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Abstract 

In this thesis we examine the question of quantum separability testing. We begin by 

examining some of the properties of the set of separable quantum states and show 

how these properties can be used to create tests for separability. Unfortunately, 

the separability criteria we discuss in this thesis are unsatisfactory for one of two 

reasons. The first reason being that they are difficult or impossible to implement 

and the second reason is that they are not complete criterion, there are states which 

they cannot categorize as entangled or separable. The main purpose of this thesis is 

to give a rigorous proof of a result due to L. Ourvits [14] that quantum separability 

testing is NP hard. 
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Chapter 1 

Introduction 

Entanglement is defined as a resource used in quantum computing because it can be 

used to perform tasks that cannot be done classically. For instance, entanglement 

is an essential ingredient in quantum teleportation and superdense coding. Before 

we can give a mathematical definition of entanglement we need to discuss what a 

quantum state is. 

Definition 1.1. A quantum state is a Hermitian matrix, with entries from the com-

plex numbers, whose eigenvalues are non-negative real numbers that sum to one. 

With this definition of quantum state we can begin to investigate what an en-

tangled state is. First, it is important to keep in mind that entangled states can 

only exist on composite systems. A composite system is, as the name suggests, a 

system that can be broken into smaller parts. For simplicity, let us consider a system 

composed of two parts, one part with Alice and another part with Bob. If Alice's 

system has dimension n and Bob's system has dimension m then a quantum state 

over the system shared by Alice and Bob will be a nm >< mm quantum state. We will 

denote the set of all states in this system by Pos1 (Ctm (& Ctm). 

Definition 1.2. A quantum state p E Pos1(CTh(DCm) is called separable if there exists 

quantum states O, o, .. , E Pos1(C), , ,• , . Posi (Cm) and a vector 

1 
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p E R with positive entries where IlpII1 = 1 such that 
r 

p= 

If a state is not separable then it is entangled. 

Example 1.3. Consider the state 

The state p is separable because 

000 

000 

000 

_0 0 0 

2 

or 

This is an easy example of a separable state. One can see almost immediately that 

the state is separable. 

Example 1.4. Now, consider the state 

11 00 
88 

11 i- 1 
84 ' 8 

000 

1(' 1 
Y 8 8 

This is a slightly more difficult example. It is not at all clear if the state ci is separable 

or entangled. However if we examine the state closer we will find that 

1 01 [1 11 
I 12 21 1 øi 1+ 

0 0] Ii i [2 2] 

and is therefore separable. 

11 
22 

00 iOU 10 
+— 0 

01 01 00 
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Example 1.5. Finally, let us examine the state 

e 

Ann! 
2 ""2 

0000 

0000 

Ann! 
2 'j u 2.. 

After some consideration one would find that it is impossible to write this state as a 

convex combination of separable states. This state is entangled. 

Now that we know what entanglement is, we want to know how we can use it. 

As mentioned earlier, entanglement is a requirement for quantum teleportation. In 

quantum teleportation there are two parties, Alice and Bob, and Alice wants to use 

a classical communication channel to send an arbitrary physical quantum system to 

Bob. An example of quantum teleportation is Alice teleporting a photon to Bob. 

Let us assume that Alice has performed. some physical operation on a photon 

and she wants to send this photon to Bob. If Bob has a photon in the ground state 

then using quantum teleportation Alice and Bob can engage in a protocol such that 

at the end of the protocol Bob's photon has the same state as Alice's photon did 

at the start and the state of Alice's photon is changed to something else. Quantum 

teleportation allows Alice to send the state of an arbitrary physical system of small 

size to Bob using only two bits of communication and a shared entangled system. 

This is a very powerful procedure. Without quantum teleportation we would not be 

able to efficiently transmit quantum information. 

One might wonder if it is possible to perform an operation like quantum telepor-

tation without entanglement. For instance, if Alice knows the quantum state of her 
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photon, then she can send this to Bob. Bob could then use the quantum state to 

determine what operations to perform on his photon to create a photon identical to 

the photon that Alice wants to send him. Depending on the quantum state, the end 

result of this procedure might be the same as quantum teleportation and it would 

not require entanglement. However, there are many problems with this approach 

and we discuss four of them below. 

First, even though we may know the quantum state it may still be difficult to 

create the quantum system. Alice may have more powerful equipment than Bob. 

Even though Bob knows the state of the photon he may be unable to perform the 

same operation on his photon as Alice did to her photon. Second, the positive 

semidefinite matrix may have irrational real or imaginary parts. Alice may only be 

able to send an approximation of her state to Bob. Bob would not end up with 

a photon in the exact same state as Alice's. Third, this approach will not work if 

Alice wants to send one photon of an entangled pair of photons to Bob. An entangled 

system is more than just the sum of the two parts and so this method cannot be used 

to distribute an entangled state. Finally, in general we do not know the quantum 

state that represents a physical system. Furthermore, we cannot determine the 

quantum state of a physical system without many copies of the physical system. 

Now that we know what entanglement is and what we can use it for, we now 

come to the main part of this thesis. We answer the question, "Given a quantum 

state, is it possible to efficiently determine if the state is entangled or not?". When 

working with a quantum state, we can use any mathematical procedure to determine 

if the quantum state is entangled or not. Does this allow us to successfully test for 
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entanglement? We know from previous examples that the quantum state 

*000 

000 

000 

0 0 

is separable and the state 

inn! 
2 0  2 

0000 

0000 

inn! 
_2 V V 2... 

is entangled. If we are given a new state, for instance, 

0000 

0 11 0 
22 

nil 
' 22 

_0 0 0 

can we tell if it is an entangled state or not? In this case the answer is yes. 

There is a simple test we can perform on 4 x 4 quantum states that allows us 

to determine if they are entangled or not. This is called the partial transpose test. 

In the 4 x 4 case, we partition the quantum state into four 2 x 2 matrices and take 

the transpose of each matrix. Applying this technique to the above matrix gives the 
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following, 

0000 0000 000k OOO 

00 00 000 000 

0000 0000 00O 0O0 

We can then determine if the quantum state is entangled by looking at the eigenvalues 

of the partial transposed state. In this case, the eigenvalues are —1/2,1/2,1/2, and 

1/2. Since one of the eigenvalues of the partial transposed state is negative we can 

conclude that the original state was entangled. This is a useful test in the case 

where our quantum state is a 4 x 4 matrix or even a 6 x 6 matrix. However, once 

our dimension grows beyond this point this test starts to fail. In dimensions above 

6 x 6, there exists entangled states such that the partial transpose of these states 

will have only positive eigenvalues. 

The partial transpose test fails to work in larger dimensions. To make matters 

even more difficult, quantum states are closed under convex combinations. If X 

and Y are quantum states of the same dimension and p is any real number between 

zero and one then pX + (1 - p)Y is also a quantum state. If we take the convex 

combination of a known entangled state and a known separable state, for instance, 

p 

1 
4 000 

000 

000 

0 0 0 

+(l—p) 

0000 

0 11 0 
22 

nil 
"22 

0000 

then for some values of p we get an entangled state and for other values of p we get 

a separable state. Determining when we get an entangled state and when we get a 
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separable state is a very difficult task. In fact, there is no efficient test for all types 

of entanglement in dimensions above 6. 

The first step to proving our main result is to introduce the concepts used in 

this thesis. Chapter 2 will introduce the background material needed to understand 

the results in this thesis. We start with a basic description of the notation we will 

be using and finish the chapter with a discussion of Neumark's theorem [1, 2] and 

quantum measurements. 

Chapter 3 begins the discussion of how to test for entanglement. We cover the 

main criteria used when trying to determine if a quantum state is entangled or not. 

There are many tests for entanglement but we only cover the most general tests 

in Chapter 3. Specifically, we will look at the Woronowicz-Peres criterion [19, 30] 

and the Peres-Horodecki criterion [3, 19]. This thesis is only concerned with criteria 

which can help us decide if an unknown quantum state is entangled or not. We will 

not cover any tests for entanglement that assume any prior knowledge of the input 

state. 

The next major topic we address is the size of the set of separable states. By 

studying the set of separable states we can learn more about the set of entangled 

states. Chapter 4 gives the radius of the smallest ball that completely contains the 

set of separable states and then covers a result due to L. Gurvits and H. Barnum 

[15] which shows how to construct balls of separable states that completely fit inside 

the set of separable states. This gives an upper and lower bound on the size of the 

set of separable states. 

Chapter 5 covers some of the earliest results on the hardness of testing for entan-

glement. In this chapter, we talk about exact entanglement testing [25] and creating 
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a physical operation that will be able to test for entanglement. 

Chapters 6 and 7 contain the result that is the purpose of this thesis. In these 

two chapters we examine the proof from [14] that shows separability testing is NP 

hard. Chapter 6 covers the Yudin-Nemirovsky theorem, which plays a vital role in 

the proof of hardness. Chapter 7 uses the results of Chapter 6 to complete the proof 

of hardness, 



Chapter 2 

Background 

2.1 Linear Algebra 

This thesis does not follow the standard notation used in quantum information. 

Here, we avoid the use of Dirac notation and instead use the traditional mathemat-

ical way of representing vectors and vector spaces, the main elements of quantum 

information. The notation, beyond the most basic, was used in lecture notes pre-

pared by J. Watrous [28, 29]. Throughout this thesis we will only be dealing with 

finite dimensional vector spaces over the rational numbers Q, the real numbers R or 

the complex numbers C. Vector spaces will be denoted by calligraphic letters such 

as F and g and the notation J = CI means that .27 is a n-dimensional vector space 

over the field C. Let F = Cn and let u E F. Then ü will be the vector whose entries 

are the complex conjugates of the entries of u, uT will be the row vector that is the 

transpose of the column vector u and u = UT . The vector u will be indexed by 

square brackets [•1' U[i] will be the i'th entry in the column vector u. The following 

three vector norms will be used. 

IIuI1 = Iu[i] I The sum norm. 

lull2 = lu[i] 2 The Euclidean norm. 

lluM =max{lu[i]l : i= 1, ... ,n} The max norm. 

9 
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For convenience, a norm with no subscript I I . , will be used to denote the Euclidean 

norm and when we say unit vector we mean a vector with Euclidean norm equal to 

one. For any two vectors u, v E F we will use the inner product (u, v) = uv. The 

standard basis for F will be denoted by {e,,. .. , e} where e[i] = 1 and ej[j] = 0 for 

all ij. 

In many cases we will have to consider composite vector spaces. A composite 

vector space is a space that is composed of more than one part. If we take two vector 

spaces g and R then an example of a composite vector space would be ..F = g ® H. 

If the set {u,,. . . , u,2} is a basis for 9 and the set {vi,. . . , Vm} is a basis for 7i then 

{u ® vj 1 < i < n and 1 ≤ j ≤ m} is a basis for 2 where ® denotes the tensor 

product. It may be possible to write a vector space as a composition of different 

vector spaces, for instance C'6 = C4 ® C4 = C8 0 C2. We will call each possible 

composition a partition. In our example above, C8 0 C2 is one possible partitioning 

of the space C'6. When dealing with composite systems we will always specify the 

way it is partitioned by simply writing the partition we are concerned about. If it 

does not matter whether the space is composite or not then we will simply write 

T. There are also instances where we may consider a composite space composed of 

more than two systems such as J 0 ... ® 

The Schmidt decomposition theorem is useful when working with vectors over 

composite vector spaces. 

Theorem 2.1. Schmidt Decomposition Theorem 

Let .F = Ctm and Q = Ctm. For any vector u E F 0 9 there exists a posi-

tive integer r ≤ min{ n, m}, two sets of orthonoi-rnal vectors {u,, u2,. . . , Ur} C .T, 
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{vi, v2,. .. , Vr} C 9, and a vector p E RI with positive entries where 1plI2 = 1 such 

that 

r 

U = 

i=1 

p{i]uj®vi. 

The entries of p are called the Schmidt coefficients of the vector u and the number 

of Schmidt coefficients is the Schmidt rank of u. The Schmidt coefficients and the 

Schmidt rank are both uniquely determined by u. 

It will also be important in this thesis to consider the space of linear maps from 

one vector space to another. If and g are vector spaces over the same field then 

L(F, g) will denote the set of all linear maps from .F to G , with L(.7) being shorthand 

notation for L(.F, .'F). If dim(P) = n and dim(g) = m then the space L(.F, ) can 

be identified with the set of all m x n matrices with entries from the base field of 1. 

The elements of L(.) will be called operators. L(.', ) is also a vector space with 

standard basis f Ejj : 1 ≤ i ≤ dim(g), 1 ≤ j ≤ dim(J)} where E,[i,j] = 1 and 

Ejj [k, 1] = 0 when i k or j 74 1. We will be using the following norms on the vector 

space L(1,g). 

IIXIItr = tr,JX*X 

IIXIIF = /tr(X*X) 

lxii = max{liXuli : u e P, 1jull = 1} 

The Trace norm. 

The Frobenius norm. 

The Operator norm. 
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All our matrix norms listed above fulfill the standard norm axioms. In addition, 

we have that for any vector space .F and operators A, B E L(.'F) 

IIAB II" IA tr < - IItr I Bli tr 

lAB" < IBII hF - IA IIFI F 

IlABII :; hAll IIBII. 

The standard inner product we will use for matrices X, Y E L(, ) is the Hilbert-

Schmidt inner product (X, Y) = tr (X*Y). 

Throughout this thesis we will encounter many different types of operators on 

vector spaces. For any operator X E L(F) we have that X is normal if XXK = X'X, 

X is Hermitian if XK = X, X is unitary if XX = XX = I and, X is positive 

semidefinite if X is Hermitian and u*Xu ≥ 0 for all u € F. For all matrices 

X E L(J, g) the operator Y = XX is a positive semidefinite operator. If X is a 

positive semidefinite operator then there exists a unique operator Z = v'X such that 

X = z2. If X E L(.F, g) is not an operator but X*X = I then we say that X is 

norm preserving. This is justified because 

IlXuII2 = XU = u*X*Xu = = huh2 

where u E .F and X is either a unitary operator on 1 or a norm preserving matrix 

X E L(.T, g). It is clear from the definitions that all Hermitian operators are normal 

and all unitary operators are normal. By definition, all positive semidefinite opera-

tors are Hermitian and hence normal. One theorem involving normal operators that 

we will exploit often in this thesis is the Spectral Decomposition Theorem. 
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Theorem 2.2. Spectral Decomposition Theorem 

Let F = C. For any normal operator X E L(F) with eigenvalues A1, A2,. . . , 

there exists an orthonormal basis {ui, u2,. . . , u,} for F such that 

n 

X=> 
i=1 

The spectral decomposition is closely related to another theorem that we will use, 

the singular value decomposition theorem. In fact, if X is any positive semidefinite 

operator then the spectral decomposition of X is also a singular value decomposition 

of X. The difference being the singular value decomposition is more general. 

Theorem 2.3. Singular Value Decomposition Theorem. 

Let F = Ctm, g = Ctm and let X E L(F, ) be any matrix with rank r. Then, 

there exists positive real numbers s1, S2, . . . , s, and two sets of orthonormal vectors 

{u1, U2. . . , Ur} c g, {v1, v2,. . . , Vr} C F, such that 

x = 
i=1 

siuiv. 

