
Interpolating Arithmetic Read-Once Formulas

in Parallel

Nader H. Bshouty� Richard Cleve�

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada T2N 1N4

Abstract

A formula is read-once if each variable appears at most once in it. An

arithmetic read-once formula is one in which the operations are addition,

subtraction, multiplication, and division (and constants are allowed). We

present a randomized (Las Vegas) parallel algorithm for the exact interpola-

tion of arithmetic read-once formulas over su�ciently large �elds. More

speci�cally, for n-variable read-once formulas, and �elds of size at least

3(n2 + 3n � 2), our algorithm runs in O(log2 n) parallel steps using O(n4)

processors (where the �eld operations are charged unit cost). This com-

plements other results which imply that other classes of read-once formulas

cannot be interpolated|or even learned with membership and equivalence

queries|in poly-logarithmic-time with polynomially many processors (even

though they can be learned sequentially in polynomial-time). These classes

include boolean read-once formulas and arithmetic read-once formulas over

�elds of size o(n= logn) (for n variable read-once formulas).

1 Introduction

The problem of interpolating a formula (from some class C) is the problem of ex-

actly identifying the formula from queries to the assignment (membership) oracle.

The interpolation algorithm queries the oracle with an assignment a and the oracle

returns the value of the function at a.

There are a number of classes of arithmetic formulas that can be interpolated se-

quentially in polynomial-time as well as in parallel in poly-logarithmic-time (with

polynomially many processors). These include sparse polynomials and sparse ra-

tional functions ([BT88,BT90,GKS90,GrKS88,RB89,M91]).

�Research supported in part by NSERC of Canada. Author's E-mail addresses:

bshouty@cpsc.ucalgary.ca and cleve@cpsc.ucalgary.ca.

A formula over a variable set V is read-once if each variable appears at most once

in it. An arithmetic read-once formula over a �eld K is a read-once formula over

the basic operations of the �eld K: addition, subtraction, multiplication, division,

and constants are also permited in the formula.

Bshouty, Hancock and Hellerstein [BHH92] present a randomized sequential

polynomial-time algorithm for interpolating arithmetic read-once formulas (AROFs)

over su�ciently large �elds. Moreover, they show that, for arbitrarily-sized �elds,

arithmetic read-once formulas can be learned using equivalence queries in addition

to membership queries.

The question of whether arithmetic read-once formulas can be interpolated (or

learned) quickly in parallel depends on the size of the underlying �eld. It is shown

in [BHH92] that for arithmetic read-once formulas over �elds with o(n= log n) el-

ements there is no poly-logarithmic-time algorithm that uses polynomially many

processors (for interpolating as well as learning). Also, a similar negative result

holds for boolean read-once formulas.

We present a (Las Vegas) parallel algorithm for the exact interpolation of arith-

metic read-once formulas over su�ciently large �elds. For �elds of size at least

3(n2 + 3n � 2), the algorithm runs in O(log2 n) parallel steps using O(n4) proces-

sors (where the �eld operations are charged unit cost).

If the \obvious" parallizations are made to the interpolating algorithm in [BHH92]

(i.e., parallelizations of independent parts of the computation) one obtains a paral-

lel running time that is �(d), where d is the depth of the target formula. Since, in

general, d can be as large as �(n), this does not result in signi�cant speedup. Our

parallel algorithm uses some techniques from the sequential algorithm of [BHH92]

as well as some new techniques that enable nonlocal features of the AROF to be

determined in poly-logarithmic-time.

The parallel algorithm can be implemented on an oracle EREW PRAM that ini-

tially selects some random input values (uniformly and independently distributed)

and then performs O(n3) membership queries (via its oracle).

2 Identi�cation with queries

The learning criterion we consider is exact identi�cation. There is a formula f

called the target formula, which is a member of a class of formulas C de�ned over

the variable set V . The goal of the learning algorithm is to halt and output a

formula h from C that is equivalent to f .

In a membership query, the learning algorithm supplies values (x
(0)

1 ;: : : ,x(0)n) for

the variables in V As input to a membership oracle, and receives in return the value

of f(x
(0)
1 ;: : : ,x(0)n). Note that if f 0 is a projection of f , it is possible to simulate a

membership oracle for f 0 using a membership oracle for f .

We say that the class C is learnable in polynomial time if there is an algorithm

that uses the membership oracle and interpolates any f 2 C in polynomial time

in the number of variables n and the size of f . We say that C is e�ciently

2

learnable in parallel if there is a parallel algorithm that uses the membership oracle

and interpolates any f 2 C in polylogarithmic time with polynomial number of

processors. In the parallel computation p processors can ask p membership queries

in one step.

