Jade's IPC Kernel for Distributed Simulation

J.G. Cleary, G.A. Lomow, B.W. Unger and Zhonge Xiao
Department of Computer Sciencee
The University of Calgary,
2500 University Dr, N.W. Calgary,
Alberta, Canada. T2N N4

Abstraet,

An implementation of virtual time using Jefferson's Time Warp mechanism is discussed. The
context. for the implementation is a multi-tingual distributed programming environment with an
underlying message passing system, called Jipe, which is accessible to Ada, C, Lisp, Prolog, and Simula
programs. The intention is that distributed programs written using Jipe can be simulated using virtual
time with only small changes to the original source code. The system is layered so that the different
languages and different roll-back mechanisms can be supported,

1 Introduction

Virtual time is a paradigm for organizing distributed and asynchronous systems. The programmer
or uscr of such a system sees virtual time as advancing steadily just as ordinary Newtonian time does.
The behaviour of a distributed program can be reasoned about in terms of this virtual time.

The naive implementation of such a scheme would have processes wait until all possible messages
sent atoa particular time have been received or it is known that none were sent. This requires that all
processex periodicly synchronize and wait for cach other. Thus little or nothing is gained by having a
distributed or paraliel system, the processes in fact compute serially waiting on cach other to finish.

Time Warp

Jefferson and Sowizral {1982, 1983, 1985] and Sowizral [1985] propose the Time Warp mechanism
which allows the user to see a steadily advancing virtual time and which allows considerable parallelism
and overlap between computations by different processes. The basic idea is that each local process
continues computing, locally advancing its own version of time (fLocal Virtual Time or LVT) until a
moessage arrives which is apparently in its past. Its LVT is then rolled back to the messages receipt time
and the computation is restarted and continues forward.

Iror this to work it must be possible to restore old states of the program and restart. There are a
number of ways of the doing this. One is to take periodic snapshots of the entire program and label them
with the LVT of when they were taken. Any messages sent by a program during a period which was
rotted back must also be undone. This is accomplished by sending anti-messages which annihilate with
the originals and which may cause Turther rollbacks ol other processes.

A concept central to this scheme is Global Virtual Time (GVT). GV is (approximately) the
minimum of the LVTs of the processes in the system. It is easily shown that no process can be forced o
roll back carlier than GV'T. Thus it can be used for garbage collecting old copies of process snapshots,
and for determining when irrevocable actions such as printing a line can be done. A process that wants to
print. must wait until GV advances past the time it wanted to do the printing and then do it.

Jade'’s IPC

This paper describes an implementation of virtual time and Time Warp within an alrcady existing
distributed programming environment, Jade [Unger, 1984], [Jade, 1984]. Jade provides a message passing
protocol, Jipc [Neal, 1981] which is accessible to a number of high level languages (Ada, C, Lisp, Prolog,
and Simula). It is based on the Cheriton’s THOTH system [Cheriton, 1979a,b]. Jipe provides facilities for
message passing by; send, reccive, forward, and reply primitives. These are provided in the form of a
blocking send, non-blocking reply and forward, and both blocking and non-blocking reccive. Facllities are
provided for process creation and destruction as well as process identification and naming. All messages
consist of bulfers which are scquences of simply typed items (integer, float, character, string). Jade
currently runs under UNIX 4.2 bsd and on a number of stand alone workstations.

2 Jade Virtual Time System

The intention of the Jade Virtual Time System is to provide all the facilitics of Jipc on top of
virtual time implemented using Time Warp. This should enable programs to be written in one of the
Jade languages and then run using virtual time with almost no changes. For example, for the purpose of
simulating a real time process. The major difference will , of course, have to be the addition of hold
statements within the program to advance the local time.

As shown in Pigure 1, the Virtual Time System is to be implemented in a number of layers. The
outermost layer is the interface to the programmer. it will be provided in a number of the Jade
languages, and will appear identical to the standard Jipe implementation language with the addition of
primitives for advancing local time.

The next layer deals with saving and restoring local process states. It is separated out so that
different implementations can be tried. Three implementations are currently envisioned using: Prolog
backtracking; snapshots of complete C programs; and snapshots of user defined sets of variables within a
DEMOS-like simulation language [Birtwistle, 1979].

