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Abstract

The accretion of exotic terranes onto the stable Northern American craton during the formation of

the Northern Canadian Cordillera (NCC) generated complex structure on a crustal and lithospheric

scale. Without making significant model-parametrization assumptions, inverting for structure is

challenging. The Bayesian approach quantifies uncertainty due to non-uniqueness of the solution

and can avoid subjective choice in model parameterization. Jointly inverting receiver-functions

and surface-wave dispersion curves constrains shear-wave velocity structure. With this inversion

method, I study the spatial variability of major lithospheric discontinuities, specifically of the Mo-

horovičić discontinuity (Moho) and lithosphere-asthenosphere boundary (LAB), along a transect

from Whitehorse to Toad River. Results show a flat Moho across the NCC at ∼ 34-km depth and

a heterogeneous LAB with depths between 70- and 100-km depth. Beneath the LAB, I observe a

significant low-velocity zone with shear-wave velocities as low as ∼ 3.0 km/s. Only the presence

of partial melting of 1.5–2.5% can explain these Vs reductions.
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1. Introduction

The northern Canadian Cordillera (NCC) has a long, diverse history along the former margin

of Laurentia, including multiple episodes of terrane accretion and rifting. It is a former back-

arc that was influenced by the asthenosphere upwelling following the opening of a slab-window

at ∼42 Ma (Hoffman, 1988; Monger and Price, 2002; Shi et al., 1998; Madsen et al., 2006;

Thorkelson et al., 2011). The ancient convergent system thrust exotic terranes upon the Lau-

rentian craton, a transition that is observed today as an abrupt transition between Phanerozoic and

Precambrian provinces (Hoffman, 1988; Monger and Price, 2002). This sharp Cordillera-craton

boundary (CCB) exists on a lithospheric scale, with hot lithosphere beneath the Cordillera abruptly

transitioning to colder temperatures beneath the Proterozoic and Archean cratons (Frederiksen et

al., 1998; Lewis et al., 2003; Mercier et al., 2009).

Multiple competing theories based on seismic observations and petrologic data suggest sig-

nificant lithosphere removal from the Canadian Cordillera by means of delamination (e.g., Bao

et al., 2014), thermal erosion from small-scale convection (e.g., Hyndman et al., 2005; Hynd-

man, 2017; Francis et al., 2010), and continental collision (e.g., Johnston, 2008; Chen et al.,

2019). Crustal and upper-mantle structures, such as the Mohorovičić discontinuity (Moho) and

lithosphere-asthenosphere boundary (LAB), provide the mechanisms driving lithosphere removal.

While reflection studies provide a view of an anomalously flat Moho across the NCC, despite

crossing major faults and various terranes, deeper lithosphere structure is still poorly understood

(Cook et al., 2004; Cook et al., 2005; Clowes et al., 2005). Historically, station coverage in the

NCC has been sparse in both time and space. The deployment of portable seismometers such
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as the CAnadian NOrthwest Experiment (CANOE) (Gaherty and Revenaugh, 2003) have helped

bridge spatial gaps but lack longevity. Nevertheless, recent broadband permanent seismometer

deployments such as the Yukon-Northwest Seismic Network (NY) (University of Ottawa, 2013)

have increased coverage and facilitated the construction of improved seismic models.

Regional studies using body-wave (e.g., Frederiksen et al., 1998; Mercier et al., 2009; Za-

porozan et al., 2018; Estéve et al., 2020) and surface-wave tomography (e.g., Dalton et al., 2011;

Bao et al., 2014; McLellan et al., 2018) have provided insight into broad shear-wave velocity

structure (Vs), confirming the mantle beneath the Cordillera possesses extremely low Vs and is,

therefore, warm compared to the craton. SKS splitting (e.g., Courtier et al., 2010), surface-wave

tomography (e.g., Bao et al., 2016), and receiver-function (RF) studies in the region (e.g., Cassidy,

1995; Taryoun et al., 2017; Audet et al., 2019) have been inferred to show inherited anistoropy

within the lithosphere and flow-driven anisotropy in the asthenosphere.

The Tintina Fault (TF), a right-lateral strike-slip fault, runs parallel to the CCB and corre-

sponds to an abrupt change in seismic velocities and anisotropy (Snyder et al., 2005; Zelt et al.,

2006; Mercier et al., 2009; Dalton et al., 2011; McLellan et al., 2018). Moreover, chemical and

isotopic changes in alkaline basalts across the TF suggests it straddles two distinct lithosphere

mantles (Abraham et al., 2001). These observations suggest that the TF is a primary boundary

between the young, warm lithosphere to the west and older, colder lithosphere to the east.

Further investigation of how the Moho and LAB act on a lithosphere scale across the Cordillera

provides insight into mechanisms driving the thermal and physical state of the Cordillera. The

LAB is challenging to infer, because its geophysical signature is subtle and obscured by other

reverberations (Eaton et al., 2009). However, the young, hot lithosphere at shallow depths in the

NCC makes the LAB likely easier to observe, provided a shallow, sharp LAB (e.g., Kawakatsu

et al., 2009; Chen, 2009; Kind et al., 2012). Moreover, mantle-derived xenoliths in the northern

Cordilleran volcanic province (NCVP) help constrain temperatures, depths of the Moho and LAB

and origin of mantle rock (Edwards and Russell, 2000; Harder and Russell, 2006; Kilgore et al.,
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2018). Improving the understanding of the structure and how the crust, LAB and upper mantle

act across the Canadian Cordillera can provide insight into the thermal and physical processes that

shaped the western margin of North America.

Complex seismic structure in the NCC makes inverting for Vs challenbing without making

assumptions about model parametrization. Inverting RF data is an inherently non-linear and highly

non-unique problem; earth models comprised of vastly different parameters can produce similar

fits to RF data (Ammon et al., 1990). This non-uniqueness stems from RFs being sensitive to

discontinuities in Vs but having poor resolution of absolute values of Vs (Ammon et al., 1990; Juliá

et al., 2000). However, incorporating additional information from surface-wave data observations,

which are sensitive to absolute Vs, can alleviate this limitation (Juliá et al., 2000).

The Bayesian approach is ideally suited to solve this inverse problem because it quantifies the

uncertainty due to the non-uniqueness of the solution and reduces subjective choice (Malinverno,

2002; Tarantola, 2005). Non-linear optimization algorithms can find a global minimum and pro-

vide an optimal solution, or a single, best solution. However, optimal solutions ignore the intrinsic

non-uniqueness of the problem and preclude rigorous uncertainty quantification. By producing

ensembles of the model-parameter vectors in a Bayesian framework, the inversion solution is

an approximation of the posterior probability distribution (PPD) and quantifies the degrees of

belief about earth structure given the data. The PPD is constrained by data information and prior

information. A Bayesian formulation is able to avoid subjective parameterization by treating the

inversion as trans-dimensional, where the number of layers as unknown.

I apply Bayesian joint inversion of surface-wave dispersion (SWD) and RF data based on

the algorithm from Dettmer et al. (2015) to data in the NCC. An effective exploration of the

parameter space is done by integrating the Markov chain Monte Carlo (MCMC) method. The

algorithm employs parallel tempering (PT, (Geyer, 1991; Dettmer and Dosso, 2012)), an interactive

MCMC method, to sample the PPD. The PT algorithm employs a sequence of Markov chains with

increasingly relaxed (tempered) posterior bridging distributions with at least one chain sampling a
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distribution identical to the PPD. Only the chain sampling the PPD is used to record samples; the

other bridging distributions only contribute sampling efficiency.

Tempering the chains allows for freer movement in the parameter space and higher acceptance

rates of the proposed model vectors resulting in a broad exploration of the parameter space. The

Metropolis-Hastings (MH) criterion is applied to implement the information exchange between

chains and improves efficiency.

This thesis begins by introducing the geologic background of the NCC. Then, I discuss RF

processing and SWD acquisition. Subsequently, I describe the Bayesian inversion algorithm. I

successfully apply this method to RF and SWD data in the NCC to investigate the Moho and LAB

across the NCC. I conclude with a comparison of my observations and previous studies and a

discussion of the thermal and geodynamic implications of my research results.
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2. Geological Background

2.1 Tectonic Setting

Bounded to the east by the undeformed strata of Ancestral North America, the American Cordillera

is a north-south trending mountain belt that extends from Alaska to Patagonia (Kay and Ramos,

2007). Within the American Cordillera, the Canadian Cordillera is comprised of the region that

extends from Alaska to the southern US-Canadian border (Figure 2.1). The Canadian Cordillera

is currently characterized by a sharp boundary between ancient North America and a Phanerozoic

orogenic belt. Topography and elevation reflects the lateral extent of this deformation, observed at

the surface as the Cordillera deformation front (CDF).

The NCC was founded on the western margin of the Laurentian craton. It has evolved as

an active belt from its inception in the Late Precambrian to the present and has been through

diverse tectonic settings and configurations (e.g., Hoffman, 1988; Colpron et al., 2007; Nelson and

Colpron, 2007). The Cordillera is formed of an amalgamation of terranes, fault-bounded blocks

with distinct geological records (Jones et al., 1983), which generally are older in the east and

younger in the west.

During the breakup of Rodinia ∼ 750–540 Ma, the ancient passive margin of Laurentia was

converted to a convergent margin, marking the beginning of the NCC development (Bond and

Kominz, 1984; Monger and Price, 2002; Nelson and Colpron, 2007; Johnston, 2008). The North

American craton is encased by the Intermontane terrane and was originally bounded by an outer

relic-fore-arc ocean-ward margin (Colpron et al., 2007). The Intermontane terrane grouping is
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Figure 2.1: Terrane map for the Canadian Cordillera. Terrane groupings and tectonic realms are
explained with the legend. Abbreviations represent respective provinces and states: AB- Alberta;
AK - Alaska; B.C. - British Columbia; N.W.T. - Northwest Territories; and Y.T.- Yukon Territory.
(B.C. and Yukon Geological Survey, 2015a,b).
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often referred to as a superterrane, as it is an amalgamation of Triassic-Jurassic terranes that joined

together prior to accretion (Johnston, 2001; Monger et al., 1982; Johnston, 2008). This belt consists

of oceanic assemblages with a similar tectonic history as ancient North American margin, such as

remnant slivers of the Slide Mountain oceanic terrane (Monger and Gibson, 2019). Arctic and

Insular terranes origins had no relationship to the North American margin prior their accretion on

the outer margin of Intermontane terranes by ∼ 160 to 150 Ma (van der Heyden, 1992).

With the exception of the Yukatat Terrane in Southeast Alaska, major terrane accretion was

completed by the Cenozoic (Nelson and Colpron, 2007). The west coast of the Cordillera was

primarily characterized by the eastward subduction of the Kula, Resurrection and Farallon plates

by ∼ 53 Ma (Madsen et al., 2006). Following the cessation of subduction of the Kula and Resur-

rection plates, transverse motion from the Queen Charolette-Fairweather fault cut off continuous

subduction of the Pacific plate by ∼ 42 Ma (Madsen et al., 2006). The shift from a convergent

to a transform boundary and the reorganization of stresses to a transtensional environment was

accommodated by dextral fault system displacements of crustal rocks ≥ 400 km along the Tintina

and Denali faults (Hayward, 2015).

Subduction continued and is currently subducting to the north and south of the NCC, where

the Pacific Plate is subducting beneath Alaska, and the Explorer and Juan De Fuca plates are

subducting beneath the Cascade arc (Madsen et al., 2006; Thorkelson et al., 2011). This break in

the subducting slabs, or slab window, induced volcanic activity throughout the NCC as upwelling

asthenosphere rose to replace the zone once occupied by the slab (Thorkelson et al., 2011). The

NCVP encompasses the intraplate volcanism in northwestern B.C., the Yukon Territory, and Alaska

is driven by these changes in relative plate motion 10–15 Ma (Edwards and Russell, 2000).

Mafic magmatism in the NCVP involves two xenolith suites corresponding to separate sources:

spinel lhzerolite from a shallow, lithsophere source and harzburgite from a deeper astheonsphere

source (Francis et al., 2010; Polat et al., 2018). The spinel lherzolite from shallow lithospheric

melt is likely representative of the regional lithospheric mantle (e.g., Shi et al., 1998; Francis et
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al., 2010; Polat et al., 2018). The second harzburgite suite appears to be fed by melt from a deep,

asthenosphere source and resulted from ∼ 15% melting from the spinel lhzerolites (Francis et

al., 2010). Metasomatized mantle in the Paleogene converted to anhydrous asthenosphere/veined

lithospheric mantle with the opening of the slab window (Thorkelson et al., 2011). While the

lithosphere is largely anhydrous, water content in the NCC is from the remelting of carbonatite

veins rather than the incorporation of water from subducting slab (Kilgore et al., 2018).

2.2 Crustal and Moho structure in the NCC

The Moho appears as a strong seismic signal, as it is a compositional boundary and there are

large differences in seismic parameters between the crust and uppermost mantle. The Moho

under the Canadian Cordillera is anomalously flat despite underlying an extensively faulted and

heterogeneous system (Cook et al., 1992; Cook et al., 2004, Cook et al., 2005, Clowes et al.,

2005). Complexities in lithospheric structure are often not associated with any surficial expression,

so the CDF does not necessarily mark the CCB at depth (e.g., DiCaprio et al., 2020). Dynamic

topography, or the topography driven by density changes from mantle heterogeneity (e.g., velocity

anomalies), can account for excess elevation, observed in regions such as the African super-

swell (e.g., Lithgow-Bertelloni and Silver, 1998). The influence of dynamic topography is also

present in the NCC, and where detachment zones may have been driven by flow in the lower

crust and mantle small-scale convection due to high Cordillera-wide temperatures, discussed in

Section 2.3 (e.g., Currie and Hyndman, 2006; Eaton, 2005; Hyndman, 2017). Density reduction

due to thermal buoyancy also explains the high topography of the Cordillera despite relatively

thin crust (Hyndman, 2017). Alternatively, the apparent disconnect between a flat Moho and

heterogeneous upper-crustal structures has been interpreted to be evidence for the thrusting of

thin slices of accreted crustal material upon the North American crust and mantle (Snyder et al.,

2005; Cook et al., 2004, 2005; Dalton et al., 2011). Ancestral North America province has been

inferred to extend to the TF from observations of abrupt changes in seismic anisotropy and velocity
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at the TF (e.g., Courtier et al., 2010; Dalton et al., 2011) and to the CDF via body wave and surface

wave tomography studies (e.g., Mercier et al., 2009; Zaporozan et al., 2018; Estéve et al., 2020).

In the southern Canadian Cordillera (SCC), the TF is observed as the Rocky Mountain Trench,

and it is inferred that the two features are related, particularly in their role in the formation of

the Cordillera. Determining the lateral westward extend of of ancient North America is important

when discussing the formation of the CCB and the mechanisms that formed the Cordillera.