3 Preliminaries

A formula is a rooted tree whose leaves are labeled with variables or constants from

some domain, and whose internal nodes, or gates, are labeled with elements from a

set of basis functions over that domain. A read-once formula is a formula for which

no variable appears on two di�erent leaves. An arithmetic read-once formula over a

�eldK is a read-once formula over the basis of addition, subtraction, multiplication,

and division of �eld elements, whose leaves are labeled with variables or constants

from K.

In [BHH92] it is shown that a modi�ed basis can be used to represent any

arithmetic read-once formula. Let K be an arbitrary �eld. The modi�ed basis

for arithmetic read-once formulas over K includes only two non-unary functions,

addition (+) and multiplication (�). The unary functions in the basis are (ax+

b)=(cx + d) for every a; b; c; d 2 K such that ad � bc 6= 0. This requirement is to

prevent ax+ b and cx+ d being identically 0 or di�ering by just a constant factor.

We can also assume that non-constant formulas over this modi�ed basis do not

contain constants in their leaves. We represent such a unary function as fA, where

A =

a b

c d

!

The restriction on a, b, c, and d is equivalent to saying the determinant of A

(denoted det(A)) is non-zero.

The value of a read-once formula on an assignment to its variables is determined

by evaluating the formula bottom up. This raises the issue of division by zero.

In [BHH92] this problem is handled by de�ning basis functions over the extended

domain K [f1;ERRORg, where 1 represents 1=0 and ERROR represents 0=0.

For the special values we de�ne our basis function as follows (assume x 2 K�f0g,

y 2 K [f1;ERRORg, and A is as above).

y + ERROR = y � ERROR = fA(ERROR) = ERROR

x+1 = x�1 =1

0 +1 =1�1 =1

0 �1 =1+1 = ERROR

fA(1) =

(
a

c
c 6= 0

1 c = 0
and fA

�
�d
c

�
=1 if c 6= 0:

It is shown in [BHH92] that these de�nitions are designed so that the output of

the read-once formula is the same as it would be if the formula were �rst expanded

3

and simpli�ed to be in the form p(x1; : : : ; xn)=q(x1; : : : ; xn) for some polynomials

p and q where gcd(p; q) = 1, and then evaluated.

We say that a formula f is de�ned on the variable set V if all variables appearing

in f are members of V . Let V = fx1; : : : ; xng. We say a formula f depends on

variable xi if there are values x
(0)
1 ; x

(0)
2 ; : : : ; x(0)n and x

(1)

i in K for which

f(x
(0)
1 ; x

(0)
2 ; : : : ; x(0)n) 6= f(x

(0)
1 ; : : : ; x

(0)

i�1; x
(1)

i ; x
(0)

i+1; : : : ; x
(0)
n)

and for which both those values of f are not ERROR. We call such an input vector

v = (x
(0)
1 ; : : : ; x(0)n) a justifying assignment for xi.

Between any two gates or leaves � and � in an AROF, the relationships ancestor,

descendant, parent, and child refer to their relative position in the rooted tree. Let

� � � denote that � is a descendant of � (or, equivalently, that � is an ancestor of

�). Let � < � denote that � is a proper descendant of � (i.e., � � � but � 6= �).

For any pair of variables xi and xj that appear in a read-once formula, there is a

unique node farthest from the root that is an ancestor of both xi and xj, called

their lowest common ancestor, which we write as lca(xi; xj). We shall refer to the

type of lca(xi; xj) to mean the basis function computed at that gate. We say that

a set W of variables has a common lca if there is a single node that is the lca of

every pair of variables in W .

We de�ne the skeleton of a formula f to be the tree obtained by deleting any

unary gates in f (i.e. the skeleton describes the parenthesization of an expression

with the binary operations, but not the actual unary operations or embedded

constants).

We now list a basic property of unary functions fA that is proved in [BHH92].

Property 1

1. The function fA is a bijection from K [f1g to K [f1g if and only if

det(A) 6= 0. Otherwise, fA is either a constant value from K[f1;ERRORg

or else is a constant value from K[f1g, except on one input value on which

it is ERROR.

2. The functions fA and f�A are equivalent for any � 6= 0.

3. Given any three distinct points p1 = (x1; y1), p2 = (x2; y2) and p3 = (x3; y3),

(a) If p1, p2, p3 are on a line then there exists a unique function fA with

fA(x) = ax+b that satis�es fA(x1) = y1, fA(x2) = y2, and fA(x3) = y3.

(b) If p1, p2, p3 are not on a line then there exists a unique function fA with

det(A) 6= 0 that satis�es fA(x1) = y1, fA(x2) = y2, and fA(x3) = y3.

4. If functions fA and fB are equivalent and det (A);det (B) 6= 0, then there is

a constant � for which �A = B.

5. The functions (fA � fB) and fAB are equivalent.

4

6. If det(A) 6= 0, functions f�1A and fA�1 are equivalent.

7. fA(�x) = f
A

�
� 0

0 1

� (x) and fA(�+ x) = f
A

�
1 �

0 1

� (x).
�fA(x) = f� � 0

0 1

�
A
(x) and � + fA(x) = f� 1 �

0 1

�
A
(x).

