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ABSTRACT 

The use of AP norms in the regulation of errors in inversion is 

well known (least-squares corresponding to p=2, least-absolute 

value corresponding to p=1). In this thesis a new class of regu-

lating function (PERFs) will be defined of which the 2P norms 

are a subset. By consideration of inversion problems in a general 

framework, a set of defining properties of PERFs was arrived at. 

The form of PERFs thus defined allows a relationship to be drawn 

between a particular PERF and the underlying probability distrib-

ution of the gauged quantity. By variational techniques, plus a 

constraint, the extremum of a PERF is related to a specific proba-

bility distribution. Since extrema of PERFs are used in inversion 

to indicate an optimum, this provides a means to describe the sta-

tistical effect a particular PERF may have on the probabilistic 

part of an inversion procedure. The results applied to 

norms provide a testable family of probability distributions. Two 

properties of these derived distributions were tested using a 

couple of geophysical inversion problems. The first is constant 

value extraction, which is used to test the drift of the maximum of 

the distributions (the mode) from the origin as t1 p " is increased. 

The second is minimum entropy deconvolution, which tests the gen-

eral shape of the distribution for different "p's". Both tests 

showed good qualitative agreement. A method to tailor PERFs based 

on a priori moment information is shown and used in conjunction 



with deterministic properties in automated constant phase shift 

correction. 

(iv) 
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CHAPTER 1  
INTRODUCTION  

(1.1) HISTORICAL BACKGROUND 

Page 1 

The convolution model has proven to be very useful in geophysics. The 

forward process of sending a seismic pulse into the ground and 

recording its echoes from subsurface impedance boundaries results in a 

seismogram that can be modelled in this way. The seismogram can be 

viewed as the convolution of the pulse wavelet with a reflectivity 

sequence from the subsurface (Robinson and Treitel [23]). For an 

exploration seismologist the desired information is the reflectivity 

sequence. To extract this information, the effects of the forward con-

volution process must be undone. The undoing of the forward process to 

extract desired information is the inverse process. As a first step, 

the estimation of the wavelet and the removal of its effect is usually 

attempted. There are many ways to do this. Some examples are: 

Wiener-Levinson double inverse method (minimum-phase least-squares fil-

tering), Wold-Kolmogorov factorization (log-Hubert transform tech-

nique) and homomorphic deconvolution wavelet estimates (cepstral 

liftering) (Lines and Ulrych [18]). Of these the Wiener-Levinson 

method is most akin to inverses considered in this thesis. This method 

finds a filter which "best" shapes the wavelet to a spike (delta func-

tion) with a minimum phase assumption (Claerbout [4]). The term "best" 

means the differences between the filtered result and an actual spike 

have the least squared sum. At this point the inverse could be consid-

ered complete. But, even if the wavelet is known, information may 

still be lost because of the wavelet having zeros in its frequency 
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spectrum. Techniques to attempt reconstruction of the reflectivity 

sequence within these zones of zero frequency spectrum also exist. One 

such technique reconstructs the reflectivity by making statistical 

assumptions about the additive noise and using the maximum likelihood 

principle (Ursin and Holberg [25]). Another technique, which is closer 

to the concerns of this thesis,. finds the full-band (containing all 

frequencies) reflectivity which has the least absolute value sum, sub-

ject to linear constraints (Levy and Fullagar [15]). Techniques to 

simultaneously estimate both wavelet and reflectivity by minimizing the 

sum of squared differences between the modeled seismogram and the 

actual seismogram are available (Lines and Treitel [17]). 

The solution of overdetermined systems of equations (OSE) is intimately 

related to inversion (Twomey [24]). The use of functions such as the 

sum of squares or the sum of absolute values, which are special cases 

of £ norms (Goffman and Pedrick [8]), as criteria of "best" sol-

ution has a long history in OSE problems. The use of least-squares 

techniques (minimization of the £2 norm) dates back to 1806, when 

Legendre suggested its use as a criterion in the solution of OSE; later 

Laplace in 1811 and Gauss during 1821-23 placed the least squares tech-

nique on firmer statistical grounds (Whittaker and Robinson [26]). 

However, the least-squares criterion is not the only possible con-

straining criterion in the solution of OSE's. The least absolute value 

criterion (minimization of the £1 norm) can also be used for this 

problem (Barrodale and Roberts El]). In fact there is no reason con-
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ceptually why any of the kP norms cannot be used. The use of 

norms is not restricted to geophysics and OSE problems. Another 

example, from many others, is in image restoration (Justusson and Tyan 

[13]). The popularity of least-squares algorithms is partly attribut-

able to their ease of development. Least absolute value and other 

function based algorithms require more elaborate techniques, such as 

linear programming (Hadley [11]). Many functions can be used to regu-

late an inverse procedure, with different "regulating functions" giving. 

differing solutions for the same input. A better understanding of reg-

ulating functions is useful in the design of inverse procedures. 

(1.2) OVERVIEW 

This thesis deals with the application of a particular class of regu-

lating functions to inversion problems. It is apparent from ob.served 

results of inversion procedures and statements like, "minimization of 

this norm (.Q 1 norm) favours solutions with as few non-zero values 

as possible" (Levy and Fullagar [15]), that the statistical properties 

of an inverse procedure can be affected by the choice of regulating 

functions. 

A class of regulating functions will be defined, of which the previ-

ously described £ norms are a subset. The term "probabilistic 

error regulating functions" (PERFs) will be adopted for this class. An 

attempt will be made to quantify the aforementioned statistical effect 
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of PERFs. A few geophysical inversion examples will be used to inves-

tigate the results obtained. 

PERFs will be related to commonly used regulating functions, and their 

usefulness in solving practical geophysical problems will be shown. A 

technique to construct PERFs from a priori information will be given. 

In particular, constant value extraction (as used in stacking) and min-

imum entropy deconvolution will be used to test the statistical proper-

ties of PERFs. Automated constant phase shift correction will be used 

to demonstrate how to construct a customized PERF from a priori infor-

mation. The use of deterministic properties to influence the statis-

tics will also be shown in this example. 
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CHAPTER 2  
CONCEPTUAL DEVELOPMENT 

(2.1) FORWARD/INVERSE PROCESSES AND REGULATING FUNCTIONS 

To unify some of the many special situations that can arise, some of 

the terms used in this thesis will be given more general definitions. 

Forward processes encrypt information in an output object. Inversion 

techniques attempt to deduce information from observed quantifiable 

characteristics of the object. 

All forward processes considered in this thesis can be viewed as spe-

cial cases of the following abstract experiment. The experiment con-

sists of an input object IIIt which is corrupted by some process 

resulting in an output object "X" (Figure 2.1.1).* 

S 

Corrupter 

X=S (Y) 

>x 

Figure 2.1.1 
Forward Process as an Abstract Experiment 

* 

It5t1 

At this point "V" can be seen as an abstract embodiment of 
information, and "X" is a corrupted version of that information. 
"S" is just the recipe for how to corrupt "V". 
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The inverse process attempts to deduce "Y" from some knowledge of 

Central to a broad group of inversion techniques is the use of regu-

lating functions. Regulating functions are a set of rules by which 

characteristics of interest between pairs of objects can be mapped into 

the real numbers. A regulating function is then useful when the 

natural ordering of the real numbers relates meaningfully to our con-

cept of similarity between the objects. 

(2.2) THREE BROAD CLASSES OF PROCESSES 

To see when regulating functions are useful, it is convenient to make 

some classifications based on the relationship between the forward pro-

cess and its inverse. These classifications also provide a general 

framework from which desirable properties of PERFs can be drawn, so 

that special cases will not determine these properties. There are 

three broad classes. The first and last can be seen as end members, 

while the central classification can be seen as the spectrum bounded by 

these. 

The first class will be called "wholly deterministic and invertible 

processes". In this class the object "Y" can be recovered from "XII 

without error. Equivalently, the inverse "S" must be known exactly 

(Figure 2.2.1). 
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V  > 

X=S (Y) 

Examples: 

S s-i 

V = S-1 (X) 

Figure 2.2.1 
Wholly Deterministic and Invertible Processes 

>Y 

(1) The forward process "S" consists of adding a known constant to the 

input 'V'. The inverse "S 1" is obviously the subtraction of 

this known constant from the output "X". 

(2) "S" is discrete convolution, or Z-transform multiplication. "V II is 

the input sequence to be convolved with known coefficients, 

resulting in the output sequence 'X". IIS-111 is deconvolution or 

polynomial division. Here the coefficients are assumed to allow 

this. An obvious example where this cannot be done is when all 

the coefficients, are zero (Claerbout [4]). 

The second class will be termed "mixed processes". In this class, the 

exact inverse "S" is unknown; only a close estimate to "V" can be 

derived from "X" using an approximate inverse "" (Figure 

2.2.2). 
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V  > 

X=S (Y) 

S 

Figure 2.2.2 
Mixed Processes 

Y=S Y 

>Sy 

The inexact nature of "" provides the opportunity for the use 

of a regulating function. This regulating function provides some 

assurance that "V" is in some manner close to "y" • 

Examples: 

(1) Extracting a linear trend in data that are unpredictably scattered 

(Neville and Kennedy [21]). 

(2) Surface consistent static calculations in areas with near surface 

raypath anomalies (Musser, King and Wason [20]). 

For some other special examples of this process refer to appendix E 

(E1-E5). 

The third and last class will be called "totally uninvertible proc-

esses". This class contains two distinct subclasses. In each of these 

the output "X" is not related in any known manner to the input "V". 

The first subprocess is "deterministic but uninvertible process". 

Here, the output "X" is not related to "Y", but "X" is always predict-

able (figure 2.2.3a). 
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S >x 

S(anything) = X such that X is predictable 
or S(.) = X 3 X is predictable. 

Figure 2.2.3a 
Deterministic but Uninvertible Processes 

Example: 

Regardless of the input "Y°, the output is a known function. 

The second, more interesting, subclass is "random processes". The 

output "X" for this process is again not related to the input "Y" in 

any known manner. In this case, "X" is totally unpredictable, although 

"V'1 may in fact be hiding in the output "X" (Figure 2.2.3b). 

Example: 

S >x 

S(.)  > X 3 X is random 

Figure 2.2.3b 
Random Processes 

The velocity of a particle exhibiting Brownian motion at constant tem-

perature (Reif [22]). 



Page 10 

Regulating functions, strangely enough, do enter this process in an 

indirect manner. The absolute sample moments of "X" can be determined. 

These may relate to the underlying probability density "P(x)". This is 

especially true if "P(x)" is symmetrical. As mentioned previously 

the 0 norms are a subset of regulating functions, and are defined 

for discrete "X" to be: 

n ii P 11/p IiXIL 2P norm of X = 

The absolute sample moments for "X" are defined to be: 

h in 
M E Pt absolute sample moment = - jx.J . 

ni=1 

This gives the following relationship. 

M  = Xll/n. 

This ends the description of the three broad classes. As can be seen 

from the examples in appendix E (E1-E5), mixed processes in fact can be 

quite simple, almost falling into the first class considered (appendix 

E section El) or they can be very complicated, and almost falling into 

the last class (appendix E section E2). Usually, it is possible to 

identify a mixed process as being comprised of deterministic (as in the 

first class, deterministic and invertible) and probabilistic (as in the 

third class, random) parts. The deterministic part is amenable to 
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direct inversion as illustrated in the first case (figure 1.4.1). The 

probabilistic part can be controlled through regulating functions. 

