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Abstract

In this thesis we study possible relations between the solutions of related systems of
polynomial equations. In particular, we have considered conjugate systemns of polyno-
mial equations and transpose systems of binary homogeneous polynomial equations.

In case of conjugate systems of polynomial equations, we compared the number
of solutions by using the structure theorem for a finite dimensional commutative
associative algebras with identity.

In case of transpose systems of binary homogeneous polynomial equations, we
have proved topological (in terms of the Zariski topology) properties of the set of all
matrices with rank less than or equal to a certain number such that both a system
and its transpose system represent the same number of projective points.

As a by-product of this analysis we have proved that, for a given partition
(my,...,m,) of r, the set of binary forms f of degree r in the variables Xj, X3
over the field of complex numbers C such that f has the form I ... for some
linear forms [y,...,1,, is a Zariski irreducible closed set with dimension s + 1. Fur-
thermore, we have proved that the corresponding prime ideal of this closed set is the
radical of a coefficient ideal of a covariant (cf. 2.5 for the definition), for two part
partitions. .

We have illustrated these in detail for binary cubic, binary quartic and binary

quintic forms.
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Chapter 1

Introduction: A Brief Overview

The study of polynomial equations is one of the important branches of Mathematics.
It dates back to 1600 BC, initially with no sign of algebraic formulations such as
in Babylonian tablets and ancient Greek geometrical constructions. Our objective
in this thesis is to explore connections between the solutions of related systems of

polynomial equations. In particular, we have studied two versions: These are
o Conjugate systems of polynomial equations, and
o Transpose systems of binary homogeneous polynomial equations.

A partial solution to the first version involves finite dimensional commutative algebra
and a partial solution to the second version involves algebraic geometry.

In Chapter 2, we have introduced basic concepts which are needed for this thesis,
namely: algebraic geometry, and invariant theory.

In Chapter 3, we have stated the main problem, and have considered two different
versions of it. A solution to the basic case of the main problem involves elementary
linear algebra. My supervisor, Prof. H. K. Farahat, explained to me his approach
to conjugate systems using the structure theorem for finite dimensional associative
commutative algebras over an algebraically closed field. In an attempt to solve the
second version, we have studied the set of all square matrices of rank less than or

equal to [ such that both a system and its transpose system represent same number
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of projective points. The case of all matrices with rank less than or equal to 1
corresponds to the study of binary forms.

Invariant theory was developed in the nineteenth century by Boole [Boole,1841],
Cayley [Cayley 1889], Clebsch [Clebsch 1872], Gordan [Gordan 1885], Hilbert [Hilbert 1886],
Sylvester [Sylvester 1879] and others. It has been studied intermittently ever since.
In recent times, newly developed techniques have been applied with great success to
some of its outstanding problems. This has moved invariant theory, once again, to
the forefront of mathematical research (cf. [Kung, Rota 1984], [Mumford 1994]).

As a part of this thesis we study a problem concerning factors of binary forms
of degree r over the complex field C. Hilbert had shown that Z(r) = Rad(}}, and
Gordan had proved that Z(r—1,1) = Rad(®P) forr # 4, 6,8, 12 ( cf.4.5 for definitions).
But for each 0 < m < r, we have found a covariant such that the radical of the
coefficient ideal of this covariant is Z(r — m,m). This is presented in Theorem 4.23.

Further, in Chapter 4, we have explored the use of Grdobner bases, and have
presented results for binary cubic, binary quartic and binary quintic forms. Some of
the cases for sextic forms are covered by general results. But the full problem for
sextic forms is presently not completely solved. This is a good place to start future
research.

In Chapter 5, we have presented our results of the investigation of transpose
systems of binary homogeneous polynomial equations. In this case we have found
that the set of all (r + 1) x (r + 1) matrices of rank less than or equal to 1 such that

both the system and its transpose system represent k projective points

@ together with 0, is an affine closed set when k = 1,
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e is an intersection of an affine closed set and an affine open set, when 2 < k <r,
e is a dense subset, when k =7+ 1.

Further we have found that the set of all (r+1) x (r + 1) matrices of rank less than
or equal to [ such that both a system and its transpose system have only the trivial
solution is a dense subset of the set of all (r+ 1) x (r + 1) matrices of rank less than
orequaltol,for2<I<r+1.

In Appendix A, we have discussed a recurrence formula for positioning monomials
with respect to lexicographic order. In other Appendix sections , we have attached
a list of polynomials from Grébner bases which are needed for the proofs.

Thus, in brief, almost everything in Chapter 3, Chapter 4, and Chapter 5 is new
and the results are original. The main novelty of Chapter 4 lies in the theorem for a
covariant generator for the two part partition ideal ( ¢f. Theorem 4.23). The results
which do not indicate any reference are my own. In particular, the proofs given in
terms of Grobner bases are my own.

We conclude with some observations and notations in this thesis:

It is to be noted that the results thought to be most significant are labeled as
theorems or occasionally lemmas.

References have generally been given in the following forms: ([Gordan 1885]
p.35). Here [Gordan 1885] refers to the entry in the bibiliography under Gordan
and the given year, and p.35 refers to the page number where a proof can be found.
Notations: We will follow the following notations for f € C(Xy, Xi) :

af .
1. Ez—agf, fori=0,1,
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2. g%=6,?f, fori=0,1,
i
3. 3X00X1 _6061f1

4. K, denotes the set of all r x s matrices over a field K.



Chapter 2

Preliminaries

2.1 Algebraic Geometry

2.1.1 Affine Space

Let V be an n-dimensional vector space over the field of complex numbers C. Then
the set of all C-valued functions on V, C¥, with pointwise operations, forms a C-
algebra. Now CY contains all the constant functions and the C-linear functions.
Therefore, the space of all linear functions V* = Homc(V,C), is a subset of C¥.
The subalgebra of C¥ generated by V* is denoted by C[V]. This subalgebra C[V]
is clearly generated by any basis of V*. Thus C[V] = C[X},...,Xs] = the subalge-
bra generated by any choice of co-ordinate functions Xj, ..., X, on V, the so-called
coordinate ring of V. We call the elements of C[X;,...,X,] polynomial functions
on V. A polynomial function h € C[X;,...,X,] is homogeneous of degree m if
h(az) = a™h(z} foracC,ze V.

Viewed with its ring of polynomial functions, V is called an affine n-space over
the field of complex numbers C.

Given a subset G of C[Xj, ..., X;], we define a corresponding subset of V' called

the zero set of GG, namely:

V(G)={zeV]|g(z) =0 forall g G}.
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From the definition of the zero set V(G), it is clear that G may be replaced by the
ideal that it generates in C[Xy,...,X,] without changing V(G). £ S =V(G) isa
zero set, then a zero subset T of S is a set of the form T = V(J), for some J a
subset of C[X;,..., Xy}, that happens to be contained in S. The Zariski topology
on S is the topology whose closed sets are the zero subsets of S. We shall call these
closed sets affine closed sets to distinguish them from prejective objects we shall
define later. Topological notions in this thesis will always be relative to the Zariski
topology.

There is a sort of inverse to the construction of a zero set : Given any set Q CV
we define

I(Q)={geCX,,...,.Xs]|9(z) =0forall z € Q}.

It is clear that I(Q) is an ideal, which we shall call the wvanishing ideal of Q. A
polynomial function on Q is by definition the restriction to Q of a polynomial function
on V. Identifying two polynomial functions if they agree at all the points of Q, we get
the coordinate ring, C[Q] of @ (so called because it is the C-algebra of functions on Q
generated by the coordinate functions). Clearly we have C[Q] = C[X;, ..., X,]/I(Q).
The correspondence between zero sets and vanishing ideals is given by Hilbert’s
Nullstellensatz [1893).

Theorem 2.1 (Nulistellensatz)
IfI cClX,,...,X,] is an ideal , then

I(V(I)) = Rad(1),
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where

Red(I) = {f € C[X1,..., Xa]| f™ € I for some positive integer m }.

Thus, the correspondences I — V(I) and Q — I(Q) induce a bijection between
the collection of zero subsets of V' and radical ideals of C[X;, ..., X,

The intersection of all closed subsets of X containing a given subset M C X is
closed. It is called the closure of M and is denoted by M. A subset M is called dense
in X if M = X. This means that M is not contained properly in any closed subset
YCX, Y#X.

Let W be an m-dimensional vector space. A mapping ¢ : V — W is called a
polynomial mapping if, with respect to some basis of W, the coordinates of ¢(z),z €
V, are polynomial functions on V.

Let

a: VoW

be a polynomial mapping. Then the map

a" : C(W] - C[V]
defined by
o (f) = fe

is a ring homomorphism which is the identity on the constant functions C C C[W].
(See [Shafarevich 1974] p.19).
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A non-empty subset Y of a topological space X is irreducible if it cannot be
expressed as the union Y = ¥; UY: of two proper subsets, each one of which is closed
in Y. The empty set is not considered to be irreducible.

It can be proved from the definition that a topological space X is irreducible if
and only if every non-empty open subset of X is dense.

The following is an equivalent condition for irreducibility in the Zariski topology:

An affine closed subset S of V is irreducibie if and only if I(S) is a prime ideal
of C[V] ( see [Shafarevich 1974] p. 23).

2.1.2 Projective Space

Projective space over the field C, written P*, is the set of all one-dimensional sub-
spaces of Cy (n+1), the vector space of 1 X n + 1 row matrices over C. Sometimes, we
will want to refer to the projective space of all one dimensional subspaces of a vector
space V over the field C; in this case we will denote it by P(V').

A point in P* is usually written as a homogeneous vector [zg, ..., 2,] by which
we mean the one dimensional subspace spanned by (z,...,2) € Cy (n41)- Likewise
for any non-zero vector v € V we denote by [v] the corresponding point in P(V').
A polynomial f € C[Xy,...,X,], where Xy, ..., X, are co-ordinate functions on
Ci,n+1) does not define a function on P*. On the other hand if f happens to be

homogeneous of degree d then since
f(AX(h vee ,AX,;) = le(Xoa cen 1Xn):

it does make sense to talk about the zero set of the polynomial f as a subset of P".
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A subset X C P" is called projective closed if it consists of all points at which
finitely many homogeneous polynomials with coefficients in C vanish simultaneously.
In this case I(X) has the property that if a polynomial is contained in it, then so are
all its homogeneous components. Ideals having this property are called homogeneous
ideals.

2.1.3 Products

Definition 2.2 1. A subset A of P* x P™ is projective closed if and only if it is

a zero set of a system of polynomial functions

Gi(Um'HaUn;%,---,Vm)r(i=17---1t)

homogeneous in each set of co-ordinate functions U; on P* and V; on P™ sep-

arately.
2. The closed subsets of P* x C,,, are the zero sets of systems of polynomial
functions

GiUo, -+ UniYiye oo Yo, (i = 1, )
homogeneous in the coordinate functions Uy, ...,Un on P*, where Y; are coor-
dinate functions on C; .

3. The closed sets in P x ... x P" agre the zero sets of systems of polynomial
functions, homogeneous in each of the | groups of coordinate functions.
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2.1.4 Dimension

Definition 2.3 Let X be a topological space , Y C X a closed irreducible subset. If
X #0, the dimension dim(X) of X is the supremum of the lengths n of all chains

XoCX;C...C X, (Xita # Xi)

of non-empty closed irreducible subsets X; of X. IfY # @, then the codimension
codimx(Y) of Y in X is defined as the supremum of the lengths of all chains

Y=XoCX\C...C Xp,(Xit1 # Xi)-

The empty topological space is assigned dimension -1, and the empty subset of X is

assigned codimension co.
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2.2 Binary forms and Action of GL(2,C)

Let Xp, X; be algebraically independent indeterminates over C. Then the ring of
polynomials in Xy, X; over C, C[Xj, X1], is a commutative associative graded algebra
over C graded by degree. That is,

C[Xo, X1] = C+C[ Xy, X1]1+C[Xo, Xa]a+ .. .,

where C[X,, X;), is the set of all homogeneous polynomials in Xy, X; over C of
degree r, the so called complez binary forms in Xy, X of degree r.

The set of all homogeneous polynomials in Xj, X, over C of degree r, C[Xo, Xi),
is a vector space over C of dimension r+ 1. The set of monomials in Xy, X; of degree
r, {X}, X5 X1, ..., X[}, is the standard ordered monomial basis for C[Xp, Xi].

The group of all 2 x 2 invertible complex matrices, GL(2,C), acts on C[Xp, X1}
as follows:

For g € GL(2,C)

9Xo = guXo+tgnXy

X1 = g12Xo +92X
That is, g acts on C[X,, X)), as the linear transformation whose matrix relative
to the basis {Xj, X1} is g. The group GL(2,C) acts on all of C[Xj, X;] by degree
preserving algebra automorphisms. Hence GL(2,C) acts on each C[ X, Xj], by linear
automorphisms. The r** induced matriz gl is the matrix of the linear automorphism

defined by g on C[Xo, X1]., with respect to the standard ordered monomial basis.
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Example 2.4

9%1 qud2 9%2
g4 = 20ugn fudn + 91512 212922
9 g9 95

Coordinate ring of C[X,, X)),

Recall that the ring of polynomial functions from C[X,,Xi]. to C is gener-
ated by any set of coordinate functions ( i.e. a basis of the dual) of the vec-
tor space C[Xo, X;],. Thus if Ag,4;,..., A, are such coordinate functions then
C[Ao, A1, ..., A,] is the ring of polynomial functions on C[Xy, Xi],, the so-called
coordinate ring of C{Xq, X;},. A polynomial function is homogeneous of degree k if
it is a C—linear combination of monomials in Ay, 43, ..., A, of degree k.

Polynomial mappings

Recall also that a polynomial mapping from C[Xp, X1, to C[Xp, X1}m is given in
terms of coordinate functions by m + 1 polynomial functions on C[Xg, Xi],. Equiv-
alently, ¢ is a polynomial mapping iff the composition { o g is a polynomial function
on C[Xy, Xi], for every linear function { from C[X,, Xi}m to C.

Covariants
Definition 2.5 1. 4 polynomial mapping C from C[Xy, Xy} to C[Xo, Xi]m is
called a covariant of weight w if
(a) C is homogeneous of degree k(say), and

(b) for all ¢ € GL(2,C) and for all f € C[Xq, X1} we have gC(f) =
(det g)° C(gf).
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When m =0, C is called an invariant.

2. A polynomial mapping C from C[Xy, X1}, ® C[ Xy, X1, to C[Xo, Xi|m is called
a joint covariant of weight w if
(a) C is homogeneous of degree k(say), and
(b) for all g € GL(2,C), for all f € C[X,,X1], and for all h € C[Xq, X;], we
have gC(f, h) = (det g)” C(gf, gh).
When m =0, C is called a joint invariant.
3. The coefficient ideal of a covariant C is the ideal of the coordinate ring of

C[Xo, X1)r, generated by the compositions | o C, for every coordinate function
! from C[Xy, Xi]|m to C.

The simplest example of a covariant is the identity mapping J from C[X,, X],
to itself. It has weight 0.
The discriminant

A particularly important invariant from C[Xj, Xi]- to C is the discriminant.
Definition 2.6 1. Let
f = Za‘ixﬂr“ixlir (T 2 l):
i=0
g=Y X" X, (m 2> 1).
=0

Then the resultant Res(f,g) of f and g, is the determinant of the following
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(r+m) x (r +m) matriz,

(Go bo }
ai Go b b -
a a - b b
ag bo
a; bm h |
Gy b
ar
\ o b )

where the empty spaces are filled by zeros.

2. The discriminant is the polynomial function D from C[Xy, X1), to C defined
by
D(f) = Res(Gof, 0 f), for f € C[Xo, Xalr-

Properties of discriminant:
1. ([Bocher 1964] p. 259) The discriminant is an invariant of weight r(r — 1).

2. ([Bocher 1964] p. 237) A necessary and sufficient condition that the binary
form f has a muitiple linear factor is that the discriminant of f vanishes.

3. ([Bocher 1964] p. 259) The discriminant of a binary form is an irreducible
polynomial function.
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The Hessian
The Hessian is the polynomial mapping H from C[Xj, X1, to C[Xoy,X1)2r—a
defined by
a(f) Gd(f)

}c(f) = ,f€ C[Xo,XI],..
&d(f) ()

It is a covariant of weight 2.
The Jacobian
The Jacobian is the polynomial mapping § from C{Xy, X1], to C[Xo, X1]sr-s
defined by
&(f) &lf)

af) = , f € C[Xo, Xulr-
G(H(f)) A(IH(S)

It is a covariant of weight 3.

This use of the word “Jacobian” is not to be confused with the usual terminology
in calculus.

The transvectants

The Hessian and the Jacobian are special cases of a general type of covariant
called transvectant. To define transvectants, we will briefly explain the symbolic
representation of binary forms, which originated with Clebsh.

We shall represent a binary form

123 ()axaxir2 ),
=0
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symbolically as

f=(aoXo+ar Xi) =(ag Xo+a1 X1) =...

where the symbols appearing here are subject to the formal relations:

- -k sk
s =of kot =a)Fa}*=.. . for k=0,...,r.

Definition 2.7 The k* transvectant is the polynomial mapping (, )*' from C[X,, X,],®
C{Xo, X1]s to C[Xo, X1|r+s—2¢ defined by

(f, B)®) = (gfr — a1 Bo) (2o X0 + a1 X1)"* (BoXo + SrX1)" %,

where f = (apXp +aX,)" € C[Xo,Xllf and h = (BeXo+ 5 X1)* € C[Xu,xl_],. It is
a joint covariant. In this, the right hand side is converted, using the above relations,

to an ezpression involving Xy, X1 and the coefficients of f,h.

Ezample 2.8 Let f = (agXo + an Xh)" = (GoXo + 51 X1)". Then

F£H® = (abr = a1fo)(a0Xo + 0 X1)" " (BeXo + B X)) 2

= (03B} — 2a0b10nf0 + a3B82) (aoXo + 1 X1) 2 (BoXo + Bi Xy)" 2

o (aoXo + 0 X1) "2 B2 (B Xo + Hr Xn) 2
—2a0B1 (@0 Xo + a1 X1)" 2 a1 5o (foXo + ArXa)" 2
+a§ (QQXQ -+ ale)'“'"‘ ﬂg (ﬁoXo -+ B1X1)r-2

~ e (BB - 200 30, (1) + BN BN}

2
v
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Some examples of transvectants used in this dissertation are: For f € C[Xy.X1)s,

1 1
mﬁ()’) = E(f’ ne

1 1 L
,-3(,._1)2(,._2)3(” = §(f:9f(f))()

Pf) = (AW

As the next theorem shows, it is possible to express the Hessian and the Jaco-
bian in terms of only one of the partial derivatives &y, &, mainly because of Euler’s
Theorem on homogeneous functions([Bécher 1964] p. 237).

Theorem 2.9 Let f be a binary form of degree . Then
X3H(f) = r(r = 1)f&f - (r - 1@ f)%,

and

XIH(f) =r(r— 1)fRf - (r - 1)*(Bf)*.

Proof: ([Farahat])
Let f have degree r. Then & f, &, f are binary forms of degree r — 1. The Hessian
of fis
5f G f
aonf Bf |

Multiply the first row by Xj , then multiply the second row by X; and add to the

H(f) =
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first row. We get
X X,6%
XH(f) = Xo03 f + X100, f Xo6odr f + X107 f
G f &#f
_ (Xo8o + X181)06f (X0 + X101)01f
Goor f a3 f

By Euler’s formula, we have

(Xo0o + X1&1)0of = (r — 1)bof, and

(Xobo + X181)01f = (r ~1)4if.

Therefore,
(r—1)of (r—1)af
o f o f

XoH(f) =

-

Now multiply the first column by X, and then multiply the second column by
X1 and add to the first column, we get

(r—1)XoGof +(r—1) Xi01f (r-1)6.f
Xo8ebhf + X, 33 f Aif

(r — 1)(Xobo + X181) f (r-1)af
(Xobo + X1B1)00 f aEf

X33(f) =
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By Euler’s formula, we have

(Xobo + X181)01f = (r — 1)B1 f

and
(Xobo + i) f =rf.

Thus,

sy |TCY -nag |

(r-1)af ot f

Hence,

X3H(f) =r(r - 1)f8}f = (r — 1)2(6u)".
In a similar manner we have,

XIH(f) =r(r = 1)f&f - (r - 1)*(5f)>.

Theorem 2.10 Let f be a binary form of degree r > 2. Then

X33(f) = -3r(r—1)(r-2) fofO%f
+r2(r = 1) f283f + (2r — 4)(r — 1)2(81f)°, and
X3(f) = -¥/(r-1)(r-2)fRfRf

+ri(r = 1) 23R + (2r — 4)(r — 1)? (Bof)*.

19
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Proof: Let f have degree r. Then the Hessian H(f) of f is a binary form of degree
2r — 4 in the variables X and X;. The Jacobian of f is,

o f o f
&H()  aX(f)

afn=

Multiply the first column by Xy, and then multiply the second column by X; and

add to the first column, we get

X X
X3(f) = 0dof + X100 f o f
XoGH(f) + X101 (f) AaH(f)
_ (XoGo+ X101) f of
(XoGo + X1 61) H(f) G (H(f))
= f uf (by Euler’s formula)
(2r —4)H(f) AH(f)

Hence,
Xod(f) =rf x(H(f)) = (2r — 4 H(f) Brf.
By Theorem 2.9,
H(f) = X5* {r(r - 1)f&Ef - (r —1(8u)*}.
Hence

X33(f) = rf{{r—D@-r)2fBf +r(r—1)f8f}
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—(2r = )8 f {r(r - VfES — (r — 1)*(8.1)*}

= 3r(r - 1)(r—2)f0f8f +r*(r - )8 f
+2(r — 2)(r - 1)2(B1f)".
The second identity can be obtained by similar means.

Remark 2.11 Defining f; by

: !
&%f = (r—i'ﬁ'!'fi

we have

XIH(f) = (r — 1) fofo — rP(r — 1)*f1.
X3(f) = —r(r - 12(r - 2) {3fefifo — f2fs — 2£7}.

When r > 2, we have

H(f)

r2(r —1)2

d(f)
(=1)r¥(r — 1)*(r - 2)

X ffa - 12},

Similarly defining f; by ,
rl

we have whenr > 2

H(f)

= x*{kfa- P2}, and

= X7 {3fufif2— fifs —2£3}.

21
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Chapter 3
Problem Statement and Some Special Cases

In this chapter, we first introduce the main problem. The basic case of the main
problem follows easily from linear algebra. Then we explore two versions of the main
problem. The solution to version 1 was obtained by Prof. H. K. Farahat in 1995 and
discussed in a seminar in 1997. Finally at the end of this chapter we state version 2
of the main problem.

Let n,r be positive integers, and let Xj,..., X, be commuting indeterminates
over a field K. Then any monomial in Xj,..., X, can be written as X{* ... X%, and
the degree of the monomial X7 ... X2~ is the sum & +. .. + . We shall order the

monomials of degree r by using lexicographic order, which is defined below.

Definition 3.1 Lezicographic order is a relation > defined on the set of monomials
in Xy, ..., X, satisfying X7 ... X3 >~ Xf‘ ...XB ifand only ifa; > By, oray =y
and a; > B, ete.

Definition 3.2 Define N(n,r) to be the number of monomials in X;,..., X, of
degree r. ( See [Cameron 1994] pages 32-33.) For alln >0, r > 0,

N(n,r)= (n+:—1).

23
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Definition 3.3 Let

(Xl\

X2

\ Xn )
where X, ..., X, are variables. Then forr > 1, define X rl to be the column matriz

whose entries are the monomials X;, ... X, , where 1 <4; < ... < i < n, listed in

lezicographic order.

That is,
[ xr )

{r=1}
X["l _ Xl X2

\ A /(N(n,r)xl)
Note that X = X.

For example when n=2,

[ x¢
XX,
X X2

\ Xi J

XxBl =

We have found a recurrence formula for positioning a monomial of degree r in
X!, which is attached in Appendix A.

Next we shall state the main problem.
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Problem Statement: (Transpose system of polynomial equations)

Letr > 1, s > 1, and let C be 2 N(n,r) x N(n, s) matrix over K.

Consider the following systems of polynomial equations,

Xt =cxtl (3.1)
X¥ = T xll, (3.2)

where C7 is the transpose of the matrix C. Our aim is to find any relations that
may exist between the solutions of the systems of equations 3.1 and 3.2.

The basic case r = s = 1 is covered by the following:

Theorem 3.4 (Basic case) If C € K, , then the solution space of the system of
linear eguations

X =CX, (3.3)

and of the system of linear equations

X =CTX, (3.4)

have the same dimension.