4 Collapsability of Operations

Whenever two non-unary gates of the same type in an AROF are separated by only

a unary gate it may be possible to collapse them together to a single non-unary

gate of the same type with higher arity. For ? 2 f+;�g, a unary operation fA is

called ?-collapsible if

fA(x ? y) ? z � fB(x) ? fC(y) ? z;

for some unary operations fB and fC . Intuitively, the above property means that

if the fA gate occurs between two non-unary ? gates then the two ? gates can be

\collapsed" into a single ? gate of higher arity, provided that new unary gates can

be applied to the inputs.

In [BHH92] it is explained that a unary gate fA is �-collapsible if and only if A

is of the form �
a 0

0 b

�
or

�
0 a

b 0

�
;

and +-collapsible if and only if A is of the form

�
a b

0 c

�
:

The following are equivalent de�nitions of ?-collapsible that will be used in this

paper.

Property 2 The following are equivalent

1. fA is +-collapsible.

2. fA(x) = �x+ � for some �; � 2 K and � 6= 0.

3. fA(1) =1.

The following are equivalent

1. fA is �-collapsible.

2. fA(x) = �x� for some � 2 K and � 2 f1;�1g.

3. ffA(1); fA(0)g = f0;1g.

5

Proof: We prove the property by showing that 1, 2, 3. If fA is +-collapsible

then

A =

�
a b

0 c

�

and therefore f(x) = (a=c)x + (b=c). Since A is nonsingular a 6= 0 and c 6= 0 and

a=c 6= 0. 2) 1 is obvious. If fA(x) = �x + � for some �; � 2 K and � 6= 0 then

fA(1) = �1+ � =1: If fA(1) =1 then since f(a b

d c)
(1) = a=d =1 we must

have d = 0.

The result for �-collapsible is left for the reader.2

In [BHH92], a three-way justifying assignment is de�ned as an assignment of

constant values to all but three variables in an AROF such that the resulting

formula depends on all of the three remaining variables. For the present results,

we require assignments that meet additional requirements, which are de�ned below.

For any two gates, � and �, with � < �, de�ne the �{� path as the se-

quence of gate operations along the path in the tree from � to �. De�ne a

non-collapsing three-way justifying assignment as a three-way justifying assign-

ment with the following additional property. For the unassigned variables x, y,

and z, if lca(x; y) < lca(x; z) and all non-unary operations in the lca(x; y){lca(x; z)

path are of the same type ? (for some ? 2 f+;�g) then the function that results

from the justifying assignment is of the form

fE(fC(fA(x) ? fB(y)) ? fD(z));

for some unary operations fA, fB, fC, fD and fE, where fC is not ?-collapsible.

Intuitively, this means that, after the justifying assignment, the two gates, lca(x; y)

and lca(x; z), cannot be collapsed|and thus the relationship lca(x; y) < lca(x; z)

can still be detected in the resulting function.

Now, de�ne a total non-collapsing three-way justifying assignment as a single

assignment of constant values to all variables in an AROF such that, for any three

variables, if all but those three are assigned to their respective constants then the

resulting assignment is non-collapsing three-way justifying.

5 Parallel Learning Algorithm

In this section, we present a parallel algorithm for learning AROFs. The algorithm

has three principal components: �nding a total non-collapsing three-way justifying

assignment; determining the skeleton of the AROF; and, determining the unary

gates of the AROF.

The basic idea is to �rst construct a graph (that will later be referred to as the

LCAH graph) that contains information about the relative positions of the lcas of

all pairs of variables. This cannot be obtained quickly in parallel from justifying

assignments, because of the possibility that some of the important structure of an

AROF \collapses" under any given justifying assignment. However, we shall see

6

that any total non-collapsing justifying assignment is su�cient to determine the

entire structure of the AROF at once (modulo some polylog processing).

Once the LCAH graph has been constructed, the skeleton of the AROF can be

constructed by discarding some of the structure of the LCAH graph (a \garbage

collection" step). This is accomplished using some simple graph algorithms, as

well as a parallel pre�x sum computation (which is NC1 computable [LF80]).

Finally, once that skeleton is determined, the unary gates can be determined by

a recursive tree contraction method (using results from [B74]).

5.1 Finding a Total Non-Collapsing Three-Way Justifying

Assignment

In [BHH92], it is proven that, for any triple of variables x, y and z, by drawing

random values (independently) from a su�ciently large �eld, and assigning them

to the other variables in an AROF, a three-way justifying assignment for those

variables is obtained with high probability. In the parallel algorithm, a three-way

justifying assignment that is total non-collapsing is required. We show that, if the

size of the �eld K is at least O(n2) then the same randomized procedure also yields

a total non-collapsing three-way justifying assignment with probability at least 1

2
.