(2.3) DESIRABLE PROPERTIES OF PERFs  

The usefulness of regulating functions in the inversion of mixed proc-

esses has been discussed. By consideration of mixed inversion schemes 

a few desirable qualities of regulating functions have emerged. These 

qualities will be couched in terms that may be a bit vague at present. 

This is because of the general background from which they are drawn. 

The terms will be made clear in chapter 3 (mathematical development). 

As mentioned in section (2.2) regulating functions, in particular 

PEREs, are used to regulate the probabilistic part of an inversion pro-

cedure (refer to appendix E (E1-E4) for specificexamples). This 

implies the object to be gauged by the regulating function is statis-

tical in nature and cannot be known exactly. At best, an underlying 

probability distribution can be guessed at. This suggests the regu-

lating function should respond to the magnitude of the elements com-

prising an object and not to the order which they occur. 

From the hypothetical inversions considered in appendix E (Ei-E5) the 

sets of objects compared by regulating functions are completely defined 

and manageable. In actual practice, the sets are usually infinitely 

large. Thus, objects are considered one at a time, with future objects 

derived from past objects in such a manner as to extremize the regu-



Page 12 

lating function. This suggests that if the derived object is different 

from its predecessor only in global terms (this will be made clear in 

chapter 3) the regulating function should not attain an extremum, 

.unless the compared objects are identical or some inbuilt deterministic 

constraint has been reached. This allows the search for an optimum to 

proceed smoothly away from choices that differ only in global terms. 

Also, the regulating function should not have properties which would 

make the search for an extremum ambiguous. This is also to ensure that 

the regulating function will be smoothly guidable towards an extremum. 

Since the purpose of a regulating function is to compare two objects, 

when these two objects are identical the regulating function should 

attain an absolute extremum. The convention in this thesis is to let 

the regulating function become zero when this occurs and in all other 

cases let the regulating function be greater than zero. 

The last condition is fundamentally different from the previous ones. 

The previous properties attempt to establish the form of regulating 

functions. The last condition relates extrema of regulating functions 

to their statistical effect. This is important since extrema of regu-

lating functions are used to indicate optimum conditions in inversion. 

To summarize, a regulating function should have the following charac-

teristics. 
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(2.3.1) A regulating function should respond only to the magnitude of 

the elements comprising an object and not to the order in which 

they occur. 

(2.3.2) Constant global changes to an object should not result in an 

extremum of a regulating function. 

(2.3.3) A regulating function should not have properties which would 

make the search for an extremum ambiguous. 

(2.3.4) A regulating function should attain an absolute extremum when 

the two objects compared are identical. 

(2.3.5) An attempt should be made to relate the extremum of a regu-

lating function to its statistical effects. 

These conditions will be put in a mathematical framework in chapter 3. 
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CHAPTER 3  
MATHEMATICAL DEVELOPMENT OF REGULATING FUNCTIONS 

(3.1) FROM CONCEPTS TO MATHEMATICS 

In the previous chapter, a conceptual framework was established in 

which regulating functions were of central importance. A set of desir-

able qualities that a regulating function should possess was outlined. 

In this section, the concepts developed will be put in a more usable 

mathematical form. 

To begin, a few of the terms used in the last section will be paired 

with their mathematical analogs. The objects considered here will be 

vectors. A regulating function is then an indicator of similarity 

between vectors. Given a set "V" of vectors over an appropriate field, 

the regulating function "L" maps pairs of elements of "I" into the 

set of real numbers "R" or in symbols, 

L: V x V --> R 

The real number thus obtained will be called the distance between the 

two vectors. The distance between a vector and the origin will be 

called its length. 

At this point, it is possible to incorporate condition (2.3.1) into a 

class of regulating functions. The condition states: 
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A regulating function should respond only to the magnitude of 
the elements comprising an object [vector] and not to the 
order in which they occur. 

This condition makes the regulating function a true statistical regu-

lating function. The desired property is embodied in regulating func-

tions of the following form. Let 

X, V € V 

then 

L(X,Y) = 
1 

: V discrete 

= r[j' ii(y(t) -x(t))dt] : V continuous 

where (a,b) represents the open interval on which "y " and "x" 
are defined. 

"r'1 and "p" are real-valued scalar functions whose actual forms 

need not yet be determined. It is clear from equations (3.1.1) and 

(3.1.2) that condition (2.3.1) is satisfied. A familiar regulating 

function of this form can be generated by allowing 

r'(.) = ('() ,' 

then, for the discrete case equation (3.1.1) becomes 

L(X,Y) = 1[p(y -x)] 

Now let 

1 Recall, the superscript "" indicates the inverse, not 
reciprocal of the function. 
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giving 

L(X,Y) = 4I (yx)z 
i 

which is just the common 22 norm. 

To simplify further developments, the 'T" function will be dropped by 

letting 

This, as will be seen from the following two properties, is not a great 

loss, since for allowable functions, the extremum will not be altered 

(though the gradient of the function will). This is due to the mono-

tonic increasing nature of allowed functions (Jeffreys and Jeffreys 

[12]). 

The second property (2.3.2) states: 

Constant global changes to an object should not result in an 
extremum of a regulating function. 

This can be accomplished by making (.) a monotonically increasing 

function away from a fixed point tixoht (usually the origin or 

mean).' This means that if " x0 1" is the fixed point, and "x11' 

1 Throughout this thesis the fixed point will be the origin. 
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and " x2 1' are any two points on one side of 

perty: 

IX 1 - xol < JX2 - x oL 

then this will imply: 

11 XO 11 having the pro-

To show that this in fact satisfies condition (2.3.2), the idea of con-

stant global change must be made clear. In a vector, this means all 

elements are increased or decreased in absolute value. In other words, 

if "Y" is obtained from "X" by such a change, then 

or 

< 1xii, V i 

IN > ixiI V 1. 

Now, with no loss of generality, let "x0 = 0. This means that if 
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or if 

Y. < I x il, Vi 

===> < IJ(x)V I 

===> Zp(y1) < 7-p(xi) 
1 i 

===> L(Y) < L(X) ; 

fyi! > jxjj' V l 

===> L(Y) > L(X) •1 

This means if the vector can be globally increased or decreased contin-

uously, the regulating function will respond in kind without an 

extremum being reached. 2 Thus, condition (2.3.2) is satisfied. This 

can be done in another way. If a vector is globally increased or 

decreased and the measure is to respond in kind, the function "p" 

must be monotonically increasing away from a fixed point. The proof is 

by contradiction. 

It is given that if 

yif > jx f V i ===> L(Y) > L(X) 

1 Note: L(Y) means L(Y,O) where "0" is the origin. This is not a 
special case since "Y" can be the difference of two vectors 
I'Y=x1 - x2 I'. 

2 The limit point as "y0" is not a problem since it represents 
certainty. 
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Let "p" fail to be monotonically increasing away from the origin. 

Then on one side of the origin 

Now let 

but, 

3 an "all and "b" with Jaf < fbI 3 i(a) > 

x1 =a,Vi&y1 =b,Vi 

I1i > lxii, Vi 

< p(x), V I 

===> p(y) < 
1 1 

===> L(Y) < L(X) 

====> <==== (a contradiction). 

Therefore, "p(.)" must be monotonically increasing away from the 

origin. The function ".i", for want of a better name, will be called 

the ruler function. 

By making the ruler function monotonically increasing away from the 

origin, another desirable property (2.3.3) is realized. (2.3.3) 

states: 

A regulating function should not have properties which would 
make the search for an extremum ambiguous. 

Even though it is obvious that this condition is satisfied if "p" is 

monotonically increasing away from the origin, I feel there is a need 

to firm up the rather loosely stated ideas that gave rise to property 
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(2.3.3) in section (2.3). The reader is directed to the next page 

starting from the statement "Condition (2.3.4) states:" if further 

clarification is not necessary. Ambiguity occurs when the ruler func-

tion has local extrema or flat spots. These spots would cause ambig-

uous results to the search for an extremum. This is because a move in 

either direction can produce the same result in the regulating func-

tion. To see this mathematically, let 

"V" 0 It. 

It P  11 have an extremum at 

Then, there exist points to either side of " x0 1' that 

will produce the same value in the ruler function (refer to Figure 

3.1.1). Let these points be "x0+ôa" and "x0-ôb", then 

p(xo+ôa) = p(xo-6b) 

This would mean if a vector Y was such that 

yi = X09 V I 

then 

= p(y1-5b) 

===> (y+ôa) = 41(y1-6b) 
i I 

===> L(Y+A) = L(Y-B) 

where "A" and 

respectively. 

"B" are vectors whose elements are all ôa and ôb, 
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P 

p(xo-6b) = p(xo+ôa) 

>x 
x0-6b x0 x0+ôa 

Figure 3.1.1 
Local Extremum of Ruler Function 

This is an undesirable state. Since allowed ruler functions are free 

of these extrema except at the origin, these ambiguities will not 

exist. The origin is not a problem as will be made clear in the fol-

lowing paragraph. 

Condition (2.3.4) states: 

A regulating function should attain an absolute extremum when 
the two objects compared are identical. 

This condition is satisfied by making the ruler function a minimum at 

the origin. To see this, consider the case where 

x=Y 

and 

P (0) = 0 

Then 

= 0, V is 

===> L(X,Y) = 0 
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If "X" or °Y" were perturbed so that "XOY", then knowing "p" to be 

monotonically increasing away from the origin, it can be said 

p(x1-y1) > 0 for some I , 

===> L(X,Y) > 0 

This means "L(X,Y)" is an absolute minimum when "X=Y". This condition 

arises in an inversion procedure when there is no probabilistic part. 

When all the conditions developed so far have been satisfied, then the 

regulating function is a probabilistic error regulating function 

(PERF). In other words, a PERF is of the form given by equations 

(3.1.1) and (3.1.2), in which "F" is a monotonically increasing func-

tion and 
li p " is a monotonically increasing function away from the 

origin. 

(3.2) STATISTICAL EFFECTS OF PERFs  

This section differs from the previous one in a fundamental way. The 

previous section established the form of PERFs; this section attempts 

to relate the extrema of PERFs to their statistical effects. This is 

basically condition (2.3.5), which states: 

An attempt should be made to relate the extremum of a regu-
lating function to its statistical effects. 
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This is important since extrema of PERFs are used to indicate an 

optimum has been reached in an inversion procedure. In other words, 

the goal is to ascertain the statistics of the elements of a vector "X" 

which is gauged by a PERF "L" when "L(X)" is an extremum within an 

inverse procedure. In this situation, let the elements of "X" be a 

realization of a probability distribution "P(x)". If the dimension of 

"Xi' is large and given the form of PERF5 with ,r(x) = x" then we will 

have an approximate proportionality between the value of "L" and the 

statistical expectation of "i(x)" taken over the distribution "P(x)" 

(See appendix A): 

(3.2.1) 

L cx <1.1> 

<.> expected value of the argument. 

The search for an extremum of 

of the ruler function 
li P " . 

L" is now shifted to the expected value 

The expected value of the ruler function is given by 

= P. P(X i) : discrete 
I 1  

P(x) p(x)dx : continuous 

From this point on, the continuous case will be considered exclusively. 

