, the prototype contains a set of standard interfaces such as 0MG 1DL, INT

(Java Native Interface), and JDBC API (Java Database Connectivity Application

Programming Interface). The IDL defines the interfaces between the client and server

parts of the application, and specifies what operations and attributes on the server objects

61

are available for clients to access. The INT defines the native methods that are

implemented as a dynamic link library (DLL) written in C/C++. The JDBC API is used

to connect the control server tier to the DBMS. A detailed description of each subsystem

of the prototype is presented in the flowing sections.

6.2 Client Tier

The graphic user interfaces of the prototype are implemented using Java applets. An

applet is a program written in the Java programming language that can be included in an

HTML page. When a user uses a Java-enabled browser to view a web page that contains

an applet, the applet's code is downloaded to the user's system and executed by the

browser's JVM. As mentioned in Chapter 4, a client machine does not need to install any

application specific software to access WBDCS as long as it has a commercial browser

installed, such as Netscape Navigator or Microsoft Internet Explorer. There are two

applets in the client tier of the prototype. One is called the control applet, and the other is

referred to as the database applet.

6.2.1 Control Applet

The control applet is a GUT that mainly performs the control and monitoring functions of

WBDCS. Three toggled control panels namely configuration, reading, and writing are

within this applet.

6.2.1.1 Configuration Panel

The configuration panel, shown in Figure 6.2, is a panel that configures the working

modes of digital I/O devices (hardware) before these devices can perform any control

62

activities. This means that the configuration is a start point for any control action. For

example, inputting data from hardware or outputting data to hardware has to be

performed after sending configuration information to the hardware and initializing it.

The configuration panel allows the user to assign the number of I/O on the hardware. All

channels are bi-directional, which means that each port of the I/O card can be input as

well as output channel.

All input channels have to be assigned a sampling rate and priority level. Input channels

can be categorized in three different groups. Each group has an assigned sampling rate

and priority level. The simplest case is that all input channels are set at the same sampling

rate and priority level. In this mode, all input ports are periodically scanned from Port 0

to Port 48. A complicated case is that all ports are assigned in three different groups with

different sampling rates and priority levels. In this situation, input ports will be scanned

group-by-group depending not only on the priority levels, but also on the sampling rates.

For simplicity, we assume all input channels have the same sampling interval of 1,000ms,

Port 0 and Port 1 in Group 1 have a priority level "high", Port 2 and Port 3 in Group 2

have priority level "low", and the remaining ports in Group 3 have a priority level

"medium". In this case, all ports will be scanned group-by-group depending only on their

priority level. The scanning sequence will be Port 0, Port 1, Port 4 to Port 47, and then

Port 2, Port 3. That is, the group with highest priority will be scanned first, then the group

with medium priority, and last the group with low priority.

63

Applet

onflgur1ion 1eadIn

InputNumber

OutputNumber

48

48

ft, N aim e PorttD Gr6663b
PôtX4C O
PbrtX1 1 12
Port.X2 2

1
QXM _______ J4

Prnt X5
__J31

PortXBO HH
PoriX82 10 j2

Ii

1.2
2
1. Port X84

PojtX5
PortXB5

13
14

1

I

Figure 6.2 Configuration panel

6.2.1.2 Reading Panel

The reading panel, as illustrated in Figure 6.3, is a display panel for all inputs or

individual input. Each input channel, port name, port 1D, sampled time, value, and status

are shown in the input table. If the I/O status is OK, the input value is valid. Otherwise,

the input value is invalid. On the reading panel, a user is able to read from any input

channel. Furthermore, the user can change the update rate on a client machine. The

update rate is the rate that displays the real-time data in the reading table, but it is limited

to the highest sampling rate.

64

Appet started,

ot Name oitI Valüé taIuè
Port XI.Q
port YA1

O Wed JU13T1 7l f47, jE 01<

Port XA2. 2 lWe&Jül31 171 1 OK:

Frt XM 4 ed Jul 31 17114741 JOK
Port XA5 5; J Wed Jul 31 17fl:47.. I K
Pot .WsdJui1171i:47.. iJOK
PortXA7 17 jWed Jul31 171147 1 10K
PortXBO;- i8l 0K

9 yediiJl 31 171 1:47— I OK
Pot M3iJ7i114
PottX83 I Wed Jul 31 17:I147.., I OK
port X84 ji 2 WedJul 3111:1 1 OK
PortXBS I3.

t4. ...
WedJiJl31 17:1 147. I OK

OK

L..
PortXOO jj6 WedJul:31 11:4TJj OK
Port 1<01 JII 1Wed:JU131 17:11:47... 1 10K
Port)(02i 118 TWethJul34 171 1:47., 1 l)K

A4'.A?f .4 ,I/

Figure 6.3 Input panel

6.2.1.3 Writing Panel

The writing panel, as shown in Figure 6.4, is a control panel that is used to output data to

hardware. The table on the panel can be used to write all output values at once, while an

individual output action can be performed as well using the left pane on this panel.

65

Figure 6.4 Output panel

PortName
RortXP.O

1: Port ib,
0

Value J
1

PortXA1 1 1

1!

PortXA2 2 0
PottXA3 3 1
PortXA4 4 1
PortX.5 5 0
PotXA6 6 1
PortXA7 I 1
PrntXG0 8 0
PartX81 9 0
PortX82 10 0
PartXG3 11 1

0 PortX94 12
PortXG5
PortXG6

13
14

1
1

PortXB7 15
113

0
0 PortXC0

PotXC1 17
PortXC2 18 1

Send

6.2.2 Database Applet

The database applet is a GUT that mainly performs the database management functions of

WBDCS. Using this GUT the user can retrieve configuration information and I/O data

from the database. A user can also remove information that has been stored in the

database as shown in Figure 6.5.

