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Abstract

Patching software remains a key defensive technique for mitigating
flaws and vulnerabilities. Patches, however, entail complications that
are hard to predict. Patches can be incomplete or incorrect, thereby
not fully addressing the targeted flaw or introducing new bugs and
unintended behavior. System administrators and owners are often at
a loss to assess the risk that applying a patch might carry. Without
a lengthy evaluation, they cannot predict how the patch will behave
in or affect their environment. Such obstacles often prevent the use
of hot patching or dynamic software updating. One major obstacle to
hot patching arises from the desynchronization of existing data with
the patch’s new code semantics.

This paper adopts a machine learning approach to assist this kind
of prediction: whether the patch contains elements that are likely to
cause problems if the patch is applied to the running system. We drive
this automated assessment (based on a Support Vector Machine) via an
analysis of the control and data modification operations in the patch.
Our SVM classifies a set of 25 unlabeled patches with 92% accuracy.
As a baseline, it also classifies its testing set of 50 patches (blindly,
without labels) with 84% accuracy.

1 Introduction

Organizations and end users need patch triage. More precisely, they need
help performing such procedures due to the volume and complexity of patches.
We posit that some form of automated classification would be useful to pri-
oritize the testing and rollout of security patches. Such an automated facility
would be especially useful for hot patching (i.e., dynamic software updates).
One challenge for hot patching is the question of data structure updates. If



a code patch introduces new semantics to a variable or data structure, the
“live”, in—memory data might become incompatible with the new seman-
tics of the modified code. Software vendors typically require an application
restart to bypass this problem, trading off correctness against availability.

Accordingly, we constrain our focus to the question of how best to aug-
ment users’ ability to deploy security patches quickly (i.e., without a restart);
this paper does not address the broader questions involved in non-security
patches or offline patching. Therefore, we construct a machine learning
technique for triaging the “feasiblitliy” of applying a hot patch based on
features relevent to data modifications. Our proposed solution takes the
form it does for two reasons: (1) we employ machine learning to achieve a
certain amount of automation and (2) our SVM classifies patches based on
data modifications because we focus on data semantics of hot patching as
the key obstacle to the widespread use of hot patching.

1.1 Stuck With Patching

Patching remains an important part of “practical” system security, but users
often avoid patching for a few reasons.

First, patching implies restarting the application: addressing vulnerabil-
ities in this way is tedious, slow, and inconvenient. Patches disrupt a user’s
current working context because they often require an application restart or
OS reboot. Despite the introduction of concepts like microrebooting [6], re-
booting for real software still represents substantial downtime rather than a
smooth transition. Patches rarely occur at convenient times, and a standard
schedule (i.e., Patch Tuesday) does little to rectify this unpleasant reality.
Planned downtime, redundancy, and rolling updates may work for some
large, well-run organizations (e.g., Google or other cloud SaaS vendors), but
holds little comfort for busy end-users, small businesses, or underfunded
organizations.

Since patching often holds as much risk (and little immediately evident
downside) as remaining unpatched, users tend to delay their attention to
this protection mechanism, as a study of Firefox update patterns by Frei et
al. [14] suggests:

“We conjecture that users in large part do not actually patch
their Web browsers based on recommendations, perceived threats,
or any security warnings...the Firefox update dynamics mea-
surements revealed that despite the single click integrated auto-
update functionality, rather surprisingly, one out of five Firefox



users surfs the Web with an outdated browser version.”

Second, the implications of applying a patch are difficult to assess a pri-
ort, and vendors leave end-users to their own devices by providing little or
no support for automated testing of the patch. It is difficult to predict what
the future behavior of a patched application will be like [19,24,34]. Patches
and updates have the potential to change system behavior in unanticipated
ways (for example: a Norton patch [20], a McAfee [22] update). Further-
more, the “patches for patches for patches” problem (the initially incorrect
fetchmail [1] fix is but one example of this problem that plagues both pro-
prietary and open source vendors) shows that patching is far from an exact
science. Many patches cause conflicts once applied, resulting in a cascading
series of repatching [9,13,25].

System owners must therefore test patches before deployment. In the
case of end-users, determining the potential ill effects of a patch
is therefore an exercise left to those least well-equipped to reason
about the patch and the environment it enters. For most users, it
does not matter whether the patch is a source code patch to an open source
program or a heavily obfuscated binary patch to a proprietary application.
Users still face either a substantial reverse-engineering of the patch or an
extensive software regression testing effort (or both).

1.2 Goal: When is it Safe to Hot Patch?

Although work in the field of software self-healing and dynamic software up-
dates (DSU) has attempted to apply patches to a running software program
as a reactive form of protection (with the hope of eliminating downtime due
to restarts or reboots), relatively little progress has been made in main-
streaming these approaches [5,8,10,23,27,33, 36].

When patching an application, restarting it is usually a necessity because
of outdated states of data or control. Thus, in a DSU system, after patching
an application, the old state of the program needs to be synchronized with
the new semantics.

As an example, if we apply this simple patch to an application:

+ if (var > 10)
+ var2 = 0;

we are not only patching control flow, but we are also changing the semantics
of some data structure in the program. The patch can also be read as from
now on, whenever var is bigger than 10, make var2 equal to 0.



To the best of our knowledge, few DSU systems deal effectively with this
semantics mismatch [12]. A patch may contain a different set of assumptions
about the type, state, and structure of existing data structures and variables.
What DSU-style systems seem to lack is a way to predict whether or not the
patch contains operations that will cause a mismatch. This paper proposes
one such prediction method.

1.3 Contributions

Our work provides evidence supporting the notion that patches can be classi-
fied according to feasibility (in terms of a feature vector based on properties
of their data modifications and control flow). We can use that classification
as an indication of the difficulty of applying them in a hot patch context.
To the best of our knowledge there exists no structured study of how data
is modified by a large collection of security patches.

1. We present a study of 75 different security patches; we translate them
to a structured graph syntax and then to a feature vector derived
from that graph language. The feature vector contains important
attributes of each patch (Section 3 explains the features and their
derivations).

2. We define a data patch language as a set of primitive algebraic opera-
tions. We manually analyze each patch in our dataset and determine
how many patches with data structures are feasible to be updated us-
ing these heuristics. The purpose of this manual analysis is to establish
ground truth for this dataset; the manual analysis is not a requirement
for the SVM technique.

3. We process five randomly—selected subsets of our dataset through our
SVM and obtain a breakdown of how many of these patches are fea-
sible according to their features. We then compare these results with
our manual “ground truth” classification of patches. We believe our
methodology is novel and helps provide some insight in a space that
has generally been lacking in quantitative analysis.