This will not be overly restrictive since, if we let 
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P(x) = P 6(x-x) 
1 1 

where 

ô(.) is the Dirac delta function, 
then 

<p> = J P(x) p(x) dx 

=1 P1 J 00 6(x-x) i(x) dx 

=1 P. P(xi) 
1 

Since it is desirable for "<hi>" to be an extremum, it would be 

tempting to apply variational techniques directly to equation (3.2.lb). 

The problem with such a direct attack is that "p° has too much 

freedom, and the solution would be 

P  = 0 

This ensures "<p>" would be a stable minimum for any P(x). While 

this result is correct, it is far from useful. The variational tech-

nique essentially allows "(x)" to take on many shapes and from 

these, finds the one which makes (3.2.lb) an extremum. To exclude use-

less trivial cases as mentioned above, it is necessary to introduce a 

• function. Its general form will be a function of the ruler, its deriv-

atives and the variable "x", that is, 

G = G(x,p,p I II ,1.i,...) 
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There are two ways to see how "C" can be used. The first is to use 

in a constraint, Where 

"G" 

G dx = M, (3.2.2) 

the constant "M" is chosen to ensure that 

i P(x) dx = 1. 

Care must be taken with the end points of.. integration and will be dis-

cussed shortly. This last condition is necessary since the variational 

technique will pair a "p" with a "P" and not all choices of "M" will 

ensure the unit area property of "P(x)". The constraint (3.2.2) can be 

introduced into (3.2db) in the context of a variational integral 

as given by 

$11 I 

I = J[P(x) p(x) + a G(x,p(x),p'(x) .... )] dx. (3.2.3) 

The Lagrange multiplier "a" is chosen to satisfy (3.2.2) (Morse and 

Feshbach [19]). The second way to view "C" is as a point-wise 

description of some quality of the ruler function "p". This 

description can be incorporated into equation (3.2.lb) as done in 

(3.2.3), with "a" being a parameter which can be varied from zero to 

infinity. Obviously when "a ---> " extremizing (3.2.3) leads to 

an extremum of the quality embodied in "C" in a global sense; a=O, on 

the other hand leads back to an extremum of (3.2.lb). Thus we can con-

trol how much of each is honored by the choice of a. In this thesis 

"a" is chosen to honor the unit area property of "P(x)". This is 
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very similar to the technique used in constrained linear inversion, 

- where "G" would play the role of a measure of smoothness (Twomey [24]). 

The specification of "G" will determine a pairing of "P" and 11 11 

The exercise is then to find a "G" which makes the pairing useful in 

describing the statistical effects of extrema of tiLl1. 

Integrals in the form of equation (3.2.3) are quite general, and vari-

ational techniques provide solutions to the extrema problem of quite 

general cases. The case considered in this thesis will be relatively 

simple. The cost function "0" will be a function of "x", "ii" and 

"p' ° only. This, as will be shown, is sufficient to incorporate pro-

perties (2.3.1) to (2.3.4). This also produces a useful pairing of 

"P(x)" and "p(x)t" that attempts to satisfy property (2.3.5). With 

this in mind, equation (3.2.3) can be rewritten as 

I = f[P(x) p(x) + a G(x,p(x),.i'(x))] dx. 

Let the integrand be represented by 

J(x,p,p') = P(x) p(x) + a G(x,p(x),p'(x)) 

This allows equation (3.2.4) to be rewritten as 

i = CO J(x,p,p') dx 

(3.2.4) 

(3.2.5) 

(3.2.6) 
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With due consideration for the end points of integration, as discussed 

in appendix B, equation (3.2.6) is in a form that is well known in var-

iational calculus. A good reference is Oskar Boiza's [2] work. In 

classical mechanics, "J" is known as the Lagrange density function.' 

Equation (3.2.6) must obey the Euler equation if "I" is to be an 

extremum. A brief derivation of this can be found in appendix C. The 

Euler equation is: 

g FLl - = 0 . (3.2.7) dx FP 

Direct substitution of (3.2.5) into (3.2.7) results in 

[aG - BG = 1 P(x) 2 

dx ' i FP 301 
(3.2.8) 

The exact form for "G" must now be specified. The specification of the 

exact form of "G" is approached heuristically in this thesis. Though 

heuristic in nature, the process was guided by a few points. The first 

is that PERFs are to be monotonically increasing away from a point so 

AG" should be chosen to predispose "p" towards monotonic solutions. 

The second comes from the statement "the £' norm will tend to maxi-

mize the number of measured zeros" which paraphrases a quote from Levy 

1 Good references for this are: Goldstein [91 and Morse & Fesh-
bach [19]. 

2 Note that to this point "P(x)" could be replaced by " 
P(x)", with "p" being a constant, and the development would 
be unaltered. For this thesis only the shape of "P(x)" is 
explored so "n" will be dropped. But "n" is important in 
describing a particular gauged quantity in an inverse procedure 
when "L" is an extremum. 
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and Fullagar [15]. This suggests the pairing of the £' norm to "P(x) 

= ô(x)". This, though not entirely true, is a good approximation and 

should provide useful results. An example is the estimation of the 

expected value of a probability distribution. The £1 norm extracts 

the median while the mode actually maximizes the number of measured 

zeros. The mode and median need not be the same (Neville and Kennedy 

[21]). The final point is as follows: since "p" is to be monotoni-

cally increasing away from the origion and the observation is that 

changes in "p" result in changes in "P", then if "P(x) = 8(x)", one 

would suspect, "ii" would increase away from the origin with no 

change. Since we are only concerned with extrema of the PERF and that 

is not altered by changes in the slope of "ii" then this is just a 

restatement of the second point. From this backdrop and from trial and 

error the form of "G" is chosen to be: 

G(x,,p) = 41 + pJZ , (3.2.9) 

and this choice can be shown to be appropriate for other choices of 

"P(x)", in other words it is not restricted to the £1 norm. Analo-

gous to the previous more general discussion of "G" the special form 

(3.2.9) can also be viewed in two ways. In the first way, since the 

integral of "G" can be seen as the length of "ii", we can use "G" to 

fix the length of 11p11 then find a shape of "p" which will extremize 

(3.2.lb). In the second way, the incorporation of "G" as in integral 

(3.2.4) can be seen as forcing "'s" length to be shortened; this 

would tend to stop "p" from "kinking up" and tend to predispose ".i" 

towards monotonic solutions which will extremize (3.2.lb). This choice 



Page 29 

of "G" has paired each lip" with a "P", in particular it pairs the 

21 norm with "P(x) = ô(x)", as will be shown explicitly. 

Substitution of (3.2.9) into (3.2.8) gives 

P(x) =  a p" (x) (3.2.10) 

[J 1 + p'  (x) 33 

This equation allows easy calculation of a probability density given a 

ruler function. It would be nice to be able to write "p" as a function 

of "P". This is done in appendix 0, and the result is 

where 

pW = J0 F(y)  dy , (3.2.11a) 

%I 1 - F (y) 

F(x) = 1 fX P(y)dy . (3.2.11b) 
xo 

Here, x0 plays the role of the fixed zero point (which is usually the 

origin and sometimes the mean). 

To see that equation (3.2.10) has the desired properties, it is only 

necessary to notice that 

P(x) ?. 0 

and the denominator is always positive. This assures 
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0 
(3. 2. 12a) 

The fixed point "x0" as defined in equations (3.2.11a) and (3.2.11b) 

makes 

(3.2.12b) 

Equations (3.2.11a) and (3.2.11b) make "ii" positive away from " x0 " . 

Thus, combined with conditions (3.2.12a) and (3.2.12b), "p" must be a 

positive monotonically increasing function away from its zero point 

"x11. There is one last matter which should be shown explicitly. When 

" P(x) 8(x) " and the fixed point is just the origin, then the associ -

ated ruler function is just the £1 norm. Since "P(x) = 8(x) " is zero 

between the origin and the positive and negative infinities, then in 

this region equation, (3.2.10) becomes 

= 0 

This implies 

(x) = a x + b 

where "a" and "b" are constants. If 

= 0 then b = 0. 
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Since the extrema will not be changed by the choice of slope "a" there 

is no problem in letting "p(x1) = x11" for some large "x11',which means 

the following must be true: 

H (x) = x : 0 < x < 

If "ô(x)" can be considered the limit of symmetric functions about "0°, 

then by the symmetry of the variational integral in appendix B about 

" x0 11 , one can write 

p(x) = lxi and L(x) = llxili 

This is just the £1 norm desired. 

(3.3) 2P NORMS AS PERFs  

Now that a relationship has been established between PERFs and proba-

bility densities, it would be prudent to see how these manifest them-

selves for some well known PERFs. A group of well studied norms are 

the kP norms, which are defined as 

{ Jx1J p11/p 
i 

(3.3.1) 

Since E.] 11 is an increasing function of the positive argument, the 

extrema should not change if this part is dropped, giving: 

(3.3.2) 
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The proof of (3.3.1) and (3.3.2) having the same extrema can be found 

in appendix F. Since the concern of this thesis is with the extreme 

points, there should be no confusion if equation (3.3.2) is called the 

IP norm. Equation (3.3.2) is in the form considered in this work. The 

ruler function for a particular 2? norm is 

p(x) = IXI . (3.3.3a) 

Substitution of (3.3.3a) into (3.2.10) and setting Ilu = 1/2" to ensure 

the unit area property, the following probability distributions result: 

P(x,p) = 1/2 p(p-1) xi 2 (3.3.3b) 

[4/1 + p2 x (2P2 ]3 

Note that 

lim P(x,p) = 0 V x 0 0 
p4 1 

and 

fco P(x,p)dx=1Vp>1CO  

This implies 

lim P(x,p) = 6(x) 
p4 1 

(Reif [22]) which is consistent with the choice of (3.2.9) as the cost 

function. 
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It would be interesting to see how (3.3.3a) and (3.3.3b) appear graph-

ically. Figure 3.3.1 shows that when p = 2, which leads to the PERF 

used in least-squares techniques, "P(x)" takes on a Gaussian-like 

shape. This may explain partially why least-squares techniques are 

used so widely. Another reason is the ease with which least-squares 

algorithms can be developed. A very good discussion of this can be 

found in Twomey's book [24]. The corresponding curves for the other £ 

norms are shown in figure 3.3.2 (because of symmetry only one side is 

plotted). Note that for "p < 1", the probability distributions are 

negative. This is due to the ruler function breaking the concave 

upwards property demanded by the constraint. 
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Thus far, the following has been accomplished: 

- Desirable properties of regulating functions have been outlined. 

- Mathematical manifestation of the properties has been established. 

- PERFs have been defined. 

- A relationship between PERFs and probability distributions that 

extremize the PERFs has been found (by the imposition of the 

least-length constraint). 

- The relationship has been applied to the well known P.P norms. 

This application to the eP norms has given some testable relationships. 

The testing of these relationships is the core of material in the next 

chapters. 
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CHAPTER 4 
(TRIAL I): CONSTANT VALUE EXTRACTION  

The first numerical trial of the previously developed methods is also 

the simplest. It is also the simplest form of the mixed process in 

appendix E section El. The process 

imbedded in additive noise 'In i 119 

S(c) = c + n1 
* 

l' s " consists of a constant "c" 

An optimal estimate of the constant "c" is desired. Many physical sit-

uations can be described by this formulation. One geophysical example 

is the stacking process. Two common stacking techniques are the mean 

and median stacks. As is well known, these correspond to using the 22 

and 21 criteria, respectively (Whittaker and Robinson (26]). 