Proof: The matrix equation X = CX, is equivalent to (I - C)X = 0. Thisis a
system of homogeneous linear equations, whose solution set is a vector space with
dimension equal to n — rank(l — C).

The matrix equation X = CTX, is equivalent to (I ~CT)X =0. Thisisalsoa

system of homogeneous linear equations, whose solution set is a vector space with
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dimension equal to n — rank(l — CT). Since rank(I — C) = rank (I - C)T =
rank(/ — CT), the solution space of the system (3.3) and the solution space of the
system (3.4) have the same dimension. m}

3.1 Conjugate Systems of Quadratic Equations

Let K be an algebraically closed field, and let n > 1.
Now we shall state the problem of conjugate systems of polynomial equations.

Probiem Statement:(Conjugate Systems of Quadratic Equations)

Suppose that we have a family of scalars ( meaning elements of K ) ¢ for
1 €14,j,k £ n, with the property that ¢ = cjie forallé, j,k=1,...n.

Consider the following system of quadratic equations in n variables X, ..., X,,
X.'XJ- = 2 Cijk X, foralli,j=1,...n (35)
k=1
and its conjugate system of quadratic equations in n variables X3, ..., X,,
X = Z Gije XiXj, forallk=1,...n (3.6)
t,j=1

Find any relations that may exist between the solutions of the systems of equations
3.5and 3.6.
It turns out that the structure theory of finite dimensional commutative algebras

is useful in this connection.

Definition 3.5 LetV be n-dimensional vector space over K. Then there ezistvy,..., U, €
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V such that,
V =K +...+Kv,, (internal direct sum).

Also suppose that Xy,...,X, are the corresponding co-ordinate functions in the dual

spece of V. These are linear functions

I,-:V—)K
such that
1 ifi=j
Xi(v;) =
0 i#fi#j

Define a bilinear multiplication x on V by

UixU; = V%0 = Zcijkvk-
k=1

The vector space V together with the multiplication * defined above, is a finite di-
mensional commutative algebra over K. We denote this ( possibly non-associative)

algebra by V..

Next we shall show that the idempotents in the algebra V. correspond to the
solutions of the system of quadratic equations 3.6. This follows from the following

lemma.
Lemma 3.6 The following are equivalent for ay,...,a, € K:

1. ayvy + ... + ap¥, is an idempotent in V..

2 Yoo =ay, forallk=1,...,n
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Proof: Let aj,...,a, € K. Then

n

(an +... +agvs)? = 2 ;05 Vi * U;

ig=1
n "
- 3 (( 3 )
k=1 \ig=1

Hence ajv, + ... + @q U, is an idempotent in V., iff

Qg — Z aaicie =0,Vk=1,...n.

ij=1
a

Next we shall show that the algebra homomorphisms from V. to the field K
correspond to the solutions of the system of quadratic equations 3.5. This follows

from the following lemma.
Lemma 3.7 The following are equivalent for ay,...,a, €K:

1. The K-linear function
aXi+...+0 Xy V.= K

is an algebra homomorphism.
2. S b cion = azay, foralli,j=1,...,n.

Proof: The K-linear function

h=a1x1+...+anx“:vc—)K
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is an algebra homomorphism iff
h(v)h(v;) = k(v % v;), foralld,j=1,...,n.
The result follows from the following:
h(vi)h(v;) = i aj,

h(vixv;) = h(Y cigpve) = ) cawh(vr) = ) cije k.
k=1 k=1 k=1

Next we shall state the main theorem in this chapter.

Theorem 3.8 (/Farahat/)

Consider the following conjugate systems of polynomial equations,

XX; = ) cpXe, forallij=1,...n,

k=1

Xe = ) apXiX, forallk=1,...n.

=1

where all ¢ are in the algebraically closed field K.

Suppose that scalars c;jx satisfy both of the follounng statements
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1. There ezist ay,...,a, € K such that forall j=1,...,n, and all k # j,

n
Z aicijk =0,
=1

and
ZaiCijj =1
i=1
2. Yoy CijkChip = Y CitkCikpy 00 Ciji = Cjik, for all 1 < 4,5,1,p < n.
Then the system of quadratic equations 3.5 has m + 1 solutions if and only if the

system of quadratic equations 3.6 has 2™ solutions in K.

In order to give a proof of this theorem we shall establish the following two
lemmas, providing conditions on the constants ¢;;x, equivalent to V. being associative

with identity element.

Lemma 3.9 1. The following are equivalent:
(a) V. has an identity element.

(b) There ezist ay,...,an € K such that forall j = 1,...,n and for all k # j,

N
Z o ciji = 0,
=1

and
n
> a1
=1

2. The following are equivalent:

(a) V. is associative
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(b) The ciji satisfy the following quadratic condilions,

Y cincup = Y CiinCikpy for all 1 <, j,Lp <.
k=1 k=1

Proof:

1. V. has an identity element iff there exist ay,...,a, € K such that

n n
E a,-v,-*v,-:v,—:v,-*z a;, Vi=1,...,n.
=1 i=1

Since * is commutative, only one of these will suffice. That is,

n
Zcrjv,- * Ui ='U,',V7:= 1,...,71.
i=1

By the definition of the multiplication, we have

n n
> (zc,.,.,.uk) —wVimL..m.
k=1

i=1

That is,
n n
Zz(aic"f")”" =y,Vi=1,...,n

k=1 j=1

Since vy, ..., v, are linearly independent, foralli=1,...,n,

Za,-c;_.,-k = 0, for all & # i,

=1
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and

n
Z Q;Cij = 1.

i=1

Hence the result.

2. Leta=3%0 o, b= Z;.'zl Bivj: €= p_; Tk be any elements of V.. Then

n n

(@xb)*c= (Z aiBjcijt vz) * (z 'kak) = Z B Yk CijitCikp Ups
k=1

idd=1 iglkp=1

n n n
ax(bxc) = (Z a,-u,-) * z B,-'n,c,-u v;) = Z ﬁj7kaicjklcilp Up.
i=l

jked=1 idl.kp=1
The condition for associativity of V. follows from this by comparison of the

coefficients of ;. m]

Now we are ready to give a proof of Theorem 3.8.

Proof of Theorem 3.8:

The conditions of the theorem ensure that V. is a finite dimensional associative
commutative algebra over K with an identity. The structure of such algebras is well
known, and can be found for example in [Hungerford 1974} on page 153. That is,
V./Rad(V,.) is isomorphic to a direct sum of a finite number of copies of K, where
Rad(V.) is the set of all nilpotent elements in V, :

V./Red(V.) = Ko...0K.

Now an element @ = (ay,...,an) in K@ ... ® K is an idempotent iff o = a;,

for alli = 1,...,m. Since a field has only 2 idempotents, K& ... @ K has exactly
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2™ idempotents. Therefore V./Rad(V,) has exactly 2™ idempotents. But every
idempotent in V./Rad(V.), can be lifted uniquely to an idempotent in V. (see lifting
idempotents in [Eisenbud 1995] p. 189). Hence, we have that V. has exactly 2™
idempotents. Note that e; = (1,0...,0),...,em = (0,0,...,1) are primitive non-
zero orthogonal idempotents in K& ... & K, and every idempotent is a sum of a
subset of them.

Suppose that g is a K—algebra homomorphism from K& ... @K to K Then
glar,. .. am) = Yom, aigles), for ay,...,am € K, where g(e;)? = g(e;) for all i =
1,...,m, and g(e;)g(e;) =0 for all 1 < i < j < m. Therefore, for each i =1,...,m,
g(e;) is either 0 or 1 and g(e;)g{e;) =0 for all 1 < i < j < m. Hence, there arem +1
K—algebra homomorphisms from V, to field K, namely 0 and the m projections. O

We shall illustrate Theorem 3.8 with the following examples.

Example 3.10 Consider the following system of polynomial equations,

[ x2\ (10)
X1 X _ 01 X1 (37)
X2X1 01 Xg

\ X3 )/ \o1}

First we look at the algebra A = Kv, + Ku,. The multiplication table for the basis of

A is as follows:
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U U

v v

Uy | Ve 2

It is easy to verify that
1. A is associative with identity element vy, and primitive idempotents vg, v1 — V.
2. Rad(A) is zero.

3. A=Kuv +K(v — o) (direct sum of fields isomorphic to K).

The above mentioned system 3.7 has 3 solutions, namely (0,0), (1,0), and (1,1).

There are exactly 3 algebra homomorphisms from A to K, namely:

1. trivial homomorphism

where for each i =1,2,

X;i: A=K

is defined by
1 ifi=j
0 ifi#j
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Now consider the following system of polynomial equations,

[ x2

X1 100040 X1 X,
= (3.8)
X5 0111 X Xi
\ X3 )

This system is conjugate to the system 8.7 and it has 4 solutions, namely
(0,0),(1,0),(0,1) and (1, ~1). There are four idempotents in A, namely: 0, v, vz, 11—

Ug.

3.2 Transpose Systems of Binary Homogeneous Polynomial

Equations

First we shall state the problem of transpose systems of binary homogeneous poly-
nomial equations:

Problem Statement:
Xo

X
Then find any relations that may exist between the solutions of the transpose

Letr > 1,A € Cryrper, and X =

systems of binary homogeneous polynomial equations

Axtl =g, (3.9)

and

ATXr = (3.10)
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As we shall see in Chapter 5, this problem is connected with rather basic concepts
of algebraic geometry. For this purpose we shall consider the vector space Criqr41
of all (r+1) x (r + 1) matrices over C. This is a complex vector space of dimension
(r+ 1), and its co-ordinate ring is generated by any dual basis of this vector space.
For fixed {, the set Cﬂlﬂl of all (r +1) x (r+1) matrices of rank less than or equal
to ! is a Zariski closed subset. It consists of those matrices with all {{ + 1) x (I +1)

minors equal to zero. Formally:

Definition 3.11
CY, o1 = V( all (1 +1) x (I + 1) minors).

In fact it was proved in [Bruns, Vetter 1988] on p. 5 that for 0 < ! < (r +
1), €Y, .., is an irreducible closed subset of Cy.y 41 With dimension I(2r +2 —1).

The ideal of the co-ordinate ring generated by minors of a given size is called
a determinantal ideal. It is in fact prime but this is a non-trivial statement. The
subject of determinantal ideals is fairly extensive.( See [Bruns, Vetter 1988] on page
14.)

Thus we have the following ascending chain of irreducible Zariski closed subsets
of Criartts |

= {0 r+l}
{0} =Gl €. CCGE L =G

Definition 3.12 For C € C,y) r+1, define P{C) to be the set of all projective points
[X] = [Xo, X1] in the one dimensional projective space B such that CXt1 = 0. That
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is,

P(C) = {[X] = [Xo, X1] e B* |CX1 = 0}.

When C =0, P(C) = P is infinite. Otherwise it has at most r points. Hence
the following definition makes sense.

Definition 3.13 For k > 0,
EOE) = {C € CY, 1 [#P(C) = #P(CT) = k}.

We are interested in the properties of the sets £0 (k).

We know that C, ., = {0} and therefore £ (k) =@ forall k>0 .

It is obvious that if C € CU¥); ,., \ {0} then the system C X!l = 0 is equivalent to
a single binary homogeneous polynomial equation. Thus the projective points in the
set P(C) are same as the projective points represented by the corresponding binary
form. Therefore it is necessary to get further information about binary forms. This

is the subject of the next chapter.



Chapter 4

Binary Forms

In this chapter we want to explore the geometrical nature of the set of all binary
forms having a certain factorization. In Section 4.1, we have proved that the set of
all binary forms having certain factorizations are affine irreducible closed sets.

In Section 4.2, we determine the dimension of these closed sets.

In Section 4.3, we present our findings regarding the following question:

Let (my, ..., m,) be a partition of r. Can one find covariants whose vanishing for
a binary form f is a necessary and sufficient condition that f has the form ™ ...
for some linear forms I, ...,[,?

Our investigation is by no means complete. But for degrees 2,3,4 and 5 it is

complete. We present the results in the Subsections 4.3.2, 4.3.3 and 4.3.4.

4.1 The Affine Closed Sets F(my,...,ms)

Let (my,...,m,) be a partition of r, that is :

m+...+My=T, My 2mM22...2m,>0.

We consider the mapping :
ClXo, Xih®...8CXo, X1 = ClXo, Xi]r
(I, .-+, 1) I Y e N

38
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The domain and destination are vector spaces and this mapping is a polynomial
mapping. It turns out that its image, i.e. the set of binary forms of degree r with
factorization multiplicities m,, ..., m,, is an irreducible closed subset of C[X,, Xi].

Explicitly, writing [; = [;3.Xo + {;7X; we have
m...e.= H(liOXO +la Xy)™.
=1

Now by expanding the right hand side, using the binomial theorem we have,

s

TLtXo +nXy)y™ = 1'[2( ),o g X X
i=1 :=1q.=0
.3 H(@e0) e
=0 q+..+qs=5 i=1
= Y X3 X] (say). (4.1)
i=0

It is important to note from this that ¢y, ..., ¢, are polynomial functions of the co-
ordinates of ly, .. ., 1, and that each c; is separately homogeneous of degree m; in lig
and ;.

We are interested in the set of all such binary forms for a fixed choice of partition
(my,...,ms). To this end let F(m;, ..., m,) denote the set of binary forms of degree
r corresponding to all choices {y, ..., € C[Xy, Xi];. Formally:

Definition 4.1

.F(ml,...,m,) ={f€C[X01X1]r|f=I?1'-'ZT‘r for.?ome ll:"'zll GC[XO*)XIII}'
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Theorem 4.2 ([Farahat])
For any partition (my, ...,m,) of r, F(my, ..., m,) s a closed subset of C[Xy, X
Proof:

We are going to show that F(m,...,m,) is an affine closed subset of C[Xo, X,
by exhibiting a closed subset @ of the product

P(C[Xa, Xi]1) x ... x P{C[Xo, Xi)1) xC[Xo, Xi]»

s copies

whose projection on C[Xy, X, is F(my,...,m,). In fact

Q p—v
{ ([’1], SN AR ianE-jX{) € P(C[Xo, X1)1) x ... x B(C[Xo, Xi]1) x C[Xo, Xi]r

j=0

| aic; — ajc; =0 V0 < i < j < r where the ¢; are defined by 4.1 }

Recalling the definition of closed sets in a product, and the above remark concerning
the function ¢;, it is evident that Q is a closed subset of P(C[Xp, Xi)1) X ... X
P(C[Xo, X1)1) x C[Xo, X1 Since P(C{Xg, X1]1) x ... x *(C[Xo, X1}1) is a projective
closed set, it follows from (Theorem 3 [Shafarevich 1974] p. 45) that the projection
onto C[Xp, X1| carries the closed subset Q to a closed subset of C[Xj, X-. It only
remains to show that the image of Q under the projection, is exactly F(my, ..., m,).

fe=3", a; X5 ~? X is an element of the image of Q, then Q contains an element

([, - [l],a), and the corresponding ¢ = 37 _, ;X5 > X} = [™ ...I™ is non-zero,

7
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because each [; is non-zero. The conditions a;¢; —ajc; =0 forall 0 <i < j <, now
imply that e is scalar multiple of c. Hence a belongs to F(m;, ..., m,).

On the other hand, it is clear that every non-zero element of F(m,,...,m,)
belongs to the image of Q. The zero element of F(m,,...,m,) is obviously also in

the image. o
It turns out that each of these closed sets is irreducible:

Theorem 4.3 For any partition (my,...,m,) of r, F(my,...,m,) is irreducible.

Proof: Now F(m;,...,m,) is the image of the polynomial mapping

r: (ll,...,l,) GC[XQ,X1]1$ ...@C[XQ,X1]1 - [Tl I:n' GC[XQ,Xll,..

The domain, being a vector space, is irreducible. The image is closed by the above
theorem. The polynomial mapping I' induces a ring homomorphism [ from the co-
ordinate ring C(C[Xq, Xi],| to the coordinate ring C[C[Xy, X1 @ ... & C[Xo, Xi]1]
with kernel I(F(m;, ..., m,)). Hence C[C[X,, Xi);]/I(F(m,,...,m,)) is isomorphic
to a subring of the coordinate ring C[{C[X,, X;]; & - . . & C[Xo, Xi]1] - Since the coor-
dinate ring C [C[X,, X1]1 © ... & C[Xq, X1}1] is an integral domain, every subring of
the coordinate ring C[C{Xq, X1/ @ ... & C[Xo, Xi)1] is an integral domain. There-
fore C[C{Xy, X1],]/I(F(my, .. .,m,)) is an integral domain. Hence {F(m,,...,m,))
is a prime ideal. Hence the resuit. ]

Now we turn to the problem of the dimensions of these closed sets:
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4.2 Dimensions of the closed sets of the binary forms

The Theorem of Dimension of Fibers { see [Shafarevich 1974] p.60) applied to the
polynomial mapping in the proof of Theorem 4.3 provides an upper bound for the
dimension of F(my,...,m,). Namely, the dimension must be less than or equal to
2s. It turns out that the dimension of F(m;, ..., m,) is in fact s+ 1. In order to give
a proof of this result, we shall define the following operation.

Let r > 1,5 > 1, and let (my,...,m,) be a partition of r with s parts. Then
adding any two entries in the sequence my, . .., m, produces another partition (my,...,m,_;)
of r with s — 1 parts. We shall call this a merging operation. The source of this
definition is [Farahat].

Evidently all the partitions of r can be formed by recursively doing merging oper-
ations starting with the partition (1,...,1) of r. For given any partition (m,...,m,)
of r, (my,1,...,1) can be formed from (1,...,1) by successively doing m; — 1 merg-
ing operations on the first two entries. Then (my,my, 1,...,1) could be formed from
(my,1,...,1) by successively doing m; — 1 merging operations on the second and
third entries. Repeating similar merging operations, after (m; — 1) +... + (m, —1)
merging operations produces the partition (my, ..., m,).

We group the closed sets F(my, ..., m,) according to the number of parts in the
partition.

We have listed these closed sets in fig. 4.1 for the case r = 6.
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F(1,1,1,1,1,1) 0*» step
F(2,1,1,1,1) 1% step
F(2,2,1,1) F(3,1,1,1) 2™ step

34 step

¥(5,1) F(4,2) F(3,3) g step

F(6) 5t step
Figure 4.1: The affine closed sets for r =6
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Theorem 4.4 For any partition (m,,...,m,) of r,
dim(F(my,...,m,)) =s+1.

Proof:

Let s be a number between 1 and r. Assuming that (m,, ..., m,_,) is a partition
obtained by merging the partition (m,, ..., m,), we shall show that F(m,...,m,_,)
is a proper subset of F(my,...,m,).

We choose Uy, .. ., I, € C[Xy, Xi]: all mutually distinct, meaning ; is not a scalar
multiple of ; for all 1 £ ¢ < j £ 5. Now [ ...[™ belongs to F(m,,...,m,), and

not in F(m,,...,m,_,). Thus

f(m'l, e ,m',_l) C F(my,...,m,).

Since these closed sets are irreducible, the codimension of F(m,,...,m,_,) in
F(my,...,m,), is at least 1 ( See [Shafarevich 1974] Theorem 1 on page 54). That
is,

dim(F(m,,...,m,)) - dim(F(my,...,m,_;)) > 1.

Since there are r — 1 different steps between F(1,...,1) and F(r), the codimension

of F(r) in F(1,...,1) is at least r — 1. Thus

dim(F(Q, ..., 1)) - dim(F(r)) > r— L.

Since dim(F(1,...,1)) =r + 1, dim(F(r)) is less than or equal to 2.
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Now if, as we shall prove, the dimension of F(r) is 2 then it follows that the codi-
mension of F(my,...,m,_,) in F(m,,...,m,) is in fact 1. Since there are r—s differ-
ent steps between F(1,...,1) and F(m, ..., m,), the codimension of F(m;,...,m,)
in F(1,...,1) is r — 5. Therefore the dimension of F(my,...,m,)isr+1—(r—s) =
s + 1. Thus it only remains to show that the dimension of F(r) is 2.

In order to show that the dimension of F(r) is 2, we shall show that

dim(F(r)) > 2

by recalling the polynomial mapping ¢ from C[X,, X;]; to C[Xy, X;], whose image
is F(r). In fact

boXo + 6X) = (@Xo+ 836 = Y- 7)o # X5

Since C[Xy, X1]; and F(r) are irreducible, and the fiber -0 = {0} is a singleton
set with dimension zero, it follows from the Theorem of the dimension of fibers ( see

[Shafarevich 1974] page 60) that
0 = dim(67'(0,0)) > dim(C[Xq, X1}1) - dim(F(r)) = 2 - dim{F(r)).

That is,
dim(F(r)) > 2.

Hence the dimension of F(r) is 2. o
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4.3 The Ideals Z(m,,...,m;)
Finally there is the problem of the ideals corresponding to these closed sets :

Definition 4.5 Let my,...,m, be a partition of . Then I(my, ..., m,) is the ideal
of all polynomial functions on C[Xq, X1|, which vanish on F{m,,...,m,).

We have listed these ideals in fig. 4.2 for the case r = 6.
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Z(6)

I(5,1) e 1(3,3)

I(4,1,1) 7(2,2,2) 1(3,2,1)

\1,1,1)

7(2,1,1,1,1)

I(1,1,1,1,1,1)
Figure 4.2: The ideals for r =6
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Since each of the closed sets F(my, . .., m,) is irreducible, the ideals Z(my, ..., m,)
corresponding to these closed sets are prime.

These ideals could be described by finding polynomial ideals whose radical is
I(my, .- ., m,). Instead of just looking for a set of generators for ideals whose radical
is I(my,...,m,), we are interested in the following problem:

Find covariants whose vanishing for a binary form f is a necessary and sufficient
condition that f has the form [ ...I™ for some linear forms Iy, ...,[,.

Since every binary form is a product of linear forms ( Reference [Bocher 1964]
page 188 ), F(1,...,1) = C[Xy, Xi},, and hence Z(1,...,1) = {0}.

Recall the following facts about the discriminant:

1. ([Bacher 1964] p. 237) A necessary and sufficient condition that the binary
form f(Xg, X;) have a multiple linear factor is that discriminant of f, i.e the

. ) 8 .
resultant of the two binary forms E{; and FJ{T’ vanishes.

2. ([Bocher 1964} p. 259) The discriminant of a binary form is an irreducible

polynomial function.
These facts prove the following:
Lemma 4.6 Z(2,1,...,1) is the principal prime ideal generated by the discriminant.

Thus we have

I(2,1,...,1) = (discriminant).

The following theorems of Hilbert provide solutions to the above problem for

some partitions.
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Theorem 4.7 ([Hilbert 1893] ) Let f(Xo,X,) have degree r. Then f has a linear

factor of multiplicity > % if and only if every invariant vanishes for f.

From Theorem 4.7 we have when r is odd, Z({}],1,...,1) is the radical of the
ideal generated by all the invariants . When r is even, Z(§ +1,1,...,1) is the radical
of the ideal generated by all the invariants.

These ideals are the radicals of coefficient ideals of covariants (invariants).

Definition 4.8 Let r = uv and let f be a binary form of degree r in the variables
Xo and X,;. We think of f as a polynomial in one variable X, i.e.

-5 (o

Then define f; by *

& P
X -

The polynomial mapping C, from C{Xy, Xi], to CXo, X1](r-2)(+1) defined by

Clf) =f =" ays,

ad

gf— +... +f,.L, is a covariant of weight v+ 1.
0

where A=rf, 35
r—1

Theorem 4.9 ( [Hilbert 1886] ) The following are equivalent for @ binary form f of
degree r = pv in the variables Xy and X, over the field C :

1. There exists @ binary form g of degree v such that f = g*.

lhere f; is same as the f; defined in the Preliminaries section 2.2 with the assumption that
Xo:X andX;=1.
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2. The covariant C, (defined above) vanishes for f.

From Theorem 4.9, we have I{m,..., m) is the radical of the coefficient ideal of the
covariant C, on C[Xy, Xi],, where r = pv.

Some special cases of Theorem 4.9 are:
1. Z{r) is the radical of the coefficient ideal of the Hessian.

2. When r is even, Z(§, }) is the radical of the coefficient ideal of the Jacobian.

4.3.1 The ideal Z(r — m,m)

In this section, we prove our main theorem about a covariant generator for the two
part partition ideal Z(r — m, m). We explore this at the end of this section, after
establishing some necessary technical lemmas. First we sball need the following
definition:

Definition 4.10 Let K be field with char{ K) = 0. A K-derivation é of an associa-
tive algebra A over K is a K-linear map from A into itself satisfying the following
condition:

d(ab) = adé{b) + bé(a), for all a,b€ A.