66

$ 1- t Vi w r distyi*uEdc .n lsystern* au fi i" Lt!Ijj
Applet

Input [Retrieve] Remove

Port ID ittrne Value Status t
0 Wed Jul 311 5:31:00 2.., 1 OK
I Wed Jul 311 6:31:00 2... 1 OK
2 Wed Jul 311 6:31:00 2... 1 OK
3 Wed Jul 3116:31:00 2... 1 OK
4 Wed Jul 3116:31:00 2... 1 OK
5 Wed Jul 3116:31:00 2... 1 OK
6 Wed Jul 3116:31:00 2... 1 OK
7 Wed Jul 3116:31:00 2... 1 OK
B Wed Jul 3116:31:00 2... 1 OK
B Wed Jul 3116:31:00 2... 1 OK
10 Wed Jul 3116:31:00 2... 1 OK
11 Wed Jul 3116:31:00 2... 1 OK
12 Wed Jul 3116:31:00 2... 1 OK
13 Wed Jul 3115:31:00 2... 1 OK
14 Wed Jul 3115:31:00 2... 1 OK
15 Wed Jul 3115:31:00 2... 1 OK
16 Wed Jul 3116:31:00 2... 1 OK F"

Applet started.

Figure 6.5 Database applet

The database is an essential part of an industrial DCS for recording real-time data and

status information for industrial processes and any configuration information submitted

from control and monitoring stations by operators or engineers, because of the need for

real-time trend displays for a variety of process variables and process graphics and

reports. In WBDCS, the purpose of the database management subsystem is to ensure all

configuration, reading, and writing information is recorded for future use. A relational

database management system, InterBase, is used for this purpose.

67

6.3 Middleware

Transparent access to non-local services and resources distributed across a network is

usually provided through middleware, which serves as a framework for communication

between the client and server portions of a system. Middleware can be thought of as the

networking between the components of a client/server system [Lewandowski98].

The fundamental purpose of middleware components is to enable an application at a

client side to access a variety of services on various servers without being concerned

about differences between the servers. The ultimate task of middleware components is to

route client requests to the appropriate services of servers.

6.3.1 CORBA

As discussed in Chapter 4, CORBA has been chosen as the middleware in the

implementation of WBDCS. The CORBA specification has been developed as a standard

to improve interoperability in a heterogeneous computer environment. Developing

client/server systems using technologies that support distributed objects holds great

promise, as these technologies support interoperability across languages and platforms, as

well as enhancing maintainability and adaptability of the system.

6.3.2 OMGIDL

0MG]DL provides a means of separating interfaces from implementations for

distributed object applications [BroseOl]. JDL [0MG98a] is a strongly typed declarative

language that defines the interfaces of objects independently from programming

languages. Figure 6.6 shows the IDL file designed for the prototype. This file defines

what kinds of services the server objects will provide.

68

module DigitallO

{
I/defme data structure for input
struct InputDataStruct

{
string portName;
unsigned long portlD;
string sampledTime;
unsigned long value;
string status;

//define data structure for output
struct OutputDataStruct

{
string portName;
unsigned long portlD;
unsigned long value;

//define data structure for configuring port
struct PortlnfoStruct

{
string portName;
unsigned long portlD;
unsigned long grouplD;

};

//define data structure for configuring group
struct GroupinfoStruct

{
unsigned long grouplD;
unsigned long priorityLevel;
unsigned long samplekate;

};

//define input, output, port, group data list
typedef sequence < InputDataStruct> InputDataSequence;
typedef sequence < OutputDataStruct > OutputDataSequence;
typedef sequence <PortlnfoStruct> PortlnfoSequence;
typedef sequence < GroupinfoStruct> GroupinfoSequence;

interface DigitallO

{
attribute InputDataSequence inputDataList;
attribute OutputDataSequence outputDataList;
attribute PortlnfoSequence portlnfoList;
attribute GroupinfoSequence groupinfoList;
readonly attribute long inputListCount;
readonly attribute long outputListCount;

69

I/configure port
void configureDlOPort(in PortlnfoSequence portlnfoList);
void configureDlOGroup(in GroupinfoSequence groupinfoList);

I/configure data input output channels
void configurelnputDimension(in unsigned long inputDimension);
void configureOutputDimension(in unsigned long outputDimension);

//set update rate in input table
void setUpdateRate(in unsigned long updateRate);

I/read data from digital I/O chips
void readingAllDigitalPort(out InputDataSequence inputDataList);
InputDataStruct readingOneDigitalPort(in PortlnfoStruct onePortlnfo);

//write data to digital I/O chips
void writingAllDigitalPort(in OutputDataSequence outputDataList);
void writingOneDigitalPort(in OutputDataStruct outputOneData);

interface DatabaseManager

{

attribute InputDataSequence inputDataRecord;
attribute OutputDataSequence outputDataRecord;
attribute Portlnfo Sequence portlnfoRecord;
attribute Groupinfo Sequence groupinfoRecord;
readonly attribute long inputRecordNum;
readonly attribute long outputRecordNum;
readonly attribute long portlnfoRecordNum;
readonly attribute long groupinfoRecordNum;

void retrivelnputDataRecord(out InputDataSequence inputDataRecord,
in string startTime, in string endTime);

void retriveAllOutputDataRecord(out OutputDataSequence outputDataRecord);
void retriveAllPortlnfoRecord(out PortlnfoSequence portlnfoRecord);
void retriveAllGroupinfoRecord(out GroupinfoSequence groupinfoRecord);

void removeAlllnputDataRecordO;
void removeAllOutputDataRecordO;
void removeAliPortlnfoRecordO;
void removeAllGroupinfoRecordO;

Figure 6.6 IDL file

70

6.4 Control Server Tier

In a multi-tier architecture, the middle tier is between the client environment and the data

server enviromnent. There are a variety of ways to implement the middle tier, such as

transaction processing monitors, message servers, and application servers. For example,

if the middle tier provides queuing, the client can deliver its request to the middle tier and

then disengage because the middle tier will access the data and return the answer to the

client. In addition, the middle tier can add scheduling and prioritization for work in

progress.