For a matrix X, the positive real numbers si in the theorem are often called the 

singular values of X. They are equal to the square roots of the positive eigenvalues 

of XX*. One important result about the singular values of a matrix is how they can 

be used to compute the matrix norms discussed earlier. In fact, for any matrix X we 

have that the trace norm of X is the sum norm of its singular values, the Frobenius 

norm of X is the Euclidean norm of its singular values and the operator norm of X 

is the max norm of the singular values of X. These facts can be used to show that 

for all XE L(F,g) 

IlxII ≤ lix" ≤ lixil liP ltr 
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If X is normal then the absolute values of the eigenvalues of X are the singular 

values of X and, if X is a positive semidefinite operator the nonzero eigenvalues 

are the singular values. This makes computing matrix norms on normal operators 

simple as we only need to consider the eigenvalues of the operator. 

The spectral radius of a matrix X is the max norm of the eigenvalues of X. If 

X is a normal operator then the spectral radius is equal to the operator norm. If 

X is not normal then the spectral radius may be less than the operator norm. In 

the special case where X is unitary, the singular values of X are all one. Conversely, 

if the singular values of an operator X are all one and X has full rank then X is 

unitary. More results about normal operators and matrix norms can be found in 

[18]. 

The following list introduces notation that we will use for the different sets of 

matrices. 

L(J, g) The set of linear maps from F to 9. 

U () The set of Unitary operators acting on F. 

Herm(J) The set of Hermitian operators acting on F. 

Pos(F) The set of positive semidefinite operators acting on F. 

Pos (F) The set of positive semidefinite operators with trace n acting on F. 

Pos1(F) is an important set as it is the set of all quantum states over the space F. 

In addition to the sets of operators above we will also need to consider sets 

of transformations which are linear maps from operators to operators. The set of 

transformations from L(F) to L() will be denoted by T(F, ). Like the previous 
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sets we have defined, T(.) will be shorthand notation for T(.F, ). The symbols 

and W will be used to denote transformations. Given T(.F, ) we say that is, 

Trace Preserving 

Unital 

Positive 

Completely Positive 

Given a transformation 

transformation such that 

if tr(X) = tr ((X)) for all X E L(.). 

if(I)—I. 

if for all X € Pos(T), 11D(X) € Pos(g). 

if ® I is positive for any identity transformation I. 

E T(.F,g) we define E T(g,) as the unique 

(X, (Y)) = (*(x),y) 

for all X E L() and Y E L(.). 

Using the above definitions we can prove a result about transformations that will 

be useful later in this thesis. 

Lemma 2.4. Let E T(g, 7-i). Then (I ® *) (I 0 )* where I is the identity 

transformation over any space F. 

Proof. Let X E L(.F 0 ) and Y E L(2 (DH)  be any operators. If dim(g) = n and 

dim(7i) = m then we can represent X and Y as block matrices like so, 

Eij 

> Yk,j®E. 
,l=1 
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Using this representation of X and Y we have, 

n 

(X,(I®*)Y) = 

k,l=1 i,j= 
m n 

k,1=1 i,j= 
m n 

k,l=1 i,j= 
m n 

k,1=1 i,j=1 

0 E, Yk,l 0 tIT*(Ekl)) 

Yk ) / 771 

Yk,1) ('I (E,), Ek,1) 

(X Yk,1 ® (Ek,l)) 

= ((Io)X,Y). 

D 

Transformations will be used throughout this thesis. They are important in the 

study of quantum systems and entanglement. For instance, any physically realizable 

operation can be described by a completely positive transformation. We will now 

give examples of two transformations that we will use later in this thesis. 

Example 2.5. Let T E T(3) be the transpose transformation, T(X) = XT. The 

transpose is a positive, trace preserving, unital transformation. It is not completely 

positive. When the transpose is combined with the identity transformation for any 

space (T 0 I) E T( 0 g), we will call it the partial transpose. 

Example 2.6. The partial trace is another example of a transformation. If we set 

{ui, u2,. . . , u} to be a basis for the space g then the partial trace over the space , 

(I® tr) E T(T 0 G, ), is defined by 

(I0tr)X = 
Th 

i=1 

(I(Du)X(I®u1). 
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For the space .F ® g, we will use shorthand notation trg to mean (I ® tr) and tr to 

mean (tr ®I). 

We can also consider more general mappings. The purpose of transformations was 

to map operators into operators. Now, we examine a mapping from transformations 

to linear maps. 

If = Ctm and G = Ctm then the Jamiolkowski Isomorphism [23] defines a linear 

bijection between the set of all transformations 1P E TV, ) and the set of all 

operators L(.F ® g). 

Definition 2.7. Jamiolkowski Isomorphism 

For any transformation ' E T(.F, ) where dim(.'F) = n we define 

J() = E ® 
i,j=1 

The mapping J defines a linear bijection from T(.F, ) to L( ® g). 

The Jamiolkowski Isomorphism is important in the study of quantum entangle-

ment because it maps sets of transformations to sets of operators that are important 

in the study of quantum entanglement. For instance, a transformation E T(, g) 

is completely positive if and only if J() E Pos( ® ). We now prove a fact about 

the Jamiolkowski Isomorphism that will be useful later in this thesis. 

Lemma 2.8. [10] Let .P = Ctm and g = Ctm. For all X E L(F), Y E L() and 

E T(.F, 9) 

= 
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Proof. From the definition of the Hubert-Schmidt inner product we have that 

fl 

Since tr(XTEj,j ® = tr(XTEj,j) tr(Y*i(Ej,j )) and tr(XTEj,j) - XT 
- 

get 

tr (i,j=l 
X i®Y*(Ei,i) 

n 

= trY* ≥; 
i,j=1 

= (Y,(X)). 

0 

It was shown in [10] that a transformation cJ is Hermitian preserving (maps 

Hermitian operators to Hermitian operators) if and only if J() is Hermitian. By 

writing any Hermitian matrix X as X = Y - Z where Y and Z are positive op-

erators we can see that any positive transformation must be Hermitian preserving. 

Therefore, J() is Hermitian for any positive transformation 1 E T(2, ). Also, in 

[8] it is shown that a transformation I E T(T, ) is completely positive if and only 

if J() E Pos(. ® ). Therefore, if '1 E T(P, ) is a positive but not completely 

positive transformation then J() E Herm(1' ® g) \ Pos( ® ). This is stated 

formally in the following lemma. 

Lemma 2.9. If E T(2, ) is a positive but not completely positive transformation 

then J() Herm(.T® ) \ Pos(.F® g). 
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2.2 Convexity 

An element u of a vector space F is called a convex combination of the elements 

V1 V2,. . . Vm if there exists coefficients a1, a2,. . . , a, E [0, 1] such that, 

m m 

u = ) 'aivi and ) 'ai = 1. 
i=1 i=1 

The convex hull of a set S C F, denoted Cony(S), is the set consisting of all convex 

combinations of a finite number of elements in S. S is called convex if S = Cony(S). 

Geometrically, a convex set S has the property that for any two elements u, v E S 

all elements on the line segment from u to v are in S. If S C F is any convex set 

and u, v1, v2 E S then u is called an extreme point of S if u = pv1 + (1 —p)v2 implies 

that v1 = v2 = u. For more on extreme points and their usefulness see Appendix A. 

Given a convex set S F, we can consider the set of all positive linear com-

binations of elements in S. This results in a convex cone. We will call this the 

cone generated by the set S. If S is closed then so is the cone generated by S. Let 

C C F be a cone, then the dual of C, Cd, is the cone of all linear functionals that 
are nonnegative on C. 

Cd = {u E F: (u, v) ≥ 0 for ally E C}. 

Example 2.10. The positive semidefinite operators on a space F,. Pos(F), form a 

cone. This cone is generated by the set S = Posi(F). The cone Pos(F) is also self 

dual, Pos(F)d = Pos(F). 

For any vector space F, vector u E F and positive real number e, the set 

B(u,e)={vEF: Ilu - vM 
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is called the ball of radius € with center u. For any set S where S 

B(S,€)={vE.F:IIu—vlI<f for some uES} 

is called the ball of radius e around S. It is possible to use different norms in the 

above definitions. When doing, so we will use the subscript of the norm as a subscript 

of B. For instance, BQO(S, ) is the ball of radius € around S with respect to the max 

norm. 

2.3 Quantum Information 

Associated with any quantum system is a vector space F = C. In this thesis we will 

only be concerned with finite dimensional vector spaces over the complex numbers. 

From now on unless otherwise specified ..' and 9 represent finite dimensional vector 

spaces over the complex numbers. A quantum state is a positive semidefinite operator 

acting on the space J' with trace equal to one. From our notation in the previous 

section, Pos1 (i') is the set of all such states. It is common practice to denote members 

of Posi(..T) by lower case Greek letters such as p and ci. 

Posi(.F) = {p: p E Pos(T),tr(p) = 1} 

A pure quantum state, or simply a pure state p E Pos1 () is a quantum state 

with rank one. Since the set of all positive semidefinite operators with trace equal 

to one can be expressed as a convex combination of rank one positive semidefinite 

operators with trace equal to one, it follows that the set Pos1(.F) is the convex hull 

of the set of pure states. A pure state p E J' can always be written as p = uu for 

some unit vector u E ./' and we will occasionally call such a vector u a pure state. 
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If a quantum state p has rank greater than one then p is often called a mixed state. 

Since every quantum state can be written as a convex combination of pure states, 

we can associate with any quantum state a set consisting of pairs of real numbers 

and pure states. We will call such a set an ensemble representing the state. If a state 

p E Pos1(J) can be written as 

n 

p[i] uu 
i=1 

then one possible ensemble for p would be 

{(p[1] ,ui), (p[2] ,U2), . . . , (p[n] ,u)} 

For any given state p there exists many different ensembles for p. 

A bipartite composite system is a vector space of the form F 0 g. We will use 

the convention that the composite system is shared by two parties, Alice and Bob. 

In general, .T corresponds to the space in which Alice's part of the system resides 

and g corresponds to Bob's part of the system. A more general concept of composite 

system is a multipartite composite system of the form .T1 0 ® 

Definition 2.11. A state p E Pos1(.T 0 ) is called separable if there exist unit 

vectors u1, U2,. . . ,u E 1, v1, v2, . . . , v E and a vector p E Rn with positive 

entries where IpII1 = 1 such that 
n 

p= 
i=1 

Ail 0 vv. 

If a state is not separable then it will be called entangled. 

It is possible that there is more than one way to write a vector space as a com-

posite system. Each possibility could lead to a different conclusion on whether a 
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state is entangled or not. Because of this we need to specify which partition we are 

dealing with when we talk about an entangled state. We will only be concerned with 

separability with respect to the specified partition of the vector space, in the defi-

nition above this partition is F ® 9. With this in mind, entangled and inseparable 

will mean the same thing. We will call a state separable even if it is entangled over 

some other partition of the space. 

The definition of separable does extend to systems composed of more than two 

parts. In general, if a state p E Posi(Fi ® ... 0 F) can be written as a convex 

combination of states of the form u1u 0 u2u ® 0 where Ui E Fj then p is 

separable. States of the form u1u0u2u® are called separable pure states. 

The concept of separability is also easily extended to positive semidefinite operators 

with trace not equal to one. If an operator p E POSm (F 0 ) can be expressed as 

a convex combination of positive semidefinite operators with trace m of the form 

0 vv' for u E F and v E 9, then p is separable. 

We will use the following notation for sets of separable operators. 

Sep(F 0!9) The cone of separable operators in Pos(F 0 !9). 

Sep m (F 0 ) The set of separable operators in Posm (F 0 ). 

Psepm (F 0!9) The set of separable operators with rank one in POSm (F 0 0). 

Each of the above sets can be generalized to a multipartite system. For instance, 

if we have m parties then Sep(Fi 0.. OF,) represents the cone of separable states 

inPos(FiO ... ®Fm ). 

Quantifying entanglement in a given state is a difficult task. There are many 
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proposed schemes which attempt to quantify entanglement and each have their own 

advantages and disadvantages. We will not cover measures of entanglement in this 

thesis but we will require one type of entanglement which most people seem to agree 

upon. This is the notion of a maximally entangled state. 

Definition 2.12. Let F = = Ctm. A pure state u E F® g is said to be maximally 

entangled if 

trGuu* = I. 

If dim(-F) = d then we call the state E Posi(J) the maximally mixed state 

and denote it by IL Note that if II E Pos1(F®g) where dim(.F) = n and dim(g) = m 

then 11= and soil E Sep1(FQg). 

Not only do maximally entangled states exist, but given two systems J and c 
of equal dimension it is possible to construct a basis for F ® g consisting entirely of 

maximally entangled states. This is demonstrated in lemma 2.13. 

Lemma 2.13. Let .F = = Ctm. The set of vectors 

{Ua,b :0 ≤ a,b ≤ n— 1} C .'F® 

is a maximally entangled orthonormal basis for .T ® 9 where 

1 
Ua,b 

—1 
2iiaj 

eej+l ® e(j+)1. 

The notation (j + b)n means that the addition j + b is done modulo n. 

Proof. Clearly, each vector is a unit vector. Also, each vector is maximally entangled 
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because 

n—i 

trg Ua,bUb = trg e2 e+ie+1 ® e(5+b)fl+1ek+b)+l 
j,k=O 

—1 
2iria(j—j)  

e n e+ie+1 

Finally, we show that any two distinct vectors are orthonormal. 

ttabtic,d 
- 1 'çn—i —2iriaj 2iick 

- L..ij,k=O e n ene;+lek+i ® e(+b)+le(k+d) fl+1 

1 if a=c and b=d 

1 o otherwise. 

0 

2.4 Measurements and Neumark's Theorem 

Any physically realizable operation can be described by a completely positive trace 

preserving transformation. This is an important fact as it allows us to determine 

what operations can be performed on a quantum system in a laboratory. We have a 

representation of completely positive maps due to M.D. Choi [8]. 

Lemma 2.14. [8] If 1 € T(J, ) is a completely positive transformation then there 

exists operators A1, A2, . . . , An € L(F, ) for n = dim() 0 ) so that 

AXA 
i=1 
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for all X E L(T). Additionally, if is trace preserving then 

i=1 

A measurement is one example of a completely positive trace preserving transfor-

mation, and therefore a physically realizable operation. A measurement of a system 

over F is a collection of operators {A1, A2,. . . , A} C L(1) such that 

A=I. 
i=1 

The possible outcomes of a measurement will be labeled by indices to the operators 

that define the measurement. For instance, if we measure a state p € Posi(F) with 

the above measurement, then the possible outcomes are labeled by integers from 1 

to n. The resulting state of outcome i is 

ApA  

tr(ApA 

In some cases, we are only concerned with the probability of a given outcome and 

not the resulting state. For a given measurement {A1,. . . , A,} on a quantum state 

p, the probability of outcome i is tr(ApAfl = tr(AAp). Therefore, we only need to 

specify the operators Bi = With the set {B1, B2,.. . , B,} we can compute the 

probability of outcome i when measuring p by computing tr(Bp). When we only 

specify the positive operators required to determine the probability of each outcome 

we will call this a POVM (positive operator valued measurement). 