The kernel of & is a subfield called the ﬁeld of constants of the derivation &.

The formal partial derivative 8, is a C(X;)-derivation on the field of rational
fractions C(Xp, X;), and the kernel of & is the field of fractions C(Xj).
The first result we require is
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Lemma 4.11 (/Farahat]) Letr > 2,0 < m <7, and let f be a binary form of degree
T in the variables Xy and X over the field of complez numbers C. Then the following

conditions are equivalent:

1. f has the form [["™I2* for some linear forms l; and L.

2. There ezist linear forms {, and Iy such that f satisfies the following differential

equations
Gtf)
f
S(40) oo (3 (8]
i 2

8(3) <= (80 (38

(i) + mao(lz)

L L ’

= (r—m)

3. There exist linear forms Iy and Iy such that f satisfies the following differential

equations
%f)' ) (r_m)algl) +malz(:z)‘
(41) oo (O 2.
(8 e (20 (B4

Proof: To prove (1) = (2), assume that f = ™I, for some linear forms {; and ;.

By logarithmic differentiation with respect to Xj, we get

&(f) _ (r _m)au(ll) _Hnao(lz)_
f h l
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Now by repeated differentiation with respect to Xq, we get

S (3) - (38 4)

f N I
(42) - (4 on (32

To prove (2) = (1), assume that there exist linear forms I, and l; such that f

satisfies the following differential equation

f L Iy
We shall show that f has the form [J"™I by first showing that the partial
1

derivative with respect to X, of is zero. By the quotient rule we have

2 (!I‘"‘la") _ fr=mi gl +m g-ml;"-laufz) — g o)
i

—-mim
1 2

Factoring out 7

, we get

f f *

5 (tr"*t;“) _orp ((, O O ao;f)) _

By the equation 4.2, we have
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Hence,
g

f =g,
where g is an element in the field C(X,).

We shall show that g is a constant in C. Suppose that
q
g==
p

where p, ¢ belong to C[X;] and have no common factors.
Then
¢f=ph™"l"

By comparing the degrees, we get the degree of p is same as the degree of ¢.
If this degree is zero, then p and g are in C and g is constant. Hence the result.
Otherwise p and ¢ are not in C. We know that every polynomial in C[X;], of
positive degree, factors completely in C[ X ] into polynomials of degree 1. We suppose
that for k > 1, .
p=[](nX: +m),

=1

and

k
q=[[G:X: +),

i=1
where v;, %, %, € C, foralli=1,... 1.
Let 1 < i < k. The irreducible factor of g, (%:;X; + ) divides ¢ f in C[X,, X3
Therefore (%X, + ) divides I{" ™ in C[Xq, X,]. Hence (%:X; + ) divides I, or
l; in C[Xy, X1]- If (:X1 + 7) divides the linear form [;, f; = 0. Hence #; = 0 for all
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1<i<k. Thus

7=%--- %X

By a similar argument we can show that
p="m..-NXf.

Since k& > 1, p and ¢ have at least one common factor X;. This contradicts the fact
that p and g have no common factors.

Therefore, p and ¢ must be constants. Hence f has the form ["™IF'.

By a similar argument we can prove that (1) is equivalent to (3). a

It is proven in [Sturmfels 1998] on page 31 that we need a system of k homoge-
neous polynomial equations in order to eliminate k variables. That is the reason why
we include three differential equations in the 2"® statement of Lemma 4.11, to elim-
inate the variables ﬁg—‘l and i,(:—’l from the non-homogeneous polynomial equation
4.2, even though in the proof that (2) implies (1) we only needed the 1# differential
equation in the 2™ statement of Lemma 4.11.

Thus we need to eliminate p, ¢, s in the following system of equations:

(r—m)a+mb = p
(r—m)a®+mb® = —q

(r—m)a®+mb® = s.

In terms of elimination theory, we have the following problem:
Let A, B, P,Q, S be algebraically independent indeterminates over a field F, let
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r>20<m<r, and let I be the ideal in the ring F[A, B, P, Q, S] generated by

the polynomials

(r—-m)A+mB—P,(r—m)A2+mBz+Q,(r-m)A3+mB3--S.

Then compute the intersection I N F[P,Q, §] of the ideal I and the polynomial ring

F[P,Q, 5]
Next we shall explain briefly how to do elimination by using a Grébner basis.

Definition 4.12 Let J be a polynomial ideal of F[X,,...,X,] other than {0}.

1. We denote by LT(J), the set of leading terms of elements of J. Thus

LT(J) = {LT(h)lk € J},

where leading term LT () of h is the term having the monomial which is ranked
highest under lezicographic order of all monomials which have nonzero coeffi-

cients in h.
2. We denote by (LT(J)) the ideal generated by the elements of LT(J).
3. A finite sequence (g1,--.,9:) of elements of the ideal J forms a Grobner basis
for J if
(LT(g1), - -, LT (ge)) = (LT(J))-
In fact a Grobner basts is a basts for the tdeal J.

4' Let J = (.fla ”‘:fs)r where fl: seey fs are in the polynomzal ﬂﬂy F[Xlt'" an]
in the algebraically independent indeterminates X, .. ., Xn. Then the I** elim-
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ination ideal J; is the ideal of C[X,4,,..., X,] is defined by

Ji=INF[ X, ..., Xal.

The following theorem provides a basis for J.

Theorem 4.13 ([Coz, Little, O’Shea 1996] p.113)(Elimination Theorem)

Let F be a field with char(F) = 0. If J = (f1,....fs) C F[X1,...,X] is an
ideal and G = {(¢1,...,9:) is a Grobner basis for J for lezicographic order with
X1 >...> X, then for each k between 1 and n — 1, the set

G N FXesr, .., Xl

ts a Grobner basis for the elimination ideal J;.

A related question is answered by the extension theorem: given a point (as,...,a,) €
V(J1), when can we find a value a; such that (ay,...,a,) € V(J)?

Theorem 4.14 (/Coz, Little, O’Shea 1996] p.115)(Eztension Theorem)
Let F be an algebraically closed field with char(F) = 0. Given

J={f1,--, fa) C FXy, ..., X,

we get the elimination ideal J; = JNF[X,,...,X,] . For each 1 <i < s, write f;

in the form

fi= filXa,-.., Xa) XN + terms in which X; has degree < N;,
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where N; > 0 and f; € F[Xy,...,X,] is non-zero. Now let (az,...,a,) € V(Jy).
If fi(as, ..., an) # O for at least one 1 < i < s, then there ezists a; € F' such that

(a1,...,aq) € V(J).

Remark 4.15 The ideal I, is the first elimination ideal of I;. This allows us to

use the eztension theorem multiple times when eliminating more than one variable.
See [Cox, Little, O'Shea 1996] for further details.

Lemma 4.16 Let A,B,P,Q, S be algebraically independent indeterminates over g
field F, letr > 2,0 < m < r, and let I be the ideal in the ring F[A,B,P,Q, 5],

generated by the polynomials
(r-m)A+mB~P,(r —-m)A2+mB*+Q,(r —m)A* +mB® - S.

Then the intersection I N F[P,Q, S] is a principal ideal in F[P,Q,S] generated by
the polynomial G, where

G = 3rQP'+(dmr—4m?®) SP® +(3m? +3r* - 3mr)Q? P?
+P° + (mr? —m?r) §2 + (—dmr® +4m?r +1°) Q?

+(-6m?r +6mr?)QSP. (4.3)

Furthermore, we have the following

1. Ifthere ezistp, q,s € F such that the zero set V(I)(C Fy5) of I contains a point

whose last three coordinates are p,q, s then G vanishes for P=p,Q =¢q,S=s

inF.
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2. If F is algebraically closed and G vanishes for some P=p,@ =¢,S=sin F,

then V(I) contains a point whose last three coordinates are p,q, s.

Proof:
A Grobner basis for the ideal I with respect to lexicographic order, computed

using Maple is

G = 3rQP*+(dmr—4m?) SP + (3m* +3r - 3mr)Q* P* + P° +
(mr® —m??)S? + (—4mr? +4m?r +r)Q* +(—6m’r +6m7?)QSP,

G2 = (-mr? +2m*r)QPB + (-mr® +2m*r)S?B- QP +rSP -2rQ*P3 +
(~4mr+2r+4m?)QSP? + (-3m* +2mr - )PQ* + (3r*m —4rm?) S?P
+5rm?-5rPm+1r°) S Q%

G3 = (-mr? +2m?r)SBP+(mr? -2m*r)Q?B+ PP +2rQP3 +
(Bmr—-4m?) SP2+(3m? =2 mr+r)Q2P + (mr? —m?*r)QS,

G4 = (2mPr —mr?)SB+(2m*—mr)QBP+(-4m?*+3mr)PS+
(—dmr +7° +4m*)Q* + (-rm + 2r)Q P* + P4,

G5 = (-2 +rm)S+(Q2rm -r)QB+(m—-2r)PQ+ (-7 +2m)BP* - P3,

G6

rmB?+(r ~m)Q ~2mB P+ P?,

G7 (=r+ m)A-mB+ P.
By the Elimination Theorem 4.13, we obtain

INF(B,P,Q,S) =L = (G,G2,G3,G4,G5,G6),
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INF(P,Q,S) =L =(G)

Hence if there exist p,q,5 € F such that V(I) contains a point whose last three
coordinates are p, q, s, then G vanishes for P =p,Q =¢,S =s.

To prove the converse, assume that G vanishes for P = p,@ = ¢, = s, then
(p,q,5) € V(I). The idea is to extend (p,q,s) one coordinate at a time: first to
(b,p,q,s), then to (a,b,p,q,s). Since the field F is algebraically closed, we can use
the Extension Theorem 4.14 at each step. The crucial observation is that I is
the first elimination ideal of I;. The coefficient of B? in G6 is rm, which is non
zero. Therefore by the Extension Theorem 4.14, there exists b € F such that
(6,p,9,5) € V(L).

The next step is to go from I; to I. Since G7 € I and the coefficient m — r of
A in G7 is non zero, there exists a € F such that (a,b,p,q,s) € V(I). Hence the

result. m)

Remark 4.17 The above proof may strike the reader as lacking in conviction due to
reliance on machine calculations. However it is also possible to find the polynomial
G, from the following equations

(r—-m)a+mb = Pc
(r-m)a®+mb* = -Qc

(r—m)a® +md® = 8¢,

by eliminating one variable at a time, by hand.
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Lemma 4.18 Letr > 2,0 < m < r and [ be a binary form of degree r in the
variables Xy and X, over the complez field C. With the following substitution

0uj(‘f)’Q Py (&:;f)) 5= (32 (aoﬁf))) /2,

G (stated in {.8) becomes i fsg( f), where

9(f) = {(16m*r+4r°—16mr?)(Ff) f* + (r*m —m®+?) (& f)* f*
+{12r - 127 m + 127 + 12m2r? + 12mr? — 2472 — 12m% P} (B3 £)(Bof)* £
+(-12m?r - 12mr-9m?r? - 127 + 12mr2 + 12m? + 93 m + 127%)
(G31)? (Bof)? f2
+@Bmr—4m?r’ +4r’m+12m?r -~ 12m1? - 8m?) (83f) (G f)*F°
+(6m?r? +12mr? —6r°m — 12m?r) (83 ) (&) (B3f) f°
+(dmr—4r +8mir-4m? 2 +4r’m+ 121 - 12r —4m? + 4 - 8mr?)

(B f)°}. (4.9)

This is a straightforward tedious calculation, which was done by Maple. The
work sheet is attached in Appendix C. o

On the other hand, with the derivatives with respect to X, we have the following
result.

Lemma 4.19 Let0 < m < r and | be a binary form of degree r in the variables X,
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and X over the complez field C. With the following substitution

p= &;f),Q al(alff)) S= (a* (&‘(ff))) /2

G (stated in 4.3 ) becomes 4f‘sg(_f) € C(Xo, X1), where

§(f) = {(16m’r+4r° —16mr?) (31f)° £* + (P m —m?r?) (& £)* f*
+12r-127m+12r% + 12m?r? + 12mr? — 2472 — 12m?r) (B3 f)(Buf)* f
+-12m?r - 2mr-9m?r? - 1278 + 12mr? + 12m? + 93 m + 127)
@ @) F
+8mr—4m?r? +4r¥m + 12m?r - 12m7? - 8m?) (83 f) (B F)*F*
+6m’r’ + 12mr* —6r*m — 12m*r) (B1f) (&1f) (8S) f°
+@dmr—4r +8mir—4mir +4r’m+ 1272 — 127 —4m? + 4 - 8m7?)

(@)%} (4.5)

Lemma 4.20 The following are equivalent for a binary form f of degree r (> 2) in
the variables Xo, X1 over the complez field C.
1. g stated in 4.4, vanishes for f.

2. (2™ statement of Lemma 4.11 ) There exist linear forms l; and I, such that f
satisfies the following differential equations

&(f)
f

(k) . lla)

=(r-—m) Il I! ’
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o (B0) <y (B ("

f 4 I
(4 - (30 ()

Proof:

(2) = (1) : Assume that statement (2) is true. Since f is non zero, this implication
follows from Lemma 4.16.

(1) = (2) : Assume that statement (1) is true. Suppose F is an algebraic closure
of the field C(Xy, X, ). Since 8, is a C-derivation on C(Xj, X;) and F is an algebraic
extension field of the field C(Xy, X;), there exists a C-derivation extension 2 on F
such that

QC(Xo, X1) = 6o

(Reference {Jacobson 1964 pages 168-170 ). From Lemma 4.16, there exist ¢,b € F
such that

@)(ci) = (r —m)a+mb, (4.6)
30(20-%!-)-) = —(r —m)a® - mb?, (4.7)
BO) -yt e
ag( 7 ) = 2(r —m)a® + 2mb°. (4.8)

We shall show that (e) = —a?,2(b) = —b*. By applying £ to the differential

equation 4.6, and then comparing with differential equation 4.7, we obtain

(r — m)(Q(a) + a®) + m(b) + *) = 0. (4.9)
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Also by applying  to the differential equation 4.7, and then comparing with the

differential equation 4.8, we obtain
(r - m)a(Qa) +a®) + mb(Q) +*) = 0. (4.10)

From the equations 4.9 and 4.10, we have the following system of homogeneous

linear equations,

(r —m) m Q(a) + a? 0

(r—m)a mb Q(b) + b 0

The determinant of the coefficient matrix is (r — m)m (b — a). We know that (r —
m)m # 0. If b # a, then the coefficient matrix is invertible, so Q(a) = —a?, and

Q(b) = —b2. On the other hand, if e = b then by the equation 4.9,
r(Qa) +a®) = 0.

Since r # 0, Q(a) = —a? and Q(b) = —H.

In order to find linear forms I, and I; in C[{Xy, X;| satisfying the differential
equations in the statement of Lemma 4.11, we will consider three cases.

Case 1:

If a and b are zero, from equation 4.6 we have ?-.%f—) = 0. Thus &(f) = 0. We
choose {; = X; and Il; = X, hence the result.

Case 2:
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Suppose b = 0 and a # 0, then from equation 4.6 we have

Then a is in the field C(X,, X;) and
a(3) = a2t = (o) (- =1

We shall show that % is a linear form in the variables Xp and X, over the field of
complex numbers C. Since & (i— - Xo) =0, % — Xo € kerdy = C(X;). Thus

é — Xo = h, for some k in the field C(X; ).

We shall show that h € CX.

From equation 4.6, we have

&(f) 1
DS T
Which implies,
&o(f)(Xo+h) = (r = m)S. (@11)

We know that X and X, are algebraically independent over C, therefore Xj is
transcendental over the field C(X;).
Since Xy + k is a polynomial of degree 1 in Xy over the field C(X;), Xy+hisan
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irreducible polynomial in the polynomial ring C(X; }[X,]. Consider f as a polynomial
in the polynomial ring C(X;)[Xo]. The crucial observation is that every irreducible
linear factor of f in the polynomial ring C[X;][Xo], is also irreducible linear factor
as a polynomial in the polynomial ring C(X; )[X)-

Since the irreducible polynomial Xg + h divides the polynomial (Xo + h) 8o f, it
follows from equation 4.11 that X; + & divides f in the polynomial ring C(X;)[Xo]-
Hence X, + h divides some irreducible lirear factor of f in the polynomial ring
C(X1)[Xo), (say) aXy + BX,, where a, 8 € C. Therefore, a(Xj + h) = (aXo +8X:).
Notice that if a = 0 then 8 = 0. This contradicts the fact that f is a binary form.
Therefore a # 0. Hence Xg + £ i3 a linear form in C[Xy, X;]. Thus % is a linear form
in C(Xo, X1)-

In this case we choose [, = % and I3 = X, hence the result.

Case 3:

Suppose ¢ and b are non zero. Since Q is a derivation, we have
1 -1 1 ~1(_2 1
0=0(1)=9Q e |=a Qa) +aQ Z)=¢ (—a*)+aQ -)

Hence, Q (%) = 1. Therefore

9(1-):0) ~0.
a

Similarly we have, O (% - Xo) = 0. Hence,

%-Xo=h,l—Xo=j, for some A, j in the field ker Q.
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For convenience we will denote ker2 as L. Since Q is the extension of &, L
is algebraic over C(X;). If X is algebraic over L, then X, is algebraic over the
field C(X}). This contradicts the fact that X and X; are algebraically independent.
Therefore, X, is transcendental over the field L.

The figure fig. 4.3 shows the various field extensions involved in this discussion.

Now we have,
&(f) _ . _ 1 1
T = m)Xo +h +mXo +J..
Therefore,
&(f)(Xo+h)(Xo+7) = (rXo+ (r—m)j+mh)f. (4.12)

The binary form f is in the polynomial ring C[X,, X}], and has a factorization
f =[I(esXo + B:X),
i=1

where ay,...,a., f,...,0- €C.

For each 1 < i < r, (&;Xo + £; X)) is an irreducible in the polynomial ring
ClX,, Xi].

Consider f as a polynomial in the polynomial ring L[X,]. We claim that each
irreducible factor (a; Xy + 8:X1),¢ =1,...,r of f in the polynomial ring C[X,, X;],
is also irreducible as a polynomial in the polynomial ring L[Xo]. Assume that

(@:Xo + BiX1) = (a0 + a1 Xo + ... + aeXg)(bo + 0 Xo + ... + 5. X3),
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alggbraic algebraic

L(Xo)

ebraic
simple trazscendental

L = kerA C(X1)(Xo)

algekraic
simple transcendental

C(X1)
Figure 4.3: Field extensions
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where ag, ..., ax, by, ..., b, € L. Then by equating the leading coefficients, £ + s = 1.

Without loss of generality we may assume, k¥ =0 and s = 1. Thus

(@i Xo + 5:X1) = ag(by + &1 Xo),

where aq,b,0 € L and «;, 5; € C. Hence (; X + 5;X1) is irreducible in the poly-
nomial ring L[X,], where a;, 5; € C.

Since L{Xy] is a unique factorization domain, f has the factorization
f =[J(eXo + 8:X1),
i=1

where ay, ..., 51,--., 58 €C, in L[ Xy}

Consider the polynomials 8o(f), (Xo + k), (Xo + ), * KXo+ (r —m)j +mk), fin
the variable X, over the field L.

Since Xg + k, Xo + j,rXo + (r — m)j + mh are polynomials of degree 1 in X, in
the polynomial ring L[X,], they are irreducible polynomials over the field L. Since
the irreducible polynomial Xq + h divides Go(f)(Xo + h)(Xo + j) (the left hand side
of equation 4.12) over the field L, X; + h divides (rXo + (r —m)j + mh)f (the right
hand side of equation 4.12) in the polynomial ring L{X,]. That is, Xq + h divides
rXo + (r —m)j +mh or f in the polynomial ring L[{Xy)].

Suppose that X + & divides rXy + (r —m)j +mh in the polynomial ring L[Xj)].
Then

(o +--.+%XE)(Xo + k) = (rXo + (r —m)j + mh),

where 7p,...v: are in the field L. Then by equating the coefficients of the leading
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term, we have k = 0. Therefore, 79 = r and j = h. Which implies

The result follows from case 2.
Suppose that X+ h divides f in the polynomial ring L{X,]. Hence X+ h divides
some irreducible linear factor of f, say (a;,Xo + FiX1)- Then

(Cl,'oXo + /5'sz1) = a‘a(Xo + h).

Notice that if a;, = 0 then §;, = 0; this cannot happen because of the fact that f is
a binary form. Therefore a;, # 0. Hence Xy + h is a linear form in C[Xo, X3).

The proof of Xg + j is a linear form in C[Xj, X;] can be done by the same
argument.

b b
Repeating the same arguments for the partial derivatives with respect to X;, we

Thusinthiscasewechooseh:%andlg:lhencetherault. m|

get the following resuit.

Lemma 4.21 The following are equivalent for a binary form f of degree r (> 2) in
the variables Xg, X;.
1. § stated in 4.5, vanishes for f.

2. (3¢ statement of Lemma 4.11 )There ezist linear forms l; and l, such that f

satisfies the following differential equations;

a(f) _ hh) k)
5 =-m - m z:’
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(o) --m (4 2.

(40) - (30) (32

Combining Lemma 4.11, Lemma 4.20 and Lemma 4.21, we have the following
result.

Lemma 4.22 The following are equivalent for o binary form f of degree r (> 2) in
the variables Xy, X, over the complez field C.

1. f has the form [["™I7* for some linear forms l; and l,.
2. g stated in {.{ vanishes for f.

3. g stated in 4.5 vanishes for f.
Now we are ready to state the main theorem.

Theorem 4.23 Let r > 2,0 < m < r. Then the prime ideal Z(r — m,m) is the
radical of the coefficients ideal of the following covariant

w o\ J 2
4(r—2m)?(r-1) {m} +m(r—m)(r—2)° {(_1),.3(,._1)2(,._2)} ’

where H denotes the Hessian covariant and J denotes the Jacobian covariant.

Proof: Let r > 2, 0 <m < r and f be a binary form of degree r namely,

r A o
=0
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Using the definitions of the closed set F(r—m, m), its corresponding prime ideal Z(r—
m, m), and Lemma 4.22 we have that Z(r —m,m) is the radical of the coefficient ideal
of the polynomial mapping X7 g (g stated in 4.4) from C[Xy, X3] to C[Xo, X1)er—12-
Also Z(r — m,m) is the radical of the coefficient ideal of the polynomial mapping
X5 (g stated in 4.5) from C[XO,X1] to C[Xg, X1]er-12-

X% X% .
We shall show that and are the same covariants namely,

=1 ™ A 1

3 2
4(r - 2m)2(r -1) {ﬁ-(Tg‘c_Ty} +m(r - m)(T - 2)2 { (—1)1‘3(1’ _?1)2(7‘ — 2)} )

where H denotes the Hessian covariant and J denotes the Jacobian covariant. For

that we shall substitute

aaf_ ( z)|ft

in g(f) (g stated in 4.4) we get

3
9(f) = d4r(r-2m)? ((r r )) F3 13 +mri(r —m) <( rls),) afs

~2r(m-1)(r-1)(r-m~-1) ((r m T )4 ((r 2),) fafth

+(-12mir-12mr-9m?r? — 123 + 12mr? +12m? + 913 m + 1277)

(725 (o) 225

+4m(r — 1)(r - 2)(r —m) ((r :! o )3 ((T 3 ) fafifs
emr(r ~2)r-m) () () () e

6
+4(m - 1)(r - 1)}(r —-m - 1) ((—r:'_l)') fi
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Thus,

9(f) = 4r'(r—2mP(r =131 +mri(r —m)(r - V*(r - 2’313
—12r%(m = 1)(r = 1)*(r = m - 1) fof{ fo
+rir =D} (-12mPr-12mr—-9m?r2 - 121 + 12mr? + 12m? + 9 m + 121%)
Rif
+mri(r = 1)X(r — 2)%(r —=m)f3 £ f5 — 6mr(r — 2 (r — m)(r - 1)’ f3 fr oS

+4mré(m - 1)(r - 1)%(r —=m = 1) 5.
By taking out common factors we get,

g(f) = ri(r- 1)’{4(r = 2m)*(r — 1)f3f3 +m(r —m)(r - 23 f3
~12r'(m —1)(r = m - 1) fofi f2
+(-12m’r - 2mr-9m*r’ - 12r' + 12mP? + 12m2 + 9 m+ 1270 SR 11 f7
+4m(r ~ 2*(r - m)f3 f3 fs — 6m(r — m)(r — 2°f frfafs
+ari(m = 1) -m - D) .