Therefore in time O(1) this step can be implemented.

We shall begin with some preliminary lemmas and then the precise statement

that we require will appear in Corollary 4.

Lemma 1: If g(y; z) = fB(fA(y) ? z), where fA is not ?-collapsing then there
exists at most one value z(0) for z such that fC(y) � g(y; z(0)) is ?-collapsing.

Proof: Let ? = +. If fB(fA(y) + z0) is +-collapsible then by property 2 we have

fB(fA(y) + z0) = �y + �;

where � 2 Knf0g and � 2 K. We substitute y =1 and get

fB(fA(1) + z0) =1:

Since fA is not +-collapsible, by property 2, we have fA(1) = 6= 1. Solving

the above system using property 1 we get

z0 = fB�1(1)� :

This shows that there is at most one value of z that makes fB(fA(y) + z) +-

collapsible.

Let ? = �. If fB(fA(y)z0) is �-collapsible then by property 2 we have

fB(fA(y) + z0) = �y�;

where � 2 Knf0g and � 2 f+1;�1g. We substitute y = 0;1 and get

ffB(fA(0)z0); fB(fA(1)z0)g = f0;1g:

7

Since fA is not �-collapsible, by property 2, we have either fA(0) or fA(1) is not

in f0;1g. Suppose fA(0) 62 f0;1g and suppose fB(fA(0)z0) = 0 (the other cases

are similar). Solving this gives

z0 = fB�1(0)=fA(0):

This shows that there is at most one value of z that makes fB(fA(y)z)�-collapsible.2

Lemma 2: Let F (x1; : : : ; xn) be an AROF with lca(x1; x2) < lca(x1; x3) and

suppose that all non-unary operations in the lca(x1; x2) � lca(x1; x3) path are of

the same type ? 2 f+;�g. Let x
(0)
4 ; : : : ; x(0)n be independently uniformly randomly

chosen from S � K, where jSj = m. Then the probability that x
(0)
4 ; : : : ; x(0)n is a

non-collapsing three-way justifying assignment is at least 1 �
�
3n+1

m

�
.

Proof: Note that x
(0)
4 ; : : : ; x(0)n is not a non-collapsing three-way justifying as-

signment if and only if it is not a justifying assignment or there exists a path

between the lcas of x1, x2 and x3 all non-unary operations are of the same type

and the path collapses under the assignment. From [BHH92], the probability of

the former condition is at most 2n+4

m
. We need to bound the probability of the

latter condition.

We have that F (x1; : : : ; xn) is of the form

E(fHk
(� � � fH1

(fH0
(A(x1) ? B(x2)) ? C1) � � �) ? Ck) ? D(x3));

whereA(x1); B(x2); C1; : : : ; Ck;D(x3); E(y) may depend on variables from x4; : : : ; xn
in addition to their marked arguments. Let �A(x1); �B(x1); �C1 ; : : : ; �Ck; �D(x3); �E(y)

denote the above formulas (respectively) with x
(0)

4 ; : : : ; x(0)n substituted for the vari-

ables x4; : : : ; xn. Also, let d1; : : : ; dk denote the degrees of C1; : : : ; Ck (respectively),

as functions of x4; : : : ; xn. By the assumption that F is in normal form, fH0
is not

?-collapsing. Therefore, by Lemma 1, there exists at most one value of C1 for

which fH1
(fH0

(y)?C1) is ?-collapsing. Since the degree of C1 is d1, the probability

of this value occurring C1 is at most d1=m by Schwartz's result in [Sch80].

Similarly, if fH1
(fH0

(y) ? C1) is not ?-collapsing then Lemma 1 implies that

there exists at most one value of C2 for which fH2
(fH1

(fH0
(y) ? �C1) ? C2) is ?-

collapsing, which occurs with probability at most d2=m, and so on. It follows that

the probability that

fHk
(fHk�1

(� � � fH1
(fH0

(y) ? �C1) � � �) ? �Ck)

is ?-collapsing is at most (d1 + � � �+ dk)
1

m
� n�3

m
.

The result now follows by summing the two bounds. 2

Theorem 3: Let F (x1; : : : ; xn) be an AROF over K, and x
(0)

1 ; : : : ; x(0)n be chosen

uniformly from a set S � K with jSj = m. Then the probability that x
(0)

1 ; : : : ; x(0)n

is a total non-collapsing three-way justifying assignment is at least 1 � 6n2

m
.

Proof: First, note that, from Lemma 2, we can immediately infer that if

x
(0)
1 ; : : : ; x(0)n are drawn independently uniformly randomly from S � K, where

8

jSj = m then the probability that x
(0)
1 ; : : : ; x(0)n is a non-collapsing three-way jus-

tifying assignment is at most
�
n

3

�
(n+1
2m

) = O(n
4

m
).

