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Abstract 

In this thesis we study possible relations between the solutions of related systems of 

polynomial equations. In part iah,  we have considered conjugate systems of polyn* 

mial equations and transpose systems of binary homogeneous polynomial equations. 

In case of conjugate systems of polynomial equations, we compared the number 

of solutions by using the structure theorem for a h i t e  dimensional commutative 

associative algebras with identity. 

In case of transpose systems of binary homogeneous polynomial equations, we 

have proved topological (in terms of the Zariski topology) properties of the set of all 

matrices with rank less than or equal to a certain number such that both a system 

and its transpose system represent the same number of projective points. 

As a by-product of this analysis we have proved that, for a given partition 

(ml , .  . . , m,) of r, the set of b i i  forms f of degree r in the variables Xo,Xl 

over the field of complex numbers @ such that f has the form . . .1? for some 

linear forms Ill . . . , l , ,  is a Zariski irreducible cIosed set with dimension s + 1. Fu- 
thermore, we have proved that the corresponding prime ideal of this closed set is the 

radical of a coefEcient ideal of a covariant (cf. 2.5 for the definition), for two part 

partitions. 

We have illustrated these in detail for binary cubic, binary quartic and binary 

quintic forms. 
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Chapter 1 

Introduction: A Brief Overview 

The study of polynomial equations is one of the important branches of Mathematics. 

It dates back to 1600 BC, initially with no sign of algebraic formulations such as 

in Babylonian tablets and ancient Greek geometrical constructions. Our objective 

in this thesis is to explore connections between the solutions of related systems of 

polynomial equations. In particular, we have studied two versions: These are 

* Conjugate systems of polynomial equations, and 

0 Transpose systems of binary homogeneous polynomial equations. 

A partial solution to the ht version involves bite  dimensional commutative algebra 

and a partial solution to the second version involves algebraic geometry. 

In Chapter 2, we have introduced basic concepts which are needed for this thesis, 

namely: algebraic geometry, and invariant theory. 

In Chapter 3, we have stated the main problem, and have considered two Merent 

versions of it. A solution to the basic case of the main problem involves elementary 

linear algebra. My supervisor, Prof. H. K. Farahat, explained to me his approach 

to conjugate systems using the structure theorem for finite dimensional d t i v e  

commutative algebras over an algebraically closed field. In an attempt to solve the 

second version, we have studied the set of all square matrices of tank less than or 

equal to I such that both a system and its transprwe system represent same number 
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of projective points. The case of all matrices with rank less than or equal to 1 

corresponds to the study of binary forms. 

Invariant theory was developed in the nineteenth century by Boole [Boole,1841], 

Cayley [Cayley 18891, Clebsch [Clebsch 18721, Gordan [Gordan 18851, Hilbert [Hilbert 18861, 

Sylvester [Sylvester 18791 and others. It has been studied intermittently ever since. 

In recent times, newly developed techniques have been applied with great success to 

some of its outstanding problems. This has moved invariant theory, once again, to 

the forefront of mathematical research (cf. [Kung, Rota 19841, pumford 19941). 

As a part of this thesis we study a problem concerning factors of binary forms 

of degree r over the complex field C. Hilbert had shown that Z(T) = Rcrd(X), and 

Gordan had proved that Z(r-1,l) = Ra&(IP) for r # 4,6,8,12 ( cf.4.5 for dehitions). 

But for each 0 < m < r, we have found a covariant such that the radical of the 

codcient idea1 of this covariant is Z(T - rn, m). This is presented in Theorem 4.23. 

Further, in Chapter 4, we have explored the use of Gr6bne.r bases, and have 

presented r d t s  for binary cubic, binary quartic and binary quintic forms. Some of 

the cases for sextic forms are covered by general r d t s .  But the full problem for 

sextic forms is presently not completely solved. This is a good place to start future 

research. 

In Chapter 5, we have presented our results of the investigation of transpose 

systems of binary homogeneous polynomial equations. In this case we have found 

that the set of all (r + 1) x (r + 1) matices of rank less than or equal to 1 such that 

both the system and its transpose system represent k projective points 

rn together with 0, is an &e dosed set when k = 1, 
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is an intersection of an a h e  closed set and an h e  open set, when 2 5 k 5 r, 

is a dense subset, when k = r + 1. 

Further we have found that the set of all (r + 1) x (r + 1) matrices of rank less than 

or equal to I such that both a system and its transpose system have only the trivial 

solution is a dense subset of the set of dl (r + 1) x (r + 1) matrices of rank less than 

or equal to I, for 2 5 1 5  T +1. 

In Appendix A, we have discussed a recurrence formula for positioning monomials 

with respect to lexicographic order. In other Appendix sections , we have attached 

a list of polynomials from Griibner b w s  which are needed for the proofs. 

Thus, in brief, almost everything in Chapter 3, Chapter 4, and Chapter 5 is new 

and the results are original. The main novelty of Chapter 4 lies in the theorem for a 

covariant generator for the two part partition ideal ( cf.Theorem 4.23). The d t s  

which do not indicate any r h c e  are my own. In particular, the prooh given in 

terms of Grijbner bases are my own. 

We conclude with some o ~ t i o n s  and notations in this thesis: 

It is to be noted that the r d t s  thought to be most significant are IabeIed as 

theorems or occasionally lemmas. 

References have generally been given in the following forms: ([Gordan 18851 

p.35). Here [Gordan 18851 refers to the entry in the bibiliography under Gordan 

and the given year, and p.35 refers to the page number where a proof can be found- 

Xotations: We will follow the following notations for f € C(Xo, XI) : 

af 1. - = aif, for a = 0,1, axi 
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4. denotes the set of alI r x s matrices over a field .K 



Chapter 2 

Preliminaries 

2.1 Algebraic Geometry 

2.1.1 Afihe Space 

Let V be an n-dimensional vector space over the field of complex numbers @. Then 

the set of all @-valued functions on V, CV, with pointwise operations, forms a @- 

algebra. Now CV contains all the constant functions and the Clinear functions. 

Therefore, the space of aD linear functions V' = H ~ c ( V , C ) ,  is a subset of CV. 

The subalgebra of Cv generated by V' is denoted by @[V]. This subalgebra @[V] 

is dearly generated by any basis of V*. Thus CV] = @[XI,. . . , Xn] = the subalge- 

bra generated by any choice of mrdinate  functions XI,. . . , X, on V, the -called 

coordinate ring of K We d the elements of @[XI,. . . , X,,] poiynomtal fundions 

on V. A polynomial function h E @[XI, . . . , Xn] is hunaogeneovs of degree m if 

h ( a )  = amh(z) for a E C, x E K 

Viewed with its ring of poIynornial functions, V is called an afine n-space over 

the field of complex numbers @ 

Given a subset G of @[XI, . . . , X,], we dehe  a corresponding subset of V called 

the zem set of G, namely: 
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Fkom the dehition of the zero set V(G), it is clear that G may be replaced by the 

ideal that it generates in @[XL, . . . , Xn] without changing V(G). If S = V(G) is a 

zero set, then a zero subset T of S is a set of the form T = V(J), for some J a 

subset of @[XI,. . . , Xn], that happens to be contained in S. The Zariski topology 

on S is the topology whose closed sets are the zero subsets of S. We shall call these 

closed sets f i e  closed sets to distinguish them from projective objects we shall 

dehe later. Topological notions in this thesis will always be relative to the Zariski . 

topology. 

There is a sort of inverse to the construction of a zero set : Given any set Q C V 

we dehe 

I(Q) = {g E CIXl, ..., X,]Ig(x) = 0 for all x E Q). 

It is clear that I(Q) is an ideal, which we shall call the vanishing ideal of Q. A 

polynomial function on Q is by dehition the restriction to Q of a polynomial function 

on Identifying two polynomial functions if they agree at all the points of Q, we get 

the coordinate ring, @[Q] of Q (so called because it is the Galgebra of functions on Q 

generated by the coordinate functions). Clearly we have C[Q] 2 @[XI, . . . , X,]/I(Q). 

The correspondence between zero sets and vanishing ideals is given by Hilbert's 

Nullstellensatz [1893]. 

Theorem 2.1 (Nullstellensatz) 

If I c @[XI,-..,X,] i s  an ideal,  then 
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where 

R W )  = {f f @[XI, . . . , X,] I f"' E I for some positive integer m ). 

Thus, the correspondences I H V(I) and Q e I(Q) induce a bijection between 

the collection of zero subsets of V and radical ideals of @[XI, . . . , X,]. 

The intersection of all closed subsets of X containing a given subset M C X is 

closed. It is called the closure of M and is denoted by M. A subset M is called dense 

in X if M = X. This means that M is not contained properly in any closed subset 

Y c X , Y # X .  

Let W be an m-dimensional vector space. A mapping # : V + W is called a 

polynomial mapping if, with respect to some basis of W, the coordinates of 4(x),  x E 

V, are polynomial functions on V. 

Let 

cr:V+W 

be a polynomial mapping. Then the map 

defined by 

a*(f) = fa 

is a ring homomorphism which is the identity on the constant functiom C C Cm. 

(See [Shafarevich 19741 p.19). 
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A non-empty subset Y of a topological space X is irreducible if it cannot be 

expressed as the union Y = Yi U& of two proper subsets, each one of which is closed 

in Y. The empty set is not considered to be irreducible. 

It can be proved hom the definition that a topological space X is irreducible if 

and only if every non-empty open subset of X is dense. 

The following is an equivalent condition for irreducibility in the Zariski topology: 

An h e  closed subset S of V is irreducibie if and only if I(S) is a prime ideal 

of @[V] ( see [Shafarevich 19741 p. 23). 

2.1.2 Projective Space 

Projective space over the field @, written F, is the set of all onhens iona l  sub- 

spaces of Cl,(n+lll the vector space of 1 x n + 1 row matrices over 6 Sometimes, we 

will want to refer to the projective space of all one dimensional subspaces of a vector 

space V over the field @; in this case we will denote it by P(V). 

A point in iP" is usually written as a homogeneous vector [zo,. . . , z,] by which 

we mean the one dimensional subspace spanned by (a, . . . , zn) E @l,(n+r) .. Like* 

for any non-zero vector v E V we denote by [v] the corresponding point in P(V). 

A polynomial f E @[Xo, . . . , XnI1 where Xo, . . . , Xn are awrdinate functions on 

Cl,(n+l) does not define a function  on'^. On the other hand if f happens to be 

homogeneous of degree d then since 

it does make sense to talk about the zero set of the polynomial f as a subset of P. 
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A subset X c P is called pwjectave closed if it coasists of all points at which 

finitely many homogeneous polynomials with co&cients in @ vanish simultaneously. 

In this case I(X) has the property that if a polynomial is contained in it, then so are 

all its homogeneous components. Ideals having this property are called homogeneous 

ideals. 

2.1.3 Products 

Dehition 2.2 1. A subset A of IP x P is  projective closed if and only if it is 

a ten,  set of a system of polynomial functions 

Gi(Uo, . . . , U,; &, . . . , V,), ( i  = 1, .. . , t )  

homogeneous in mch set of co-ordinate fvnctions Uj on P and 4 on P sep- 

arately. 

2. The closed subsets of IP x C1,, are the zem sets of systems of polynomial 

fvnctzons 

homogeneous in the coordinate functions Uo, . . . , U' on P, where l$ am coor- 

dinate furrctaons on 

3. The closed sets in IF'" x . . . x IF'" ate the zero sets of systems of polynomial 

functions, homogeneous in each of the 1 groups of c d i n a t e  functions. 
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2.1.4 Dimension 

Dewtion 2.3 Let X be a topolagical space , Y C X a closed irreducible subset. If 

X # 0,  the dimension d im(X)  of X is the supremum of the lengths n of dl chains 

of non-empty closed irreducible subs& Xi of X .  If Y # 8, then the codimenkon 

d i m x ( Y )  of Y in X is defined as the supremum of the lengths of dl chains 

Y =Xo cx, c ... cX*,(Xi+l # X i ) .  

The empty topoloqicd space is assigned damension -1, and the empty subset ofX is 

ussigned codimension a. 
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2.2 Binary forms and Action of GL(2, C) 

Let Xo, Xl be algebraically independent indeterminates over 63. Then the ring of 

polynomials in Xo, XI over @, CIXo, XI] , is a commutative associative graded algebra 

over @ graded by degree. That is, 

where @[Xo, XI], is the set of all homogeneous polynomials ia Xo,Xl over @ of 

degree r, the so called complex binary f o m  in Xo, XI of degree r. 

The set of all homogeneous polynomials in Xo, Xl over C of degree r, @[Xo, XI], 

is a vector space over @ of dimension r + 1. The set of monomials in Xo, Xl of degree 

r, {Xi, X,'-'x1,. . . , X,'), is the standard ordered monomial basis for @[Xo, Xl]r. 

The group of all 2 x 2 invertible complex matrices, GL(2, C), acts on @[Xo, X1l1 

as follows: 

For g E GL(2, C) 

9x0 = 911x0 +9alXl 

9x1 = 912x0 + gnX1 

That is, g acts on @[Xo,X1I1 a the linear transformation whose matrix relative 

to the basis {Xo, XI) is g. The group GL(2, C) acts on all of @[XO, XI] by degree 

presmbg algebra automorphisms. Hence GL(2, @) acts on each @[Xo, Xl], by linear 

automorphhms. The rh induced matrix g[r] is the matrix of the linear automorphism 

defined by g on @[Xo, XI],, with respect to the standard ordered monomial basis. 
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Example 2.4 

Coordinate ring of @[Xo, XI], 

W that the ring of polynomial functions from @[Xo,Xl], to C is gener- 

ated by any set of coordinate functioas ( i.e. a basis of the dual) of the vec- 

tor space @[Xo, XI],. Thus if Ao, AI, . . . , A, are such coordinate functions then 

@[Ao, Al, . . . , &] is the ring of polynomial functions on @[Xo, X1lr1 the so-called 

coordinate ring of @[Xo, XI],. A polynomial function is homogeneous of degree k if 

it is a @-linear combination of monomials in Ao, Al, . . . , A, of degree k. 

Polynomial mappings 

Recall also that a polynomial mapping horn @[Xa, XI],. to @[Xo, X1lm is given in 

terms of coordinate functions by m + 1 polynomial functions on @[Xo, EQuiv- 

alently, g is a polynomial mapping iff the composition 1 o g is a polynomial function 

on @[Xo, XI], for every linm function i from CIXo, XrIm to @. 

Covariants 

Defmition 2.5 1. A polynomial mapping C CIXo, XI], to @[Xo, XI], is 

called a covariant of weight w if 

(a) C is homogeneous of degree k(say), and 

@) for all g E GL(2, C) and fw dl f E CIXo, XI], we have gC( f) = 

g)" C(gf). 
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When m = 0, C is called an invariant. 