From equations 2.1 and 2.2,
H
r—gf’_—(_%); = X{fofo— f})

(_1),-3(,-3£f1))2(,. -3 " XP(=f3fs+3ffifa—2f)

are covariants having respective weights 2 and 3. Hence the powers H* and J2 are
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covariants having the same weight 6, and so is any linear combination. Therefore, if

r > 2 then 4(r — 2m)? (r - 1) {;qu_lyj}s+m(r-—m)(r-—2)2 {mél—),ﬁ}z,

from C[Xg, Xi]- to C[Xo, X1]er-12 is a covariant of weight 6. It can be easily verified
-6

from the table below that this covariant is in fact _)ﬁ_g_

ré(r-1)2

We shall calculate coefficients of the monomials,
1313, 813, foft fo, 3 213, S £ fs, £3 frfa fa, fY, occurring in

LR d i
4(r-2m)2(r—-1) {m} +m(T—m)(r—2)2 {(-1)1.3(1._1)2(1__2)} .

x$ {29 | x¢ (i} | X8 {4 (r—2m)?(r = 1) {2}
+m (r = m) (r = 2)° {(_-le‘Tﬂll‘l)W_—ﬁ}z}

35 1 0 A(r — 2m)¥(r - 1)

0f3 0 1 m(r - m)(r - 2)°
foftha 3 -12 12(r — 2m)*(r — 1) — 12m(r — m)(r — 2)?
212 -3 9 —12(r — 2m)*(r — 1) + 9m(r — m)(r — 2)?
f3fifs 0 4 4m(r —m)(r — 2)?
Rhfafs 0 -6 —6m(r — m)(r ~ 2)°
f8 -1 4 —4(r — 2m)*(r — 1) + 4m{r — m)(r — 2)2

Table 4.1: Calculation of the coefficients of the monomials
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Hence

-6 g - 2 H : J 2
X A oy A e-D) {,—,(,_ 1')2} +m(r—m) (r=2)" {(-1)r3(r— 1>=(r-2)}

By doing similar calculations with the substitution

!

Gif = f

g
ri(r —1)2

in (§ stated in 4.5) we have

- g _ X 3 d 2
X oy = = ) (g} #mo-m) -2 (i 51

where

rz(j;.C(;f)l)z = Xo-z(f-oﬁ = f?)

(—1)r3(r3£f1))2(r-—2) = X'Rfs+3fhifa = 2R).

Thus Z(r — m, m) is the radical of the coefficient ideal of the covariant

* \° ’
4(r—2m)*(r—1) {m} +m(r—m)(7'—2)2{(_1),.3(,._31)2(,.-2)} .

Hence the result. (m

Remark 4.24 1. As a consequence of Theorem {.23 we have the following knoun
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results 4.9:
o When m = 0 we have the following equivalent statements for a binary
form of degree r:
(a) f has the form I for some linear form I, over C.

(b) The Hessian 3 vanishes for f.

o Whenr is even and m = % we have the following equivalent statements

for a binary form of degree r:
(a) f has the form (il3)% for some linear forms Iy and Iz over C.
(b) The Jacobian 3 vanishes for f.
2. The following theorem, originally due to Clebsch, was proved in [Gordan 1885]
by Gordan :
Theorem 4.25 the following statements are equivalent for a binary form f of
degree T, where T # 4,6, 8,12.
(a) f has the form [~y for some linear forms l; and l; over C.
(b) The fourth transvectant P vanishes for f.
Thus I(r — 1,1) = Radical of the coefficient ideal of P

3 2
= Radical Of the caeﬁicient ideal Of4 {;5(,_%?} + {(TIFFET),(_"-T)} 3 fOT
r#4,6,8,12.

4.3.2 Binary Quadratic and Cubic Forms

When r =2 , we have complete description of these ideals.
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Every binary quadratic form is a product of linear forms. Hence Z(1,1) = {0}. On
the other hand Z(2) = (Ag A; — A%), where Ag, Ay, A, are the coordinate functions

on C[Xo, X]_]z given bY

Ai(aoX? +2a1 XoX: +agX]) = 4;,i =0,1,2.

Consider a binary cubic form

F =60 X3 + 30, X3X; + 3, X0 X? + a3 X3.

The following facts about covariants of binary cubic forms can be found in (Schur 1968]

on page 77.

1. The discriminant D(f) of f, apart from a numerical factor, is

a2a? — 6aga12203 + dagal — 3a%a3 + dalas,

2. The Hessian H(f) of f, apart from a numerical factor, is

(agaz — @3} X2 + (agas — a122) X X1 + (183 — a3) X7,

3. The Jacobian 3(f) of f, apart from a numerical factor, is

(a3a3 — 3agara2 +263) X3 + . ...
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4. The following is essentially the only relation between them

P + H(H® =238 A D(f).

Note the following consequence of previous results:

e Since every form is a product of linear forms ( see [Bocher 1964] page 188),
I(1,1,1) = {0}.

o (By Theorem 4.23) Z(2,1) is the radical of the coefficient ideal of the covariant
H+ 3.
o (By Lemma 4.6) Z(2,1) is the ideal generated by the invariant discriminant D.

o (By Theorem 4.9) Z(3) is the radical of the coefficient ideal of the covariant

Hessian .

Remark 4.26 The discriminant of a cubic form f is proportional to the discrimi-

nant of the Hessian of f.

As a summary we have,

Z(3) = Rad. of the coefficient ideal of Hessian
I
Z(2,1) = {disc) = Rad. of the coefficient ideal of 3 + 3*

|
7(1,1,1) = {0}.
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4.3.3 Binary Quartic Form

For a binary quartic form

4
- 4 d~iy i
F= 3 (5t
the following facts can be found in [Schur 1968] on page 80.

1. The following are algebraically independent invariants from C[Xj, X;]; and

they generate all invariants from C[Xq, X4 :

(a)

P = (£HW

= aga4 — 46163 + 3a3.

(b)

2 G G

Q(f) = a; G as (Hankel determmant)

a2 93 a4
= aq8y04 + 2218263 — ao@? — aa4 — a3.

2. The Hessian H(f) of f, apart from a numerical factor, is

(aoa2 —ad) X¢ + ...
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3. The Jacobian J(f) of f, apart from a numerical factor, is

(a2a3 — 3aga102 +2aD) X5 + . ..
4. There is a relation between all of the abave,
9(A(N)* +16(3())" = 23'F* (P(f) £ - 233 ).
5. (p. 52) The discriminant of f is given by the formula

D(f) = 256(P(f)* - 27Q(f)?)-

Note the following consequences of previous results:
o (By Theorem 4.9) Z(4) is the radical of the coefficient ideal of the Hessian J{.

o (By Theorem 4.7) Z(3,1) is the radical of the ideal generated by P,Q. Also
(by Theorem 4.23), Z(3, 1) is the radical of the coefficient ideal of 16 3 +932.

o (By Theorem 4.9) Z(2,2) is the radical of the coefficient ideal of the Jacobian
J.

e (By Lemma 4.6) Z(2,1,1) is generated by the discriminant D.
e I(1,1,1,1) = {0}.

We are going to give a variety of other proofs of some of these special cases.
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Lemma 4.27 A necessary and sufficient condition that a binary quartic form f
belong to F(3,1) is that the invariants P and Q vanish for f.

Proof: We have f € F(3,1) iff f has a linear factor of multiplicity > 2 = §. Therefore

the lemma follows immediately from Theorem 4.7. m)
It is interesting to compare the above with a computational proof using elimi-

nation theory. As a matter of fact, in the proof of Theorem 4.2 there is a way of

constructing polynomials whose vanishing gives a necessary and sufficient condition

for a binary form f of degree r in the variables Xy, X, to represent k projective

points. Many of our later discussions and calculations are based on this method.
The method is as follows:

Let
f = z C) an(').-jX{r
=0
and let (m,,...,m,) be a partition of r. Then

f € F(m,,...,m,) iff there exist vy, ..., a,,51,...,58 € C such that
f=]] (X0 + 8:X0)™.
i=1

This is equivalent to the following system of equations:

G= 3 H((’;“)a"k-%ﬁ«) (4.13)

Qe+t =j i=1

The idea is to eliminate ay, . . . , @y, £, . - . , B, from the above equations 4.13. This
can be done by using Grobner basis techniques. But, it would take too long to do
by hand. The use of computer algebra system made it possible for r < 5.
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Now we shall use this method to prove Lemma 4.27.
Let f =pX§ +4¢X3 X1 + 6r X2 X? + 45Xy X} +tX{ be a binary form which has
degree 4. Then f € F(3,1) if and only if there exdst @, b, ¢,d € C such that

f = (aXy +bX1)%(cXo + dX,).

This is equivalent to the following system of equations:

3 _
Cﬂ—p,

3 cha® + da®

4q,
3ab’c+3a’bd = 6r,
3ab’d +ch® = d4s,

e’ = t.

Let A, B,C, D, P,Q, R, S, T be coordinate functions on C{Xs, X1 ®C[Xo, X1): ®
C[Xo, X1s such that

P(0,0, f) = p, (0,0, f) = ¢, R(0,0, f) =, 5(0,0, f) = 5, T(0,0, ) =¥,
A(aXo +bX1,0,0) = a, B(aXo + bX1,0,0) = b, C(0,cXo +dX1,0) = ¢,
D(0,cXo + dXy,0) = d.

Let I be the ideal of C{4,B,C, D, P,Q, R, S,T] generated by

{CA*~P,3CBA*+DA*-4Q,3 AB*C+3 A’ BD—6R,3 AB’D+CB*-4S, DB*-T}.
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There are 37 polynomials in the Grobner basis for I with respect to lexicographic
order. Only the polynomials which are needed for this proof are attached in Appendix
B.3. The interested reader may contact the author for the complete and extensive
Maple output.

By the Elimination Theorem 4.13, we obtain

INC|P,Q,R,S,TI=1 = (h,hs,h3),
INC[D,P,Q,R,5,T)=I; = (hy,hy,hg),
INC[C,D,P,Q,R,5,TI=6 = {(h,...,hs),
InC[B,C,D,P,Q,R,5,T|=5 = {h,...,hs),

Hence if there exist p,q,7,s,t € C such that V(I) contains a point whose last
coordinate is f, then hy, hy, h; vanish for f.

Assume that hy, hp, hy vanish for f. Then there exist p,q,r,s,t € C such that
f € V(I,). The idea is to extend (f) one coordinate at a time: first to (d, f), then
to (c,d, f) then to (b,c,d, f) and then to (a,b,¢,d, f). We will use the Extension
Theorem 4.14 at each step.

Since I, is the first elimination ideal of I3 and I3 = Iy, it follows that for all
d € C, (d, f) € V(I3). We choose d to be non-zero.

The extension step fails only when the leading coefficients vanish simultaneously.

From the Grobner basis for I we have, hg, ..., hos, are in the ideal I; and
e the coefficient of C4 in hys is ¢,

e the coefficient of C? in hy; is (3ps — 2rq),
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o the coefficient of C? in hyy is (9pr — 8¢%),
o the coefficient of C? in hyg is (4sg ~ 3r2),

Suppose firstly that at least one of these coefficients ¢, (3ps—2rq), (9pr—8¢°), (4¢s—
3r?) is non-zero, by the Extension Theorem 4.14 there exists ¢ € C such that
(c,d, f) € V(L)

Since I, is the first elimination ideal of I;, the next step is to go from I, to I;.
Since hoy € I; and the coefficient of B? in hyy is d, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists b € C such that (b, ¢,d, f) € V(I1).

Since I is the first elimination ideal of I, the next step is to go from I; to I.
Since hgy € I and the coefficient of A3 in hgg is d, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists a € C such that (aXp + bX1,cXo +
dXi, f) € V(I). Thus f € F(3,1).

If on the other hand, all the coefficients ¢, (3ps — 2rq), (9pr — 8¢%), (4gs — 3r?) are

zero, then

f = pX#+49X3X, +6rX3XY + 45X X3

Xo(pX3 +4¢X3 X, + 6rXoX? + 4sX3)

with the Hessian of the binary cubic form (pX3 +4¢X2X; + 6rXoX? + 4sX3}) is

(3pr — 8¢%) X3 + (3ps — 2rq) XoX: + (4gs — 3r*) X7,
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By Hilbert's Theorem 4.9, this binary cubic form is the cube of a linear factor,

meaning there exist a,b € C such that
(pX3 + 49 X3 Xy + 6rXoX? + 4sX3) = (aXo + 0X1)°.

This implies
f = Xo(aXo +bX,)*.

Thus f € F(3,1).
Thus Z(3,1) = Rad(hy, ha, hs).

By the following relations,
1. hp =9,
2. ? = Rhg - ha,

3. h1=—52?+TQ,

we have,

(hy, he, h3) = (P, Q).

Hence the result. a
Next we shall give two different proofs to show that Z(2,2) = radical of the

coefficient ideal of the Jacobian.
Theorem 4.28 The following are equivalent for a binary quartic form f,

1. f = ¢, for some binary quadratic form q.

2. The Hessian of f is a scalar multiple of f.
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3. The Jacobian of f is zero.

Proof: (Method 1)

First we shall show that the statements (1) and (2) are equivalent.

Assume that f = g%, for some binary quadratic form g. Then 8, f = 2¢6q, and
82 f = 290%q + 2(B1g)”. Consider,

X3H(f) = 12f8}f —9(81f)* ( by Theorem 2.9)
= 12¢%(2¢q +2(B1g)?) — 9(20010)*
= 24°0%q + 24 (Brg)® - 36¢%(Byq)’

= 4¢%(6¢0%g — 3(819)").

Since ¢ is a binary quadratic form, say ¢ = aX? + 26X X, + cX?, for a,b,c,€ C,
819 = 26X + 2¢X; and &g = 2¢. Hence,

XH(S) 4q2(6(aX? + 26X X1 + cX?)2¢ - 3(2bXp + 2cX1)?)
= 4¢*(12acX? + 24bcXo Xy + 1262 X2 — 1202 X3 — 24beXo Xy — 126 X7)

48f(ac - b) X2

Thus, H(f) = 48 f(ac — b%). Therefore H(f) is is a scalar multiple to f.
Conversely assume that H(f) is a scalar multiple of f. Then f divides }(f).
Since

X3H(f) = 12f8}f - 9(8:f)%,
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f divides (8, f)*. Hence every linear factor of f divides (8, f)?. Linear factors of f are
irreducible and C[{X), X;] is a unique factorization domain. Therefore every linear
factor of f divides 8, f. In similar manner by using the formula

X3(f) = 1283 f — 9(6of)*

we have every linear factor of f divides Gy f.
Let

f = (e1Xg — £1.X1) (02 Xo — B2.X1) (a3 Xo — B3X1)(auXo — BaX1)-

Let
lj = (C!on - ﬁle),j = 1, 2,3, 4,
Then
O(f}) = arlalaly + aalilaly + aslilely + ashlols,
and

A(f) = —Pilalals = Balilals = Balilaly = Balilals.

Now [; divides both 8yf and 8, f. Therefore, {, divides both alslsly, and —B1lalzl.
We know that either a1 # 0 or 8; # 0, and [; is an irreducible polynomial. Therefore,
l; is a scalar multiple of I; for some j € {2,3,4}. Hence /; has a multiplicity > 1.
Similarly, we can show that all the linear factors f must have multiplicity > 1. Thus
all the linear factors f must have multiplicity 2 or 4. Therefore in either case f = ¢?,

for some binary quadratic form q.
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Now we shall show that the statements (2) and (3) are equivalent.
From the definition of the Jacobian of f , it easily follows that if J{(f) is a scalar
multiple of f then the Jacobian of f is zero.

Conversely, assume that the Jacobian of f is zero. Thus,

&f  &f

QH(f) HH(S)
= &fQH(f) - &f &H(f).

Since f is a binary form, therefore either 8of or 8 f is non-zero. Without loss of

generality we may assume that dyf is non-zero. Then

_ GH()
GH(f) = 5f af, (4.14)
_ G&X(f)
GH(f) = 7 Gof. (4.15)
Notice that
GH(f)
& f

is a rational function in the field C(Xy, X}, we shall denote it by C.

From Euler’s formula for homogeneous functions we have,

4H(f) = XoBH(f) + XiH(f).

Then
AH(f) = XoChf + X1 Chi f.
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Since f is a binary quartic form, it follows from Euler’s formula that

4H(f) =4Cf,

that is

H(f)=Cf.

Now we shall show that the rational function C is in fact a constant.

For i = 0,1, By partially differentiating with respect to X; we get

&H(f) = fo,C + Ca:f.

Since

Co:f = &X(f),
fa;C =0.

Since f is non-zero, §;C =0, for all i = 0, 1. Thus C € ker 8y Nker 8, = C. That is,
C is a constant. m|
We shall give another proof by using elimination theory:
Proof: {Method 2)
(1) & @3)
Let f = pX§+4¢X3 X1 +6r X3 X2 +4sXo X3 +tX{, and g = a X2 +2bXoX; +cX?.
Then the condition f = g° is equivalent to the following system of equations:
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4g = dab,
6r = 4b + 2ac,
4s = 4be,
t = ¢

Let A,B,C,P,Q,R,S,T be coordinate functions on C[Xq, X1]2 & C[Xo, Xi]q such
that

P(0, f) =p,Q(0, f) = ¢, R(0, f) =7, 5(0, f) = 5, T(0, f) = ¢, A(g,0) =g,
B(g,0) =b,C(g,0) =c.

Let I be the ideal in C[A4, B,C, P,Q, R, S,T], generated by

{A?- P,AB-Q,3R—-2B*- AC,S- BC, T -C?}.

Note that f is a square of a binary quadratic form iff the zero set V(I)(C
C[Xo, X1)2 ® C[Xq, X1]4) of I contains a point whose last coordinate is f.

There are 20 polynomials in the Grébner basis for I with respect to lexicographic
order. Only the polynomials which are needed for this proof are attached in Appendix
B.2. The interested reader may contact the author for the complete and extensive
Maple output.

By the Elimination Theorem 4.13, we obtain

INCP,Q,R,5T| =L = (g,---,87)
InC[C,P,Q,R,S,I‘]‘—‘Ig = (gl""’&)P
INC[B,C,P,Q,R,S,TI=5L = (g,.--,&0)-
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Assume that there exist f € C[Xy, X1]4 such that V(I) contains a point whose
last coordinate is f. Then g,...,gr vanish for f.

Conversely, assume that gy, ..., g7 vanish for f.

Then f € V(I3). Since gs € I, and the coeficient of C? in gg is 1, by the Extension
Theorem 4.14, there exists ¢ € C such that {c, f) € V().

Since gao € I) and the coefficient of B® in gy is 2, it follows from the Extension
Theorem 4.14, there exists b € C such that (2b, ¢, f) € V{L;).

Since gyr € I and the coefficient of A? in go7 is 1, it follows from the Extension
Theorem 4.14, there exists a € C such that (g, f) € V(). Hence

f = (aXE + XX, +cXP)2.

The above argument shows that Z(2,2) = (g1,...,8r)-

The Jacobian of f is in fact
—1152 (g7(£)X§ — gs()X5X1 — 5es(f)X$XT — 1084 (£) X3 XT

-5 g(f)X3X! — () Xe X3 — ma(F)XTD).
To prove (1) = (2), let

f=pXE +49X3X, +6rXaX? + dsXo X} +tX7.

H(f) = 144((pr — )X& + (2ps — 2qr) X3 X1 + (pt + 2g5 — 3r°) X3 X3
+(2qt = 2rs) Xo X3 + (rt — A X3).
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Assume that }(f) is a scalar multiple of f . Then the rank of the matrix

pr—q* 2ps—2qr pt+2qs—3° 2g—2rs rt—s?
P 4q 6r 4s t

is 1. Therefore all the 2 x 2 minors of this matrix are zero. There are 10 minors. The
minors and the connection between the polynomials g;,...,gr for P(f) =p,Q(f) =
g, R(f) =r,S(f) = 3,T(f) =t are listed below.

0 = (pr — ¢*)4g — (2ps — 2qr)p = bpqr — 4¢° — 2p%s = 2g;(f)

0 = (pr — g?)6r — (pt + 2¢s — 3r2)p = 9pr? - 6¢°r — p* — 2pgs = —gs(f)
0= (pr — ¢*)4s — (2qt — 2rs)p = bprs — 4q’s — 2pqt = ~2gs(/)

0= (pr — )t — (rt - *)p = ~g’t + $°p = g4(f)

0 = (2ps — 2qr)6r — (pt + 2gs — 3r%)4q = 12psr — 4pqt ~ 8¢%s = —4gs(f)
0 = (2ps — 2qr)4s — (2gt — 2rs)dq = 8ps* — 8¢%t = 8g4(f)

0= (2ps — 2qr)t — (rt — s*)4q = 2pst — bqrt + 4s%q = 2g3(f)

0 = (pt + 2gs — 3r*)4s — (2qt — 2rs)6r = 4pts + 8qs® — 12¢rt = 4gs(f)

0 = (pt +2gs — 3r)t — (rt — s?)6r = pt? + 2gst — 9r’t + 6s7r = go()

0 = (2qt - 2rs)t ~ (rt — s2)ds = 282 — 6rst + 45° = 2g,(f)

o]

As a summary we have listed the ideals for binary quartic forms in the following
Fig. 44.
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Z(4) = Rad. of the coef. ideal of H

7(2,2) = Rad. of the coef. ideal of J

Z(3,1) = Rad. of the ideal generated by P,Q

Z(2,1,1) = ideal generated by D

7(1,1,1,1) = {0}
Figure 4.4: The ideals for binary quartic forms
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4.3.4 Binary Quintic Form
Let

f=pX5 +5¢X4X, +10r X3X? + 10s X2 X3 + 5¢ X X} + uX}

be a binary quintic form.
We have the following special cases of previous general results:

¢ (By Theorem 4.9) Z(5) is the radical of the coefficient ideal of the covariant

Hessian K.

e (By Theorem 4.25) Z(4,1) is the radical of the coefficient ideal of the fourth
transvectant P. Also (by Theorem 4.23) Z(4, 1) is the radical of the coefficient

ideal of the covariant 9 H3 + 4J2.

o (By Theorem 4.23) Z(3, 2) is the radical of the coefficient ideal of the covariant
HE+67%

o (By Theorem 4.7) I(3,1,1) is the radical of the ideal generated by all the

invariants of binary quintic forms.
e ( By Lemma 4.6) Z(2,1,1,1) is generated by the invariant discriminant D.
e 7(1,1,1,1,1) = {0}.

We proceed to provide and compare alternative proofs of some of these cases.
First we shall illustrate the use of elimination for the case where f has the form I{l

for some linear forms {; and I, over C.

Lemma 4.29 The following are equivalent for a binary quintic form f.
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1. f has the form I{l, for some linear forms l; and l; over C, i.e. f belongs to

F(4,1).
2. iy,...,ig vanish for f (listed in Appendiz B.4).

Proof:

Let

f=pX3 +5¢X3 X1 + 10r X3 X2 + 10s X X3 + 5t X X} + uXj

be a binary quintic form. Then f has the form I{l, for some linear forms !, and I,

over C if and only if there exist a,b,¢,d € C such that

f = (aXq + X1 ) (cXo + dX)).

This is equivalent to the following system of equations:

4 _
a = p

4cha’ +da* = 5q,

6a’b’c + 4a’bd

10r,
6a%b%d + dach® = 10s,

4ab’d + b*c

at,

db* = u.

Let A,B,C, D, P,Q, R, S, T, U be coordinate functions on C[ Xy, X; 1 &8C{Xo, X11®
C[Xu ’ XIIS such that
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P(0,0, f) =p,Q(0,0, f) = ¢, R(0,0, f) =, 5(0,0, /) = 8, T(0,0, /) = ¢,

U(0,0, f) = u, A(aXy + bX,,0,0) = a, B(aXp + bX},0,0) = b,
C(0,cXo +dX,,0) = ¢, D{0,eXp + dX;,0) = d.

Let I be the ideal in C[A, B,C, D, P,Q, R, S, T, U} generated by

{CA*—P,4CBA*+ DA*-5Q,6 A°B’C+4A’BD-10R,6 A’B*D + 4ACB3 -
10S,4AB3D + BC - 5T, DB* - U},

Note that f has the form I{l, for some linear forms I; and I, over C iff V(I)(C
C[Xo, X1)1 © C[Xo, X1)1 © C[Xo, X1]5) contains a point whose last co-ordinate is f.
There are 88 polynomials in the Grobner basis for I with respect to lexicographic
order. Only the polynomials which are needed for this proof are attached in Appendix
B.4. The interested reader may contact the author for the complete and extensive
Maple output.