4. Finally, we look at two other randomly—selected subsets of our dataset
and we offer an analysis of the relationship between the features from
our feature vector and a patch being “feasible” or “infeasible” accord-
ing to our SVM. This discussion helps provide insight into the often
opaque models that SVMs produce. We examine the features that
feasible patches have in common.



1.4 Definitions

Hot Patching: Dynamically updating an application by modifying both
code and state without restarting the program.

Data Patch: The translation of a set of statements that modify data struc-
tures into a set of basic algebraic operations that consist of: {read, write,
search, and compare} — simple database operations. A data patch is a group
of statements that uses primitive relational algebraic operations (think of
these operations as the ones that we can perform over data in a database)
to correctly patch the data with the new semantics that the code patch
implies.

Feasibility: We consider a patch to be feasible when, after hot patching it,
the application does not have any conflicts between code semantics and data
structures. See Section 2.2 and Section 3.1 for the semantics of “feasibility”
as used in this paper.

2 Approach

Our workflow consists of seven main stages. We provide a very brief enu-
meration of this workflow here and follow it with a high—level explanation
of the major steps. We expand on the details in later sections.

1. We gathered 100 patches from open source projects like Apache, As-
terisk, and Samba. All of these patches are in the C programming
language and were released between 2001 and 2012. We discarded 25
patches because they represented non—security patches or contained a
number of combined updates whose joint size would have frustrated
manual analysis (to establish ground truth). For our first experiment,
we divided the remaining 75 patches into two groups:

e Training group: We selected 50 patches that represented our
training data. This data works as an input, in step 5, for the
SVM and includes a label categorizing the patch as infeasible or
feasible according to our definition of feasibility.

e Testing group: We also selected 25 patches that represented
the data for testing purposes. We give the data to the already
trained SVM and get a result of feasible or infeasible according
to the SVM.

Our second experiment divided the set of 75 patches into five groups
of 30 patches (training) and 45 patches (testing).



2. We manually translated each patch of the training and testing datasets
into their graph representation, according to the heuristics defined in
Section 3.

3. We translate each graph into an initial feature vector that represents
all of the attributes, or features, from each graph.

4. We apply PCA over the initial feature vectors to establish correla-
tion. PCA supplies the most independent combinations of features;
we incorporate the most significant into our final feature vector.

5. We manually trace each of the 75 patches to classify them according
to our definition of feasibility. This consisted of a careful and detailed
analysis of each statement in the patch and with reference to the full
source code.

6. By having a final feature vector of all the patches in the training and
testing datasets, we give the training feature vectors as input to our
SVM in the form of a matrix. Each vector includes a label classifying
it as “feasible” or “infeasible” according to step 5.

7. We then apply our testing and training datasets, without any labels,
as a feature vector matrix. Our SVM gives a prediction on feasibility
according to what it learned.

2.1 Overview

To classify patches, we first need a way to represent patches as input for
a machine and choose the best machine learning technique for classifying.
Other authors [29] have used machine learning techniques, such as Support
Vector Machines (SVMs), over source code by having an intermediate rep-
resentation of the source code as graphs. We take a similar approach by
translating the control flow of a patch into a graph, where the leaves of each
subtree represent data modifications. We then extract the features of each
graph into a feature vector for our SVM. We decided to use SVMs instead of
many other machine learning techniques, because it is often used to classify
source code by using machine learning techniques.

2.2 Feasible and Infeasible

We use the term “feasibility” to mean being able to correctly update
every data structure in an application according to the new se-
mantics implied by a patch. In other words, if we are able to translate
a set of operations, that are modifying data structures, into a data patch
then we consider the patch to be feasible to implement as a hot patch. If



a patch is found to be feasible then it means that the application does not
have any conflicts within its data structures after hot patching the patch.
In other words, we are able to update the data structures of the application
according to what we parsed from the patch.

Our definition of “feasibility” is therefore a binary decision that results
from a deep manual analysis of the patch in context with the source code it is
patching and knowledge of the live data structures. Obviously, such manual
analysis is time—consuming and demands expertise in binary analysis and
memory forensics on a per—application basis. We undertake this analysis for
all the patches in our data set for the purpose of establishing ground truth.
We do not, however, incorporate manual analysis into the SVM decisions
involved in our experiments: our intent is to assess how well a machine
learning approach might approximate an expert human decision.

We make a distinction between “expressibility” and “feasibility”: the
former term relates to whether an operation implied by a patch can be
translated to our data patch mini-language and the latter refers to whether
or not the data patch as a whole will successfully patch a running application.
For a patch statement to be expressible in our data patch language, we need
to be able to translate it into simple data manipulation operations (we define
this set as {search, read, compare and write }). However, we are not able to
express every statement using these operators. We need more computational
power than what these statements offer in order to express every possible
statement in a patch. However, we can model many functions and operators
that do not involve arbitrary computation (in keeping with the principles of
langsec 1).

Most of the patches we label “infeasible” received that label due to user
input, significant changes of the control flow (e.g. calling a function that calls
another function), loops that recursively call functions and modify a variable
according to the return value of the function or undecidable computation
(e.g. modifying the if case condition but not the data within the if case
scope).

2.3 Using Support Vector Machines

SVMs are a supervised machine learning technique (i.e. we used labeled data
to train the machine, specifying whether or not the patch was feasible). The
training dataset defines a hyperplane that separates feasible from infeasible
patches.

"http://langsec.org



The focus of our study is whether there exists a relationship between the
set of features for each graph and our definition of feasibility for a patch.
More precisely, after applying our SVM and defining a hyperplane — which
is the relationship of the feature vectors of our training data — and getting
positive and negative data points by labeling the data set with feasible or
infeasible, we want to study a possible relationship between the features
and feasibility, and see if the machine can classify arbitrary patches by taking
their feature vectors as input.

Why should we use Machine Learning algorithms? To investigate
the applicability of transforming security patches into a form suitable for hot
patching, a first approach might manually analyze each patch and attempt
to express it as a “data patch.” This is a tedious and error-prone process
which consists of tracing the control flow of each patch. An automated
approach could take advantage of the speed and scale of machine learning
techniques to classify these patches by first having a small subset of patches
already classified with a corresponding label of “feasible” or “infeasible.”

2.4 Features of a Patch

We chose what we considered to be the most important features for the
patch graphs, which included their cyclomatic complexity, computational
cost, and number of primitive operations, among others. We also included
important features of a data patch, such as number of write, search, read and
compare operations, function calls returning variables, number of operations
inside a loop, etc.

Each graph represents the control flow of a patch according to its data
modifications. The leaves in each graph are the data modifications, and each
subtree represents the way these data modifications are stated by the patch.
We can think of this feature vector as the complexity of a patch, which is
related to the control flow of its data modifications.