2. A polynmid mapping C h n a  @[XO, XI], $ CIXo, XI], to CIXo, XI], is called 

a joint covaridnt of weight w if 

(a) C is homogeneous of degree k(say), and 

(b) for dlg E GL(2 ,@) ,  for dl f E @[Xo,Xl], and for all h E @[Xo,Xl]s we 

have 9C(f, h) = (det g)" C ( g f  1 gh). 

When rn = 0, C is called a joint invariant. 

3. The coeficient ideal of u couan'ant C is the ideal of the caordinate ring of 

@[Xo, XI],, genmted by the compositions 1 o C ,  f o ~  euey d i n a t e  function 

I from @[Xo to @* 

The simplest example of a covariant is the identity mapping 3 from CIXo, XI], 

to itself. It has weight 0. 

The discriminant 
. . .  A particularly important inmiant from @[Xo, Xllr to 43 is the dmmmant. 

Dehition 2.6 1. Let 
r 

Then the d t u n t  Res(f ,g)  o f f  and g ,  is the determinant of the following 
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where the empty spaces are filled by zeros. 

2. The discriminant is the polynomial function 9 from @[Xa, XI], to @ defined 

Properties of discriminant: 

1. (lI36cher 19641 p. 259) The discriminant is an invariant of weight T(T - 1). 

2. @&her 19641 p. 237) A newssay and dcient  condition that the binary 

form f h a multiple linear factor is that the discriminant of f vanishes. 

3. ( P k h e r  19641 p. 259) The discdminant of a binary Sorm is aa irreducible 

polynomial function. 
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The Hessian 

The Hessian is the polynomial mapping !R from @[Xo, XI]+ to @[Xo,Xl]zr-4 

It is a covariant of weight 2. 

defined by 

The Jacobian 

The Jacobian is the polynomial mapping from @[Xo, XI](. to CIXO X1]3r-6 

1 f E ~ [ X O  1 Xllr. Wf) = 

It is a covariant of weight 3. 

( 1  &wr) 
bwr> mi> 

This use of the word "Jacobiann is not to be confused with the usual terminology 

in calculus. 

The transvectants 

The Hessian and the Jacobian are special cases of a general type of covariant 

called tmnsvectant. To dehe  transvectants, we will bridy explain the symbolic 

representation of binary forms, which originated with Clebsh. 

We shall represent a binary form 
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symbolically as 

where the symbols appearing here are subject to the formal relations: 

a k = a r k  k 'k- 
a1 a, - . .. for k = 0,. . . , r .  

Deflnit ion 2.7 The kth tmnsuectant is the polynomial mapping ( , )(k) jronr CIXo, Xl],$ 

@[Xo I Xlls to @[Xo, Xl]r+r-2k defined by 

(f, h)(k) = (ao& - a l ~ o ) ~ ( a o ~ o  + a l ~ l ) ' - ~  (80x0 + ~ x l ) " ~ ,  

where f = (~0x0 + alXl)' E @[Xo, XI], and h = (BOXo + AXl)* E @[Xo, XI],. It is 

a joint wuariont. In this, the right hand side is converted, wing the above relations, 

to an ezpression involving Xo, XI and the coeficients o f f ,  h. 

Exumple 2.8 Let f = (wXo + ar XI)' = (AX0 + BlXl)'. Then 
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Some examples of tmnsvectants used an this dissertation are: Fot- f E @[Xo.Xl],, 

1 1 
+(T - l ) 2  (T  - 2) acn = cf, wt))(l) 

T(f) = (fl f)"' 

As the next theorem shows, it is possible to express the Hessian and the Jaco- 

bian in terms of only one of the partid derivatives &, 4, mainly because of Euler's 

Theorem on homogeneous functions([Bkher 19641 p. 237). 

Theorem 2.9 Let f be a binary form of d e g m  r .  Then 

and 

Proof: (Farahat]) - 
Let f have degree r. Then & f, 4 f ate binary forms of degree r - 1. The Hessian 

off is 

Multiply the first row by Xo , then multiply the second row by XI and add to the 
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first row. We get 

By Euler's formula, we have 

Therefore, 

Now multiply the fmt column by Xo and then multiply the second column by 

XI and add to the b t  column, we get 
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By Eder's formula, we have 

and 

-3 

Hence, 

X, lX( f )  = T(T - 1) f@f - (T - 1)~(4f)l. 

In a similar manner we have, 

Theorem 2.10 Let f be a binary form of degree r > 2. Then 
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ProoE Let f have degree r. Then the Hessian 3C( f) of f is a binary form of degree - 
2r - 4 in the variables Xo and XI. The Jacobian of f is, 

Multiply the Grst column by Xo, and then multiply the second coIumn by XI and 

add to the first column, we get 

a(f) = 

Hence, 

xoa(f) = rf ww)) - ( 2 ~  - 4) ~ f )  M. 

aof 4f 

aoW) & W f )  

By Theorem 2.9, 
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The second identity can be obtained by dmirar meam. 

Remark 2.11 Defining fi by 

we have 

When r > 2, we have 

Similarly defining by , 

we have when r > 2 
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a(f) 
(-l)$(r - l)z(r - 2) 

= xb {3ioilfi - fii3 - 2j:). (2-4) 



Chapter 3 

Problem Statement and Some Special Cases 

In this chapter, we first introduce the main problem. The basic case of the main 

problem follows easily from linear algebra. Then we explore two versions of the main 

problem. The soZution to version 1 was obtained by Prof. H. K. Farahat in 1995 and 

discussed in a seminar in 1997. Finally at the end of this chapter we state version 2 

of the main problem. 

Let n, r be positive integers, and let XI,. . . , X, be commuting indeterminates 

over a field lK Then any monomial in X I , .  . . , X, can be written as XrQ' . . . X,"", and 

the degree of the monomial X,O1 . . . XF is the sum at + . . . + G,,. We shall order the 

monomials of degree r by using lacicographic order, which is defined below. 

Definition 3.1 Lexiwgmphac o d e r  is a relation defined on the set of monomiah 

inXl, ..., xn s a t i s ~ n g x ~  ... X? ... XP ifamiodyifal >a, oral = A  
and a* > a, dc. 

Definition 3.2 Dejine N(n, r) to be the number of monomiah in XI, . . . , X, of 

degree r. ( See [Cameron 1994 pges 32-33.) For all n > 0, r 2 0, 
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D&tion 3.3 Let 

where X I , .  . . , X, are variables. Then for r 3 1,  define x['I to be the column m a t k  

whose entries are the monomials Xi, . . . XG, where 1 5 il 5 . . . 2 i, 5 n, listed in 

le21e21cographac order. 

That is, 

Note that = X. 

For example when n=2, 

We have found a recurrence formuIa for positioning a monomiaI of degree r in 

xIy1, which is attached in Appendix A. 

Next we shall state the main problem. 
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Problem Statement : (Transpose system of polynomial equations) 

Let T 2 1, s 2 I, and let C bea N(n,r) x N(n, s )  matrixover IK. 

Consider the following systems of poIynomia.1 equations, 

where CT is the transpose of the matrix C. Our aim is to find q relations that 

may exist between the so1utions of the systems of equations 3.1 and 3.2. 

The basic case r = s = 1 is covered by the following: 

Theorem 3.4 (Basic case) If C E &, then the solution space of the system of 

linear equations 

X = cx, 

and of the system of lineur equations 

x = ex, 

have the same dimension. 

Proof: The matrix equation X = CX, is equivalent to (I - C)X = 0. This is a - 
system of homogeneous linear equations, whose solution set is a vector space with 

dimension equal to n - rank(I - C). 

The matrix equation X = m, is equivalent to ( I  - CT)X = 0. This is also a 

system of homogeneous hear equations, whose soIntion set is a vector space with 
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dimension equal to n - rank(1- c). Since rank(I - C) = rank ( I  - C)T = 

rank(1- CT) , the solution space of the system (3.3) and the solution space of the 

system (3.4) have the same dimension. 0 

3.1 Conjugate Systems of Quadratic Equations 

Let K be an algebraically closed field, and let n 2 1. 

Yow we shall state the problem of conjugate systems of polynomial equations. 

Probiem Statement :(Conjugate Systems of Quadratic Equations) 

Suppose that we have a f d y  of sdam ( meaning dements of ) Cijk for 

1 5 i,i, k 5 n, with the property that Cijk = C j a  for all i, j, k = 1,. . . n. 
Consider the following system of quadratic equations in n variables XI,. . . , X,, 

and its conjugate system of quadratic equations in n variables XI, . . . , Xn, 

n 

X~ = C ~ . ~ X , X , ,  for all k =  I, ... n (3.6) 
i j = l  

Find any rehtions that may exist between the solutions of the systems of equations 

3.5 and 3.6. 

It turns out that the structure theory of finite dimensional commutative algebras 

is useful in this connection. 

Definition 3.5 Let V be n-dimensional vector space uuerK Then there exist q, . . - , Un E 
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V such that, 

V = + . . . i IKun, ( i n t m d  direct sum). 

Also suppose that XI, . . . , Xn are the m p o n d i n g  co-ordinate firnctions in the dual 

space of V. These an? linear functions 

such that 

Defirae a bilinear multiplication * on V by 

The vector spuce V together with the mdtiplicatim * defined above, is a finite di- 

mensional commutative d g e h  over & We denote thw ( possibly non-associative) 

algebra by VC. 

Next we s h d  show that the idempotents in the algebra Vc correspond to the 

solutions of the system of quadratic equations 3.6. This folIows from the following 

Iemma 

Lemma 3.6 The follouing are equivalent for al, . . . , ah E IK : 

1. (LIVI + - . . + h v ,  is an idempotent in Vc. 

2- xG=:,, C W j C i j k  = a*, for dl k = I,. . . ,n. 
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Proof: Let al, ...,a, E IK. Then - 

Hence alvl+ . . . + %un is an idempotent in Vc, iff 

0 

Xext we shall show that the algebra homomorphisms from Ve to the field !K 

correspond to the solutions of the system of quadratic equations 3.5. This follows 

from the following Lemma. 

Lemma 3.7 The following are equiudent for al, . . . , a, E K : 

1. The lK-linear firnction 

is an algebra homomorphism. 

2. ELl cjrak = a,, for dl i ,  j = 1, . . . , n. 

Proof: The K-linear function - 
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is an algebra homomorphism 8 

h(vi)h(vj) = h(v; * v j ) ,  for all i, j = 1,. . . ,n. 

The result follows from the following: 

W e x t  we shall state the main theorem in this chapter. 

Theorem 3.8 ([Farohat]) 

Consider the following conjugate system of polynomial equations, 

n 

XiXj = cjk xk, for d l  i ,  j = 1,. . . n, 
k l  

where all cjk are in the dgebmically closed field K 

Suppose that scalars c+ satis& both of the following statements 
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I .  There exist all.. . ,a,, E IK such that for all j = 1 , .  . . , n, and dl k # j, 

and 

2. El C+C& = ELl Cjlk-, and Cij& = cjik, for all I 5 i,  j, 1,p 5 ta. 

Then the system of quadratic equations 3.5 has m + 1 solutions if and only if the 

system of quadratic equations 3.6 has 2" solutions in K 

In order to give a proof of this theorem we shall establish the following two 

lemmas, providing conditions on the constants Gjk, equident to ve being associative 

with identity element. 

Lemma 3.9 1. The following are equivalent: 

(a) Qc has an identity element. 

(b) Thereezistar ,..., a,,EIKSZlChthatforallj=I, ..., n andfora l lk# j ,  

and 

2. The following are equivalent: 

(a) Vt is associative 
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(b) The c i jk  sat&h the following quadmtic conditions, 

.- .- 

C ~ j k c k l ~  = C ejli-, for dl 1 5 2, j, I, P 5 n. 

1. V, has an identity element iff there exist al, . . . ,a, E K such that 

Since * is commutative, only one of these will a c e .  That is, 

ajvj * v ,=v i ,v i=  1 ,..., n. 
j=1 

By the definition of the multiplication, we have 

That is, 

Since ut, . . . , v, are linearly independent, for all i = 1,. . . , n, 
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and 
n 

Hence the result. 

2. Let a = rL1 e v i ,  b = x:=, f l jVj9 c = rkl 7kvk  be any elements of vc. Then 

The condition for associativity of Vc follows from this by comparison of the 

coefficients of f l j 7 k ~ *  0 

Xow we are ready to give a proof of Theorem 3.8. 

Proof of Theorem 3.8: 

The conditions of the theorem ensure that Vc is a finite dimensional associative 

commutative algebra over K with an identity. The structure of such algebras is well 

known, and can be found for example in [Hungerford 19741 on page 153. That is, 

Vc/Rd(Vcj is isomorphic to a direct sum of a finite number of copies of where 

Rcsd(Yc) is the set of all nilpotent elements in Vc : 

Now an element a! = (at, ...,a,J in K$ ...$ K i s  an idempotent 84 = ai, 

for all i = 1,. . . , m. Since a field has only 2 idempotents, K $ . . . B K Im exactly 
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2m idempotents. Therefore V,/Rad(Vc) has exactly 2"' idempotents. But every 

idempotent in Vc/Rcrd(V,), can be lifted uniquely to an idempotent in Vc (see lifting 

idempotents in [Isenbud 19951 p. 189). Hence, we have that V, has exactly 2m 

idempotents. Xote that el = (I, 0.. . , 0), . . . , e, = (0 ,0 , .  . . , 1 )  are primitive non- 

zero orthogonal idempotents in K $ . . . $ K, and every idempotent is a sum of a 

subset of them. 

Suppose that g is a K-aIgebra homomorphism from K $ . . . $ lK to K Then 

g(oll..-,a,,,) = x l q g ( e i ) ,  for al, ...,a, E I& where g(ei)2 = g(&) for all i = 

1,. . . , m, and g(e+)g(ej) = 0 for all 1 5 i < j 5 rn. Therefore, for each i = 1,. . . ,m, 

g(c) is either 0 or 1 and g(ei)g(ej) = 0 for aU 1 5 i < j 5 m. Hence, there are m+ 1 

K-algebra hommorphkms fkom Vc to field IK, namely 0 and the m projections. 0. 

We shall illustrate Theorem 3.8 with the following examples. 

Example 3.10 Consider the follmng system of polynomial equations, 

First we look at the algebra A = IRV1 +&. The multiplication table for the basis of 

A is as follows: 
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1. A is associative with identity element q , and primitive idempotents v* , Y - uz. 

2. Rad(A) is zero. 

3. A = Kvl / K(Q - Q) (direct sum of fields isomorphzc to K). 

The above mentioned system 3.7 hus 3 solutions, namely (0, 0 ) ,  (1, 0), and (1, I). 