By the Elimination Theorem 4.13, we obtain

INCIP,Q,RST.Uj=L = (i,...,is),
INCD,P,Q,RST) =5 = (i,...,is),
INCC,D,P,Q,RS8T|=0L = (i,...,izn),
InC[B,C,D,P,Q,R,5,T)=5L = (ip,... i)

Hence if f has the form {{l; for some linear forms [; and l; over C then iy, ...,is
vanish for f.

To prove the converse, assume that iy, ... ,is vanish for f. Then f € V(). The
idea is to extend f one co-ordinate at a time: first to (d, f), to (¢, d, f) then (,¢,d, f)
and then to (a,b,c, d, f). We will use the Extension Theorem 4.14 at each step.
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Notice that Iy = I;. Therefore, for all d € C, (d, f) € V(I3). We choose d to be
non-zero. Since I, is the first elimination ideal of I, the next step is to go from I3 to
I,. The extension step fails only when the leading coefficients vanish simultaneously.

Notice that i3, i3z, ia1, i30, i2g, g € I3, and

o the coefficient of C° in iy is u,

o the coefficient of C? in iz, is (16pr — 15¢°),
e the coefficient of C? in i3, is (6ps — 5rq),

e the coefficient of C? in i3y is (9gs — 8r%),

o the coefficient of C? in iy is (3¢t — 2rs),

o the coefficient of C? in iy is (41t — 352).

Assume firstly that at least one of these coefficients is non-zero. Then by the
Extension Theorem 4.14, there exists ¢ € C such that (¢, d, f) € V(I).

Since I, is the first elimination ideal of I;, the next step is to go from I, to I;.
Since i34 € I) and the coefficient of B* in iy is d, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists b € C such that (b,¢,d, f) € V(1L).

Since [; is the first elimination ideal of I, the next step is to go from ) to I.
Since ig7 € I and the coefficient of A* in ig; is d, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists a € C such that (aX, + 8X;,cXp +
dX1, f} € V(I). Hence the result.

If on the other hand, all of the coefficients in the above list are zero, then

f = pX3+5¢X¢X) +10rX3X? +10s X2 X3 + 5t Xo X}
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= Xo(pX§ +5¢X3X1 +10rX3X? + 10s Xo X} + 5t X7)
and

is(f) = —4sq+pt+3r’.

Thus (pX§ + 5¢X3 X, + 10r X3 X? + 10sXo X} + 5tX?) is a binary quartic form, and
the coefficients of the Hessian of this binary quartic form are (apart from a numerical

factor)

(16pr ~ 15¢%), (6ps — 5rq), (8pt — 5¢s) + 2(9¢s ~ 8r?), (3qt — 5rs), (4rt — 3s%).
All of these polynomials are appearing in the coefficients list except (8pt — 5¢s). But
(8pt — 3¢s) = 8(—43q + pt + 3r*) + 3(9¢s — 8r2).

Hence by Theorem 4.9, there exist a,b € C such that
(pX$ + 5¢ X3 X, + 10 X2 X2 + 105X X3 + 5t X3) = (aXo + bXy)*.

Therefore,
f = Xo(aXo +bXy)*".

Hence the result. »
From the relations listed below we have that the ideal Z(4,1) is the radical of
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the ideal generated by the coefficients of the fourth transvectant P of binary quintic

forms.

D) = 69X+l Xl + () XF (416
W) = US-TH(NR(f) -TOUNWN + D),  (@17)
W) = 3T + Ui +45() (N}, (@19
W(f) = —3{4R()is() - Q) + PN} (@19

Now we shall look for a covariant such that the radical of the coefficient ideal of

this covariant is Z(3, 2).
Lemma 4.30 The following are equivalent for g binary quintic form f.

1. f has the form B2 for some linear forms l; and l; over C, i.e. f belongs to

F(3,2).

2. j1,.--.is0 vanish for f (listed in Appendiz B.5).

Proof:

Let

f=pX} +5¢X3 Xy +10rX3X2 + 10s X2 X3 + 5t X X3 +uX?

be a binary quintic form. Then f has the form ZI? for some linear forms }; and I,
over C if and only if there exist a,b,c,d € C such that

f = (aXq + bX1)*(cXo + dX;)2
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This is equivalent to the following system of equations:

a®c?

(2a%cd + 3a%bc?)

(a*d® + 6a%bed + 3ab’c?)
(3a’bd® + b*c? + 6ablcd)
(3ab’d? + 2b%cd)

bd?

b,
9¢;
10r,
10s,

at,

Let A, B,C,D,P,Q,R,S,T,U be co-ordinate functions on C[Xg, X1]: 8C[Xo, X1}:®

C[Xo,xlls such that

P(D,O,f) =p1Q(OvOaf) =q,R(0,07f) = T,S(0,0,f) =37T(0s0:f) =1,
U(0,0, f) = u, A(aXo +5X1,0,0) = a, B(aXo + bX1,0,0) = b,

C(0,eXo + dX;,0) = ¢, D(0,cXo + dX;,0) =d.

Let I be the ideal in C[4, B,C, D, P,Q, R, S, T, U] generated by

{A3C? - P,(A*D? +6A%BCD + 3AB*C?) — 10R, (2A°CD + 34°BC?) - 5Q,
B3D? — U, (3AB2D? + 2B°CD) 5T, (3A2BD? + B3C? +6AB*CD) — 105},

Note that f has the form 1}I} for some linear forms /; and I; over C iff V(I)(C

C{Xs, X1)1 ® C[ Xy, X1]1 & C[Xo, X1]s) contains a point whose last co-ordinate is f.

There are 189 polynomials in the Grébner basis for I with respect to lexicographic

order. Only the polynomials which are needed for this proof are attached in Appendix

B.5. The interested reader may contact the author for the complete and extensive

Maple output.
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By the Elimination Theorem 4.13, we obtain

INCIP,Q,R,S,T,Ul =1y = (ji1,---,js0),
INCD,P,Q,R,S5,T| =1Ly = (j1,---,js0)s
INC[C,D,P,Q,R, 5T =L = (i1,.--,ju1)s
INC[B,C,D,P,Q,R,5,T1 =5 = (i1,.--,j1a)-

Hence if f has the form [3{2 for some linear forms /; and I; over C, jj, ..., jso vanish
for f.

To prove the converse, assume that jy, ..., s vanish for f. Then f € V(I;). The
idea is to extend f one co-ordinate at a time: first to (d, f), to (c,d, f) then (b, ¢, d, f)
and then to (a,b,¢,d, f). We will use the Extension Theorem 4.14 at each step.

Notice that I3 = I;. Therefore, for all d € C, (d, f) € V(I3). We choose d to be
non-zero. Since I; is the first elimination ideal of I, the next step is to go from I3 to
I,. The extension step fails only when the leading coefficients vanish simultaneously.

Notice that jiog, ji0s, j105, jos € I3 and the coefficient of C?
® in jig is (6pr — 5¢%),
e in jigs is (9ps — 5rg),
e in jigs is 2(3gs — 2r?),
e in jog is u.

Assume firstly that at least one of these coefficients is non-zero. By the Extension
Theorem 4.14, there exists ¢ € C such that (¢, d, f) € V().
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Since I, is the first elimination ideal of I;, the next step is to go from I, to I;.
Since ji12 € I and the coefficient of B? in j5 is d?, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists b € C such that {b,¢,d, f) € V(I}).

Since I is the first elimination ideal of I, the next step is to go from I; to I.
Since jigr € I and the coefficient of A® in jyg7 is d°, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists a € C such that (aXy + 6X;,¢Xo +
dX,, f) € V(I). Thus f has the form 322 for some linear forms {; and I, over C.

If on the other hand all of the coefficients in the above list are zero, then substi-

tuting u = 0 in j; implies ¢ = 0. Therefore,

f = pX5+5¢X3Xy +10rX3XE +10s X2 X3

= X3(pX} +5¢X2X1 + 10rXoX? + 10sX?)

Now (pX3 + 5¢X3X; + 10r XoX? + 10sX3) is binary cubic form, and the Hessian of

this cubic form is

(6pr — 5¢%) X2 + (9ps — 5rg) XX + (3¢s — 2r2) X3.

Since the Hessian of this cubic form is zero, this binary cubic form is a cube of a
linear form. This implies f has the form [ for some linear forms {; and I, over C.
Hence the result. a

It turns out that the ideal Z(3,2) is the radical of the ideal generated by the
coefficients of the covariant

4(3,9)M + 32,
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where (J,9)(") is the covariant from C[Xp, X;]5 to C[Xo, X1}, defined by

3,0 = (£, (M.

Notice that from the calculations of the above covariant (Maple work sheet at-
tached in Appendix D)

4£,3(NW +HF) = 80000 {jso(£) X2 + 3iss(F) X3' Xa
+ (Fh )+ B () X3 + (200w - 5ise(1) X3S
+(=724s(f) + 18js1(f) + 39is0(f)) X5 X7

64,

i)+ Jgialf) + Giaf)) XIXE

2
220 608 512 )
1

(
- (Bt + Fial) + Fir) — il
E_1_4 468. )

5 jas(f) — —sz(f )+ —Jsz(f )
+ { 120j26 — 90j31(f) + —2‘Jz4(f ))
+ (Tt + i) 230

(—ﬂje(f) +§m(f)) X2x1

+3ju () XX +j2(f)X12}.

The ideal generated by the polynomials appearing in the above covariant { i.e.
159, J581 57, I85> J54, 521 J51, 150+ 49, 48, J45, Jaz, jar , jaos

Ja9, i34, i33, a2, J31, Jo7: 26+ J251 24, J23, J22, Ja, J6, Ja ) 18 in fact also generated by the poly-
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nomials jj, ..., jeo (work sheet is attached in Appendix B.7).
Hence we have the following:
The following are equivalent for a binary quintic form f.

1. f has the form B2 for some linear forms !y, [, over C.

2. The covariant 4(J,4)® + H? vanishes for f.

Next we shall look for a covariant generator for an ideal whose radical is Z(2,2, 1).
Lemma 4.31 The following are equivalent for g binary quintic form f.

1. f has the form @?l for some quadratic form q over C and linear form | over C,
i.e. f belongs to ¥(2,2,1).

2. k;,...,kes vanish for f (listed in Appendiz B.6).

Proof: Let

f=pX3 +5¢X$ Xy + 10r XEXE +10s X3 X3 + 5t Xo X} + uX?

be a binary quintic form. Then f has the form ¢*! for some quadratic, linear forms
g, over C if and only if there exist a,b,¢,d, e € C such that

f= (aan + 20X X1 +CX12)2(dX0 +eXj).

This is equivalent to the following system of equations:
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(a%e + 4abd) = 5q,

(2acd + 4b%d + 4abe) 10r,

(4b%¢ + 4bed + 2ace) = 10s,

(dbce + c*d)
Fe = u.

St,

Let A,B,C,D,P,Q,R,S, T, U be co-ordinate functions on C[Xg, X;]:8C[Xq, X1)1® -
C[Xo, Xi]s such that

P(0,0, f) =p,Q(0,0, f) = ¢, R(0,0, f) =, §(0,0, f) = 5,T(0,0, f) =¢,

U(0,0, f) = u, A(aX? + 26X X; + cX?,0,0) = a, B(aX? + 2bXo X, + cX},0,0) = b,
C(aX? +2bXoX; + cX?,0,0) = ¢, D(0,dXq + €X4,0) = d, E(0,dX, + €X1,0) =e.

Let I be the ideal in C{A4, B,C, D, E,P,Q, R, S,T, U] generated by

{(2ACD +4B*D + 4ABE) — 10R, (A’E + 4ABD) - 5Q, (4BCE + C*D) - 5T,
A?D — P,(4B%E + 4BCD + 2ACE) - 105,C?E - U},
and note that f has the form ¢*! for some quadratic form ¢ over C and linear form !
over C iff V(I)(c C[Xe, X1)2 ® C[Xo, X1]: ®C[ Xy, X)]5) contains a point whose last
co-ordinate is f.

The Sun microsystem computer took approximately 3 days to compute a Grobner
basis. There are 588 polynomials in the Grobner basis for I with respect to lexico-
graphic order. Only the polynomials which are needed for this proof are listed in
Appendix B.6. The interested reader may contact the author for the complete and

extensive Maple output.
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By the Elimination Theorem 4.13, we obtain

INCP,Q,R,S,T. U=k = (k... k).

Hence if f has the form g2l for some quadratic form g over C and linear form !
over C, then kq,...,kos vanish for f.

To prove the converse, assume that k;, ..., ks vanish for f. Then f € V(Iy).

Notice that Iy = I5s. Therefore, for all e € C, (e, f) € V(I3). We choose e to be
non-zero. Since Iy is the first elimination ideal of I3, the next step is to go from I to
I3. The extension step fails only when the leading coefficients vanish simultaneously.

Notice that kayg, Koos, k226, k227, k230, k232, k233, ko34 € I3 and the coefficient of D3

inkygis (382 q—6rts + 3%,

in kpog is (2422p + 30gst — 12072t + 607 52),

in kogs is (36pst — 90qrt + 45¢s?),

in koo is (4ps® — 5¢°t),

in kogg is (12ptq — 24psr + 15s¢°),

in kosz is (8p°t + 10pgs — 40r%p + 257 ¢%),

in kgaz is (16 p* S +25¢° — 40pqr)

and the coefficient of D® in kg3, is u.
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Assume firstly that at least one of these coefficients is non-zero. By the Extension
Theorem 4.14, there exists d € C such that (d, e, f) € V(I3).

Since I3 is the first elimination ideal of I;, the next step is to go from I3 to .
Since kozs € I and the coefficient of C? in kg5 is equal to e which is non-zero,
it follows from the Extension Theorem 4.14 that there exists ¢ € C such that
(c,d,e, f) € V(Ip).

Since I is the first elimination ideal of I, the next step is to go from I, to [;. Since
ksso € I; and the coefficient of B3 in kssg is 4€?, which is non-zero, it follows from
the Extension Theorem 4.14 that there exists & € C such that (2b,¢,d, e, f) € V().

Since I; is the first elimination ideal of I, the next step is to go from I; to I.
Since kgg7 € I and the coefficient of A2 in hsg is Se, which is non-zero, it follows
from the Extension Theorem 4.14 that there exists a € C such that f has the form
¢*l for some quadratic form ¢ over C and linear form { over C.

If on the other hand, all of the above listed coefficients are zero, then since u = 0,

f = pX§+5¢X3X) +10rX3X}? + 10 X2 X} +5tXo X

Xo(pX§ + 5¢X3 X1 + 10r X3 X2 + 10sXo X} + 5tX7),

. ) . . . 5
with g;,...,87 ( listed in Appendix B.2) vanish for P(f) = p, Q(f) = zg,R(f) =

10r
< S(f) = -IZ—S,T(f) = 5t. Thus the Jacobian of the binary quartic form

(pXs +5¢X3X; + 10r X3 X7 + 10sXp X3 + 5tX?})

is zero. Therefore, by Theorem 4.28 this binary quartic form is a square of a binary
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quadratic form, say g°. This implies f has the form g% X, for some quadratic form g
over C. Hence the result. O
A covariant for the ideal Z(2,2,1)
By working with the Grdobner basis of the elimination ideal Is = Z(2,2,1), I have

been able to determine a covariant

¥ = —6(P, )V — 307 (K, P)® — 5727 + 3K (7, P)@,

such that the radical of the coefficient ideal of ¥ is Z(2,2,1).

The leading coefficient of any such covariant must satisfy

5 degree — 2 weight > 0.

This follows from the general theory of covariants of binary quintic forms {see
[Schur 1968] page 59). Accordingly, the procedure is this:

1. Select the Grébner basis polynomials which satisfy the above inequality;

2. From this selection, retain, for each degree only the polynomials with least
weight;
3. Make up expressions involving the basic covariants of binary quintic forms

(transvectants, Hessians, ...) with leading coefficients equal to ome of the

remaining list in step 2;

4. Checking the covariants resulting from step 3 in turn, turns up ¥ as the only

one satifying our requirements.
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Notice that,

s {=6(P(), 3()® =30 (1), PN - 5P(1) £ + AL AHP} =

kas(f) X3 + kas(f) Xg X1 + ka2(F)XIXT + kis(F) XG X3 + kas(£) X5 X1

+hia(F)XEXE + kio(f) X XE + ko(£) X X] + ka(f) Xo X7 + ka(F)X].

By the Grobner basis of these polynomials with respect to lexicographic order
(attached in Appendix B.8), we have

(ky,. .., kas) = (kas, kas, kag, kug, kis, ki3, k1o, Ko, Ky, k2).

Hence we have the following:
The following are equivalent for a binary quintic form f.

1. f has the form g*! for some quadratic form g over C and linear form ! over C.
2. The covariant —~6(%, )™ ~ 307 (3, P)® — 5P%7 + 3H(J, P)® vanishes for f.

Now we shall give a direct proof of the above result.
Proof:

Every binary quintic form in F(2,2, 1) is equivalent (with respect to the action
by GL,(C) )to one of the following X3, X3 X, X3 X?, X2X2(Xo + X1). We see from
the Maple work sheet(attached in Appendix D) that —6(%,J)®) — 307 (3, P)® —
5727 + 3H(J, P)? vanishes for

Xg! XSXI: XgX%,XgX?(Xo + XI):
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and this covariant does not vanish for X3X;(Xo+X;). Since —6(%, )M ~307 (¥, P)?—

5P2] + 33 (3, P)? is covariant, it vanishes for every binary quintic form in F(2,2,1),

and does not vanish for every binary quintic form in F(3,2), or in F(2,1,1, 1). Hence

the result. m}
The figure Fig. 4.5 summarizes the results for binary quintic forms.

Bemark 4.32 1. It is a not a fluke that we were able to eztend the partial so-
lution in the above proofs using elimination theory. In fact, Prof. H. K. Farahat
pointed out that we can use the Theorem of implicitation([Coz, Little, O’Shea 1996/
page 54) to deduce that the ideal is generated by the grobner basis, because of
the fact that F(m,,...,m,) 18 closed.

2. My Ezternal Ezaminer Dr. A. W. Herman has pointed out to me two papers
([Rollero 1990], [Rollero 1988]) by Aldo Rollero related to my work, which I
was not aware of. I have not yet looked at the papers. Mathematical Reviews
(92¢:11038 11E76, 90d:14044 14J40 (11E76)) contains only a summary review.
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I(5) = Rad(¥)

Z(4,1) = Rad(P) = Rad(93 + 43°) Z(3,2) = Rad(4(3,5)V + 3?) = Rad(}H® + 632)

Z(3,1,1) = Rad(invariants)
Rad(—6(P,3)™ — 307(3¢, P)® — 5723 + 3K (7, P)@) = Z(2,2, 1)

I(2,1,1,1) = (discriminant)

I(1,1,1,1,1) = {0}
Figure 4.5: Ideals for binary quintic forms



Chapter 5

Transpose Systems of Binary Homogeneous

Polynomial Equations

5.1 Some Topological Subsets of C(El,r-u

r

Now we turn to the study of transpose systems of binary homogeneous polynomial
equations which was introduced at the end of Chapter 3.
Recall that for 0 <{ < (r+1),

C(‘)

r+1).r+1) = thesetofall (r+1) x (r + 1) matrices of rank less than

or equal to [

= V(all (I+1)x ({ + 1) minors).

* P(C) = {[X] = [Xo, Xi] € P | CX" = 0},C € Cryy .
o £O(k) = {C € €)1 [#P(C) = #P(CT) =k}, E 2 0.

Since C is algebraically closed, £)(0) is an empty set.

Notice that for & > 0,

EW(k) = {C € CY, 1 [#P(C) = K} N {C € €y, 1 [#P(CT) =k}

111
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Definition 5.1 1. Define for k > 1, S(k) to be the set of all (r +1) x (r+1)
matrices C with rank 1 such that the system CX'1 = 0 represents at most k

projective points and the zero matriz. That is,
S(k) = {C € G}, |#P(C) < KU {0}

2. Define for k > 1, ST(k) to be the set of all (r + 1) x (r + 1) matrices C with
rank 1 such that the system CT X" = O represents at most k projective points
and the zero matriz. That is,

ST(k) = {C € C, .1 |#P(CT) < k}u {0}.

Now £1)(k) is the intersection of (S(k) N 8T(k)) , with the complement of the
set S(k —1)UST(k - 1), in CJ -
It turns out that S(k) and S7(k) are affine closed for each k > 1.

Theorem 5.2 Foralll <k<r,

1. The set S(k) of all (r + 1) x (r + 1) matrices C with rank 1 such that the
system CX'rl = 0 represents at most k projective points and the zero matriz is
an affine closed subset of C; e

2. The set ST(k) of all (r + 1) x (r + 1) matrices C with rank 1 such that the
system CTX'"! = 0 represents at most k projective points and the zero matriz
is an affine closed subset of C,(.ﬂl',ﬂ.

Proof:
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1. Foreachi=1,...,r + 1, we have the polynomial mapping,

pi : Crirr1 = C[Xo, Xir

where p;(C) = T2 ¢; X577 X{™" for C = (cij) € Crya1- Each p; carries
the set S(k) into the union F; of the closed sets F(m;,...,m;) with m; +
...+m = r. In fact, S(k) is the intersection of sets C), .1, 07 (Fi),i =
1,...,7 + 1. Since Fi is closed, each of these sets is closed, hence S(k) is an
affine closed subset of C)y .41

9. This follows by applying part 1 to CT instead of C, noting that C7 also has
rank 1. u]

Thus we have the following ascending chains of affine ciosed sets:
{0} S ... € 8(r) = CPhyypeuy

and

{0} c8T(1) C... € 8T(r) =Clthyy -

An interesting question about these-sets is whether these affine closed sets are
irreducible.

Since S(r) = C,(.Ql'ﬂ_l, it is irreducible.

We know that C; .., and F(r) are irreducible (Theorem 4.3). Therefore, C; (r41) X
F(r) is irreducible (see [Shafarevich 1974] page 24). The closed set S(1) is the image
of the polynomial mapping from Cy 4y x F(r) to Cﬂlﬁ_l which takes (v, wX)
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to vTw, where v,w € C,,.;. Hence S(1) is irreducible.

Similarly, since the closed set S(r — 1) is the image of the polynomial map-
ping from the irreducible closed set Cy 41y X F(2,1...,1) to C); .., which takes
(v, wX') to vTw, where v,w € Cy 4y, S(r — 1) is irreducible.

Hence we have the following lemma.

Lemma 5.3 1. The set S(k) of all (r +1) X (r + 1) matrices C with rank 1 such
that the system CXCl = 0 represents at most k projective points and the zero
matriz is irreducible, when k=1,r - 1,r.

2. The set ST(k) of all (r + 1) x (r + 1) matrices C with rank 1 such that the
system CTXU = 0 represents at most k projective points and the zero matriz
1s irreducible, when k=1,r - 1,r.

It turns out that when r = 4, the set S(2) of all 5 x 5 matrices C with rank 1 such
that the system C Xt = 0 represents at most 2 projective points and the zero matrix
is reducible. Indeed it is the union of the following affine closed non-empty proper
subsets of S(2):

1. the intersection of all sets p; ' F(2,2),i=1,...,r+1
2. the intersection of all sets p;~*F(3,1),i=1,...,7 + 1.

By using Theorem 5.2 and the above remark about the sets £()(k) we have the

following lemma;

Lemma 5.4 1. The set E8)(r) of all (r+1) x (r+1) matrices C with rank 1 such
that both the systems CXt! = 0 and CT X' = represent r projective points is



Chapter 5.1: Some Topological Subsets of Cﬁl 1 115

a non-empty affine open subset of C), ... Therefore E1)(r) is a dense subset
of Cgﬁl,r-f—l'

2. For2 <k <r -1, the set EV(k) of all (r + 1) x (r + 1) matrices with rank
equal to 1 such that both the systems CXIl = 0 and CTXl = 0 represent k
projective points is an intersection of an open subset and a closed subset (i.e.
a locally closed subset) of C,(.Ql,,“.

3. The set EM(1) U {0} of all (r + 1) x (r + 1) matrices C with rank 1 such that
both the systems CX!l = 0 and CTX™ = 0 represent 1 projective point with

the zero matriz is an irreducible closed subset of CQL,._H. Moreover
3 < dim(EM(1)u {0}) < 4.

Proof:

1. We know that £1)(r) is the intersection of (S(r)NST(r)) , with the complement
of the set S(r — 1) UST(r — 1). Since S(r) = S7(r) = C¥, .1, EV(r) is the
complement of the closed set S(r — 1) U ST(r ~ 1) (see Theorem 5.2). Thus
EM(r) is an open subset of C3; .,

Since C,(.QL,H is irreducible, every non-empty open subset of C&zl', +1 is dense.