2.5 Labeling

This labeling activity is a prime example of the difficult and time—consuming
nature of manual patch analysis and classification (precisely the obstacle our
automated ML approach seeks to overcome). This labeling activity limited
our research effort to some extent; translating each patch into its feature
vector form could be automated, but the process of labeling a patch for the
supervised learning process and verifying the results of our testing dataset



could not be automated a priori. This process requires us to trace the source
code of each patch in the training data set and see if we are able to express
every function and library call. This is a non-deterministic process, and
there is no algorithm to determine this.

3 Translation of Patches

This section explains the details of our translation procedure from a set of
C language statements to a graph description language. Previous work on
applying machine learning techniques on source code [35] takes a similar
translation approach, and other graph techniques are also used for virus de-
tection [18]. Since feature vectors are suitable as input to SVMs, we need to
translate the statements in patches to some intermediate representation. We
chose a graph—based representation to serve two purposes (besides having a
rich natural set of features to extract). First, it was natural to model the
relationships of patch statements as elements of a syntax tree. Second, we
could mark up the tree with annotations describing the primitive relational
algebraic operations (i.e. search, compare, read and write) to compute the
total cost of each patch when translated to our language. We then use total
cost of computation as a feature of a vector.

To create the graph, we model a patch as a collection of data modification
statements interacting with the new heuristics of the patched application.
Each statement is represented as a node in our graph description language.
The control flow, represented as subtrees, explains how these statements in-
teract with each other. The leaves of the graph represent data modifications
and each subtree represents a different data modification statement.

The features of a graph — at least before applying our SVM — do not de-
fine feasibility but rather they define the control flow of data modifications
in a patch. In order to define the feasibility of a patch, we must manu-
ally analyze the patch and classify it as feasible or infeasible depending on
whether we are able, or not, to express data modifications using relational
algebraic operations. These primitive relational algebraic operations
are:

1. Search: A primitive operation that finds a variable/data structure
instance/member of a data structure in a database. We are able to
use operations such as search(name of var) or search(type of var).
Because we also assume we have metadata such as: address, type, size
and value, we are also able to express some operators such as sizeof()



3.1

or addressof() — the & operator on C — and functions such as strlen()
and free() 2.

Write: It is a primitive relational algebraic operation that stores a
value in an already searched variable or data structure. It is usually
called after searching for a particular variable. Our heuristics also
allow to pass parameters such as the size, type and address as metadata
of the variable.

Read: Similarly to the operation write, this operation is commonly
used after searching for a variable. It allows the application to read
the value of an variable and apply some heuristics on it. Most of the
time, patches use read operations to compare variables to values or
write values on variables to new variables.

Compare: The compare operation is usually used in branches and
loops. It denotes a comparison between a variable and a value or
another variable.

Feasible and Infeasible Patches

Not all statements are translatable to these operations. We need more com-
putational power than what these statements offer in order to express every
possible statement in a patch. However, we can model many functions and
operators that do not involve arbitrary computation. Some examples of
what we consider to be infeasible statements in a patch are:

1.

Arbitrary function calling: We are not able to express function
calls if the data returned by the function depends on an input value.
Undecidability: Some statements are undecidable because it is im-
possible to construct an algorithm with a correct response to the out-
come of the statement.

Function and library calls: We are able to model most of the
function and library calls, however this requires us to manually trace
the source code to model it.

. Macros: We are not able to deduct macros defined by the developer.

However, by looking at the source code, we are able to know the value
of the macro and substitute it in our data patch.

Loops: We are able to express loops using iterations, but this is
computationally expensive. Languages with a relational algebraic ap-

2This function is the equivalent of eliminating the value on a particular address, more
precisely, by giving the address make the value of the variable to be NULL
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proach, as SQL, however, also offer procedural languages to define
loops and other operations, expanding our set of operations.

6. Variables that are not currently in scope: These variables are
not able to be modified because they do not exist in that particular
moment. However, these variables do not affect the heuristics of the
program, therefore we do not need to patch them.

3.2 Data Modification Statements

We can also see a data modification machine as the combination of state-
ments that ultimately modify some data structure. It is intuitive to think of
data modifications as operations in a database, thus we can express them as
a collection of simple relational algebraic operations. We show how to repre-
sent different data modifications using primitive operations such as search,
read, write and compare. We also define a graph description that represents
each machine.

Data modifications are the main operation we look for when translat-
ing patches into graphs. It can be seen as the leaves of the graphs and it is
the most basic operation our model can do. We represent these machines as
a e in graphs and as the operations search and write in our language. The
computational cost of this operation is of 2.

Variable declaration — some patches add new variables to the appli-
cation by declaring, and sometimes initializing, them as part of the new
semantics of the patch. This operation can also be represented in our model
by the operation write. Because there is no need for searching for a variable
that does not exist, the computational cost of this operation is only 1.

Branches — We are also able to express relational operations as compar-
isons when reading or writing data. Therefore, we are also able to model if
and else cases. For the purposes of this work we care for cases that involve
data modifications.

We can express loops using iterations of primitive operations, however
this could be computationally expensive. As it was stated before, some
relational algebraic languages offer a procedural language that allows us to
model loops, so we do not think of loops as a limitation. However, most
of the patches that had loops were considered to be infeasible because they
change the control flow of a patch by introducing recursion of functions and
modifying variables by using their returning values.

We can express a limited number of other operators in C such as selected
functions, including;:
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1. String Length: By getting the size of a character array. We are not
able to deduce character pointers.
2. Address of, typeof, sizeof: Metadata of each variable.

3. Free: By setting the value of the variable on a particular address to
NULL.

3.3 Constructing Graphs From Patches

In order to build a graph from a patch, we first represent the control flow
of the patch according to its data modifications. Graphs are represented
as trees, and the leaves of these trees are specific data modifications. In
Table 1, we can see some of the graphical representation of the types of
data modifications that are taken into consideration. We model patches as
a collection of machines that interact with each other to fulfill the purpose
of patching data.

Algorithm 1 Patch 1 example

1: procedure DATAPATCH1
2 int var = —1

3 if var < 10 then

4 if var2 < 10 then
5: var2 =8

6 elsefinish

7 end if

8 elsefinish

9: end if

10: if var < 5 then

11: if var2 < 2 then
12: free(var2)

13: var2 = 10

14: elsefinish

15: end if

16: elsefinish

17: end if
18: end procedure

Let us first introduce the patch as a simple pseudocode in Algorithm 1,
since the patches themselves contain a lot of metadata and variables that
could confuse the reader.

12
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Figure 1: This figure illustrates the translation of the Patch explained with
Algorithm 1 into an intermediate graph language

In the Algorithm 1, the pseudocode expresses a patch that has four dif-
ferent data modifications. The statements 2, 5, 12, and 13 are modifying
some variables on the application. Once patched, the new state of the appli-
cation will have four new values in some variables that have been updated
from their previous state. However, if we carefully analyze this patch, we
can see that there are only two variables being modified: var and var2.
This patch, in the end, will have two variables modified according to the
conditions implied by the branches.