There are aactly 3 dgebra htnnmorphisms Mrn A to K, namely: 

1. trivial homomorphism 

2. -x2 

3. XI + x 2 ,  

where for each i = 1,2, 

X , : A + K  

is defined by 
f 
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Now m a d e r  the following system of polynomial equations, 

This system is conjugate to the system 3.7 and it has 4 solutions, namely 

(0, O), (1,0), (0,l) and (I, -1). There a= four idempotents in A, namely: 0, y , vz, ul- 

'J2 

3.2 Transpose Systems of Binary Homogeneous Polynomial 

Equations 

First we shall state the problem of transpose systems of binary homogeneous poly- 

nomial equations: 

Problem Statement: 

Let r 2 1, A f C+I,+I, and X 
= (:)- 

Then M any relations that may ejdst lkween the solutions of the transpose 

systems of b i i  homogeneous polynomial equations 

and 
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As we shall see in Chapter 5, this problem is connected with rather basic concepts 

of algebraic geometry. For this purpose we shall consider the vector space @+l,r+l 

of all (r + 1 )  x (r + 1) matrices over @. This is a complex vector space of dimension 

(r + I ) ~ ,  and its co-ordinate ring is generated by any dual basis of this vector space. 

For 6x4 I, the set C!!~,~+, of all (r + 1) x (r + 1) matrices of rank leas than or equal 

to I is a Zariski closed subset. It consists of those matrices with all (1 + 1) x (I + 1) 

minors equal to zero. Formally: 

Definition 3.11 

In fact it was proved in Pruns, Vetter 19881 on p. 5 that for 0 5 1 5 (T + 
I), ~ ! i ~ , ~ + ~  h an irreducible dosed subset of with dimension 1 (2r + 2 - I). 

The ideal of the ceordinate ring generated by minors of a given size is called 

a detenninantal i d d  It is in fact prime but this is a non-trivial statement. The 

subject of determinantal ideals is fairly extensive.( See [Bruns, Vetter 19881 on page 

14.) 

Thus we have the following ascending chain of irreducible Zariski closed subsets 

Definition 3.12 For C E define P(C) to be the set of dl pmjectiue points 

[XI = [Xo, XI] in the one dimensional pmjectsire space P such that C X M  = 0. Tnat 
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When C = 0, P(C) = P is a t e .  0th- it has at most r points. Hence 

the following definition makes sense. 

Definition 3.13 For k 2 0, 

~ ( ' ) ( k )  = {C E C$",,*, I#P(C) = #?(cT) = k) .  

We are interested in the properties of the sets E(')(k). 

We know that C$J,,+, = {O) and therefore &(O)(k) = 0 for all k 2 0 . 

It is obvious that if C E c::,~+, \ {0) then the system CX['~ = 0 is equivalent to 

a slngie binary homogeneous polynomial equation. Thus the projective points in the 

set P ( C )  are same as the projective points represented by the corresponding binary 

form. Therefore it is necessary to get further information about binary forms. This 

is the subject of the next chapter. 
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Binary Forms 

In this chapter we want to explore the geometrical nature of the set of all binary 

forms having a certain factorization. In Section 4.1, we have proved that the set of 

all binary forms having certain factorizations are h e  irreducible closed sets. 

In Section 4.2, we determine the dimension of these closed sets. 

In Section 4.3, we present our findings regarding the following question: 

Let (ml, . . . , m,) be a partition of r. Can one h d  covariants whose vanishing for 

a binary fom f is a necessary and sficient condition that f has the form . . . IF 
for some linear forms Cl, . . . , I, ? 

Our investigation is by no means complete. But for degrees 2,3,4 and 5 it is 

complete. We present the results in the Subsections 4.3.2 , 4.3.3 and 4-34. 

4.1 The Affine Closed Sets F(ml, . . . , m,) 

Let (ml, . . . , m,) be a partition of r, that is : 

We consider the mapping : 

@[Xo,Xl]r @ .--@@[xo,X~]x + @[XO?XIIr 

(21, - 711) +b r.. .p. 
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The domain and destination are vector spaces and this mapping is a polynomial 

mapping. It turns out that its image, i-e. the set of binary forms of degree r with 

factorization multiplicities ml, . . . , m,, is an irreducible closed subset of CIXo, XI],. 

Explicitly, writing li = ZioXo + taxl we have 

NOW by expanding the right hand side, using the binomial theorem we have, 

It is important to note from this that Q, . . . , c, are polynomial functions of the c e  

ordinates of 11, . . . , I,, and that each c, is separately homogeneous of degree mi in la 

and I i l .  

We are interested in the set of all such binary forms for a fixed choice of partition 

{ml, . . . , m,). To this end let 3(mr, . . . , ma) denote the set of binary forms of degree 

r corresponding to all choices 11, . . . : I ,  E @[Xo,  XI]^. Formally: 

Definition 4.1 



Chapter 4.1: The f i e  C I d  Sets 3(ml, . . . ,ma) 

Theorem 4.2 ( [ F a d  at]) 

FOT any parfition (ml, . . . , ma) of r, 3(ml, . . . , ma) is a closed subset of CIXo, XI],. 

Proof: - 
We are going to show that 3(ml,. . . , ma) is an f i e  closed subset of @[Xo, XI],, 

by exhibiting a closed subset Q of the product 

s copies 

whose projection on CIXo, XI], is F(ml,. . . , m,). In fact 

Recalling the definition of closed sets in a product, and the above remark concerning 

the function q, it is evident that Q is a closed subset of P(@[Xo, X1]l) x . . . x 

P(@[Xo, XI] 1) x @[XO, XI],. Since ~ @ [ X O ,  &]I) x . . . x ~ @ [ X O ,   XI]^) is a projective 

closed set, it follows from (Theorem 3 [Shafarwich 19741 p. 45) that the projection 

onto @[Xol XI], the closed subset Q t6 a d d  SUM of CIXo, XI],. It only 

remains to show that the image of Q under the projection, is exactly 3((ml, . . . , m,). 
I fa  = aj%-'x{ is anelement oftheimageofQ, t h a Q  wnt& anelement 

([l1],.. . , [la], a), and the corresponding c = z, c~&-Jx{ = . . . is non-zero, 
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because each li is non-zero. The conditions ~q - ajci = 0 for all 0 i < j 5 r, now 

imply that a is scalar multiple of c. Hence a belongs to f (ml, . . . , m,). 

On the other hand, it is clear that every non-zero element of 3(ml , .  . . ,m,) 

bdongs to the image of Q. The zero element of 3(ml, .  . . , m,) is obviously also in 

the image. 0 

It turns out that each of these dosed sets is irreducible: 

Theorem 4.3 For any partition (ml,. . . , m,) of r, 3(ml , .  . . , m,) is irreducible. 

Proof: Now 3(ml, . . . , ma) is the image of the polynomial mapping - 

The domain, being a vector space, is irreducible. The image is c l o d  by the above 

theorem. The polynomial mapping r induces a ring homomorphiPm f fiom the m 

ordinate ring @ [@[Xo, XI],] to the coordinate ring @[@[Xo, X1ll $ . . . $ CIXo, Xl]l] 

with kernel I(3(ml, . . . , m,)) . Hence @ [@[Xo, Xl]r]/I(F(ml, . . . , ma)) is isomorphic 

to a subring of the coordinate ring @ [@[Xo, XlIl $ . . . $ @[Xo, XI],] . Since the coor- 

dinate ring @ [CIXo, X1l1 $ . . . $ @[Xa, is an integral domain, every subring of 

the coordinate ring @ [@[Xa, X1I1 $ . . . $ @[Xo, is an integral domain. There- 

fore @ [@[&, Xl]r]/I(3(ml, - - - , m,)) is an integd domain. Hence f(3(rnl, . . . , ma)) 

is a prime ided. Hence the d t .  o 

Now we turn to the problem of the dimensions of these closed sets: 
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4.2 Dimensions of the closed sets of the binary forms 

The Theorem of Dimension of Fibers ( see [Shafkrevich 19741 p.60) applied to the 

polynomial mapping in the proof of Theorem 4.3 provides an upper bound for the 

dimension of F(ml, . . . , ma). Namely, the dimension must be less than or equal to 

2s. It turns out that the dimension of F(ml, . . . , ma) is in fact s + 1. In order to give 

a proof of this result, we shall d&e the following operation. 

Let T > 1, s > 1, and let (ml,. . . ,m,) be a partition of r with s parts. Then 

adding any two entries in the sequence ml, . . . , ma produces another partition (mi, . . . , <,) 

of r with s - 1 parts. We shall call tbis a merging operation. The source of this 

definition is Farahat]. 

Evidently all the partitions of r can be formed by recursively doing merging oper- 

ations starting with the partition (I, . . . , I) of r. For given any partition (ml, . . . , ma) 

of T, (ml, 1,. . . , I) can be formed from (1,. . . ,I) by successively doing ml - 1 merg- 
ing operations on the &st two entries. Then (ml, m?, 1,. . . ,1) could be formed horn 

(mz, 1,. . . ,1) by successively doing rn? - I merging operations on the second and 

third entries. Repeating similar merging operations, after (ml - 1) + . . . + (ma - 1 )  

merging operations produces the partition (ml, . . . , m,). 
We group the closed sets F(ml,. . . , m,) according to the number of parts in the 

partition. 

W e  have listed these closed sets in fig. 4.1 for the case r = 6. 
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o* Step 

1" step 

2nd step 

3rd step 

3(571) I\ 3(3,3) 4& step 

*P 

Figure 4.1: The f f i e  closed sets for r = 6 
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Theorem 4.4 For any partition (ml, . . . , m,) of r, 

ProoE - 
Let s be a number between 1 and r. Assuming that (6, . . . ,mi-,) is a partition 

obtained by merging the partition (ml , .  . . , m,), we shall show that 3(m;, . . . ,mi,) 

is a proper subset of 3 ( m l , .  . . , m,). 

We choose 11, . . . , 1, E @[Xo, X1ll all mutually distinct, meaning Ii is not a scalar 

multiple of lj for all 1 5 i < j 5 s. Now . . .IF beIongs to 3 ( m l , .  . . ,m,), and 

not in 3(m;, . . . , mi-,). Thus 

a m ; ,  . . . ,mi-,) c 3 ( m l , .  . . , m,). 

Since these closed sets are irreducible, the codimension of 3(mi , .  . . ,mi,,) in 

3 ( m l , .  . . , m,), is at least 1 ( See [Shafarevich 19741 Theorem 1 on page 54)- That 

is, 

d2rn(F(ml, . . . , m,)) - dim(3(&, . . . , rn;-J) 2 1. 

Since there are r - 1 different steps between F(1,.  . . , 1 )  and 3 ( r ) ,  the codimension 

of 3 ( r )  in T(1,. . . , 1 )  is at least r - 1. Thus 

Since dim(F(1, . . . , 1)) = r + 1, dim(F(r)) is less than or equal to 2. 
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Now if, as we shall prove, the dimension of 3 ( r )  is 2 then it follows that the codi- 

mension of 3(m;, . . . , mi-,) in 3(mlJ . . . , m,) is in fact 1. Since there are r - s Mer- 

ent steps b-een F(1, . . . , 1 )  and 3(ml,  . . . , m,), the codimension of F(mlJ . . . , m,) 
in F(1,. . . , 1 )  is r - s. Therefore the dimension of 3(ml ,  . . . , m,) is T + 1 - (r  - s) = 

s + 1. Thus it only remains to show that the dimension of 3 ( r )  is 2. 

In order to show that the dimension of 3 ( r )  is 2, we shall show that 

by recalling the poIynomiaI mapping 8 from @[Xo, X1l1 to CIXo, XI], whose image 

is 3 ( r ) .  In fact 

Since @(X,-,, Xrlr and 3 ( r )  are irreducible, and the fiber 9-'0 = {0) is a singleton 

set with dimension zero, it follm from the Theorem of the dimension of fibers ( see 

[Shafarevich 19741 page 60) that 

mt is, 

dam(3(r)) 2 2. 

Eence the dimension of 3 ( r )  is 2. 
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4.3 The Ideals i ( rnl ,  . . . , m,) 

Finally there is the problem of the ideals correspondmg to these closed sets : 

Definition 4.5 Let ml, . . . , m, be a partition of r. Then Z(m1,. . . , m,) is the id& 

of ail polynomial functions on C[Xa, XI], which vanish on 3(rnl, . . . , m,) . 

We have Med these ideals in fig. 4.2 for the case r = 6. 
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w, 1,L 11 1,l) 
Figure 4.2: The ideals for T = 6 
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Since each of the closed sets 3(ml, . . . , m,) is irreducible, the ideals Z(ml, . . . , m,) 

corresponding to these cIosed sets are prime. 

These ideals could be described by finding polynomial ideals whose radical is 

Z(ml, -.. - , m,). Instead of just looking for a set of generators for ideals whose radical 

is Z(ml, . . . , m,), we are interested in the following problem: 

Find covariants whose vanishing for a binary form f is a necessary and sufEcient 

condition that f has the form . . . for some linear forms Ill . . . , I , .  

Since every b i i  form is a product of linear forms ( Reference [ B a e r  19641 

page 188 ), F(1,. . . , 1) = @[Xo, and hence Z(1,. . . ,I) = (0). 

Recall the following facts about the discriminant: 

1. ( [Bae r  19641 p. 237) A necessary and d c i e n t  condition that the binary 

form f (Xo, XI) have a multiple hear factor is that discriminant of f ,  i.e the 

r d t a n t  of the tmo binary forms &$ and $, vanishes. 

2. ([Bbcher 19641 p. 259) The discriminant of a binary form is an irreducible 

polynomial function. 

These facts prove the following: 

Lemma 4.6 2(2,1,. . . , I )  is the prrncipal prime ideal generated by the dismmminant. 

Thus we have 

2(2,1,. . . , I )  = (discriminant). 

The following theorems of Hilbert provide solutions to the above problem for 

some partitions. 
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Theorem 4.7 ([Bibert 18981 ) Let f (Xo, XI) have degree T. Then f has a linear 
T 

factor of multiplicity > - if and only if every invariant vanishes for f. 
2 

From Theorem 4.7 we have when r is odd, Z([$l, 1,. . . ,1) is the radical of the 

ideal generated by all the invariants . When T is even, Z(i + I, 1, . . . , I) is the radicd 

of the ideal generated by all the invariants. 

These ideals are the radicaIs of coeflicient ideals of covariants (invariants). 

Definition 4.8 Let r = p u and let f be a binary form of degree r in the variables 

Xo and Xl. We think off as a polynomial in one variable X, i.e. 