Therefore, if £1)(r) is non-empty then £()(r) is a dense subset of CQL,_H. It
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remains only to show that £()(r) is non-empty. For that we shall show that

(10...0-1\

0 0..00
b= € £W)(r).

\-10 ...0 1

First of all bXt = sTXF = 0, if and only if Xj — X] = 0. Since C is al-
gebraically closed and of characteristic zero, X§ — X{ can be factored into r
distinct linear forms. Hence bX'"l = 0 represents exactly r projective points.
Thus b € EM)(r).

2. Since the intersection of two affine closed sets is affine closed and the union
of two affine closed sets is affine closed, the result follows immediately from
Theorem 5.2.

3. E0(1) U {0} = (S(1) N ST(1)). Hence by Theorem 5.2, EM(1) U {0} is an
affine closed subset of L), .. This closed set is the image of the polynomial
mapping 8 from F(r) x F(r) to C), ., which takes (vXI,wXt) to v7w,
where v,w € Cy 4. By Theorem 4.3, F(r) is irreducible, so F(r) x F(r) is
irreducible (see [Shafarevich 1974] page 24). Thus, the closed set £((1) U {0}
is the image of the polynomial mapping from an irreducible closed set. Hence
EM(1) U {0} is irreducible. By Theorem 4.4 dim(F(r)) = 2, therefore the
dimension of F(r) x F(r) is 4. Now by the Theorem of Dimension of Fibres
(Reference [Shafarevich 1974} p. 60), we have dim(£M(1) U {0}) < 4. Since
9~ (vTw) = {(av X, a~'wX)|a # 0}, the dimension of 6~ (vTw) is 1. Again
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by the Theorem of Dimension of Fibres (Reference Shafarevich 1974] p. 60),
we have 3 < dim(EM(1) U {0}). m

As a summary we have:

o £M(r) is dense in C, ..

£W(r — 1)
. : are locally closed in €\, ;-
£0(2)

@ £M(1) U {0} is an affine closed subset of C1, ;.

Figure 5.1: Some topological subsets of Cﬂl',_,_l

5.2 An Ascending Chain of Dense Subsets

Theorem 5.5 For2 <[ < (r+1), the set £9(0) of all (r+1) x (r+1) matrices with
rank less than or equal to | such that both the systems CXl =0, and CTXFl =0

have only the trivial solution is a dense subset of C,(,l_z,l‘,.ﬂ.

Proof: Let 2 <1 < (r+1). Since C,{ﬂ,l',,ﬂ is irreducible, every non-empty cpen subset
of C¥), ., is dense. And if a non-empty subset of £(0) is dense in CY, .. then
£%(0) is dense in C‘,’ll',ﬂ. Hence it follows that in order to prove the above resuit,
it suffices to find a non-empty subset of £1(0) which is open in d‘llm. We will
consider two different cases: 2<{<rand [ =(r+1).

First we shall define the following notation:
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The k-rowed minor obtained from a matrix A by retaining only the elements
belonging to rows with suffixes ry, ..., 7 and columns with suffixes sy,..., s; will be
denoted by

|A(rL, - o S1, - -2 88)-

Now assume that 2 < [ < r. Every matrix with rank ! has at least one | x !
submatrix with non-vanishing determinant.

Suppose A is an (r + 1) x (r + 1) matrix over C such that |A(1,...,51,...,0)| #
0. Then the first [ rows (columns ) of A are linearly independent and every row
(column) of A may be expressed linearly in terms of these { rows (columns).(Reference
[Mirsky 1961} on page 137.)

Therefore AX™ = 0 is equivalent to the following system of equations,

An Xy + A42X6-1X1 + .+ A X =0,Vi=1,... .0 (5.1)

Since [ > 2 and |A(L,...,1,..., )| #0,

AnX] + AupX{N X+ .+ Ay XD,

AnXg + Ap X7 Xy + .. + Ay X

are binary forms of degree r. If the resultant of these two binary forms is non-zero,
then these two binary forms have no common linear factor (see [Bdcher 1964] p.202).
In that case the first two equations in the system (5.1) have no common non-trivial

solution, and hence AXT! = 0 has no non-trivial solution.
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In similar manner , if the resultant of the two binary forms
ApnXg+...+ A(,-.(.l)lX{, ApXg+...+ A(r+1)2XI

is non-zero then AT X! = 0 has no non-trivial solution.

Therefore we shall consider the following set,

Wi = {4€CY, allAQ, ..., L1, .., D|Res(p, q)Res(s,¢) # 0},

where

r+1

p = Z:Alixa—ﬁ-lx;:_lv
i=1
r+l ) .

g = ZAKXE-'+1X;-1:
i=1
r+1

pf = Z Aﬁ X;—H'l X{-I’

i=l

r+1
¢ = ZA&XS-'“X{-I'

i=l

Then W, is a subset of £9(0) which is an affine open subset of CY, ..
We show that W) is non-empty. Define the matrix A in the following manner,

A; =1 fori=1,...,],
Al(r+1) = A(r+1)1 =-1,

A;; = 0 otherwise.
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Then ATXI = AXF = 0 is equivalent to the system

X;-—XI =0,X6_1X1 =0.

Clearly X§ — X7, X§~'X: have no common non-trivial zero. Hence their resultant,
Res(X5+XT, X5~ X,) # 0 ( see [Bocher 1964] page 202). Also |A(1,...,1;1,...,0)| =
1. Therefore, A € W,.

Now assume that [ = r + 1. Define

Weir i= {A € Gy r4a|det(A) # 0}

Let A € W,,;. Then A~! exists. Hence

AXlrl =,

and

ATxM =g

have no solution in P!, which implies A € £7+1(0). Hence W,,; C £7+1)(0). Since
I € Wpiq, W,y is a non-empty open subset of Cryq p41- o

From the above theorem we have the following ascending chain of subsets:
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EC*N(0) demsein Ciyyyiry)

N

) {
ED(0)  dense in CE,),,_I,’(, )
T
t " t
£@ (0) dense in C§r+l),(r+l)
T
1
EM(0) =0 Cgrln.(rq-n'

Figure 5.2: An ascending chain of subsets

5.3 Further Inquiry

As a further inquiry we shall state the following problems:

1. For a given partition (my,...,m,) of r, and a binary form f of degree r, can we
say that there exists a covariant whose vanishing for f is a necessary and suf-
ficient condition that f has the form [T ... [, for some linear forms };,...,I,

over C?

For the case of two part partition we have proved that this is true, by finding
such a covariant. Even though Theorem 4.7 states that I(,1,...,1) is the
radical of all invariants, when r = 4 we have found a covariant whose vanishing
for f is a necessary and sufficient condition that f has the form Bl;. My
supervisor Prof. H.K. Farahat feels that such a covariant exists in general. Next

project of mine is to find a proof.

2. What can be said about the sets £9(k), for{>1and 1<k <r?



Chapter 5.3: Further Inquiry 122

3. Consider the problem of transpose system of n—ary homogeneous polynomial
equations: Find any relations that may exist between the solutions of the

transpose systems of n—ary homogeneous polynomial equations
AXFl =g

and

ATxM =

(Xo\

X
wherer > 1,n > 2, A € Cy(nr), N(nr), 30d X =




List of Symbols

Abbreviations:
char characteristic

dim dimension
ker  kernel
Rad radical

det determinant
Set Theory:

= is defined as

{} set consisting of

€  is an element of

C  is a subset of

#A Number of elements in the set A
U  disjoint union

O  end of proof

Z  set of integers

Z>o set of non-negative integers

Z*  set of positive integers

C  field of complex numbers

Matrix:
AT transpose of the matrix A
|A(r1, .- 2P 81,---,8%)| k-rowed minor obtained from A

Cam set of all n X m matrices over C
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Invariant theory:
C[Xo, X1) sapce of all binary froms of degree r

Res(f,g) Resultant of binary forms

H Hessian
d Jacobian
P fourth transvectant

af
a:f 3z,

&f
&f 72

&f
% f 0740z,
Algebraic geometry:

ClXi,--.,Xa] polynomial ring over C
P projective n-space over C
P(V) projective space of V'
M set of all monomials in z,...,Z, of degree r
N(n,r) number of elements in M
Xxtl column matrix whose entries

are the monomials X;, ... X;,
{frr--r fo) ideal generated by f1,...,fs
I [** elimination ideal of I
V(fi,..-.fs) zerosetof fi,...,f,
(V) vanishing ideal of the subset V
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Appendix A
Position map
In this section, for the sake of completeness, we will discuss formulas for the posi-

tioning monomial in the matrix X¥l. First we shall define the position map.

Definition A.1 1. Let M® be the set of all monomials of degree r in Xj, ..., X,.
Then

o =1{1}

M? = {Xla LR 1Xn}r

MP={XP .. X3ar+...+a,=1,a1,...,a0 2 0, }.

2. For everyr > 0, the position map P is the function from M? to {1,...,N(n,r)}
defined by
P(X;, ... X:) = position of X;, ... X, in X,

Position of X;, ... X; among all monomials of degree r, in X! is denoted by
P(iy,... 4 1,...,m),

where1 <141 £

vew
—

<t <n

128




129

Example A.2 P: M2 > {1,2,3,4}
P(1,1,1;1,2) =1

P(1,1,2,1,2) =2
P(1,2,% 1,2) =3
P(2,2,2;1,2) = 4.

Since X! = X, the position of X; in X, P(j; 1,...,n) = j, where 1 < j < n.

The following lemma discusses the position of X;X; in X1.

Lemma A.3 Position of X;X; in X®,

_(i=1)@n—i+2)

P(i,4i L,-..,n) .

+{j—i+1), where1 <i<j<n,

Proof: List the entries in X'? in groups, those which start with X, then those which

start with X, and so on. That is,

XX, XWX .o oo Ll X, X.
XX ... .. ... XoXn
XX ... XX, etec.

Ifi < j, then X;X; appears as the (j — i + 1)** element in the i** group. The

groups 1,2,...,7— 1 contain

(-1@2n-i+2)

n+(n-1+.. +(n-i+2)= 5
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elements. Hence the result. m]

Next lemma provides a formula for the inverse position function in X

Lemma A.4 (Formula for the inverse position function)

The inverse position function

f={1,...,"(";1)}—»{(1',1):15z‘sjsn},

is given as follows.

Letr = P(i,5; 1,...,n),1 i < j <n. To get (i,j) from r, define

f(r) = maz {i : 5

(i—l)(2n—z’+2)<r}_
G-1)@2n-i+2)

Theni= f(r),j=r+i-1- 5

_G=En-iv)

Proof: We only need to check, if i = f(r),j =r+i-1 5

P(i,j; 1,...,n) =r.
Consider

(i=1)(2n =i +2)
2
(i--l)(2r21-i+2) _i+1+(i-1)(2121-i+2)

PGi,j;1,...,m) = j—i+l+

= r+i1—1-

= r

O
Now we shall state and prove a recurrence formula for positioning monomials of

degree r in X, for any r > 1.
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Lemma A.5 (Basic Recurrence Formula)

.. , r—2 +r—j—1 nt+r—4—1
P(zhzzv"r"f;l:”‘!n) = (n-:_l )+'+(n T-‘]j. )+"+( :_11 )+

+Plig -1 +1,...,%~01 +1; 1,...,n—41 +1),

where 1 < iy < ... <ir <m, with P(iy; 1,...,m) =4y.

Proof: Note that M™ and X'l can be written as M,[l,...,n] and X[1,...,n]"

respectively.
With this notation we can list the entries in X[1,...,n]"! in groups, those which

start with X, then those which start with X, and so on. That is,
XIM(P-I)[I: ree !n']y

XZM(r-1][21 ey n]i

XuM—ylnl
If1<i <...<1% <nthen X; ...X; appears in the i* group. The groups

1,2,...,%4 — 1 contain

r—1 r-1

(n-i-(r—l)—l) +m+((n—i1+1)+(r-1)-1)
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elements. Hence, for 1 < i; < ... < 4, < n, the position of X;, ... X; among all

monomials in X[1,...,n] of degree r is

.. : n+(r-1)-1 n—-j+1}+(r—-1)-1
P("h:%"'v‘?; 1:"'1"’) = ( (T—I) )+"+(( ’ 1)-_§_ ) )

+m+((n—i1+1)+(r-1)—1)

r—-1

+ Position of X;, ... X;.in Xy, ...,n)f1

_ (n+r—2) - (n+r—i1-1)
r—-1 r—1
+P(12117‘f1 1:1,...,71)
Now if we use the change of variable Y3 = Xz, 1. Then
X, =Y, X, =Yists. - Xip = Yimiits 1 X = Yoo

Thus we have

_2 — i -1
P(iliizl"'gif; 1,...,17.) = (n+1' )+.“+(ﬂv+1‘ 11 )

r-1 r—1

+Plia -1 +1,...,% =01 + 1; 1,...,n—4 +1).



Appendix B

Grobner Bases

We have used the computer algebra system Maple V to find the Grobner basis for
ideals, specifically, the Grobner basis package. To access the commands in this
package, type:

>with(Groebner);

(here > is the Maple prompt, and semi colon is the end of Maple command.)

In Maple, monomial ordering is called term order. Since monormial order depends
also on how the variables are ordered, Maple needs to know both the term order and a
list of variables. For example, to tell Maple to use lexicographic order with variables
A > B > C, we need to input plex (for pure lexicographic) and [A4, B, C] ( Maple
encloses a list inside brackets [...]).

In Maple “gbasis” stands for Grébner basis, and the syntax is as follows:

>gbasis(poly list,var list,term order);
this computes a Grobner basis for the ideal generated by the polynomials in poly list
with respect to the monomial ordering specified by the term order and var list.

In the following sections we state the codes to find Grdbner basis in the begin-
ning. Then we list the polynomials which are needed for the proofs from ordered
Grobner basis (ordering is the position where those polynomials appeared in the

Maple output).

133
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B.1 A Grobner basis

The Maple worksheet for finding a Grobner basis for
I = ((r—m)A+mB—P, (r—-m) A*+mB+Q, (r-m)A*+mB*-5) C K(4,B, P,Q, )

with respect to lexicographic order:
SW:=[r-m)*xA+m*B-P(r-m)*A’+m*+B>+Q,(r—-m)*A3+mx* B3 -3
W=[(r-m)A+mB—-P,(r-m)A2+mB*+Q, (r-m)A*+mB3 - 9]
Now we find the Grébner basis for the above polynomials by using the lexico-
graphic order on A, B, P, @, S
> gbasis(W, Plez(A, B, P,Q, S));
BrQPt—4m’SPP+3Q*P2m? + mr 2 -m?r2 2 —4mr? Q3 +4m?r Q*
+P5+3Q*P 2+ QP +4mSPPr-6m?*rQSP+6mr?QSP-3Q*P2mr,
-mrP2QB+2m*rQP*B-mriS*B+2m*r?S?B-QP +rSP -2rQ*P?
-4QSP2mr+2QSPr2+4QSPm? -3QPPm?*+2Q* Pmr—-Q*Pr?
+3rPmS*P-4rm®S2P+5rSQ*m? -5r2SQ*m+r*SQ% -mr2SBP
+2m?rSBP+mrPQ*B-2m*r@Q*B+P* +2rQP* +3mSP?r —4m? 5 P?
+3Q?Pm?-2Q*Pmr+Q*Pr?+mrPQS-m?rQS,2m*rSB+2m*QBP
+4m2(.,)2—tlmzP.So"-mrzSB—-mrQ.BP+3111,P1'.S'—4rn1'Q"’-mQPz-l—r2 Q?
+2Q P*r+ P4
-r2?S+rmS+2rQmB-2PrQ-Br?Q-BrP+ PmQ+2mBP? - P8,
rmB:+rQ-mQ-2mBP+P? -Ar+ Am-mB+ Pj
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B.2 A Grobner basis for the polynomials that make a binary

quartic form a square of some binary quadratic form

>L:=[A’-P,A«xB-Q,2xB*+ A+xC—-3%R,B+«C-5,C*~Tj;

[A*~P,AB- Q,2B2+ AC-3R,BC- §,-T +C?¥

> gbasis(L,plez(A, B,C,P,Q,R,S,T));

0

i

QT? —3RST +25°,

PT? +2QST - 9R*T + 6 S°R,
PST —3QRT +25%Q,
-Q*T + S°P,

PQT - 3PRS +2Q?%S,

-9PR? +6Q*R + P*T + 2 PQS,
-3PQR+2Q*+ PS,

-T +C?,

2B°-3BR+CQ,

A -P

(B.1)
(B-2)
(B.3)
(B.4)
(B.5)
(B.6)
(B.7)
(B.8)
(B.9)

(B.10)
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B.3 A Grobner basis for the parametrization of a binary
quartic form with a linear factor of multiplicity at least
3

S>WL:=([CxA~P3+xC*Bs A2+ DxAs A —4xQ 3+ A+ B2+C+3+ A%+

BxD-6*R3+A+B*+xD+C*B*—4+5,D«B«B*-T;
> gbasis(WL,plez(A, B,C,D,P,Q,R,5,T));

hy = 4QS*-352R*+4TR* -6TQRS + Q*T?, (B.11)
hy = —45SQ+TP+3R? (B.12)
hs = PS*+4R*-6QRS +QT, (B.13)

h = (—4QR+2PS)CD+ D*PR + C*(4QS -3 R?), (B.14)

ha = (3PS-2QR)C*+(-4Q*+2PR)CD + QPD?, (B.15)
hp = (9PR-8Q%C*-2DPCQ + D*F?, (B.16)
hs = C'T'—4DCS+6D*RC*-4D°CQ+ D*P, (B.17)
hy = DB3-T, (B.18)

hgy = 3CBA®+DA®-4¢Q, (B.19)
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B.4 A Grobner basis for the parametrization of a binary

quintic form with a linear factor having multiplicity at

least 4

>W:=[A*+C—P,(6%A+B2*C+4x A3+ B+ D)—10+R, (4* A%+C* B+ A*+ D)~
5%Q,B+D—U, (4+AxB3+D+B*+C)—5+T, (4+ A+ B*+C +6% A*x B>+ D) —10+ 5] :
> gbasis(W, plez(A, B,C,D,P,Q,R,S,T,U));

i
i3
iq
is
ig

i2g

i3
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i

!

h

4T°R-3T*S?-6USTR+4US* + U R?,
UQ—-4TR+35%

QT*-6STR+4S+UR?
-3TQ+UP+2RS,

-45SQ+PT +3R?,

TQ*-6QRS+PS*+4R,
4DCTQ-6DCSR+4D*SQ-3D*R?
+C*4TR-35%),
TDSCQ-9DCR*+SD*P+ C*3TQ-2RS),
-5QRDC+PD*R+3DPCS+C*9SQ—8R?,
C*6PS~5QR)-5DQ*C+PD*Q+3DPCR,
C*16PR-15Q%) -2PDCQ+ D* P2,
C’U~-5DC*T+10C°*D*S —10D* RC?

(B.20)
(B.21)
(B.22)
(B.23)
(B.24)

(B.25)

(B.26)
(B.27)
(B.28)
(B.29)

(B.30)
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+5D'CQ-D°P,
= B'D-U,

4A*BC +A*D-5Q,
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(B.31)
(B.32)

(B.33)

B.5 A Grobner basis for the parametrization of a binary

23o0rb

quintic form with linear factors of multiplicity either

>SW:i=[A«C?—P, (A3« D*+6+A%*B+xC+«D+3+AxB*xC?) ~10+R, (2%

A xC+«D+3xA*+«BxC?) —5+Q,B*xD*~U,(3+A+B*+D*+2+B%+C»

D)-5+T,(3xA?xB*D?+B*xC?*+6+xA+B*«Cx D)~ 10+ 5] :
> gbasis(W, plez(A, B,C, D, P,Q, R, S, T, U));

i1

J2

Is

Ja

s

108T3U%R + 219T? U2 % - 300T*U S + 100T®
-162TSU®R + 2TU*R?* + 853 U3,

3U°Q — 12TU?R - 16U%S? + 50U ST? — 25T,
—162TSU%R + 155U T? 8% — 100ST* + 12T*U%Q
+60T3RU + 27U R? + 85312,

-162TS?*U?R + 227U T?*$® - 1455°T* — 54STRU
+27SURR? + 85412

+27TT*U?R? + 60T5R + 12T U Q,

324U3RT + 783U R38% + 2484 U R*ST?

(B.34)
(B.35)

(B.36)

(B.37)



Js

I

Js

Io

J10

ju
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—-756U R®T* + 240QT® — 4794 RT S3U?

~27T36 RT} S?U + 2520RT* S + 232 S°U?

+65115°UT? - 4160 53T, (B.38)
9U*R® + 38TURS — 20RT® — 245U +4SU*Q

+15T% 8% — 4T*UQ, (B.39)
116UQST? — 80T°Q + 108U%R® — 567T SU? R?
+252T3R*U + 32RS%U?

+390T°RU S* ~ 260T*RS + 24S°UT — 158378, (B.40)
48TRU*Q — 116 ST?UQ ~ 81SUR? — 12T2R*U
+230TURS? — 140RST® - 454U

+15T%8% + 80QT", (B41)
18TU?R® ~ 468T?UR*S + 40R®T* + 518S°TUR
~320RT3S* + 48QTRU - 116 S*T*UQ - 815*U? R?
~-245%U +158'T% + 80Q ST*, (B.42)
90RTQ — 3364T2S3QU + 2320T* S%Q

~1296 U3 R* + 9936 TSUZ R® — 3024T3 R3U

~2733R*S3U? - 18252 T R*U §?

+10080T* R?S + 14734 RS*UT — 9100R S T®

—696 S°U + 4355°T2, (B.43)
8TU?Q* - 4QT*RU - 46QTS*U + 40QST® - 27U R®
+102TUR*S - T0R*T® — 8RS*U + 5RT?§%, (B.44)



Ji2

i3

j1a

j1s

j16

b

8

140

12T?UQ* + 3R?U%Q - 62RQTSU + 20RQT® + 3QS*U

+155°QT?+ 6TRU + 38R*U S — 35R?S T?,
48Q°T* — U4R’T’°UQ — 56S°QTUR

~112SQRT3 + 35*QU + 96S%QT? + 27U R*
~36RTUS + 96R*T® + 62R*S°U ~ 104 R*T% §°,
~12QU?R® + 56QTUR?S — 20R*QT® - 6QRS*U
+132QRT*S?*+ 12Q*UTS? — 48Q*ST® - 81QS*T
~44RUS* ~46R*ST? + 54R*TS® + 3R'TU,
4RUPQ? - 8Q*TSU +32Q*T° - 0QTR*U
~19QRUS? - 68QRST? + 54QS°T

+42U RS + 19T*R® — 36 R’°T 2,

16Q°TURS + 32Q*RT® + 12Q*5°U - 48Q*T*$?
~64QUR?S® —68SR*QT? + 216 RQT S® + 63SU R
~132R*TS? + 54 R §*

~81QS° - UQTRU + 4T* R,

36Q°S'U — 14Q°T?S® — 12R°TU + 365RU $?
+256 R*ST? — 612R3T S® - 732Q R*T?* S

+288 RQ®ST® + $T2RQ S*T + 48QU*R?
+80RQT® - 168QR?S°U

+162R?S° — 243Q 5% — 206QTUR® S,

16Q°U% - 6RTUQ* — 168Q*S*U

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

(B50)
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+384ST?Q* + 304QUR*S — 160R?QT? — 936 RQT S*

—63UR* + 548R3T S ~ 342R?S° + 513Q 5%, {(B.51)
e = 32Q°TSU - 128Q°T® - 16Q*TR?U - 925%2Q*RU

+656Q*RST? — 216Q*>S°T

+136QURS - 236 QT*R® — 12Q R*T §?

~-63URS +548R*TS - 342R*S% + 513RQ ¢, (B.52)
jo = 342R'S® + 63U RS — 162Q?S5 — 548 R°T S

+528QR3TS? - 0QSUR!

+24Q°S%U + 648RQ*T S® — 96 Q% T2 §?

-32Q*TRU ~ 405QR*S* + 284QT* R?

+192Q°RT® - 36 Q*UR*S? - 192S R*Q*T?, (B.53)
ju = ~48SU?R +80UTS*-50ST® + 3P
+7TU%?Q + 10T?RU, (B.54)

jn = 2TU?P +2T*UQ - 2TUR?* + 66TURS — 40RT?
~88%U +5T% 52, (B.55)

js = 3PT*U +5QT® — 12TR?U — 20RST?