2.3 Lithospheric and Upper-mantle Structure in the NCC

The LAB is often more difficult to detect with seismic methods than the Moho, as it is not a

compositional boundary and is generally not associated with a sharp contrast. It is defined as

a boundary between the rheologically distinct rigid lithosphere and plastic asthenosphere (e.g.,

Eaton et al., 2009; Fischer et al., 2010). The LAB can also be defined as the transition from where

heat is primarily transferred through conduction in the lithosphere, to where heat is transferred

through convection in the asthenosphere (Sleep, 2005). Because of this, the LAB can be difficult

to image in cratonic provinces but easier to image in Cordilleran regions, because the high heat

flow and the presence of partial melt can make it easier to infer (e.g., Chen, 2009; Abt et al., 2010;

Kind et al., 2012).

Therefore, an interdisciplinary approach is an appropriate way to accommodate multiple defi-

nitions and interpretations of the LAB. While seismic methods are able to observe composition or

partial melt variations at depth, petrologic data can be used to infer the depth of the LAB based on

partial melt calculations. Magnetotelluric (MT) studies can also detect low-resistivity structures

and interpret the presence of partial melt associated with the LAB.

Previously, LAB depths for the NCC have been estimated at 50-km depth using seismic meth-

ods (Audet et al., 2019) and between 52–70-km depth in xenolith studies (e.g., Harder and Russell,

2006; Francis et al., 2010; Batir and Blackwell, 2019). Compared to the craton LAB depth of

∼ 150–250 km, this range of estimates for the Cordilleran LAB is shallow. Xenolith studies
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suggest that the shallow LAB relates to a hot lithosphere with temperatures ranging from 1100 to

1350◦ C (e.g., Edwards and Russell, 2000; Harder and Russell, 2006; Batir and Blackwell, 2019).

Temperatures at the Moho and LAB provide indications of the LAB depth and geothermal gradient.

Modelling of the geothermal gradient assuming a long-lived lithospheric structure, LAB depth, and

Moho temperature based on Langmuir et al. (2006) suggests a LAB-depth of 75 km corresponds

to a Moho at 800◦ C, while a LAB of 50-km depth corresponds to a Moho at 1000◦ C (Audet

et al., 2019). This geothermal gradient can also be inferred with xenoliths, seismic, and MT

studies suggesting Moho temperatures ranging from 800–1000◦ C (e.g., Harder and Russell, 2006;

Francis et al., 2010; Clowes et al., 2005; Ledo and Jones, 2005; Audet et al., 2019). Overall, LAB

temperatures between 1100◦–1300◦ C (e.g., Harder and Russell, 2006; Edwards and Russell, 2000)

indicate a hot, near-adiabatic mantle at 150 km (Chen et al., 2019). These high geotherms indicate

that the lithospheric mantle may contain partial melt from decompressional melting (Thorkelson

et al., 2011; Audet et al., 2019).

Heat-flow data in the Cordillera (Figure 2.2) is 100 mW/m2, which is high compared to heat

flow in the craton measured at ∼ 42 mW/m2 (Lewis et al., 2003; Grasby et al., 2012). Even

when accounting for radiogenic heat production in the crust, the heat flow across the Cordillera

is higher than the craton (Lewis et al., 2003). Such extreme variations between the Cordillera

and the craton lead to a significant decrease in effective elastic thickness across the CCB, further

indicating the presence of a hot, weak lithosphere and a shallow brittle-ductile transition zone

within the NCC (Lewis et al., 2003; Flück et al., 2003; Audet et al., 2007; Hyndman, 2010).

The mechanism of lithosphere removal that lead to the shallow LAB in the NCC remains

debated, with possible mechanisms including a large-scale lithosphere delamination event (e.g.,

Bao et al., 2014), viscous thermal erosion via small-scale thermal erosion induced by upwelling

asthensophere (e.g., Hyndman et al., 2005; Hyndman, 2010, 2017; Francis et al., 2010), and

terminal suturing during accretion (e.g., Chen et al., 2019).

A terminal suture zone model proposed for the SCC suggests a ribbon continent crust and
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Figure 2.2: Heat flow data across the NCC from Lewis et al. (2003) and NCVP locations from
Edwards and Russell (2000). The Alligator Lake NCVP location is noted, as multiple studies
referenced in this thesis determine temperatures and lithospheric composition from Alligator Lake
xenoliths. An approximate transect of the stations discussed later in this thesis is noted by a black,
dashed line, marked from A to A’.
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lithosphere was accreted onto the existing craton (Chen et al., 2019). In this case, the LAB

is shallow because it is from an exotic source. This model explains the steep, well-preserved

west-dipping geometry of the collisional front, sharp velocity contrast between the Cordillera and

the craton. However, an exotic lithosphere model fails to address the extreme heat flow patterns

observed in the NCC.

Alternatively, the opening of the slab window may have triggered a large-scale delamination

event between 5–25 Ma (Bao et al., 2014; Audet et al., 2019) and allowed the displacement and

foundering of the lithospheric root (Bao et al., 2014; Thorkelson et al., 2011). However, post-

Eocene faults are younger than the suggested delamination event, and it is difficult to reconcile the

removal of the lithosphere with present-day motion of North America (Chen et al., 2019).

A more plausible mechanism for removal of the lithosphere is ongoing small-scale convection

induced by the high heat flow in the NCC. In this model, the hot mantle creates shallow convection

cells (e.g., Currie and Hyndman, 2006; Hyndman et al., 2005; Hyndman, 2017), and the crust is

thin and decoupled with the underlying weak upper-mantle (Oldow et al., 1990). Observations

of elevated upper-mantle temperatures (e.g., Lewis et al., 2003; Francis et al., 2010), low effective

elastic thickness (e.g., Flück et al., 2003; Audet et al., 2008) and a flat, shallow Moho (e.g., Clowes

et al., 2005) agree with this model.

All models can explain the shallow LAB previously inferred in the NCC. However, further

observations of the lithospheric mantle structure will constrain which mechanisms are driving

lithospheric thinning. Understanding the lithosphere removal process will better constrain on

which time scales these mechanisms operate and what role the slab window and heat flow plays in

this process.
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3. Theory

3.1 Receiver-Function Estimation and Surface-Wave Data

I investigate the structure of the crust and upper mantle in the NCC by exploiting the principles of

conversion and reflection of seismic body waves at interfaces via RFs and frequency dispersion of

surface waves. In this chapter, I discuss two signal processing methods that are commonly applied

in RF estimation: water-level deconvolution and iterative-time domain (ITD) deconvolution. While

there are other methods to isolate converted waves, these methods are ideal for their simplicity and

ability to be combined to address absolute velocity and seismic boundary depths. In addition, I

introduce SWD curves that are used to provide additional constraints on earth structure.

3.1.1 Waves and Conversions

Waves travel through the interior of earth as body waves and along its free surface as surface

waves. Body waves propagate through the earth with particle motions in two directions: along the

direction of propagation (P waves) and perpendicular to propagation (S waves). The P waves, or

primary waves, are the fastest body wave, composed of compression-dilatation motion and some

shearing. The S waves, or secondary waves, travel through the earth with pure shear motion.

The S waves exhibit two polarizations of particle motion: within the vertical plane (SV)

and the horizontal plane (SH). In media that behave identically in every direction (isotropic me-

dia), P waves are coupled with SV waves and SH waves propagate separate from the P-SV sys-

tem (Langston, 1977). When media exhibit directional dependence (e.g., the presence of aligned

olivine crystals or a dipping boundary), this assumption is violated, and SH waves are introduced
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into the P-SV system (Langston, 1977). Anisotropic effects are minor for P waves and more

aligned with the direction of propagation than anisotropic effects on S waves (Crampin et al.,

1982). I focus my discussion on P and SV waves for the remainder of this thesis, but discuss

complications arising from anisotropy and lateral heterogeneity throughout.

When P and SV waves encounter seismic boundaries (e.g., changes in density and/or velocity)

in the earth, their energy is partitioned into reflections, transmissions and conversions to other

wave types. In particular, P waves can convert to SV-waves and vice versa. Seismic stations record

three orthogonal components of motion and can be rotated to the radial (R), transverse (T), and

vertical (Z) components. Rotation into this (R, T, Z) reference system approximately separates the

directions of particle motions of P, SV and SH waves.

Isolation of converted wave energy from source and path effects will produce a waveform

influenced only by structure underlying the receiver. By deconvolving an estimate of the P-wave

source from the radial component of motion, source and path effects are removed. The direct

P-wave arrival acts as a proxy for the source-time function and includes path effects and the

instrument response (Langston, 1977). Knowledge about an effective source-time function (eSTF)

is generally not available independently. This issue can be overcome by making the assumption

that the three components of a seismogram separate P and SV particle motions reasonably well.

In the case of (R, T, Z) components, the direct P-wave signal is predominantly recorded on the

vertical (Z) component, when the teleseismic P-wave incidence angle is nearly vertical below the

station. Note that no conversions are produced when the incidence angle is purely vertical with

respect to a horizontal seismic discontinuity.

Seismic recordings of earthquakes with epicentral distances between 30–100◦ from the receiver

(teleseismic events) can be used to observe P-wave to SV-wave (Ps) conversions in the earth, as

schematically described in Figure 3.1. Events closer than 30◦ may have significant SV energy on

the vertical component of the recordings and arrive at too shallow incidence angle, so that crustal

effects will complicate the signal and the isolation of the P-wave energy. Events further than 100◦
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will diffract at the core-mantle boundary, adding significant complexity to the waveform. Such

complexities to the signal make the removal of the eSTF more difficult, so only teleseismic events

are employed in RF estimation.

Figure 3.1: Schematic representation of earthquake distances desired in RF calculations after
Schneider et al. (2014). Earthquakes between 30◦ and 90◦ epicentral distance are ideal in the
RF estimation process, as rays have near-vertical incidence beneath the station. Earthquakes
originating at < 30◦ distance will have too much SV-energy on the vertical component for RF
analysis. Earthquakes originating from 90◦ distance can diffract at the core-mantle boundary,
complicating the P waveform and RF analysis.

As schematically represented in Figure 3.2, the direct P wave is the first arrival in P-RFs,

followed by both primary conversions and multiples. Note that Figure 3.2 does not show other

P-wave phases, such as PmP, because these are generally removed by RF processing described

below. The observed particle motion at the surface is described as

ui(x, t) = S(t)∗ Iin(x, t;p⊥), (3.1)

where ui is the observed displacement in spatial direction i at location x and time t, S(t) is the

eSTF, and ∗ represents convolution (Bostock, 2007) . Importantly, Iin is a plane wave impulse

response function for the receiver-side structure, where the plane wave is assumed to be incident

from below (upgoing). The dependence of Iin on horizontal slowness p⊥ is required to account

for various incidence angles due to considering earthquakes at various epicentral distances and

depths (Bostock, 2007).

The impulse response in eq. (3.1) for the receiver-side structure is the desired quantity to be

isolated to study structure beneath the station. Therefore, the goal is to remove the eSTF, which
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Figure 3.2: (a) Conversions and multiples of P and SV waves from a velocity contrast h. (b)
Schematic seismic recording of the conversions arriving at the surface. Modified from Ammon
(1991).

combines the source and path effects on the incident wave from the seismogram.

3.1.2 Rotation

Seismogram rotation into the (R, T, Z) coordinate system approximately separates components

with P-, SV- and SH- energy. The radial component is aligned with the back-azimuth (BAZ)

obtained from earthquake catalogues. With this information, the rotation is applied by matrix

multiplication 
Z

R

T

=


1 0 0

0 cosθ sinθ

0 −sinθ cosθ




Z

N

E

 ,

where Z, N and E denote the vertical, north and east components of the seismogram, and θ is the

BAZ angle.

While the vertical component generally contains S-wave motion for obliquely incident waves,

using events with at teleseismic distances justifies the assumption that P-wave energy is largely

confined to the vertical component. More advanced methods employ rotation to (P, SV, SH)

coordinates and account for free surface effects (Kennett and Engdahl, 1991; Bostock, 1998).
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Figure 3.3: Schematic representation of (a) conversions BAZ angle and rotation into (b) (R, T,
Z) and (c) (P, SV, SH) coordinate systems. Red star represents the earthquake, the black box
represents the seismometer from above, and the black triangle represents the seismometer from the
side. N and E coordinates are shown by black arrows, R and T and Z components by blue dashed
arrows, and P and SV components with red dashed arrows.

However, this rotation requires knowledge of surface Vp and Vs, density ρ and slowness (p =

1/Vp). I elect to remain in (R, T, Z) coordinates in order to avoid the introduction of unnecessary

parameters.

In the presence of dipping or anisotropic structure, direct and converted phases exhibit ampli-

tude and arrival time variability with respect to BAZ and slowness on the radial and transverse

components (e.g., Langston, 1977; Cassidy, 1992; Frederiksen and Bostock, 2000). A simple

model showing these effects of a dipping layer on amplitude and arrival time is shown in Ap-

pendix A. In the presence of a dipping layer, P-wave amplitudes vary as a function of BAZ, so that

P waves travelling up-dip generate the largest and latest Ps arrivals. Conversely, waves travelling

down-dip generate the earliest, smallest arrivals. The direct P wave in the radial receiver function

also exhibits azimuthal dependence, which is most pronounced for steeply dipping interfaces (e.g.,

dipping more than 30◦). Therefore, normalizing to unit amplitudes neglects this information.

Moreover, dipping layers deflect P and SV waves and introduces a transverse component of ground

motion to the R-Z plane (Langston, 1977). Similar azimuthal variation is exhibited in the presence

of some forms of anisotropy. Considering this directional dependence, RFs are stacked within a
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BAZ window. RFs are stacked from a small corridor of one direction to reduce distortion of RF

features from BAZ-dependent conversion arrivals.

In the next subsections, I discuss two methods of eSTF removal: water-level deconvolution and

ITD.

3.1.3 Water-level Deconvolution

As discussed, RF estimation assumes the Z component of a seismogram is a good approximation

of a P-wave eSTF and the R component is assumed to contain both P-wave energy and converted

S-wave energy. Isolating S wave arrivals on the radial component is done by removing P-wave

eSTF via deconvolution.

In general, RF deconvolution is achieved by dividing the radial frequency spectra R̂ by the

vertical spectra Ẑ

H(ω) =
R̂(ω)

Ẑ(ω)
, (3.2)

where H is the Fourier transform of the receiver-function estimate, and ω is circular frequency.

This process involves division, which means instability issues arise when Ẑ becomes small. This is

particularly problematic when signals contain noise. Non-random signal generated noise cannot be

addressed in water-level deconvolution, but the random fluctuations can be addressed by avoiding

small numbers altogether. One way to do so is by including a water-level in the denomina-

tor (Langston, 1977).