Then define f, by 

@ ( f )  -- r! -- axi (r - i ) !  fi 

The polynomial mawing C, from ~ X O ,  XrIr to @[Xo, Xl](r-*)(v+~l defined by 

a a 
w h e r e A = r f i - +  ...+f,- 

afo 
, is a wariant of weight v + I. 

aj,-1 

Theorem 4.9 ( [HiIbert 18361 ) The following are equivalent for a bina y fonn f of 

degree r = p u an the variables Xa and XI ovw the fiid @ : 

I. There exists a bimq form g of degree u such that f = g'. 

'lim f; is same tu the fi &hed in the Pnlimirmics srck'oia 2.8 with Me aampbion that 
x, = x  &XI = 1. 
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2. The covariont C, (defined above) vanishes fm f. 

Fkom Theorem 4.9, we have Z(m,. . , , rn) is the radical of the c d c i e n t  ideal of the 

covariant C, on CIXo, XI],, where r = p v. 

Some special cases of Theorem 4.9 are: 

1. Z(r) is the radical of the co&cient ideal of the Hessian. 

2. When r is even, Z(q, ;) is the radical of the co&cient ideal of the Jacobian. 

4.3.1 The ideal Z(r - m, m) 

In this section, we prove our main theorem about a covariant generator for the two 

part partition ideal Z(r - m, m). We explore this at the end of this section, after 

establishing some necessary technical lemmas. First we shall need the following 

defhition: 

Definition 4.10 Let K be field with char(lK) = 0. A K-derivation 5 of an associa- 

tive algebm A over K is  a IK-linear map from A into itself satisbng the following 

condition: 

S(ab) = ad@) + bS(a), for dl a, b E A. 

The kernel of 6 is a subw &led the field of constants of the derivation 6. 

The formal partial derivative & is a C(Xl)derivation on the field of rational 

fractions @(Xo, XI), and the kernel of & is the field of fractions C(XI). 

The fitst d t  we require is 
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Lemma 4.11 ([Famhui]) Let r > 2, 0 < m < r, and let f be a binary f o m  ofdegret? 

r in the ua~ables  Xo and XI over the field of complex numbers C Then the follmhg 

conditions a- equivalent: 

1. f has the fonn C-I? for some linear forms El and 12. 

2. There & linear forms II and & such that f satisfies the folIoun'ng differentid 

equations 

3. There ezist knmr f o r m  4 and i2 such that f satis$es the following di&eraM 

equations 

Proof: To prove (1) =+ (2), assume that f = 1;-"'y, for some linear forms tL and 12. - 
By Iogarithmic ciifEerentiation with respect to Xol we get 
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Yow by repeated differentiation with respect to XQ, we get 

To prove (2) * (I), assume that there exist linear forms ll and l2 such that f 

satisfies the foUowing differential equation 

We shall show that f has the form G-"lF by fitst showing that the partial 
-m m '' is zero. By the quotient rule we have derivative with respect to Xo of - 
f 

-m m 

l2 , we get Factoring out - 
f 

By the equation 4.2, we have 
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Hence, 

where g is an element in the field @(XI). 

We shall show that g is a constant in @. Suppose that 

where p, q belong to @[XI] and have no common factors. 

Then 

q f = pl;-mly. 

By comparing the degrees, we get the degree of p is same as the degree of q. 

If this degree is zero, then p and q are in @ and g is constant. Hence the r d t .  

Otherwise p and q are not in @. We know that every polynomial in @[XI], of 

positive degree, factors completely in @[XI] into polynomials of degree 1. We suppose 

that fork 2 1, 

where Y ~ , T ) ~ ~ ~ ~ ~ ~  E @, for all a ' =  1 ,... ,1. 

Let 1 5 i 5 k. The irreducible factor of q, (qiXl + %) divides q f in CIXo 7 XI]. 

Therefore (TiXl + @) divides I?-)O; in @[Xo, XI]. H e m  ('1.4 + @) divides h or 

1, in CIXol XI]. If (TiXl + iji) divides the linear form 11, = 0. Hence = 0 for all 
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l < i < k . T h u s  

By a similar argument we can show that 

Since k 2 1, p and g have at least one common factor XI. This contradicts the fact 

that p and q have no common factors. 

--m m Therefore, p and q must be constants. Hence f has the form I; 1, . 

By a similar argument we can prove that (1) is equivalent to (3). 0 

It is proven in [Sturmfels 19981 on page 31 that we need a system of k homoge- 

neous polynomial equations in order to eliminate k variables. That is the reason why 

we include three differential equations in the 2d statement of Lemma 4.11, to dim- 

and fiom the non-homogeneous p01ynomial equation inate the variables 

4.2, even though in the proof that (2) implies (1) we only needed the 1" diffefential 

equation in the 2d statement of Lemma 4.1 1. 

Thus we need to eliminate p, q, s in the following system of equations: 

In terms of elimination theory, we have the following problem: 

Let A, B, P, Q, S be algebraically independent indeterminates over a field F, let 
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r > 2, 0 < rn c r, and Iet I be the ideal in the ring F[A, B, P, Q, S] generated by 

the polynomials 

Then compute the intersection In  F[P, Q, S] of the ideal I and the polynomial ring 

FIP, Q? S1. 
Next m shall explain bridy how to do elimination by using a Gr6bner basis. 

Debition 4.12 Let J be a polynomial ideal of FIXl,. . . , X,] other than (0). 

1. We denote by LT(J),  the set of leading terms of elements of J. Thus 

L T ( J )  = (LT(h)lh E J ) ,  

w h m  leading term LT(h) of h is the term having the monomid which is mnked 

highest under I e z i ~ p h i c  onier of all monomials which hme n m m  coefi- 

cdenb in h. 

2. We denote by (LT(J)) the ideal generated by the elements of LT(J). 

3. A finite sequence (gl, . . . , gt) of elements of the ideal J f o m  o Grihner basis 

fir J if 

(LT(L?l), . -- , LT(gt)> = (LT(J))-  

In fact a Gro'bner basis is a basis for the ideal J. 

4. Let J = {A, . . . , fs), where fr , . . . , f, are in Me polynomial ring FIXl,. . . , X,,] 

in the algehical ly  independent indetnminates 4,. . . , X,. Then the P elim- 
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inadion ideal Jl i s  the ideal of  XI+^, . . . , X,] is defined by 

The following theorem provides a basis for Jk. 

Theorem 4.13 ([Cm, Little, O'Shea 19961 p.llJ)(Elimination Theorem) 

Let F be a field with char(F) = 0. If J = (ti,. .. , f,) c FIXl, .. . ,Xn] is an 

ideal and G = (gl, .. . ,gt) is a Gr6her basis for J for lexiqmphic order with 

XI > . . . > X,, then for each k between 1 and n - 1,  the set 

is a Gr6bner basis for the elimination ideal Jk. 

A related question is answered by the extension theorem: given a point (a2,. . . , an) E 

~ ( J I ) ,  when can we h d  a value a1 such that (al, . . . , u,,) f V(J)? 

Theorem 4.14 ([Cox, Little, 0 'Sea 19961 p. 11 5) (Eztm'on Themm) 

k t  F be an algebmically closed field with char(F) = 0. Giuen 

we get the elimination ideal JI = J n F[X2, . . . , X,] . For each I 5 i < s, write fi 

in the fonn 
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where Ni 2 0 and fi E F[X2,. . . , X,l is non-zero. Now let (a,. . - , an) E V(Jl). 
1f&(a2 , . - . ,~ )  # 0 for at least one 1 5 i 5 s ,  then there exists al E F such that 

(alt . . . ,%) € V ( J ) .  

Remark 4.15 The ideal is the first elimination ideal of Il .  This allows w to 

use the extension theorem multiple times when eliminating more than one variable. 

See [Cox, Little, O'Shea 19961 for further details. 

Lemma 4.16 Let A, B, P, Q, S be algebmically independent indeterminates over a 

field F, let r > 2, 0 < m < r, and let I be the ideul in the ring F[A, B, P, Q ,  SJ, 

generated by the polynomials 

Then the intersection I n F [P, Q ,  ,cl is a principal ideal in F [P, Q ,  S] genemted by 

the polgnomzd G, uhete 

f irthennore, we have the following 

1. If there exist p, q, s E F such that the zero set V(I)  (C Fl,s) of I contains a point 

whose last three coordinates are p, q, s then G vanishes for P = p, Q = q, S = s 

in F. 
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2. If F is algebmiculiy closed and G vanishes for some P = p, Q = q, S = s in F, 

then V(I)  contains a point whose last thm coordimtes a* p, q, s. 

Proof: - 
A Grijbner basis for the i d d  I with respect to lexicographic order, computed 

using Maple is 

By the Elimination Theorem 4.13, we obtain 

I n F(B, P, Q, S) = Il = (G, G2, G3, G4, G5, G6), 
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I n  F(P,Q,S) = I2 = (G).  

Hence if there exist p, q, s  E F such that V(I)  contains a point whose last three 

coordinates are p, q, s, then G vanishes for P = p, Q = q, S = s. 

To prove the converse, assume that G vanishes for P = p, Q = q, S = s, then 

(p ,q ,  s )  E V(12). The idea is to extend (p, q, s) one coordinate at a time: first to 

(6, p, q, s), then to (a, b, p, q,  9). Since the field F is algebraically closed, we can use 

the Mension Theorem 4.14 at each step. The crucial observation is that I2 is 

the first elimination ideal of Il .  The co&cient of B2 in G6 is rm, which is non 

zero. Therefore by the Extension Theorem 4.14, there exists b E F such that 

(b,p,q, s) E V(I1). 

The next step is to go from Il to I. Since G7 E I and the co&cient rn - r of 

A in G7 is non zero, there exists a E F such that (a, b,p, q, s) E V(I).  Hence the 

result. Q 

Remark 4.17 The above proof may strike the m d e r  as lacking in convictrctron due to 

feliance on machine calculations. Emever it is also possible to find the polynomial 

G,  j b r n  the following equations 

by eliminating one variable at a time, by hand. 
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Lemma 4.18 Let r > 2, 0 c rn < r and f be a binary fonn of degree r in the 

variables Xo and XI over the complex field @. With the following svbsts*tution 

1 
G (stated in 4.3) becomes -g( f) , where 

4f 

This is a straightforward tedious calculation, which waa done by Maple. The 

work sheet is attached in Appendix C. 0 

On the other hand, with the derivatives with respect to XI, we have the following 

result. 

Lemma 4.19 Let 0 < m < r and f be a binary fonn of degm r in tire variables Xo 
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and Xl over the complez field C. With the following substitution 

1 
G(stated an 4.3 ) becomes - j ( f )  E @(Xo, XI) ,  where 

4f 

Lermna 4.20 The following ate equ4vdent for a binary fonn f of degree r (> 2 )  in 

the variclbles Xo, XI over the complez field C 

1. g stated in 4.4, vanishes for f. 

2. (2nd statement of Lemma 4.11 1 There exist limr f o m  11 and i2 such that f 

satisfies the following diflerentid epd ions  
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ProoE - 
(2) =+ (1) : Assume that statement (2) is true. Since f is nonzero, this implication 

follows £ram Lemma 4.16. 

(1) * (2) : Assume that statement (1) is true. Suppose F is an aIgebraic closure 

of the field C(Xo, XI). Since & is a Cderivation on C(Xo, XI) and F is an algebraic 

extension field of the field @(Xo, XI), there exists a @-derivation extension Cl on F 

such that 

Ql@(X01 XI) = 4 

(Reference [Jacobson 19641 pages 16&170 ). Rom L ~ m m n  4.16, there exist a, b E F 

such that 

We shall show that Q(a) = -2, R(b) = -bl. By applying $2 to the di&rential 

equation 4.6, and then comparing with dif£erential equation 4.7, we obtain 

(r  -- m) (Q (a) + a2) + m (0 (b)  + b) = 0. (4-9) 
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Also by applying to the d8etentiaI equation 4.7, and then comparing with the 

differential equation 4.8, we obtain 

From the equations 4.9 and 4.10, we have the following system of homogeneous 

linear equations, 

The determinant of the coe.€Ecient matrix is (r  - m) m ( b  - a). We know that (T - 
m)m # 0. If b # a, then the co&uent matrix is invertible, so R(a) = -a2, and 

Q(b)  = -62. On the other hand, if a = 6 then by the equation 4.9, 

Since r # 0, SZ(a) = -a2 and R(b) = -b2. 

In order to h d  linear forms tI and la in @[Xo, XI] satisfying the Wential  

equations in the statement of Lemma 4.11, we will consider three cases. 

Case 1: 

%(f) If a and b are zero, from equation 4.6 we have - = 0. Thus &(A = 0. We 
f 

choose lI = XI and I2 = XI, hence the result. 

Case 2: 
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S u p p m  b = 0 and a # 0, then fiom equation 4.6 we have 

Then a is in the field @(Xo, XI) and 

1 
We shall show that - is a linear form in the variables Xo and XI over the field of 

a 

complex numbers @. Since & - Xo E ker& = C(Xl). Thus 

1 - - Xo = h, for some h in the field @(XI). 
a 

We shall show that h E CXl. 

From equation 4.6, we have 

Which implies, 

We know that Xo and XI are algebraically independent over C, therefore Xa is 

transcendental over the field C(Xl). 

Since Xp + h is a polynomial of degree 1 in Xo over the field @(XI), Xo + h is an 
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irreducible polynomial in the polynomial ring @(Xl)[XoJ. Consider f as a polynomial 

in the polynomial ring C(Xl)[Xo]. The crucial observation is that every irreducible 

linear factor of f in the polynomial ring @[Xl][Xo], is also irreducible linear factor 

as a polynomial in the polynomial ring C(Xl ) EXo]. 

Since the irreducible polynomial Xo + h divides the polynomial (Xo + h) &f, it 
follows from equation 4.11 that Xo + h divides f in the polynomial ring @(Xl)[Xo]- 

Hence Xo + h divides some irreducible linear War of f in the polynomial ring 

@(XI) [Xo], (say) axo + BXll where a, ,8 E C. Therefore, a (Xo + h) = (6 + @XI). 
Notice that if a = 0 then f l  = 0. This contradicts the fact that f is a binary form. 

1 

Therefore a # 0. Hence Xo + h is a hear form in C[Xa, XI]. Thus - is a linear form 
a 

1 
In this case we choose ll = - and i2 = Xl, hence the result. 

a 

Case 3: 

Suppose a and b are non zero. S i  R is a derivation, we have 

0 = ( 1 )  = ( a )  =, + a  Q (i) a = .-I(-.') + a (a). 
Hence, a(:) = 1. Therefore 

Similarly we have, - - Xo = 0. Hence, C 1 
1 1 - - Xo = h, - - Xo = j, for some h, j in the field kern .  
a b 
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For convenience we will denote ker 0 as L. Since S1 is the extension of &, L 

is algebraic over @(XI). If Xo is aIgebraic over L, then Xo is algebraic over the 

field C(Xt). This contradicts the fact that Xo and XI are algebraically independent. 

Therefore, Xo is transcendental over the field L. 

The figure fig. 4.3 shows the various field extensions involved in this discussion. 