A projector onto a space F is an operator of the form 

uju 
i=1 
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where {u1,. . . , u} C .F is an orthonormal set of vectors. If all the elements of a 

measurement are projections then we will refer to the measurement as a projective 

measurement. Projective measurements are easier to work with because P2 = P and 

= P for all projectors P. Although not all measurements are projective mea-

surements, the following theorem shows that we can simulate a general measurement 

with a projective measurement in a larger space. 

Theorem 2.15. Neumark's Theorem [1, ] 

Given any measurement {A1, A2,.. . , A7j C L(J) there exists a vector space g, a 

norm preserving linear map U E L(J, J ® ), and a set of orthogonal projectors 

{Pi, P2.... Pn} C L(..P (9 ) where > P = I so that for all operators X E L(J) 

and 1 <i<n we have 

trgPjUXU*Pi* = AXA' and trPjUXU*Pi* = trAXA. 

Proof. Let 9 = Ctm. We define U and P as 

U = A 0 ei and P = I 0 

The matrix U is norm preserving because 

U*U= 

i,j=1 

AA®ee=) 'AA=I. 
i=1 

It is also easy to see that the projectors P are orthogonal. For any 1 < i j n 

we have 

(P, P) = tr (PPj) = tr (I 0 = 0. 
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Notice that 

trgPjUXU** = trg(I®E,j) (A3j=1 ®ei 

trg (Ai (De)X(A®efl 

= AXA 

A®e) 

where the second line follows from the first because Ei,jej = 0 if i 0 j. This 

establishes the first equality. 

Applying the trace to a system .P ® is the same as applying trg followed by 

try. Therefore, we have that tr PUXU*P = tr AXA as desired. 0 

When we want to apply a projective measurement instead of a more general 

measurement we simply construct the projectors P and the norm preserving matrix 

U as shown in Neumark's theorem. We then map the input operator X E L() to 

UXU E L( ® ). It is important to note that the dimension of the space g is 

not too large. In fact, it is no larger than the dimension of the original space 

and so the dimension of F ® 9 is at most twice as big as the dimension of Y. After 

mapping X to UXU we apply the projective measurement. After the projective 

measurement, we want to take the output state to what would be the output state 

in our original space L(2). We can easily do this by applying the partial trace over 

the space 9. Once this is complete, we will have simulated the general measurement 

with a projective measurement. 

If we are only concerned with the probability of a given outcome, that is we want 

to perform a POVM, then Neumark's theorem tells us that it is sufficient to look at 

a projective POVM on a larger space. The following corollary tells us exactly how 

to take a general POVM to a projective POVM on a larger space. 
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Corollary 2.16. /9J For any POVM {B1, J2, . . . , B,} there exists a space 9, a 

norm preserving linear map U E L(.T, ® ), and a set of orthogonal projectors 

{P1,P2,...P} C L(1 ®g) where = Iso that for all  < i < n we have 

UPU = B. 

Proof. Set Ai = /Bi. Then, by Neumark's theorem we have 

trPjUXU*Pj = trAXA 

for any X E L(F). Using the cyclic properties of the trace gives 

trPjUXU*Pj = trAXA < > trPUXU = trAAX 

trUPUX = trAAX 

<- tr UPUX = tr BX. 

Both UPU and Bi are Hermitian and so we have that for any X E L() 

(U*PU,X) = (B, X). 

This implies that U*PU = B. 0 

This concludes the background section of this thesis. In the next section we 

examine criteria for determining if a given quantum state is entangled or not. 



Chapter 3 

Separability Criterion 

There are many different criteria one can use to test for separability, each with their 

own advantages and disadvantages. In some cases, the criteria is very easy to ap-

ply but does not work very effectively. For example, the Peres-Horodecki criterion 

is very simple to execute but there are some entangled states that it cannot de-

tect. Conversely, criteria that are accurate are unfortunately difficult to apply. The 

Woronowicz-Peres criterion is a necessary and sufficient criterion for separability but 

it is not feasible to test for separability in this way. This chapter will introduce the 

separability criterion that we will require later in this thesis. 

The first thing we will cover in this chapter is a lemma that shows that the set of 

separable states is a compact subset of Herm(1' ® Q). For background information 

about this lemma and where it applies in quantum information see Appendix C. 

Lemma 3.].. [26] For all operators p, o E Herm(J' 0 

IItr p - try 0iltr ≤ lIP - 0iltr and IItr p - trç °iltr lIP - OiItr 

We require lemma 3.1 in the proof that the set of separable states is compact. It 

relates the distance between two operators to the distance between the partial trace 

of those operators. Since the partial trace is comparable to throwing away part of 

the operator, the distance between two operators p and ci must always be greater 

than or equal to the distance between the partial trace of p and the partial trace of 

ci. Lemma 3.1 states this in a more formal manner. 

29 
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Lemma 3.2. Let p E Pos1(F ® g). If trg(p) = uu for some unit vector u E 2 and 

trF(p) = vv for some unit vector v E g then p is a separable pure state. 

Proof. If trp(p) = vv then by the definition of the partial trace we can represent p 

as p = o ® vv" for some ul E Pos1(.T). Similarly, if trg (p) = uif we can represent 

p as p = uu* ® cr2 for some 02 E Pos1(g). Therefore, it must be the case that 

P = uu* ® vv for some unit vectors u E F and v E g, and so p is a separable pure 

state. 0 

We now have the results required to prove that the set of separable states is 

compact. 

Theorem 3.3. Sep(® ) is a compact subset of Herm((9 g). 

Proof. From [24] (Section 5.3, theorem 14), the convex hull of a compact set must 

be compact. Additionally, the Heine-Borel theorem, theorem C.6 tells us that if 

Psep1( 0 ) is closed and bounded then it must be compact. Therefore, to prove 

the lemma all we need to show is that Psep1(F 0 ) is a closed and bounded subset 

of Herm(1' 0 ). We know that the trace norm of a positive semidefinite operator is 

just the sum of the eigenvalues and so the set Psep1(1 0 ) is bounded. 

To see that Psep1(.T®g) is closed let {uu0vv} be a sequence in Psep1(7®g) 

that converges in Herm(.T 0 ). We need to show that {uu 0 vv} converges to 

an element of Psep, (Y 0!9 ). Since {uu ® vv} converges, we get that for all 6 > 0 

there exists an operator Herm(J 0 ) and a integer N E N, such that for all 

n ≥ N we have that 

6. 
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Combining this fact with lemma 3.1 we can conclude that for all n ≥ N, 

iiuu  — trgIItr <6 and Ivv — trIItr ≤ 

This implies that {uu} is a convergent sequence in Herm(T) and {vv} is a conver-

gent sequence in Herm(g). First, we note that try and trg must have trace one. If 

it does not have trace one then there exists some 5> 0 such that IIuu - trg 611tr ≥ 

and this is a contradiction to the work done above. We can see this by noting that 

the trace norm of a Hermitian matrix X is the sum norm of the eigenvalues of X. If 

try does not have unit trace then the smallest value for the trace norm would be 

1 - k I where k is the trace of try. 

Recall from Chapter 2 that IIXIF ≤ llXlltr for all operators X E L(..F). We will 

now show that trg e E Pos1(' ®c) and - trg eMF ≥ 5 where 1 - S is the 

largest eigenvalue of trg e. Since, {uu} is a convergent sequence and it converges 

to trg e, it must be the case that S = 0 and so trg 6= uu for some unit vector 

u E F. Similarly, try e = vv for some unit vector v E . Then, by lemma 3.2, we 

have = uu' ® vv' for some unit vectors u E F and v E g. Therefore, the sequence 

{uju ® vv } converges to a pure separable state and the set Psep1(J 0 ) is closed. 

We now show that I Iunu - trg 6 11  ≥ S where 1 —S is the largest eigenvalue of trg . 

Fix any n and let X = uu—trg 6. Since X is Hermitian we have that XX* = X2 

and so IIXIF /tr(X2). Let A1, A2, .. . , Ak be the eigenvalues of trg 6. Then, 

trg = Aww AIww 
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where {w1, w2,. .. , Wk} C .2: is an orthonormal set of vectors. We then have 
k 

X2 = 

i=1 

- Xj(u,wj )Iwju* 

+ i Aj(u,wj)Iuw' + :: Al(u,w)Iwu 
and so 

tr(X2) = 1+ —2 ),I(u,w) 2 +2  Ail (u,wI2. 
i=1 Aj>O 

Since we want this value to be small we can take AI(u, wj)2 = 0. This means 

that we only need to consider the case where trg e E POSI (.F ® ). Without loss of 

generality, we let A]. = 1 - 6 be the largest eigenvalue of trç 6. Then the minimum 

of tr(X2) occurs when (u, w1) = 1 and so 

tr(X2)≥l+EA-2+25≥l+(l_8)2-2+26=52. 

Therefore, as stated above we have II X F ≥ J where 1 - 6 is the largest eigenvalue 

oftrge, 0 

3.1 Pure State Entanglement 

All quantum states can be expressed as a convex combination of pure states and so to 

understand entanglement in general it will help to start with pure state entanglement. 

In the bipartite case, it is quite easy to determine if a pure state is entangled or not. 

We can use the Schmidt decomposition of a pure state u E 'F ® 9 to determine if 

u is separable or not. Since the Schmidt decomposition is easy to compute we can 

efficiently determine if a pure state is separable or entangled. 
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Lemma 3.4. Let u E .F ® 9 be a pure state of a bipartite system and let 

r 

sivi ® W 
i=J 

be a Schmidt decomposition of u. Then, u is separable if and only if the Schmidt 

rank of u is one. 

Proof. If the Schmidt rank of u is one, r = 1, then clearly u is separable. If u is 

separable, u = v 0 w is a Schmidt decomposition of u with Schmidt rank one. 

With a criterion as simple as the above case one might ask whether we can extend 

this criterion to multipartite states. This question reduces down to the problem 

of extending the definition of the Schmidt decomposition from a bipartite system 

to a multipartite system. For instance, if we could show that every pure state 

U E F 0 9 0 can be written in the form 

= r sivi  ® Wi ® Xi 

then we could have a result analogous to lemma 3.4 for the multipartite case. How-

ever, it was shown in [27] that in general, an arbitrary u E P R cannot be 

written in the form above. Unfortunately, for multipartite pure state entanglement 

we do not know of a simple criterion to test for entanglement. Therefore, we must 

resort to the more general criteria that is used to determine if a mixed state is 

entangled or not. 

3.2 Bipartite Mixed State Entanglement 

Unlike the pure state case where there is a simple and straightforward test for entan-

glement, mixed state entanglement is more difficult to deal with. One might think 
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that if we can obtain an ensemble that represents p, then we can immediately tell if 

p is entangled or not by looking at the Schmidt decomposition of each of the pure 

states in the ensemble. There is a problem with this approach. For any mixed state p 

there exist an infinite number of different ensembles representing p. If a mixed state 

p is separable then there may exist ensembles of p that contain entangled states. In 

fact, it may be the case that the ensemble of a separable mixed state p will consist 

entirely of entangled pure states. However, if we can find an ensemble of p that only 

contains separable pure states then p must be separable. 

Searching for an ensemble of p that contains only separable pure states may 

result in demonstrating that p is separable. However, it is not useful as a separability 

criterion because there is an infinite number of ensembles representing p. Checking an 

infinite number of ensembles is infeasible so we could never show that p is entangled 

using this approach. We now search for necessary and sufficient criteria for a mixed 

state p to be entangled. This result was first presented in [19] and is based on the 

idea of an entanglement witness. 

Definition 3.5. An entanglement witness X E Herm(.F ® ) \ Pos(F ® ) is an 

operator such that for all u E .'F and v E 9, (X, uu ® vv*) ≥ 0. 

The inner product of an entanglement witness and a separable operator is always 

nonnegative and, for every entanglement witness X there exists some set of entangled 

operators S such that the inner product of the entanglement witness and any of the 

entangled operators in S is negative. Therefore, we know that if the inner product 

of quantum state p E Pos1(.F ® ) and an entanglement witness is negative, then p 

must be entangled. 
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Given any entangled operator p E POSm (J ® ), the Hahn-Banach theorem, 

theorem C.8, tells us that there exists a hyperplane which separates p from the set 

Sepm (F ® g). If we could find this hyperplane then we could use it to construct 

an entanglement witness for p. Unfortunately, in general it is not easy to find a 

hyperplane separating a state p E Posm (.F ® ) from Sep,,, (Y ® ). However, using 

the fact that a separating hyperplane exists for any entangled operator, it can be 

shown that for any entangled operator p E Posm (.F®g) there exists an entanglement 

witness X such that (X, p) <0. 

Lemma 3.6. [19] An operator p E Posm (' 0 ) is entangled if and only if there 

exists an entanglement witness X such that (X, p) <0. 

We now use the Jamiolkowski Isomorphism to connect this result about entan-

glement witnesses to positive maps E T(9, .F). This was first noticed in [30] and 

proved in [19]. We will call it the Woronowicz-Peres separability criterion. 

Theorem 3.7. The Woronowicz-Peres Separability Criterion [19, 30] 

An operator p E Posm (Jr ® ) is separable, p E Sep,,,,( 0!9), if and only if for all 

positive transformations € T(, 1), it holds that (I 0 )p E Pos(..'F O .'). 

Proof. Assume that p E Sepm (F 0 ). If p Sepm (F ® ) then we can write p as 

p=En 1p[i]uju®vjv where ui E F and v E g for i= 1,...,n and  ERTh is a 

vector with nonnegative entries such that 11p1j ,= 1. Therefore, if 1 E T(9, .F) is a 

positive unital transformation then 

n n 

(I ®(D)p = (I (g ) > 'p[i] uu®vv = )' p[i] uu®(vvfl E Pos(J 0 F). 
i=1 i=1 
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Next, we assume that (I ® )p E Pos(F (D F) for any positive unital transforma-

tion ' E T(g, f'). Let n = dim(.P), fix some positive but not completely positive 

transformation T(g, F) and set 

Y = Ejj ® Ejj and 
i,j=1 

X = (I ® *) = J( *) 

Note that Y E Pos(P®J') and X = Herm(FØg)\Pos(.F®g) from lemma 

2.9. We now have 

(, J(*)) = (, (I ® = ((I (& flP, Y) ≥ 0. 

We now show that as ranges over all possible positive transformations, J(*) 

ranges over all entanglement witnesses. This will give us a necessary and sufficient 

criteria for separability by lemma 3.6. To prove this we will use the Jamiolkowski 

Isomorphism between all positive but not completely positive transformations , and 

all entanglement witnesses J(*). We know from the work done in lemma 2.9 that 

J(*) E Herm(.F®g)\Pos(F(9). All we need to show is that (J(*), * 0 vv) ≥ 0 

for all uuK € Pos(F) and vv' E Pos(g). 

(J( *), * ® vv*) ≥ 0 —> (uu* ® vv, J(*)) ≥ 0 

>. (vv* , *(uT)) > 0 

> ((vv*),uT) ≥ 0 

(vv*) E Pos(.2'). 