The first subtree is a simple data declaration (i.e. write): this data
modification is Machine 3 in Table 1. The second subtree is a combination
of two if cases and a data modification, which is an expansion of Machine
5. This machine expresses an if case plus a data modification, but in our
example we have two if cases instead. Finally, the third subtree consists
of the same expansion of Machine 5 plus a data modification (Machine 1 in
Table 1). The combination of all these machines defines a data patch.

3.4 Features and their relationship with graphs

By having a graphical representation of a patch, we are able to illustrate
the control flow of the data modification statements. Figure 1 expresses the
patch explained in Algorithm 1, and how data modification statements are
defined on it. As it can be seen in Table 1, the leaves of each graph are the
data modification statements (e and ¢). These statements represent some
modification of a variable or data structure, if we refer back to Figure 1 we
can notice that the leaves are the e representing the use of an assignment
operator (e.g. var = 0) or the ¢ representing a function or operator from C
modifying a variable (e.g. free(var)).
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This is why the purpose of the graph representation language is to il-
lustrate the control flow of data modifications, more precisely if we see an
instance of a e know, based on the roots of the leaf, how to translate that
statement into a data modification machine. As an example, if we refer to
Figure 1, we can see that in order to modify data using the e on the leaves,
we need to first compare different parameters with four different ’if cases’.

The purpose of the features of a graph is to characterize three different
aspects that the translation tell us about the patches, that of the control
flow of the patch, how data is being modify (e.g. which operators should
we use over a database), and features related to the graph (e.g. number of
subtrees, number of edges, cyclomatic complexity). Another feature is the
percentage of data operations, which does not refer to how feasible the
patch is to be implemented but how many of the statements of the patch
are we able to express using basic database operations — some patches have
a percentage of data operations of 40% and we are still able to patch them,
as long as the statements that we are not able to express are not modifying
data (i.e. not part of the 40% of the data operation statements).

Why did we choose these features?

For our experiments, we have three different type of features: graph
representation, control flow and data operation features, we considered the
latter two based on the approach of classifying patches by Stavrou et al. [34].
Recall that the complexity of a patch is the feature vector resulted by the
translation process. For example, by having a feature vector we can mea-
sure its complexity by mapping it to its vector space. The following set of
features were chosen according to a particular hypothesis about measuring
the complexity of a patch.

3.5 Feature Vectors

We wanted to give a logical description for a patch that a machine could be
able to understand. For this, we decided to focus on three aspects that we
could define in our patches: control flow, data operations and our graphical
representation of a patch. We deducted as many features as possible for each
category and by the end we were able to construct a 15-Dimensional feature
vector explaining these three categories. We think that most of the features
are self-explanatory, or we could refer to Table 3.4 for more details, except
for percentage of data operations which can be defined as the percentage of
data operation statements in a patch (e.g. if we have a patch consisted of 10
statements, if 5 of them are related to data modifications then the percentage
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is of 50%) and the cyclomatic complexity feature, which is defined by the
formula:

Cyclomatic_Complexity = |E| — |V| + |N| (1)

where F is the set of edges in the graph, V is the set of nodes, and N is the
set of exit nodes.
We define the feature vector for our running example as:

FV =[20, Number of Operations,
16, Node Degree,
Longest Path,

Number of Searches,

Number of Compares,
Number of Writes,

Maximum input degree of a node,

Maximum output degree of a node,

Number of operations inside a loop,

Number of functions that return values,

Number of functions that pass parameters,

W = O O N Wk o Ut

Number of subtrees,

15, Number of edges,
, Cyclomatic Complexity,

100] Percentage of data operations in a patch]

P —
FV =[20,16,5,8,4,3,1,2,0,0,1,3,15,2,100]

The resulting vector has a large number of features; linear classifiers are
known to work better in a smaller dimensional space, thus we decided to
reduce the dimensionality of the feature vectors. As detailed in the next sec-
tion, we applied PCA over the set of features to obtain the most independent
features from our set and to feed the vectors to our SVM.

4 Feature Vector Calibration

After undertaking a manual classification, graph and feature vector transla-
tion, and labelling of our dataset, we now have seventy five different input

15



vectors for our SVM. However, before applying any machine learning algo-
rithms, we must first standardize our dataset and reduce the dimension of
our feature vectors. This reduction will help us to get better results when
applying our SVM algorithm. For normalizing our dataset, we use a stan-
dard formula shown below. To reduce the dimensionality of our feature
vectors, we use principal component analysis (PCA). Even though in SVMs,
typically, the VC-Dimension of the feature space is much higher than the
input space, we decided to reduce the dimensionality of the feature space
using PCA to get a distribution of what are the most independent features
in our dataset.

4.1 Standardizing Data

Each feature vector has many attributes that are correlated with each other.
This is the best type of data to give as input to PCA. PCA gets possible
correlated variables as input and maps it to a smaller dimensional subspace.
In this way, it decides which features are the most independent and reduces
our dimension to be less than or equal to the current number of features, in
this case fourteen. However, before applying PCA we must first standardize
the dataset. When we have values within the same range it is easier to see
which features are really correlated with each other. Because the values are
of mixed ranges, we decide to standardize the values of our dataset to be
between {-1, +1} with the formula: —2&L. — 1

max(z)

4.2 Applying PCA

We applied PCA using the free software programming language R [2]. We
used the library “stats” and the function “princomp()” that takes as a pa-
rameter our data matrix.

We emphasize that PCA and SVM are not related or duplicate proce-
dures here; we are purposefully using one (PCA) to impact the way the
other (SVM) will work. We want to build an SVM that relies on the most
independent features in the feature vector across all patches in the training
set. Applying dimension reduction is a technique that helps us to get a
better understanding of our data in terms of dependency, thus making it
not only easier to get feature vectors in the future, but also to work with
a smaller dimensional matrix which gives a smaller gramian matrix for our
SVM.

According to the correlation plot in Figure 4, there is a large correlation
between the features: number of writes, number of searches, computational
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Figure 2: Variances of the features. According to Kaiser’s criterion [39], we
should only consider the components which variances are over 1, which are
the first four features.

cost (i.e. number of primitive operations), cyclomatic complexity, number
of edges and number of nodes. There is also some correlation between the
number of compares and some other features related to relational algebraic
operations used. According to Figures 4, 2, and 5 — and the definition of
PCA — we should consider the least correlated variables: number of cyclic
operations, maximum of input degrees, percentage of feasibility, and the
longest path from the graph.