Water-level stabilization is achieved by

H(ω) =
R(ω)Z∗(ω)

φ(ω)
G(ω), (3.3)

where Z∗(ω) denotes the complex conjugate of Z(ω), G is a lowpass filter, and

φ(ω) = max{Z(ω)Z∗(ω),c∗max{Z(ω)Z∗(ω)}}. (3.4)

In eq. (3.4), c is the water-level, a constant that determines the minimum amplitude in the denom-

inator of H (Ammon et al., 1990). The water-level removes frequencies for which the vertical
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component has small amplitudes, which can lead to instabilities during division. Ideally, the

smallest water-level that produces acceptable noise levels in the receiver function is chosen, but

must be determined through trial-and-error. Water-level selection is dependent on noise, so it may

not be consistent among all stations, thus introducing subjectivity in RF estimation.

The filter G is typically chosen as a low-pass Gaussian filter to reduce high-frequency noise

with

G(ω) = ξ exp(
−ω2

4a2 ), (3.5)

where the constant ξ normalizes the filter to unit area and a controls the filter width. The filter

gain is unity, and the Fourier transform of a Gaussian is also Gaussian. The mean of G is chosen

to be zero and this filter acts as a low-pass filter. As a general rule, the width of the Gaussian

pulse in the time domain is ∼ 5/
√

3a (Ammon, 1991). Choosing the filter width is subjective

and controls which frequencies are contained in each RF. Layer thickness resolution is another

consideration when selecting a Gaussian filter, because higher Gaussian filter values, such as a = 5

resolve thin layers of 2–3 km and lower Gaussian filter values, such as a∼ 1, successfully resolve

thicker layers≥ 10 km (Cassidy, 1992). For resolution of layers on a lithosphere scale, a Gaussian

filter value of a = 1 reasonably retains desired information from waveforms in the deconvolution

process (Langston, 1979; Cassidy, 1992).

3.1.4 Iterative Time-domain Deconvolution

Water-level deconvolution is applied in the frequency domain, so it can be highly susceptible to

instabilities arising from noise. Deconvolution is an inverse problem and it can also be solved

in the time domain by applying linear inverse theory (Menke, 2012). While sufficient signal-to-

noise ratios and azimuthal coverage lead to similar RFs between different methods, time-domain

methods can be advantageous for noisy data (Ligorria and Ammon, 1999). However, with poor

signal-to-noise ratios, inadequate azimuthal coverage or short deployments, the chosen RF method

becomes more critical (Ligorria and Ammon, 1999).
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The ITD deconvolution method was first applied in earthquake source studies (Kickuchi and

Kanamori, 1982) and later employed to construct RFs via summation of Gaussian pulses (Ligorria

and Ammon, 1999). The ITD method applies the least-squares minimization between the observed

horizontal seismogram and predicted signal with a desired misfit tolerance to determine the number

of Gaussian pulses utilized to compute a RF. Pulse widths are given by the Gaussian filter defined

as for water-level deconvolution. The Gaussian pulses are convolved with an impulse response

function for the receiver-side structure. While this process is computationally less efficient than

water-level deconvolution, it is more stable for noisy data (Ligorria and Ammon, 1999). Moreover,

the quality of the RF is quantified by a misfit value, which can be used to decide which RFs to

include in a stack.

The ITD convolution process begins with the cross-correlation of the vertical component with

the radial component. This cross-correlation estimates the lag of the first and largest spike in the

RF. The spike amplitude is then estimated (Kickuchi and Kanamori, 1982) and convolved with

the vertical component seismogram. The resulting waveform is then subtracted from the radial

component seismogram. This process is repeated to estimate the other spikes and amplitudes in

the seismogram. Misfit between the convolved estimate and the radial component seismogram

is calculated at each step, and the steps are repeated to estimate other spike lags and amplitudes.

Additional spikes in the RF should reduce the misfit between the vertical and RF convolution of the

radial component seismogram. Iteration halts when the reduction in misfit with additional spikes

becomes insignificant, which is determined by a subjective misfit tolerance.

Scaling differences between water-level and ITD deconvolution exist due to different normal-

ization conventions. Therefore, it is crucial to scale the RFs before interpreting amplitudes. For

a RF with a Gaussian scale parameter of 1, the RF from ITD deconvolution must be normalized

by 0.57 to retain a unit-area pulse and be consistent with water-level deconvolution (Ammon,

1991; Ligorria and Ammon, 1999). This normalization is particularly vital in inversion. For

computational efficiency, the synthetic seismograms produced by RAYSUM (Frederiksen and Bo-
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stock, 2000) are processed via water-level deconvolution to produce RFs. Note that deconvolution

instability is not a concern for noise-free predictions.

3.1.5 Surface-Wave Dispersion Data

Discussion of seismic waves thus far has been limited to body waves, but surface waves are

also valuable in inferring Vs structure. Surface waves with different periods travel at different

velocities, a phenomenon referred to as surface-wave dispersion (SWD). SWD data are sensitive

to Vs averages, and provide information about absolute Vs values. RF data resolve discontinuities

but lack sensitivity to absolute values and SWD data resolve absolute velocities but lack sensitivity

to discontinuities. Combining both data in joint inversion provides complementary information to

better resolve earth structure (Juliá et al., 2000).

The separation of frequencies results in signal that can be described in terms of individual

phases or an overall wave packet, where there is destructive interference between the two waves.

Phase velocity is defined as the velocity at which the phase of a single frequency component of

the wave propagates. Group velocity is the velocity at which the overall shape of the envelope

of the wave packet propagates. Generally, phase velocity is greater than group velocity. Longer

wavelengths penetrate deeper into the earth and therefore are more sensitive to larger Vs, assuming

Vs increases with depth.

Surface-waves recorded travelling along the surface of the earth are either Rayleigh waves,

which have motion in the vertical and radial direction, or Love waves, which are horizontally

polarized. For the purposes of this thesis, I limit my discussion to Rayleigh waves, as these

waves are caused by the P/SV system. Love waves exist within the transversely-polarized SH

system, and are, therefore, sensitive to anisotropic effects, which makes inferring isotropic Vs

structure challenging. Both group and phase velocities can also be used to estimate Vs structure,

and combining phase and group velocities for different period ranges can successfully be applied in

joint inversion. For the purposes of this thesis, inverting dispersion from one velocity is sufficient,

because both velocities are sampled across the same range of periods and inverting both will not
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add any information. Therefore, I focus my discussion on utilizing phase velocities.

3.2 Joint Bayesian Inference

Estimating Vs structure from RF and SWD data requires solving an inverse problem. Unlike the

forward problem, where a unique and stable solution always exists, the inverse problem does

not always have a single solution. In fact, there can be an infinite number of solutions (non-

uniqueness), and small changes in data can lead to large model changes (unstable).

Instability in the inverse problem is more severe for ill-posed and highly non-linear problems.

Small changes in the data, such as the presence of noise or data errors, can lead to large changes

in the model. Data errors arise from measurement and theory errors. Measurement errors are easy

to quantify and generally small, but theory errors are more difficult to quantify. Theory errors can

come from multiple sources, such as simplified model parameterization or idealized physics of the

forward problem.

In this study, I assume zero-mean Gaussian error distributions, so that Gaussian errors are sym-

metric around zero. Data can be biased, but biases can often be removed during signal processing.

According to the central limit theorem, random noise from multiple sources of comparable size

can be approximated by Gaussian distributions, regardless of individual source distributions (e.g.,

Blum et al., 1963; Rényi, 1963).

Classical linear inverse theory is based on deterministic statistics, where there is one true

model, and the problem is linear or can be linearized, meaning it obeys superposition and scaling.

Alternatively, the inverse problem can be solved by a Bayesian approach, where model parameters

are considered as random variables to be described probabilistically. Classical linear inversion can

be used for problems that are at most weakly non-linear, whereas Bayesian inference can be applied

to both linear and fully non-linear problems and provides intrinsic uncertainty quantification.

The joint inversion of RF and SWD data is an inherently non-unique, strongly non-linear

problem often affected by subjective choices in the starting model when linearization is applied.
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Linearization is typically based on over-parametrizing the Earth model with many layers of fixed

thickness and then applying regularized or damped methods to infer velocities. Treating layer

thicknesses as unknowns causes problems for linearization approaches due to significant nonlin-

earity.

However, computationally expensive non-linear methods can be applied to solve these issues.

To address high computational cost, models are typically under-parametrized, where velocities and

thicknesses for a few layers inferred. Under-parametrized models have the limitation of potentially

missing important Earth features, under-estimating uncertainty, and relying on subjective choice

with respect to model parametrization. Formulating the inverse as trans-dimensional treats the

number of unknowns as a parameter to be inverted for (Dettmer et al., 2010). Bayesian inference

with RF and SWD data allows observed data to determine model parameterization and reduces the

effects of subjective prior choices. Bayesian inference is naturally parsimonious, preferring simpler

models with fewer layers over more complex models (Bodin et al., 2012). This is consistent with

Occam’s razor, stating that a hypothesis or model should be as simple as possible.

In this section, I discuss the application of Bayesian inference to the joint inversion of RF and

SWD data. First, I discuss how the model is parameterized, the background model, and prior

bounds. I then examine Bayes’ rule and how to efficiently sample the model space. Then, I discuss

the treatment of data noise and uncertainty. Finally, I discuss how a single model is chosen, and

uncertainty is quantified.

3.2.1 Bayes’ Rule

The PPD of the model parameters m given the observed data d is given by Bayes’ Rule

P(m|d) = P(d|m)P(m)

P(d)
, (3.6)

where P(d|m) data uncertainty distribution, quantifying the probability that a particular set of

parameters gave rise to the data. The prior probability, P(m), represents independent information

about the model. The normalizing constant, P(d), is often referred to as Bayesian evidence or
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marginal likelihood and provides model selection (Malinverno, 2000; Dettmer et al., 2009).

The Bayesian evidence, the denominator in eq. (3.6), can be interpreted as a likelihood of the

model parameterization, a critical part of Bayesian model selection (Sambridge et al., 2006). The

evidence normalizes the PPD and can be expressed as an integral of the likelihood times the prior

over the model space,

P(d) =
∫

P(d|m)P(m)dm. (3.7)

The Bayesian evidence is not directly a function of model parameters, making direct estimation

numerically challenging for high-dimensional, non-linear problems such as ours. While important,

the un-normalized PPD is sufficient for a given model, due to the computational challenges it

poses (Sambridge et al., 2006).

A trans-dimensional formulation incorporates the number of unknowns as an unknown that

is integrated over, so that the resulting posterior distribution spans multiples spaces of different

dimensions. By treating the problem as trans-dimensional, the posterior includes the uncertainty

due to the limited knowledge of the model. The eq. (3.6) can be written as a Bayesian hierarchical

model to include a parameter k,

P(k,mk|d) ∝ P(k)P(d|k,mk)P(mk|k), (3.8)

where k is an index parameter of a single model that spans multi-dimensional spaces (Green, 1995;

Dettmer et al., 2010). In eq. (3.8), P(k) is the prior over K models to be considered and (k,mk) are

the parameters of the inversion for the trans-dimensional case of dimension Mk.

Observed data are fixed, which means P(d|m) may be interpreted as the likelihood of m,

L(m). Formulating the likelihood function requires a distribution assumption about residual-error

statistics. We assume Gaussian distributed random errors, so that residuals are the difference of

prediction and observation (ri = di−di(m), where di is the data vector of the data set and i indexes

the number of S̃ data sets) . This leads to a likelihood function described as,

L(m) =
S̃

∏
i=1

1√
(2π)NiCdi

exp
(
− 1

2
rT

i C−1
di

ri

)
, (3.9)
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where Ni are the number of data, and Cdi is the covariance matrix for the data set. The covariance

matrix describes dependency of noise. Diagonal entries on the matrix are noise variances, and off-

diagonal elements are co-variances. Error dependence has been shown to be significant for both

RF (Bodin et al., 2012) and SWD data (Dettmer et al., 2012).

For the purposes of this study, S includes P-RF and SWD data, but can be used on any data

with a positive definite Cdi with simplifying assumptions. Data sets are weighted appropriately by

errors on data, so weighting does not require subjective specification.

The Metropolis-Hastings-Green (MHG) algorithm (Metropolis et al., 1953; Hastings, 1970;

Green, 1995) is a Markov chain Monte Carlo (MCMC) algorithm that draws dependent samples

from the posterior by simulating a random walk in the model space, governed by a proposal

probability distribution, Q. The proposal depends only on the current model vector of the parameter

vector. After proposing a candidate model vector (m′), the algorithm must accept or reject the

proposed model vector m′ based on the MH acceptance criterion. If m′ is rejected, the algorithm

records the current model vector again and then proceeds to iterate this process until a candidate

model vector is accepted, in which it becomes the current model vector.

MHG sampling ensures detailed balance, or reversibility, by drawing samples from the PPD of

the Markov Chain, such that

P(m|d)T (m’|m) = P(m′|d)T (m|m′), (3.10)

where T (m’|m) represents the transition probability of m→m′, such that

T (m′|m) = Q(m′|m)α(m′|m), (3.11)

where α is the acceptance probability. Note that proposing models from a distribution Q(m′|m)

depends only on the current model. Satisfying this requirement gives a general expression of the

MH acceptance criterion as

α = min
[

1,
P(m′|d)
P(m|d)

Q(m|m′)
Q(m′|m)

L(m′)
L(m)

|J|
]
, (3.12)
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where |J| is the determinant of the Jacobian matrix of the transformation for m→ m′. While

this term is important when the dimensions of m and m′ are different, the Jacobian term is unity

(|J|= 1) in this implementation (Dosso et al., 2014).

The number of parameters of an appropriate model of the environment is unknown, so MHG

sampling allows jumps between parameter vectors with different numbers of layers. Layers in

a stratified earth model are adjusted by adding new layers (birth steps), removing layers (death

steps), or perturbing existing layers (Geyer and Møller, 1994). New layers are birthed by a process

that splits an existing layer into two new ones by sampling a new interface position from a uniform

proposal. The Vs value for a new layer is sampled from the uniform prior. A death occurs

by randomly deleting an existing interface and assigning a Vs to the merged layer by randomly

selecting values from the previous two layers.

Given that the proposal distributions for fixed-dimension steps is Gaussian (symmetric; e.g.,

Q(m’|m) = Q(m|m’)) and the proposals for changes in dimension are taken from the prior (Dosso

et al., 2014), the acceptance probability for all steps in this implementation simplifies to

α = min
[

1,
L(m’)
L(m)

]
. (3.13)

The acceptance probability always accepts the proposed model if L(m’) ≥ L(m). Proposed

models with L(m’)< L(m) are accepted with finite probability.

A sub-sample of the accepted models are recorded and saved in the algorithms’ ensemble

output. The output from the first part of the chain, the burn-in period, is discarded. Discarding

the burn-in ensures unbiased sampling of the part of the model space supported by observed

data. Once the algorithm undergoes sufficient iterations, this sub-sample will provide a converged

approximation of the PPD.