To see how to proceed toward an estimate of "c", consider "N" realiza-

tions of the process "S". This gives the set of "N'1 outcomes below, 

X {x : x = c + n.' l=l,2,...,N} 

The representation of this set with a single value "d" is the goal. In 

accordance with the discussion in appendix E section El, the constant 

* 
The subscript "i" is used to index a specific outcome of "S". It 
is necessary to uniquely identify the outcomes since the noise 
is different for repeats of "S". 
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chosen as the deterministic part of the process and the additive noise 

the probabilistic part. This choice is the natural one, and is 

obvious, but the choice may not be obvious in other situations. Con-

ceptually, the noise can be viewed as a realization of a probability 

distribution "P(x)". When a constant "c" is added, this becomes a 

realization of a new distribution 

= P(x-c) 

The idea is then to shift "(x)" by constant amounts "d" until a 

match is achieved, as shown below: 

(x+d) = P(x) 

The difficulty with this is usually two-fold. First, P(x) is not 

always known. Secondly, since "N° is finite, (x) cannot be com-

pletely defined. 

At this point, a regulating function "L" is invoked. A value 11 d" which 

the regulating function is called an optimal guess of "c'. 

But, as previously mentioned, there are an infinite number of regu-

lating functions which can be employed. To aid in the choice, the 

relationships (3.2.10) and (3.2.11a) may be employed. To see how these 

relations can help, the £ norms will be used as a test case. The 

relationships developed for the £ norms were (3.3.2) and (3.3.3b) and 

are reproduced below as: 



and 

L = INI = ix 1 P 
P 
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(4.la) 

P(x,p) = 1/2 p(p-1) Ixj 2 (4.lb) 

di + p2 IxJ2P2 1 

One obvious characteristic of equation (4.lb), as seen in figure 3.3.2, 

is that the maximum of the probability distribution drifts away from 

the origin as "p' is increased. This would suggest, if an "p" norm 

were to be used in selecting an optimum representation of the set 

"X", this value "d" should have the property of making the point 

which has the highest density of occurrences of elements of 'Ix" to 

drift away from the origin, unless the set was totally symmetrical in 

which case all the "2" norms would pick the same value. In other 

words, if "x" was such a point where elements of "X" are clustered, 

then the point of maximum density resulting from the subtraction of "d" 

from the elements of "X", namely: 

resulting point of max. density = x - d = 

would also drift from the origin with increasing values of "p". To 

show this is in fact the case, the following data set was contrived: 

X = {x1} = {5,2,5,4,5} 

In this set 
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x=5 

and 

ô=5-d. 

The value "d" is said to be optimal in the 

the following expression: 

k-d II' = Ix1-dI 

11.0 11  if it minimizes 

The "d" values which satisfy this condition were found by a simple 

bisection method. The "d" values and the resulting maximum density 

points are tabulated below in Table 4.1: 

LI) Norm 
Power 

(p) 

Extracted Resulting 
Optimum Point of 

Max. Density 
(dr) (ô) 

1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

5.000 
4.446 
4.200 
4.025 
3.903 
3.825 
3.772 
3.734 
3.704 

0.000 
0.554 
0.800 
0.975 
1.097 
1.175 
1.228 
1.266 
1.296 

L Norm 
Power 

(p) 

Extracted Resulting 
Optimum Point of 

Max. Density 
(dr) (ô) 

5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

Table 4.1 
.ep Constant Value Extraction Results 

3.682 
3.664 
3.649 
3.636 
3.626 
3.617 
3.610 
3.603 
3.597 

1.318 
1.336 
1.351 
1.364 
1.374 
1.383 
1.390 
1.397 
1.403 
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The results are also represented graphically in figure 4.1. As a com-

parison, the derivative of equation (4.lb) was taken and set to zero; 

solving for "x" gives the maxima of "P(x,p)" (appendix H), which is 

x = 

This result is represented in figure 4.2. As mentioned before the dis-

tributions are defined only to a scaling factor "Ii". This scaling 

factor is necessary to describe a particular outcome, but since it is 

only the general shape of the curve that is being compared ""is not 

incorporated. There is another point to consider before a comparison 

is made between figures 4.1 and 4.2; it should be noted that the set 

"X" sets physical limits on the outcome. One such limit is the value 

I'd" is constrained mathematically to lie between 5 and 2. A proof of 

this can be found in appendix G. Given these physical constraints, 

figures 4.1 and 4.2 cannot be expected to be identical, but their form 

should be similar. Comparison of the figures shows good agreement 

indicating the usefulness in pairing equations 4.la and 4.lb. This was 

tried on several other sets of numbers giving similar results. 
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Resulting Point of Max. Density (6) 
as a Function of Norm Power (p) 
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This trial tests a specific aspect of the probability distributions 

derived (drift of o). The next trial will be designed to test the ove-

rall shape of the predicted distributions. 
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CHAPTER 5  
(TRIAL II): MINIMUM ENTROPY DECONVOLUTION  

This numerical trial deals with a well known, though not overworked, 

deconvolution procedure. The procedure is known as "minimum entropy 

deconvolution" or simply M.E.D. 1 This technique was established by 

Ralph Wiggins [27]. He proposed the use of the varimax norm as a indi-

cator of spikiness in his M.E.D. algorithm. Later, T. J. Deeming [5] 

generalized the technique to other appropriate indicators of spikiness. 

A good general discussion of some deconvolution techniques used in geo-

physics and M.E.D. in particular can be found in William Gray's thesis 

[10]. He introduced a class of regulating functions (variable norms) 

which allows one to distinguish if a sample is closer to one member of 

a family of distributions (generalized Gaussians) than to another 

member of the same family. These regulating functions were used in his 

M.E.D. implementation to provide some control. Another good discussion 

of M.E.D., especially its statistical properties, can be found in 

Donoho's work [6]. For a discussion of geometrical properties of 

M.E.D., Cabrelli's paper [3] is a good source of information. 

• I will give a brief discussion of M.E.D., but for greater detail, the 

reader is urged to look at the above references. This technique pre-

supposes that the data consists of a wavelet "W" convolved with a 

1 David Donoho gave partial justification for this terminology [6]. 
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sparse spike sequence "R" (the reflectivity hopefully). This allows 

the forward process "S" to be represented by figure 5.A1. 

R  > S(R) = W * R 

Xj = S(R) = 

>x 

Figure 5.A1 
Forward Convolution Model 

The approximate inverse I'__111 consists of finding a filter "F" which 

best removes the effects of the wavelet "W", thus recovering the sparse 

spike sequence "R". Since it is assumed that "R" is spiky, an indi-

cator of spikiness can be used to gauge how well the choice of "F" is 

doing towards giving such an output. In any case, the approximate 

inverse I'•_1 11 is dependent on unknown parameters, the filter coeff i-

cients "{f}". It can be represented as follows in figure 5.A2. 

>YR 

1(f;X) =f1x3_ r. 

Figure 5.A2 
Inverse Convolution Model 

This is very reminiscent of mixed processes in appendices E2 and E3. 

As mentioned, a regulating function is needed to indicate whether the 

output "1Y" is indeed spiky in the right way. Wiggins [27], as men-

tioned in the first paragraph, chose the varimax norm below: 
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V(y)=   -z 
[Zy32 ]2 
j 

1 
2 

where "i" and "J" both are indexing sample number in a time series. 

But, as shown by Deeming [5], any positive increasing function of the 

scalar and sign-invariant mapping of the data, 

yi2 
zi =   

z y 2 
3 3 

, 

(5.1) 

will tend to minimize the number of spikes present on the M.E.D. out-

put.' With this in mind, the PERF can be written as: 

L(Z) = . (5.2a) 
1 

This is of the form discussed in this paper. If "p" takes on the form 

P(x) = 1x1 , (5.2b) 

then equation (3.3.3b) can be used again to describe the distribution 

of the final "z.'s". The equation is: 

P(x,p) = 1/2 p(p-1) lxi P-2 • (5.3) 

p2 JxI 2P 2 ] 3 

1 Other scalar and sign invariant mappings exist but will not be 
considered here. 
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As shown by Cabrelli [3], the scalar and sign-invariant mapping (5.1) 

constrains "Z" to be a vector of the set from the origin to the inter-

section of the hyperplane perpendicular to the barycenter 

where "rn" is the dimension of "Z", and the region 

defined by the the positive axis along the natural basis for Rm (m-di-

mensional vector space). This set of vectors must also containthe 

natural basis. He also showed that the varimax norm ((x) = IxI2) is a 
minimum at the barycenter and a maximum at the natural basis for h1Rmt1. 

Thus, maximizing the varimax gauges the withdrawal from the barycenter 

or the proximity to the natural basis. This produces spiky results. 

But, Deeming [5] showed any monotonically Increasing "p(x)II will also 

gauge this withdrawal form the barycenter or the proximity to the 

natural basis. So all "p's" will produce spiky "Z's" but they need not 

be equal. This implies the spikes in the "Vs" should take on realiza-

tions of the probability distributions (5.3) if ruler functions of the 

form (5.2b) are used and the PERFs given by (5.2a) are extremized. In 

other words, all rulers will give a spiky output, but the distribution 

of the spikes will differ from ruler to ruler. If the spike sequence 

is Gaussian, undifferentiability problems arise from filtering, since 

linear combinations of Gaussian variables are again Gaussian. A good 

discussion of this can be found in Donoho's paper [6]. 

An overview of how the filter coefficients are found is now in order. 

The details can be found in appendix I, where the derivation is for the 

multichannel case. Here, only the highlights of the single channel 

case will be developed. To recap, a filter "F" is to be found which, 
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when convolved with the data 'X", is to produce an output "V" that is 

spiky like the input A spiky output should maximize the PERF 

(5.2a). In order for (5.2a) to be such an extremum, the following con-

dition must be satisfied: 

Solving equation (5.4) results in the following: 

where 

=u 1x._1 1.-Zf.4.=O, 
j 33 1  

Ui = and = kki Xk_j 

Equation (5.5) gives rise to what has been termed the iteration 

equation in appendix I and listed below as: 

= 
i fi•j_i i 3 

(5.4) 

(5.5) 

(5.6) 

Since "ui" is dependent on the filter "fi", equation (5.6) is highly 

non-linear. It cannot be solved directly for "F"; rather, an iterative 

procedure is employed to converge on a solution. To begin, cast (5.6) 

in a more familiar matrix form, 

where 

F•1 = V (5.7) 

=' = and v i = u  Xjk 
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The rows and columns of these matrices are defined in the obvious way. 

Equation (5.7) can be solved formally for "F" as: 

F=t 1 V. (5.8) 

Since "" is an autocorrelation matrix, (5.8) is similar to the 

familiar normal equations; therefore is amenable to solution by Lev-

inson recursion. The total method consists of making an initial guess 

of the filter, calculating "u.s" from equation (5.5), getting an update 

filter from equation (5.8) and iterating this until convergence occurs. 