To obtain a better bound, consider each subformula Ci that is an input to some

non-unary gate in the AROF. By results in [BHH92], there are at most two possible

values of Ci that will result in some triple of variables with respect to which the

the assignment is not three-way justifying (the values are 0 and 1). Thus, as in

the proof of Lemma 2, the probability of one of these values arising for Ci is at

most 2d

m
, where d is the degree of Ci. Also, from Lemma 2, there is at most one

value of Ci that will result in a collapsing assignment, and the probability of this

arising is at most d
m
. Thus, the probability of one of the two events above arising

is at most 3d

m
, and, since d � n, this is at most 3n

m
.

Since there are at most 2n such subformulas Ci, the probability of any one of

them attaining one of the above values is at most 6n2

m
. 2

The constant in the proof of theorem 3 can be improved to obtain probability

of

1�
3
2
(n2 + 3n� 2)

m
:

by using the following observation. Notice that we upper bounded the degree of

each subtree by n. In fact we can upper bound the degree of the leaves (there are

n leaves) by degree 1 since they are variables. Then we have another n�1 internal

subformulas of degrees d1 < d2 < � � � < dn�1. It is easy to show that di � i + 1

(simple induction on the number of nodes). Taking all this into account we obtain

the above bound.

By setting m � 3(n2 + 3n � 2), we obtain the following.

Corollary 4: Let F (x1; : : : ; xn) be an AROF over K, and x
(0)
1 ; : : : ; x(0)n be chosen

uniformly from a set S � K with jSj = 3(n2 + 3n � 2). Then the probability that

x
(0)
1 ; : : : ; x(0)n is a total non-collapsing three-way justifying assignment is least 1

2
.

This Corollary implies that the time complexity of �nding an total non-collapsing

three-way justifying assignment is O(1).

5.2 Determining the Skeleton of a Read-Once Formula in

Parallel

In this section, we assume that a total non-collapsing three-way justifying assign-

ment is given and show how to construct the skeleton with O(n3) membership

queries in one parallel step followed by an O(log n) steps of computation.

Firstly, suppose that, for a triple of variables x, y, and z, we wish to test whether

or not lca(x; y) < lca(x; z). If op(x; y) 6= op(x; z) then this can be accomplished

by a direct application of the techniques in [BHH92], using the fact that we have

an assignment that is justifying with respect to variables x, y, and z. On the

other hand, if op(x; y) = op(x; z) then lca(x; y) < lca(x; z) could be di�cult to

detect with a mere justifying assignment because the justifying assignment might

9

collapse the relative structure between these three variables. If all the non-unary

operations in the lca(x; y){lca(x; z) path are identical then, due to the fact that

we have a non-collapsing justifying assignment, we are guaranteed that the sub-

structure between the three variables does not collapse, and we can determine

that lca(x; y) < lca(x; z) in O(1) time (again by directly applying techniques in

[BHH92]). The leaves the case where op(x; y) = op(x; z) but the non-unary oper-

ations in the lca(x; y){lca(x; z) path are not all of the same type. In this case, the

techniques of [BHH92] might fail to determine that lca(x; y) < lca(x; z) and report

them as equal. We shall overcome this problem at a later stage in our learning

algorithm, by making inferences based on hierarcical relationships with other vari-

ables. For the time being, we can, in time O(1) with one processor, compute the

following.

DESCENDANT(x; y; z)

=

8>>>>>>>>>><
>>>>>>>>>>:

YES if lca(x; y) < lca(x; z) and op(x; y) 6= op(x; z);

YES if lca(x; y) < lca(x; z) and all non-unary operations

in the lca(x; y){lca(x; z) path are of the same type;

YES or MAYBE if lca(x; y) < lca(x; z) and op(x; y) = op(x; z) but not

all non-unary operations in the lca(x; y){lca(x; z)

path are of the same type;

MAYBE otherwise.

Note that if DESCENDANT(x; y; z) = YES then it must be that lca(x; y) <

lca(x; z); however, if DESCENDANT(x; y; z) = MAYBE then it is possible that

lca(x; y) < lca(x; z), but op(x; y) = op(x; z) and the non-unary operations on the

lca(x; y){lca(x; z) are not of the same type, or that lca(x; y) 6< lca(x; z).

To construct the extended skeleton of an AROF, we �rst construct its least

common ancestor hierarchy (LCAH) graph, which is de�ned as follows.

De�nition: The least common ancestor hierarchy (LCAH) graph of an AROF

with n variables consists of
�
n

2

�
vertices, one corresponding to each (unordered) pair

of variables. For the distinct variables, x and y, denote the corresponding vertex

by xy or, equivalently, yx. Then, for distinct vertices xy and zw, the directed edge

xy! zw is present in the LCAH graph if and only if lca(x; y) � lca(z;w).

We shall prove that the following algorithm constructs the LCAH graph of an

AROF.