3.2.2 Model Parameterization and Data Prediction

Data predictions for RFs and SWD requires forward modelling with the Earth model. I assume

the Earth model to consist of homogeneous, isotropic, horizontally stratified layers. As depicted
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Figure 3.4: Schematic representation of the inversion parameterization, where the blue line
represents the model given by the red dots, which represent the Vs perturbations for each layer.
Shear-wave velocity is constrained within the white area, determined by prior bounds around a
velocity reference model (dashed lines). Depths Zmin and Zmax are the minimum and maximum
depth allowed for layer parameters, with each layer interface situated halfway between adjacent
nuclei. No layer node may be placed outside the Vs bounds, the grey-coloured region.
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in Figure 3.4, the model described in terms of a variable number, (k), interfaces that partition

the Earth into layers to some maximum depth, (zmax), of interest. The model parameters can be

expressed as a vector m

m = [k,z,v,κ,w], (3.14)

where k is number interfaces, z are interface positions (depth), v are shear-wave velocities, κ are

Vp/Vs ratios, and w are noise parameters. Noise parameters are discussed further in Section 3.2.4

and Section 3.2.5, standard deviations for RF and SWD noise levels and the empirically-calculated

covariance matrix for RF are incorporated into the noise model parameter, w (Dettmer et al., 2007).

Depth (km) Vs (km/s) Vp/Vs ρ (g/cm2

0 3.20 1.8000 2.6
15 4.00 1.8000 2.6

115 4.200 1.8125 2.6
250 4.55 1.8125 2.6

Table 3.1: Background model used for inversion of observed and simulated data.

While RF and SWD data are predominantly sensitive to changes in Vs, forward modelling

generally requires specification of Vs, Vp and density for isotropic layers. Many studies assume

fixed values for Vs and density (e.g., Bodin et al., 2012). However, fixing these quantities can lead to

erroneously overestimating layering in Vs (Dettmer et al., 2015). Here, I include the Vp/Vs ratio as

unknown and constrain density by Birch’s law (Birch, 1960). This approach avoids subjectivity due

to choosing a specific Vp/Vs or density value and reduces over-parameterization while maintaining

physically meaningful parameter combinations (Dettmer et al., 2015).

Both v and κ are treated as perturbations around a reference model (Table 3.1). This is

significant, because it allows prior bounds to change with depth as long as these remain at equal

width as a function of depth, which is required for the MHG sampling applied. Such constraints

help in excluding improbable models from inversion results. The prior for Vs perturbations is 3

km/s wide and that for κ is 1.0 km wide. Bounds on uniform priors are specified in Table 3.2.

For the complexity model parameter, the number of layers, k, the bounded Poisson distribution
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prior is applied

p(k) = exp−λ λ k

k!
, (3.15)

where λ is a scaling parameter (Green, 1995).

Parameter Lower Bound Upper Bound
Layers 2 30
Depth 0km 250km

Layer Thickness 1.000 –
dVs -1.500 1.500

dVp/Vs -0.050 0.050
RF residual error std. 0.015 0.200

SWD residual error std. 0.010 0.200
RF Ce Scaling 1.000 2.000

Poisson prior on k 3.0 -

Table 3.2: Bounds on parameter prior distributions.

Synthetic seismograms are computed using ray-theoretical modeling of teleseismic waves (RAY-

SUM) (Frederiksen and Bostock, 2000). The predicted RFs are obtained from the synthetic

seismograms by applying water-level deconvolution with a Gaussian filter of 1 and water-level

of 0.0001. Normal-mode solutions are applied to predict SWD data for Rayleigh waves (Saito,

1988).

3.2.3 Parallel Tempering

Convergence on the target distribution (the PPD) is governed by how efficiently the algorithm

samples the high-dimensional regions of the model space. Parallel tempering (PT) accomplishes

this by employing multiple Markov chains in parallel at increasingly tempered (relaxed) distribu-

tions and allowing chains to exchange information (parameter vectors). This process allows the

algorithm to converge in a reasonable time (Geyer, 1991; Dettmer and Dosso, 2012). Rooted in the

analogy of simulated annealing, PT tempers the likelihood function using various temperatures.

As likelihood values are relaxed (Figure 3.5), chains sampling at higher temperatures are allowed

to make larger jumps between models. Low-temperature chains explore more probable regions of

the parameter space, high-temperature chains explore the parameter space more freely, sampling
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outside of local high-likelihood nodes. The algorithm accounts for this by updating each chains’

acceptance probability by a tempering parameter

β =
1

kbτ
, (3.16)

where β is the tempering parameter and kb is Boltzmann’s constant, which is absorbed by τ , the

temperature of the system (Earl and Deem, 2005). The tempering parameter is set between 0 and

1, with at least one chain samples with a β value of 1, which has a distribution identical to the

PPD. Information is exchanged between chains with swapping moves that apply the acceptance

criterion for chain pairs

αPT = min
[

1,
L(x1)

L(xn)

βn−βl
]
, (3.17)

where xl and xn are the randomly selected chains l and n, respectively. Therefore, if β 6= 1,

the likelihood is raised to this factor, reducing the amplitudes of highs and lows. Exchange

moves apply to trans-dimensional models and allow parameter vectors of different dimensions

to be exchanged (Dettmer and Dosso, 2012). This process requires minimal computational effort

and communication between chains, so swapping moves are carried out at the end of each model

proposal iteration. Note that exchange moves are not limited to neighbouring chains with respect

to τ . Rather, performance improves when random pairs may exchange information (Sambridge,

2014)

3.2.4 Inferences from High-dimensional PPDs

Interpretation of the high-dimensional PPD is carried out with marginalization (e.g., Dettmer et al.,

2007)

I =
∫

f (m)p(m|d)dm≈ 1
Q̃

Q̃

∑
i=1

f (mi), (3.18)

where Q̃ is the number of models in the ensemble and f is a specific function applied in PPD

analysis. These integrals leave well-defined interfaces overlapping while smoothing out poorly-

defined interfaces.
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Figure 3.5: Schematic representation of parallel tempering. Here, the blue chain is sampling
at a temperature of 1 in blue, and a higher, unspecified temperature chain is sampling in red. The
proposed model, m, represented by black circles, is trapped in a local maximum in the PPD, so this
chain will keep exploring the space around the local maximum. The warmer temperature chain can
escape the trap and explore the space more freely, and will be able to find the global maximum.
Swapping the chains will allow for the lower-temperature chain to carefully explore the global
maximum once the higher-temperature chain discovers it.

Interpretation of the PPD for a single solution is non-trivial due to the multidimensional nature

of the PPD. Quantification of parameter estimates and uncertainties is done via computing the

maximum a posteriori (MAP) model

m̂ = ArgmaxP(m|d), (3.19)

mean model

m̄ =
∫

m′P(m′|d)dm′, (3.20)

model covariance matrix

C(d) =
∫
(m′− m̄)(m′− m̄)T P(m′|d)dm′, (3.21)

and marginal probability distributions

P(mi|d) =
∫

δ (m′i−mi)P(m′|d)dm′, (3.22)

where δ denotes the Kronecker-delta function.
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With a unimodal, symmetric PPD, the mean and MAP models are identical, but with more

complicated models, there may be no good and simple estimate. No further statistical tests are re-

quired, as MHG sampling produces solutions with an appropriate level of complexity by adjusting

the number of layers of the model (Agostinetti and Malinverno, 2010).

3.2.5 Data Covariance Estimation

Data residuals are interpreted as an approximation of data errors, being some combination of

measurement and theory error. While measurement error is relatively easy to determine, theory

error is inherently troublesome, as the true magnitude is unknown. Theory error strongly affects

the PPD estimate, as uncorrelated noise does occur and neglecting this error can lead to severe

uncertainty underestimation (Dettmer et al., 2007). To avoid dependence of results on an initial

choice, Cd is estimated from residual errors based on the optimization result.

No prior information is available for data-error statistics, so the standard deviation, σi, becomes

a parameter to be included in the inversion. As mentioned earlier, the most commonly applied as-

sumption is that errors are uncorrelated and adhere to a Gaussian distribution. Normal distributions

are used for the prior. Likelihood will not be fixed, but have a broad uncertainty. Given C(d) = σ2I,

where σ is considered a parameter in the inversion, the misfit is described as

log(L(m,σ)) ∝− 1
2σ2 ∑

i
(di−di(m)2)+N logσ . (3.23)

Non-stationary covariance matrices account for variation in noise level throughout the data (Dettmer

et al., 2007; Dettmer and Dosso, 2012). A non-Toeplitz matrix is required for this scaling. The

standard deviation is calculating by scaling by a running-RMS.

σ j =

√√√√ 1
N

j+N/2

∑
k= j−N/2

r2
k . (3.24)

Residuals are scaled with these standard deviations, so that

ni =
σi

r j
, (3.25)
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where ni are used to replace the residuals in the non-Toeplitz matrix of

Cd
jl =C jlσ jσl, (3.26)

which allows non-stationary effects.

The inversion process is then repeated, where the inversion is allowed to scale the computed

non-Toeplitz covariance matrix

Cdi = exp2wi Cei, (3.27)

where Cei are empirical matrices are scaled by factors w, discussed in Section 3.2.2. This parameter

scales non-stationary covariance matrices by from 1 to 2 (Table 3.2) The covariance matrix is

incorporated into the likelihood function

L(m) ∝

S̃

∏
i=1

exp
(
−Niwi−

1
2exp2wi

rT C−1
ei

ri
)
. (3.28)

Parallel tempering is employed to increase efficiency, and because all distributions are considered

to be uniform, the acceptance criterion simplifies to the tempered likelihood ratio.
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4. Field Data

4.1 Station and Event Selection

A map with all of the seismic stations used in this thesis is shown in Figure 4.1. Station selection is

based on the length of the available records and overall data quality based on visual inspection of

signal-to-noise ratios. I select nine stations on the border of Yukon and British Columbia, spanning

the Intermontane terranes and Ancestral North America to the CDF. Station locations and recording

start dates are listed in Table 4.1. The multiple networks that contribute data to this investigation

are CN, Canadian Network (Geological Survey Of Canada, 1989); NY, Yukon-Northwest Seismic

Network (University of Ottawa, 2013); TA, Transportable Array (IRIS Transportable Array, 2003);

and YO, Yukon Observatory (Yukon Geological Survey).

Figure 4.1: Terrane map with locations of seismic stations discussed in this thesis. Abbreviations
for networks are TA, Transportable Array (IRIS Transportable Array, 2003); CN, Canadian Net-
work (Geological Survey Of Canada, 1989); NY, Yukon-Northwest Seismic Network (University
of Ottawa, 2013); YO, Yukon Observatory (Yukon Geological Survey).
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Figure 4.2: Earthquake sampling for station WHY. (a) Map view of the distribution of earthquakes
for WHY. (b) Distance, slowness, and BAZ distribution of earthquakes for WHY. Note the
abundance of RFs between 280–300◦BAZ across all slowness values.

4.2 Data Preparation and RF Estimation

Three-component seismograms are employed for RF processing, and events with magnitudes

between 5.5–7.5 and with epicentral distances between 30–90◦ are selected. A total of 12,152

records from teleseismic events have been selected and processed. Of the total processed events,

over half (6,128 events) were processed for the longest-operating station in the region, WHY.

In section 4.2(a), locations of events for station WHY are shown. Most events are arriving with a

BAZ of 280–300◦ and originate in subduction zones off the coast of Japan.
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RFs are calculated for all available BAZ and slowness values. Seismograms are filtered be-

tween 0.05–1.5 Hz, cut to 70-80 s after the theoretical P-wave arrival computed via AK135 (Ken-

nett and Engdahl, 1991) and tapered with a Hanning window. I use P-to-S wave conversions to

calculate RFs using iterative-time domain deconvolution (Ligorria and Ammon, 1999) with a

Gaussian filter value of 1.

Processed receiver functions are stacked in BAZ and slowness bins to reduce noise. Sufficiently

small BAZ bins are required to satisfy the isotropic assumption in the inversion, so I select RFs

in a BAZ of 20◦. RF variations as a function of BAZ can be used to study lithosphere anisotropy

and dipping layers that produce predictable patterns (e.g., Cassidy, 1992; Frederiksen and Bostock,

2000). RFs vary less as a function of slowness observations compared to BAZ. Because I want to

ensure I retain enough RFs to include in each stack, I stack together all RFs with slownesses up to

0.075 s/km for the BAZ bin.

In addition to BAZ and slowness windowing, I discard RFs where the maximum peak is more

than±1 s from the predicted P-arrival. All events for which the radial or vertical component of the

RF has a maximum amplitude greater than one are discarded. These quality controls are applied

consistently to RFs from all stations, regardless of deployment duration or signal quality. Finally,

RFs with an iterative time-domain deconvolution misfit of > 70% are stacked to enhance signal-

to-noise ratio. For the inversion, the stacks are normalized by a factor of 0.57 (Ammon, 1991), cut

from −2 to 26 s after the predicted P-arrival and tapered with a cosine window.

4.3 Surface-Wave Dispersion Data

The GDM52 global surface-wave model (Ekström, 2011) uses 258 stations to determine SWD

from 3,330 earthquakes. These curves are sampled at periods between 25–250 s to determine

propagation phase velocity anomalies with respect to the PREM reference model (Dziewonski and

Anderson, 1981). Most notably, these data show an increase of Vs in shallow and intermediate

depths from west to east across the transect. Note the modest variability in phase velocity in
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Station Lat. Lon. Started Recording Total No. RFs No. RFs in stack
LIRD 59.40976 -126.09863 2016-06-11 371 21
O30N 60.77040 -136.0906 2016-05-12 884 39
P32M 59.58980 -133.7147 2016-06-02 632 30
P33M 60.21140 -132.8174 2015-10-15 1,091 46
Q32M 58.96010 -132.2691 2016-07-24 491 18
R33M 59.3946 -130.9673 2016-07-21 571 42
TOAD 58.84994 -125.2333 2016-06-13 481 24
WHY 60.65970 -134.8825 1998-01-01 6,128 307
WTLY 60.11326 -128.7961 2013-07-01 1,503 47

Table 4.1: Location, recording start date, total number of RFs computed, and number of RFs
included in inversion stacks for stations discussed in this thesis.

section 4.3 along the transect at periods above 150 s. In contrast, variability at lower periods is

more significant.

It is important to acknowledge that the GDM52 database is inferred on a global scale with a

lateral resolution of ∼ 650 km due to the application of significant smoothing/regularization. In

contrast, available regional SWD data are often noisy and limited to shorter periods than required

to resolve upper-mantle structure (e.g., McLellan et al., 2018). For these reasons, the GDM52

SWD data are better fit for this study as they retain information for the lower crustal and upper

mantle depths desired in this study.