Convergence can be determined either by monitoring the regulating func-

tion "L" using the Cauchy criterion, or by using the method as sug-

gested in Deeming's paper [5] and shown in appendix I. The convergence 

characteristics of this procedure are discussed in Deeming's paper [5]. 

Now, the test can begin. The first trial data set consists of a wav-

elet (figure 5.1) convolved with a spike sequence (figure 5.2) 

resulting in an output (figure 5.3). M.E.D. was applied to this trace 

with differing ruler functions, where 

p(x) = IxI 

The results are shown on figures 5.4-5.8. All deconvolved traces are 

normalized so that the largest spike has a value of ten. As can be 

seen, all measures (differing in values for "P u") extracted the spike 

sequence rather well. It is also obvious that as "p" was increased, 
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the solution became more and more dominated by the largest spike. It 

is also interesting to speculate what happens to the spike estimates 

prior to the actual convergence of the technique, but that is not the 

thrust of this thesis. 

To see how the distribution of the measured quantity "Z" is actually 

altered, a second spike sequence was generated, which after being 

mapped by equation (5.1), has a flat distribution. This data set was 

then input into the M.E.D. algorithm. The output measured quantity was 

then plotted as a function of the input measured quantity. 
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The results are shown in figures 5.9-5.14. For powers greater than 

two, the scatter is great. This results from the dominance of the 

largest estimated spike as can be seen circled on figures 5.11 and 

5.13. The spike is so large that small fluctuations of the others do 

not play a very important role. This large spike was excluded in fig-

ures 5.12 and 5.14 , and a general one-one mapping was inferred through 

the scatter, as was done with the other plots. 

To see the significance of the plots mentioned above, the following 

development is necessary. If a random variable "x" is monotonically 

mapped into "y", and the probability distribution of " x " is "f(x) " , 

then from statistical theory (Freund [7]), the distribution of "y" will 

be 

g(y)= g 
dy 

f(x) . (5.9) 

°g(y)" is the distribution of the random variable "y". If " x " has a 

flat distribution, then "g(y)" will be proportional to the inverse of 

the mapping slope, 

g(y) dy 
d  

1 (5.10) 

As stated, the mapping curve was interpreted on figures 5.9-5.14. A 

pictorial representation of "g(z)", the final distribution of mapped 

quantity, based on a few hand calculated slopes obtained from the map-

ping curve is directly below each of these curves. This, in turn, can 



Page 53 

be compared to the probability distributions on figure 3.3.2. Again, 

there appears to be good qualitative agreement. 
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This test has shown qualitative agreement to results expected from 

equation 3.2.9. Thus, if one desired results to be emphasized in a 

particular fashion in this inversion procedure, equation 3.2.9 can be 

used to help him choose a particular PERF. This shows how the choice 

of a PERF might influence a particular inversion procedure. The next 

trial will be used to show how a PERF can be custom designed for a par-

ticular inversion scheme. This could have been applied in M.E.D. as 

well. 
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CHAPTER 6  
(TRIAL III): AUTOMATED CONSTANT PHASE SHIFT CORRECTION  

In this section, two objectives will be accomplished: first, a new 

process will be introduced to test our ideas; second, a technique will 

be proposed which allows one to custom-design a PERF given a few esti-

mates of moments for the probabilistic part of our process. 

The forward process "S" will play a very small role in this trial. It 

can be considered a black box which produces an output "X" which is not 

what we want. The undesirable aspect can be adequately modelled by a 

constant phase shift (Levy and Oldenberg [16]). The approximate 

inverse °° is, of course, to apply the negative phase shift, 

bringing "X" to more desirable form Pictorially, this can be 

represented by figure 6.1. 

S(Y) 

S 1(4,X) 

>x 

>Y 

Figure 6.1 
Constant Phase Shift Correction 

The symbol "4" represents the unknown phase shift that must be applied 

to "X" to yield an optimum "V". This process is, of course, a spe-

cial example of the mixed process in appendix E section E3. To make 
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this discussion more concrete, an actual geophysical application will 

be considered. 

Constant.phase shift as a model for discrepancy between seismic traces 

and synthetic seismograms from well logs has long been used in explora-

tion seismology. The use of constant phase shift, in a laterally var-

ying sense, as a final adjustment towards a zero-phase section is, 

strangely enough, relatively new. The use of a regulating function to 

automate the process was brought to my attention by Doug Oldenberg in a 

paper he presented at the 1985 C.S.E.G. convention and recently pub-

lished [16]. The technique was used, in the absence of well informa-

tion, as a final dephasing attempt before full-band spike-sequence 

extraction. The regulating function used in his discussion was the 

varimax norm. The normalized varimax norm is defined to be: 

im 
- n. 
M i=1 1 

V(N) - 

im 
- 

M i=1 1 

2 
(6.1) 

A good discussion of the properties of this measure can be found in 

Wiggins' [271 and Deeming's [51 papers as mentioned in chapter 5. The 

property of concern is that this norm attains a maximum when "N" con-

sists of only one value or spike. Since a zero-phase wavelet is very 

peaked in comparison to other phase shifts, one would expect "V'1 to be 

a high number for a zero-phase wavelet. Figures 6.2 and 6.3 try to 

show this schematically. Figure 6.2 represents a zero-phase wavelet 
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and has one dominant peak; whereas, figure 6.3 represents a ninety-de-

gree phase-shifted wavelet with two large peaks. 
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The varimax of the second wavelet would then tend towards a lower 

value. This technique would then be plausible for isolated wavelets, 

and from discussions with one of the seismic processing contractors, 

appears to do well in that case. The difficulty arises from non-iso-

lated wavelets, as happens when a wavelet is convolved with a spike 

sequence. Figures 6.4 and 6.5 try to show this pictorially. Here, we 

have a zero-phase and ninety-degree phase-shifted wavelets convolved 

with two spikes of equal magnitude. It is no longer evident what the 

varimax will do here, since it is always possible to construct cases 

where the varimax will be maximum at phase shifts other than zero. To 

alleviate this problem, I propose a two-fold attack: first, a constant 

phase shift invariant representation will be introduced to stabilize 

the procedure; secondly, a measure will be introduced that automates 

the procedure based on prior knowledge. These concepts will be clari-

fied in the following development. Two obvious constant phase invar-

iant representations are the energy envelope and instantaneous 

frequency. These are calculated from the analytic trace. The analytic 

trace "(t)" is related to the real trace "a(t)" in the following 

manner: 

(t) = c(t) + i H[c(t)] (6.2) 

I = 4-- 1 

H Hubert transform 
(Morse and Feshbach [19]). 



Page 63 

"(t)" is called the analytic extension of "a(t)". It is shown in 

appendix J that if a constant phase shift "c" is applied to the trace 

"a(t)" giving '(t)",. the analytic extension of "(t)" will be 

related to "(t)" in the following manner: 

(t) = (t) + i FI[(t)] = e 10 (t) . (6.3) 

Therefore, the energy envelope as defined below, 

2(t) = 2(t) = [e1a (t)] 2 = p2(t) = A2(t), (6.4) 

is obviously constant phase shift invariant. The instantaneous phase 

of "a(t)" is defined to be 

4(t) = arctan[Im()/Re(P)] = arctan[H(a)/a] (6.5) 

and is related to the instantaneous phase of °(t)" in the following 

way: 

(t) = 4(t) - a . (6.6) 

The instantaneous frequency is defined to be the time derivative of the 

• instantaneous phase. Using equation (6.6) to calculate instantaneous 

frequencies we get 

(t) = = dO = w(t) . (6.7) 
dt dt 
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This shows instantaneous frequency to be constant phase shift invariant 

as well. 

Now that two constant phase shift invariant representations have been 

established, they can be used to help select the proper phase shift in 

correcting the data. For an isolated wavelet, the process consists of 

finding a phase shift which aligns the central peak of the wavelet with 

the maximum of the envelope. Note that by comparison of envelope to 

wavelet it is now possible to distinguish the zero-phase and inverted 

wavelets whereas strict use of the varimax method would not allow this. 

A schematic representation of this can be seen on figures 6.6 thru 6.8. 

A PERF can, of course, be used to automate this. If we do not have an 

isolated wavelet, the procedure will not be as simple, as can be seen 

on figures 6.4 and 6.5. Here, it would be nice to incorporate more 

information if available. If well information is present in an area, 

its information should be used. We do not want to overconstrain the 

problem, recognizing the fact that geology changes. One way to do this 

is to band-pass the spike sequence from the well to be as close as pos-

sible to the spectrum of the data. Then, take the difference of the 

resultant synthetic and the envelope of the synthetic. The resultant 

values are normalized so that the maximum is less than or equal to one. 

The sample moments are calculated for these normalized values and 

incorporated into a PERF as shown in appendix L. This PERF should tend 

towards a maximum if the data is indeed close in some sense to the well 

data. The procedure is then to rotate the data, calculate the differ-

ence between the value of the rotated trace to the energy envelope, 
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normalize the values, enter these values into the PERF, and do this 

until a maximum is found, at which point the result will be termed 

optimum. 
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SUMMARY AND CONCLUSIONS 

In this thesis a class of regulating functions (PERFs) is defined, of 

which the £ norms are a subset. The defining properties of PERFs have 

been drawn from a general inversion framework; the use of PERFs has also 

been shown within that framework. The form of PERFs allows them to be 

paired to probability distributions. This attempts to describe the 

statistical effect that the extrema of PERFs impose on a gauged quantity 

in inversion. The pairing was achieved by variational techniques and 

the imposition of a length constraint on the ruler function. The choice 

of the constraint was arrived at heuristically. More work needs to be 

done to put the choice on firmer mathematical grounds. The pairing was 

then conducted for the 2P norms resulting in a family of probability 

distributions. Two properties of these distributions were tested on a 

couple of geophysical inversion problems. The first inversion problem 

was constant value extraction. This was used to test the drift of the 

maximum (the mode) of the distributions away from the origin as "p ° is 

increased. The second inverse problem was minimum entropy 

deconvolution. This was used to test the general shape of the 

distributions for different values of "p". Both test showed good 

qualitative agreement. These tests were qualitative in nature, more 

tests are needed to quantify the results and also to indicate the bounds 

of applicability for these relationships. A method to tailor PERFs 

based on a priori moment information was shown and used in conjunction 

with deterministic properties (constant phase shift invariance) in 

automated constant phase shift correction. 
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APPENDIX A  

PROOF OF L 

Proof of the relation "L cx <p>" will follow the development in 

V. W. Lee's book [14]. Let "n" be the random variable we are to mea-

sure, and let the set 

: i=1, ...,N} 

be the exhaustive mutually exclusive values it can assume. Performing 

the experiment "M" times furnishes the resulting set 

: i=1,...,M} 

with the following proportions: 

occurrences of n= 1 
N2 occurrences of n=n2 

NM occurrences of 

N 
I IL = M 
i=1 •' 

The resulting value of the regulating function will be: 

M N 
L = I p(n.) = I IL ) 

i=1 1 j=1 
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Division by "M" gives 

N 
L/M = I (i/M) i() 

j=1 
(A.1) 

"Bernoulli's theorem states that, if in a series of M independent trials 

of a conceptual random experiment the number of successes of an event is 

(subscript "j" uniquely determines one such event) and the proba-

bility of the event is P, then the probability that the frequency ratio 

differs from P by less than a preassigned quantity C, however 

small, tends to unity as M tends to infinity. In symbolic form, 

P( - P j < C)  > 1 

as M  > °" (Lee (14]). 