Algorithm CONSTRUCT-LCAH-GRAPH

1. in parallel for all distinct variables x; y; z do

if DESCENDANT(x; y; z) = YES then

insert edges xy! xz and xy! yz and xz ! yz and yz! xz

2. in parallel for all distinct variables x; y; z; w do

if edges xy ! xw! xz are present then

insert edge xy! xz

10

3. in parallel for all distinct variables x; y; z do

if no edges between any of xy; xz; yz are present then

insert edges in each direction between every pair of xy; xz; yz

4. in parallel for all distinct variables x; y; z; w do

if edges xy ! xw! zw present or edges xy! yw! zw present then

insert edge xy! zw

Theorem 5: AlgorithmCONSTRUCT-LCAH-GRAPH constructs the LCAH

graph of an AROF.

Proof: The proof follows from the following sequence of observations:

(i) For all distinct variables x, y and z for which lca(x; y) < lca(x; z) = lca(y; z),

after executing steps 1 and 2 of the algorithm, the appropriate edges pertaining to

vertices xy, xz and yz (namely, xy ! xz, xy ! yz, xz ! yz and yz ! xz) are

present.

(ii) For all distinct variables x, y and z for which lca(x; y) = lca(x; z) = lca(y; z),

after executing step 3 of the algorithm, the appropriate edges pertaining to vertices

xy, xz and yz (namely, edges in both directions between every pair) are present.

(iii) For all distinct variables x, y, z and w, after executing step 4 of the algo-

rithm, the edge xy! zw is present if and only if lca(x; y) � lca(z;w).2

It is straightforward to verify that algorithm CONSTRUCT-LCAH-GRAPH

can be implemented to run in O(log n) time on an EREW PRAM with O(n4)

processors. Moreover, the O(n3) membership queries can be made initially in one

parallel step.

In an AROF, each non-unary gate corresponds to a biconnected component

(which is a clique) of its LCAH graph. Thus, to transform the LCAH graph into

the extended skeleton of the AROF, we simply \compress" each of its connected

components into a single vertex and then extract the underlying tree structure

of this graph (where the underlying tree structure of a graph is the tree whose

transitive closure is the graph1).

This is accomplished using standard graph algorithm techniques, including a

parallel pre�x sum computation ([LF80]). The details follow.

We �rst designate a \leader" vertex for each component. We then record the

individual variables that are descendants of each non-unary gate, and then discard

the other nodes in each connected component.

The algorithm below selects a leader from each connected component in an

LCAH graph. We assume that there is a total ordering � on the vertices of the

LCAH graph (for example, the lexicographic ordering on the pair of indices of the

two variables corresponding to each vertex).

Algorithm LEADER

in parallel for all vertices xy � zw do

if edges xy! zw and zw! xy are present then

1All edges are directed towards the root.

11

mark xy with X

It is easy to prove the following.

Lemma 6: After executing algorithm LEADER, there is precisely one unmarked

node (namely, the largest in the � ordering) in each connected component of the

LCAH graph.

After selecting a leader from each component of the LCAH graph, we add n new

nodes to this graph that correspond to the n variables. The edge x! yz is inserted

if and only if the variable x is a descendant of lca(y; z). This is accomplished by

the following algorithm.

Algorithm LEAVES

in parallel for all distinct variables x; y; z; w do

insert edge x! xy

if edge xy! zw is present then

insert edge x! zw

Lemma 7: After executing algorithm LEAVES, the edge x ! yz in present if
and only if variable x is a descendant of lca(y; z).

Both algorithms LEADER and LEAVES can be implemented in O(1) time with

O(n4) processors.

After these steps, the marked nodes are discarded from the augmented LCAH

graph (that contains
�
n

2

�
+ n vertices), resulting in a graph with at most 2n � 1

vertices that is isomorphic to the extended skeleton of the AROF. This discarding

is accomplished by a standard technique involving the computation of pre�x sums.

We �rst adopt the convention that the order � extends to the augmented LCAH

graph as x1 � � � � � xn and x � yz for any variables x, y and z. Then, for each

node v, set

'(v) =

�
1 if v is unmarked

0 if v is marked,

and compute the pre�x sums

�(v) =
X
u�v

'(u):

With algorithms for parallel pre�x sum computation ([LF80]) this can be accom-

plished in O(log(
�
n

2

�
+ n)) = O(log n) time with O(

�
n

2

�
+ n) = O(n2) processors.

The function � is a bijection between the unmarked nodes of the augmented

LCAH graph and some S � f1; 2; : : : ; 2n� 1g, and �(xi) = i when i 2 f1; : : : ; ng.

The following algorithm uses the values of this function to produce the extended

skeleton of the AROF.

Algorithm COMPRESS-AND-PRUNE

12

in parallel for all distinct vertices u; v do

if vertices u; v are both unmarked

and edge u! v is in augmented LCAH graph then

insert edge �(u)! �(v) in skeleton graph

in parallel for all distinct i; j; k 2 S do

if edges i! j ! k and i! k are in skeleton graph then

remove edge i! k from skeleton graph

The following is straightforward to prove.