If is positive but not completely positive then J(*) is a entanglement witness. 

Therefore, as ≥ ranges over all positive transformations J(*) ranges over all entan-

glement witnesses. 
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We can now see, via lemma 3.6, that an operator p E POSm (..'F 0 ) is separable, 

if and only if (I 0 )p E Pos(L/' (D .F) for all positive but not completely positive 

transformations ' T(, .). LI 

We can further strengthen the Woronowicz-Peres Separability Criterion by giving 

the following lemma. 

Lemma 3.8. For any entangled operator p E Pos(J 0 ) there exists a positive 

unital map T(9,.), such that (I0)p 0 Pos(J®P). 

Proof. Let p be any entangled state. By theorem 3.7 there exists some positive map 

wET(g,P) such that (I(9W)p 0 Pos(J®'). 

If W(I) does not have full rank then let W'(X) = 9f (X) + J for some small 

€> 0. First, note that W' is still a positive transformation. Next, since the function 

f (W) = (I 0 W)p is continuous we can always choose a small enough e so that 

(I (D W')p 0 Pos(.F 0.F). Therefore, we can assume without loss of generality that 

W(I) has full rank. 

Since W is positive and W(I) has full rank 'I'(I) is invertible. Let A = 

and let E T(9, .F) be the transformation such that (X) = A!(X)A*. First, we 

show that is unital. 

-cD (1-) = AW(I)A =W(I)W(I)W(I) = I. 

Next, we show that for all cr E Pos(.T 0 ) it holds that (I 0 W)u E Pos(9' 0 .F) 

if and only if (I 0 )a E Pos(J (D 'F). Using the fact that A is positive semidefinite 
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we get 

Since I®A' has full rank we can conclude that (I®Ti)o E Pos(.F(DJ) if and only 

if (1®)o E Pos(.1®1). Using this fact it is easy to see (I(D)p V Pos(.F®J). 

The Jamiolkowski Isomorphism allows us to give an equivalence between entangle-

ment witnesses and positive maps. At first this may seem like this is inconsequential 

and we could easily use the entanglement witness criterion. It will become evident 

later that it is much easier to work in the context of positive maps when trying 

to show that a given state is entangled or not. Also, the positive map criterion is 

stronger than the entanglement witness criteria. It has been shown in [20] that there 

exists entanglement witnesses J(*) and entangled states p E Pos1(.F® ) such that 

(J(*), p) ≥ 0 but (I(& ) p 0 Pos(1 ® F). This means that the entanglement 

witness corresponding to the positive map 1' does not detect the entanglement in p 

but the positive map 1 does detect the entanglement in p. 

Unfortunately, one of the big open questions in the study of entanglement deals 

with positive maps. We do not yet know a good classification scheme for positive 

maps. This means that in practice we cannot use this criterion to test if a state 

is separable or not. If we could fully characterize the positive maps then not only 

would this information be valuable to understanding entanglement in general but it 

may give some insight into operational criteria for entanglement. 

In general we do not know a good characterization of positive maps, but we do 

know one specific positive map that detects all entanglement in low dimensional 
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systems of the form Pos(T 0 ) where dim(.F) = dim(g) = 2 or dim(T) = 2 and 

dim(g) = 3. 

Definition 3.9. Let T be the transpose operator, T(X) = XT. The partial trans-

pose of an operator p E L(J 0 ) is (I 0 T) p. The partial transpose is a linear 

transformation 10 T E T  (a ). 

If an operator p E POSm(jog) is still positive after applying the partial transpose, 

(I0T)p E Pos. (90g) then we say that p has positive partial transpose and denote 

this by p E PPTm (JOg). If F = C2 and = C2 or . = C2 and g = C3, all operators 

p 0 PPTm (J 0 are entangled and all operators o where ci E PPTm (J (D ) 

are separable. Unfortunately, this no longer holds in higher dimensions. In spaces 

with larger dimensions, dim() dim(g) > 6, there exists entangled operators with 

positive partial transpose, p E PPTm (. 0 ). The positive partial transpose test 

is often called the Peres-Horodecki criterion [3, 19]. If we discover that an operator 

p 0 PPTm (.F (9 ) (for any spaces J and ) then we know that p is entangled. 

However, if p E PPTm( 0 ) then p can be either entangled or separable. This 

means that the cone of separable operators is a subset of the cone of positive partial 

transpose operators, Sep(F 0 C PPT(.'F 0 ). 

3.3 Multipartite Mixed State Entanglement 

The separability criteria for multipartite states is very similar to that of bipartite 

mixed states. Using the same approach as in the bipartite case, we can always con-

struct an entanglement witness for any multipartite entangled operator p. Therefore, 

we can easily extend lemma 3.6 to include multipartite states. 
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Lemma 3.10. [20] A state p E POsm (J1 0. 0 ) is entangled if and only if there 

exists an entanglement witness X such that (X, p) <0. 

We have to be careful when trying to extend the Woronowicz-Peres separability 

criterion from the bipartite to multipartite setting. If we follow the same approach 

as in theorem 3.7 we see that the Jamiolkowski Isomorphism gives an isomorphism 

between all entanglement witnesses X E Herm( 1 0 0.F") \ Pos(.Fi ® . . . ® J) 

and linear maps (9'2 01 3 ®. . . ®, J) which are positive on separable pure states 

P = u2u 0. 0 u,-u where pi E .Fj for i = 2,. . . , n. This does not necessarily mean 

that I is positive. Generalizing theorem 3.7 and lemma 3.8 to multipartite states 

give the following theorem. 

Theorem 3.11. [20] An operator on a multipartite system p E POSm (J1 0 0 

is separable, p € Sepm (.Ti ® (D J), if and only if (I ® )p € Pos( 1 0 i) for 

all unital transformations '' € T(J 0 0 J, J) such that for all separable pure 

states o = U2tL 0 • 0 u1u E Sep,, (.F2®... 0 ..'F), (o) E Pos( 1). 

We can also consider a generalization of the Peres-Horodecki criterion for bipartite 

states. We say that an operator p on a multipartite system has positive partial 

transpose, p E PPTm (. i 0 0 .), if and only if every bipartite partition of p e 

PPTm (J0g). A bipartite partition of a multipartite operator p E Posm(.T1O ... (D) 

is a partition of the parties into two groups. For example, in a system with three 

parties POSm (.T 0 g (DH)  If p E PPTm ((J 0 ) (9 7-i:), p E PPTm (.F 0 (g 0 7-i:)) 

and, p E PPTm (g 0 ( 07-1)) then p E PPTm ( 0 g ® 7-i:). For an n party system 

there are 2' - 2 possible bipartite partitions and so the Peres-Horodecki criterion for 

multipartite states becomes infeasible to check as the number of parties increases. 



Chapter 4 

The Size of the Set of Separable States 

The previous chapter showed us that the set of separable states is a compact set. The 

purpose of this chapter is to address the question on the size of the set of separable 

states. To do this we use a well known separable state 11, the maximally mixed 

state. We first give the radius of a ball centered at J[ that is completely contained in 

the set of separable states. Next, we give the radius for a larger ball centered at 11 

that completely contains the set of separable states. We have to be careful because 

although we compute the radius of these balls around the maximally mixed state, 

the set of separable states does not form a ball around the maximally mixed state. 

This is easily seen by noticing that all the pure states are the same distance from 

the maximally mixed state. Since Posi( (9 ) is the convex hull of the pure states 

we would have that all states are separable and this is clearly not true. 

The results discussed in this chapter are not only matters of curiosity, they are 

important stepping stones for proving that separability testing is NP hard. The proof 

that we present on the hardness of separability testing requires that we know the 

radius of a ball that fits inside the set of bipartite separable states, and the radius 

of a ball that contains the set of bipartite separable states. In addition, we require 

each of the radii given be polynomial in the dimension of the space in which we are 

working. 

41 
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4.1 Bounds on the Size of Sep(® ) 

We now present a proof that the set of separable states are completely contained in 

a ball of radius one around the maximally mixed state. 

Lemma 4.1. Let .F = CI and g = Ctm. Then Posi(F(9 g) C BF (1, 1). 

Proof. Let d = nm. Consider the maximal distance any state p can be from the 

totally mixed state L 

lP1IIF = \/tr(p—JI)t(p—J[) 

= /tr(p_1[)2 

17 

Lemma 4.1 has shown us that all states, and therefore the set of separable states, 

is contained in the ball of radius one around the maximally mixed state. We now 

show the more difficult result due to Gurvits and Barnum [15] that there exists a 

ball inside the set of separable states that has a radius that is polynomial in the 

dimension. We also show that this ball is the largest ball that fits inside the set of 

separable states. This result is interesting because it gives a lower bound on the size 

of the set of separable states. 
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Before we are able to give an upper bound on the radius of a ball that fits 

completely inside Sep1 (.Fog) centered at ii, we needto cover some important results. 

The first of these was shown by Bhatia and Kittaneh [7] and relates the norm of a 

block matrix to the sum of the norms of its blocks. 

Lemma 4.2. [7] Let.F = Ctm and g = Ctm. If we consider the operator  E L(F®g) 

as the block operator 

n 

X=2 
i,j=l 

where each Xij E L(g). Then, 

n 
IIXI12 ≤ E  IIXi'jI12. 

i,j=1 

Proof. Let 

= 

Using the fact that Yj = 0 when i 0 j we get 

n 

i=1 

Applying the triangle inequality and noting that IZM2 = IZ*ZII for all operators Z 

gives us that 

jIxII2 Y"" T ii1I2 
i=1 

Now, fix some integer 1 ≤ k ≤ n and set Y = Yk. Y is the block matrix 

Y = 
i,j=1 

Yi,j 
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where Yjj = Xjj if i = k and Yjj is the zero matrix otherwise. Using the same 

approach as above we set 

Zkj = 
i=1 

The only nonzero Yjj in Zk,i is when i = k and so 

We then have that 

Zk,J = Ek, ® Xk,. 

Ij ) 
Since k was chosen arbitrarily we can conclude 

llII2 < Iz,lI2. 

Combining the two inequalities we get 

IIxII2 <y ≤ 
i=1 

.1=1 

n 

Z* k,j k,j• 

"'7 2 IIE 0 IIX,.jII 2. 
IIUhi,jll .fli,jll 

i,j=1 i,j=1 

U 

Next, we need to know what happens to the norm of an operator X when we 

apply a positive unital transformation to X. The proof given here is due to Gurvits 

and Barnum [15] and uses Neumark's theorem, theorem 2.15. This theorem also uses 

the concept of extreme points of convex sets, a reader unfamiliar with these should 

refer to Appendix A. 

Lemma 4.3. [15] Let I E T(T) be a positive unital transformation and let X be 

any operator  E L(..7). Then (X)ll ≤ 11XII. 
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Proof. Consider the set 

S={XEL(.F):IlXII<1}. 

S is the closed unit ball with respect to the operator norm and the extreme points 

of this ball are the unitary operators. For a proof of this fact see theorem A.3 in 

Appendix A. Proving that II(X)II ≤ JJXJJ for all X E S is sufficient to solve the 

problem because any operator X E S can be expressed as EY for some Y E L(J') and 

sufficiently small €> 0. The Krein-Millman theorem from analysis tells us that any 

element of the set S can be expressed as a convex combination of unitary operators. 

By the triangle inequality we only need to consider the case where X is a unitary 

operator. 

If X is unitary then X is normal and there is a spectral decomposition of X. 

n 

X = 

i=1 

Since transformations are linear we get 

A(u1ufl. 
i=1 

Let Bi = (uufl. Since is unital and positive we get that Bi is positive semidefinite 

and that Bi I. By Corollary 2.16 there exists a vector space 9, a norm 

preserving map U E L(.T, T ® ) and a set of projectors {P1, P2... . P} C L(J' ® g) 

where P = I such that Bi = U'PU. Now we can conclude 

= 

n 

i=1 

AiBi ≤ IIU*II 
n 

i=1 

Aipi Hull -< 
Th 

i=1 

AiPi =1=IIxII. 
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The second last equality holds because the operator norm ofEn I AP is just the 

absolute value of the largest eigenvalue A. This must equal one because X is unitary. 

E 

Now, we have the required knowledge to give a criterion for separability. We first 

give a general criterion for an operator to be in the set Sep  (J ® g). This criterion 

is based on representing an operator in a specific way, as the sum of the identity and 

a Hermitian matrix. 

Lemma 4.4. [15] If p E POSm (.T ® ) can be expressed in the form p = k (I + ), 

for some positive scalar k e J1 and E Herm(.T (& ) where IIIIF ≤ 1, then p E 

Sepm (.T(9 ). 

Proof. Let E T(9, ,r) be any positive unital transformation. We can view as a 

block matrix in Herm(9 

n 

Combining lemmas 4.2 and 4.3 we have that 

≤ 11 (D(•i'#12 ≤ II2 ≤gi,j Ill =  g112 < ≤ 1. 
n 

i,j=1 

Since 11(1 ® 1 all eigenvalues, A, of (I® k) must satisfy I Al E [0, 1]. This is 

due to the fact that the spectral radius of (I®1)e is less than or equal to the operator 

norm of (I® as discussed in the background section. If the absolute value of any 

eigenvalue of (I 0 I is between zero and one then (I 0 )(I + ) e Pos(.P ® 

The scalar factor k has no effect on the separability of p, it just ensures that p has 

trace m. Therefore, p = k (I + ) is separable by the Woronowicz-Peres criterion 

(theorem 3.7). and lemma 3.8. 0 
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The above criterion is very general and difficult to use. There may be many 

different values for k and different matrices 6 such that p = k (I + ). For instance, 

p= 

1 
2 

0 

0 
=2 

1 
2 

10 
+ 

01 

3 
4 

0 

0 

3 
4 ) 

In this case IIIIF = > 1 and so it might seem that p is entangled. However, by 

choosing k = 1/2 and = 0 we can see that p is separable. We now show that there 

exists a real number k and a Hermitian matrix where IeIF ≤ 1 such that any state 

p E Posi(F ® ) where p E BF ('   can be written in the form p = k (I + ). 

In this way we give a lower bound on the radius of the largest ball of separable states 

in bipartite systems. 

Theorem 4.5. [15] For any quantum state p E Pos1(i(9 ) where d = dim(F® g), 

if II - <1//d(d - 1) then p E Sep1(2 0 ). 

Proof. Let Al, A2, . . . , ) be the eigenvalues of p. Using the fact that the Frobenius 

norm of a normal operator is just the Euclidean norm of the eigenvalues we get 

d (' 1 )2 d 2 d 1 d I 

Ip - III, =  1112 

Let k = Ed A. Using the assumption that - ≤ d(d-1) we get, 

d(d-1) d-1 k >d— 1. 

If we set = - I then by lemma 4.4 we know that p is separable if IeIIF ≤ 1. 