Using result (A.2), (A.1) can be written as: 

N 
 > P.p(n.) = <P>M =i 3 

as M  > co . Therefore, for M sufficiently large, we can write: 

or 

L <.i> 

If "M ---> &'; then the proportionality is strict, "L cx <i>'. 

(A.2) 
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To see how to go from the discrete to the continuous form, refer to 

V. W. Lee's book [141. 
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APPENDIX B  

LIMITS OF INTEGRATION w.r.t. EULER'S EQUATION 

The integral equation 

I = f L(x,p,') dx (B.1) 00 

is not cast in the exact form required by the classical derivation of 

Euler's equation, which requires the end points to be finite and fixed. 

A simple device can be used to remedy this problem. Since we want "ii" 

to be zero at some point "no" (usually the mean), then the integral 

(B.1) can be broken into two integrals in the following way: 

no 
I=I 1+I2 =f 00 _00 Ldx•fLdxno  (B.2) 

Let the probability distribution "P" become negligible beyond a certain 

value " ni 'I In otherwords, "P(x)I1 can be assumed to be zero beyond 

"± n1 "(which implies the same for "L"). It would not be too limiting 

if we set "p" to a constant value "M" at "± n1 ". The reason for this 

is that "u" is still allowed to vary with relative impunity where "P" 

has greatest effect. With this in mind, (B.2) can be rewritten as: 

no n1 
I 11+12 = f L dx + f L dx . (B.3) 

-n1 no 
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Integrals I. and 12 are now in the exact form required by the classical 

derivation of Euler's equations. Of course, a more elaborate technique 

may be applied by limiting procedures in the classical derivation which 

I will allow for infinite end points as well, but this would add little to 

the development. 
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APPENDIX C  

DERIVATION OF EULER'S EQUATION 

Here, the calculus of variations will be introduced and Euler's equation 

will be derived. An excellent account of this can be found in Boiza's 

book [2]. Consider the following set of curves 

M = {C1 : C representable as y=f(x) for xo<x<xl},* 

and a function of three independent variables 

F(x,y,y'), 

such that the integral 

xl 

Ji = f F(x,y,y') dx 
xo 

(C.!) 

taken along curve "C." has determinate finite values. This gives the 

natural pairing of a curve with a specific integral value 

(J 1, C) 

* This can be relaxed by parametric representation of curves, see Boiza 
[2]. 
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Let "J01" be an extremum of this means 11C0E M" extremizes (C.1). 

Create a neighborhood around "C01' of all points < p from "Coll, as indi-

cated by figure C.1. 

y 

1 
>x 

Figure C.1 
Neighborhood Around Co 

Replace curve "C01' with curve °Cm" where 

and 

Cm E fl 3 ri C 

{C. : which lie everywhere within the neighborhood 
1 established by "C01' and "p"} 

To simplify matters, let the extremum be a minimum. (Note: p is chosen 

to ensure that all other Cm E q will not be extremal.) The increment in 

" y " will be defined as: 

Ay = Ym-yo = fm( X ) - f(x) = w(x) 

==> Iw(x)1 < p 

The total variation of the integral, which must be positive, will be: 

xl 

AJ =M_Jo = [F(x,y+w, y'+w') - F(x,y,y')J dx. 
x0 

(C.2) 
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Expanding F(x,y+w, y'+w') as a two-variable Taylor series around the 

point (y,y') gives: 

F(x,y+w, y'+w') = F(x,y,y') + [FW + Fw'] 

+ 1/2! [FyyW2+2Fyy'WW'+Fy'yW' 2] + 0(w3) . (C.3) 

Substitution of (C.3) into (C.2) gives 

xl x1 

Ai = S [Fw•Fw1dx•1/2!J' [Fyyw2+2Fyy WW'+Fy'y'w' 2:1dx+... (C.4) 
xo xo 

Now we a device introduced by Lagrange. Let the variation be 

represented in the following form: 

w(x) = ON , (C.5) 

where " i" has similar properties to "w", and "ô" is a constant that is 

small enough to ensure 

&I < P. 

Using (C.5), we can write (C.4) as: 

L] = ô[f xl FLIJ+F'4(dx + 0(ô)] 
xo 

(C.6) 

Since "J1" is a minimum for "ô=O°, then for "6" sufficiently small 0(6) 

will become insignificant and (C.4) becomes: 
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xl 

EJ 0 f [FtIs+F-c'] dx. 
xo 

(C.7) 

Since AJ must be positive, independent of our choice of sign for 'l o ll , 

then the following must be true: 

xl 

f [F +F -&I(] dx = 0. 
xo 

(C.8) 

In other words, condition (C.8) must be satisfied if (C.1) is to be an 

extremum. To cast (C.8) in a more useful form, we integrate by parts 

resulting in: 

x1 x1 
+1 [ji(F-dF-)]dx=O. 

x0 x0 'dx FY 
(C.9) 

Now, we use the condition that the end points are fixed and not allowed 

to vary. This means that tli=O for x=x0 and x1. Then the first term of 

(C.9) is zero. Since 4i is arbitrary in the second term, the only way 

this term can vanish is if 



F y -d F,=0.* 
dx 

This is known as Euler's equation. 

* To see that this assertion is true, let 

M(x) = F - dF 
dx 
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(C. 10) 

Now if M(x) 0 0, set tli(x) to be a smooth function 00 3 the sign of 

= sign of M(x), Vx (xo, x1) ==> 

xl 

I IiMdx>O 
xo 

.. M(x) = 0, Vx. 
11 
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APPENDIX 0  

SOLVING FOR p(x) AS A FUNCTION OF P(x) 

Given: 

Prove: 

where 

Proof: 

P(x) =   

[4/ 1 + p(x) ]3 

x  F(y) 

& p(x0) = '(xo)=O. 

p(x) = j   dy, 
4/ 1 - F(y) 

x 
F(x) f P(y) dy. 

U x0 

x  up 11 x 
f   dy =f P(y) dy. 
X0 [4/ 1+u 1 xo 

Let 3=p ==> d=p°dy, assuming p" exists, then 

x d P x 
.1 (i+2)1z = 1 f P(y)dy. 
.y=xo a x0 

x 
Let F(x) = 1 5 P(y)dy, 

01 x0 
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and knowing 

f (x + a2312dx = x/[a2 (x2-i-a2)"2J 

we arrive at 

===> 

===> 

===> 

1p (Y) 

= 

= F(x) 

x x  F(y)  1 
=1  Idy 

y=x0 y=x0  F(y) J 

x  F(y) ] 
=1   dy. 
x0 I 1 - Fz(y) J 

0 
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APPENDIX E  

MIXED PROCESSES 

This appendix is broken into five sections. Each section is meant to 

show a particular mixed process. The complexity of the process 

increases generally with section number. 

SECTION El  

NOISE CONTAMINATION 

The first process considered is also the simplest. Here, we assume the 

process consists of two parts: a wholly deterministic and invertible 

part (figure 2.2.1) "F" and a random part (figure 2.2.3b) "Ni", which 

will be called noise. 

These parts are related by addition. Thus, the whole process "S" can 

then be written as: 

S(.) = F(.) + N 

The additive noise Ni . being random and unpredictable in nature, is 

different for repeats of the experiment with the same input "Y". This 

repetition gives rise to a set of "rn" observations, or outputs: 

X {X. : X. = S(y) = F(y) + N; i=l,2,...m} 
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The goal is to find an inverse procedure that will allow the estimation 

of "Y", the input. There are two simple ways to accomplish this. These 

correspond to attacking the additive noise in either the output or input 

domains. 

The first inversion procedure starts with trying to estimate "X", where: 

X = F(Y) 

Since the set "X" consists of elements of the form 

X + N i 9 

an estimate of "X" can be arrived at by finding an object "v" which 
is "most similar" to all the elements of "X". 

As mentioned in (2.1), regulating functions provide a quantitative indi-

cator of similarities between two objects. Let "L" be such a regulating 

function. Given a regulating function 

the set of real numbers, 

and a domain of search 

A {a1 : aij = L(R - X) 9 R € D & x € } , 

1 

11D11 9 

Note the use of the notation L( - X.) instead of 
L(L, X4). This was done to empasiz the inverse aspect of 
thi cage. This is also consistent with the mathematical defi-
nition in the next section. 
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can be generated. For a successful regulating function, these numbers 

should reflect the similarity between what we think "X" might be (an 

element of 0), to what we know is "X" distorted by additive noise (an 

element of X). But, "A" does not uniquely determine a " X E 0" 

which is an optimum representation of "X". As an intermediate step 

towards finding an optimum, sort the set "A" into a set of sets "A" 

in the following manner: 

A : a1 [ail,a12,...,aiM} ED a E'A} 

The elements of set "A" are uniquely paired to elements in set 

as indicated below: 

A special situation arises when an element of set "A", say Ili R 11 9 

has all zero elements. This can only occur when the following condition 

is satisfied: 

=x. 

This corresponds to a noise-free case; though of little interest in 

itself, it does provide an intuitively reasonable ideal which the 
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desired optimum to be found should approach.' To meet this end, the 

element of "A" should be ascertained which is most similar to such a 

set. Let "O" be such aset, 2 and let the regulating function 

indicate the similarity between "O"and elements of "A". 

Generate a second set of real numbers "B", where: 

B {b1 : b i = L'(á - 0) = L'(á1) 3 a € A} 

Elements of sets "B", "A" and "0" can now be grouped as follows: 

(b1, ä, ) a b E B, ji € A & x̂i € D. 

This grouping allows one to go from choosing the smallest element in 

"B" to an element in "0", which will be termed optimum with respect to 

regulating functions "L" and "L". Again, let "v" be this 
optimum estimate of "x". Now, if the inverse "F 1" has the very 

necessary property of mapping objects close to "X" into objects close to 

"Y", the approximate inverse can be completed by writing: 

=Y = Y 

This noise-free case is no longer a mixed process. It is wholly 
deterministic and invertible. 

2 6 set of "m" elements all of which are zero. 
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This case corresponds to attacking the noise in the output domain, but 

one could also attack the noise in the input domain. To do this, we 

first map all elements of the output set "X" using "F" into a set 

of potential inputs "V". "Y" is defined as: 

V : = F l(X) 3 X. E X} 

To simplify this problem, let "F" be linear. This would make the 

elements of "V" have the following form: 

= F(X) 

= F 1(S(Y)) = F'(F(Y) + N) 

= V + F(N) 

let 

F_' (N \ - 
I Il/ - 

Yi=Y+ i 

Here we have the same situation as in the first case, where a set of 

results is available that is contaminated by additive noise. The same 

technique can, therefore, be applied. Choose regulating functions 
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Let "V" be the optimum found, which is assumed to be close to "Y", 

or: 

This ends the second approximate inverse procedure. 

Note that in both cases the regulating function "L" basically acted upon 

the noise and is, therefore, by our convention, the probabilistic part, 

and "F1" with its inverse, the deterministic part. The dominance of the 

deterministic part was assured by our choice of the smallest element of 

set "B". Note how important it is for a regulating function to be able 

to determine when what it sees is actually a manifestation of the noise. 