Now we have, 

Therefore, 

The binary form f is in the polynomial ring @(X,, XI], and has a horization 

where a ~ ,  . . . ,%,Dl,. . . , f ly E C. 

For each 1 5 i < r, ( e x o  + Pixl) is an irreducible in the polynomial ring 

@[Xo 1 Xll. 

Consider f as a polynomial in the polynomial ring LIXo]. We claim that each 

irreducible factor (*Xo + Bi XI) , d = 1, . . . , r of f in the polynomial ring q X O ,  XI], 

is also irreducible as a polynomial in the p1ynomial ring LIXo]. Assume that 
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/ simple transcendental 

Figure 4.3: Field extensions 
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where %, . . . , ak, b, . . . , b, E L. Then by equating the leading coefEcients, k + s = 1. 

Without loss of generality we may assume, k = 0 and s = 1. Thus 

where Q, bo, b, E L and e, B, E C Hence (axo + pixr) is irreducible in the poly- 

nomial ring LIXoI, where %,pi E C. 

Since LIXoj is a unique factorization domain, f has the factorization 

where al,. . .,a;,&, . . . ,@, E C, in LL[Xo]. 

Consider the polynomials $ ( f ) , (Xo + h), (Xo + j), (rXo + (T - m) j + m h) , f in 

the variable Xo over the field L. 

Since Xo + h, Xo + j, rXo + (r - m) j + mh are polynomiab of degree 1 in Xo in 

the polynomiaI ring L[Xo], they are irreducible polynomials over the field L. Since 

the irreducibIe polynomial Xo + h divides &( f)(Xo + h)(Xa + j) (the left hand side 

of equation 4.12) over the field L, Xo + h divides (rXo + (t - m) j + mh) f (the right 

hand side of equation 4.12) in the polynomial ring LIXo]. That is, Xo + h divides 

rXo + (r - m)j + mh or f in the polynomial ring LIXo]. 

Suppose that XO + h divides rXo + (r  - m) j + mh in the polynomial ring LIXo]. 

Then 

(70 + . . . + RX:)(XO + h) = (rXo i- (T - m)j i mh), 

where 70,. . . ~k are in the fieId L. Then by equating the co&cients of the leading 
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term, we have k = 0. Therefore, 70 = r and j = h. Which implies 

N f  1 - = ra. 
f 

The result follows from case 2. 

Suppose that Xo + h divides f in the poIynomia1 ring LIXo]. Hence Xo + h divides 

some irreducible linear factor of j, say (%XO + &Xl). Then 

Notice that if a, = 0 then &, = 0; this caanot happen because of the fact that f is 

a binary form. Therefore n, # 0. Hence Xo + h is a linear form in C[Xo, XI] .  

The proof of Xo + j is a linear rbrm in @[Xo,Xl] can be done by the same 

argument. 
1 1 Thus in this case we choose 11 = - and l2 = -, hence the result. 0 
a b 

Repeating the same arguments for the partial derivatives with respect to XI, we 

get the following r d t .  

Lemma 4.21 The foltouring are eqvivolent for a binary form f of d q m e  r (> 2)  in 

the variables Xo, XI. 

1. stated in 4.5, vanishes for f. 

2. (Yd statement of Lemma 4.1 1 )There exist linear f' lL  and l2 such that f 

satisfies the following difietential eqwtim; 
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Combining Lemma 4.11, Lemma 4.20 and Lemma 4.21, we have the following 

result. 

Lemma 4.22 The following are equivalent for a binary form f of d e p e  r (> 2 )  in 

the variables Xo, Xl over the complex field C. 

1. f has the form C;-Y for some linear f o m  tl and la. 

2. g stated in 4.4 vanishes for f. 

3. j stated in 4.5 vanishes for f. 

Now we are ready to state the main theorem. 

Theorem 4.23 Let T > 2, 0 < m < r. Then the prime ideal I ( r  - rn, m) is the 

mdical of the coeficients ideal of the following covariant 

where 3C denotes the Hessian cova~ant and J denotes the Jacobian couariant. 

Proof: Let r > 2, 0 c na c r and f be a binary form of degree r namely, - 
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Using the definitions of the dosed set 3(r-m, m), its corresponding prime idealZ(r- 

m, m) , and Lemma 4.22 we have that Z(r -m, m) is the radical of the caetIicient ideal 

of the polynomial mapping x , ' ~ ~  (g stated in 4.4) &om @[Xo, to C[Xo, 

AIso Z(r - m, m) is the radical of the coacient ideal of the polynomial mapping 

x < ~  j (3 stated in 4.5) from CIXo, XI]. to CIXo, XIJr-n. 
x r 6 g  Xc6ij We shall show that and are the same covariants namely, 

+(r - 1 ) 2  +(T - 1)2 

where 3E denotes the Hessian covariant and denotes the Jacobian covariant. For 

that we shall substitute 

in g(j) (g stated in 4.4) we get 
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By taking out common factors we get, 

From equations 2.1 and 2.2, 

are covariants having respective weights 2 and 3. Hence the powers 3C3 and 2 are 
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cova.riants having the same weight 6, and so is any linear combination. Therefore, if 
3 2 

r > 2 then 4 (r - 2 d 2  (r - 1) {$&) + (r - m) (r - 212 {,&I 1 

from @[Xo, XI], to @[Xo, is a covariant of weight 6. It can be e d y  w d e d  

kom the table below that this covariant is in fact xr6g 
+(T - 1)2* 

We shall calculate coefficients of the monomials, 

fif& ftf:, fo f t f2 ,  f a Z A f i Z I  faZfi3f3, fifif2f3, I?, occurring in 

Table 4.1: Calculation of the coefEicients of the monomials 
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Hence 

By doing similar calculations with the substitution 

in ' (g stated in 4.5) we have 
+(T - 1)2 

where 

Thus Z(T - m, m) is the radical of the d c i e n t  ideal of the wvariant 

Hence the result. n 

Remark 4.24 1. As a consequence of Theorem 4-23 we hue the following known 
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When m = 0 we huue the following eqtriudent statements for a binary 

form of degree r: 

(a) f has the fonn 5 for some linear fonn ZI over @. 

(b) The Hessian X vanishes for f. 

r 
When T i s  even and m = - we have the following equivalent statements 

2 
for a binary form of degree r: 

(a) f has the fonn ( i l l2)$  for some linear f m  II and l2 over C. 

(b) The Jacabzan 8 vanishes for f .  

2. The following theorem, originally due to Clebsch, was proved in [Godan 18851 

by Gordan : 

Theorem 4.25 the following statements are equivalent for a binary fonn f of 

degree r, w h e ~  r # 4,6,8,12. 

(a) f has the finna I;-l12 jw s u m  linear forms ll and I2 over @. 

(b) The fmrth tnznsuectant tP vanishes for f .  

Thus Z(r - f,1) = Radiccl of the coeficient ideal of? 

= Radial of fie COdFcient idmi of 4 {+&)3 + {,&)2 ' fm 

r # 4,6,8,12. 

4.3.2 Binary Quadratic and Cubic Forms 

When r = 2 , we have complete description of these ideals. 
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Every binary quadratic form is a product of hear forms. Hence Z(1,l) = (0). On 

the other hand 2(2) = (& A2 - A;), where Ao, Al, A2 are the coordinate functions 

on @[XO 1 x112 given by 

Consider a binary cubic form 

The following facts about cowiants of b ' i  cubic forms can be found in [Schur 19681 

on page 77. 

1. The discriminant D( f )  of f ,  apart from a numerical factor, is 

2. The Hessian X( f) of f ,  apart from a numerid &or, is 

3. The Jacobian a( f )  of f ,  apart horn a numerical factor, is 
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4. The following is essentialIy the only relation between them 

Note the following consequence of previous results: 

r, Since every form is a product of linear forms ( see P a e r  19641 page 158), 

Z(l,l, 1) = {O). 

@ (By Theorem 4.23) 2(2,1) is the radid of the codcient ideal of the covariant 

x3 + a2. 

I, (By Lemma 4.6) 2(2,1) is the ideal generated by the invariant discriminant D. 

@ (By Theorem 4.9) 2(3) is the radical of the w&cient ideal of the covariant 

Hessian K. 

Remark 4.26 The dismMrninant of a cubic form f is proportionul to the discrimi- 

nant of the Hessian o f f .  

As a summary we have, 

Z(3) = M. of the coacient idea1 of Hessian 

I 
1(2 ,1 )  = {disc) = Rnd. of the d c i e n t  ideal of !H3 + a? 

I 
I(1, 1,l) = {O}. 
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4.3.3 Binary Quartic Form 

For a binary quartic form 

the following facts can be found in [Schur 19681 on page 80. 

I. The following are aIgebraically independent invariants from @[XO,XIl4 and 

they generate all invariants from CIXo, XlI4 : 

2. The Hessian 3(( f )  of f, apart from a numerical factor, is 

n(f) = 

a0 a1 a2 

al a* a3 (Hankel determinant) 
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3. The Jacobian a( f ) of f, apart from a numerical factor, is 

4. There is a relation between all of the above, 

5. (p. 52) The discriminant of f is given by the formula 

Note the f o l l o ~ g  consequences of previous results: 

(By Theorem 4.9) 1 ( 4 )  is the radical of the co&cient ideal of the Hessian X. 

(By Theorem 4.7) 2(3,1) is the radical of the ideal generated by IP, 9. Also 

(by Theorem 4.23), 2(3,1) is the radical of the coefficient ideal of 16 9C3 + 9 a2. 

(By Theorem 4.9) 2(2,2) is the radical of the co&cient ideal of the Jacobian 

8. 

(By Lemma 4.6) 2(2,1,1) is generated by the discriminant ID. 

We are going to give a variety of other prooh of some of these special cases. 
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Lemma 4.27 A necessary and suficient condition that a binary quartic fm f 

belong to f ( 3 , l )  is that the inilan'ants 3' and Q vanish far f. 

Prook We have f E F(3,l) 8 f has a Linesr factor of multiplicity > 2 = $. Therefore 

the lemma follows immediately from Theorem 4.7. 0 

It is interesting to compare the above with a computational proof using elimi- 

nation theory. As a matter of fact, in the proof of Theorem 4.2 there is a way of 

constructing polynomials whose vanishing gives a necessary and d c i e n t  condition 

for a binary form f of degree r in the variables Xo, XI to represent k projective 

points. Many of our later discussions and calculations are based on this method. 

The method is as follows: 

Let 

and let (ml, . . . , ma) be a partition of r. Then 

f E 3(ml, . . . , ma) if€ there exist ctl, . . . , a,, PI, . . . ,Pa E @ such that 

This is equivalent to the following system of equations: 

The idea is to diminate al, . . . , a,, &, . - . ,pa from the above equations 4.13. This 

can be done by using Griibner basis t d q u e s .  But, it would take too long to do 

by hand. The use of computer algebra system made it possible for r 5 5. 
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Now we shall use this method to p r m  Lemma 4.27. 

Let f = pX,$ + 4qX& + 6 r X Z  + 4sXOx,3 + tX: be a binary form which has 

degree 4. Then f E 3(3,1)  if and only if there exist a, b, c, d E g3 sucb that 

This is equivalent to the following system of equations: 

Let A, B, C, D, P, Q, R, S, T be coordinate functions on @[Xb, Xl]r $@[Xo, XI]I @ 

@EX0 I XI], md that 

P(O,O,f) = ~ , Q f o , O l f )  =q,R(O,O,f) =r,S(O,O,f) =s,T(O,O,f) =t,  

A(aXo + bXl,O,O) = a, B(aXo + bXl,O, 0) = b, C(0, do + d&, 0) = c7 

D(0, cXo + d&,O) = d. 

Let I be the ideal of C[A, B, C, D, P, Q, R, S, T ]  generated by 
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There are 37 polynomials in the Gr6bner basis for I with respect to lexicographic 

order. Only the polynomials which are needed for this proof are attached in Appendix 

B.3. The interested reader may contact the author for the complete and extensive 

Maple output. 

By the Elimination Theorem 4.13, we obtain 

Hence if there exist p, q, r, s, t E C such that V(I)  contains a point whose last 

coordinate is f, then hl, h2, h3 vanish for f. 

Assume that hl, ha, h3 vanish for f. Then there exist p,q,r,s,t E C such that 

f E v(I4). The idea is to extend (f) one coordinate at a time: first to (dl f), then 

to (c, dl f )  then to (b, c, dl f )  and then to (a, b, c, d, f ). We will use the Extension 

Theorem 4.14 at each step. 

Since I4 is the first elimination ideal of I3 and I3 = 14, it follows that for all 

d f C, (d, f )  E V(13). We choose d to be non-zero. 

The extension step fails only when the leading coefficients vanish simuItaueously. 

Fkom the Griibner basis for I we have, h20,. . . , hp, are in the ideal 1 2  and 

the coefEicient of C4 in hB is t, 

the co&cient of in hzl is (3ps - 2rq), 
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the coefficieat of @ in ha is (9pr - 8q2), 

the w&cient of C2 in h20 is (hq - 331, 

Suppose firstly that at least one of theae co&cients t, (3ps-2rp), (9pr-8#), (4qs- 

3r2) is non-zero, by the Extension Theorem 4.14 there exists c E @ such that 

(c, d, f E V(I2). 

Since I2 is the &st elimination ideal of 11, the next step is to go from I2 to IL. 

Since h24 E Il and the d c i e n t  of B3 in is d, which is non-zero, it follows from 

the Extension Theorem 4.14 that there exists b f @ such that (b, c, d, f )  E V(Il). 

Since I* is the kt dirnination ideal of I, the next step is to go from Il to I. 

Since ha E I and the coacient of A3 in ha is d, which is non-zero, it follows from 

the Extension Theorem 4.14 that there exists a E @ such that ( d o  + bXl, cXo + 
dX1, f )  E V(I). Thus f f 7(3,1). 

If on the other hand, all the coefEcients t, (3ps - 2rq), (9pr - 8$), (4qs - 3fl) are 

zero, then 

with the Hessian of the binary cubic form (pX: + 4qXiX1 + 6rX& + 4sX;) is 
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By Hilbert's Theorem 4.9, this binary cubic form is the cube of a linear factor, 

meaning there exist a, b E @ such that 

This implies 

Thus f E 3(3,1). 

Thus 2(3,1) = Rad(hl, hz, h3). 

By the following relations, 

we have, 

(hl, h2, h3) = Q). 

Hence the result. [3 

Next we shall give two Merent proofs to show that 1 ( 2 , 2 )  = radical of the 

coacient ideal of the Jacobian. 

Theorem 4.28 The following ate equivalent for a binary quartic fann f ,  

1. f = q2, jm some binary quadratic fonn q. 

2. The Hessian o f f  is a scalar multiple o f f .  
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3. TFre Jacobian o f f  is zero. 

Proof: (Method 1) - 
First we shall show that the statements (I) and (2) are equivalent. 