However, the noise levels and high smoothing associated with a global model may not be able

to accurately resolve low velocity layers present regionally (van Heijst et al., 1994). A likely

explanation for the lack of LVZ effects is that the GDM52 data represent a global model that

lacks resolution at the scales important to my study. Without other methods to constrain the SWD

inversion, observation of absolute velocities associated with a LVZ remains a difficult inversion

problem (Killingbeck et al., 2018; Murphy and Egbert, 2019). As a result, observing LVZs with the

discussed MHG inversion algorithm may be challenging. Forward-modeled SWD data produced

by the DISPER80 modelling code (Galetti et al., 2016) are sensitive to decreases in Vs, so that

small velocity perturbations at depth have large data errors. The RFs I observe in this study show

clear evidence for LVZs In SWD data, LVZ are expected to cause a reduction in phase velocity
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with period. However, such reduction is not observed in the GDM52 model (Ekström, 2011).

Figure 4.3: SWD as a function of period for selected stations to illustrate the increase of phase
velocities from west (cooler colours) to east (warmer colours).

Given these shortcomings of inverting SWD data in the presence of an LVZ, only the RF data

will be allowed to constrain Vs at intermediate depths between∼ 50 and 200 km. Figure 4.3 shows

sensitivity kernels for Rayleigh waves from a study across the Pacific Basin (Smith et al., 2004). In

Figure 4.3, Rayleigh velocities with periods of 25 s, 50 s, 100 s, and 150 s are shown as a function

of depth. Periods of 50 s and 100 s have the highest sensitivity between 50-km and 200-km depth.

Sensitivity kernels for periods of 25 s and 150 s show highest sensitivity outside the depth range

of where LVZ is expected. Therefore, I down-sample the data to 10 uniformly spaced data points

with respect to period. Of these, 4 data points are between 20 and 30 s and 6 data points between

150 and 250 s. This resampling aims to reduce the impact of a lack of LVZ information in the

SWD data while still retaining enough information on absolute velocities.
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Figure 4.4: Sensitivity kernels for Rayleigh phase velocities at periods of 25 s, 50 s, 100 s, and
150 s across the Pacific Basin from Smith et al. (2004). Note that while specific sensitivity kernels
vary across studies, SWD sensitivity overall increases with depth as period increases. Because I
aim to reduce the impact of SWD data between 50- and 200-km depth, I retain SWD data with
periods less than 30 s and greater than 150 s.
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5. Results

5.1 Inversion of Simulated Data

This section applies the Bayesian inversion described in Section 3.2 to simulated P-RF data. In

particular, I consider simulations based on station WHY as realistic scenarios to examine LAB

resolution by P-RFs in the presence of multiples and the impact of theory error due to anisotropy,

which is ignored in the inversion but likely present in the Cordillera.

5.1.1 Impact of Moho Multiples on LAB Resolution

Previous studies have documented that the LAB can be challenging to resolve due to a weak

seismic velocity contrast and/or interference with multiples in P-RFs for typical LAB depths.

Although the LAB is notoriously difficult to resolve in cratonic provinces (e.g., Eaton et al., 2009),

the shallow, sharp LABs of recent orogens can often be resolved (e.g., Chen, 2009; Abt et al.,

2010).

I adapt a test from Kind et al. (2012) examining the ability of P-RFs to resolve a LAB-

like discontinuity in the presence of Moho multiples. In the original test, it is concluded that

to observe a LAB with P-RFs, the Moho needs to be deep enough to separate the LAB from

Moho multiples (Kind et al., 2012). Because the Moho is predicted to be at a constant depth

of ∼ 34 km in the NCC and the inversion algorithm applied here accounts for multiples and

non-uniqueness, I carry out a more general test to see how well the LAB-like discontinuity is

resolved at depths between 50 and 110 km. Importantly, the simulation study presented here

applies uncertainty quantification which accounts for the full non-uniqueness in the parameter
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Model Thickness (km) Density (kg/m3) Vp (km/s) Vs (km/s)
1 34 2559 5.414 2.962

16 3189 7.828 4.256
Halfspace 2893 6.886 3.878

2 34 2559 5.414 2.962
36 3189 7.828 4.256

Halfspace 2893 6.886 3.878
3 34 2559 5.414 2.962

56 3189 7.828 4.256
Halfspace 2893 6.886 3.878

4 34 2559 5.414 2.962
76 3189 7.828 4.256

Halfspace 2893 6.886 3.878

Table 5.1: Models parameters to produce simulated data in Section 5.1.1. All models have the
same RAYSUM parameters for each layer, except for the middle layers’ thickness.

space. This is an important distinction from other standard inversion approaches that are limited to

qualitative conclusions.

Radial P-RFs are computed for four models with two interfaces: a Moho at 34-km depth and

LAB between 50- and 110-km depth. The simulated P-RFs for these four models are computed

using RAYSUM (Frederiksen and Bostock, 2000) with the parameters listed in Table 5.1. P-

RFs are contaminated with Gaussian noise of 0.015 and inverted with a lower prior bound of

R-component noise of σRF = 0.015 to ensure the P-RF is not over-fitted. (Explanation of inversion

marginal profile interpretation is outlined schematically in Appendix B.)

Figure 5.1 shows that the Bayesian inversion algorithm is capable of resolving the LAB in all

four models, even in the presence of multiples from the Moho. These results clearly demonstrate

the ability of the algorithm to account for Moho multiples in the inversion and recover all LAB

interfaces in the models by considering the full non-uniqueness of the problem for considered noise

levels. This example also shows an increase of interface depth uncertainty as LAB depth increases

due to the inherent trade-off between depth and velocity in P-RF inversion.
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Figure 5.1: Analysis of simulated data following a test adapted after Kind et al. (2012) to evaluate
the resolution of the LAB interface at various depths. (a) Noisy P-RFs for models with a Moho at
34 km and LAB at 50, 70, 90, and 110 km with the PPD from the inversion shown in colour. The
arrivals from the Moho and LAB discontinuities are fit within the range of P-RF data prediction
from the inversion. (b) The 1D inversion results for the four models. The LAB discontinuity is
well resolved with in terms of interface probability (left panels). Vs The PPD marginal profiles are
shown in the right panels.
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Layer Thickness
(km)

Density
(kg/m3)

Vp
(km/s)

Vs
(km/s)

Anisotropy
(%)

Trend Plunge

1 8 2700 5.50 3.10 - - -
2 27 2800 6.30 3.54 - - -
3 10 3200 8.00 4.40 12 216◦ 5◦

4 Halfspace 3200 7.80 4.30 - - -

Table 5.2: The WHY model from Taryoun et al. (2017) that I employ for simulated data to observe
the effects of modest anisotropy.

5.1.2 Impact of Modest Anisotropy on Inversion Results

Due to the computational cost and data requirements for good azimuthal coverage to resolve

anisotropic parameters from P-RFs, I consider isotropic parametrizations in the inversions of field

data. Resolving anisotropy with trans-dimensional models is still a research frontier (e.g., Bodin et

al., 2016; Agostinetti and Bodin, 2018). This section examines the effect of ignoring anisotropy on

the inversion results. I apply RAYSUM (Frederiksen and Bostock, 2000) to compute radial P-RFs

for an anisotropic earth model. These data are then contaminated with noise and inverted under an

isotropic assumption.

The P-RFs from a small BAZ window are stacked, because inverting for a single direction

will reduce the possibility of anisotropy or dipping layers complicating the inversion results. I

recreate a model by Taryoun et al. (2017) with modest anisotropy for station WHY to determine

how the algorithm behaves under the isotropy assumption. This four-layer model is described by

RAYSUM (Frederiksen and Bostock, 2000) parameters in Table 5.2. Anisotropy of 12% trending

216◦ and plunging 5◦ is introduced in the layer below the Moho and above the half-space.

I obtain a realistic event distribution by randomly sampling 200 events with various BAZ,

distance and slowness values at station WHY (Figure 5.2(a)). The P-RFs are computed for this

distribution of BAZ, distance and slownesses, and 90 P-RFs with suitable quality between 280–

300◦ BAZ are stacked. Zero-mean, Gaussian-distributed noise with a standard deviation of 0.015

is added to the P-RF stack.

The P-RF stack is inverted by applying uniform priors with bounds of ±1.5 km/s around the
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reference model for Vs, ±0.05 around a ratio of 1.8 for Vp/Vs, and between 0 and 250 km for layer

boundaries. For the first phase of the inversion, I allow P-RF noise standard deviations between

0.015 and 0.2 during the hierarchical inversion and the empirically-calculated P-RF matrix to scale

from 1 to 2.

Here, 20 processors are used, with each processor simulating a single Markov chain. The β

values for parallel tempering are distributed geometrically between 1 and ∼ 2000. The algorithm

is run for 140,000+ steps. The first 40,000 steps from the burn-in period are removed, and the

remainder is sub-sampled by a factor of two to retain 55,000 samples. Residuals are calculated

from the MAP model for the remaining samples, which is taken to be the maximum likelihood

model with the most probable number of layers (here 5) in the PPD. A covariance matrix is

calculated for these residuals (Dettmer et al., 2007; Dettmer et al., 2014).

Profile marginals are shown in Figure 5.2(b). The shallow-most layer is inferred to have a

higher Vs than the true model, and the interface probability of the lower bound of the layer is

relatively consistent with the true model. There is an extraneous shallow layer of 4-km depth at

the top of the model space. An intermediate layer between ∼ 4–8-km depth within the shallow-

most layer more closely resembles the true model. While the velocities for the anisotropic layer

and the half-space are over-estimated, the interfaces are relatively well resolved. The anisotropic

layer is resolved as a broader interface probability than the other interfaces.

The range of data predictions produced by the PPD samples for the P-RF is displayed in Fig-

ure 5.2(c). After the Moho conversion, there is also relatively higher uncertainty. This region of

the P-RF between ∼ 5–7 s corresponds to the anisotropic layer, where the algorithm fits an extra

layer.

Marginal profiles and the range of predicted P-RF amplitudes are nevertheless well constrained,

ensuring significant features of the synthetic waveform are reproduced. The marginal distribution

for the covariance matrix scaling is shown in Figure 5.2(d). Note the covariance matrix scaling

was constrained to be > 1 by the prior to avoid data over-fitting.
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Figure 5.2: (a) RAYSUM output of the model parameters (Table 5.2) with BAZ distribution from
WHY employing a random sub-sampling of 200 events. The desired BAZ window is highlighted
in yellow between 280–300◦. (b) Inversion output for the stacked P-RFs from panel (a). True
model parameters shown as a dashed line. Interface probability for model output is shown to the
left, and Vs is on the right. Warmer colours are associated with higher probability. The width of
the coloured portion reflects the uncertainty of the model. (c) Range of data predictions from the
PPD. Observed data are in a dashed black and white line. (d) The scaling factor for the calculated
covariance matrix in the inversion.
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5.2 P-RFs for Individual Stations

This section discusses observations obtained directly from P-RF estimations. Because station

WHY has the longest time record and the most observations, I focus on this station within the

following section and present data for remaining stations in Appendix C.

As discussed in Section 3.1.2, P-RFs may vary extensively with respect to BAZ due to dipping

layers or anisotropy. I examine the effect of these azimuthal variations on the quality of the stack.

From the 6,128 P-RFs computed for station WHY, I select and stack 307 P-RFs associated with a

narrow BAZ window of 280–300◦and slownesses between 0–0.075 s/km. Figure 5.2 shows that

selecting a subset from a small BAZ window still allows for consistent phases to be incorporated

into the stack while reducing directional effects.

As described in section 5.2 for station WHY and Figures C.1-C.8 for remaining stations, P-

RFs are estimated for all BAZ and stacked for BAZ between 280–300◦. The P-RF stacks and

Vs profiles are ordered from west-to-east to visualize the variability of lithosphere-scale features

across the transect. Stations Q32M and P33M have very similar longitudes, so I switch the order

of these two stations, because Q32M is east of the Teslin Fault, whereas P33M is west of the Teslin

Fault.

The P-RF BAZ dependence varies by station, with some stations exhibiting relatively minor

directional dependence, such as station P32M. Other stations, such as WTLY and TOAD, exhibit

strong variations in P-RFs arriving from different directions. Early arrivals exhibit arguably the

most directional dependence, with amplitudes and phases varying strongly between the direct P-

arrival at 0 s and the Moho arrival at ∼ 4 s. Arrivals after the Moho are relatively consistent for

stations west of WTLY compared to the stations east of WTLY. Station TOAD appears to have

the least consistent P-RF arrivals across BAZ, even within the relatively well-sampled BAZ range

of 200–300◦. Given the extensive BAZ variations for all stations, stacking by the selected 280–

300◦ corridor proves important to ensure major conversion and multiple phases in each P-RF are

incorporated into the stack and not effected by BAZ variations.

46



Figure 5.3: (a) BAZ variation plots for all P-RFs computed for station WHY and (b) stacked.
(c) BAZ variation and (d) stacked P-RF for window between 280–300◦BAZ and 0.0–0.55 s/km
slowness.
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Stacked P-RFs across the NCC are shown in Figure 5.2. A positive polarity pulse at ∼

4 s is consistently observed across all stations, presumably from the direct Ps Moho arrival.

This signal is followed by a negative polarity pulse of varying amplitudes at nearly every station

across the Cordillera. Stations WHY and TOAD exhibit smaller P-RF amplitudes after the 4-

s arrival compared to neighbouring stations. Conversions are less coherent across stations after

∼ 10 s and are more challenging to interpret due to interference with Moho reflection multiples.

This emphasizes the importance of a rigorous approach, such as an Bayesian inversion, for the

interpretation of P-RF data in order to distinguish conversions from multiples in later P-RF arrivals.

Figure 5.4: Estimations of P-RFs considered in this thesis across the NCC ordered west-to-east.
The number of P-RFs in each stack are shown below under the stacked P-RFs and listed
in Table 4.1. The locations of stations are listed in Table 4.1 and shown in Figure 4.1.
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5.3 1D Inversion Results

Using the trans-dimensional inversion algorithm, I obtain 1D marginal Vs profiles for all nine

stations across the NCC. The profiles display several prominent crustal and upper mantle features.

As discussed in subsection 3.1.5, SWD data constrains absolute Vs while RF data inversions

constrains velocity discontinuities, with poorer constraints on absolute Vs. By combining the

information from both datasets in the joint inversion, the trade-off between absolute velocities

and layer structure is balanced to produce a reasonable fit to both P-RF and SWD data. The results

for SWD, P-RF, and joint inversion of both datasets for station WHY are shown in Figure 5.5. For

the SWD inversion in Figure 5.5(a), the absolute velocity is inferred for the depth profile, but the

interface probability across depths is low. Interfaces are better resolved in Figure 5.5(b) for the

P-RF inversion, and (c), the joint inversion. While the difference between the P-RF and joint Vs

profiles are more subtle than for the SWD inversion, the uncertainty of Vs for the joint inversion

is reduced and the interface probabilities are sharper. These improvements in uncertainty in Vs

and interface probability for the remaining stations in the joint inversion are show in Appendix D,

Figures D.1 to D.8.