 Ai 11 6 112 

= 

2 d 2 

- F(k) = ;if ft 

= d—<d—(d-1)=1 

A + d 
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Since a quantum state p E Pos, (F 0 g) is normal, we get that the purity of p, 

tr(p2), is the sum of the squared eigenvalues of p. This, along with the work done in 

theorem 4.5 allows us to realize another sufficient criteria for separability equivalent 

to theorem 4.5. It is interesting to note that numerical evidence for this criteria was 

first given in 1998 in [32]. 

Lemma 4.6. Let p E Pos1(1(D ) be a quantum state. If tr(p2) --- then p is 

separable. 

4.2 States Close to the Bipartite Separable Ball 

We now show that the lower bound given in section 4.1 is tight. We want to show 

that for any bipartite system F ® g and any is> 0 there exists an entangled state 

p such that 11P - liulF /d1) + is. We will show this for the composite system 

® g where dim(J) = dim(g) = 2 but the results easily extend to any dimension. 

Consider the operator 

p= 

a+b 0 a—b 
2 2 

0 c  0 

0 0  0 

a—b a+b 
" 2.. 

where a, b and, c are all positive real numbers. It is easy to verify that a, b and c are 

the eigenvalues of p and this is why we set them to be positive. The requirement 

that the state p is in Pos1(. 0 ) gives us the criterion that a + b + 2c = 1. When 
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we apply the partial transpose to p we get 

p= (I®T)p= 

The eigenvalues of ö are 

a+b 
2 

0 

0 

0 0 0 

a—b 
2 

a—b 
2 0 

C 0 

_o 0 0 

A1 = A2= a+b2 

a—b 

A3 = 2 
b  

A4 = 2 

a+b 
2_ 

Therefore, we have that € Pos1(F 0 ) if and only if 2c ≥ a - b. This means 

that p has negative partial transpose and is therefore entangled if 2c < a - b. Let 

us consider what happens when we set a = +5, b = + 5 and c = - S for some 

small S > 0. If S is small enough we have that a, b and, c are all positive, the trace 

condition is satisfied, a + b + 2c = 1, and finally 2c < a - b. Therefore, the operator 

0= 

+5 0 0 6 

o 0 0 6 

o o —5 0 

1 0 0 
_6 

is in Pos1(.F 0 ) and is entangled. Finally, we compute the distance between ci and 

IL It is easy to verify that 

1 25 
452 
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For the two by two case, the bound we derived earlier tells us that all states with 

Frobenius distance less than or equal to ./1/12 from the maximally mixed state are 

separable. Clearly then, for any given E we can choose 8 small enough so that the 

state a constructed above is within distance € of the border of the ball of separable 

states that we constructed earlier. 

Figure 4.1: The Largest Separable Ball in Bipartite Systems 

4.3 Multipartite Separable States 

We will now consider the largest separable ball of multipartite quantum states. In 

this setting we have a quantum state shared by more than just two parties. We want 

to know the maximum radius of a ball consisting solely of separable states centered 

around the maximally mixed state. Unlike the bipartite case we do not know the 

exact radius of the largest separable ball of multipartite quantum states centered 

around I. We can use the results from the previous section to derive an upper bound 

on the radius of the largest separable ball in multipartite systems. A state that is 

separable for multiple parties must still be separable if we combine parties into two 

groups and consider it to be a bipartite state. Therefore, our bound from the previous 

section of 1//d(d - 1) is an upper bound on the radius of the largest separable ball 
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in multipartite systems. In this section we will derive a lower bound on the radius 

of the largest separable ball in multipartite system. We start this section by looking 

at separability in a general way. 

Definition 4.7. Let C1 C Pos(J) and C2 C Pos(g) be closed convex cones. A 

positive semidefinite operator p is called (Cl, C2) separable, p E Sep(C1 0 C2) if 

P =  En X 0 Yj for some positive integer n ≥ 1, and operators Xi E C1, Yi E C2 

for i = 1,. . . , n. We will use the shorthand notation Sep (.'F 0 C2) to represent 

(Pos(J), C2) separability. By setting C1 POs(T) and C2 c POs(c) to be closed 
convex sets we can similarly define Sep  (C1 0 Cs), and Sep  (J (& C2). 

The approach we will take in this section to find a lower bound on the largest 

ball of separable states is to inductively build a separable ball. That is, for tripartite 

separability we simply take the cone C2 generated by all separable bipartite states 

and consider all (Pos(), C2) separable states. Then, since this cone is also separable 

we can continue, increasing the number of parties at each step. The shortcoming 

of this approach is that at each step when a new party is added to the system we 

need to shrink the size of the cone of separable states by a constant factor. As we 

continue to add parties, the lower bound of the radius continues to shrink. After we 

have added in all the parties we then convert the result about separable cones into 

separable sets. 

Since the size of the separable cone shrinks after adding every party the bound 

given by using this method is smaller than the bound given in the bipartite case. 

Recent literature [4, 17] suggests that the radius of the largest separable ball in a 

multipartite system may be smaller than in a bipartite system with the same total 
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dimension. 

We will now extend and generalize the results that we covered in the previous 

section on bipartite separable states. 

Definition 4.8. A transformation(D E T(), ) is called C positive for some closed 

convex cone C C L(.P) if for all X E C, (X) E Pos(g). 

We now need to consider a generalization of the Woronowicz-Peres criterion, 

theorem 3.11. The building block of the Woronowicz-Peres criterion was the idea of 

an entanglement witness. The concept of an entanglement witness still holds in our 

general definition of separability and is highlighted in the following definition and 

lemma. 

Definition 4.9. Let S C Posm (g) be a closed convex set. A Hermitian operator 

X E Herm(F® g) \ Pos('(9 ) is called an ® S entanglement witness if for every 

uEJ and v€g where vv* ES, (X,uu*(9vv*)≥0. 

Lemma 4.10. [16] Let p E Posm (.F 0!9) and let S C Pos.. be a closed convex 

set. Then, p E Sep,, (Y 0 S) if and only if (X, p) ≥ 0 for all T 0 S witnesses X. 

Basically, lemma 4.10 tells us that if a state p 0 Sep(J(D 8) we can always find a 

hyperplane that separates p from Pos() 0 S. This follows from the same reasoning 

as before, see Appendix C except we need to show that the set S is compact. By 

assumption S is closed and since S C Posm (g), S is bounded by the trace norm. 

Therefore, S is closed and bounded and must be compact. We can then use the 

Hahn-Banach theorem to conclude that given any entangled operator we can always 

construct an entanglement witness. Using this fact, we are now prepared to state a 

generalization of the Woronowicz-Peres criterion. 
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Theorem 4.11. [16] Let S C Posm (g) be a closed convex set. For any operator 

E POsm (.F (D 8) we have p E Sepm (F ® 5) if and only if (I ® ')p E Pos(J ® ) 

for all S positive unital transformations E T(g, 1'). 

The proof of theorem 4.11 follows (with some very minor changes) exactly like 

the proof of the Woronowicz-Peres criterion, theorem 3.7. In our proof of the 

Woronowicz-Peres criterion we implicitly used the fact that if I (Pos (.F)) 9 Pos () 

then *(Pos(g)) 9 Pos(J'). The notation I(Pos(')) denotes the range of the trans-

formation when the domain is restricted to Pos(9). All we actually require to prove 

the theorem is that for any two closed convex cones C Pos(.'F) and 02 9 Pos(g), 

if 1P (C1) c 02 then **(o) 9 C. We can prove this by noting that for all C positive 

E T(, g), X  C1 and  E C, 

(X) E 02 (Y, 11) (X)) ≥ 0 (*(Y), x) ≥ 0 (Y) E C. 

We now introduce the positive cone that we will be interested in for the rest of 

this section. We used this cone in the previous section when dealing with bipartite 

entanglement. In that case our value for r was one and the cone generated was a 

sub-cone of the cone of separable positive semidefinite operators. 

Definition 4.12. Fix any positive real number 0 <r < I. Then, C(, r) is defined 

to be the cone generated by the set 

{I+:I,EHerm(J) and IIlIF_<r}. 

Like in the previous cases where we were dealing with positive cones, we will let 

C(F, r) be the convex set that is the set of all operators in C(.F, r) with trace n. 



54 

Using our newly defined positive cone we can generalize lemma 4.3 which showed 

that for any operator X E L(..F) and any positive unital transformation 15 E T(3), 

II())II ≤ M.'II. 

Lemma 4.13. [16] If I(, ) is a C(1, r) positive unital transformation then for 

all X E L()) we have 

IIXIL  II(X)II r 

Proof. First, we consider the case where X is a Hermitian operator and 11X11F = r. 

If we let Y = I + X then since is a C(T, r) positive unital transformation we get 

that 1(Y) = I + (X) E Pos(g) and so 114)  ≤ 1. Therefore, we get that 

II(X)II ≤ 1= IIXlIF  
r 

Any Hermitian matrix can be written as a scalar multiple of a Hermitian matrix 

with Frobenius norm r. This follows from the isomorphism between the Hermitian 

matrices and the real numbers and the equivalence of all norms on finite dimensional 

vector spaces. We have shown that all Hermitian operators satisfy the inequality. 

Consider now, any operator X E L(T). We can always write X = Y + iZ for 

some operators Y, Z E Herm(F). We then have that (X) = (Y) + i(Z) which 

gives 

II(X)II ≤ (y)I + II(Z)II = (IIYII + IIZIIF). 

The last inequality follows from the initial work on Hermitian operators proved 

above. Finally, we have that 

lix ' 2 < 1 + IIZIIF)2 ≤ (IIYII + IIzII) = 2 
- r2 
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D 

We can now give an analogue to lemma 4.4. The proof of which follows almost 

exactly like the bipartite case and will be omitted. 

Lemma 4.14. [16] If p E POSm (.F® g) can be expressed in the form p = k(I+) 

for some positive scalar k E R and E Herm(F ® ) where IIIF ≤ then 

p E Sep(J'®C(g,r)). 

The result of lemma 4.14 is weaker than lemma 4.4 by factor of \/. This is due 

to the fact that the contraction bound of lemma 4.13 contains a factor of in it. 

There exists examples that show this bound is tight and is the best that can be done. 

We now use lemma 4.14 to get a more useful result that can be applied directly to 

multipartite systems. 

Lemma 4.15. [16] If p E POSm (i ® Jc2 0 0 can be expressed in the form 

p = k (I + ) for some positive scalar k E R and E Herm(.T1 0.F 2 ®. . .0 J) where 

11•11 F  :5 2n/2-1 then p must be separable, p E Sepm (Pi 0 2 ®• 0 J). 

Proof. We will prove this by induction on the number of parties. For the base case 

(n = 2) we can use the bipartite result 

Cm (. 1®T2, 1) c Sepm(Fi(DJ'2). 

Next, we assume that the result holds for n - 1. That is, 
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Let r = 2(n-1)I2-1 Using lemma 4.14 we see that if p = I + where IlIlF ≤ r// 

then p E Sep.. ® Cm (-p2 ®.F 3 ® • ® ), r)). Therefore, we have that 

Cm (1®2 ® n21) C Sep ( 1®F2 ) 

D 

Next, by proceeding along the same lines as theorem 4.5 we can get a bound on 

the radius of a ball completely contained within the multipartite separable states. 

This bound is not as good as in the bipartite case. The more parties we have the 

further this bound gets from the bipartite case. Since the number of parties is in 

general significantly lower than the dimension this bound is not as bad as it looks. 

Theorem 4.16. [16] Let p E Posi(Jri 0 J2 0 0 be a quantum state and 

set d = dim(i 0 F2 (D :•) If Lo - 1111F ≤ i/ (2n/2-1 Vd(d - 2_fl+2)) then 

pESep1(10J2(9 ... (9). 

Using the same reasoning as in the bipartite case we can use this bound on the 

size of the ball that fits inside the set of separable states to obtain another equivalent 

criterion for separability in multipartite systems. 

Lemma 4.17. Let p E Posi(F1 0 0 ) be any multipartite quantum state. 

If tr(p2) ≤ d-2-+2 then p is separable. 

Figure 4.2 compares the radius of the largest ball that can fit inside the set of 

bipartite separable states (the dashed line) and the largest known radius of the ball 

that fits inside the set of multipartite separable states. A tight bound on the size of 

the largest ball that can fit inside the set of multipartite separable states is currently 

unknown. 
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Posj(.P1 0 

Sep1(F1 0••• 0 F) 

Figure 4.2: The Largest Separable Ball in Multipartite Systems 

4.4 States Close to the Multipartite Separable Ball 

The exact size of the largest separable ball around the maximally mixed multipartite 

state is still unknown. The results about bipartite entanglement give us an upper 

bound on the radius and the results of Section 4.3 give a lower bound on the radius. 

In this section we will discuss the most recent developments in this area. We first try 

to find an entangled state that is close to the maximally mixed multipartite state. 

If we have a three party quantum state p E Jri 0.F2 0 Jr3 then, by considering 

the three bipartite partitions of this tripartite system Jri 0 91 = Jri 0 (Jr2 (9 Jr3), 

Jr2® 2 = F2 0 (.Fl 0 Jr3), and F3 (D!93 = F3  (Jr1 (9 Jr2), we know from the results 

of Section 4.1 that if p is within Frobenius distance \/d(d1) of the maximally mixed 

state I then p is separable over all three partitions. Being separable over all bipartite 

partitions of a multipartite system is not enough to ensure that p is separable in the 

multipartite system. This is one reason why we cannot immediately conclude that 

a multipartite system with the same total dimension as a bipartite system has the 

same size largest separable ball. However, we can conclude that any state that would 

be in the largest separable ball in the bipartite system must be a positive partial 

transpose state. This is demonstrated in the next lemma. 
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Lemma 4.18. Let  E Posi(.F1®F2® .. . ®F) and set d = dim(Fi®F20. .. 

If 11P - 1I11 ?, ≤ 1//d(d - 1) then p has positive partial transpose with respect to any 

bipartite partition (F' ®. 0 F) ® (Fk+, 0 0 F92 ). 

Proof. Setting F = (F1. 0 0 Fk) and g = (Fk+1 0 0 F) we can see that 

p E Sep, (F 0 ) and therefore must be separable with respect to the partition 

(F, 0. (D F) 0 (Fk+1 ®. . . (D F,). If p is separable with respect to a partition then 

p must have positive partial transpose with respect to that partition. E 

The above lemma tells us that if we are to find a multipartite entangled state 

that is closer than Vd(dlto the maximally mixed state then this state must have 

positive partial transpose. We now try to construct a positive partial transpose state 

that is close to the multipartite separable ball. The method we will use for creating 

positive partial transpose entangled states is based on the idea of an unextendible 

product basis [6, 11]. 

Definition 4.19. An unextendible product basis S C F, ® . ® Fm is an orthogonal 

set of separable pure states such that F, ® 0 Fm contains no separable pure states 

that are orthogonal to every state in S. 

Once we have an unextendible product basis for our composite system we can 

quite easily construct a entangled positive partial transpose state. This is demon-

strated in the following lemma. 

Lemma 4.20. [6] Let d = dim(F, 0 ... 0 Fm ). Given any unextendible product basis 

S = {u,,u2, ... ,u92} cF,0•• •®Fm the state 

1( Ps = d - fl - 

92 

i=1 

uiu;) 
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is in PPT(.Fi(D ... ®J m ). 