Assume that f = $, for some binary quadratic form q. Thea 4 f = 2q&q, and 

$ f = 2 q g q  + 2(aq12. Consider, 

Since q is a binary quadratic form, say q = & + 2bXg1 + cX;, for a,b,c, E C, 

&q = 2bXo + 2cXr and @q = 2c. Hence, 

Thus, 3C( f) = 48 f (ac - b2). Therefore X(f) is is a scalar multiple to f. 

Conversely assume that X( f )  is a scalar multiple of f. Then f divides 3C( f )  . 

Since 

XiWf 1 = ~ f % f  - 9(&fl2, 
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f divides (& f)'. Hence every linear factor of f divides (4 f ) 2 .  Linear factors of f are 

irreducible and @[Xo, XI] is a unique factorization domain. Therefore every linear 

factor of f divides hf. In similar manner by using the formula 

we have every linear factor of f divides & f. 

Let 

Let 

Then 

and 

KOW 1, divides both & f and 4 f. Therefore, Zl divides both ar121314, and -@11213Z4- 

We know that either a1 # 0 or & # 0, and Il is an itreducible polynomial. Therefore, 

I1 is a scalar multiple of l j  for some j E {2,3,4). Hence II has a multiplicity > 1. 

Similarly, we can show that all the linear factors f must have multiplicity > 1. Thus 

all the linear factors f must have multiplicity 2 or 4. Therefore in either case f = $, 

for some b i i  *tic form q. 
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Now we shall show that the statements (2) and (3) are equivalent. 

E'rom the definition of the Jacobian of f , it easily follows that if K(f) is a scalar 

multiple of f then the Jacobian of f is zero. 

Conversely, assume that the Jacobian of f f iszero. Thus, 

Since f is a binary form, therefore either &f or &f is non-zero. Without loss of 

generality we may assume that & f is non-zero. Then 

Notice that 

is a rational function in the field @(Xo, XI), we shall denote it by C. 

From Euler's formula for homogeneous functiom we have, 

Then 
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Since f is a binary quartic form, it follows from Euler's formula that 

that is 

Now we shall show that the rational function C is in fact a constant. 

For i = 0,1, By partially Merentiatiug with respect to Xi we get 

Since 

Sice f is non-zero, diC = 0, for all i = 0 , l .  Thus C E ker n ker & = C. That is, 

C is a constant. 0 

We shall give another proof by using elimination theory: 

Proof: f Method 2) - 
(1) * (3) 

Let f = ~ X ~ + ~ ~ X ~ X I + G ~ ~ ~ + ~ S X & + ~ X : ,  andg = U X ~ + ~ ~ X & ~ + C X ~ .  

Then the condition f = g2 is equivalent to the following system of equatiom: 
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Let A, B ,  C ,  P, Q,  R, S, T be coordinate functions on @[Xo,  XI]^ $ C[Xo, Xl]r such 

that 

P ( 0 , f )  = p , Q ( O , f )  =q ,R(O, f )  =r ,S (O , f )  =s ,T (O , f )  =t ,A@,O) =al 

B(g, 0)  = b, C(g,  0 )  = c. 

Let I be the ideal in @[A, B, C ,  PI Q,  R, S, T ] ,  generated by 

Note that f is a square of a binary quadratic form iE the zero set V(I)(C 

@[Xo,  XI]^ $ @[Xol X1jr) of I contains a point whose last coordinate is f .  

There are 20 polynomials in the Gr6bner basis for I with respect to Iexiwgraphic 

order. Only the polynomials which ate needed for this proof are attached in Appendix 

B.2. The interested reader may eontact the author for the complete and extensive 

Maple output. 

By the Elimination Theorem 4.13, we obtain 
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Assume that there & f E C[Xo, Xl14 such that V(I )  contains a point whose 

last coordinate is f. Then gl, . . . , g7 vanish for f. 

Conversely, assume that gl, . . . , g7 vanish for f. 

Then f E V(&). Since gs E I2 and the coacient of CZ in ga is 1, by the Extension 

Theorem 4.14, there exists c E C such that (c, f )  E V(12). 

Since g30 E Il and the codcient of 83 in is 2, it folIows h m  the Extension 

Theorem 4.14, there exists b E @ such that ( 2 4  c, f ) E V(Il). 

Since gn E I and the coacient of A2 in g27 is 1, it follows &om the Extension 

Theorem 4.14, there exists a E @ such that (g, f) E V(1). Hence 

The above argument shows that 1 ( 2 , 2 )  = (gl,. . . , g7). 

The Jacobian of f is in fkt 

-1152 ( g ~ ( f ) G  - & ( f ) X i x ~  - jgs(f)X:g - 10&(f )X$f? 

-5 &(f )xX: - g2(f )XOX: - g l ( f ) Z ) -  
To prove (I) * (2), let 

X(f) = 144((pr - $)Xt + (2ps - 2qr)x:XlC @t f 2qs - 3r')x;x: 

f(2qt - 2rs)XoX; + (rt - d)X,4). 
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Assume that K( f ) is a d a r  multiple of f . Then the rank of the matrix 

is 1. Therefore all the 2 x 2 minors of this matrix are zero. There are 10 minors. The 

minors and the connection between the polynomials gl, . . . , g7 for P( f )  = p, Q( f )  = 

q, R ( f )  = r ,S( f )  = s , T ( f )  = t are listed below. 

0 = (pt f 2qs - 3rz)t - (It - s2)6r = pt2 + 2qst - *t + 62r = g2( f) 

0 = (2qt - 2rs)t - (79 - s2)4s = 2q.t2 - &st f 4a3 = 2 g 1 ( f )  

0 

As a sammary we have listed the ideals for binary quartic forms in the following 

Fig. 4.4. 
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Z(2,2) = Rad. of the cod. idea1 of a 
2(3,1) = Rad. of the ideal generated by IP, 52 

1(2,1,1) = ideal generated by I) 

Figure 4.4: The ideals for binary quartic forms 
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4.3.4 Binary Quintic Form 

Let 

f = pX," + sqx,'xl + 10rx,3x; + 10sx;x; + 5tx& + ux: 

be a bin;uv -tic form. 

We have the following special cases of previous generd results: 

(By Theorern 4.9) 2 ( 5 )  is the radical of the coefficient ideal of the covariant 

Hessian X. 

(By Theorem 4.25) 2(4,1) is the radical of the c d c i e n t  ideal of the fourth 

transvectant IP. Also (by Theorem 4.23) Z(4,l) is the radical of the co&cient 

ideal of the covariant 9 !K3 + 4 g2. 

(By Theorem 4.23) 2(3,2) is the radical of the coefticient ideal of the covariant 

x3 + 6 ~ .  

(By Theorem 4.7) 2(3,1,1) is the radical of the ideal generated by all the 

invariants of binary quintic forms. 

( By Lemma 4.6) 2(2: 1,1,1) is generated by the invariant dmnmman , . -  t D. 

We proceed to provide and compare alternative proofs of some of these cases. 

First we shall illustrate the use of elimination for the case where f has the form Iflz 

for some hear forms Il and I2 over @ 

Lemma 4.29 The following are equivalent for a binary quintic fonn f. 



Chapter 4.3-4: Bbary Quintic Form 94 

1. f has the fonn I& for some linear forms ll and l2 wer @, i.e. f belongs to 

3(4,1)* 

2. i l , .  . . , ig vanish for f (listed in Appendix B.4). 

Proof: 

Let 

be a binary quintic form. Then f has the form 1t12 for some linear forms lI and l2 

over @ if and only if there exist a, b, c, d E C such that 

This is equivaImt to the following system of equations: 

Let A, B, C, D, P, Q, R, S, T, U be coordinate functions on CIXo, X1jl@@[Xo, XI]I@ 

qxo, Xll5 such that 
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P(O, 0,  f )  = p, Q(O,O, f) = q, R(O,O, f )  = r, SIO, 0, f )  = s, T(0, 0, f )  = t ,  

U(O,O, f )  = u , A ( d o  + bXl,O,O) =a,B(aXo + bXl,O,O) = b, 

C(0, cX0 + all 0) = C,  D(0, & + dll, 0) = d. 

Let I be the ideal in @[A, B ,  C ,  D, P, Q, R, S, T, generated by 

{CA4 - P, 4 CBA3 + DA4 - 5Q, 6 A ~ B ~ C + ~  A3BD - 10R, 6 A2B2D + 4ACB3 - 
10S, 4AB3 D + B4C - 5T1 DB4 - U), 

Note that f has the form 1:L2 for some linear forms ll and 12 over C 8 V ( I ) ( C  

CIXo, XlIl $ CIXol XlI1 $ CIXo, Xlls) contains a point whose last mrdina te  is f .  

There are 88 polynomials in the Grijbner basis for I with respect to lexicographic 

order. Only the polynomials which are needed for this pmof are attached in Appendix 

B.4. The interested reader rrlay contact the author for the complete and extensive 

Maple output. 

By the Elimination Theorem 4.13, we obtain 

Hence if f has the form l th  for some linear forms Il and h over @ then i l l . .  . , i6 

Mnish for f .  

To prove the converse, assume that ill . . . , i6 vanish for f .  Then f E V(14). The 

idea is to extend f one mrd ina te  at a time: b t  to (d, f ) ,  to (c, dl f) then (b, c, dl f )  

and then to (a, b, c, d, f ) .  We will use the Extension Theorem 4.14 at each step. 
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Notice that I3 = 14. Therefore, for alI d E C, (d, f) E V(13). We choose d to be 

non-zero. Since I3 is the hst  elimination ideal of 12, the next step is to go from I3 to 

12.  The extension step fails only when the leading c d c i e n t s  vanish simultaneously. 

Xotice that im, i3*, i31, iM, is, iZ8 f 12, and 

rn the co&cient of C5 in iz3 is u, 

the coefficient of fl in is2 is (I* - 15421, 

the coacient of @ in i31 is (6ps - 5 4  

the coefiicient of CZ in im is (9qs - BG), 

the coefficient of in. is is (3qt - Zrs), 

a the w&cient of C? in ize is (4rt - 392). 

Assume h t l y  that at least one of these c d c i e n t s  is non-zero. Then by the 

Extension Theorem 4.14, there exist c E C such that (c, d, f )  f V(12). 

Since X2 is the first elimination ideal of TI, the next step is to go from I2 to I l .  

Since iM f Il and the coefEcient of B' in ia is dl which is non-zero, it follows h m  

the Extension Theorem 4.14 that there exists b E @ such that (b, c, d, f) E V(I1). 

Since Ir is the first elimination ideal of I, the next step is to go from Il to I .  

Since ig7 E I and the co&cient of A4 in im is dl which is non-zero, it follows from 

the Extension Theorem 4.14 that there wdsts a E @ such that (a& + bXl, c& + 
dXl,  f) E V(I). Hence the result. 

If on the other hand, all of the d c i e n t s  in the above Iist are zero, then 
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= XO@Xi + 5qx:xl + 1orx;x: + 10sxox~ + 5tX3 

and 

Thus (pXt + 5qXiXl + lOrXix + IOsXoXt + 5tXt) is a binary quartic form, and 

the coefEcients of the Hessian of this binary quartic form are (apart from a numerical 

factor) 

All of these polynomials are appearing in the coe6cients list except (8pt - 5qs). But 

Hence by Theorem 4.9, there exist a, b f C such that 

Therefore, 

f = Xo (ax0 +  XI)^. 

Hence the result. iD 

From the relations listed below we have that the ideal 2(4,1) is the radical of 
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the ideal generated by the co&cients of the fourth tranmxtant P of binary quintic 

forms. 

Now we shall look for a covariant such that the radical of the codicient ideal of 

this covariant is 2(3,2). 

L e n m a  4.30 The following are equivalent for a bgnary quintic fonn f. 

1. f h a  the fonn 1!1: for some linear fonns 11 and I2 over C,  i.e. f belongs to 

3(3,2)-  

2. j17 . . . , j, vanish for f (listed in Appendix B.5). 

Proof: 

Let 

be a binary @tic form. Then f has the form 1!1: for some linear forms ll and l2 

over @ if and only if there d a, b, c, d E C such that 
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This is equivalent to the following system of equations: 

Let A, B, C, D, P, Q, R, S, T, U be wordinate functions on @[Xo, XI]I@C[X~, X~]I@ 

C[X,, X~]S such that 

P(0, 0, f 1 = p, Q(O,O, f) = q, R(O,O, f )  = r, S(0, 0, f )  = s, T(O1 0, f) = t1 

U(O,O, f)  = u, A ( d o  + bXl,O,O) = a, B(aXo + bXl, 0,O) = b, 

C(0, CXO + dX1, 0) = C, D(0, cXo + d&, 0) = d. 

Let I be the ideal in @[A, B, C, Dl P, Q, R, S, T, Cfl generated by 

{A3d - P, (A3D2 + 6A2BCD + 3AB2C) - IOR, (2A3CD + 3~~ BC2) - 5Q, 
PDZ - U, (3ABZD2 + 2B3CD) - 5T, (3A2BD2 + B3C1 + 6AB2CD) - IDS), 

Xote that f has the form 1:2$ for some linear forms Il and over @ iff V(I) (C 

C[&, Xl]l$ CIXo, X1l1 $ CIXo, XIIS) contains a point whose last ~ d i n a t e  is f. 

There are 189 polynomials in the Griibner basis for I with respect to lexicographic 

order. Ody the polynomials which are needed for this proof are attached in Appendix 

B.5. The interested reader may contact the author for the complete and extensive 

Maple output. 
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By the Flimination Theorem 4.13, we obtain 

Hence if f has the form 1 ~ 1 ~  for some linear forms ll and l2 over @, jl, . . . , jm Mnish 

for f. 

To prove the converse, assume that jl, . . . , jso vanish for f. Then f E V(14). The 

idea is to extend f one coordinate at a time: hrst to (d, f),  to (c,  d, f) then (b, c, d, f) 

and then to (a, b, c, d, f). We will use the Extension Theorem 4.14 at each step. 

Notice that I3 = 14. Therefore, for all d E @, (d, f )  E V(4). We choose d to be 

non-zero. Since X3 is the first elimination ideal of 12, the next step is to go from I3 to 

I*. The extension step fails only when the leading cdc ien t s  vanish simultaneously. 

Notice that j l W ,  j l N ,  jlO5, jS E I3 and the co&cient of C? 

Assume M y  that at least one of these cdc ien t s  is non-zero. By the Extension 

Theorem 4.14, there exists c E C such that (c, d, f )  E V(Iz). 
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Since I2 is the fmt elimination ideal of 4, the next step is to go from Iz to I l .  

Since jl= E Il and the coef6cient of B3 in jI12 is d2, which is non-zero, it follows £corn 

the Extension Theorem 4.14 that there exists b E @ such that fb, c, d, f)  E V(Il). 