Lemma 5: The \skeleton" graph that COMPRESS-AND-PRUNE produces

is isomorphic to the extended skeleton of the AROF, where the inputs x1; : : : ; xn
correspond to the vertices 1; : : : ; n (respectively) of the graph.

5.3 Determining a Read-Once Formula from its Skeleton

Once the skeleton of an AROF is determined, what remains is to determine the

constants in its unary gates (note that the non-unary operations are easy to de-

termine using the techniques in [BHH92]). We show how to do this in O(log2 n)

steps with O(n log n) processors. The main idea is to �nd a node that partitions

the skeleton into three parts whose sizes are all bounded by half of the size of the

skeleton. Then the unary gates are determined on each of the parts (in a recursive

manner), and the unary gates required to \assemble" the parts are computed.

The following lemma is an immediate consequence from a result in [B74].

Lemma 9 [B74]: For any formula F (x1; : : : ; xn), there exists a non-unary gate of
type ? that \evenly" partitions it in the following sense. With a possible relabelling
of the indices of the variables,

F (x1; : : : ; xn) � G(fA(fB(H(x1; : : : ; xk)) ? fC(I(xk+1; : : : ; xl))); xl+1; : : : ; xn);

and the number of variables inG(y; xl+1; : : : ; xn),H(x1; : : : ; xk) and I(xk+1; : : : ; xl)

are all bounded above by dn
2
e.

A minor technicality in the above lemma is that, since the skeleton is not nec-

essarily a binary tree, it may be necessary to \split" a non-binary gate into two

smaller gates.

It is straightforward to obtain the above decomposition of a skeleton in NC1.

Once this decomposition is obtained, the recursive algorithm for computing the

unary gates of the ROF follows from the following lemma.

Lemma 10: Let x
(0)
1 ; : : : ; x(0)n be a total non-collapsing justifying assignment for

the AROF F (x1; : : : ; xn). If

F (x1; : : : ; xn) � G(fA(fB(H(x1; : : : ; xk))?

fC(I(xk+1; : : : ; xl))); xl+1; : : : ; xn)

13

then:

(i) Given the skeleton of F (x1; : : : ; xn) and the subformulas G(y; xl+1; : : : ; xn),

H(x1; : : : ; xk) and I(xk+1; : : : ; xl), it is possible to determine A, B and C, and,

thus, the entire structure of F (x1; : : : ; xn) in O(log n) steps with O(n log n) pro-

cessors.

(ii) Given the skeleton of F (x1; : : : ; xn), the problem of determiningG(y; xl+1; : : : ; xn),

H(x1; : : : ; xk) and I(xk+1; : : : ; xl) is reducible to the problem of determining a ROF

given its skeleton.

Proof: For part (i), assume that the subformulasG(y; xl+1; : : : ; xn),H(x1; : : : ; xk)

and I(xk+1; : : : ; xl) are given. Since x
(0)
1 ; : : : ; x(0)n is a justifying assignment,G(y; x

(0)

l+1; : : : ; x
(0)
n),

H(x1; x
(0)
2 ; : : : ; x

(0)

k), I(xk+1; x
(0)

k+2; : : : ; x
(0)

l) are all nonconstant unary functions, so

there exist nonsingular matricesA0, B0, C 0 (which are easy to determine in O(log n)

parallel steps) such that

fA0(y) � G(y; x
(0)

l+1; : : : ; x
(0)
n)

fB0(x1) � H(x1; x
(0)

2 ; : : : ; x
(0)

k)

fC0(xk+1) � I(xk+1; x
(0)

k+2; : : : ; x
(0)

l):

Also,

F (x1; x
(0)
2 ; : : : ; x

(0)

k ; xk+1; x
(0)

k+2; : : : ; x
(0)
n) � fA0(fA(fB(fB0(x1) ? fC(fC0(xk+1));

so the matrices A0 �A, B � B0, C � C 0 can be determined in O(1) steps. From this,

the matrices A, B, C can be determined.

For part (ii), consider the problem of determining G(y; xl+1; : : : ; xn). Note that

F (y; x
(0)
2 ; : : : ; x

(0)

l ; xl+1; : : : ; xn) � G(fA00 (y); xl+1; : : : ; xn);

for some nonsingular A00. Therefore, if we �x x2; : : : ; xl to x
(0)
2 ; : : : ; x

(0)

l then we

have a reduction from the problem of determining G(fA00 (y); xl+1; : : : ; xn).

Similarly, we have reductions from the problem of determining fB00(H(x1; : : : ; xk))

and fC00(I(xk+1; : : : ; xl)) for nonsingular matrices B00 and C 00. Since the matrices

A00, B00, C 00 can be absorbed into the processing of part (i) this is su�cient.2

By recursively applying Lemmas 9 and 10, we obtain a parallel algorithm to de-

termine an AROF given its skeleton and a total noncollapsing three-way justifying

assignment in O(log2 n) steps. The processor count for this can be bounded by

O(n log n).