This means that, according to PCA and the correlation of our features,

— —_

we can map the vector F'V to PCA_FV (data in this example is not stan-
dardized to make it easier to understand for the reader):

—
FV =20,16,5,8,4,3,1,2,0,0, 1,3, 15,2, 100]

can be mapped to:

FV =5, Longest Path,
1, Maximum input degree of a node,
0, Number of operations inside a loop,
100] Percentage of data modification statements]
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4.3 Applying SVMs

There exist a wide variety of machine learning approaches, and it is not im-
mediately apparent which technique is most suited to the task of classifying
patches as a suitable or unsuitable candidate for hot patching. Classifying
source code is not an easy task and there are many options (Neural Net-
works, Bayesian Classifiers, Genetic Algorithms, etc. [17]). However, we
think that SVM is the best technique to use because many source code clas-
sification use SVMs by first translating the source code into an intermediate
language.

SVMs are supervised learning techniques that analyze data and recognize
patterns, this way classifying data according to our needs. It is a supervised
learning technique because in order to get an output we first need to provide
labeled data as input. Support Vectors, in SVM, are the data points closest
to the hyperplane.

4.4 Experimental Methodology

We divided our data into training and testing sets to apply cross-validation.
Our training dataset consists of 50 patches in their four-feature vector rep-
resentations. Each vector was labeled with a Y/N according to a manual
classification of feasibility. We manually went through each statement and
determined if we were able to patch the data according to the statements.
Recall that there is no functional relationship between a patch being infeasi-
ble and it being expressible in a relational algebraic language. The feasibility
of a patch depends on if we are able to express all of its data modifications
using our set of primitive operations.

We first train our machine using the ’ksvm’ function in R and our training
dataset. We used four different kernel functions — for the kernel trick in our
SVM — to get different results when using our SVM. We used five different
kernels: linear, polynomial, radial basis, anova and laplacian.

We train the SVM using R with the commands shown below. We first
import data from CSV file and then train our machine using data_train (50
patches with labels Y/N).

> data_train <- read.csv("svm_train.csv", header = TRUE)
> data_test <- read.csv("svm_test.csv", header = TRUE)

> model_ksvm = ksvm(Label~., data_train, type = "C-svc",
kernel = "polydot", prob.model = TRUE)

We then use the predict function to classify our testing data, and we
also classify our training dataset without the labels to see how well we are
able to predict feasibility.
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> predict(model_ksvm, data_test[,-5])
[T YNYNYYNYYNYYYNNNNYYNNYYYY
Levels: N Y

> predict(model_ksvm, data_train[,-5])

[ YYYYYYNNNYYYYYN
NNYNNYYNYYNYNNYYNYYYNYN
[B39] NNNNYYYYYNDNN

Levels: N Y

5 Evaluation

The results for our work are presented as a comparison between our man-
ual classification of patches and our SVM results. Figure 3 compares our
manually classified testing data with our SVM results. We are interested in
answering the following questions:

5.1 Research Questions

1. How many patches can we express as a data patch? This question can
be answered in the form of how many patches are defined as feasible.
We manually go through our dataset and classify 75 different patches
according to our definition of feasibility.

2. Are we able to train a machine to recognize a “feasible” patch? We
reply to this question by feeding the 75 patches to the SVM and getting
a set of labels for the patches as a result that define feasibility.

3. What is the relationship between the results we get when manually
classifying a patch as feasible and the results given by our SVM? By
getting the resulted set of labels we match them with the manual labels
we used for our analysis of the dataset.

4. What defines a patch to be feasible according to our SVM? Finally, we
reply this question by analyzing what the SVM defined as feasible and
what do the patches that were labeled as feasible or infeasible have in
common.

5.2 Experimental Methodology

We used a function in the R language to train and test our SVM [2]. After
applying PCA over our data, we get our original space mapped to a 4-
Dimensional space. We decided to choose the features resulted from our
PCA analysis. One of the lessons from applying PCA is that the 4 features
that were chosen as the most independent are each from a different feature
category. We need to remind the reader that the three categories chosen for
our features were: control flow, data operations and graph representation.
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e Longest Path of the graph: There is a relationship between control
flow and graph representation for this feature. The longest path of a
graph is considered to be the number of nodes from the root to the
leaves of the longest subtree of a graph. If we refer back to Figure 1,
the longest path would be of 5 from the starting node to the Free()
operator.

e Maximum input degree of a node: There is also a relationship
between control flow and graph representation for this feature. This
feature tells us what is the maximum of inputs of a node. The inputs
are considered to be, for example, return values that modify a variable,
variables that are modified inside a loop or a branch, etc. In Figure 1,
the maximum input node degree is of 1, but if the value from a data
modification within an if case is modified by the returning value of a
function, then that node would have a degree of 2.

e Percentage of data operations: This feature is related to data
operations of a patch. It tells, out of the statements of the patch, how
many statements modify data structures? For example, if a patch has
10 statements and 3 of them modify data structures, then this features
is 30%.

e Loop Operations: This feature is related to the control flow of the
patch. It tells how many operations are within a loop (e.g. for case,
while loop).

For the 4-Dimensional space, we use the library ’kernlib’ in R to classify
the dataset in a 4-dimensional plane. The ’kernlib’ package offers us the
option to provide a sigma value for the radial basis kernel function, which
does a better job calibrating our SVM.

Why 50 training and 25 testing patches? There are many ways to
analyze a set of data consisting of 75 different data points. We think that,
the better we train our SVM, the better results we will get and the more
the SVM will learn. This is why we decided to choose 2/3 of our dataset for
training and 1/3 for testing purposes. For future work, we are planning to
analyze a bigger set of patches and compare the results to what we learned
from this experiment.
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#  Longest Path max in degre cycles Percentag Label Polynomial Radial Basis Linear Laplacian Anova
-0.75 -05 - -1N N

-05 -05 -1N
-0.25 -05 -1N
-0.75 -05 -1N
-0.25 -05 -1N
-1N
-1N
-1N

WENO VB WN e
I
zzzzzzzz
zzzzzzzz
zzzzzzz
zzzzzzzz
zzzzzzzzz

-0.5 -0.5 - -1 N N N N N
10 0 0 -0.4 1N Y N N N N
11 -0.75 0 -1 1N Y Y Y Y Y
12 0.25 0 -0.2 1N Y N N N N
13 -0.5 -0.5 -1 1N Y Y Y Y Y
14 -0.5 0 -1 06 Y Y Y Y Y Y
15 -0.5 0 1 0.5714 Y Y Y Y Y Y
16 -0.5 0 1 oy N Y Y Y Y
17 -0.5 0 1 05 Y Y Y Y Y Y
18 0 0 1 1y Y Y Y Y Y
19 -0.75 -0.5 -1 1y Y Y Y Y Y
20 -0.75 -0.5 -1 1y Y Y Y Y Y
21 -0.25 0 1 1y Y Y Y Y Y
22 -0.5 0 1 06 Y Y Y Y Y Y
23 -0.25 0 1 06 Y Y Y Y Y Y
24 0 0.5 1 1y Y Y Y Y Y
25 0 0.5 1 1y Y Y Y Y Y
% of Match: 80% 92% 92% 92% 92%

Figure 3: Comparison between manually classification and predictions of
our SVM for our testing dataset using every kernel function. The first set
are the infeasible patches, then the mismatched patches that we considered
to be infeasible, and the third set is the feasible patches.