Since Il is the first elimination ideal of I, the next step is to go from Il to I. 

Since jle7 E I and the coefficient of A3 in j18, is d3, which is non-zero, it follows from 

the Extension Theorem 4.14 that there exists a E @ such that (a, + bXl, + 
dXl, f )  E V(I). Thus f has the form 131: for some linear forms II and E2 over C 

If on the other hand all of the co&cients in the above list are zero, then subs& 

tuting u = 0 in jl implies t = 0. Therefore, 

Now (pXi + Sq%Xl + 10rXoq + 10sX;) is binary cubic form, and the Hessian of 

this cubic form is 

Since the Hessian of this cubic form is zero, this binary cubic form is a cube of a 

linear form. This implies f has the form I3li for some linear forms Zl and h over C. 

Hence the result. 0 

It turns out that the ideal 2(3,2) is the radical of the ideal generated by the 

co&cients of the cavariant 

4(3, a)(1) + x2, 
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where (I1 a)(1) is the covariant from @[Xo, XlIs to @[Xo, defined by 

Notice that born the calculations of the above covariant (Maple work sheet at- 

tached in Appendix D) 

The ideal generated by the polynomials appearing in the above mvariant ( i.e. 

~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ , ~ s ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ , ~ ~ , ~ u ~ ~ ~ ~  

l 1 1 , 6 ~ l l n 1 1 6  ) is in fact ~ m t e d  by the PIY- 
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nomials jll . . . , jm (work sheet is attached in Appendix B-7). 

Hence we have the following: 

The following are equivalent for a binary quintic form f. 

1. f has the form 1:g for some linear forms 11, Iz over C 

2. The covariant 4(3, a)(=) + 3? Mnishes for f. 

Yext we shall look for a covariant generator for an ideal whose radical is 2(2,2,1). 

Lemma 4.31 The following ate equivalent for a binary quintic form f. 

1. f has the fonn $1 fot some quadratic form q over 43 and linear fonn 1 over @, 

i-e. f belongs to F(2,2,1). 

2. kIl . . . , kaS vanish for f (listed in Appendix B.6). 

Proof: Let - 

be a binary quintic form. Then f has the form $2 for some quadratic, linear forms 

q, 1 over C if and only if there atkt a, b, c, d, e E @ such that 

This is equivalent to the foLlciwing system of equations: 
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Let A, B, C, D, P, Q, R, S, T, U be cwrdinate functions on @[Xi,, XI]~@@[XO, Xl]1@ - 

@[XO, X1j5 such that 

P(O,O, f )  = P, Q(O,O, f) = q, R(O, 0, f 1 = r, S(O, 0, f 1 = s, T(O, 0, f )  = t ,  

U(O,O, f )  = u, A(aX,' + 2bXoXl + cX:, 0,O) = a, B ( 4  + 2bXoXl + CX?, 0,O) = b, 

C ( 4  + 2bXoXl + cX:, 0,O) = c, D(0, dXo + exl, 0) = d, E(0, dXa + eX1,O) = e. 

Let I be the ideal in q A ,  B, C, D, E, P, Q, R, S, T, 01 generated by 

{(2ACD + 4B20 + W E )  - lOR, (A2E + 4MD) - 5Q, (4BCE + d D )  - ST, 
A ~ D  - P, (4B2E + 4BCD + ZACE) - 10S, C E  - U), 
and note that f has the fonn $1 for some quadratic form q over @ and linear form I 

over C 8 V(I) (C @[Xo, X1lz $ @[Xo, XI11 $ CIXo, XIIS) contains a point whose last 

cwrdinate is f. 

The Sun microsystem computer took apprwimately 3 days to compute a Gr6bner 

basis. There are 588 polynomials in the Griibner basis for I with respect to lexim 

graphic order. Only the polynomials which are needed for this proof are listed in 

Appendix B.6. The interested reader may contact the author for the complete and 

extensive Maple output. 
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By the Elimination Theorem 4.13, we obtain 

Hence if f has the form $1 for some quadratic form q over C and linear form I 

over C, then kl, . . . , k25 vanish for f .  

To prove the converse, assume that kl, . . . , kS vanish for f .  Then f E V(I'). 

Notice that I4 = Is. Therefore, for all e E (e, f )  E V(13). We choose e to be 

non-zero. Since I4 is the first elimination ideal of 13, the next step is to go from Iq to 

13. The extension step fails only when the leading coefiicients Mnish simultaneously. 

Notice that k2t8, k224, k2%, kn7, km, k232, k m ,  k234 f I3 and the coefEcient of D3 

and the co&cient of fl in k234 is U. 
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Assume firstly that at least one of these c&cients is non-zero. By the Extension 

Theorem 4.14, there exists d E @ such that (d, e, f) E V(13). 

Since I3 is the &st Plimiaation ideal of Iz, the next step is to go from I3 to 12. 

Since km E I2 and the coefEcient of d in km is equal to e which is non-zero, 

it follows from the Extension Theorem 4.14 that there exists c E @ such that 

( ~ 7  d, e, f) E W 2 ) .  

Since I2 is the first eJimination ideal of 11, the next step is to go fiom I2 to II. S i  

kSs0 E Il and the coefficient of B3 in kSw is 4e2, which is non-zero, it follows from 

the Extension Theorem 4.14 that there exists b E @ such that (2b, c, d, e, f) E V(Il). 

Since Il is the first elimination ideal of I, the next step is to go &om Il to I. 

Since kSa7 E 1 and the coeacient of A2 in hSa7 is 5e, which is non-zero, it foI1ows 

from the Extension Theorem 4.14 that there exists a f @ such that f has the form 

q21 for some quadratic form q over @ and linear form I over @. 

If on the other hand, all of the above listed cdcients are zero, then since u = 0, 

with h,...,& ( listed in Appendix B.2) vanish for P ( f )  = p , Q ( f )  = :,~(f) = 
lor 10s 7, S ( j )  = -,T(f) = 5t. Thus the Jambian of the binary quartic form 

4 

is zero. Therefore, by Theorem 4.28 this binary quartic form is a square of a binary 
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quadratic form, say g2. This implies f has the form g2 Xo for some quadratic form g 

over @. Hence the result. 

A covariant for the ideal 2(2,2,1) 

By working with the Gr6bner basis of the elimination ideal IS = 2(2,2, I), I have 

been able to determine a covariant 

such that the radical of the coefficient ideal of \k is 2(2,2,1). 

The Ieading coefEcient of any such covariant must satisfy 

5 degree - 2 weight > 0. 

This follows from the general theory of covariants of binary quintic forma (see 

[Schur 19681 page 59). Accordingly, the procedure is this: 

1. Select the Gr6bner basis polynomials which satis@ the above ineqdity; 

2. Fkom this selection, retain, for each degree only the poiynominls with least 

weight; 

3. Make up expressions involving the basic covariants of binary quintic forms 

(transvectants, Hessians, . . .) with leading coefticients equal to one of the 

remaining list in step 2; 

4. Checking the covariants resulting from step 3 in turn, ttuns up @ as the only 

one satifying our requirements. 
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Notice that, 

By the Grijbner basis of these polynomials with respect to lexicographic order 

(attached in Appendix B.8), we have 

Hence we have the following: 

The following are equivalent for a binary quintic form f. 

1. f has the form q?Z for some quadratic form q over @ and linear form I over C 

2. The covariant -6 (F ,  a)(') - 303 (X, P)(2) - 51P23 + 33C(3, P)(?) Mnishes for f. 

Now we shall give a direct proof of the above result. 

ProoE 

Every binary quintic form in 3(2,2,1) is equivalent (with respect to the action 

by GL2(@) )to one of the following x:, x~x~, X;X~: GXm + XI). We see kom 

the Maple work &&(attached in Appendix D) that -6(P, a)(') - 303 (K, P)(2) - 
5F23 + 3X(3, Y)C2) vanishes for 
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and this covariant does not d for X~X1(Xo+Xl). Since -6(9, a)(l)-303 (XI P)(2)- 

5P23+33C(3, P)(2) is c d a n t ,  it vanishes for every binary quintic form in 3(2,2, I), 

and does not vanish for every binary quintic form in 3(3,2), or in 3(2,1,1,1). Hence 

the result. 

The figure Fig. 4.5 summarhes the results for binary quintic forms. 

Remark 4.32 1. It is a not a fluke that we were able to &end the partial so- 

lution in the above pmofs ussussng elimination thegl. In fact, Pmf. H. K. Faroirat 

pointed out that we con w e  the Theorem ofimplicitution([Coz, Little, O'Shea 19961 

page 54) to deduce that the ideal is generated by the gr6bner basis, because of 

the fact that 3(ml,. . . , m,) is dosed. 

2. My Extemd Ezaminer Dr. A. W. Eennan has pointed out to me two papers 

([Rollem 1990h [Rollem 1988l) by Aldo Rollero related to my work, which I 

was not aware of. I have not yet looked at the papers. Mathematical Reviews 

(92g:11038 11 E76, 90d:14044 14340 (1 lE76)) contains only a summa y review. 
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Figure 4.5: Ideals for binary quintic forms 



Chapter 5 

Transpose Systems of Binary Homogeneous 

Polynomial Equations 

5.1 Some Topological Subsets of c!:,,,, 

Now we turn to the study of transpose systems of binary homogeneous polynomial 

equations which was int~oduced at the end of Chapter 3. 

Recall that for 0 5 E 5 (T + I), 

@"I 
(v+l,,(r+ll = the set of all (T + 1)  x (T + 1)  matrices of rank Less than 

or equal to I 

= V(aU ( I +  1 )  x ( 1 +  1) minors). 

P(C) = {[X1 = [Xo, Xl] E P I CX['] = 0), C E G+I,,+l. 

E(')(k)  = {C E cll,7+ll#~(~) = #F(dP) = k), k 2 0. 

Since C! is algebraically closed, E(')(o) is an empty set. 

Xotice that far k > 0, 
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DeElaition 5.1 1. Dejne for k 3 1, S(k)  to be the set of dl (r + 1) x (r + 1) 
matrices C with rank 1 such that the system CXI'I = 0 nqmsenb at most k 

projective points and the zero mat*. That is, 

S(k) = {C E @ l , r + l ~ # ~ ( ~ )  5 k) u {O). 

2. Define fm k 3 1, S ( k )  to be the set of d fr + 1) x (r + 1) matrices C vith 

rank 1 such that the system 6 r ~ H  = 0 repments at most k pro3pro3ectiue points 

and the r m  ma*- That is, 

Xow 811)(k) is the intersection of (S (k )  n f l ( k ) )  , with the complement of the 

(11 set S(k - I) u g ( k  - I), in q+l,,+l. 

It turns out that S ( k )  and ST(k) are &e dosed for each k 2 1. 

Theorem 5.2 For dl 1 5 k 5 r, 

1. The set S(k)  of dZ (r + I) x (r + 1) rnutn'ces C with mnk I such that the 

system CXI'I = 0 represents at most k pmjectiue points and the zero matriz is  

an .fine dosed subset of c,,,. 
2. The set ST(k) of dl (r + 1) x (r + I )  matrrtrrces C with d 1 such that the 

system CTx['l = 0 represents at most k pjectiue points and the zem mat* 

is an =fine dosed subset of @i,,F+l. 

Proof: - 
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1. For each i = 1,. . . , r + 1, we have the polynomial mapping, 

where pi(C) = ziz: eijG-jf 'xi-' for C = (ci,) E Gl,*l. Each pi 

the set S(k) into the union Fk of the closed sets F(ml,. . . ,mk) with m~ + 
:'(Fk),i = ... + mk = r. In fact, S(k) is the intersection of sets @,,r+l,p, 

1,. . . , r + 1.  Since Fk is closed, each of these sets is closed, hence S(k]  is an 

a f k e  closed subset of . 

2. This follows by applying part 1 to CT instead of C, noting that fl also has 

rank 1. 0 

Thus we have the fo11owing ascending chains of &e dosed sets: 

and 

An interesting question about these-sets is whether these f i e  closed sets are 

irreducible. 

Since S(r) = @Jl+,, , it is irreducible. 

We know that Ct,F+l and F(r) are irreducible (Theorem 4.3). Therefore, Cl,(r+l) x 

3(r) is irreducible (see [Shafarevich 19741 page 24). The doged set S(1) is the image 

of the polpomial mapping h CI,(,~~ x F(r) to cl,, which takes (v, WX['~) 



Chapter 5.1: S a w  Topological Subsets of 

to uTw, where v,  w E Q31,r+l. Hence S(1) is irreducible. 

Similarly, since the cIosed set S(r - 1) is the image of the polynomial map 

ping horn the irreducible d d  set Cl,M1l x 3(2,1.. . ,1) to C$j1,?+, which takes 

(v ,  W X ~ I )  to vTw, where u, w f C1,+l, S(r - I) is irreducible. 

Hence we have the following lemma. 

Lemma 5.3 1. The set S(k) of dl (r + 1) x (r + 1)  matrices C with rank 1 such 

that the system CXH = 0  presents at most k points and the zem 

matria: is irreducible, when k = 1, r - 1, r. 

2. TIre set g ( k )  of dl (r  + 1) x (r + 1) matrices C with tank 1 such that the 

system 6 r ~ b 1  = 0 represents at most k projective points and the z m  matrix 

w irreducible, when k = 1, r - 1, r. 

It turns out that when r = 4, the set S(2) of all 5 x 5 matrices C with rank 1 such 

that the system CX[+] = 0 represents at most 2 projective points and the zero matrix 

is reducible. Indeed it is the union of the following atline dosed non-empty proper 

subsets of S(2): 

1. the intersection of all sets pi"F(2, 2), i = I, . . --, r + 1 

2. the intersection of all sets pieL3(3, I), i = 1,. . . , T + 1. 

By using Theorem 5.2 and the above remark about the sets E(l) (k)  we have the 

f0Uowing lemma; 

Lemms15.4 1. T h e s d E ( ~ ) ( r ) o f o l I ( r + l ) x ( r + l ) m ~ c e s C w i ~ r a n k l s u c l r  

thut bth the systenw CXI'I = 0 a n d d r ~ I f l =  0 npment r pvj&tle points is 
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a non-empty af ine open subset of cJ1,,+l. T h m f m  E(')(T) is a dense subset 

of CJl,r+l. 
2. For 2 5 k 5 r - 1, the set &(')(k) of dl (r + 1) x (T + 1) matices  with mnk 

e& to  1 such that both the systems C X [ ~ ~  = 0 and cxtr1 = 0 represent k 

pzo3pzo3edredrve points is an intersection of an open subset and a closed subset (i.e. 

o ZocaZZy closed subset) of C:J~,~+,. 