JADE Virtual Time System

User Layer

Time Advance Message Passing Process Creation Process Buffer
Destruction Naming Manipulation

State Save and Restore

TJipe Layer

Message Passing Process Creation Process Buffer
Destruction Naming Manipulation

JIPC Layer

Figure | Layers of Virtual Time Implementation

-3 -

The third laver, called the TJipe system, contains the bulk of the implementation. I provides all of
the Time Warp mechanism exeluding state saving and restoration. Facilities are provided for queucing
messages inovirtual time order, detecting when a rollback is necessary, generating and processing anti-
messages and computing GVT. TJipe is implemented using Jipe itself.

User Layer

The user tayer is an emulation of Jipe itsell together with some mechanism for advancing local time.
The lime advance, message passing, and process creation and destruction are all implemented by calling
routines at the state save/restore level. For example when a time advance is done it is necessary to
advance the local time to be used in the next snapshot. Similarly, when a message reccive is done a
rollback may be forced by the arrival of a message at an carlier virtual time. This must be tested for by
the rollback mechanism after completion of the receive (pgeudo-code for this action is given below).

Some other Tunctions such as finding the name of a process cannot involve any changes in LVT and
are implemented direetly by TJipe routines. Still other actions such as adding items to a buffer are
implemented directly as Jipe routines.

State Save Restore

The next lower fayer implements rollback and state saving and calls the TJipe layer to implement
maintenance of time as well as message passing. This organization has been chosen so that a number of
different state saving mechanisms can be experimented with, IPor example, T-Concurrent Prolog [Cleary,
19%5] is to form the user fayer in one implementation. The intention there is to use the underlying Prolog
backtracking as a rollback mechanism. This obviously is very language dependent. Snapshots of entire
oxeeuting programs are also very hardware and operating system dependent. Thus, we did not want to be
tied to a single mechanism.

This level is aware of the ebb and Hflow of virtual time. For example, each snapshot needs to be
labeted with the current LVT. LV is aflected from two dircetions; by calis from the user level to
advance local time, and by times returned from the TJipe level. For example a “hold(Time)" call by the
user wiltl cause the local value of LVT to advance and will result in a call to the "Flipe routine
"tj_advance_time” to report this change.

A call to receive a message will be implemented by a call to TJipe to do the reecive and a check
when this has completed on the new value of LVT. This may have advanced because the message was in
the receiver's future (in virtual time) or it may have been moved back because of the arrival of a message
from the past which should cause a voltback. If a rollback has been caused then an appropriate spapshot
has Lo be selected, the state of the program restored and TJipe informed of the new LVT (there may not
have been a snapshot at exactly the right time so an carlier snapshot may have been used). The code for
receive is approximately as follows:

4 -

receive:
Old_LVT (= LVT;
Lj_receive;
ti_get_time(LVT,GVT);
if Old_LVT > LVT

then
retrieve a snapshot with time < LV,
LVT = time of snapshot;
ti_set_back_time(LVT);
start executing from old snapshot;
else

return

L_receive” does a receive at the ‘Flipe level, tj_get_time then obtains the new LVT and GV after the
message has been received. 1 this is in the past then the snapshot is retrieved and LV set to the
snapshot time. Finally TJipe is informed of the new time using tj_sct_back_time. All the user level

maessage passing routines as well as process ereation and destruetion are implemented in this way.

3 Jade Virtual Time Implementation

The butk of the implementation occurs at the TJipe level. The following sections deseribe the
various data structures and routines seen at the user level and how they are mapped onto Jipe constructs
via 'IJipe.

Buffers

Fivery message consists of a buffer containing simple items such as integers, floating point numbers,
characters, and strings. The buffers at the user level are identical to those in Jipe {Jade. 1984]. So, ali the
Jipe routines for manipulating buflers can be used direcetly. TJipe needs to send extra information with
cach user message. For example the LVT at which it was sent and whether it is an anti-message or not.
This is sent as a separate message buffer preceding the one scen by the user. Using two buffers greatly
simplifies the process of keeping the semanties of the user and Jipe level identical. For example, il the
information about LVT were packed into the front of a bufier then the maximum possible message length
seen by the user would differ from pure Jipe.