The control server tier in the prototype of WBDCS allocates the main body of the

application logic to run on a shared host. It shares a digital I/O service engine, a data

retrieval engine, and a logging message console for all transactions between the clients,

the devices and the database.

DlgitatlOApp Log DiqftallO I DatabaseManaga

11,

7/31/02 5:14:01 PH MT Mgita1I0ApperverAppjava Mgitai.I0 created
7131/02 S:14:01 PH NDT DigitallflAppserverApp.java DatabaeManegei created

7131/02 5:14:01 PH IIDT Mgita1IOAp,ZerverApp.java Digit1I0App is ready!

7/31/02 5:14:48 PH MT (Digitalla) MgitallolmpLjava

groupIfoLi5t(d stibut dconto1ystexa.Diita1I0App oupInfolequenca)

7131/02 5:14:48 PH !T (DatabaseHanager) DatabaseHanagerlmpLjava
groupInoRecord (distributedcontro1sytei. Diita1I0App. roupThfoSequence)
7/31/02 5:14:50 PH IWT (DatabaseHanager) DatabazeHenagerIp1.java
groupThaecordNuxft()

7/31/02 S:14:51 PH NDT (Digitalla) Digitallolmpl.java
portIneoList(ditributedcontro1ayatan.Digita1I0App.. PortTheoequence)

7/31/02 5:14:51 PH 1T (DatthaeManager) DatabazeHenagerIp1.java

oIneoRecord(diztributedcontro1aystan.Digita1Io.App. PortmfoSequence)
7/31/02 5:14:51 PH IT (DatabaseHanager) DatebaseHenagezIp1.java

Figure 6.7 Control server

71

In the control server, each server object generally has a single, well-defined purpose, and

makes it available to clients via an interface. There are two server objects implemented in

the control server of the prototype, the first object is responsible for performing the

configuration of hardware and digital I/O, and the second object is responsible for

database management.

6.4.1 Digital I/O Server Object

DigitallO as shown in Figure 6.7 is a CORBA server object that provides the controlling

and monitoring functionality in the prototype of WBDCS. Unlike the design in Section

4.4, the prototype of WBDCS implements only one server object, DigitallO, which

contains all functions of the sensor object, control object, and actuator object due to the

simplicity and capability of hardware (PCI2 15) since only logic control systems can be

implemented using this hardware. For example, Port X is an input channel and Port Y is

an output channel in a logic control loop. The control algorithm is to turn on a light

connected to Port Y whenever Port X is "ON" (Logic 1). In this example, the input

process simulates the functions of the sensor object, the control algorithm does the

functions of the control object, and the output process does the functions of the actuator

object.

6.4.2 Database Management Server Object

The DatabaseManager as shown in Figure 6.7 is another CORBA server object that

mainly performs database management functionality in the prototype of WBDCS. This

object executes all commands sent from the database applet by users such as retrieving

72

and removing historical input data, output data, port information, and group information

from a relational database.

6.4.3 Control Server Logger

The DigitallOApp log as shown in Figure 6.7 is a time-stamped, real-time event recorder.

When the control server is started, it first creates an I/O object and a DB object, and then

tells the user that it is ready to serve user requests. After that, every request from user will

be logged in this monitor. Users are able to check all events that happened in the past and

their time of occurrence.

6.5 Device Tier

This tier refers to a PC1215 card that is plugged into a PCI slot of the host PC and an

external experiment kit connected to the PC1215 card through a 78-pin connector.

6.5.1 PC1215 Card

The PC1215 [Amplicon] is a plug-in, multi-functional digital I/O board, which provides

48 bits of parallel digital input/output and six 16-bit counter/timers [Cooper98]. The card

can be used on any PC that supports the PCI bus version 2.1. The host computer must run

under one of the operating systems: Windows NT, 2000, 95, 98, and Me.

6.5.1.1 Features ofPCI215

• 48-bit flexible, programmable digital I/O

• Six 16-bit, 10 MHz counter/timers with an on board 10 MHz crystal oscillator

timing source, each with six programmable counter modes.

73

• Crystal clock/divider with 5 rates, independently software selectable for each

counter/timer clock input.

• Interrupt controlled operations, with the facility for interrupts to be generated from

on board timers or one of six external signals.

• PCI bus version 2.1 plug and play interfaces.

6.5.1.2 Digital 1/0

The PC1215 card has two 82C55 Programmable Peripheral Interface (PPI) chips with all

functions of ports A and B, and optionally port C. The operational mode for each port is

established by writing to the control register of the 82C55. The 24 I/O pins of each PPI

are brought out to a D-type connector, and can be used to control external devices.

The digital I/O facility of PCI2 15 provides 48 lines in two clusters of three 8-bit ports as

shown in Table 6.1.