Joint inversion results for the Vs marginal profile, data fits, and parameters are shown for station

WHY in Figure 5.6. Note the resolution of each P-RF feature in the marginal and PPD in panels

(a) and (b). There is relative uncertainty in the depth of the LAB layer, as portrayed by the PPD of

the forward-modelled P-RF in Figure 5.6(b) around 80-km depth or 8 s. While SWD data, shown

in Figure 5.6(c), are not resolved for intermediate depths, the shortest and longest period features

of the SWD data are most accurately modelled, ensuring the incorporation of these velocities into

each the final model. Distribution of the number of layer nodes is described in Figure 5.6(d),

where the median number of nodes is 9. The PPDs for the scaling factor and the SWD standard

deviation are shown in Figure 5.6(e). In Figure 5.6(e), it is important to note that the scaling factor

strongly favours the lower prior bound. The SWD data, on the other hand, favour a low standard

deviation but the peak probability is not at the lower prior bound. This suggests the algorithm is
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Figure 5.5: Inversion of (a) only SWD data, (b) only P-RF data, and (c) joint inversion of P-RF and
SWD data for station WHY. Note how the SWD inversion resolves absolute velocities, compared
the P-RF inversion, which infers interfaces. Joint inversions of both datasets constrain both
parameters relating to interfaces and velocity well compared to either dataset alone.

preferentially fitting P-RF features and allowing higher noise parameters to SWD data.

Marginal 1D profiles, data fits and supporting statistics for all other stations included in Ap-

pendix D in Figures D.9 to D.15. High variability of the number of layer nodes in the PPD

between 6–15 across stations confirms that ad-hoc choices on the number of layers nodes would

be undesirable.

Major P-RF features for all stations are reasonably well fit by the range of data predictions. For

stations where there is a minimal decrease in velocity at intermediate depths in the marginal profile

(e.g., TOAD, Figure D.16), observed SWD curves are well fit compared to stations with large Vs

decreases (e.g., R33M, Figure D.13). While stations with major Vs reduction exhibit poorer fit of

short periods of SWD data, all stations are able to fit longer period features reasonably well. By

fitting both small and large SWD periods, the algorithm is able to constrain Vs to some degree

for the minimum and maximum bounds of the model space. Most stations exhibit reasonable

uncertainty, indicated by the width of the profile marginal, except for station P32M, which has a
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Figure 5.6: (a) Profile marginal plot for WHY; (b) Predicted and observed P-RF data; (c) Predicted
and observed SWD data; (d) Marginal of number of layer nodes; (e) Marginals for the scaling
factor for R-component and standard deviation for SWD data.
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notably thin width along the profile marginal. Such little uncertainty may result from incompatible

SWD and RF data for the station or a RF inversion with multiple reasonable solutions (Figure D.2).

Both SWD and RF data are reasonably fit as hyperparameters, so it is possible that one dataset

is driving the inversion. Overall, note that uncertainties estimated do not require results to be

consistent between stations, meaning that similarities arise from the data of each individual station.

Crustal velocities across the NCC generally fall within a range of 3–4 km/s, where most stations

infer layer of ∼ 3 km/s in the upper crust and a layer of ∼ 4 km/s directly above the Moho.

Stations WTLY and Q32M both estimate higher velocities than the other stations, where station

WTLY has a shallow layer of ∼ 4.3 km/s and station Q32M has a lower crustal velocity layer of

∼ 4.2km/s. The surficial geology at station WTLY cannot explain the high velocities, as ∼ 4.3

km/s is exceptionally fast for Vs at shallow depths and the station sits on a sedimentary rock type.

Both stations WTLY and Q32M have relatively poor data range prediction fit to observed SWD

data at low periods, so shallow Vs may likely be over-estimated.

Values of Vs for the mantle are observed to vary between ∼ 3.0 and ∼ 4.7 km/s above 200-km

depth. At depths of 250 km, which is the lower bound of the profile, marginal profiles are generally

wider with Vs around ∼ 5 km/s. Nearly all stations decrease in Vs above 125-km depth, except for

station TOAD, which exhibits a Vs decrease at ∼ 200-km depth.
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6. Discussion

This chapter compares my results to previous seismic, petrologic, and heat flow studies. My proba-

bilistic 1D profiles are represented as a 2D cross-section across the NCC to observe variability in Vs

structure Figure 6.1. I interpret the locations for the Moho and LAB and observe a pervasive LVZ

spanning the NCC. My results present strong evidence of the existence of pervasive partial melt

in the LVZ throughout the NCC. Partial melt fractions have an upper limit of 3.5% but are more

likely < 2%. Finally, I discuss the implications of the LVZ and heterogeneous LAB on existing

tectonic models, and conclude that the heterogeneity of the lithosphere is a crucial feature to be

included in future tectonic models.

6.1 Observations of the Moho, LAB and a LVZ

The inversion results for the west-to-east profile (Figure 6.1) shows the Moho discontinuity depth

estimates across the NCC at ∼ 31-km depth. Station TOAD exhibits a unique Moho boundary at

∼ 31 km that does not necessarily correspond to a jump in velocity. Nevertheless, this feature at

31-km depth is interpreted as the Moho, as it is consistent with the other Moho estimations in the

profile. Station locations generally exhibit a diffuse Moho, which is interpreted as an increase in

Vs between 25- to 45-km depth. This estimate of a flat Moho at 31-km depth is consistent with

previous LITHOPROBE seismic refraction and reflection studies (e.g., Cook et al., 2004; Clowes

et al., 2005) and RF studies (e.g., Taryoun et al., 2017).

The LAB depths are also a significant feature in the profile-marginal results in Figure 6.1. For

the purposes of this study, I define the LAB as the contrast between the high-velocity lid and a
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decrease in velocity directly beneath. As discussed in Section 2.3, this decrease in Vs under a

high-velocity lid is the seismic observation likely due to the presence of partial melt underneath

the LAB (Eaton et al., 2009; Schmerr, 2012,e.g.,).

I observe a LAB between depths of∼ 80 km for O30N, WHY, and P32M,∼ 100 km for Q32M,

P33M and R33M, ∼ 70 km for WTLY and LIRD, and ∼175 km for TOAD. Compared to the flat,

homogeneous Moho, the LAB is a laterally heterogeneous feature across the NCC. LAB depths

inferred in this study range from 75–100 km and are deeper than previous RF studies (e.g., Audet

et al., 2019) and petrologic studies (e.g., Harder and Russell, 2006; Francis et al., 2010; Batir and

Blackwell, 2019) suggest by 10-50 km. Geothermal modelling of the NCC shows a LAB of 75- to

100-km depth corresponds to Moho temperatures of 800◦ C, resulting in a deeper geotherm than

previous seismic scattering and RF data suggest (Langmuir et al., 2006; Audet et al., 2019).

Beneath the LAB, there is a pervasive LVZ with Vs < 4 km/s in the upper mantle for most

stations. The lowest absolute Vs is observed at station O30N with Vs of ∼ 3.0 km/s at 100-km

depth. However, these estimates are associated with significant uncertainty with 95% credibility

interval widths of 400 m/s. In addition, velocities may be under-estimated due to the lack of

reliable SWD data with sensitivity to these depths. The thickness of the LVZ is laterally variable,

ranging from ∼ 10 km at station WHY to ∼ 120 km at station WTLY. The diffusivity of the lower

bound of the LVZ is also variable across stations, but most exhibit a gradual increase to ∼ 5 km/s.

This gradual return from LVZ velocities to typical upper-mantle velocities may be because of the

lack of distinct seismic discontinuities underneath the LVZ.

When discussing velocity reductions, it is common practice to consider perturbations from a

1D reference model. Earth models change with respect to the tectonic regime and the choice of

reference model can impact inferred Vs as a percentage reduction. For example, in North America

at 100-km depth, a reference model in the tectonically active area (TNA) has a Vs of 4.29 km/s,

but in the tectonically stable region (SNA), Vs is 4.775 km/s (Grand and Helmberger, 1984). When

calculating Vs reduction percentages, I use the TNA model (Grand and Helmberger, 1984) for a
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1D reference model (Appendix E).

My observations of the LVZ mostly agree with previous works that showed similar magnitudes

in negative velocity perturbations (e.g., Mercier et al., 2009; Schaeffer and Lebedev, 2014; Za-

porozan et al., 2018). Similarly extreme LVZs with Vs to ∼ 3.6 km/s are observed in the Hawaiian

plume (Rychert et al., 2013) and the African Rift (Armitage et al., 2015). While less extreme than

the observations in this study, absolute Vs of ∼ 4.1 km/s are inferred in regions of asthenosphere

upwelling, such as southern California (e.g., Yang and Forsyth, 2006), and the Hangai Dome

in Mongolia (e.g., Chen et al., 2015). Overall, the magnitude of Vs reductions observed in this

study are high and may be affected by a lack of SWD information sensitive to the LVZ depths.

However, my observation of a LVZ agrees with previous studies and I present strong evidence for

the pervasive nature of this feature and its depth. In particular, the lateral extent of the LVZ in

the NCC has not previously been resolved (e.g., Frederiksen et al., 1998; Schaeffer and Bostock,

2010). Notably, the LVZ in this study extends east of the Tintina Fault, which has previously been

inferred as a boundary between two distinct lithospheres and the eastern edge of the NCVP (e.g.,

Edwards and Russell, 2000; Abraham et al., 2001; Dalton et al., 2011; McLellan et al., 2018).

6.1.1 Reductions of Shear-wave Velocity

Lateral variations to observed Vs arise from changes in characteristics of the upper mantle, major-

element composition, water content, temperature or the presence of melt. A single Vs observation

cannot determine a single temperature and composition, because these thermochemical parame-

ters have multiple trade-offs (e.g., Takei, 2017; Cobden et al., 2018). Therefore, I consider Vs

reductions to arise from the synergistic combination of multiple Vs-reducing mechanisms.

The composition of the mantle can influence Vs, primarily with variations of the magnesium

number (Mg# = Mg/(Mg+Fe)) in mantle peridotite. This number corresponds to the ratio of a

sample between Mg and Fe end-members of mantle minerals, which is primarily olivine and

pyroxene (e.g., Green and Ringwood, 1963; Francis, 1987). Mantle enriched in Fe-content has

lower seismic velocities compared to Mg-rich, Fe-depleted mantle. Depleted mantle can become
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refertilized by silicate melts from the asthenosphere. In the case of refertilization, the content of

the element (Fe) increases, and makes the lithosphere more fertile, thus decreasing Vs. Xenolith

peridotites above the detected LVZ in the NCVP are bimodal, composed primarily of a fertile

spinel lherzolite and depleted harzburgite (e.g., Shi et al., 1998; Francis et al., 2010). Fertile

lherzolite xenoliths with similar compositions are prevalent across the NCC, unlike the depleted

harzburgites, which are present in volcanic flows above the slab window. Bulk xenolith analyses

for non-anomalous xenoliths in the NCC indicate Mg# that range between 0.893–0.913, which is

lower than the standard range for the shallow mantle ∼ 91 <Mg#<∼ 93 (Francis, 1987; Boyd,

1989; Bernstein et al., 2007). Even considering a large Mg# range of 86 and 94, wave velocities

only vary by ∼ 2.5% at the depths I am interested in (Lee, 2003). Velocity estimation for the most

fertile lherzolite and most depleted harzburgite cannot account for the range in teleseismically

detected velocities (Shi et al., 1998; Frederiksen et al., 1998).

The presence of water can effect Vs through several mechanisms, such as directly through the

change in bond strength or indirectly through the enhancement of anelastic relaxation (Karato,

1995). The loss of energy of seismic waves (anelasticity), described by the seismic quality-

factor, Q̂, is often ignored when making simplifying assumptions, but becomes important in the

asthenosphere, where Q̂ is low (e.g., Karato, 1993, 1995). Reduction of seismic velocities (Karato,

1993)

δV/V =−(1/2)cot(πα̂/2)Q̂−1(ω), (6.1)

where δV is the velocity reduction due to anelasticity and α̂ is a parameter to describe the fre-

quency dependence of (Karato, 1995).

Q̂(ω) ∝ (ω)α̂ . (6.2)

Considering a range of 0.1 < α̂ < 0.3 and 50 < Q̂ < 100, δV/V ∼−(1–6%), which suggests that

variations in Q̂ or α̂ will result in significant changes in Vs (Karato, 1995). Note that the precise

value of α̂ is very uncertain, with most studies placing it in the range of 0.1–0.4 (e.g., Jackson et

al., 2002; Fau, 2005; Romanowicz and Mitchell, 2007; Cobden et al., 2018), but is likely in itself
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frequency dependent, and may even become negative at long periods (Lekić et al., 2009). Also,

note that when the algorithm uses RAYSYM (Frederiksen and Bostock, 2000), it ignores anelastic

effects, and, therefore, results may be biased.

Significantly modified seismic properties in the presence of water have been observed at low

frequencies in exploratory studies (Aizawa et al., 2008), but recent laboratory studies indicate that

reduced velocities arise from prevailing redox conditions and the presence of melt, rather than

the presence of fluids or hydrated defects (Cline II et al., 2018). Therefore, oxygen fugacity,

or the measure of oxygen available to freely react with elements (Fe or C), may significantly

reduce Vs (Cline II et al., 2018). However, Alligator Lake lherzolites, a NCVP volcanic complex

located ∼ 30 km southwest of Whitehorse, indicate relatively low oxygen fugacity (−1.8 to −0.5

δ fayalite-magnetite-quartz, FMQ), which is similar to oxygen fugacities in the southern Canadian

cordillera (−1.5 to −0.5 δ FMQ), and the two lithospheric regions are assumed to be genetically

related (Canil et al., 1990; Kilgore et al., 2018). Such values indicate that the redox conditions of

the NCC would not significantly reduce Vs (Kilgore et al., 2018; Cline II et al., 2018).

Attenuation and Vs in the NCC are more likely influenced by the presence of partial melt. When

considering a dry (COH = 50H/106Si), damp (COH = 1,000H/106Si), and wet mantle (COH =

3,000H/106Si) water content as a parameter in the anelasticity correction with α̂ = 0.27, Vs< 4.0

km/s at 132-km depth can only be modelled via melting for mantle compositions with melt (Fau,

2005; Cobden et al., 2018). Dry, damp and wet mantle require crustal compositions to reach

Vs< 4.0 km/s, which would be unreasonable to expect at 132-km depth. Therefore, I consider

partial melt the primary Vs reducing mechanism, but note that high temperatures also contribute in

inducing melt and reducing Vs.

There are multiple competing models to relate Vs reductions to the amount of melt present.

Models considering Vs reductions address the frequency-dependence of Vs, and account for the

time scale on which forces are accommodated in microstructures. This time-dependence can be

characterized as an instantaneous response (unrelaxed state) or the long-term equilibrium (relaxed

58



state). In a modelling study from Hammond and Humphreys (2000b), the unrelaxed and relaxed

state are considered as cases in which fluid flow between pores has not yet diminished and when

pore pressure is in equilibrium, respectively. Anelastic parameters are considered for the relaxed

state in this model, because Hammond and Humphreys (2000a) deem it more reasonable for

seismic frequencies. Models arising from ultrasonic experimental studies determine a relationship

between Vs and melt fractions, and determine Vs relationships for seismic frequencies by adjusting

α̂ (Chantel et al., 2016).