The process just discussed is summarized in figure E1.1. 
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Y 

S 

S(.) = F(.) + N. > 

9-1 

Output Domain 

I 
w 

Generate 

= A 

D & X E 

Sort A into sets 

ai = (a 1 a12 . .a) 

Generate 

b1 = L'(a-O) = L(a) 

Find minimum bE 

Find 

associated with b1 

Perform inverse "F 11' 

'1 = F 1 (X) 

Input Domain 

Generate 

= F 1(X) 

•1/ 

Generate 

- Y) 

YjEy & 

\1 

Sort A into sets 

= (a1,a12, ... ajm} 

Output 

9, 

Find minimum b1 

Find I = Y € Y 

associated with b1 

Figure E1.1 
Noise Contamination 
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SECTION E2  

NON-UNIQUENESS 

The second process to be examined consists of a forward process IPSI 

which is non-unique. Non-uniqueness implies many inputs to "S" can have 

the same output. The non-uniqueness will be attributed to a set of 

unknown parameters "P" In other words, if the "pi's " are known, the 

output can then be uniquely paired to an input. The exact inverse, 

given a set of parameters "p", must be known. Let 'S'(p' )" be 

this inverse. 

As in case I, there are two obvious ways to frame an approximate 

inverse. These correspond to finding an optimum in the input or output 

domains. In both domains a set of allowable parameters "P" must be 

defined. In the "Output Domain" procedure, which will be considered 

first, an additional set must be defined. This set 'Iv " consists of 

possible inputs. With this and the knowledge of the forward process 

"S", a set of trial outputs "X" can be generated, where: 

X (X' : X' = S(p;Y') )Y' € V & p1EP} 

The elements of sets X, V and P are naturally grouped as: 

(X' 
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Thus, if an element of "X" can be found to be optimum, a corresponding 

element in "?° can then be termed an optimum representation of "Y". To 

this end, a regulating function "L" is introduced to indicate closeness 

of elements of to the actual output "X'1. 

Let " X € X" be this element; in other words: 

L(,X) < L(X',X),V X'€ X 

By the natural grouping mentioned, we arrive at an optimum represen-

tation of "Y", namely, "V". This concludes the first method. 

The second approximate inverse starts by defining the set of potential 

inputs "IV" as: 

V {Y' : Y, = S'(p;X) 3 p € P} 

At this point, there must be some concept of desirability the input 

should have.' This desirability is then embodied in a regulating func-

tion, which attains an extremum as the gauged object approaches the 

desired state. Since the extremum can be either a minimum or maximum, 

1 Desirability at this point is necessarily a nebulous concept, since 
it encompasses many manifestations. The importance is the ability 
to incorporate it in a regulating function. Desirability can be a 
probability distribution to which the input should be close, a 
trait like spikiness, or it could be closeness to some reference 
object. 
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depending on its design, the choice of maximum will be made with no loss 

in generality. Given such a regulating function "L", the optimum "V" 

will be signified by the following condition: 

L() > L(Y'), V Y'E Y 

This concludes the second "Input Domain" procedure. The entire process 

can be summarized pictorially in figure E2.1. 
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S 

S(p1;.) >x 

Figure E2.1 
Non-Uniqueness 

> v y 
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The benefit of the "Output Domain" procedure comes from not needing to 

know "S". The disadvantage arises from the chance of increased non-u-

niqueness due to the additional parameters introduced by the set V. 

A good example of this case is band-passed data. Within the pass-band 

the original data are preserved. Outside of the pass-band the data are 

altered. There are infinitely many data sets which are identical within 

the pass-band and differing outside. To choose the most desirable, a 

regulating function can be introduced to pick one out of the many. 

This is basically what is done by Levy and Fullager [15]. They assume 

zero-phase, band-passed data and choose the full band representation 

which minimizes the £1 norm. 
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SECTION E3 

SHAPING PROCESSES 

The third process has much in common with the process considered in 

appendix E2. The difference between the two is basically conceptual 

since, in actual implementation, they are identical. 

To begin, consider a process "S" where the exact inverse "S" is not 

available. An approximate inverse Il1(p1;.)II is introduced. The 

parameters "p11' allow more flexibility in the approximation. I'S r II can 

be seen as a shaper, and what it does is shape output "X" to a desirable 

form "V". 

The actual procedure, as can be anticipated, is identical to the pre-

vious case. The only change to case two is to substitute "f" for all 

occurrences of "S 1". To complete the analogy in the "Output Domain", 

consider the situation where only an approximate forward process 

IS is on hand. By the substitution of "" in lieu of "S", the 

analogy between this process and the one considered in appendix E2 is 

complete. 

A good example of this case, which will be examined in greater detail 

later in this paper, is the use of constant phase shifts as a final 

effort in dephasing a time series. One automated technique for doing 

this can be found in Levy and Oldenburg's [16] paper. Here, it is 
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assumed the residual phase can be approximated by a frequency inde-

pendent shift. The approximate inverse I'11 is, therefore, constant 

phase-shifting. The variable parameter is the phase shift. 
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SECTION E4 

CASCADED PROCESSES 

The fourth process is an example of how the processes considered in 

appendix El and E2 can be used together. The forward process US" in 

this case consists of a non-unique forward process "F(p;.)" and addi-

tive noise "Ni". Symbolically, this can be written as: 

S(.) = F(;.) + N 

As in case II, the inverse of for any set of parameters "p" is 

known. Let "F'(p;.)" be this inverse. 

This case can be seen as two processes cascaded together. Figure E4.1 

attempts to show this. 

Y  > -> 
S2 

F(;.) 

Figure E2.1 

S 

>z  > 

Figure El.l 

> 

Figure E4.1 
Cascaded Process 
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Figure E4.1 demonstrates how this process can be seen as the combination 

of processes represented in figures E2.1 and E1.1. The input "Y" passes 

through the forward process in appendix E2 "S21, giving the intermediate 

result 11711 
L.. The resultant "Z" is then subjected to the forward process 

in appendix El "S1 ', producing the output "X.". Symbolically, this can 

be represented by: 

or simply: 

Z = S(Y) = F(P;Y) 

X. = S(Z) = Z + N1 = F(P;Y) + Ni 

xi = S1[S2(Y)1 

, 

This immediately suggests the cascading of inverses from appendices El 

and E2. Let be the approximate inverse from appendix El, as 

shown in figure E1.1. Let be the approximate inverse from 

appendix E2, as shown in figure E2.1. Then can be used to 

deduce an optimum representation of "Z", namely, "", from the outputs 

'ix i It . can then be input to "" to get an optimum estimate of 

"Y", namely, "V. Figure E4.2 attempts to show this pictorially. 
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-> 1() >z  > -> 

Figure E4.2 
Cascaded Inverse 

Symbolically, this can be represented by: 

= = j1(S1ES2(Y)]) = 

V = = Y 

> V Y 

An example of this process is full-band inversion of band-limited data 

in the presence of noise-' 

1 Redundancy is assumed for the noise cancellation process to work. 
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SECTION E5  

SUPER CORRUPTER 

Lastly, to show how complex a process can be, consider the following 

case represented in figure E5.1. 

V 

S 

--> -->T --> 
S2 

F(pR;.) 
S3 

(.) + M 

X ij = S(Y) = F (PR ;Y+N) + 

Figure E5.1 
Super Corrupter 

--> x 13.. 

This case contains additive noise "Ni" and "Mi" before and after the 

non-unique forward process "F". An approximate inverse procedure can be 

designed based on appendix E4, but due to the complexity in this case, 

the result may not be very desirable. A method here to obtain good 

results is anybody's guess. It would depend on how "F" treats what is 

called noise and on our knowledge of what "V" should look like. 

The complexity for these cases can be increased ad infinitum, but if the 

errors are bounded, an approximation can be used. Otherwise, "5" will 

tend towards a totally uninvertible process (figure 2.2.3b). 
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APPENDIX F 

PROOF OF COMMON EXTREMUM 

Here, we will prove that the regulating functions 

and 

114 p = EX 
i 

L = 

(F.1) 

(F.2) 

indeed have the same extrema. Since, in this paper regulating functions 

are used to indicate extremum conditions, this will allow us the flexi-

bility of calling (F.2) the AP norm in place of the classical form given 

by (F.1). The difference will be the gradient away from the extremum. 

The proof begins by setting up the extremal condition for both equations 

then showing that they are indeed identical. For equation (F.1), 

a lix!! = 11x JPjl/Pax ax I 
= P1(1/P)_1a 

J xi 
=0 

===> pE-IxiIp1 = 0 , (F.3) ax[i J 

is the condition required for an extremum. But, that is exactly the 

same condition for equation (F.2) since 

= i lJ 1x.1p1 = 0 
ax ax i 

(F.4) 
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Therefore, combining (F.3) and (F.4), we get: 

afjxjl =ix.P 
ax. ax.i Xi JP 

This equivalence of extremal conditions proves our contention. 0 

(F.5) 

It should be stated, though, that even with equal extrema, the two regu-

lating functions will have different gradients away from the extrema, 

and techniques which use the gradient could have different convergence 

characteristics. 
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APPENDIX G 

PROOF OFx >d>x 
max— - mm 

Given: 

the set 

{x : Xmax x1 ≥: Xmin V ii 

and "d" is the value which minimizes the expression 

L=Id-xjJP p>1. 

Prove: 

x >d>x. 
max— - mm 

Proof: 

Assume the contrary, let "L" be minimized by d 3 d > x 
- max 

9 ô € {positive reals} D d > d-ô = Xmax 

===> I d-5-xil < Id-xil 

and since IYIP is an increasing function V p > 1 

===> lyil > JY21 <> 

1d-.o-xJP < jd-xijP 

lyll P > IY2I 
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Jd-6.-xijP < Z Id-xilP = L 

===> d does not minimize "L" ===><===.. 

our assumption is wrong and we must have 

d  
- max 

0 

The proof for d > Xmin is exactly the same as above. 
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APPENDIX H  

MAXIMUM POINT OF £' PROBABILITY DENSITIES 

Given: 

Ruler function 

p(x) = IxI 

and its associated probability distribution 

P(x,p) = 1/2 p(p-1) IxI 2 

[4/ 1 + p2 IxI22 ] 3 

Prove: 

The point of maximum probability density is given by 

Xmax = I p 4-3p 

V x > 0 and p > 1 

Proof: 

1/2p-2 

For x > 0 the absolute value sign can be dropped in P(x,p). The max-

imum density point will have zero first derivative w.r.t. x. 

aP(x,p) = 1 p(p-1) 
ax 2 

p-2x 3 3/2 p2(2p_2) x3P 5 

[1+p2X22]3/2 [1+p2x2P2]5/2 
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= 1 p(p-1) (p_2) X 3+p2X35_3/2 p2(2p_2)x3P 5 
2 

=  A P(P-1) 
2 

2 2P 2 5/2 [1+px]  

(p-2)x3 + p2(4_3p) x3P 5 

- + (px) I 

  5 

Setting this last relation to zero gives the maximum density point. 

(p-2)x 3 + p2(4-3p) x35 = 0 

===> (p-2) + p2(4-3p) x22 

===> x= 
4-3p p 
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APPENDIX I  

MINIMUM ENTROPY DECONVOLUTION 

What follows is a deconvolution technique consolidated from 

T. J. Deeming's paper presented at the 1981 S.E.G. Convention [5]. The 

procedure consists of finding a filter "f11" which, when convolved with 

trace "x111 , produces an output "y" that maximizes the regulating func-

tion "L". 