Table 6.1 I/O ports on PCI21S

Group A Group B Group C
PPIX Port XAO - XA7 Port XBO - XB7 Port XCO - XC7
PPIY Port YAO - YA7 Port YBO - YB7 Port YCO - YC7

Each cluster is divided into two groups of 12 bits each. Group A comprises the 8 bits of

port A and the 4 most significant bits of port C. Group B comprises the 8 bits of port B

and the 4 least significant bits of port C.

A control word sent to the 82C55 control register configures the ports to operate as input,

output or bi-directional. The 82C55 PPI can be programmed in various working modes.

The three basic operating modes are summarized in Table 6.2.

74

Table 6.2 Working modes of 82C55

Modes Features Descriptions

Mode 0 Basic I/O

This mode is the power-up default with all ports
set as inputs. In mode 0, the PPI provides
simple I/O operations. No control signals are
required and the ports defined as input reflect
the current state of the digital signals on the
lines (no latching). The lines of output ports are
set to zero on the mode change, and when a port
is loaded, the outputs are latched to that value.
All 24 bits can be used for input or output by
any combination of two 8-bit ports and two 4-
bit ports.

Mode 1 Strobed I/O

This mode provides I/O operations on group A
and/or Group B each with a simple handshake
protocol. In either group, the 4-bit port is used
for status and control of the associated 8-bit
port. An IRQ facility in this mode is available
on PC1215.
Each 8-bit port can be used uni-directionally for
either input or output operations, both being
latched.

Mode 2 Strobed Bi-directional I/O

This mode can be applied to group A only, and
provides one 8-bit bi-directional data port and
one 5-bit control and status port with IRQ
facility. Both input and output operations are
latched. Port B can be used in the mode 0 or 1
while port A is in mode 2.

6.5.2 JNI and DLL

Java Native Interface (INT) comes with the standard Java Development Kit (JDK) from

Sun Microsystems. It allows Java code that runs within a JVM to operate with

applications and libraries written in other languages, such as C, C++, and Assembly.

Programming through the INT framework enables native methods to function. Native

75

methods may represent legacy applications or may be written explicitly to solve a

problem that is best handled outside of the Java programming environment.

In the prototype of WBDCS, the native methods are functions written in C/C++ in order

to perform control functions through PC1215. The implementations of these functions are

compiled into a dynamic link library (control.dll), which an operating system

dynamically loads and links into the processes of the control server. Figure 6.8 shows a

part of the code in the I/O server object (Java code), which first declares JNI methods,

and then loads the DLL in run time when the digital I/O server object is executing.

//declare native methods written in c++ (JNI)
public native void initialization(int group 1 [], mt group2[], mt group3 [], mt configlnfo[]);
public native void setlnputDimension(int inputDim);
public native void setOutputDimension(int outputDim);
public native void writingAllPorts(int values[]);
public native void writingOnePort(int portlD, mt value);
public native void readingAllPorts(int values[], String time[], String status[]);
public native void readingOnePort(int portlD, mt values[], String time[], String status[]);

//load library control.dll
static {
System.loadLibrary("control");
}

Figure 6.8 JNI and DLL

Software that directly configures and initializes the PC1215 card and performs I/O actions

is programmed as a Dynamic Link Library using Microsoft Visual C/C++. The

control.dll performs all operations on PC1215, such as initializing the card, inputting data

from and outputting data to PC1215.

Using the JNI framework, native methods can directly access data buffers on the server

object. The INTl also enables us to use the advantages of the Java programming language

to catch and handle exceptions raised from the native methods in the Java server object.

76

6.5.3 Experiment.Kit

An experiment kit of the WBDCS prototype consists of two parts: the display circuit and

the signal circuit. The display circuit is designed for displaying the output signals from

I/O ports, and the signal circuit is designed for simulating input signals to the I/O ports.

6.5.3.1 Display Circuit

The PC1215 card is a programmable digital 110 board that provides 48 bits of parallel

digital I/O. According to the specification of PC1215, the current is not strong enough to

drive the LEDs. Figure 6.9 shows a circuit designed to drive a LED. The LED will be

'ON' when port PPIXAO is logic 1, and it will be 'OFF' when port PPIXAO is logic 0.

Vcc

330

-'s LED
PC1215

PPIXAO

Figure 6.9 Display circuit

6.5.3.2 Signal Circuit

In order to simulate inputs to the ports of PC1215, an input signal circuit is designed on

the experiment kit as shown in Figure 6.10. If the switch is up, PPIXAO will be supplied

with a Vcc (logic 1) signal. If it is down, the PPIXAO will receive 0 V (logic 0).

77

Vcc

10K

Figure 6.10 Signal circuit

6.6 Database Tier

The database maintains the system data and control status in a distributed control system.

In the prototype of WBDCS, the JDBC API facilitates access of the DB server object to

InterBase.

6.6.1 JDBC

JDBC API [AllamarajuOO] is an industrial standard for database independent connectivity

between the Java programming language and a wide range of relational databases. This

means that the JDBC API provides cross-vendor connectivity and data access across

relational databases from different vendors. It also provides a set of generic database

access methods for Structured Query Language (SQL)-compliant relational databases.

Using the JDBC API, the DB server object in the prototype makes the connections with

InterBase, executes SQL statements, processes the results extracted, and sends the results

back to the client.

78

6.6.2 InterBase

InterBase [Borland] is an open source relational database that runs on Linux, Windows,

and UNIX platforms. In the prototype of WBDCS, four data tables are established to

store real-time process data in the database management system, such as input data,

output data, port information, and group information tables.

6.7 Deployment

The deployment process occurs when web applications have been fully tested and are

ready for production. At this point we will deploy the client programs on end-users'

desktops or server applications on server machines. For the prototype, the client programs

were deployed on a web server because they are HTML pages and applets.