Now that we know how to construct an entangled positive partial transpose state 

we will look at how far away these states are from the maximally mixed state. 

Lemma 4.21. If S is an unextendible product basis in F1 . ® Fm with ISI = 

and d = dim(Fi ® ... 0 Fm) then lIps - IIF = 

Proof. 

- uhhF = d—n' d d—n 
i=1 

n d 

d(d—n) ' d(d — n)Z 

n 
uju 

F 

F 

= n(d)2+d_n (d(d — n 

n 
= V+d2d  

4n 
- d — ni 

)2 

0 

It is interesting to note that the distance from the maximally mixed state depends 

only on the number of states in the unextendible product basis. There does exists a 

simple lower bound for the number of states in an unextendible product basis. If the 

composite system is F1 0. 0 F and dim() = di then we get that the minimum 

number of states in an unextendible product basis over F1 0 0 Fm is 

m 

( 
i=1 

—1)+1. 
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This shows that any bound entangled state created from a unextendible prod-

uct basis will not come close to the upper bound of the largest separable ball in 

multipartite systems. 

If we could now prove that all bound entangled states p have an associated 

unextendible product basis S such that p = Ps then we would could conclude that the 

bipartite largest separable ball and the multipartite separable ball are the same size. 

However, this is not the case as there do exist entangled positive partial transpose 

states which cannot be constructed by using an unextendible product basis, see for 

instance [21]. 

Recall how in section 4.2 we proved that the lower bound on the size of the largest 

separable ball in bipartite systems was tight. We were able to construct an entangled 

state p that was as close as we wanted to the largest separable ball. Perhaps we will 

be able to use the same technique for multipartite systems. Unfortunately, applying 

the same techniques as in the bipartite case will not result in an entangled state that 

is close the maximally mixed multipartite state. This is due to the fact that the 

bipartite case used a negative partial transpose as a way of determining if a state is 

entangled. We will not be able to construct a negative partial transpose state that 

is close to our bound for the largest multipartite separable ball because of lemma 

4.18. This means a new approach is necessary. Unfortunately, there seems to be 

no candidates for a multipartite entangled state close to the maximally mixed state, 

and constructing such a state has yet to be done. 
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4.5 Tighter Bounds 

In Appendix B we discuss how to construct an isomorphism from the set of m x n 

Hermitian matrices to R 2 . In the 2 x 2 case, the positive operators are mapped into 

a special sub-cone C C R 2, where 

= {u E R4 u[1]2 
i=2 

Therefore, the set of all positive transformations can be represented by linear 

maps which map C into itself. An analysis of linear maps which map C into itself 

is done by R. Hildebrand in [17]. By approaching the problem this way the author 

obtains a tighter bound on the radius of the largest multipartite separable ball. The 

bound discussed earlier given by Gurvits in [16] was 

1 

[i]2≥O and u[1]≥O} . 

2n/2—'/d(d - 2-fl+2) 

where d is the total dimension of the space and the ri is the number of parties. The 

new bound only applies to the case where the system is composed of two dimensional 

parts P = C ® 0 C. In this case, we get the tighter bound of 

1 

2Th/2,/3Th_1 + 1 

Unfortunately, this method is not extendible to higher dimensions because of the 

properties of the Gell-Mann isomorphism. When the dimension of the Hermitian 

operators increases, the Gell-Mann isomorphism no longer maps positive operators 

in Herm(C) into such a simple cone in R 2. This makes the analysis of positive 

transformations and separable states more difficult. 



Chapter 5 

Preliminary Results on Separability Testing 

In this chapter, we will cover two results about the complexity of separability testing. 

The first result we cover was presented by Wayne Myrvold in [25]. Myrvold showed 

that the separability decision problem was undecidable. Although this result may 

sound negative, this is not the case. The first section in this chapter will discuss how 

Myrvold's result fits into the big picture of separability testing. Before reading this 

chapter, it is important to have some background in computability. Foi this, the 

reader is referred to [9]. 

The second result we will cover is the possibility of testing for entanglement in 

a laboratory. Up until now we have taken a very mathematical approach to quan-

tum information. We have only considered quantum states as positive semidefinite 

operators. In the laboratory we have many different physical systems representing 

a qubit, see for instance Chapter 7 of [26]. In this Chapter, we will show that no 

matter how we represent a qubit we cannot perform a physical operation that tests 

for entanglement. 

5.1 Exact Separability Testing is Undecidable 

Let S = [0, 1], the real numbers from zero to one inclusive, and suppose that your 

task is to answer queries about whether a given number is in S or not. If you are 

given a real number, r, you can easily decide if r is in S or not. Now, let us assume 
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that you are not given the number r but instead you are given an approximation to 

r, some number x such that lx - ri <e for some small epsilon. Then, given only the 

number x you have to decide if r is in S or not. For instance, say you are given the 

input x = 1 as an approximation to some real number r. There are three possible 

cases for this input. In the first case we have r = 1 - S for some J < € and so 

r E S. Case two is that r = 1 + S for some S < e. Unlike the previous case, this 

time r 0 S. If it is possible to obtain a better approximation to r, a number y such 

that I y - rl < Ix - r , then doing this may help to distinguish case one from case 

two. In the last case we have x = r = 1. In this case r is in S. However, there 

is no approximation that we can use to solve this final case. We will never be able 

to tell if our approximation is exact, x = r = 1 or if we need to decrease 6 to see 

a difference between x and r. There is no way for us to make an informed decision 

about whether or not r E S. 

The above example illustrates how things might work on a computer. Given a 

real number r, a computer can only store an approximation to r because there is 

a finite amount of memory. When working with real numbers, we cannot correctly 

decide if r is in a set S or not because we may not be able to get the exact value for 

r. Even worse, if we do have the exact value for r we may not know it. This is the 

basic idea behind Myrvold's proof of the undecidability of the separability decision 

problem. 

The Separability Decision Problem 

Input: A rational approximation to an operator p E Pos1(F 0 ). 

Question: Is p E Sep1(F 0 g)? 
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Theorem 5.1. [25] The separability decision problem is undecidable. 

We will now sketch a proof of theorem 5.1. 

Let us assume that we have some Turing machine M that receives as input a 

rational approximation to a state p E Pos1(' ® ). Each entry of p will be given 

with rational real and imaginary parts that approximate the actual entries of p to 

within some predefined accuracy. At any point in the computation M is allowed to 

use an oracle to get a better approximation of p. If we assume that Sep1(1' (D ) is 

decidable by M, then by a basic result from computability we have that Sep1(F ® ) 

is partially recursive. Using the same reasoning as at the start of this section we see 

that Sep, (Y 0 ) is partially recursive if and only if Sep1(.F 0 ) is open. We know 

that Sep1(F 0 ) is closed and so we have derived a contradiction. 

Before we jump to conclusions about this proof, we should examine it more closely. 

Instead of dealing with separability testing directly, this result is more about the 

properties of the vector spaces we are working with. As discussed above, computer 

memory is finite and because of this we cannot represent certain types of numbers 

precisely. Myrvold's proof shows that exact separability testing is undecidable but 

not as a consequence of the problem itself. Instead, the result is based on the 

impossibility of computing exactly in the vector spaces used for quantum information. 

If we accept the fact that we cannot compute exactly but can approximate elements of 

the vector space then there is still progress to be made on the separability problem. 

Unfortunately, as we will now show, we need the state representing the quantum 

system in order to make significant progress on separability testing. 
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5.2 A Physical Test for Entanglement 

Now we consider the case of a physically realizable operation to test for entanglement. 

We assume that we are given one copy of an unknown quantum state p E Pos1 (.'F®g). 

We want to devise an operation so that at the end of the operation we can tell if 

p is entangled or not. Recall from section 2.4 that we can describe all physically 

realizable operations by completely positive trace preserving transformations. We 

would like to have a quantum operation such that when we apply this operation on 

an entangled state we get one result and when we apply the operation on a separable 

state we get another result. Performing a measurement is exactly what we need to 

try to solve this problem. Since we are not concerned with the resulting state, only 

the probability of the different outcomes, we only need to consider a POVM. 

Theorem 5.2. For any POVM {B1, B2,. . . , Bm} there does not exist a pair of in-

tegers 1 ≤ i, j ≤ m such that tr(Bp) > tr(Bp) for all states p 0 Sep, (Y ® ) and 

tr(Bo) > tr(Bo) for all states cr e Sep1(J0 ). 

Proof. We will prove this by contradiction. Assume that there did exist some pair 

of integers i, j for which it holds that tr(Bp) > tr(Bp) for all entangled states p 

and tr(Bo) > tr(Bo) for all separable states o. Since the maximally mixed state 

is separable, we have that tr(BJ[) > tr(B][). Using the maximally entangled basis 

of lemma 2.13 we have that tr(Bjua,bvb) > tr(Bjua,bub). By linearity of the trace 

we can derive the contradiction 

tr(B1I) = tr (a,b=Q BiUabUb) > tr a,b=O 

BUabU,b) = tr(B). 
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This theorem tells us that it is impossible to construct a POVM that can be used 

to test for entanglement in all cases. There is no single measurement that we can 

perform that will allow us to fully categorize all states as entangled or separable. 

Therefore, given a single copy of an unknown state we cannot perform a physical 

experiment that will reliabli test if the state is entangled or not. 

In the previous result we only considered the case where we are given one copy 

of an unknown quantum state. We could also consider the possibility that we are 

given many copies of the state we are trying to test. This information could change 

the situation quite dramatically. If we are given many copies of a state p then it 

may be possible to devise a physically realizable experiment that can determine if p 

is entangled or not. An example is the work done by P. Horodecki and A. Ekert in 

[22]. 

The main result proposed in [22] is that if we take the output of any positive (but 

not completely positive) transformation and mix it with the maximally mixed state 

then we can turn a positive transformation into a completely positive transformation. 

For instance, if we are working with the composite system T 0 9 where dim(F) = 

dim(g) = 2 we can create the completely positive transformation 

(p) = 

where T is the transpose transformation. The key is that the convex coefficients in 

the mixture are chosen so that negative one (the minimum eigenvalue of the state 

(I ® T)p over all possible states p) is shifted to a number greater than or equal 

to zero. This means that the mixture adds a small number to each eigenvalue of 

(I ® T)p to make them nonnegative. This not only makes a completely positive 
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transformation, but allows us to determine if a state p is entangled or not by applying 

a completely positive transformation. Given an unknown state p we simply compute 

(p). We then determine the minimum eigenvalue of (p). If the state (I ® T)p is 

positive semidefinite then all eigenvalues of (I ® T)p will be greater than or equal to 

zero and the minimum eigenvalue of (p) will be the minimum eigenvalue of 4 which 

is 2/9. If the state (I® T)p is not positive semidefinite then the minimum eigenvalue 

of (p) will be less than 2/9 but still greater than or equal to zero. Therefore, by 

examining the minimum eigenvalue of (p) we can determine if p is entangled or 

not. 

Given a quantum state in a laboratory, we require many copies of the state in 

order to determine the smallest eigenvalue of p. However, since the. -Horodecki 

criterion is a necessary and sufficient test for entanglement over the system, 

we have created a physically implementable transformation that can detect entan-

glement. 

A problem arises when we try to extend this to larger dimensional spaces. In 

the low dimensional cases it is easy because the Peres-Horodecki criterion is both a 

necessary and sufficient criterion for entanglement. In larger dimensions, we require 

a set of transformations which can detect all types of entanglement. Next, we would 

have to construct a completely positive version of each transformation and then 

determine the minimum eigenvalue of the resulting states. As discussed in Chapter 

3, we do not have any reasonably sized set of positive transformations that can detect 

all forms of entanglement. Therefore, this approach will not work on all states in 

systems with dimension greater than 6. 



Chapter 6 

The Yudin-Nemirovsky Theorem 

The Yudin-Nemirovsky theorem [31] gives a polynomial time Turing reduction be-

tween two problems defined on a convex set. In this chapter we use the Yudin-

Nemirovsky theorem in the specific case where the convex set in question is the set 

of separable states Sep1 (F® ). We outline a series of problems that are polynomial 

time Turing reducible to each other and try to give some intuition about how the 

reductions work. 

Problem A is polynomial time Turing reducible to problem B if we can use a 

polynomial time Turing machine with an oracle for problem B to decide if any valid 

input is a YES instance of problem A. We denote a polynomial time Turing reduction 

by A ≤ B. For convenience, we will use the term Turing reduction to mean polyno-

mial time Turing reduction and we will specify when the reduction is not polynomial 

time. 

Turing reductions are transitive. That is, if A ≤ B and B < C then we can 

conclude that A ≤ C. This will help us when looking at the Yudin-Nemirovsky 

theorem as it allows us to examine the theorem in parts. We do not need to cover 

the Yudin-Nemirovsky theorem in one big step. Instead, we can break it down into 

smaller, more manageable parts. 

The running time of the algorithms in this chapter will be measured in the length 

of the input and the length of an encoding of the convex set. In Chapter 4 we went 

to great lengths to give bounds on the size of Sep1(T ® ) that were polynomial in 

68 



69 

the dimension of Pos1(F®g). Now that we have done this, the length of an encoding 

of the convex set Sep1(LT ® ) is dominated by the dimension of Pos1(.F ® g). 

The input to our problem is a positive semidefinite operator p and a rational 

number e representing the error term. For the remainder of this chapter we will 

assume the positive semidefinite operator is given to us with rational entries. The 

encoding size of a rational number is how many bits it takes to encode the numerator 

and denominator of the entry. 

Therefore, the running time of the algorithms in this chapter is measured in the 

dimension of the convex set multiplied by the encoding length of e multiplied by the 

largest encoding length of the entries of our positive semidefinite operator. With 

this encoding scheme we can set the error term e to be exponentially small in the 

dimension and the length of the input would still be polynomial in the dimension. 

6.1 Approximate Separability Testing 

We already know (via Chapter 5) that exact separability testing is undecidable. 

Although this is a negative result, it does not rule out the possibility of an algorithm 

that can test separability with a small amount of error. Therefore, we now define 

the approximate separability problem. 

Approximate Separability Testing 

Input: An operator p E Pos1(.F ® ) and € E Q. 

Yes: p E Bp(Sep1(.F® g), — c). 

No: p BF(Sepl(9®g),). 
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The reason why the problems in this chapter are called "weak" or "approximate" 

has nothing to do with their difficulty but emphasizes the fact that there is a certain 

small amount of error involved in each problem. For instance, in approximate sep-

arability testing we are given a positive semidefinite matrix p and we are trying to 

determine if p is in the set of separable states or not. There is an area surrounding 

the border of the set of separable states for which we may get an incorrect answer to 

our problem. We already know that exact separability testing is undecidable so with-

out this small error we would be unable to construct a separability testing algorithm 

that works properly. We have to accept the fact that there will be a small number 

of states for which we cannot determine if they are separable or not. Therefore, our 

definition of a correct algorithm is not that the algorithm is correct on all inputs, 

just that the algorithm is correct on the determined YES and NO inputs. Again 

using approximate separability testing as an example, if our input p is within € (6 is 

an input) of the border of the set of separable states then we may get an incorrect 

answer. The YES inputs would be where p is separable and is at least 6 away from 

the border of the set of separable states. The NO inputs would be where p is at least 

away from the edge of the set of separable states and is entangled. 