I consider Vs reductions based on finite difference modelling of melt geometries, including

tubules, ellipsoids and random cuspates for melt fractions < 1% and includes the presence of films

for melt fractions > 1% (Hammond and Humphreys, 2000b). In partially molten upper mantle

containing 1% melt, Vs decreases at least ∼ 8% for each percent melt in realistically shaped melt

inclusions (Hammond and Humphreys, 2000b). With this linear relationship, I calculate that Vs re-

ductions observed in this study indicate melt fractions of up to 3.5% in the NCC. When estimating

partial melt fractions from Vs reduction underneath the LAB, I select up to three probable LAB

interfaces for each station. Selecting interfaces at stations P32M and P33M is straightforward,

because there is a sharp, localized decrease in Vs. Selecting LAB boundaries for broad, diffuse

Vs reductions at stations, such as R33M and R33M, is more complicated. Therefore, selecting

multiple interfaces at these stations allows for a more comprehensive range of partial-melt fraction

estimations. Compared with heat flow data across the NCC at latitudes > 59◦ N, melt fractions are

generally higher when heat flow is higher.

As shown in Figure 6.2, estimates for partial melt fractions at LAB boundaries range from 0%

up to∼ 3.5%. Partial melt estimates range from 0.5% at stations WHY and Q32M to 2.75–3.5% at

station O30N. Western stations, from O30N to P32M, have clear LVZs, resulting in a small range

of partial melt fraction estimations. Stations P33M, R33M, WTLY and LIRD have significantly

wider ranges of possible partial melt fractions compared to the remaining stations. The presence

of partial melt may extend to station TOAD, inferred to be near the CCB, because station TOAD is
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where partial melt fractions decrease in depth. Overall,∼ 0.5 to 3.5% partial melt beneath the LAB

provides a mechanism for the observed Vs reductions across the NCC. However, this is a purely

mechanical model that does not address other parameters that can reduce Vs, such as the frequency

dependence of anelasticity (e.g., Karato, 1993) or the presence of melt bands (Kawakatsu et al.,

2009). Notably, this model assumes that anelastic relaxation occurs sufficiently quickly, so that

it is the relaxed modulus that is excited by observed seismic waves (Hammond and Humphreys,

2000a,b).

Experimental results that observe reductions in Vs are now available for representative mantle

pressures (Chantel et al., 2016), and results show larger Vs reductions for the same partial-melt

fractions for seismic-wave frequencies than modelled by (Hammond and Humphreys, 2000b).

Partially molten samples with mixtures of olivine and different basalt composition percentages are

observed for in situ ultrasonic velocity frequencies (Chantel et al., 2016). Employing a range of α̂

values, as shown in Figure 6.3, accounts for anelasticity and reduces the amount of melt to fit my

observations decreases to ∼ 2% melt. I discuss the process in determining the melt relationships

for various α̂ in Appendix F. The black dots in Figure 6.3 represent the observed Vs reductions

for melt fractions at ultrasonic frequencies, and these Vs reductions are comparable to the melt

fractions calculated using the linear model in Figure 6.2. Decreasing α̂ decreases the amount of

partial melt for observed velocities, as indicated by the coloured dots, which represent realistic

α̂ values of 0.4, 0.26 and 0.2 (Chantel et al., 2016). For stations O30N and LIRD, adjusting α̂

reduces partial melt fractions from ∼ 3.5% to ∼ 1.5%. Nevertheless, the α̂ value in the NCC

might be as low as 0.1, which is the value inferred for Southern California (Yang and Forsyth,

2008). Southern California has a similar LVZ to what is observed in this study and observed α̂

values in California are likely similar to what would be expected in the NCC. I could not estimate

partial melting for α̂ = 0.1, as it was not included in Chantel et al. (2016), but note that partial

melt percentages calculated from Vs reductions using α̂ = 0.1 would be even smaller than shown

in Figure 6.3.
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Figure 6.3: Partial melt fractions for all stations with varying attenuation dependence of frequency,
α̂ described by Chantel et al. (2016). Accounting for the frequency dependence for attenuation in
the mantle lowers the melt fraction for each Vs observation.

However, the laboratory-determined model assumes that basalt will have completely melted

when assemblage has reached the liquidus of the basalt, so there is a fixed amount of melt despite

temperature variations in the cell (Chantel et al., 2016; Weidner et al., 2018). These factors

have not all been integrated into a single model. Nevertheless, there are promising models to

be further developed. A dynamic melting model (Li and Weidner, 2013) is a promising model

that addresses the effects of melt by considering thermodynamic interactions between the solids

and liquids (Weidner et al., 2018). Furthermore, when accounting for attenuation effects and

mobility of melt at a threshold (Faul, 2001), Vs can be reduced to ∼ 3.0 km/s in models of the hot,

continental African Rift Zone (Armitage et al., 2015). Overall, further research is required to better

constrain the relationship between melting and Vs, but models generally acknowledge assumptions

will underestimate the affect of the presence of melt on Vs reductions. In conclusion, my results

show significant evidence for the existence of pervasive partial melt in the NCC, with an upper

limit of my estimates of 1.5–3% partial melt fractions.

The presence of partial melt in the NCC asthenosphere has been established in previous studies.

Geotherms calculated for the NCC indicate to be near-adiabat or greater than the adiabat under-

neath the LAB, which can explain the presence of partial melt (e.g., Audet et al., 2019; Chen et
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al., 2019). The adjacent Southern Canadian Cordillera (SCC) sits above a subducting slab, where

low-resistivity structures extend to the TF at ∼ 60 km, indicating shallow asthenosphere (Rippe et

al., 2013). Profiles in the SCC also exhibit LVZs, which cannot be explained with dry olivine,

but rather by the presence of 0.4%–1.5% partial melt (Rippe et al., 2013). Estimated partial

melt fractions in the NCC are greater than in the SCC, likely due to the upwelling asthenosphere

introducing more melt to the region. Alligator Lake xenoliths suggest the opening of the underlying

slab window induced localized partial melting of ∼ 20–25% of spinel lherzolite lithosphere (e.g.,

Francis, 1987; Shi et al., 1998; Francis et al., 2010; Polat et al., 2018). While my inferred melt

fraction is less than determined via xenoliths, my observations are across a much larger scale, and

may be a more average representation of melt present.

The presence of partial melt could be explained via asthenosphere upwelling, so that upwelling

asthenosphere undergoes partial melting via adiabatic decompression to shallow depths (White

and Mackenzie, 1989). The LVZ I observe in this study is similar to the ubiquitous LVZ observed

under oceanic plates in partial melt fraction, depth and extent (e.g., Schmerr, 2012; Sakamaki et

al., 2013). Upwelling in mid-ocean ridges induces LVZs with Vs reductions of 7–8% underneath

the LAB (depths of 70–100 km) attributed to partial melting in oceanic lithosphere (Kawakatsu et

al., 2009; Hirschmann, 2010; Takei, 2017). Sharp negative velocity contrasts in the ocean can be

explained by a LVZ with melt volume of 0.1–3%s (Sato et al., 1989; Schmerr, 2012), and even

higher partial melts are possible if volatiles are present (Hirth and Kohlstedt, 1996). Partial melt

peak melt mobility at the base of the lithosphere can further explain the depth and extent of the

LVZ (Sakamaki et al., 2013). Ratios between melt-solid density in contrast to magma viscosity

peaks at pressures corresponding to depths of 120–150 km, approximately the depth at which

I observe minimum velocities in the interior of my study region (Sakamaki et al., 2013). Similar

LVZs have been observed in continental settings, as well. Partial melt fractions of∼ 3% at 70–100-

km depth have been inferred Under the Hangai Dome in Mongolia, where, like the NCC, small-

scale upwelling of the asthenosphere induced intraplate volcanism and partial melt (Comeau et al.,
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2018). In the Basin and Range province in southwestern US, wet basalts may have begun melting

well below the dry solidus, and the depths where melt is ponding correlate to the equilibriation

beneath the nominally dry lithosphere (Plank and Forsyth, 2016). Therefore, I conclude that partial

melt may be pooling at the base of the lithosphere possibly due to regional asthenosphere upwelling

and anomalously high temperatures.

6.2 Tectonic Model with a Heterogeneous LAB and LVZ

Observations of a heterogeneous LAB and underlying LVZ due to the presence of partial melt

at the LAB has implications on the tectonic models describing the thermochemical state of the

NCC. I infer a drastic increase in LAB depth at station TOAD, nearest to the deformation front.

Between TOAD and its neighbouring station to the west, LIRD, the LAB increases in depth by

∼ 100 km. This dramatic deepening is interpreted as the CCB, and its location and dramatic nature

agrees with previous observations of a sharp CCB (e.g., Dalton et al., 2011; McLellan et al., 2018;

Chen et al., 2019). The sharp transition between a shallow LAB across the Cordillera and a deep

cratonic LAB is a unique geometry likely formed during the accretion of terranes and can affect

the thermochemical state of the NCC, providing insight into its formation (e.g., Chen et al., 2019).

As discussed in Section 2.3, Chen et al. (2019) proposes three mechanisms for forming the

CCB: terminal suturing during accretion (Chen et al., 2019); lithosphere delamination (Bao et

al., 2014); and viscous thermal erosion (e.g., Currie and Hyndman, 2006; Hyndman et al., 2005;

Hyndman, 2010, 2017; Francis et al., 2010). All of these mechanisms have distinct geometries that

should be seismically observed on a lithospheric scale, as described in ??.

In most schematic tectonic models, the LAB is shown as constant and relatively homogeneous,

much like the Moho. Like the Moho, the LAB seems to be minimally, if at all, affected by terrane

boundaries. However, unlike the Moho, the LAB depth is heterogeneous. Based on xenolith

studies observing bimodal suites (e.g., Shi et al., 1998; Edwards and Russell, 2000; Francis et al.,

2010) and heterogeneous water content (Kilgore et al., 2018) and on my observations of varying
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LVZ and LAB depths, the lithosphere is laterally heterogeneous. Tectonic models proposing exotic

lithosphere docked onto the ancient North American craton (e.g., Audet et al., 2019; Chen et al.,

2019) suggest the exotic lithosphere is flat and relatively homogeneous in terms of both Moho and

LAB depths. Stations west of WTLY in this study are part of this presumed exotic lithosphere,

and exhibit various LAB depths and partial melt fractions. While observations in this study do not

rule out an exotic origin for western NCCs lithosphere, assuming it is a homogeneous addition to

Laurentia ignores large-scale lithosphere variability. Therefore, a model of a terminal suture of

ancient North America does not account for lateral variation observations discussed in this study,

so I consider other thermochemical models to address these issues.

Alternatively, a large-scale delamination event or small-scale convection could account for

observations of partial melt and high heat flow across the NCC. Lithospheric removal may have

been removed through a large-scale delamination event or ongoing small-scale convection. The

presence of melt could have aided the lithospheric removal process, because the melts and fluids

percolating into the lithosphere may have contributed to its weakening (e.g., Bao et al., 2014; Polat

et al., 2018; Kilgore et al., 2018). Furthermore, this process may be aided by the edge-driven

convection from the sharp CCB (Bao et al., 2014). A large-scale delamination event between 5–25

Ma can reproduce seismic observations (Audet et al., 2019; Chen et al., 2019), so that the opening

of the slab window triggered the delamination event and allowed the displacement and foundering

of the lithospheric root (e.g., Thorkelson et al., 2011; Audet et al., 2019).

Ongoing lithospheric drip or thermal erosion through small-scale convection cells do provide

a mechanism of lithospheric removal while addressing LAB structural variation. The presence of

small-scale, thermally-driven convection cells also incorporates the high heat flow observed across

the NCC into the tectonic model (e.g., Currie and Hyndman, 2006; Hyndman, 2010). Partial

melting is also further addressed in this model, because geodynamic models suggest small-scale

drips of weak mantle are prone to melting in a hot, thin lithosphere (Wang and Currie, 2015).

Thus, my observations agree best with the thermally-driven convection model presented in ??.
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When considering tectonic models, however, incorporating the presence of heterogeneity in partial

melt fraction and LAB depth addresses the main lithosphere features in the study.
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7. Conclusion

7.1 Key Contributions

In this thesis, I employ an efficient Bayesian inference algorithm to resolve the lithospheric struc-

ture of a transect across NCC. I combine P-RFs for nine stations with Rayleigh phase velocity

SWD data from the GDM52 global model (Ekström, 2011) to invert for upper-mantle and crustal

Vs structure across the NCC. Approaching the joint inversion with Bayesian methods rigorously

quantifies uncertainty associated with the non-uniqueness of RF and SWD inversion. Importantly,

the Bayesian formulation avoids most of the subjectivity associated with prior model selection by

treating the number of layers as an unknown. Parallel tempering is applied as an efficient opti-

mization algorithm to improve sampling efficiency. Empirical data covariance estimates account

for noise level variations throughout the RF during sampling.

While the depth of the Moho is relatively constant across the NCC (∼ 34 km), the LAB

discontinuity shows significant lateral heterogeneity, varying from station to station in the range of

∼ 70 and∼ 100 km depth. However, like the Moho, lithospheric structure is not effected by terrane

boundaries, and seems to has been largely reset by post-accretion processes. The inversion is able

to reconcile SWD data that do not show evidence of a LVZ and P-RFs with strong evidence of a

LVZ. The magnitude of Vs reductions across the NCC requires the presence of partial melt beneath

the LAB. Asthenosphere upwelling may be driving partial melt pooling at the LAB, explaining the

pervasive LVZ observed in this study.

The CCB is inferred at the eastern edge of the transect as a dramatic deepening of the LAB.
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This sharp, dramatic LAB depth increase agrees with previous seismic tomography studies that

inferred a sharp CCB (e.g., Dalton et al., 2011; Zaporozan et al., 2018). This study is the first to

resolve a heterogeneous LAB and an extensive LVZ underneath the LAB. Vs in this transect are

reduced down to∼ 3.0 km/s, which can be explained with up to 3.5% partial melt, but considering

relaxation effects for seismic frequencies, this partial melt value is likely ∼ 2%. Future tectonic

models need to be able to account for the variations in depth and partial melt beneath the LAB

when considering mechanisms forming the CCB and explaining the thin lithosphere in the NCC.

7.2 Limitations and Future work

The data in this study were limited by the resolution of SWD data and the directional dependence

in P-RFs. While SWD data from the GDM52 global model were more reliable than other available

SWD databases, it had little regional sensitivity to the LVZ observed in P-RF data. Discarding

SWD data between 30 and 150 s circumnavigated this issue, but including the full SWD curve with

LVZ observations would be advantageous, so that inversion results could better address crustal Vs

variations.