Processes

In Jipe the world consists of distinet processes with their own names (not necessarily distinet) and
process ids (which are unique). Sach process at the user level actually corresponds to two Jipe processes.
A process in which the users code runs and a separate "bufler’ process which quenes messages incoming for
the user process. The user processes may share buller processes. At one extreme there need be only one
butler process in the entire system, at the other extreme there will he one buller for cach user process. In
practice it is expeeted that all the processes on a single CPU will share a single bufler process. That is
there will be one butler process per CPU.

To sce why these additional bufler processes are necessary, reeall that Jipe sends are bloeking., That
is, il the destination (receiving) process does not reecive the message immediately then the sender blocks
until the destination does an appropriate receive. In particular if two processes send to cach other
simultancously then they will both be blocked forever in a deadlock. In a normal Jipe system this is a
bug and must be expunged. Tlowever, in TJipe such a deadlock might be caused by messages at ditlerent
virtual times, which il they were running in a ‘real’ situation would never occur simultancously. Also.

another message might arrive and force one of the processes to rotl-back and toke a different course. But
because it is blocked it will never sce the message which causes the roliback. This now is a bug in the
virtual time system tself not the users program. The standard technique for solving such problems within
blocking send systems is to send not to the process itsclf but to a buffer process. The bufler receives all
incoming messages, as well as requests for new messages from the user proce Provided all sends are
directed only to the buffer proeesses and the bufler processes never do sends and never run out of memory,
it is casy to show that deadlock can never occur. Figure 2 shows a typical configuration of processes using
this scheme.

38,

A user level send then consists of the following sequence at the Tlipe and lipe levels:

send(To_process_id):
the destination process id is examined and its buffer process
is determined;
a Jipc message is sent to the buffer process giving the LVT
of the sender and the ultimate destination;
a null Jipe reply is returned;
the actual user message buffer is sent to the buffer process;
the buffer process places the message on the appropriate
input queue for the destination (this may involve deleting
a message il an anti-message is present or causing a rollback
in the destination process);
eventually the destination user process will send a Jipe
message o its buffer process requesting the next incoming message:
the users buffer will be dequeued and passed as a reply to the
destination user process:
an extra buffer will be sent to the destination user process
giving the new values of its LVT and GVT.)

A number of points are apparent from this sequence. First each message passing action at the user
level transiates to a number of Jipe messages. Sccond most of the queucing and handling of matters such
as annihilating anti-messages is handled within the bufler processes themselves. The only data maintained
within the user processes are copies of the current values of GVT and LVT. N) messages or other queues

user
process

~‘\ send

send

CPU 1 CPU 2

Figure 2 Use of Buffer Processes in T.ipe

are maintained within the user process,

The other main function of the buffer processes is the caleulation of GVT. In a distributed system
this involves a broadeast protocol where all processes LVTs must be checked periodicly [Jefferson, 1983],

Time

Time at the user level is represented by simple integers. Towever, it is necessary to supplement this
at the save/restore and TJipe levels. In the TJipe implementation it is necessary o order the queues in
stricty inercasing time order (this is to ensure correct rollback and annihilation of messages). Messagoes
which are sent at the same virtual time must be distinguished somehow. This is done by adding a counter
to cach time. Messages sent by a single process at the same time are sequence numbered in order of
generation, All mes

sage quencing within TJipe uses the composite of time plus sequence counter,

Servers

An irrevocable action in a Time Warp system, for example printing a character on paper, cannot be
done until GVT advances past the time when the action was requested. Then the request will never be
rolled back. To accommodale this type of request such actions as printing are handied by 'servers’. The
servers receive messages requesting a service and wait until GVT advances belore actually executing
them. A single TJipe routine “tj_time_wait{)” is provided to allow servers to be constructed. When
called it blocks unti! GVT advances or until LVT is rolled back. A server then receives messages, queues
them. and does a Gj_time_wait() untit the GVT moves past the queuned message arrival times when the
request ean be serviced.

As usual we want to make this as transparent as possible at the user level. In particular, the
programmer of a server should not need to be aware of GVT and its advances. A simple wrapper routine
which hides the local queucing from the user will do this. The programmer writing the server thinks then

that he is writing a simple server which reccives messages which can be serviced immediately.

Discussion

Differences from the Jade IPC Protocol

As Tar as possible the Jade virtual time system emulates Jade and the Jipe protocol exactly. Apart
from the provision of time one further facility has been the addition of an asvnchronous send primitive.
Standard Jipe provides only a bloeking send, where the sender blocks until the destination process
explicitly does a receive call.