Figure 6.11 is the homepage of the prototype of WBDCS. It is downloaded from a web

server of the system and running in Microsoft Internet Explorer on a client computer.

Figure 6.12 and Figure 6.13 are also HTML pages. But what makes these pages different

from the homepage is that they contain applets. The applets are' able to visualize the I/O

data on an actual I/O card and to communicate with the control server via CORBA and to

perform controlling and database management functions remotely.

79

A Web-based Distributed Control System

NSERC

There are two graphical user interfaces in this system.

Control Apple as responsible for performing control and monitoring functionalities of the aystem.

L#LAhM••e App.,4ets responsible for performing database management llanctionaldies of the system

Figure 6.11 Homepage

F1a Fu1ur L8 l*

føj hK9A"3G 159 ti4Ac,H005 oAee.I $0.

• spur . AU .0513 • are using • ea. ant
o Clack input button to read all post once
o Clack start button to read all port continuously
o Click atop button to stop reading activates

• Output data to hardware using Waite Panel
o Clack sea button to set all output data to I
o Clack reset button to set all output data to 0
o Click send button to send the data to hardware

risnibutedconrui,yetern C,nerulAcDee vet .i•rren. below in a Java enaire ¶-erw5er

1Cosatu.sr$km Ru 3 It

I,, 11,1111, [2000

3,111 tow

- 3,Fpl,Ill1,rflll4,,

03 NonlO J 103 ILl I

Poll 3,JIO 0 2
P0,13,41 i 2
0,1000? 7 3
Pli1A3 3 7
0orl3,34 4

Purl .P.AO 3

P0,1>10? 1
Purl 3,83 3

pnrl,131 9 1

Fri XE42 10 1

PoriFEI) II 1
P0,1004 13

00,1085 13

Figure 6.12 Control applet page

jO.b(E Control Aottlet

Irasebon;.

80

Sscb Fsicet ktc*y

• Select one orthe itextu front the coetbo box
• Click retrieve button to view all records in the database
- Click tenlone button to delete all records in the database

d,ebibotedeont,oteveten, Dat Apl.t will ap.er below i,, sjevu enabled

- -

Figure 6.13 Database applet page

eultlO Value

81

7 TESTING AND ANALYSIS

In order to evaluate whether the proposed architecture can achieve the expected results,

performance, scalability and schedulability testing of the prototype of the framework is

performed. Performance represents the end-to-end response time to the requests of a

single user at a time. Scalability shows the ability of a system to maintain the same

response times as the number of simultaneous users increases [AllamarajuOO].

Schedulability is achieved if all the tasks in a task set meet their deadlines.

Performance, scalability and schedulability of a system depend mainly on the speed of

the hardware and network. These tests are conducted on a 101vliHz intranet and Internet, a

Pentium-I 200MHz and AND 800MHz personal computers. The hardware of the testing

environment may limit the performance of the prototype but it gives us an understanding

of how the system performs in our pilot testing environment. Higher performance can be

expected when faster computers and networks are used.

7.1 Testing

Performance and scalability testing is conducted in two different environments: one is on

a local intranet; the other is on the public Internet. The testing results are shOwn in Table

7.1 under a normal network traffic load.

Table 7.1 Testing result

On Intranet On Internet
Performance <1 second 1-2 seconds

Scalability
1 users 3 users 1 users 3 users

<1 second <1 second 1-2 seconds 1-2 seconds

82

Performance is tested by measuring the time from a user sending out a request to the user

receiving the corresponding response. In this test, the request is to set the 48 LED

channels on or off and display the current status back on the user screen.

Scalability testing measures the same response time. But it evaluates if the system can

maintain the same response time for each of the users when the number of simultaneous

request increases. The test results show nearly no time differences when the number of

simultaneous user increases.

Schedulability testing is performed within a node. Testing code is implemented in a

dynamic link library (control.dll). We have found that a task of 48 input/output channels

in three groups can always meet the required schedulability in both 500ms and l000ms

when rate monotonic priority is adopted.

Furthermore, time-driven and event-driven scheduling behaviours are also tested in the

prototype. The tests are similar to the schedulability testing, but in these test cases we

focus on how time-driven and event-driven interrupts are initiated and processed in terms

of assigned priority levels and sampling intervals in three groups of 48 input requests. We

have found that a task with a higher priority will always interrupt the execution of the

ones with a lower priority as required. Detailed testing results are described in section

5.4.

7.2 Analysis

The architecture of WBDCS is aimed at small to medium sized systems, 2 to 20

distributed nodes in low frequency sampling process such as petrochemical processes.

The architecture itself may not impose too many limitations. However, the speed of

83

hardware and network may limit the applicable scope of the framework. The design of

the framework delegates the highly time-dependent tasks to the local nodes. A local

computer executes those tasks without interfering with the network and can achieve a

very high speed. For example, in a closed loop control system, a remote user sends a

setpoint via the network to a local node computer and the local computer can conduct the

closed loop control on the order of milliseconds. But sending and changing setpoints,

acquiring control status, and displaying them to the end user are not very time critical,

and usually take more than one second in most DCSs.

Even though the prototype is a very simple LED system, it can simulate the processes of

sending setpoints to and acquiring control status from a local node on a network. The

testing results positively show the feasibility of the framework of WBDCS.

Unfortunately, more sophisticated and large-scale tests have not been done in this thesis

due to time and resources constraints. More tests are required to further evaluate the

performance, scalability and schedulability of the system. Searching for bottlenecks of

the system and improving them remain as future work. The following methodologies are

proposed for further testing and de-bottle-necking.