While the lack of information for the LVZ in SWD data is the greatest limitation of this study,

directional dependence is another limitation I address. Windowing the BAZ for each station re-

duced complexities from BAZ-dependence in P-RFs, but the effects of anisotropy or dipping layers

on the inversion results were not addressed. Future work incorporating harmonic decomposition or

another stripping method to remove directionally-dependent features would be advantageous (e.g.,

Bianchi et al., 2010; Shen et al., 2013). It is important to note that the harmonic decomposition

method must be able to account for poor sampling across all BAZ, so a comprehensive proce-

dure accounting for back-azimuth dependencies to obtain a station-representative P-RF would be

benefical (e.g., Kim and Rhie, 2019).

Future studies could also further investigate the possibility of addressing anelasticity in forward

modelling. An attenuation study across the NCC to establish α̃ values in the NCC would be
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helpful when determining partial melt fractions. Incorporating more stations into the transect will

also better resolve the variability of the LAB and LVZ across the NCC. Applying this algorithm

to a north-south transect could address the increase of heat flow near 60◦ N latitude. Similarly,

repeating this study for a transect in the SCC could address how the slab window affects the

lithosphere structure in the NCC and SCC.
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A. Effects of Dipping Layers

In the presence of dipping layers, waveforms exhibit directional dependence, the effects of which

have been examined in various simulated studies (e.g., Langston, 1979; Cassidy, 1992). A simple

test is proposed in Cassidy (1992) to examine the directional effects using absolute RF amplitudes.

This test considers an east-dipping boundary of 15◦ at 20-km depth and a half-space at 60-km

depth, schematically represented in Figure A.1a. Waveforms for BAZ between 0 and 315◦ are

simulated for this model using RAYSUM (Frederiksen and Bostock, 2000) and are shown in in

Figure A.1b. The radial and transverse components from this test show the three ways a dipping

layer affects RFs:

1. Ps amplitudes vary as a function of BAZ (and slowness, not pictured). P-waves approaching

from BAZ = 90◦, or travelling updip, generate the largest and latest Ps phases. P-wave approaching

from BAZ = 270◦, or travelling downdip, generate the smallest, earliest Ps arrivals.

2. The amplitude of the direct P-wave in the radial RF changes with respect to BAZ direction.

In the test from Cassidy (1992), it is noted that this variation is most pronounced when the

dipping layer is greater than 30◦. Nevertheless, normalizing the RF to unit amplitude neglects

this amplitude information, which indicates extreme structure beneath the receiver.

3. The dipping layer deflects waves from the P-SV system, and introduces SH waves recorded

by the transverse component (Langston, 1977). The transverse component has zero amplitude

from the waves arriving from updip and downdip. Note the change in polarity between the arrivals

between BAZ = 180◦ and BAZ = 0◦.

Overall, these three effects of dipping layers on waveforms are important considerations when
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determining structure beneath a receiver. Amplitude variation across BAZ indicates structure and

incorporating absolute amplitudes helps avoid potential inaccuracies in earth models with dipping

structures.
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Figure A.1: Simple model from Cassidy (1992) examining the effects of dipping structure on
seismograms as a function of BAZ for radial and transverse components (Cassidy, 1992). (a)
The model includes a dipping interface of 15◦at a range of BAZ. (b) the Radial and transverse
components of the seismograms forward modelled using RAYSUM (Frederiksen and Bostock,
2000).
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B. Interpretation of Marginal Profiles

Outputs from the algorithm described in section 3.2 are plotted as marginal profiles (Figure B.1.a).

Within this plot, the left-most panel describes the interface probability distribution as a histogram

showing probability of an interface as a function of depth. The right panel is the profile marginal

profile, which describes the ensemble’s PPD from zmin to zmax by colour-coding probabilities of

Vs at depth. Warmer colours indicate higher probability of velocity at selected depth, and cooler

colours represent lower probabilities. Dashed lines near the bounds of the plot represent the prior

bounds of Vs and the middle dotted line is the synthetic input model.

The PPD histograms are shown at two depths:near an interface in Figure B.1.b) and away

from an interface in Figure B.1.c). The marginal profile near an interface is wider, and the PPD

histogram shows this is because the distribution of solutions is broader. The PPD histogram

near the interface shows there are two solutions with nearly the same probability. Away from

the interface, the distribution is more narrow in the profile marginal. The corresponding PPD

histogram shows that this is because there is one peak in the probability the distribution is more

narrow. Higher probability is also expressed as warmer colours in the marginal profile.

Overall, displaying the PPD distribution as the profile marginal plots describes the PPD as a

functino of depth and velocity.
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Figure B.1: Schematic representation of PPD for marginal profiles. The interface probability and
marginal distribution are shown in Panel a). Thick black boxes represent cross-sections used for
Panels b) and c). Panel b) shows the PPD near an interface and panel c) shows the PPD deeper
in the profile. In both panels, the vertical, dashed, black lines represents the Vs prior bounds.
A single, more probable velocity distribution will have warmer colors and appear thinner in the
marginal profile. When uncertainties are higher, the marginal will have cooler colours and appears
wider in the marginal profile.
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C. P-RFs for Remaining Stations

Additional figures of P-RFs across BAZ along with the resulting stacked P-RF, ordered from west

to east, can be seen below. Rather than include the four panels for section 5.2 for all stations, the

full BAZ distribution and the stacked P-RF for the BAZ window 280–300◦ are included. The full

BAZ distribution depicts the directional dependence for the station, and the binned, stacked P-RF

shows which phases are incorporated into the inversion.

75



Figure C.1: a) Amplitude of P-RFs by BAZ for O30N. b) Stacked P-RF from 280–300◦ BAZ.

Figure C.2: a) Amplitude of P-RFs by BAZ for P32M. b) Stacked P-RF from 280–300◦ BAZ.
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Figure C.3: a) Amplitude of P-RFs by BAZ for Q32M. b) Stacked P-RF from 280–300◦ BAZ.

Figure C.4: a) Amplitude of P-RFs by BAZ for P33M. b) Stacked P-RF from 280–300◦ BAZ.
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Figure C.5: a) Amplitude of P-RFs by BAZ for R33M. b) Stacked P-RF from 280–300◦ BAZ.

Figure C.6: a) Amplitude of P-RFs by BAZ for WTLY. b) Stacked P-RF from 280–300◦ BAZ.
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Figure C.7: a) Amplitude of P-RFs by BAZ for LIRD. b) Stacked P-RF from 280–300◦ BAZ.

Figure C.8: a) Amplitude of P-RFs by BAZ for TOAD. b) Stacked P-RF from 280–300◦ BAZ.
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D. 1D Inversion Results

In this Appendix, the remaining inversion results depicting SWD, P-RF and joint inversions and

full inversion results are shown that were not shown in the main text. Stations are ordered from

west-to-east.

D.1 Comparison between SWD, RF and joint inversions

For all stations, the SWD inversion describes an absolute Vs profile, void of any interface probabil-

ity of notable probability. There is a notable change between SWD and P-RF inversions, because

the P-RF inversions exhibit probable interfaces. Joint inversions of both datasets visually appear

more similar to P-RF inversions, but are more narrow. While some stations’ Vs at 250-km depth

are similar between the P-RF and joint inversions, some stations’ (e.g., R33M) Vs increase with the

joint inversion.

D.2 Joint Inversion Marginals and Statistics

The profile marginals, data ranges for P-RF and SWD, node probability distribution and P-RF

scaling factor and SWD noise standard deviations are described for all stations. Note in the P-RF

data fit ranges how well major features are resolved for all stations. The SWD data ranges are

less consistent, with some stations (e.g., P33M, TOAD) fitting lower period SWD well. Stations

exhibiting a large LVZ (e.g., R33M, WTLY) have larger misfits between the low period SWD data.

Layer distributions vary across stations, ranging from 8 to 15 layers. All P-RF empirical covariance
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Figure D.1: (a) SWD-only, (b) RF-only and (c) joint inversion for station O30N.

Figure D.2: (a) SWD-only, (b) RF-only and (c) joint inversion for station P32M.
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Figure D.3: (a) SWD-only, (b) RF-only and (c) joint inversion for station Q32M.

Figure D.4: (a) SWD-only, (b) RF-only and (c) joint inversion for station P33M.
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Figure D.5: (a) SWD-only, (b) RF-only and (c) joint inversion for station R33M.

Figure D.6: a) SWD-only, b) RF-only and c) joint inversion for station WTLY.
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Figure D.7: (a) SWD-only, (b) RF-only and (c) joint inversion for station LIRD.

Figure D.8: (a) SWD-only, (b) RF-only and (c) joint inversion for station TOAD.
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matrix scaling factors are scaled closer to the minimum bound of 1. Noise parameters for SWD

data are more variable. Much like the SWD data fit ranges, the SWD noise parameters are higher

for stations with a large LVZ.
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Figure D.9: (a) Marginal density plot for P33M. (b) P-RF predicted data from inversion PPD. (c)
SWD predicted data from PPD. (d) Probability of number of layer nodes. (e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.10: a) Marginal density plot for P32M; b) RF predicted data from inversion PPD. c)
SWD predicted data from PPD. d) Probability of number of layer nodes. e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.11: (a) Marginal density plot for P33M. (b) P-RF predicted data from inversion PPD. (c)
SWD predicted data from PPD. (d) Probability of number of layer nodes. (e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.12: (a) Marginal density plot for Q32M. (b) P-RF predicted data from inversion PPD. (c)
SWD predicted data from PPD. (d) Probability of number of layer nodes. (e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.13: (a) Marginal density plot for R33M. (b) P-RF predicted data from inversion PPD. (c)
SWD predicted data from PPD. (d) Probability of number of layer nodes. (e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.14: a) Marginal density plot for WTLY. b) RF predicted data from inversion PPD. c)
SWD predicted data from PPD. d) Probability of number of layer nodes. e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.15: (a) Marginal density plot for LIRD. (b) P-RF predicted data from inversion PPD. (c)
SWD predicted data from PPD. (d) Probability of number of layer nodes. (e) Scaling factor for
R-component and standard deviation for SWD data.
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Figure D.16: (a) Marginal density plot for TOAD. (b) RF predicted data from inversion PPD. (c)
SWD predicted data from PPD. (d) Probability of number of layer nodes. (e) Scaling factor for
R-component and standard deviation for SWD data.
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E. The TNA and SNA Models

Vs reductions and partial melt calculations are estimated in this thesis using the tectonically active

North American (TNA) model (Grand and Helmberger, 1984). This model accounts for upper

mantle heterogeneity in North America for two distinct regions by determining shear wave ve-

locities from S and SS phase waveforms and travel times (Grand and Helmberger, 1984). The Vs

models are determined for the tecontically active region and stable shield (SNA) of North America.

These models are described in Appendix E and Figure E.1.

Vs in the TNA is about 10% lower than the shield for depths 38 to 170 km. Both models exhibit

lids with lower velocities beneath, indicating the LAB. This TNA decrease in Vs is shallower (∼ 75

km) than in the SNA (∼ 150 km). Vs remain lower in the TNA than the SNA until the two models

merge around the 410-discontinuity. Overall, these difference between the TNA and SNA models

emphasizes the large lateral heterogeneity within North America, and how the selection of the

TNA model in partial melt estimates is a more accurate calculation of Vs reduction.
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Depth (km) TNA (km/s) SNA (km/s) Depth (m) Velocity (km/s)
0.0 3.200 3.200 500.0 5.190
4.0 3.200. 3.200 525.0 5.240
4.0 3.650 3.650 550.0 5.290
6.0 3.657 3.657 575.0 5.345

16.0 3.690 3.690 600.0 5.395
30.0 3.690 3.730 625.0 5.445
34.0 3.690 3.750 659.0 5.500
38.0 4.400 4.800 660.0 5.910
50.0 4.350 4.790 675.0 5.980
75.0 4.320 4.775 700.0 6.050

100.0 4.290 4.775 725.0 6.130
125.0 4.290 4.775 750.0 6.200
150.0 4.320 4.775 775.0 6.220
175.0 4.350 4.710 800.0 6.240
200.0 4.390 4.630 825.0 6.260
225.0 4.430 4.640 850.0 6.275
250.0 4.470 4.670 875.0 6.290
275.0 4.510 4.695 900.0 6.305
300.0 4.570 4.720 925.0 6.320
325.0 4.630 4.740 950.0 6.335
350.0 4.680 4.755 975.0 6.350
375.0 4.730 4.765 1000.0 6.365
405.0 4.780 4.780 1025.0 6.385
406.0 5.000 5.000 1050.0 6.405
425.0 5.050 5.050
450.0 5.090 5.090
475.0 5.140 5.140

Table E.1: Reference models of Vs at depths 0- to 1050-km depth for TNA and SNA (Grand and
Helmberger, 1984)
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Figure E.1: Comparison of earth reference Vs models TNA and SNA (Grand and Helmberger,
1984).
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F. Melt Fraction Estimates

Partial melt estimates for α̂ values of 0.2, 0.26, and 0.4 are obtained by digitizing curves repre-

senting Vs dependence on melt fraction in Chantel et al. (2016). The Chantel et al. (2016) study fit

experimental data with the relationship

Vs = 0065ϕ
2−0.5565ϕ +4.4211, (F.1)

where ϕ is the melt fraction. Because the measurements are preformed at megahertz frequencies,

effects of anelasticity at seismic frequencies must be considered. Significant anelastic relaxation

occurs when the frequency of an elastic wave is shorter or equal the the characteristic frequency of

relaxation (Karato, 1993; Jackson et al., 2002). The empirical relationships for all α̂ values were

not included in Chantel et al. (2016), so I obtain these relationships by digitizing points along the

curves for the range of α̂ . I fit a 2nd order polynomial to fit the points, with coefficients shown

in Table F.1. The resulting curves are plotted against the curves determined in Chantel et al. (2016)

in Figure F.1. For the ranges of partial melt fractions that I calculate, these fits are sufficient.

α̂ a b c
N/A 0.0617 -0.5371 4.4300
0.4 0.0881 -0.5371 4.4355

0.26 0.1089 -0.8129 4.4339
0.2 0.1234 -0.9016 4.4240

Table F.1: Coefficients for second-order polynomials for a α̂ values of 0.4, 0.26, 0.2 determined
by digitizing curves from Chantel et al. (2016).
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Figure F.1: Dependence of Vs on melt fraction adapted from Chantel et al. (2016). Red dots
represent experiment data and the red line connecting the red dots represents the associated fit,
represented by the corresponded equation. The dashed, purple line atop this line is my digitized
estimate of the experimental results. The lines below these lines represent modelled values that
include anelastic effects expected for the seismic waves at high temperatures for α̂ values of 0.2,
0.26, and 0.4. Like the first line, the solid red lines are calculations from Chantel et al. (2016), and
the dashed lines represent my digitized estimates.
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