+32RUS* - 6RU?Q - 2QT SV, (B.56)
ju = —10RTUQ +3PT® +6QS*U - U%@Q?
+12UR?S - 10T? R?, (B57)

jss = 3SU?P - 24RU%Q +61QTSU - 40QT°
+6TR*U — 16RUS® + 10RST?, (B.58)



jos

jor

o

J29

jso

in

Ja2

iss

21QSU ~ 4UQ* - 158QT? - 4RTUQ
—6URS + 5T°R® + 3STUP,

-80QURS — USPT? + 2TUQ?
+40RQT? + 9S°UP

+15QT S® + 18U R® — 10R?TS,

3PT®S® + 12Q*T® - 9QTR*U - 38QRST?
+QRUS® —4Q*’TSU + 18UR'S + 9T R
+24QS°T - 16 R*T §%,

6PTS® - 16RTUQ?* — 12Q%*S*U
+405T2Q* + 46 QU R?S

-20R?’QT? - 140RQTS® + 75Q8* - U R
+80R*T S — 50R?S°,

54PS° + 128Q%T3 — 144 Q* TRV
-1085*°Q*RU - 240Q*RST? + 216Q2S°T
+360QU RS + 36QT*R® — 552QR*T S* + 189 RQ 5*
-2TURS + 24R'TS - 146 R* 8,

U?PR - 4U%Q* + 3RTUQ + 23QS5*U - 208QT?
-18UR*S + 15T* R?,

9RTUP — 24SPT? + 8TUQ* - 2QURS
+55RQT? - 30QTS% - 36UR® + 20R*TS,
12RPT® - 15QUR? + 122QRTS - 66T R®
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(B.59)

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)



Jaa

as

s

a7

jag

+4R*S* — 15PTS?

+125UQ* - 66Q S — 28Q° T,

3RSUP —6PTS* +8Q*T? - 6QUR?
—TQRTS +6QS* + 6TR® ~ 4R*$?,
-16TUQ* + 40Q*URS - 8RQ*T? - 18QU R®
-28QR*TS - 27TPS* + 30RPTS*

+24QRS* +9TR' - 6R%S?,

—368RQ*TU - 240Q°S*U + 960Q® ST
+1040 R2Q?U S ~ 464 RZQ* T

—3240RQ*T S* + 1620Q* S5*

—-24R'QU + 1896 R°QT S — 1188 R2Q S® - 3R°T
+2R'S? + 189RP S,

8RPUQ* - 216RSTQ* + 153QTR®
,—102QR*S* - 165U Q°

+108Q*S® + 64Q°T? + 54PRS®

-60PR*TS + TPUR®,

R'PTS -~ 2RQ*TU - 16Q*S*U + 64Q*ST?
+92R*Q*US - 32R*Q3T?

-216RQPT S? + 108Q% S — U R Q*U
+116R°Q*TS - 81R*Q*S® + 6R°QT
-4R'QS®* + 18R PS8,
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(B.66)

(B.67)

(B.68)

(B.69)

(B.70)

(B.71)

(B.72)



ise

i

Ja

ja2

J43

Ja

s

9QU?P — 114SPT? + 191TU Q?

—-428QURS + 250 RQT?

+60QTS* + 2UR® - 40R*TSS,

6QTUP —21PTS® + 22Q*T? - 21QUR?
+22QRTS5 -6QS% - 6TR® + 4R S?,

18PS® — 80RPTS +40STQ* + 9PR?*U — 24RUQ?
+15QTR?* - W0QRS? + 32PQT?

4SQUP — PR*U + 8RPTS ~ 18PS® - 8RUQ?
+208TQ* — 15QTR? + 10QRS?,

2PQS*T -3PR*TS - 54PRS® - 125UQ°
—-8QT* + 6RUQ - SRSTQ?

+39Q*S* - 6QTR® +4QR*S?,

189 PQS* — I55SR’TP - 2710PR%S® + 112TU @*

-340Q°URS + 16RQ’T? + 156 Q®UR® + 156Q*R*T S

+27TQ°RS% - 93QR‘T + 62Q R §2,
PRUQ + 12PQTS - 4Q*U - 5Q*TR
+15Q*8* - 18RPS* - R*TP,
216Q°RT S - 188Q*TR® + 207Q*R*§?
+16Q*SU — 108Q%S® - 64Q*T?
+14PQR*TS - TR'TP - 126PR*S?
-54RPQS® - 36 R?*U Q°,

144

(B.73)

(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)

(B.80)




jar

Jas

j49

iso

s

Js2

s

Js4

—-3420R{Q%U + 9216Q°ST? — 2304Q° S?U
+126 RSP S? — 11556 R2Q3 S® — 4544 R*Q*T?
-31104 RQ*TS? + 1052 R Q*T — T83 R Q? 52
+13232R2Q*SU + 2646 R PQ S°

—4608 RQ°TU + 16488 R3 QTS

+7TR6T P + 15552 Q% 54,

3P2U? - 57TPTS* + NTQ*T? ~ 5TQU R®
-578QRT S + 354Q 5% + 354T R® - 236 R* 2,
32TP*U - 191PR?U + 176 RPTS
—~126P S + 104 RU Q?

+40STQ* - 105QTR* + T0QRS?,

P?T? + 10PQTS — 6R*TP

~12RPS* - 3Q°U + 10Q*S?,

SUP? + 43PQTS - R*TP - 66 RPS?
-12Q°U — 20Q*TR + 55@*S?,

12QPS? + 2QRTP - 3PUQ* -5TQ°
—32SR*P + 20RQ*S + 6 P2TS,

27P%S® + 84PQ*TS - 2QR3TP - 198PQRS?
+8SRP - 24Q'U - 0Q°TR

+150Q%S?* — 5R*Q?S,

RP*U - 4PUQ* + 23QRTP +18QPS?
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(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)



Jss

ss

is7

Ise

jsd

Jso

Joe

J10s

j108

Jiog

in2

-48SR*P — 20T Q® + 30RQ?S,

—24PR* + 15R*Q* + 38QSRP + 4RTP?
-4PTQ* - 20Q°5 — 9P* 52,

-8PUQ* + MQPRTP - 0TQ* + 36PQ*S?
+2TRP*S?* - 162QSR?*P + 100RQ3S
+8PR' - 5R3Q?

2QUP? - 27P*S* + 2PTQ* + 66QSRP
-8PR® - 40@Q°S + 5R*Q?,

PPU+7QTP? -48SRP* + 10PQ*S
+80QPR? - 50 RQ®,

50Q*PR - 25Q* — 12Q P2S

+3P3T — 16 P2 R?,

27PS* + 12P°TQ* - 162QSRP? + 60PQ%S
+155Q*PR? — 100RQ* + 8 P*R?,

UC? +6D*US - 5D*T? — 2DCTU,
~-7TDQCR+3PCDS + 2D*@?

+(—4R? + 6QS)C?,

(9PS —5RQ)C®* +2PDCR + 4PD*Q
-10C D@3

(6PR-5Q*C*-2PCDQ + D*P? — 5C2Q?,
B*D
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(B.88)

(B.89)

(B.90)

(B.91)

(B.92)
(B.93)
(B.94)
(B.95)
(B.96)

(B.97)

(B.98)

(B.99)

(B.100)
(B.101)
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jur = A*D*+6A’BCD +3AB°C? - 10R, (B.102)
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A Grobner basis for a binary quintic form which is a

factor of a square of a quadratic form and a linear form

>W:=|[(2#A*C*D+4+B*«D+4xAsBxE)—-10%R, (A*+E+4* A+ BxD)—5*Q,
(4*B*C*E+C®**D)~5+T, A2+ D—-P,(4xB>«E+4+B*xC+D+2xAx
C+E)—1045,C?+ E~U];
> gbasis(W,plez(A,B,C,D,P,Q,R, S, T,U));

There are 588 polynomials in the Grébne basis of I.

ki

—

223472 S2USR® - 3205% U3 +500T° Q + 500 % S°
+2TUSRE +4U%Q* +200T S2RU4Q
—1048T*RSURQ — 3300 T3 U2 S3 R+ 156 R2U* T2 Q
+160TS*U R+36QSU° R?
—48U°Q*TR-468TSU*R* + 176 T2 S Q*U*
-1196 T2 S*Q U3 +3600T°U S*R

+2580T*Q S2U? + 14 T3 UP R® + 100 U T® R?

—176 U*S* R - 2000TUQ S

+1680U2S°T? + 560 T° U?Q R+ 224QU* S*
-52Q*S?U° - 14204 SU2 R?
-88TUBQ* - 1000T" SR~ 1725 T* U §¢, (B.103)
50T?S%-54SU?R* — 80U S* ~ 4 U3 @?

+50QT* -3USTP+2UPT +27UQTR
-105UT*QS +RU®P +36Q S*U?
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+180TU S2R - 100T3 SR, (B.104)

= 925T4S*-4USQ* - 2TU'R* +3205°U% - 100T® R?

+1048T°RSU2Q — 2234 T2 S2 U R* + 20T P

+1196 T2 S2QU? + 468 TSU* R®

~176 T2 SQ*U® - 200T S*RUSQ - 160T S*U% R
-36QSU'R*+48U*Q*TR

+52Q%S2U* - 224Q U 54 - 1680U S° T2

~156 R?UT2Q+10T*RPU?*-30T°SU P

+176 US S  R2 — 200 TS RUQ - 2220T4 QU S°
+880T*USR®+3300T°US°R

+48T*Q*U% + 950 T SQ - 104T3 U R® ~ 1800T° SR,  (B.105)
2QUP-11RTPU?
-8S2U2P+37TSUPT? - 20T*P+2TQ*U?

-36 RSU2Q+15RUT?*Q+40QUTS?

-255QT8 +54U R —180UT SR + 100 R? T3

+80U S* R —50T? S* R, (B.106)
-312R?UPT?Q +352U% S* R* - 100U R T

+104Q*S2 U ~ 448QU? S* + 100U Q* T

+96 U Q*TR-T2QSUR* +4QU*PT?
-320TS'UR-2URT*P-UNT*S?UR?
+100T3S*R—475T* 52 Q + 140 T* S R?
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+1060T2S°QU - 60T°SP +936TSU R®
—204T2SQ*U +95 T3 SPU P + 640 5% U7

—4005°T% —550TSRQ - 54U R*
+1025T3SRUQ - 400T S RU%Q

-37TT*SRPU? -8U* @3, (B.107)
300T3S*R - 1344QU? 5% + 312Q* S° U3

+1056 U2 S* R? + 285 T2 S*U P + 2808 T S* U R®

~1225T*Q S - 960T SU R + 4300 T* §* R?

+40T*RP -216Q S*U3 R®

-1080T°QSUPR* -~80T*RSUP+3TI5T* QU S’R
-95T*RS*U*P - 200T° R®

+200T° Q% +19205"U ~ 12005 T2 - 16 T2 U3 @3

+288S U Q*TR-1200T S RUZQ

-468T2Q*S* U2 + 14 T3 U2 Q? R— 120T* U @3S
+2860T2QU S* - 7570T?U S° R?

-18T2 U’ R* +8T°QUP + 2T R*PU?
-2000T°QSR+60T*USR -30T* R*UQ

-24SU'Q -162SU R — 180T S? P, (B.108)

= 8500T°RS°-2430S2USR*-2700T° S° P

~10680 T4 Q* U S? - 18000 S7 T? + 28800 S8 U

—M4T2S QU3 - 144 Q*SU* R?



—~2236 T S* QU2 + 63500 T* R S° + 2712 TRU* QP
—20800T RS®U + 1000T* RA U

—170007° R*S - 10980 T R* SU? + 1200T° RS P
—32450T°RS*Q + 25600 T° R® S U + 20T° R*U P
—110350T? R?S4U — 1584 T R*U® Q? — 2160 T° RU Q?
+38600T RPU? % + 2704 T2 RPU? Q + 15840 U2 S° R?
+4275T3SSU P - 16 U5 Q¢

+7192T° RSQ*U? + 58325 TS RS* QU

+2592T R*QSU® - 14160TRQU? 5*
+2480TRQ*S* U3 + 700 T° R* S PU?

—21136 T2 RS2 U Q - 1180 T* R SU Q
—2150T*RS*UP - 1425T*RS3U* P +80Q T P
—18880Q S°U? - 108QU* R?

+192T* Q*U? +6800T? S Q® — 14675Q T* 5*
+3784 QUS4 - 152Q° S2 Ut

-2536 QU3 S® R® + 540 T R°U® + 5100 T° R* Q
+36180QU S° T2,

—8RS*U*P-180UTSR* +15RRUT?Q
~11R*TPU+175QT*SR+6QU?STP
-320QTUS?R+3TRSUPT? +54 U2 R
+1I00 R T +8U° Q% —100Q* T
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(B.109)



klﬂ

ki

~50T?S?R* - 20RT* P + 80U S° R?
~4QUPT3+210UT?Q*5+2QSU? R?
+160QU S* -52UQ*TR-72Q*S*U? - 100Q T2 S8,
—-80ST*P +200QT° R+ 108 R*U%Q - 100 52 Q T?
~64RSU*P+8T?RUP+6TQU?P +128T S2PU
~360TSQRU - 25U Q*+25T* Q*U

+US P2 +1605°QU,
PPTU?-8SQU'P+6T*PQU - 4R PU?
~8RPTSU+328°PU-2082T*P +16 RQ*U?
—40STQ*U+25T% Q%

—45°QU*P-13ST*PQU -2SR*PU?
+28RPTS?U +165*PU

~10S°T?P +8SRQ*U*-40S*TQ*U
+25ST3Q*-8T?R2UP+10T*PQ

+2P*T3U +4TUQ* +5RT*Q*U
-20RPT*S-TRQU?P,
~540STR'\U+8T*Q*U?P+8STU?Q?
+40ST*PQ-80RPT S~ 14T R*Q* U -1 TR PU?
+325°PU ~200RT*Q* - 960QU T S? R?
-808TQ*U+505°T3Q* -~ 140 P R* T
~205*T*P-64RT*PQU +480 SRT* Q*U
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(B.110)

(B.111)

(B.112)

(B.113)



ki3

ks
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-58 ST PQU +120RPTS*U

+207ST2REUP -200S*RQ*U? -853QU?P
—28S2RRPU*+ 40T Q*U + 300 R* TS

+16 P*T5 +162U% R®* + 480QU S* R+ 216 QS U R®

+525Q S R*T3 - 300QT*S°R

+5QT*R3U —150T? S’ R* + 240U S° R* + 24 RUPQ%,  (B.114)
16TRPUP-25Q*ST*-20T3PQ - 4 PT?*U
+40Q*S*U - 802 Q3+ SU PP - 10RTQ*U +32STQUP
-64SPUR+40RPT?*S+2RQU?P, (B.115)
4RSQU?*P+13RT*PQU +2R}PU?
-28R®PTSU-16RS*PU+10RS*T?P
-8R*Q*U*+40RSTQ*U -25RT% Q*

+PAUT?S —4P*T* - 2T Q*UP
+8TQS*PU-5QSTSP+20PR*T® - 10T2Q*U, (B.116)
PPU?R+2P*UTS -8P*T* - 4Q*U*P
+32PQTRU+16QS*PU-10QST?P

—64SR*PU +40PR*T? - 0T Q*U

+40SQ*RU —25Q*T* R, (B.117)
—8TRUP+10RT*PQ+2RP*T?U

+HRUV'Q* +5R*TQ*U - RQU*P+PPUTS? —4S P2T®
~2SQ*U*P+8QSPU-5QS*T*P-10STQ*U, (B.118)
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ky = —4S5*P*T-252Q*U’P+PUTS*+20RT*QU
+4SRUQ* -10S°TQ*U-5QS T2 P+8QS‘PU
—20R*S*T2P-4R‘PU* +50 R2T3 Q?
-40PR*T* +16 R*Q*U* +8RP?T*
+32R?S*PU+20RQST}P-16RTQS*PU
+4RTQ*U*P+48R*PTSU
~T5R*STQ*U-9R?*SQU*P-26R*T2PQU, (B.119)
ke = QU*P*-8RP*TU-48*P*U
+16ST*P*+6PTQ*U-8PSQRU
—40PQT?R+32PR3U +25T% Q% —20Q* R?*U, (B.120)
kw = —8QTRUP+25Q*ST?+10T2PQ?
+2QPPT?U-0Q*SPU+4U?Q* +5RTQ*U
-13STQ*UP+28QS*PUR—-40QRPT*S
~RQ*U*P-4SRP'TU-28°P*U
+8 2T P2 +16SPRU - 10SQ* R* U, (B.121)
ko = —1052Q*R*U+16S°PR*U-4QR*PU?
+20Q*ST P+ 16 RZQ* U2 +4T QU P
-T5RSTQU-29TQ*S*PU-4S*RP*TU
-28*P2U +8S°T* P> +48QR*PTSU
+60QRS*PU -60QRS*T?P-40QPR*T®
—-9RSQ*U?P-26RT?PQ*U +45U%@Q*



ko

-0Q*S*U +25Q*S2T* +8Q P* T

+20T2Q'U +50RT? @,

QPUTS-4QPT* -2Q*U%P

+13PQ*TRU +8Q*S*PU
-5Q*ST>P-28QSR*PU+40QPR*T?
~10TQ*U+20SQ*RU-25Q*T*R
+4R*P*TU+2RS*P?U —8RST? P?
-16PR'U+10Q*R3T,
128QR*PU+8SPQ*U~64P2SRU
+6PPTQU -80Q*RU +25PT*Q* +108 S2 P*T
~100Q°R®*T +200SQ°T + 160P R*T
+PPU?-32RP*T* - 360 PSRQT,

~11QSUP? + 15 STPQ* + 31 PRUQ? + 2QP°T?
+40 PQTR® — 36 RSTP? + 54 S°P? + 100Q35?
-20Q*U —25Q°TR + 80 SPR® - 180 PS*RQ
~50Q*SR? + 2 P*TU - 8 R*UP?,

80 S?PR® ~ 52QST?P? + 210 PQ*T*R - 4 PTQ?U
+15 S*TPQ? + 160 PR*T — 100 Q*R*T + 175 RSQ®T
+72 RS*P*T + 8 P*T® - 8 SR*UP? - 180 PS°RQ
—320 PSR®QT + 6 P’QTRU — 11QS*UP? — 100 T3Q*
~50 Q*S?R? — 20 SQ*U — 72 P2 R*T? + 54 34 P?
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(B.122)

(B.123)

(B.124)

(B.125)



ks

k218

keoq

ka26
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+100 @*S3 + 37 SPRUQ?, (B.126)
SUP® — 4 P°T? —3QRUP? +271QSTP?

+36 R*P*T - 54 RS*P? + 2 PUQ® - 105 PQ*TR +

180 PSR*Q — 80 PR* + 50 TQ* - 100 SQ*R + 50 Q*R? (B.127)
2TUSDR®-162U°DRTS +108U*DT*R+8U*DS®

+219U* D S*T? - 300U DT*S+100DTSU —2UES P
+2UEPT?* +36UERQ-98U*EQTS
+62UREQT* - 1TIU*ER*T -96U*ES®R

+982 U ET?SR-580U?ERT* + 280 ET S°

-1615U2ES*T3 + 1T00 EU TS S - 500 ET7, (B.128)
(3T°Q-6RTS+3S)D*~ED?PSU

+ED*T?*P + 2ERQD*U - TEQD*ST - 2ED*R*T
+7ERS*D? + E°RDUP - 2E*DSTP - E*Q*DU
+7TE*RTDQ + 2S*E*DQ — TDE*SR* - 3E*TQ?
+6QE*SR - 3E%RS, (B.129)
(24T?P + 30QST — 120R*T + 60 RS?) D*

+4ERPD*U — 46D*ESPT + WEQ*D*U - 50TQD*RE
-20ES’D*Q + 120ED*SR? - E*QDUP + 30DE*TPR
—12E*DS*P + 5Q*E*TD + 140E*RDQS - 180DE*R®
-UE*P? - 37TQE’TP + 4RE*PS, (B.130)
(36 PST - 0QRT + 45QS*)D* + 3EPQD*U
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-18ERPD*T - 33EPS*D* - 15EQ*D*T

+90EQD*SR - E*°DUP? - 11E*PTDQ

+70E*PDSR + S0E*SDQ? - 135Q DE*R® — 8T E® P?
-10QSE*P + 27TPE®R?, (B.131)
(4PS? -5Q*T)D® - 2EPTD*Q + 5SED*Q?

~-DP*TE®* +4DSQE*P + 4DE*R*P - W0E*RDQ?
-E*P!*S +2QRE®P, (B.132)
(12PTQ — 24PSR +155Q*)D?

+4ED*TP* - WEPQD?S - 8ED*R*P

+5ERQ*D? + 3DSE*P? - 14PE*RDQ

+20E°Q*D + RE*P? - 4Q*E°P, (B.133)
(8P®T + 10PQS ~ 40R*P + 25RQ*) D®

+6ED*P?S ~ 0EQRPD?

+25EQ°D* - DRE*P® + WDQ*E*P - 3QE*P%, (B.134)
(16 P*S +25Q° —40QRP)D?