This procedure is motivated by the forward model which considers the 

output "x11' as the convolution of a wavelet "w11' with a sparse spike 

sequence "r1", or 

The inverse is then to find a filter "f11' which gives a result "y11' that 

is spiky and hopefully a good representation of "r1". The regulating 

function "L" is chosen to indicate the spiky nature of the result 

where 

y. = f.x.1 . 
1 j0 33 

(1.2) 

Deeming showed that the sum of any positive increasing function of the 

scaler and sign invariant mapping of the trace, 
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(E.3) 

Y2. 
3 3 

will tend to minimize the number of measured spikes present in the 

M.E.D. output. Thus, the regulating function can be written as 

L(y) = Z . (E.4) 
1 

Here, "i" is the ruler function as considered in this thesis. 

For any given result "y111 , (E.4) will be the resulting value of the reg-

ulating function. To generalize to a multi-channel case, (E.4) can be 

rewritten as: 

t 
V=XaL=a t Ep (E. 5) 

Where the subscript "t" indicates different traces, and the "ci's" are 

weighting factors fpr each trace. The idea is to find a maximum value 

for (E.5). For (E.5) to be a maximum, it must obey the following 

condition: 

=a 
tt 

=0. 
(E.6) 
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Aside: 

since 

and 

aZ = a 

af af 

= 1 

<y2> <y2> 

ay. 

y. = Z fx1 ==> = 

af 

ay1 a 

2y1 - + y2 i  - 

af i af 

a 1-4751 = -<y2> 2 a<y2> =  

af <y4>2 af n k af i 

1 ayk - 1 
2y1, -  Z 2y1,x1,_. 

k k rr3 

n<y2>2 n<y2>2 

az 1 . 2 
= 

af <,2> Pi 

Let =  
az 

-j - I [ Ykxk- j] 

End Aside 

Thus 

av 

af 

= 

t 

tt 

2 

<y2> 

yixi_j - 

n 

YkXkJ 

2 r - 1 .z. YkXkj 
<yz> [j n i 1 1 k 
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But 

= • 

n  

and letting 

(E.7) 

(E.8) 

one can write 

1 av =I a <z> - Z YX J ] . (E.9) 
2 8f t t<> L 

Aside: 

Note the bracketed portion of (E.9) must equal zero when "aa/af = 0", 

or 

(p - y1) x1_ = 0 

up to the lag of the filter; this can be used as a stopping condition. 

End Aside 

To simplify equation (E.9), the second term in the brackets can be 

written as 

y,x1, = f.xk_. Xk_. 
k '" [7k- i=0 ' 3 

1-1 
=I f.x x 

i=0 1 k k-i k-j 
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Now define the following terms: 

g = Px1 crosscorrelation of n & x for trace "t" 

i 11i =  rpz>i gt >it 

C = EX_. Xkj]t autocorrelation of "xl' for trace 

Given these definitions, equation (E.9) can be rewritten as 

1V =G.- 101 13 f.C.. 
2 8f =  

'It" 

(E.10) 

As stated previously, a maximum is reached when aa/af5 is identically 

zero, which gives the equation 

I C. .f. = G 
i=0 13 1 3 

As mentioned in an aside, the stopping condition is 

= 0 

where 

H. = I [<<,z>I>tht 2  
and 

(E.11) 

(E.12) 
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The total iterative procedure is to first get an initial estimate of the 

filter which can be used to get an initial result " y " , giving 

IIZ?Il, "<y1>°" and "<z>°", which in turn allows the calculation of 

11 Co 11 9 and 'G'. At this point, a new filter can be solved for 

through equation (E.11) giving tlfçl)u, the updated filter. This 

procedure is continued until 11H 0", or convergence by the Cauchy 

criterion. 

Summary of symbols and equations: 

x. Input trace. 

y. = Output filtered trace. 

filter (i=O,1 ...... -1). 

z. = y/<y2> Sign and scaler invariant mapping. 

Lt = p(Z) t E regulating function for trace 
ni 

V = I Lt multi-channel M.E.D. regulating function. 
t 

f Initial filter estimate. 

£-1 (k) th 
Z f. C.. = G. Iteration equation (k Iteration). 
i=O 1 13 3 

= 0 : Stopping condition j=O,1 .... Q-1. 
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= 7 cc  f<z>1 g 
t tL<Y>jt 3 

g =  

I41 

zi = Y/<Y2> 

tth trace weight 

C.. = X a 1<pz>1 c 
13 • t t ii 

c.. = x 
' k k-i Xkj 

= Z w. I<PZ>] h <y2> 

h = X 

Li = pi -Yi 

 A 

> 

> 
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Flow Chart for Decon Algorithm 

The horizontal axis represents order to perform procedures. When two procedures 
appear at the same level, it means there is no apparent reason to perform one or 
the other first. Since the algorithm is iterative, it obviously wraps around. 

Initial guess filter 
fi 

Another 
Iteration 

2-1 

Yi kQfkX i_ 

<y 2> 

Input signal 
xi 

ii = 

(z 

pt1Yi1<13z> 

RefleCtiOfl 
coeff. 
Estimates 

i=pi 

= ZE 1x1_ 

V 

 00. H. I w 
3 

1. 'False 

> True E 

Stopping 
Condition 
jO,1,.. .,2-1 



Page 117 

g = P1X1_j 

t  <y:> 
t g3 

t 

'I 

new filter 

f1 =CCij 1 

Another 
Iteration 

13 t z1 4. 
< '>it 

Levinson 
Recursion 
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APPENDIX J  

PROOF OF (t) = e1a (t) 

Given: 

Real trace "a(t)" and its analytic extension 

(t) = c(t) + i H[a(t)] 

i = 4 -1 

H Hubert transform 

Prove: 

The constant phase-shifted version of 11c(t)°, namely, "a(t)", is 

related by the following expression: 

(t) = c(t) + i H[c(t)] = e1a (t) 

a.= constant phase shift 

Proof: 

Let "A(w)" be the Fourier transform of"a(t)". Then by definition of 

Fourier transforms and Hubert transforms, we have 



and 

c(t) = 1 i..: A(w)e lt dw 

H[c(t)] = 1 f_ Sgn(w) A(w)e_iJt + jt/2] dw 

Sgn(w) =( 1:w>O 
( -1 : w < 0 
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(J.1) 

(J.2) 

If a constant phase shift "a" is added to "a(t)", expressions (J.1) and 

(J.2) become: 

and 

c*(t) = 1 f_ A(w)e_h[wt + dw (J.3) 

H[(t)] = 1 f_00 Sgn(w) A(w)e_ 1t + a + it/2] dw . (J.4) 
Tt 

By direct comparison of (J.1) to (J.3) and (J.2) to (J.4), we have: 

a(t) = e 1" c(t) and H[a(t)] = e10U[c(t)] 

This, in turn, allows one to write: 

(t) = c(t) + i H[c(t)] = e(t) 
El 
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APPENDIX K 

PROOF OF (t) = t) - a 

Given: 

(t) = u(t) + I K(t)] 

and 

(t) = a(t) + I H[a(t)] 

H Hubert transform 

i=41 -1 

where "(t)" is a constant phase-shifted version of "P(t)". 

Prove: 

cl(t) =  (t) - a 

where 

and 

Proof: 

Im[(t)] 
tan4(t) -   

Re[(t) ] 

ImE(t)] 
tan  (t) -   

Re[(t)I 

tan(t) =   

Im[(t)] - H[a(t)] 

Re[(t)] c(t)  

(K.1) 

(K.2) 
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Using the result from Appendix J, we can write: 

tan(t) = H[a(t)lcoso - a(t) sina 
a(t) coso + HEcx(t)]sincr 

= H[a t I cos - sina 
a 
coso + ti at4 sina 

Substituting in relation (K.1), we get: 

tan(t) = tan(t) cosa - sina 
coso + tan4(t) sina 

=  sin (t) coso - sina  
c0s4(t)coscr + sin4(t)sinc 

= sin 
cos 

M  = t) - a 

= tan(4-a) 

0 
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APPENDIX I  
CONSTRUCTION OF PERFs BASED  

ON A PRIORI MOMENT INFORMATION  

A technique will be introduced here which allows one to incorporate 

statistical information into a PERF. This information will be in the 

form of sample moments 

n 
M = 1 xi t 
R iH=1 

where the set 

= {x 

(L.1) 

is a given realization of the probabilistic part of the process. To 

simplify the discussion, we will require the elements of X to have the 

following property: 

0 1 x1 

This ensures that 

MR+<MR V>O. 

(L. 2a) 

(L.2b) 

Property (L.2a) is not overly restrictive, since by simple normaliza-

tion, we can ensure all elements to be less than unity and scaler inde-

pendent. The forthcoming arguments which require the elements to be 
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positive can be made for negative values independently with no 

ambiguity. 

To begin, expand an arbitrary ruler function, Vy>O, in terms of a 

series 

M 
p(y) = : a. y3 

n j=1 J 

Incorporating (L.3) into a PERF "L" and using it to gauge a set 

we get 

V = {y1 : i=1,2,...n} 

n n M 
L= i(y.)= 1 a.y? 

i=1 1 i=lnj=1 

M n 
= a. 

j=1 ' -n i=1 

But, the sample moments for the set V are identically 

n 
= .1 1 y 
ni=1 

Substitute (L.5) into (L.4) to get 

M 
L = I a. M. 

j=1 3 

(L.3) 

(L.4) 

(L.5) 

(L.6) 
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If we let aj = as defined in equation (L.1), and define the fol-

lowing vectors: 

and 

then 

M =  

M = (M1 ,M2 , ... ,MM) 

(L. 7a) 

(L. 7b) 

L=M M. (L.8) 

This means that as Y approaches X, statistically, we would expect (L.8) 

to become a maximum. This allows us to use "L" as an indicator of this 

distribution in an inversion procedure. 
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LIST OF SYMBOLS  

Symbol Definition Page of first 
occurrence 

S .... A process   5 

S 1 .... An inverse process   6 

Over a symbol indicates approximation  7 

<====> .... if and only if   7 

 > .... (which) implies  8 

==><== .... a contradiction   19 

such that   9 

€ .... (is) an element of   15 

there exists   18 

is proportional to   22 

cc is approximately proportional to   71 

{ } ... A set   36 

{t:P} .... Set of elements "t" with properties "P"   34 

X,Y .... Uppercase letters are vectors   15 

X,V .... Underscored or overscored uppercase 
letters are sets   14 

x,y Lowercase letters are real numbers  16 

x.,y. .... Indexed real numbers, as in 
1 1 sets or vectors   15 

x .... Cartesian product   14 

L:A-->B .... A mapping of "A° into "B"   14 

xljp .... norm   10 
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Symbol Definition Page of first 
occurrence 

L(X,Y) .... Regulating functions or PERFs   15 

C .... a subset of   79 

Ruler function   19 

Real rn-dimensional vector space   46 

o .... Completion of proof   82 

therefore   82 

V .... for all   17 

less than   17 

less than or equal to   106 

> .... greater than   17 

> .... greater than or equal to   105 

<x> .... expected value of x   23 