References

[A87] D. Angluin. Queries and concept learning. Machine Learning, 2, pages

319-342, 1987.

14

[AHK89] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once for-

mulas with queries. Technical report, Report No. UCB/CSD 89/528,

Computer Science Division, University of California Berkeley, 1989. To

appear, J. ACM.

[AK91] D. Angluin and M. Kharitonov. When won't membership queries help?

In Proceedings of the Twenty Third Annual ACM Symposium on Theory

of Computing, pages 444{454, 1991.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse mul-

tivariate polynomial interpolation. In Proceedings of the 20th Annual

Symposium on the Theory of Computing, pages 301{309, 1988.

[B74] R. P. Brent. The parallel evaluation of general arithmetic expressions.

J. ACM, 21(2):201{206, 1974.

[BHH92] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic

read-once formulas. In Proceedings of the 24th Annual Symposium on

the Theory of Computing, 1992.

[BC92] N. H. Bshouty, R. Cleve. On the exact learning of formulas in par-

allel, Proceedings of the 33rd Annual Symposium on Foundations of

Computer Science, 24{27, 1992), 513{522, 1992.

[B2H92] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning boolean

read-once formulas with arbitrary symmetric and constant fan-in gates.

In The 1992 Workshop on Computational Learning Theory, 1992.

[BGHM93] N. H. Bshouty, S. Goldman, T. Hancock and S. Matar. Asking Ques-

tions to Minimize Errors. In The 1993 Workshop on Computational

Learning Theory,1993.

[BHHK91] N. H. Bshouty, T. R. Hancock, L. Hellerstein, and M. Karpinski. Read-

once threshold formulas, justifying assignments, and transformations.

Unpublished Manuscript.

[BT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse mul-

tivariate polynomial interpolation. In Proceedings of the 20th Annual

ACM Symposium on the Theory of Computing, pages 301{309, 1988.

[BT90] A. Borodin and P. Tiwari. On the decidability of sparse univariate

polynomials. In Proceedings of the 22nd Symposium on the Theory of

Computing, 1990.

[GKS90a] S. A. Goldman, M. J. Kearns, and R. E. Schapire. Exact identi�cation

of circuits using �xed points of ampli�cation functions. In Proceedings

of the 31st Symposium on Foundations of Computer Science, 1990.

15

[GKS88] D.Y. Grigoriev, M. Karpinski, and M.F. Singer. Fast parallel algorithms

for sparse multivariate polynomial interpolation over �nite �elds. Tech-

nical report, Research Report No. 8523-C5, University of Bonn (1988),

1988. To appear in SIAM J. Comp.

[GKS90b] D.Y. Grigoriev, M. Karpinski, and M.F Singer. Interpolation of sparse

rational functions without knowing bounds on the exponent. In Pro-

ceedings of the 31st Symposium on Foundations of Computer

Science, 1990.

[Han90] T. Hancock. Identifying �-formula decision trees with queries. In The

1990 Workshop on Computational Learning Theory, pages 23{37, 1990.

[HH91] T. Hancock and L. Hellerstein. Learning read-once formulas over �elds

and extended bases. In The 1991 Workshop on Computational Learning

Theory, 1991.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials that are easy to com-

pute. In Proceedings of the 12th Annual Symposium on the Theory of

Computing, pages 262{272, 1980.

[LF80] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. J. ACM

27(4):831{838, 1980.

[L88] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound:

A New Linear Threshold Algorithm, Machine Learning, pp. 285{318, v.

2, n. 4, 1988.

[M91] Y. Mansour. Randomized approximation and interpolation of sparse

polynomials. To appear in SIAM Journal on Computing.

[MT90] W. Maass and G. Tur�an. On the complexity of learning from counterex-

amples and membership queries. In Proceedings of the 31st Symposium

on Foundations of Computer Science, 1990.

[RB89] M. R. Roth and G. M. Benedek. Interpolation and approximation of

sparse multivariate polynomials over gf(2). Manuscript (to appear in

SIAM J. Computing), 1989.

[1] R. E. Schapire and L. M. Sellie. Learning sparse multivariate polyno-

mials over a �eld with queries and counterexamples. In Proceedings of

the Sixth Annual Workshop on Computational Learning Theory, pages

17-26, 1993.

[Sch80] J. T. Schwartz. Fast polynomial algorithms for veri�cation of polyno-

mial identities. Journal of the Association for Computing Machinery,

27(4):701{707, 1980.

16

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27:1134{1142, 1984.

[VL] J. S. Vitter and J. Lin, Learning in parallel, The 1988 Workshop on

Computational Learning Theory, pages 106-124, 1988.

17