7.3 Proposals of Test Plan

7.3.1 Rigid Testing on the Prototype

More rigid tests need to be conducted with the current prototype. In this case, some codes

(time stamps) are needed to be added to both client and server side. For example, in

Figure 7.1 a client sends a request to a server object at time ti, the server object receives it

at t2, then the server object processes the request and sends a response back to the client

84

at t3, and the client gets the response and displays it to the user at t4. The response time is

(t4 - ti). Table 7.2 illustrates the times to be measured in the prototype.

Table 7.2 Performance testing

Outgoing time Incoming time Processing time
Performance t2 - tj t4 - -

I /

F7w t 4

Client

\

t3[

Control Server

Figure 7.1 Performance testing

1/0

The outgoing time is the time spent on a network when a user sends a request to a server

object. The incoming time is the time spent on the network when the server object sends

a response back to the user. The processing time is the time consumed in a node for the

server object to process the user's request, such as acquiring data from an input channel.

By measuring these times we can identify the components, which consume the most time

during the cycle of a request and response.

In the real world, a scalable system means that the response time increases only very little

when the number of simultaneous users increases [AllamarajuOo]. Scalability testing can

be automated by using simulated simultaneous requests because it is not feasible to have

more than twenty or even hundreds of real users to test a system simultaneously.

Furthermore, performance and scalability testing should be conducted on a variety of

traffic loads and bandwidths of a network, as well as different computer hardware and

software configurations.

85

7.3.2 Virtual Plant Testing

Simulation technology is fairly popular in recent years. It is very common in

petrochemical industry to use simulation tools to simulate a real plant for problem

solving and process analysis. HYSYS [HYSYS] is one such simulation tool used in

petrochemical industries and educational institutes.

Using HYSYS to simulate a real process is another testing plan for further evaluation of

the feasibility and applicability of the framework of WBDCS. The simulated process is

known as a virtual plant, which can be a signal-input and signal-output (SIISO) system

like the level control system depicted in Figure 4.19, or can be a very sophisticated multi-

input and multi-output (MI/MO) system as illustrated in Figure 7.2. This testing scenario

is to control a simulated distillation column.

 ineretMTt

\
, St

Figure 7.2 Virtual plant

Control Server

Nodes in WBDCS can control the temperature, pressure, level and flowrate in the virtual

plant via I/O interfaces of HYSYS. The main development procedure and test plan

include:

• Development procedure:

a Developing HYSYS dynamic cases as a virtual plant.

86

o Designing I/O interfaces that manage I/O between the control servers and the

virtual plant.

o Implementing the control server consoles and control, sensor, and actuator

objects in the local nodes, which includes 110 modules and control algorithms

for SI/SO and MI/MO systems.

o Designing and developing corresponding graphic user interfaces (applets) on

client side.

• Test plan:

o Performance and Scalability testing for both SI/SO and MI/MO systems.

o Schedulability testing for both SI/SO and MI/MO systems.

o Controller performance analysis for different control algorithms.

One of the goals of this testing project is to fully implement the designed framework

shown in Figure 4.8. In order to further evaluate real-time scheduling behaviours in

WBDCS, a real-time CORBA [OMG98b] (see 8.2.1 for details) should be adopted in the

testing project because we need to be able to schedule the time-driven and event-driven

activities not only between the control server and virtual plant, but also between the

control server and client. More complete schedulability, performance and scalability

research and testing on real-time web application are anticipated in this proposed testing

project.

87

8 CONCLUSIONS AND FUTURE WORK

Technologies and standards that can be adopted to construct a framework for a web-

based distributed control system are investigated in this thesis. The integrated architecture

takes advantage of Internet/intranet technologies and the World Wide Web to control and

monitor industrial processes. Its major capabilities include distributed computing nodes

communicating with each other via the Internet/intranet, visualization of real-time

processes and data, and supervision and control of industrial process status. The operation

of industrial processes can be controlled remotely or locally using a web browser.

8.1 Summary

A framework of WBDCS has been described in this thesis. WBDCS is designed by using

a web-based multi-tier client/server architecture and distributed object technology

approaches. It provides a new way to implement a distributed control system on the basis

of the WWW and Internet/intranet. It also provides a framework to integrate existing

control systems together and make them accessible and manageable via the

Internet/intranet. The multi-tier client/server architecture and CORBA middleware used

in this framework provide a solution to the objectives of designing a portable, scalable,

and maintainable web-based distributed application.

There are two parallel subsystems in WBDCS: one is a distributed control subsystem,

which is usually a hard real-time system; the other is a centralized supervisory subsystem,

which is usually a soft real-time system. The distributed control subsystem consists of a

number of nodes, which are geographically dispersed across the Internet/intranet. Each

node may have different software and hardware configurations and control functions.

88

Devices in a control loop can be distributed in different nodes across the Internet/intranet,

and they can also be localized within a node depending on how strict timing requirements

are.

A centralized supervisory subsystem (similar to SCADA) is used to bring the data from

all sources together, organize it, store it, and present it to the client over the

Internet/intranet, which provides engineers and operators with a comprehensive picture of

the status of plant operations. On the one hand, a centralized database management

system is designed to manage and store historical data and operational status for all

distributed nodes. On the other hand, there is a control server in each distributed node

that manages and maintains real-time data and operational status of controlled processes

and makes them available and accessible to the clients. Briefly, the centralized

supervisory subsystem allows a user of the system access to real-time and historical data

and to the operational status of all distributed nodes from one single machine on the

network. A web server, a database, and a number of CORBA server objects are involved

in managing information transactions between nodes, as well as between clients and

nodes. For example, process variables, such as alarm signals, status, and real-time data,

can be transferred to CORBA server objects from sources, and then the objects can make

them accessible via the Internet/intranet.