The solid line in figure 6.1 represents the border of Sep1(2 0 ). The area 

between the two dashed lines represents the area which contains inputs where we 

allow a correct algorithm to answer YES or NO. 

Having an algorithm for approximate separability testing does not imply that we 

would be able to determine if any given quantum state is separable. However, if we 

could determine if any given state p E Pos1(.F 0 ) is separable or entangled then 

we would be able to solve the approximate separability testing problem. Therefore, 
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Figure 6.1: Approximate Separability Testing 

we have that approximate separability testing reduces to separability testing (ST). 

In mathematical terms, 

AST ≤ ST. 

The next problem we will consider is closely related to AST. We will call this 

problem approximate separability testing with one-sided error (AST-OSE). The dif-

ference between AST-OSE and AST is that the area in which an incorrect solution 

might be obtained in the one-sided error version has been shifted. This means that 

if the input p is separable we no longer require it to be at least distance 6 from the 

border of the set of separable states. 

Approximate Separability Testing With One-Sided Error 

Input: An operator p E Pos1(F ® ) and € E Q. 

Yes: pESep1(®g). 

No: p 0 Bp(Sep1(..'F®g),€). 
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Figure 6.2: Approximate Separability Testing with One-Sided Error 

The solid line in figure 6.2 represents the border of Sep1(.®g). The area between 

the border of Sep1 (®g) and the dashed line is the area which contains inputs where 

we allow a correct algorithm to answer YES or NO. 

Next, we will show that the problems AST and AST-OSE are in fact equivalent. 

Given an algorithm that solves one of the problems, we can construct an algorithm 

that will solve the other. It is easy to see that if we are given an algorithm for AST-

OSE then we can solve AST. However, this is not the direction that we need to show 

that separability testing is N P hard. We need to show the reverse, if we are given an 

algorithm that solves AST then we can solve AST-OSE. We want a reduction from 

AST-OSE to AST, we want to show that AST-OSE ≤ AST. 

Lemma 6.1. [13] Approximate separability testing with one-sided error Turing re-

duces to approximate separability testing, AST-OSE < AST. 

Proof. Let F = C, 9 = cm and let d = nm. Assume that we have an algorithm 

that solves the AST problem. We want to use this algorithm to solve AST-OSE. 

Given the input € and p we can do the following, 
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1. Compute J = II - 'tIIF 

• If5≥ 1 then  0 Sep1(F®g) and we can answer NO. 

• If ö Vd(dlthen p E Sep1(F® ), and we can answer YES. 

2. Set Po = (1— )p+]I and €íj = 4/d(d-1) 

3. Run the AST algorithm with input Po and &. 

4. If the AST algorithm tells us that Po E BF(Sepl(F ® 0), €0) then we can con-

clude that p E Sep1 (F(D 0) and answer YES. 

5. If the AST algorithm concludes that Po 0 BF(Sepl(F ® g), —co) then we can 

conclude that p 0 BF(Sepl(F (9 0), €) and we can answer NO. 

This is the first place where the work done in Chapter 4 becomes important. Since 

we know upper and lower bounds on the size of the set of separable states, computing 

- 1'IIF in step one eliminates cases that would cause us difficulty later. We can 

now assume that Jd(dl 1) < lip - 111F < 1. Using this we can see that 

IIPPoliF = 
€ € 

- liM < 
F4 

If the AST algorithm tells us that P0 E BF(Sepl(F ® 0), €o) then it must be the case 

that p E BF(Sepl(F (9 0), € + ). We also have that 

f0+= 4d(d-1)4 ≤€, 

and so BF(Sepl(F ® 0), 6o + ) C BF(Sepl(F (D 0), 6). From this it is easy to see 

that p E BF(Sepl(F ® 0), e). This means that p is either inside Sep1(F ® 0) or p is 

in the area where a correct algorithm can answer YES or NO. In either case, we are 

safe in concluding with a YES. 
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If the AST algorithm tells us that Po 0 BF(Sepl(1' 0 ), — co), then we need to 

show that p 0 Sep, (.F 0 we will do this by using a contradiction. Assume that 

p e Sep1(..'F®g). Then, 

IIPoIIF = 

The second last line follows from the fact that llp - IF > / d(d-1)' which we checked 

in the first part of our reduction. With all this information we can conclude that 

Bp(po, 6o) 9 Sep1(.P® g) and so Pa E BF(Sepl(® g), —to). This is a contradiction 

to the answer of the AST algorithm. This means that p is either far away from 

separable or p is in the area where a correct algorithm is allowed to answer either 

YES or NO. In either case, we can answer NO. 0 

6.2 The Approximate Witness Problem 

The approximate witness problem is the next step in the Yudin-Nemirovsky theorem. 

Unlike the previous two problems that we have dealt with, the approximate witness 

problem is not a simple YES or NO problem. Like the previous problems, we require 

that a correct algorithm for the approximate witness problem declares YES when 

the input p fulfills some criterion. However, when the input p is not a YES instance 

then we require that a correct algorithm for the approximate witness problem finds 
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an operator that almost proves this. This is where the error plays an important part. 

The algorithm does not need to find an operator that proves that p is NO instance, 

it simply needs to find an operator that shows that p is close to being a NO instance. 

The Approximate Witness Problem 

Input: An operator p E Pos1(.F 0 ) and two rational numbers 0 < e, /3 < 1. 

Yes: p  BF(Sep1(JOg),e) 

No: Find a Hermitian operator Y E Herm(.'F (D ) such that 

1 ≤ IIYll ≤ dim(.F) dim(g) and (Y cr) (Y, p) + (e +/3 Ilo - PIIF) IIYIIF 

for all cr E Sep1(,F (9 Q). 

As with all the problems in this chapter we require an area in which a correct 

algorithm can be right or wrong. In this case, the area is the same as the area in the 

AST-OSE problem. If our input p is within e of the border of Sep1('®g) and is not 

contained in Sep, (.'g (9 ) then a correct algorithm can either answer YES or give a 

Hermitian operator that fulfills the criteria. The following theorem can be found in 

[13] and it demonstrates the connection between AWP and AST-OSE. 

Lemma 6.2. [13] There exists a (non polynomial time) Turing reduction from the 

AST-OSE problem to AWP; AWP ≤ AST.-OSE. 

The idea behind the reduction is we can use an algorithm for AST-OSE on 

the set Bp(Sep1(' o g), €). If our AST-OSE algorithm concludes YES, then we 

know that p E Bp(Sep1(J 0 9),e) and we are done. If not, then we know that 

p 0 BF(Sepl(..'F 0 ), 2e). Then, by using a binary search with the AST-OSE 

algorithm we can find an element of c E Pos1( 0 ) that is really close to the set 
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Sep1(.F 0 ) but is entangled. We then use a, along with our knowledge about the 

bounds on the size of the set of separable states, to construct the Hermitian operator 

Y required in the AWP. 

This reduction runs in time that is polynomial in the dimension and f1. This 

means that it is not a polynomial time Turing reduction as we had defined in the first 

part of this chapter. However, we only use this reduction in the case where ,B 

where d is the dimension of Pos1( 0 ). This means that although this reduction is 

not a polynomial time Turing reduction for all inputs, we only require the reduction 

on inputs where the reduction will still run in polynomial time. 

6.3 The Weak Validity for Separable States Problem 

In order to understand the weak validity for separable states problem, we need to 

know what a valid inequality is. For any p E Herm( 0 ) and r E Q an inequality 

(p, Y) ≤ r is called valid for Sep1(.T (9 ) if 

Sep1(F 0 ç {Y E Herm(P 0 ): (p, Y) ≤ r}. 

Geometrically, the inequality and the inputs p and r define what is called a half-space 

H = {Y E Herm(.F (D ) : (p, Y) ≤ r}. The weak validity problem tests whether the 

convex set in question is contained in this half-space. 

The Weak Validity for Separable States Problem 

Input: A Hermitian operator X E Herm(F(D g), 'y E Q and E Q. 

Yes: 3u E Sep, (.F 0 ) such that (X, a) ≥ 'y. 

No: VaE Sep1 (LP®g), (X, u) <y— e. 
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NO 

Figure 6.3: Weak Validity for Separable States 

Figure 6.3 shows one possible case of the WVSS problem. The YES instances 

correspond to inputs X that are on the left side of the shaded area and NO instances 

are inputs X that are on the right side of the shaded area. If the input X is within 

€ of Sep1( (9!9)  then a correct algorithm for WVSS can answer either YES or NO. 

Theorem 6.3. [13, 31] Yudin-Nemirovsky Theorem 

Weak validity for separable states Turing reduces to approximate separability testing, 

WVSS < AST. 

The first step in the Yudin-Nemirovsky theorem is to build a shallow-cut ellipsoid 

algorithm. We use the algorithm for AST to get an algorithm for AWP. We then 

use the algorithm for AWP along with the bounds on the size of the set of separable 

states, to construct a shallow-cut ellipsoid algorithm. 

Given the convex set Sep1(.2 (D ) and input to WVSS of X E Herm(F  

E Q and € e Q+, the shallow-cut ellipsoid method constructs a new convex set S 
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based on X and Sep, (.F ® ), and tries to find an ellipsoid E such that S C E where 

the volume of E is less than or equal to €. The first step is to guess any ellipsoid 

E1 that has the same center as S. We then check if a smaller scaled version of this 

ellipsoid fits inside the set S. To do this we require our lower bound on the size of 

Sep1(,F 0 ) which we can use to get a lower bound on the size of S. 

If our smaller ellipsoid is not inside the set S then there exists some point s 

that is in the smaller ellipsoid but not in S. The next step of the algorithm is to 

construct a hyperplane that separates the point s from the set S. To do this, we 

use our algorithm for AWP. After we have constructed the hyperplane, we use it to 

construct a new ellipsoid E2 and repeat the process. The algorithm halts when we 

have found an appropriate ellipsoid or we can no longer use the AWP to build the 

required hyperplane. Figure 6.4 shows an example of one iteration of the shallow-cut 

ellipsoid method where the smaller ellipsoid is not contained in S. 

Figure 6.4: Step One and Two of Shallow-Cut Ellipsoid Method 

If the shallow-cut ellipsoid algorithm finds an ellipsoid containing S with volume 

at most e, then it can be shown that the input is a NO instance of WVSS. Conversely, 

if the shallow-cut ellipsoid algorithm fails then the input is a YES instance of WVSS. 



Chapter 7 

Approximate Separability Testing is NP hard 

This chapter will give a reduction from the NP complete problem of Partition to 

WVSS. This is the final step in showing that AST is NP hard because the Yudin-

Nemirovsky theorem gave a reduction between AST and WVSS. It is well known 

that Partition is NP complete (see for instance [12]) and the reduction between 

WVSS and Partition was first shown by A. Ben-Tal and A. Nemirovsky in [5]. 

However, it was L. Gurvits in [14] who first combined this result with the results 

from the previous chapter to establish that separability testing is NP hard. 

7.1 Proof of Hardness 

The following lemma will be very useful in the proof of hardness. 

Lemma 7.1. j8j Let L'P = CI and 9 = Ctm where n = (') + 2. For any matrices 

X1, X2,- . . ,X,_1 E Herm(.F) and 

(E1,+1 + E+1,1) ® X. 
i=1 

it follows that 

f(C) - max tr(Cp) 
pESep1(F®g) 

In {: (v*X v)2 : V E g, MvII2 = i}. 

Proof. First, we note that the function f is well defined because the set of separable 

states is compact. Lemma C.7 tells us that there does exist some separable state 
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a E Sep(.F (D ) such that the the maximum value of f(C) is tr(Ca). By convexity, 

it suffices to consider only pure states uu ® vv E Sep1(. ® ) when attempting to 

maximize 1(C). Given this, it is possible to simplify f(C) as follows, 

f(C) = max tr(C (uu* 0 vv*)) 
uu*Øvv*ESepi (F(Dg) 

= tr ( ((E1, 1 + E+,,,) 0 X) (uu* 0 vv*) 

± 

=tr( 

= ( v xiv (E1,+1 + E+11)) U. 

(Ei,+i uu + E,1 uu*) ® v*Xv) 

The operator >' (E, 1 + E 1,1) is Hermitian and so the Rayleigh-Ritz theorem 

from matrix analysis implies that the maximum of this last equality is the largest 

eigenvalue ), of >IIT.i1 vKX v (Ei,+i + E+1,,). This maximum is obtained when the 

vector u = u[i] e is the corresponding eigenvector. Using the fact that 

we get 

Au= 

—1 

i=i 

n—i 

i=i 

n—i 

n—i 

v xiv (E1,+1 + E+1,1) u 
i=i 

vXv (Ei,+1 + E+i,i) u 

v'Xv (eiu[i + 11 + e+iu{1]) 

vXv (eiu[i + 1]) + 
i=i 

Therefore, we know that the vector u satisfies 

Au[1] = u[i + 1] vXv and 

—i 

vXv (e +iu{1]). 
i=]-

i=i 

Au[i + 1] = u[1] vXv for i = 1, . . . , n. - 1. 
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Finally, since 

u[i + 1] - '[l] vX,v  for i=1, ... ,n-1 
A 

we get 

Au[1] = 
fl_I  (vK.X v)2 n-i 

U[j] A A2 = (v*X v)2. 

i=i i=1 

The last step before it is shown that Partition reduces to WVSS is to formally 

introduce the problem of Partition. 

Partition 

Input: A set S of positive integers. 

Yes: There exists some set S' C S such that 

s=s. 
sES' sES\S' 

Theorem 7.2. Partition reduces to the Weak Validity Problem for Separable States, 

PARTITION < WVSS. 

Proof. Let the set S = {s, 92,• . . .9m} be the input to the Partition problem. We 

set n = () +2, ,F = Qfl and = Qm. Let X1,X2,...,X,_2 E Herm(g) be an 

enumeration of the matrices 

for 1≤i<j≤m. Wethen set 

xn_i=I 
(x)x) 

xx* 
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where 

m 

Now, define C E Herm(F® ) as 
n—i 

c=V' 
i=1 

We can use lemma 7.1 to get 

f(C) = max tr(Cp) = 
pESep1(.'F®g) 

(E1,+i + E+1,i) ® Xi. 

max{(u*Xiu)2 : u E g, JIU112 

It will be shown below that the maximum value of f(C) will be obtained when the 

set S is a YES instance of the partition problem. When S is a YES instance of the 

partition problem, the value of u that yields the maximum value of f(C) will be of 

the form u = E ±ej and this represents a possible partitioning of S. The sign 

of u[i] will represent whether we should place si in S or not, a positive sign indicates 

that we should and a negative sign indicates that si should be excluded from the set 

8'. In this way, if a valid partitioning of S exists then the vector u will describe one 

of the possible ways that we can partition S. We then show if S is a NO instance of 

the partition problem then the maximum value of f(C) will be less than optimal by 

some fixed amount. With this information we show that we can use an algorithm 

for the WVSS problem to solve the partition problem. 