5.3 Results

Answering the research questions that we posed above, we can conclude
that we are able to express every data modification of 38 out of 75 patches.
However, at least 24 out of the remaining 37 patches are uninteresting to
us, because they are not creating new semantics on data structures.

Our dataset contains 75 patches that we classify into three categories: (1)
patches that are infeasible because we cannot express their statements (e.g.
they expect arbitrary computation such as user input), (2) patches that are
infeasible, for our purposes, because they do not modify data structures (i.e.
they have a 0% of data modification statements), or (3) patches that are
considered to be feasible. We study how our SVM recognized these groups.

Experiment 1 To do so, we experimented with our dataset in two differ-
ent ways. First, we divided our dataset into a training dataset (consisting of
two—thirds of our data, 50 patches) and a testing dataset (with one-third of
our data). We feed the training dataset to our SVM and predicted the test-
ing dataset, and then we also use the training dataset as a separate testing
dataset, without labels.
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Experiment 2 Our second main experiment was an attempt to replicate
the procedure and results of the first experiment by examining five randomly
selected subsets of our dataset. This series of experiments randomly selected
30 patches as the training set and used the remaining 45 as our testing set.
We predicted the labels for our testing dataset by using the same heuristics
as before (that is, by using 5 different kernels).

The last two questions can be answered with our SVM results. Table 4,
3, and Table 5 contain our results. According to this data, SVMs appear
to be a good way to predict feasibility of data patches. Using a polynomial
kernel, our SVM predicted with 80% correctness the feasibility of our testing
dataset (20 good results out of 25). Furthermore, it predicted with 84%
correctness the feasibility of our training dataset (42 good results out of 50).
This gives our SVM a 85% of correctness for our entire dataset. Using the
other kernels (radial basis, linear, laplacian and anova) our SVM predicted
with 92% correctness the testing dataset (23 out of 25 good results). On the
training dataset, however, the best results were obtained using the radial
basis and laplacian kernel functions (44 good results out of 50) with 88% of
correctness. The results on Tables 3 and 4, tells us the best kernel functions
to use with our dataset are radial basis and laplacian.

The results in Table 3, 4, and 5 tell us that the best kernel functions
to use with our dataset are radial basis and laplacian. We emphasize that
deciding feasibility of a patch is a non-deterministic task, therefore there
is no algorithm or pattern that could tell us if a patch is feasible or not.
However, by using our heuristics, we were able to classify patches using a
machine learning algorithm.

5.4 Relationship between Feature Vectors and our Results

We thought that the best way to describe a patch was in the form of a
feature vector that includes a representation of three important attributes
that we considered for our patches: the control flow of the patch, the data
operations, and our graphical representation, proposed in Section 3, for a
patch. By the end we had a vector with 15 different features and, after
applying PCA, we were able to map that vector into a 4-Dimensional space.

Now, the question we are trying to address on this subsection is: what
is the relationship between these features and our SVM predictions? We
can refer to Figure 5 and see that there is a notable relationship between
the feature “percentage of data statements” and the label given by ourselves
and the SVM. For example, for our testing dataset, we have 13 infeasible
patches, on which only 4 had data modification operations — the rest did
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not have any data operations thus their data structures did not need to be
updated. That leaves us with 12 feasible patches which all had over 50%
of data operation statements, most of the 12 feasible patches had a bigger
value for the “maximum input degree” feature than the infeasible patches;
this means that the more complex the control flow is, the harder it is to hot
patch data structures. And finally, there are no cyclic operations (i.e. for
or while loops) in what the SVM classified as feasible patches.

The biggest confusion for our SVM was when a feature vector of a patch
labelled as infeasible was the same as a feature vector labelled as feasible.
For example, if we refer to Figure 3, we can see that Patch#11 has a similar
feature vector as Patch#19 but different labels. This is because some of its
data operations were involved in arbitrary computation, such as expected
user input, and were not recognized by the SVM, thus mislabelling them as
feasible.

5.5 Answering Research Questions

1. How many patches can we express as a data patch?. We are able to
express 38 out of 75 patches as a data patch. From the remaining 37
patches, twenty-four patches are uninteresting to us because they do
not modify the semantics of any data structure.

2. Are we able to train a machine to recognize a “feasible” patch?. The
answer to this question is yes. By feeding the training and testing
datasets to the SVM with no labels and was able to learn about the
feature vectors and predict feasibility. We think that we can improve
our results by isolating the patches that our SVM did not predict
correctly and analyze them in order to get better features that could
avoid confusion on our SVM. According to our results, the best kernels
to use are Polynomial and Linear Kernels.

3. How well does the machine learn to predict results according to the
heuristics we use?: Our SVM matched our labelling results with over
80% of correctness for our testing dataset and over 84% for out training
dataset, which was treated as a new dataset by giving it to the SVM
with no labels. For our second experimentation, we get an average
correctness of 75.99% over our 5 datasets.

4. What defines a patch to be feasible according to our SVM?: From these
results, we learned that there is a relationship between control flow and
a patch’s data structures being feasible to hot patch. The maximum
input degree describes, for example, a statement using variables re-
turned by calling a function. This makes hot patching data structures
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infeasible because we cannot predict arbitrary computations that many
functions do, we took a black-box approach when analyzing these func-
tions. The cyclic operations are also related to the control flow of the
patch, and the patches that were found to be feasible did not have any
loops modifying data structures.

5.6 Limitations

There are a number of possible difficulties in applying a patch or sources of
error in this type of work, including:

we can’t express patch semantics in our “language”

the patch may actually be malicious

the patch may be broken

the patch may be complex and difficult to categorize / classify

AN

the patch may contain certain elements that have an unpredictable

impact on data semantics (e.g., input, unbounded computation)

6. the ML just was not powerful enough to make a correct decision (clas-
sifier wasn’t trained well enough / sensitive / or calibration enough)

7. manual error / human error in manual classification / assessment of

patch characteristics.

6 Related Work

Applying machine learning techniques to the problem of patching is, to the
best of our knowledge, something new to the machine learning field, even if
machine learning has been applied in the security realm before (especially
intrusion detection). However, classifying source code with a signature-
based approach is similar to what we are trying to do in our work. This has
been done in applying machine learning techniques on virus analysis [15, 28]
and similarly with spam analysis [37], where spam is classified according to
a pre-determined set of key words.