~-8PPD°ER + 3P*E*DQ - PPE® + 5D*Q*E P, (B.135)
D°U-SED*T+10E*D*S -

10D*E*R+5E*DQ-E°P, (B.136)
C*E-U, (B.137)
4B*E*+BC*D*+5BDT-10EBS

-55CD+5CER, (B.138)
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kss7 = S5A2E+4ABD-5Q, (B.139)

B.7 A Grobner basis for jsg, jss, j57, j55, j54: J52: 51, J501 J49, jas,

45,42, Ja1, J40, j29, ]34, J335 132, J31, Jo7, J26, J25, J24, J23, J22, 21, J6s J2

A Groebner basis for jsg, jss, J57, jss: js4: J52: 51, Js0, jag, Jass
J4s: jaz, ja1, a0, 39, i3a: a3, Ja2, Ja1, 27, 26, 25, J24, 23, J22, ja1, J6, 2 With Tespect to lexicographic
order is

(10823 u?r + 21982 2 u® — 300t us + 1002° + 27u*r? — 162t ulrs + 853w,
3udq—12tu?r — 16u?s® + 50ust® - 25¢4,
27udr? —162turs+60urtd +8s3u? +155ut?s? + 12¢2u2q — 100 s¢4,
27820 r? - 5483 urs+60t5r + 22712 5% u — 14584 5% + 12t uq + 27su®r?
—162¢u?rs® +8su? 2484 5821 r? — 2736 B ur 2 + 252055 r + 65112 s u
—4160t*s® + 783 2 udr2 — 4794 tu?r s® + 23255 u? — 324t rd — T56 uritd
+240qt, ~9u?r? +38turs~20rtd —24su+4sulq+15t2s% —4t3ugq,
108u3r3 — 567tu?r? s +252ur? 3 +32r s u? + 3907 ut? s* — 2607 st
+116qt3su—80qt5 +24ts*u—15t3s,48rtuq~ 116qt2su +80qtt
—81ulr?s —12ut?r? +230trus® — 140rstd — 244 u + 1542 %, 108 3 tu?
— 468122 us + 24072 t4 + 5187t u — 32073 $® + 483 uq — 116qt* s*u
+80sqtt ~81ulr?s® = 24s5u+ 154254, —1296ud r* + 9936t u?r3 s
~3024urdt® - 273372 ¥ u? - 18252r%ut® s + 100802 st* + 960 r gt
+14734rtstu — 9100783 s — 3364 ¢t s® u + 2320 52 qt* — 696 8% u + 43582 &5,
8tulg? —4rttug—-46tqs’u+40sqt® — 27wl + 1024 ur2 5 ~ 7083 12
—8rus®+5rs%t, 1283 uq® + 3qur? — 62tqurs+20rgt® + 3gsfu
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+15qt?s® +6tur’ +38ur?s? —35r%t25,48¢% ¢4 — 24 qutlr? — 56qirus’
~112qrst? +3qs*tu+96qt?s® +27u?rt —36turds + 963 rd + 6212 u §d
-104r282 2, 123 qut + 56 r2 qtus — 2072 g3 —6rgsdu+ 132rqt? s
+12t?ug? ~8ltqst —44urds? +54tr?s3 ~485¢? 3 — 465318 + 3turt,
—8tsuq®-19rqs’u—68qrt®s+54tqs’ +42urds - 36t s% + 324°¢°
—-20tqurl+ 1982 +4u?@?r, 16 turs +32¢° rt* + 1283 ug® — 482 ¥ 52
~68572qt2 +216rqts® —64quris® +63surt —132r3ts? + 5473 g
~8lqs®—24qturd +24t2r4 288rsg®t® —168r2gsd3u — 73212 ¢t &2
+36s'ug® — 144225 + 1627255 — 243¢s® + 48 rtqu? + 803 g#°
+365urts® — 61287353 + 256582 rf — 12t urs +972rtqst —296r3gtus,
384s5¢°t*~96rtug® —160r2qt> — 936 rqts® — 168suq® + 16u? ¢
+304qur’s—63urt+548r3ts — 34223 + 513¢5%,32tsuq® — 9252 ug?r
+636¢°rt?s—216t¢°s® +136qurds — 792qtr? s? — 128 %% — 16t PP ur?
~236qt2r} —63urS + 548745 — 3421333 + 5137 qst, —548r°¢ 5 + 284422 4
~405¢r%s* —96 12 s* +245°ug® +192¢° 13 — 79232 2 12 + 6487 g%t 53
~36qur’s® —32¢%tur’ — 10gsurt +528qrits® + 63 urs — 16242 s°
+3427r% s} —485ur+80uts? —50sP +ulp+Ttulq+ 1082 ru,
2tulp +282uq—27ulr? +66turs—40rt> -8s5%u + 5822,
3pu+5qt -12tr°u—20rst?+32rus’® -6rulq—2qtsu,
- 10rtug+3p +6qlu—uw?@+12urls — 108212,
3sulp~2rutq+6lgtsu—40qt +6trPu—16rus? + 107 st?,
21gs’u—4ulg — 155qt2 ~4rtug—6ur’s+5t2r> +3stup,~80qurs
~4spt? +32tuq® +40rqt? +952up+15qts® + 18urd — 102t s, 3pt? 2
~4tsu@ +12¢ 8 —9tqurl +rqsfu—38qr¥s +24tqgs® + 18urds



+982r3 - 16tr2s%,46quris—16rtug® —20r2qt®> — 140rqts® — Qurt
+80r3ts+6pts® +40sPt2 +75qs* — 502 5% — 125%uq?, 54ps® + 12848
—144tqur? — 108s2ug’r —240¢° rt* s + 216t ¢>s° + 360quris
+36qt2r —552qtr2s® + 189rgst —27ur’ +234rtts — 14693 53,
wpr—4ulg® +3rtuq+23¢s2u—20sqt? — 18urls + 158212,
9rtup—24spt>+8tug® —2qurs+55rqt> — 30qts? — 36urd +20r%¢s,
12rpt> — 15qur? +122qrts —66tr° +44r2s> — 15pts? + 12sug® — 66 ¢ 58
—28¢%t%, 3rsup—6pts® +8¢*t2 —~6qurl —Tqrts+6qs® +6trd —4r2s?,
40urs—16tug® - 8r¢*t> - 18qurd —28qrts+30rpts® - 27pst
+24grs®+9¢rt - 61352, 189rpst —368rtug® — 24052 ug® + 9605 4° 12

+ 1040572 ug® - 46412 ¢* 2 — 32407 5%t ¢ + 1620 g% s* — 204ri qu

+ 189673 gts — 118872¢s® —3r5t +2r*s%, 64t + 812 ug? - 2167 st g’

+ 108 ¢%s% +153¢qtr3 — 102¢qr?s® — 16sug® +54rps® - 60r2pts + Tpriy,
-32rtug* —16%2uq* +64sq* 2 +92sr2ug® - 322 B2 - 216r %t
+108¢3s* —24rt P u+116m Pts - 81r2 P s +6qrit —4qris® +ripts
+18mpsd,9qulp - 114spt® + 191t uq® —428qurs+250rqt? +60qts?
+72urd —40rts,

6gtup—21pts? +224° 12 -2 qur + V2qrts—6qgs® ~6tr’ +4r2 52
18ps® -80rpts+40stg® +9pr2u—24rug® + 15qtr* —10qrs?
+32pqt?

4squp—-prPu+8rpts—18ps® —8rug® +20stq® — 15qtr? +10qrs?,
42qpts® —3ripts—54rps® - 12sug® -8 2 +6r2ug? —8rstg
+39¢°s3 —6qtrd +4qr?s? 189qpst — 1573 pts ~ 270r2ps® + 112t ugt
—3M0Purs+16r3 2 +156 2 urd + 156 P r2ts +27¢°rs® — 93gtrt
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+62qr3s?, pruq+12pqts—4qgu—-5¢*tr+15¢°s> ~ 187ps® —rtp,
144r%pqts — 362t u—188r3?t +207r2 > s — 1263 ps® - Tritp
—644%t*+216rstq’ — 108¢°s3 + 16suq® — 54qrpsd, 31104 r s*t ¢
+15552¢% 5% + 105213 ?t — 78314 ? 2 + 1265 ps® + Tr8¢p — 4544 r2 ¢* 2
— 115562 3 $3 — 34204 * u + 164883 st ¢® + 132322 sug® + 2646 r3gps?
- 46081 tug® — 2304 P ug® + 921655 12,372 u? — 5Tpt s + 21T P 82
- 5Tqur? —578qgrts+354qs® +354¢r3 — 23612 52,32t pPu — 191 pr3u
+176rpts—126ps® + 104ruq® +40stq> - 105qtr? + 70gr s?,
P?t2+10pgts —6r¥tp—12rps® -3¢ u+ 1042 s2,
sup’ +43pqts—ritp—66rps’® —12¢°u—20¢%tr +55¢° 52,
12¢gps® +2qrtp—3puq® —5t¢* - 32sr2p+20r¢g®s +6p%ts,27p% §°
+84sptg® —2qritp—198qs’rp+8spr* —24q*u—40rtg® +1504° &%
—5sr2 @, rpPu—4pugd +23qrip+18qps? —48sr2p - 20t +30r¢®s,
-2pr3 +15r2q® +38qsrp+4rtp’ —4pt? — 2043 s - 9p% s, 2Trp? §°
+44rptg® —162qsr?p+8pri +100r s~ 53¢ ~8pPu+ 36pg® s?
-40tq, 2qup? - 27Tp? s* +2pt® +66gsrp—8prd 403 s + 512 ¢,
Pu+Tqip —48srp? +10pg®s +80gpr? ~ 507 ¢°,
504°pr —25¢* — 12qp% s + 3p*t — 16 p* 2,

8r3p2 +155pr2 g2 — 162¢s7p® + 1202t g2 + 60pg® s + 27p° 52 — 1007 ¢

B.8 A Grobner basis for k25, k23, k22, klg, k15, k13, km, kg, k4, k2

W = [kas, ks, kaz, kis, kis, k3, kig, kg, ke, k]
> gbasis(W', plez(Py 4,7 5t u));
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[-1000t" s — 1048 3 ud g7 s + 200 s% tu* gr — 884 u® g% + 560 15 gu?r
- 1420t u?r? s + 2580 t* s? u ¢ — 20008 squ + 3600¢° P ur — 33003 s3u?r
—468stutr + 176 st2utq® — 1196 582 qud + 2234 2 2 r2 3 + 160 s t ' r
+ 15622 qut +36quiris —48uS P rt — 1725¢4 s u + 168012 s° 2
+104 8133 +224¢gstut — 176 3 ulr? — 525205 ¢ + 100w t5 r® + 50085 &3
+500t8 g — 3205048 +4u8 g% +27ulrt 4l @ + 505312 — 54u?rls
—100st3r +36s2u?q—80s*u+ulrp+50tiq—3tsu’p+283pu
—105st2qu+27u?qrt+ 18052 urt, 48t u? ¢> — 16801 s5¢2 + 950t8 s ¢
- 104342 r3 = 20085 rqu — 100572 + 20¢7 p + 3208 u? ~ 405 % — 27t !
+9255%¢4 — 180085 75% - 224¢st uP + 176 3 ud 2 + 5282 ut @ + 10t u? pr
— 308 sup—2220t*s®qu + 880t r2su + 10482 w2 gr s + 33003 s*ur
+468studr® — 176 5213 g% + 1196 s° t2 qu® — 2234 5% 2 r2u? — 16054 tu?r
- 15672 t2qud —36quirts +48u' ?rt — 20052 tudqr,54ulr® — 11u?prt
~8s52ulp+37s2up+2ulpg-2B5s5t2q+ 2w Pt + 10072 + 4052 tqu
- 1802 sut+ 1573 qu—507t2 s> = 36ulqrs — 20t p + 80 ur, 100uti ¢
— 4755t q - 448 g5t u? +936stur — 400552 + 64055 u - 8utg® — 5448t
—4005%tulgr - 3752 ulpr+ 9552 P up — 204 s2u ¢ + 10605° 2 qu
- 24705 r?y — 320s* tur + 493 pu? - 31272 2 qu? — 72qu’ris
-+-96u3q3rt-2urt4p+10253t3rqu.-l- 1400st4r? + 1003 r - 60stp
+3525% w2 +1045%ud @? — 100ur3t® — 550rt° g, —162su’r® — 24 sutqg®
+3125u®¢® + 1056 s* 4?12 — 180s*t°p + 300 s* 2 r — 1344 g s° u®
- 10882 u%rt — 1612us ¢ ~ 1225t qs® + 4300842 2 + 40t5rp + 88 gpu
+2860t2gstu~ 75708253 ur? — 468352 u2 ¢® ~ 2000t gsr — 9582 rs?wp
- 1080t2qulr?s + 1048w @r + 3715683 g ur —~ 80t rsup + 20085 ¢
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~ 12005542 +19205"u — 2008513 + 288 sul@?rt — 120083 tulqr + 603 r3su
+2283u?pr? — 216qulr?s® — 960 s° tur + 28553 S up + 2808 s* tu? rd
-120t'sq?u~ 30t r2qu, —-16 uS ¢* + 36180 qu s° t* — 2536 ¢ s3 u® r?

— 1442 utr? s — 106804 s g u — 944 s 2 ud ¢ — 2236 3 12 g% w2

+ 38600t 13 s°u? + 2480t r s ud g — 7180t r2 squ — 21136 2 r2 s u2q

+ 70083 r2sulp - 215044 rs>up + 2592¢ i qu s — 1584 82 r2 u ¢°
+12008%rsp+2083r2up+ 779213 rsu? g + 583253 r s qu

— 110350212 s* u + 2704 83 r3 g u? — 14160t rgs*u? + 272¢ rut g

+ 256008312 s u — 32450¢° r s% g — 109803 r* s u? — 208007 56 u

— 21605 rug® + 28800 5% u — 14252 r s*u?p + 42755 3 up — 18000 57 2

— 243052 udr* + 15840 85 u®r2 — 2700 5% t° p + 5100t r2 g + 1000 ¢4 rtu
+63500¢4r%s® — 1700025 r® s + 540¢ 75 u® + 8500¢% r 55 — 14675q 54 t*
—108qu*rt — 18880 ¢su? +80qt"p— 15252 ut ¢® + 3784 ¢% s* 3
+6800t5sq® + 19288 u¢®, —20rt4p — 501222 — 100¢ s* 2 + 160 gstu
+37rsup+80sfur +8ulq® — 10084 +54u%rt + 10038 — 7252 u? g2
+6qtsu’p—3209s°urt+175qst3r —4qtipu—11u?prit —180risut
+15r2 2 qu—8rsfulp+ T2quiris - 52ul@rt+210st3 Pu,8rt2up
+udp? +25¢%t2u+200qt°r ~64ulprs—80stPp — 100qt3 s® - 360qsurt
+ 10872 u2q+ 1282 tup+160s3qu —32¢% su® + 6ulpqt, —4r2u?p
—8psulq—40g*stu+6ptPqu—8psurt+16gru? —20pt?s®
+325%up+tp?ut + 25428, -2sr2ulp—4pstuPq—40¢*s*tu
—13spt?qu+8psPurt+8sg®ru’* - 10pt?s* + 16s*up+ 255
+5¢urt? - 20ptrs—tprulq-8r2up+10ptig+ 202t u+4tgdu?,
5052283 — 20042t r — 140pr2 ¢4 + 3255 up — 20pt2s* + 404 3 u



—28rutp+ 167785 - 8psPulq—-80¢g® P tu— 2005 ru® —80pt3rs®
+40sptiq—58s2ptiqu+120psturt +480sq? urt® +207sr22up
+8stPul+ 82 ulp—41triulp - 124t @ r2u’® +525¢stdr?
—540rtsut +45r° 2 qu+216qu?r3s —300rgs3 1> + 480rg sty
—64pqurt’ +162ur® + 300743 — 15038252 + 24083 urd + 24rulgd

- 960gstur?t,—10g?urt —64rsup+40pt?rs +40¢>s?u — 25¢° s
+2prulq+32pstqu+pPsul +16r2tup —20ptdq—-4pP P u—8¢u?,
—5pstiq+8tpsiqu—2tPulp+40tPurs— 10432 u—25¢3r — 4p° ¢4
+20pr? B +pPst?u+ 13pqurt’ —28trlsup+2riulp+4rpsulq
-8¢r?u? +10rpt?s® ~ 16rs%up, —10pstiq+ 16ps®qu — 4¢%u?p
+40Purs-20C°tu —25¢>t2r —8p?t3 +40pr2t® + 2p® stu +32pqurt
+pPrul —64risup, ~5ps’t2q+8psiqu—2sg®ulp—10sgitu—4sp?*
+pP2tu+5¢urtt—priutq-8ritup+ 10rptiq+2rp*ttu+drgdud
- 48P +8rp?tt —5psit2q+8pstqu—20r2pt3 s +32r2 sSup
+5028r —40pr3 —4rtulp+pPSPtu— 102 P tu - 252 ¢ ulp
—16rtps’qu+20r@t2u+20rpstiq+4rtgdulp— 6pqurit
+48tr3sup-T5tfuris+4srdul - 9rpsu’q+ 162 u?,-8pqurs
-8pPurt+25¢ 2 ~40pqt*r —20¢*rPu+pPulq+6g°tup+ 16p°st?
+32r3up-4p?s®u,28pqurs® —4spPurt + 2582 —40spqtdr
-10sg@®rPu—13s@tup+8p? 22 +16srup-2p°su+5¢urt
-0¢sPu—prutg -8qritup+10pt @ +2qpP P u+4¢4 4%, 255% ¢ 2
+200° P u+ 502 r + 16 r2u? + 8qpP 4 + 87 P2 ~ 2P s u— 2047 Py
+45¢*u? +20ps P + 4t ulp—40qpr* ~4gri3u’p -4 pPurt
-10s2¢*PPu+162rPup+48qtrisup—60qrpt? s —9rpsu¢®
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—6pqurt? +60qrsPup—29tps*Pu—~T75tgurs, —5pst3 ¢
+8p?Pu~2¢ulp+20%urs—10¢*tu - 254 2r — 4qp* 8
+40gpr? 2 +gpPstu+13pgPurt -28grisup+4pPurit + 102 ru
—8rp?st? - 16t up+2rp? sy, -100¢°r*t — 64 pPurs — 3207 ¥ r
~80¢ru+200g*st+108p°ts®> +8¢°sup+160prit —360pgsrt +piul
+6pPtqu+128priqu+25pg* 3, 37TpP ru+100¢° 5 — 204% u
—-50¢°r?s+54p%s% — 367 srt—25¢°rt+15pg®st - 11p?squ+80pris
+40priqt — 180pgrs® - 8P rPu+2p° 3 q+ 2p% tu, —100¢4
+160tpr* + 37spg*ru—11p°s®qu—8sp?*rPu—180pqrs® + 54p% 5t
+100¢°s% - 502 % s* +80pr3s® —205q*u — 320tpgris—4tPup
+175t@Prs+ 12tp? ®r+15p @ s*t + 6t pPgru+8p% 18 — 100 ¢* 12
720722 ~52p%sqt2 + 0pgPre?, —4p* 2+ 50¢*r? + 180pgris
-80prt+50¢'t+ 28 up—100°rs + 36 p?r2t + 27p% sqt — 54 P s°r
-3p?qru+pisu—105pgiri



Appendix C
MAPLE Work Sheet

Here we use the variables z and y instead of X, and Xj.

First evaluate G stated in Lemma 4.16, by substituting

10f
foz’

_ o (1ot
Q= E'E(faz)’

S = l_a.z_(lg)
o202 \foz)’

> G := eval(3+r+Q+ P4 —4+m?+ S P3+3% Q% Pam> +mard xS —m?sr2xS2—4xm
QP +4rmixre Q3+ PO+ 32Q 2 P12 4134 Q3 +4xmsSx Pdxr—6+m?xrx QxS
P+6xm«r’«Q+S+P-3+xQ*xP2sm=r,{P=dif f(f(z,y),2)/f(z,¥),
Q = dif f(f(z,y),2,2)/ f(z.y) — dif f(f(z,9),2)*/ f (2, 9),
S = (2 dif f(f(z,y),2)*/ f(z,y)® + dif f(f(2,v), 2, 2, 2}/ f(z,9)
~ 3+ dif f(f(z,y), 2) * dif f(f(z.9),2,2)/ f(2,9)*)/2,m = m,7 =1});

r%l(L iz, v)* K m%2(Ef(z,9)° %1% (L f(z, y))*m?
f(z, y)* h f(z, y)3 3 f(z, y)? +mrt 2

a 6 2,3 2
-m?r2 %2 - amr2 %1% +am?r %1° + {1tz 32) +3 21 (5 fiz, 3’)) -
fz, y) f(z, )

G:=3
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m%%if(z, y)Pr  m’r%l%2 (%f(z, )

3 3
TR+ f(z, y)? f(z, v)
mr2 %B1%2 (£ (z, y) , %L’ (L iz, y)*mr
f(z, y) f(z, y)?

%l = %’f(zr y) (7% f(z, y))z

flz.y)  f(z, 97

flz,y® 2 flz,y) 2 f(z, y)?

Now we collect the terms of G.

> collect(ezpand(4* f(z,y)*+G), [ (2, y), (dif £ (£ (z,v), 2)), (dif f(f (2, ¥), 2, 2)),
(dif f(f(z,y), 2, 2,2)), (dif f(f(2,Y), %, %, %, 2))], distributed);

(16m? r+4r-16mr?) (& f(z, 4) f(z, 1)+ m-m2r2) (Ex flz, ) f(z, v)*+

(12r —12/3m + 1273 + 12m? 2 + 12mr? — Ur? — 12m?r) (& f(z, v))
(Zf(z, y)*flz, y) +

(-12m?r—12mr—-9m?r? - 12 + 12mr? + 12m? + 913 m 4 127%)

(& flz, ) (£ (=, y)* (=, 9)* +

@mr—4m?r? +4r¥m+ 12m?r — 12mr? - 8m?) (& f(z, v)) (£ f(z, ¥))°
f(z, y)* +

(6m2r? + 12mr? —6r3m — 12m?r) (& f(z, y)) (£ f(z, ) (& f(z, ¥)) Kz, ¥)°
+{dmr—4r +8m?r—4m?r? +4rPm+12r2 - 12r-4m? +4-8mr?)

(zf(z, v))°
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Now we rewrite this differential equation according to our notations, meaning

_ o
aﬂf"?gg?r
&t = 54,
_ &f
agf—?a?

we get,

4f% = (16m’r +4r° ~16mr?) (1) 2 + (P m —m?r?) (& 1) f*
+(12r-12rm+12r8 + 12m?r2 +12mr? — 2472 — 12m?r) (B3 ) (Bof)* f
+(=12m?r-12mr-9m? 2 = 12r34+12m r2+12m?+ 93 m+12r2)(82£)? (3o f)? £
+(8mr—4m?rl+4r¥ m+12m?r — 12mr? - 8m?) (B3 f) (& f)*f?
+(6m?r? +12mr? — 6rm — 12m?r) (8 f) (B f) (83f) F*

+@dmr—4r3+83mPr —4m?r? +4r¥m + 1272 - 12r —4m? + 4 - 8mr3)(Go f)°.




Appendix D

Covariant calculations for binary quintic forms

> f:=x"2xy"2x(x+y);

=2 +y)

We shall calculate P(f) :

> p:=diff(f,x,x,x,x)*diff(f,y,y,y,y)-4*diff(£f,x,x,x,y)*diff({,x,y,y.y)+
6+diff(f,x,x,y,y)*diff(£f,x,x,7,y)-4+diff(f,x,y,y,y)*diff (£, ,x,x,x,y)+di
ff(f,y,y.y,y)»diff(f,x,x,x,%);

p:=-1152zy +6(12z + 12y)*

> with(linalg):

Warning, new definition for norm

Warning, new definitiom for trace

Next we calculate 3(f) :

> h:=det(array( [[diff(f,x,x),diff(f,x,y)],[diff(f,x,y),dift(£f,y,»]1]
)

h=-24z%y? —322%y° - 244422
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Next we calculate J(f) :

> j:=det(array( [[diff(f,x),diff(£,y)],[diff(h,x),diff(h,y)11) );

j=482%y% +962%y* — 96z y° — 4827 y0

Next we calculate (3, P)V(f) :

> pjl:=det(array( ([diff(j,x),diff(j,y)], [diff(p,x),diff(p,y)1] ));

pjl = —580608 z° y°+1382400 z° *+1382400 z* 3> — 580608 z° y*—248832 2% "~ 248832 27 o/

Next we calculate (7, P)@(f) :

> fp2:=diff(f,x,x)*diff(p,y,y)-2#diff (£,x,y)*diff(p,x,y)+diff(f,y,y)*di
t£(p,x,x);

fo2 = 3456y (z +y) + 4608 zy* — 4608z y (z +y) + 4608 2% y + 3456 2° (z + y)

Next we calculate (3, P)(f) :

> ph2:=diff(h,x,x)*diff(p,y,y)-2#diff(h,x,y)*diff(p,x,y)+diff (h,y,y)*di
££(p,x,%);

ph2 = —6635522% 4% —~ 110592z y® - 82944 y* — 110592 2° y — 82944 7*

Next we calculate (—(1/5) * (P, )V(f) — (P, FOP(f) = f ~ (1/6) » P(f) +
F+(1/10) 3 « (3, PYB(£))) :

> £221:=collect(expand((-(1/5)*pj1-ph2*f~-(1/6)*p~2+f+(1/10)shsfp2)), [x,
y],distributed);
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221 =0

> gi=x"3sy*(x+y);

g=2y(z+y)

Now we will follow the same calculations for g :

> pl:=diff(g,x,x,x,x)*diff (g,y,y.%.7) ~4*diff(g,x,x,%,y)*diff(g,x,7.y.y)
+6»diff (g,x,x,y,y) sdiff (g.x,x,y,y)-4*diff(g,x,y,y,y)*diff(g,x,x,x,y)i»d
iff(g,y,y.y,y)*diff(g,x,x,x,x);

pl :=864z%

> hi:=det(array( ([diff(g,x,x),diff(g,x,y)],(diff(g,x,y),diff(g,y,P1]
));

hl = -24zy - 24z*y* —162°

> jl:=det(array( [[diff(g,x),diff(g,y)], (diff(h1,x),diff(h1,y)1]) );

j1:=2162%y+ 7227 y* + 485 y® + 962°

> pjll:=det(array( Cldiff(j1,x),diff(j1,v)], (diff(p1,x),diff(p1,y)1]
));

pill = —1728 (216 2% + 144"y + 1442° %) =
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> gp2:=diff(g,x,x)*diff(pl,y,y)-2+diff(g,x,y)*diff(pl,x,y)+diff(g,y,y)*
diff(p1,x,x);

gp2 = 3456 °

> plh12:=diff (hl,x,x)*»diff(il,y,y)-2#diff (h1,x,y)*diff(p1,x,y)+diff(hi,
y,y)*diff(p1,x,x);

plhi2 = —82944 z*

> g221:=collect(expand((-(1/5)*pj11-pih12«f-(1/6)*pl-2%g+(1/10)*h1*gp2)
), [x,y] ,distributed);

9221 := 69120 z° — 82944 28 y + 82944 2% °




LT(J), 55
N(n,r), 23

Xrl 24

*, 27

rt* induced matrix, 11
C1ri1: 36

V., 27
F(my,...,m,), 40
I(my,...,m,), 46
S(k), 112

M?, 128

basic case, 25

binary form, 11

coefficient ideal , 13
conjugate systems, 26

covariant, 12

dense, 7
derivation, 50
dimension, 10

discriminant, 14

Elimination Theorem, 56

Index
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Extension Theorem, 56
Grobner basis, 55
Hessian, 15

invariant, 13

irreducible, 8

Jacobian, 15

joint covariant, 13
joint invariant, 13
lexicographic order, 23

main problem, 24
merging operation, 42
monomial, 23

polynomial mapping, 7

projective space, 8
resultant, 13

transpose systems, 35
transvectants, 15

vanishing ideal, 6
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weight, 12, 13

Zariski topology, 6

zero set, 5