WBDCS is a web-based distributed real-time system combining on-line visualization

devices and remote service capabilities. Several important issues are discussed in the

design of WBDCS. First of all, a portable, scalable, maintainable web-based distributed

architecture is introduced. Secondly, the scheduling and processing of time-driven and

event-driven interrupts are discussed. Thirdly, to avoid delays on the Internet, improve

89

reliability of communication, and speed up real-time response, time-critical parts of the

system can be localized. By localizing real-time control and centralizing information

management, WBDCS presents a way to introduce the Internet and World Wide Web

into real-time control systems.

A prototype of WBDCS has been successfully implemented to control a set of remote

digital devices. Resources and devices are distributed across the Internet/intranet in

multiple computing nodes. An authorized user can access local or remote nodes to

perform control functions, such as real-time data collection and visualization, and

controlling and monitoring of remote devices. Tests showed satisfactory performance as

it was expected from the design.

8.2 Discussion and Future Work

8.2.1 Reliability and Speed

Reliability and speed are key criteria for successful real-time applications. Usually, a

high-speed local area network is used in most industrial real-time applications as

communication media, including DCS, SCADA, and PLC systems.

Unlike a LAN, the Internet potentially presents lower reliability and speed. In order to

avoid delays in a network, improve the reliability of communication and transmission,

and speed up the real-time respone, the time-critical part of WBDCS can be localized.

The localized applications can be implemented using a low level programming language,

such as C or assembly. For example, a closed loop control system can be locally

implemented in a node. The local control system can perform control activities in

milliseconds. Non-time-critical information, such as process status and variables, are

90

further transferred to the control server, and then made accessible and manageable via the

Internet/intranet.

One of the future work on improving the reliability and timely features of WBDCS will

be to adopt the real-time CORBA (RT-CORBA) products as the middleware. The real-

time CORBA [OMG98b] specification defines standard middleware features that allow

applications to allocate, schedule, and control CPU, memory, and networking resources

necessary to ensure end-to-end quality of service support.

8.2.2 Scalability and Maintainability

A critical factor for a distributed system is its ability to grow with the number of users,

the amount of data, and the required functionality. The application should be small and

fast, and able to handle future demands without sacrificing performance or reliability.

Scalability refers to how easily a particular solution could be extended from a small-scale

application to a large-scale one.

The multi-tier client /server architecture of WBDCS makes it much more scalable than a

two-tier architecture would do. One of the design considerations in WBDCS is to be

scalable when the number of users of the system is increased and when additional

functions of the system need to be added. Scalability both on the number of users and

functions is a significant advantage of WBDCS.

Maintainability refers to how costly it is to administer a particular application, including

the costs associated with updating the software and distributing updated versions to client

nodes. There are also some considerations in the design of WBDCS. First, using

middleware products is a way to reduce the maintenance cost because these products are

91

well developed and tested. Second, using a multi-tier client/server architecture enables

separate functionalities in the different tiers of the application: when one tier needs to be

modified other tiers can remain the same. Third, using Java applets as the client GUTs

makes a great deal of savings in long-term maintenance cost because no matter how

many users access one of nodes via the Internet/intranet, the GUIs are automatically

downloaded from the web server of WBDCS. There is no need to install any client

application on other nodes.

8.2.3 Authority and Security

Access authorization to the system is an essential requirement for WBDCS and needs

further work. If a user wants access to the system by using its UBL in a browser, it first

needs to provide a login page with a form to accept the login name and password of the

user. Once the login is successful the user is able to download applets and carryout any

further tasks, otherwise the user is refused. Therefore, only authorized users may gain

access to a local or remote node to perform the distributed control functions.

Security is also an important issue for a web-based distributed system especially when

the application is deployed on the Internet/intranet. Two ways could be used to secure the

messages that have to be transmitted over the networks. One way would be to implement

security features when the application is developed using Secure Socket Layer (SSL)

[ThomasOO]. This means that some code would have to be added to WBDCS for securing

HTTP and HOP connections. The other way would be to use VisiBroker Gatekeeper

when the application is deployed on the Internet/intranet. In this case, the application

developer would not need to worry about the security features of the system. In the

92

deployment phase, SSL features provided by the Gatekeeper can be configured to secure

the communications across the Jnternet/intranet. However, these issues are part of the

future work.

93

REFERENCES

[Allamaraju00] Subrahmanyam Allamaraju, et al. "Professional Java Server

Programming J2EE Edition", Wrox Press Ltd., ISBN: 1-861004-65-6, 2000.

[Amplicon] http://www.mev.co.uk/dio.htm

[Bennett94] Stuart Bennett, "Real-time Computer Control", Prentice Hall Europe, ISBN:

0-13-764176-1, 1994.

[Booch99] Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling

Language User Guide", Addison Wesley Longman Inc., ISBN: 0-201-57168-4,

1999.

[Borland] "Interbase Documentation".

[BroseOl] Gerald Brose, Andreas Vogel, and Keith Duddy, "Java programming with

CORBA", third edition, John Wiley & Sons, Inc., ISBN: 0-471-37681-7,2001.

[Chen02] L. Chen, Y. Wang, "Design and Implementation of a Web-Based Distributed

Control System", Proceedings of the 2002 IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE '02), Canada, May 2002.

[Chen03] L. Chen, A. Eberlein, "A Framework of A Web-based Distributed Control

System", Proceedings of the 2003 IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE '03), Canada, May 2003.