The reasoning here was that there is no correcet way of providing a truly non-blocking send. It is
alwayvs possible that when the send is attempted there will be no space in the system queues to store the
bufler. The send would then have to block anyway. The result is the introduction of a system dependent
blocking which will occur only very oceasionally, making debugging the system more rather than less
difficult. The standard way of achieving a non-blocking send in Jipe is for the user write his own
buflering process which queues moessages.,

in TJipe however the buffering processes are already provided as part of the underlying
implementation. Also if the system queues are full when a non-blocking send is attempted the message
can be sent back as an anti-message. This causes a roll-back and a later attempt to resend the message.
S0, for cconomy of user implementation effort and for efficieney the non-blocking send is built into TJipe.

Differences from Jefferson’s Virtual Time System

The Jade virtual time system differs in a few points from the system described by Jefferson. As
mentioned carlier time is not assumed to advance between message sends, o a number of messages ¢an be
sent at the same time. At the TlJipe level counters are added to ensure that the time plus counter
combination always advances,

If a program is in an infinite loop, the correct semantics of Time Warp require that it stitl be
possible to rollback the program. Without some additional facilitios this is not possible in Jipe. The
problem is that it is not possible to deteet a rollback unless a request has been made 1o the Tlipe buafler
process for values of GV and LVT. I a program is in an infinite loop it will not be making such
requests.,

This can be solved in interpreters such as Prolog by cheeking the value of LVT every so many
interpreter steps, In other languages it might be possible to put in a timer interrupt which did the chieek
cvery so often. Both these solutions introduce a significant overhead, and it can be taken as a criticism of
the underlying Jipe protocol that a more clegant solution is not possible.

Acknowledgements

We would like to thank the members of the JADIT project at the University of Calgary for providing
a stimulating environment for this work and for constructive criticisms of this paper. Both the authors

and the JADIS projeet have been supported by grants from the Natural Sciences and ongineering Reseuarch
Council of Canada.

References
Birtwistie, G.M. (1979) Demos - A System for Discrete Event Modelling On Simula. MacMillan.

Cheriton, DR, Malcolm, M.A., Meclen, LS., and Sager, G.R. (1979a) "Thoth: a portable real-time
operating system”™ Communications of the Association for Computing Machinery, 22 (2) 105-115, February.

Cheriton, D.R. (1979b) "Multi-Process Structuring and the Thoth Operating System™ Ph.D. Thests,
Department of Computer Science, University of Waterloo.

Cleary, J.G., Unger, B., and Goh, K.S. (1985) "Discrete event simulation in prolog” Proc. SCS Conference
on Al Graphics, and Stmulation, San Diego, California.

Jade (1984) "Jade User's Manual” Jade Research Report J81/1/1, Department of Computer Scienee,
University of Calgary, September.

Jefferson, D, and Sowizral, 11 (1982) "I"ast, Coneurrent. Simulation Using the Time Warp Mechanism, Part
I: Local Control™ Technical Note N-1906AF, The Rand Corporation, Santa Monica, California, December.

Jelferson, D.R. and Sowizral, Tl (1983) "Fast Concurrent Simulation Using the Time Warp Mechanism,
Part 1 Giobal Centrol” Technical Note, The Rand Corporation, Santa Monica, California, August.

Jefferson, D.R. and Sowizral, HLA. (1985) " Fast Concurrent. Simulation Using the Time Warp Mcchanism”
Proc. of the SCS Distributed Simulation Conference, San Dicgo, January.

Neal, R. Lomow, G.A., Peterson, M., Unger, B.W., and Witten, LIL (1981) "Experience with an inter-
process communication protocol in a distributed programming environment”™ CIPS Session & Conference,
Calgary, Alberta, May.

sSowizral, TLAL (1985) “The Time Warp Simulation System and its Performance” Proc. of the SCS
Distributed Simulation Conference, San Dicgo, January.

Unger, BW., Birtwistle, G.M.L, Cleary, J.Go, THIL DR, Lomow, G.A., Neal, R., Peterson, M., Witten,
LTE and Wyvill, BULANL (1981) “Jade: A Simulation and Software Prototyping Environment” Proe SCS
Conference on Simulation in Strongly Typed Longuages, San Dicgo, California, February.