Software self-healing has been an active area of research. In one early
example, failure oblivious computing executes through faults [30]. The Reac-
tive Immune System [31] aims at roughly the same concept: process execu-
tion can be forced through a fault or exploited vulnerability by “slicing off”
the corrupted function and returning an error code. Instead of attempting
to force continued execution through an exploited vulnerability, a signifi-
cant some work attempts to rewind execution to a pre-fault or otherwise
uncorrupted state [4,11, 16, 26].
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As the community explores the promise of more ambitious software repair
efforts [21,26,30-32,38] or hot-patching OS kernels [3,7]) to automatically
defend systems from new attacks and vulnerabilities, we must recognize that
such techniques carry a great deal of risk because they largely bypass the cy-
cle of patch testing used to vet both vendor and internally developed patches.
Such techniques would benefit from an automated method of classifying a
patch or fix, and this paper details such a procedure and approach.

7 Conclusion

We demonstrate a method for predicting whether a security patch is suitable
for “hot patching” (i.e., an unsupervised dynamic software update to ame-
liorate a vulnerability). We train an SVM to identify patches that contain
constructs that would make it difficult to automatically apply the patch
to a running application. The feature vectors of the SVM represent the
“complexity” of the patch in terms of its operations on data and control
flow.

The SVM classifies 92% of our training set and 84% of our testing set as
feasible; this rate means that 4 out of 5 times, our SVM can help a system
owner decide whether a patch is a good candidate for applying to their
running system as a dynamic software update (with concommitant “live”
data updates). We also learned that the control flow of a patch (i.e. loop
operations, returned values by functions, number of nested operations in a
branch or loop) are elements that define feasibility of a patch in terms of
how they modify data structures.

References

[1] http://fetchmail.berlios.de/fetchmail-SA-2005-01.txt.

[2] David Meyer Alexandros Karatzoglou. Support vector machines in r.
In Journal of Statistical Software, 2006.

[3] Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski,
Dilma Da Silva, Orran Krieger, and Gernot Heiser. Reboots Are for
Hardware: Challenges and Solutions to Updating an Operating System
on the Fly. In Proceedings of the USENIX Annual Technical Confer-
ence, June 2007.

25



[4]

A. Brown and D. A. Patterson. Rewind, Repair, Replay: Three R’s
to dependability. In 10" ACM SIGOPS European Workshop, Saint-
Emilion, France, September 2002.

Aaron Brown, Daniel Hettena, Jon Kuroda, Noah Treuhaft, David A.
Patterson, and Katherine Yelick. Roc-1: Hardware support for
recovery-oriented computing. IEEE Trans. Comput, 51:2002, 2002.

George Candea and Armando Fox. Crash-Only Software. In Proceedings
of the 9" Workshop on Hot Topics in Operating Systems (HOTOS-IX),
May 2003.

Silvio Cesare. Runtime Kernel kmem Patching, 1998. http://vx.
netlux.org/lib/vscO7.html.

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew.
Polus: A powerful live updating system. In Proceedings of the 29th

international conference on Software Engineering, ICSE '07, pages 271—
281, Washington, DC, USA, 2007. IEEE Computer Society.

Dustin Childs. Kb2839011 released to address security bulletin update
issue.

A. Di Stefano, G. Pappalardo, and E. Tramontana. An infrastructure
for runtime evolution of software systems. In Computers and Communi-
cations, 2004. Proceedings. ISCC 2004. Ninth International Symposium
on, volume 2, pages 1129-1135 Vol.2, 2004.

G. W. Dunlap, S. King, S. Cinar, M. A. Basrai, and P. M. Chen. Re-
Virt: Enabling Intrusion Analysis Through Virtual-Machine Logging
and Replay. In Proceedings of the 2002 Symposium on Operating Sys-
tems Design and Implementation (OSDI), February 2002.

Brian Fahs. Spedi: Static patch extraction and dynamic insertion.
IEEE Trans. Comput, 51:2002, 2002.

Daniel Fleshbourne. iphone users now fear security patches, say ana-
lysts.

Stefan Frei, Thomas Duebendorfer, and Bernhard Plattner. Firefox
(in) security update dynamics exposed. SIGCOMM Comput. Commun.
Rev., 39(1):16-22, 2009.

26



[15]

[24]

D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz. Malware de-
tection using machine learning. In Computer Science and Information
Technology, 2009. IMCSIT °09. International Multiconference on, pages
735-741, 2009.

Samuel T. King and Peter M. Chen. Backtracking Intrusions. In 19"

ACM Symposium on Operating Systems Principles (SOSP), October
2003.

J. Zico Kolter and Marcus A. Maloof. Learning to detect and clas-
sify malicious executables in the wild. Journal of Machine Learning
Research, 7:2006, 2006.

Evgenios Konstantinou. Metamorphic virus: Analysis and detection,
2003.

F. Maggi, W. Robertson, C. Kruegel, and G. Vigna. Protecting a Mov-
ing Target: Addressing Web Application Concept Drift. In Proceeding
of the 121" International Symposium On Recent Advances In Intrusion
Detection, 2009.

Elinor Mills. Symantec Pulls Norton Patch After Error Reports. CNET
News: Insecurity Complex, August 20009.

Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Exterminator:
Automatically correcting memory errors with high probability. Com-
mun. ACM, 51(12):87-95, 2008.

Nilay Patel. Botched McAfee Update Shutting Down Corporate XP
Machines Worldwide. In http: //www. engadget. com/ 2010/ 04/ 21/
mcafee-update--shutting-down-zp-machines/, 2010.

Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. Automatically patching errors
in deployed software. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, SOSP ’09, pages 87-102, New
York, NY, USA, 2009. ACM.

P.Li, D. Gao, and M. Reiter. Automatically Adapting a Trained
Anomaly Detector to Software Patches. In Proceeding of the 121" Inter-
national Symposium On Recent Advances In Intrusion Detection, 2009.

27



[25]
[26]

[27]

[31]

32]

Bogdan Popa. Windows 8 update fails on kb2770917.

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.
Rx: Treating Bugs as Allergies — A Safe Method to Survive Software
Failures. In Proceedings of the Symposium on Systems and Operating
Systems Principles (SOSP), 2005.

Ashwin Ramaswamy, Sergey Bratus, Michael E. Locasto, and Sean W.
Smith. Katana: A Hot Patching Framework for ELF Executables.
In The 4" International Workshop on Secure Software Engineering
(SecSE 2010), held in conjunction with ARES 2010, February 2010.

Christopher Richardson. Virus detection with machine learning, 2009.

Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Diissel, and
Pavel Laskov. Learning and classification of malware behavior. In Pro-
ceedings of the 5th international conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, DIMVA ’08, pages 108—
125, Berlin, Heidelberg, 2008. Springer-Verlag.

M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and Jr. W Beebee.
Enhancing Server Availability and Security Through Failure-Oblivious
Computing. In Proceedings 6! Symposium on Operating Systems De-
sign and Implementation (OSDI), December 2004.

Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Ange-
los D. Keromytis. Building a Reactive Immune System for Software
Services. In Proceedings of the USENIX Annual Technical Conference,
pages 149-161, April 2005.

A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identifica-
tion, and Repair of Control-Hijacking Attacks. In Proceedings of the
12" Symposium on Network and Distributed System Security (NDSS),
February 2005.

Craig A. N. Soules, Jonathan Appavoo, Dilma Da Silva, Marc Auslan-
der, Gregory R. Ganger, Michal Ostrowski, and et al. System support
for online reconfiguration, 2003.

Angelos Stavrou, Gabriela F. Cretu-Ciocarlie, Michael E. Locasto, and
Salvatore J. Stolfo. Keep Your Friends Close: The Necessity for Up-
dating an Anomaly Sensor with Legitimate Environment Changes. In
Proceedings of the 2 Workshop on Artificial Intelligence and Security,
20009.

28



[35]

[38]

[39]

Thomas Stibor. A study of detecting computer viruses in real-infected
files in the n-gram representation with machine learning methods. In
Proceedings of the 23rd international conference on Industrial engineer-
ing and other applications of applied intelligent systems - Volume Part I,
IEA/AIE’10, pages 509-519, Berlin, Heidelberg, 2010. Springer-Verlag.

Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dy-
namic software updates: a vm-centric approach. SIGPLAN Not.,
44(6):1-12, June 2009.

Konstantin Tretyakov. Machine learning techniques in spam filtering.
Technical report, Institute of Computer Science, University of Tartu,
2004.

Westley Weimer, ThanVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically Finding Patches Using Genetic Programming.
In International Conference on Software Engineering (ICSE), 2009.

Keith A. Yeomans and Paul A. Golder. The guttman-kaiser criterion
as a predictor of the number of common factors. In In The Statistician
Vol. 81, No. 3, 1982.

29



Appendix

-1.0 05 -1.0 -1.0 10 -1.0 1.0 -1.0 -1.0 10 1.0 1.0 1.0 1.0

e ey 0 1
M LMM::HMJ-@MJ h

-10 05

ﬂﬁﬁﬁw ======= ?WWWaﬁﬁﬁmr
AR E S - EEE R R R
= RIS el = m s s
QAT TS S R AP N AP A
< He din et i | s ] S ] (e e
i e e ) ) el 8 P et
;Eg@@mgmmmggamﬂak
] 00 | | ot e o
ﬂmﬁﬁﬂm&@@T&@ﬂ wQ
H?r@jggﬁﬁgfﬁﬁﬁ gt -
Mn%Mmeﬁmﬂm@mﬁwL

-0 1.0 -1.0 10 1.0 1.0 1.0 1.0 1.0 -1.0 00 -1.0

Figure 4: This figure illustrates the correlation of all the features. The
darker the colors are, the more correlation there is. In this case we care for
the lighter squares to look for less dependency, this is why we chose the first
four features (matching with the results in Figure 2)
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Table 1: Data Modifications Machines

Machine | Name Format Example Operations ComputationalNode Label
Cost

1 Simple var-name = | data = 10; | search(data) | 2 .
Data Mod. | value and write(10)

into data

2 Simple var_name = | data = | search(data), | 3 ©—e

Data Mod. | var2 name | data2; search(data2)
in lo-
cal_vars and
write(data2)
into data

3 Declaration | type int data; write(int, 1 ®
New Var. var_namne; data) into

local_vars

4 Declaration | type int data = | write(int, 1 ®
New Var. var_name = | 10; data, 10) into

value; local_vars

5 If case + |if if(data < | search (data) | 5 o — (O —
Data mod. | (var < | 10)  then | in local_vars, .

value) data2 = 0; | read(data),

then compare(datax10),

var = value; search(data2),
write(0) into
data2;

6 If case + |if if(data < | search data | 5 e— () — e
Else case (var < | 10) in local_vars,

+ Data | value) then read(data),

mod. then data2 = 0; | compare(datax10),

var = value; | else if it is then
else data2 = 10 | search(data2),
var = write(0) into
diff_value; data2; else
search(data2),
write(10)
into datal;

7 Data Mod- | sizeof(var) | if search(var.size|),Depends on | ¢
ifications free(var) (sizeof(var) | read the opera-
using i 4) (var.size), tor
Operators then com-
and Func- free(var); pare(var.size
tions 32 . 4),
using meta- search(NULL)
data into wvar




Feature Features Explanation
Type
Control Number of Oper- | We chose these
Flow | ations features because
# Loop Opera- | one of our hy-
tions pothesis is that
# Functions that | the control flow of
Return Variables | a patch define its
# Functions that | complexity.
Pass Parameters
Data | # Searches Another hy-
Op- # Compares pothesis is that
era- # Writes the amount of
tions | % Data opera- | data modification
tions out of state- | statements, on
ments the patch, define
how hard it is to
hot patch it.
Graph | Node Degree The third hypoth-
Rep- | Longest Path esis is that the
resen- | Max. In Degree complexity of the
ta- Max. Out Degree | graph defines the
tion # Subtrees complexity of a
# Edges patch.
Table 2: Different types of features of our vector

Kernel Function | % Correct Classification Results
Polynomial 84% 42 out of 50
Radial Basis 88% 44 out of 50
Linear 84% 42 out of 50
Laplacian 88% 44 out of 50
Anova 84% 42 out of 50

Table 3: Results for Training Data Set for Exzperiment #1
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Kernel Function | % Correct Classification Results
Polynomial 80% 20 out of 25
Radial Basis 92% 23 out of 25
Linear 92% 23 out of 25
Laplacian 92% 23 out of 25
Anova 92% 23 out of 25

Table 4: Results for Testing Data Set for Experiment #1

Random Dataset Polynomial | Radial Basis | Linear | Laplacian | Anova
First Random Set 66.66% 66.66% 66.66% | 66.66% | 71.11%
Second Random Set 80% 75.55% 80% 75.55% | 73.33%
Third Random Set 80% 75.55% 80% T1.TT% | 75.55%
Fourth Random Set 80% 75.55% 80% % | 71T %
Fifth Random Set 80% 74.66% 77.33% | T74.66% | 75.99%
Averages 77.33% 74.66% 77.33% | 74.66% | 75.99%

Table 5: Results for Testing Data Set for Experiment #2
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