First, define two functions fi and f2 like so 

fi(u)= 
i=i 

(u * Xu)2 and f2(u) = (u* Xn iu) 2 

From the choice of Xn_i it is clear that f2 is maximized for all unit vectors u 

where (x, u) = 0. The maximum value that f2 can take when given this input is 1. 
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Next, notice that 

n-2 

i=1 
= 

1≤i<jm 

= 

1<i<j≤m 

M 

i,j=1 

2 (u*E ,u)2 

2u [j]2 u[j]2 

u[i r.] u[j] 2 2 
- 

M 

= 1—u[i]4. 
i=1 

m 

i=1 

Since Eml u[i]4 is minimized when each u[i] is as small as possible, in this case 

u[i] = ±, the maximum of fi occurs when u = Em, ±e. We can now easily 

compute the maximum for fl(u) to be, fl(u) = 1 - 1 - . Therefore, 

the maximum of f + f2 is 2— I and this maximum occurs when u = 

and (x, u) = 0. 

Consider now, what happens when S is a NO instance of the partition problem. 

Let 

d = min{(ux) : u € c,u 
I - 

Since x is an integral vector the smallest value for d is . It is possible to express 

all unit vectors u E g as u = (±1 - ö) e, where each 5j is some constant 

between negative one and one. From this, we can get the following equality, 

d= 1  ((xu)+osVM ). 

i=1  Using this equality it is now possible to show that there exists some polynomial p 

such that if S cannot be partitioned then f(C) ≤ 2   This will be 

broken down into two cases. Case one will be when (x, u) poly (, i)• In this 
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case, we have a unit vector u, which scales the entries of the vector x so that when 

we take the inner product of x and u we get something that is very close to zero. We 

can then reorder the above equation to get > Jjaj = d.,/ m—  6 ≥ 1 - 8 for some 

small J. This means that at least one 8j is greater than or equal to approximately 

1>  1  
- VIIXII2 and so there exists some polynomial p such that 

fi('u)=l— 
m 

i=1 

U[i]4 = 1— 
m 4 

pi (MI IIxlI2)' 

In the second case 6,x poly (' 1ii2) In this case (x, u = d - 6 for some 

small 8 and so 12(u) = 1 Therefore, there exists some polynomial P2 such 

that 

- 

f2(u)=1—  2 
IIXII2 P2 (m, IkII2) 

Choosing p (m, IIxII2) = max{pi (m, I 1x112) ,P2 (m, IIxII2)} for given values of in and 

1 

I 112 yields the result 

f(C) =fi(C)+12(C) ≤2 1 M p(m,IIxII2) 

Now, it is clear to see that the input C, 'y = 2 - and 6 =  1 is a yes 
p(m,lIlI2) 

instance of the WVSS problem if and only if S is a YES instance of the partition 

problem. 0 

7.2 Overview of the Hardness Result 

By the work done in the previous chapter we now have proved that partition Turing 

reduces to separability testing. 

PARTITION ≤ WVSS < AWP < AST-OSE < AST < ST. 
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Since partition is NP hard it must be the case that separability testing is NP hard. 

We now consider the constraint that the dimension n = () + 2 is fixed given 
m used in the reduction from partition to WVSS. This does not affect the proof 

that partition reduces to weak validity for separable states. However, this constraint 

does "trickle down" and implies that we have only shown that separability testing 

is NP hard in the case where the composite system is 0 Cm for any integer 

m. However, if we could solve the general case of separability testing then we could 

easily solve the constrained version of separability testing. Therefore, it must be the 

case that separability testing is also NP hard. 

One final consideration is we have only shown that bipartite separability testing 

is NP hard. This is sufficient to conclude that multipartite separability testing is also 

NP hard. If multipartite separability testing was not NP hard then we could add 

an extra party to a bipartite quantum state and then use multipartite separability 

testing to determine if the state is entangled. Therefore, there exists a reduction 

from bipartite separability testing to multipartite separability testing. Since we have 

shown that bipartite separability testing is NP hard then multipartite separability 

testing must also be NP hard. 



Chapter 8 

Conclusion 

This thesis has shown that testing for separability is an NP hard problem. To do 

this we closely examined how separable states behave when we apply a positive 

transformation to them and this led to bounds on the size of the set of separable 

states. We required the bounds on the size of the set of separable states in order to 

apply a theorem from convex optimization known as the Yudin-Nemirovsky theorem. 

We then uesd the Yudin-Nemirovsky theorem to give a polynomial time Turing 

reduction from weak validity for separable states to approximate separability testing, 

two problems defined on the set of separable states. We concluded the proof by 

showing that weak validity for separable states was NP hard and so approximate 

separability testing must also be NP hard. 

Although separability testing has been shown to be NP hard this has not discour-

aged researchers from trying to improve on the best known algorithms for separability 

testing. Separability testing is NP hard when the complexity parameter is the total 

dimension of the composite system. If we are working with a system that is com-

posed of a small number of low dimensional systems, then we may be able to test 

for entanglement in a reasonable time. Although the main result presented in this 

thesis is a negative one, it does not rule out the possibility of an algorithm that works 

well enough to test for separability in a composite system with low total dimension. 

Therefore, there is still work being done and still work that needs to be done on 

separability testing. 
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Appendix A 

Extreme Points and Convex Sets 

Definition A.1. Let S be a convex set and let u E S. The point u is called an extreme 

point of S if for all u1, u2, u = pu1 + (1 - p) u2 for some real number 0 < p < 1 

implies that u1 = u2 = u. 

Extreme points can be very useful when trying to solve a problem about a com-

pact convex set. This is due to a well know result in convex analysis called the 

Krein-Millman theorem. If we know or can easily find the extreme points of a con-

vex compact set S, then we can simply solve the problem on these points. In many 

cases this is much easier than solving the problem for any point in S as the ex-

treme points are often easier to work with. If the solution on the extreme points 

works with convex combinations of extreme points and is stable under limits then 

the Krein-Millman theorem states that it holds for every element in S. 

Theorem A.2. Krein-Millman Theorem 

Let F be a normed vector space and S a convex, compact subset of F. S is the 

closure of the convex hull of its extreme points. 

We now prove a result that was required earlier in the thesis about the extreme 

points of the matrix ball with respect to the operator norm. 

Lemma A.3. Consider the convex set S = {X E L(J) : IIXII ≤ 1}. The extreme 

points of S are the unitary matrices. 
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Proof. First we will show that any unitary matrix can only be expressed as a trivial 

convex combination. Let X E S be a unitary matrix such that X = pY + (1 - p)Z 

where Y, Z E S. This implies that for any unit vector u E 1' we have IIYuII2 ≤ 1 

and lIZuII2 ≤ 1. Also, using our convex combination we have that 

1 = lIXuII2 = IIpYu + (1 - p)Zu 2 ≤ IIYuII2 + (1 - ii') IlZuII2. 

which shows that IlYull2 ≥ 1 and IIZuM2 ≥ 1. Therefore, it must be that case that 

Yu 112 = 1 and II ZU 112 = 1 for all unit vectors u E .F and so Y and Z are unitary. 

This also gives that the triangle inequality becomes an equality 

IIpYu + (1 - p)ZulI2 = P IYuIl2 + (1 - i) IIZull2 

which only happens in the case that pYu is a scalar multiple of (1 - p)Zu. Since Y 

and Z are unitary this means that Yu = Zu for all u E 1F and therefore Y = Z. We 

have now shown that if X is unitary then X is an extreme point. 

Now we will show that if X is an extreme point of S then X is unitary. To do 

this it will suffice to show that all extreme points have full rank and all the singular 

values of any extreme point are one. 

Let X be any operator in S with rank r. Using the singular value decomposition, 

theorem 2.3, we can write 

r 

x = 
i=1 

siuiv. 

where {u1 u2) . . . , Ur} C F and {vi, v2,... , Vr} C .F are orthonormal sets. Using this 

representation of X, we can write X as a convex combination of two other operators, 
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X= Y+Zwhere 

Y = > 2suv 
ai< 8i≥ 12 

and Z= 

si≥ 12 

( 

Clearly Y and Z are distinct operators unless all singular values of X are one. 

If the operator X does not have full rank, then there exists at least one vector, 

Ur+l, that can be added to the set {u1, U2,. .. , ur} so that it is still an orthonormal 

set of vectors. Likewise, there exists a vector, Vr+1, that can be added to the set 

{vi, v2,. .. , Vr} so that it is still an orthonormal set of vectors. Using the two vectors 

Ur+1 and v 1 we can create two new operators Y and Z where 

* (UrUr+i\ (Vr+Vr+1\* (Ur+Ur+i'\ (Vr — Vr+i  \\* = E * 

) 
and 

i=1 

r-1 

Z=uv?+ 
i=1 

(Ur + Ur+1 (Vr + Vr+i 
"\  

/ \ / 

(UrUr+1 (VrVr+1  

Each of the'added vectors in the decomposition of Y and Z are normalized and can 

be part of a complete orthonormal basis for F. Therefore, the above decompositions 

of Y and Z are valid singular value decompositions. It is also important to note that 

Y and Z are both in S. Simplifying these expressions gives 

r 

- UV 1 and Z U07 + Ur+1V+i. 

It is now easy to see that X = Y + Z. 

We have shown that any extreme point must have full rank and all of its singular 

values must equal one. Therefore, by the discussion about unitary matrices and 

singular values given after theorem 2.3, if X is an extreme point then X must be 

unitary. 



Appendix B 

An Isomorphism Between Herm(C') and R 

To define an isomorphism from Herm(C) to R we need to consider a basis for 

Herm(C). One such basis is the Gell-Mann basis, defined as 

Aa,b = 

Eab + Eb,a 

—i (Eb,a - Ea,b) 

I 

if a < b 

if a> b 

if a = b = 1 

V E -1 2 a 
a(a-1) Ea_i,a_i - (a - 1) Ea,a) if a = b and a> 1 

for all 1≤ a,b ≤ n. 

Now that we have a basis for Herm(C) we can define an isomorphism as follows 

G: Herm(C) i-+ R n2 

G(X) = Ea,i=i (Aa,b) X) Cn(a_1)+b. 

It is a simple and straightforward task to verify that the Cell-Mann Isomorphism is 

actually an isomorphism. 

In the case where we map Herm(C2) in J1 the Cell-Mann isomorphism has some 

special properties. We look at this example as it will become useful later. 

Example B.I. let ST = V. Then, the Cell-Mann basis for Herm(ST) consists of the 

following four matrices. 

10 
A1,1 = A1,2 = 

01 

1 r 1 r 
0 ii 10 —ii Il 0 

A2,1= IA2,2= I 
1 0] [i 0] [0 —1 
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These matrices may look familiar as they are the widely known Pauli matrices. It may 

be tempting to think that the Cell-Mann basis can be considered as a generalization of 

the Pauli matrices. However, the Cell-Mann basis is no longer composed of unitary 

matrices once dim() > 2. Any matrix in Herm() can be written as 

ci d 

a b+ci 

b — 

and under the Cell-Mann Isomorphism this gets mapped to 

a+d 

2b 

2c 

a — d 

Lemma B.2. let .F = C2. The Gell-Mann isomorphism maps the cone Pos(P) into 

the cone 

4 

C={uER4:u[1]2_u[i]2≥O and u[1]≥O}. 

Proof. If we set 

then the eigenvalues of p are 

A1 = 

a b+ci 

b — ci d 
E Herm(F) 
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Since the eigenvalues of p must be real numbers we have that p E Pos(.P) if and only 

if A1)2 ≥ 0 and A + A2 ≥ 0. Now, it is easily seen that the condition A1 + A2 ≥ 0 is 

equivalent to a+d ≥ 0 and that A1A2 ≥ 0 is equivalent to (a+d)2 ≥ 4b2+4c2+(a—d)2. 

These two conditions are equivalent to saying that G(p) E C. fl 



Appendix C 

Analysis 

Definition C.I. For any subset S of a vector space .F we say that S is closed if 

every sequence of elements from S that has a limit in .F, has a limit in S. 

Definition C.2. A subset S of a vector space .F is called bounded if there exists a 

real number r such that 11811 <r for all s E S. 

Both of the above definitions depend on the concept of a norm. Is it possible that 

a set S of a vector space P is closed with respect to one norm and not another? Can 

S be bounded by one norm but not another? The following definition and lemma 

show that the answer to both these questions is no. 

Definition C.3. Let .T be a vector space with at least two norms I lila and We 

say that the norms 11 . ' and 11 lib are equivalent if there exists a positive real number 

r so that 

:1. 
HU11a ≤ Hulk r llulla 

for all u E J 

Lemma C.4. If ..7 is a finite dimensional vector space then all norms on F are 

equivalent. 

Definition C.3 and lemma C.4 are used implicitly throughout this thesis. For 

instance, in theorem 3.3 where we show that the set of separable states is compact, 

97 



98 

we show that the set of separable states is a bounded subset of L(.F 0 ) with 

respect to the trace norm. Because all norms on finite dimensional vector spaces are 

equivalent, we have that the set of separable states is a bounded subset of L(1' 0 

with respect to any norm of L(F 0 

Appendix B discusses isomorphisms between the vector spaces Herm(C) and 

R 2. Hence, Pos1 ( 0 ) and the set of separable states can both be viewed as 

subsets of R m  for some positive integer m. This is important because it allows us to 

use the Heine-Borel theorem from analysis to equate compactness with closed and 

bounded. 

Definition C.5. A subset S of a vector space .F is called compact if for every collec-

tion of open sets {K} where S Uj Ki there exists a finite set of positive integers 

X={xi,x2, ... ,x}so that SCLJK. 

Theorem C.6. Heine-Borel Theorem 

If S is a subset of Rn then S is closed and bounded if and only if S is compact. 

We use the Heine-Borel theorem to show that the set of separable states is com-

pact, theorem 3.3. Compactness also gives us some nice results about continuous 

functions defined on the st of separable states. 

Lemma C.7. If f is a continuous real function on a compact subset S of a vector 

space .F then there exists elements 81, 82 E S such that 

f(si) = sup f(s) and f(82) = inff(s). 
sES sES 

We use the above lemma when we define the function f used in Chapter 7 for 

lemma 7.1 and theorem 7.2. 
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Theorem C.8. Geometric Hahn-Banach Theorem Let S and 82 be disjoint, 

closed, convex subsets of Rn and let S be compact. Then, there exists a vector a E Rn 

and a real number r so that 

(a,si)<rfor all siESi and (a,s2)>rfor all s2ES2 

The vector a and the number r from the Hahn-Banach theorem define a hyper-

plane. The inequalities given show that the hyperplane lies between the two sets 81 

and 82. This is what we mean when we say a hyperplane separates two sets. 

We use the isomorphism from Herm (Ctm) to R 2 in order to apply this theorem to 

the set of positive semidefinite operators. If we choose S to be the set of separable 

states (which is compact by theorem 3.3) and 82 to be a single entangled state then 

by the Hahn-Banach theorem we can always construct a hyperplane that separates 

the two. 

Figure C.1: Separating Hyperplane 