[Cooper] D.N. Cooper, "PC1215 Instruction Manual Part No 860 035 14 Issue A3"

Amplicon Liveline Limited.

[DeckerOl] D.L. Decker, "What is in store for DCS systems? Where are they headed?",

2001 Conference Record of Pulp and Paper Industry Technical Conference, 2001.

94

[Emerson] http://www.emersonprocess.com/systems/Products/index.html

[Honeywell] http://www.honeywell.com/acs/index.isp

[HYSYS] http://www.hyprotech.com/hysys/

[Janke99] M. Janke, "OPC-simple software integration for legacy systems", IEEE

Industry Applications Society Advanced Process Control Applications for

Industry Workshop, 1999.

[Kang02] Weonjoon Kang; Hyoungyuk Kim; Hong Seong Park, "Design and

performance analysis of middleware-based distributed control systems",

Proceedings of 2001 8th IEEE International Conference on Emerging

Technologies and Factory Automation, Volume: 2, 2001.

[Katcher93] D.I. Katcher, H. Arakawa and J.K. Strosnider, "Engineering and Analysis of

Fixed Priority Schedulers," IEEE Transactions on Software Engineering, 19(9),

September, 1993.

[Lehoczky89] J. Lehoczky, L. Sha, and Y. Ding, "The rate monotonic scheduling

algorithm: exact characterization and average case behaviour," Proceedings of

10th IEEE Real-Time Systems Symposium, Santa Monica, CA, December 1989.

[Lewandowski98] Scott M. Lewandowski, "Frameworks for Component-Based

Client/Server Computing", ACM Computing Surveys, Vol.30, No.1, March 1998.

[Lewis97] R. Lewis, "Design of distributed control systems in the next millennium",

Computing & Control Engineering Journal, Volume: 8 Issue: 4, August 1997.

[Liu73] C.L. Liu, and J. W. Layland, "Scheduling algorithms for multiprogramming in a

hard real time environment," Journal of the Association for Computing

Machinery, v.20, n.1, pp. 44-61, January 1973.

95

[Luh96] Yih Ping Luh, Shean-Shyong Chiou, Jau-Woie Chang, "Design of distributed

control system software using client-server architecture", Proceedings of The

IEEE International Conference on Industrial Technology, 1996.

[MartiOl] P. Marti, J.M. Fuertes, G. Fohier, "An integrated approach to real-time

distributed control systems over fieldbuses", Proceedings of 2001 8th IEEE

International Conference on Emerging Technologies and Factory Automation,

Volume: 1, 2001.

[Nogiec98] J.M. Nogiec, E. Desavouret, D. Orris, J. Pachnik, S. Sharonov, J.C.

Tompkins, K. Trombly-Freytag, "A distributed monitoring and control system",

Proceedings of the 1997 Particle Accelerator Conference, Volume: 3, 1998.

[0MG] http://www.omg.org/

[0MG97] Object Management Group, Specification of the Portable Object Adapter

(POA), 0MG Document orbos/97-05-15 ed., June 1997.

[OMG98a] Object Management Group, The Common Object Request Broker:

Architecture and Specification, 2.2 ed., Feb. 1998.

[OMG98b] Object Management Group, Realtime CORBA, 0MG TC Document

orbos/98- 10-05.

[OPC] http://www.opcfoundation.org/default.asp

[Selic99] B. Selic, "Turning Clockwise: Using TJIML in the Real-Time Domain",

communication of the ACM, Vol.42, No. 10, October 1999.

[Sha90] L. Sha and J. B. Goodenough, "Real-Time Scheduling Theory and Ada," IEEE

Computer, April 1990.

[Siemens] http://www.sea.siemens.com/process/default.html

96

[Stolen99] L.H. Stolen, "Distributed Control System", INTELEC '99., The 21st

International Telecommunication Energy Conference, 1999.

[SvrcekO0] William Y. Svrcek, Donald P. Mahoney, Brent R. Young, "A Real-Time

Approach to Process Control", John Wiley & Sons Ltd., ISBN: 0-471-80363-5,

2000.

[TanOl] Kok Kiong Tan, Tong Heng Lee, Chai Yee Soh, "Remotely operated experiment

for mechatronics: monitoring of DCS on the Internet", Proceedings. 2001

IEEE/A SME International Conference on Advanced Intelligent Mechatronics,

Volume: 2, 2001.

[Tan02] Kok Kiong Tan, Tong Heng Lee, Chai Yee Soh, "Internet-based monitoring of

distributed control systems-An undergraduate experiment", IEEE Transactions on

Education, Volume: 45 Issue: 2, May 2002.

[ThomasO0] Stephen A. Thomas, "SSL and TLS Essentials", John Wiley & Sons Inc.,

ISBN: 0-471-38354-6,2000.

[Tsai96] Jeffrey J.P. Tsai, Yaodong Bi, Steve J.H. Yang, Ross A.W. Smith, "Distributed

real-time systems: monitoring, visualization, debugging, and analysis", John

Wiley& Sons Inc., ISBN: 0471160075, 1996.

[Vinoski97] Steve Vinoski "CORBA: Integrating Diverse Applications within

Distributed Heterogeneous Environments", IEEE Communications 14, 2,

February 1997.

[Yang02] Yirong Yang, Shanan Zhu, "Small smart distributed control system",

Proceedings of the 4th World Congress on Intelligent Control and Automation,

Volume: 3, 2002.

97

[Zukowski98] John Zukowski, "Mastering Java 2", SYBEX Inc., ISBN: 0-7821-2180-2,

1998.