3. The set &(')(I) U (0) of all (r + 1) x (r + 1) mat ices  C with mnk 1 such that 

both the systems CXM = 0 and CfxlrI = 0 represent 1 projective point with 

the zero rnatriz is an i rdue ib le  closed subset of @2,,,1. M o m e r  

1. We know that &(') (r ) is the intersection of ( ~ ( r )  nf l (r))  , with the complement 

of the set S(r - 1) u ST(r - 1). Since S(r) = p ( r )  = cll,r+l, E(')(r) is the 

complement of the dosed set S(r - 1) U f l ( r  - 1) (see Theorem 5.2). Thus 

&(I) (r) is an open subset of cJ1,r+l. 
is irreducible, every non-empty open subset of C$21,r+1 is dense Since @r+l,r+l 

Therefore, if &(')(r) is non-empty then &(')(r) is a dense subset of @l,r+l. It 
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remains only to show that £(')(r) is non-empty. For that we shall show that 

First of all bxIrI = bTx[?1 = 0, if and only if X i  - X,' = 0. Since @ is al- 

gebraically closed and of characteristic zero, Xi - XI can be factored into r 

distinct linear forms. Hence bxiTI = 0 represents exactly r projective points. 

Thus b E E(')(r). 

2. Since the intersection of ~TAO h e  closed sets is f i e  closed and the union 

of two f i e  closed sets is a6ne closed, the result follows immediately from 

Theorem 5.2. 

3. E( ' ) ( l )  u {0) = (S(l) 17 ST(l ) ) .  Hence by Theorem 5.2, E(')(l) U {0}  is an 

afiine closed subset of C$il,,+l. This closed set is the image of the polynomial 

mapping 9 from 3 ( r )  x F(r) to which takes (ux['], W X M )  to G w ,  

where v ,  w E Cllr+l. By Theorem 4.3, 3(r )  is irreducible, so F(r) x 3 ( r )  is 

irreducible (see [Shafamich 19743 page 24). Thus, the closed set £(')(I) U { O }  

is the image of the polynomial mapping from an irreducible closed set. Hence 

E(')(l) u (0) is irreducible. By Theorem 4.4 dim(F(r)) = 2, therefore the 

dimension of 3 ( r )  x 3 ( r )  is 4. Now by the Theorem of Dimension of Fibres 

(Rderence [Shafarevich 19743 p. 60), we have dirn(&(')(l) U { O } )  5 4. Since 

0-I ( g w )  = {(ovx[~~, (I - 'UIX~~])  la # O), the dimeasion of B-'(&) is 1. Again 
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by the Theorem of Dimension of Fibres (Reference [Shafiuevich 19741 p. 60), 

we have 3 5 dirn(E(')(l) U (0)). El 

As a summary we have: 

E(l)(r) is dense in c::~,~+~. 
&(l)(r - 1) 

are l o d y  dosed in C$!,,r+l. 

0 &(')(I) u {o} is an afEne dosed subset of U$!l,r+l. 

Figure 5.1: Some topologid subsets of @21,r+l 

5.2 An Ascending Chain of Dense Subsets 

Theorem 5.5 For 2 5 1 5 (r + 1), the set &('I (0) of dl (r + 1) x (r + 1) matrim with 

mnk less than or equal to 1 Jud, that both the systems CX['~ = 0, and cTxLr1 = 0 

have ody the triviai solution is  o dmae s u ~ e t  of ctl,,l. 
Proof: Let 2 5 1 5 (r + 1). Since c?,,?+, is irreducible, every non-empty open subset - 
of c!!~,~+~ is dense. And if a non-empty subset of E(~(o )  is dense in c:l,r+l then 

E(')(o) is dense in U$l,r,l. Hence it folIom that in order to prove the above remit, 

it sdices to find a nonsmpty subset of & ( I ) ( O )  which is open in 6$i1,*,. We wil l  

consider two different cases: 2 1 < r and I = (r + 1). 

First we shall define the foIIowing notation: 
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The k-rowed minor obtained from a matrix A by retaining only the elements 

belonging to rows with s d h e s  TI,. . . , rk and columns with *es sl,. . . , s k  will be 

denoted by 

IA(~1,.--,rk;~lt---tsk)l- 

Now assume that 2 5 1 5 r. Every matrix with rank 1 has at least one 1 x 1 

submatrix with non-vanishing determinant. 

Suppose A is an ( r + l )  x (r+1) matrixover @suchthat [A(l, ..., 1;1, ..., I ) (  # 

0. Then the first 1 rows (columns ) of A are linearly independent and every row 

(column) of A may be expressed linearly in tenas of these I rows (columns).(Reference 

Flirsky 19611 on page 137.) 

Therefore AX['! = 0 is equivalent to the following system of equations, 

Since 1 2 2 and (A(1,. ..,I; 1,. . . ,I)I # 0, 

are binary forms of degree r. If the resultant of these two binary forms is non-zero, 

then these two binary forms have no common hear factor (see 19641 p.202). 

In that case the bt two equations in the system (5.1) have no common non-trivial 

soIution, and hence AX[*] = 0 has no non-trivial solution. 
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In similar maazler , if the resultant of the two binary forms 

is non-zero then A=X['] = 0 has no non-trivid so1ution. 

Therefore we shall consider the following set, 

where 

Then is a subset of C("(0) which is an f i e  open subset of cl,v+l. 
We show that Wl is non-empty. Dehe the matrix A in the following manner, 

& =I ,  for i= l ,  ..., 1, 
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Then A = X [ ~  = AX['] = 0 is equivalent to the system 

Clearly Xi - Xi, G-'XL have no common non-trivial m. Hence their resultant, 

Res(X,'+X,', %-'XI) # 0 ( see PWer 19641 page 202). Also IA(1, . . . , I; 1,. . . , Z)I = 

I. Therefore, A € Wl. 

Now assume that I = r + 1. Define 

Let A E WrC1. Then A-L exists. Hence 

and 

have no solution in P, which implies A E E(r+l)(~). Hence W,+' C E('+')(o). Since 

I E Wr+1, Wr+l is a non-empty open subset of @+I,~+L. 

Rom the above theorem we have the following ascending chain of subsets: 
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Figure 5.2: An ascending chain of subsets 

5.3 Further Inquiry 

As a further inquiry we shall state the following problems: 

1. For a given partition (ml, . . . , m,) of r, and a binary form f of degree r, can we 

say that there exists a covariant whose vanishing for f is a necessary and suf- 

ficient condition that f has the form . . . IF , for some linear forms 11, . . . , I, 
over @? 

For the case of two part partition we have proved that this is true, by finding 

such a c-ant. Even though Theorem 4.7 states that 2(:, 1, . . . ,1) is the 
radical of all invariants, when r = 4 we have found a covariant whose vanishing 

for f is a necessary and d c i e n t  condition that f has the form My 

supervisor Pr0f.H.K. Farahat feels that such a wvariant exists in g e n d  Next 

project of mine is to find a proof. 

2. What can be said about the sets E(q(k), for 1 > 1 and 1 5 k r ? 



3. Consider the problem of transpose system of n-ary homogeneous polynomial 

equations: Find any relations that may exist between the solutions of the 

transpose systems of n-ary homogeneous polynomial equations 

and 
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Appendix A 

Position map 

In this section, for the sake of completeness, we will discuss formulas for the posi- 

tioning monomial in the mahk xlr1. First we shall define the position map. 

Dehition A.1 1. Let M: be the set of all monomials of degree r in XI, . . . , Xn. 
Then 

M; = (111 

2. For every r 2 0, the position m a p  P is the functionJbm M: to (1, . . . , N(n, r)) 

defined by 

p(X, - - - XL) = position of Xi, . . . XG in ~['l. 

Poszeion of X,, . . . XG a m g  all monomi& of degree r, in ~ 1 ' 1  is denoted by 



Example A.2 P : M! + {1,2,3,4) 

Since xi1] = X, the position of X, in xt11, P(j;  1,. . . , n) = j, where 1 5 j $ n. 

The following lemma discusses the position of XiX, in x[*]. 

Lemma A.3 Position of XiXj in x['], 

PmoE List the entries in XPI in groups, those which start with XI, then those which - 
start with X2 and so on. That is, 

XIXI x1x2 -. . - - - - - - XJn 

XzX2 ... ... ... x2x* 

Xi& . . . XiXnl etc. 
If i 5 j , then XiXj appears as the ( j  - i + 1)" dement in the P group. The 

groups 1,2, . . . , i - 1 contain 



dements. Hence the r d t .  

Next lemma provides a formula for the inverse position function in xi2]. 

Lemma A.4 ( F m u l a  for the inverse position function) 

The inverse position fvnction 

is given as follows. 

k t r = P ( i , j ;  1 ,..., n),1 5is j s n .  Toge t ( i , j ) j bmr ,  define 

(i - 1)(2n - i + 2) 
Proof: We only need to check, if i = f ( r ) ,  j = r + i - 1  - - 2 

then 

P(i, j; I,. . . , n) = r. 

Consider 

NOW we shall state and prove a recmence formula for positioning monomials of 

degree r  in ~ [ d ,  for any r > 1. 



Lemma A.5 (Basic Recurrence Formula) 

hoot: Note that M: and xlr1 can be written as Mr[l, .. . ,n] and X[l,. . . ,njc! 

respectively. 

With this notation we can list the entries in X [I, . . . , n]bi in groups, those which 

start with XI, then those which start with X2 and so on. That is, 

If 1 5 il 5 . . . 5 i, 5 n then Xil . . . XG appears in the zy group. The groups 

1,2,. . . , ir - 1 contain 



elements. Hence, for 1 5 il 5 . . . 5 i, 5 n, the position of Xi, . . . XG among all 

monomials in X[1, . . . , n] of degree r is 

+ Position of xi, . . . Xhin X[ i l , .  . . , n]C-4 

Now if we use the change of variable YB = XB+il-r. Then 

Thus we have 



Appendix B 

Griibner Bases 

We have used the computer algebra system Maple V to find the Gr6bner basis for 

ideals, spdcally,  the Gr6bner basis package. To access the commands in this 

package, type: 

>wit h(Groebner ) ; 

(here > is the Maple prompt, and semi colon is the end of Maple command.) 

In Maple, monomial ordering is called term order. Since monomial order depends 

also on how the variables are ordered, Maple needs to know both the term order and a 

list of variables. For example, to tell Maple to use lexicographic order with variables 

A > B > C, we need to input plex (for pure lexicographic) and [A, B, C] ( Maple 

encloses a list inside brackets [. . -1). 
In Maple "gbasis" stands for Gr6bner basis, and the syntax is as follows: 

>gbasis(poly list,var list,term order); 

this computes a Griibner basis for the ideal generated by the polynomials in poly list 

with respect to the monomial ordering specsed by the term order aad var list. 

In the following sections we state the codes to h d  Grijbne. basis in the begin- 

ning. Then we list the polynomials which are needed for the prooh from ordered 

Gr6bner basis (ordering is the position where those polynomials appeared in the 

Maple output). 



B.1 A Grobner basis 

The Maple worksheet for finding a Grbaer basis for 

with respect to lexicographic order: 

> W:=[(r-m)*A+m*B-Pl(r-m)*A2+m*B2+Q,(r-m)*A3+m+B3-S]; 

W := [(r - m ) A + m B -  P, (r  - m ) A 2 + m B 2 + Q ,  ( r - m ) A 3 + m B 3 - S ]  

Now we find the Gr6bner W for the above polynomials by using the lexico- 

graphic order on A, B, P, Q, S 

> gbasis(W, Plex(A, B, P, Q, S)); 

[3rQp-4m2S~+3Q2P2m2+m1'3SZ-m2r2S?-4m?Q3+4m2rQ3 

+ P 6 + 3 Q 2 P 2 ? + r 3 ~ 3 + 4 m ~ ~ r - 6 m 2 r ~ ~ ~ + 6 m ~ ~ ~ ~ - 3 ~ 2 ~ 2 m r ,  

- m ? Q 3 B + 2 m 2 r ~ 3 ~ - m r 3 ~ B + 2 m 2 $ S L ~ - ~ P 5 + r ~ p l - 2 r Q 2 ~ 3  

- 4 Q S P 2 m r  + 2 Q s P 2 ?  +4QSP2m2 - 3 Q 3 P m 2 + 2 Q 3 P m r - Q 3 P ?  

+3?mS2P-4rm2~2~+5rSQ2m2-5?SQ2m+r3SQ2,-m?SBP 

+ 2 m 2 r S S P + m ~ Q 2 B - 2 m 2 r Q 2 ~ + ~ + 2 r ~ ~ + 3 m ~ ~ 2 r - 4 m 2 S P 2  

+3Q2Pm2 - 2 Q 2 P m r + Q 2 P ?  + r n ? Q S - m 2 r Q ~ , 2 m 2 r S B + 2 m 2 Q B P  

+ 4 m 2 Q 2 - 4 m 2 P S - m ? S B - m ~ ~ ~ ~ + 3 m ~ r ~ - 4 m r ~ 2 - m ~  p2+?Q2 

+ 2 Q P 2 r + p 4 ,  

- ~ S + ~ ~ S + ~ ~ Q ~ B - ~ P ~ Q - B $ Q - B ~ P ~ + P ~ Q + ~ ~ B P ~ - ~ ,  

r m B 2 + r Q - m Q - 2 m B P + P 2 ,  - A r + A m - m B + P ]  



135 

B .2 A Grobner basis for the polynomials that make a binary 

quartic form a square of some binary quadratic form 

> L : = [ A ~ - P , A * B - Q , ~ * B ? + A * c - ~ * R , B * c - s , c ~ - T ] ;  

[A~-P ,AB-  Q , ~ B ~ + A C - ~ R , B C -  s,-T+C1] 

> gba&s(L,pl=(A, B, C, Pf Q, R, St TI); 



B.3 A Grobner basis for the parametrization of a binary 

quartic form with a linear factor of multiplicity at least 

3 

> WL:=(C*A3-  P , ~ * C * B * A ~ + D * A ~ A ~ - ~ * Q ~ ~ * A ~ B ~ + C + ~ ~ A ~ *  

B * D - 6 * R , 3 * A * B 2 * D + ~ * ~ 3 - 4 * ~ , ~ * ~ * ~ 2 - ~ ;  

> g e s ( W L , ~ l = ( A ,  3, C, D, P, Q, R, S, T)); 

(B.11) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B. 16) 

(B.17) 

(B.18) 

(B.19) 



B.4 A Griibner basis for the parametrization of a binary 

quintic form with a linear factor having multiplicity at 

least 4 



B.5 A Griibner basis for the parametrization of a bi.na!ry 

quintic form with linear factors of multiplicity either 













j3, = 9 Q u 2 p  - 1 1 4 ~ ~ ~ ~  + 1 9 1 ~ ~ ~ ~  

-428QURS + 250RQT2 

+60QTs? + 72UP - ~ O P T S ,  (B.73) 

ja = 6 Q T U P  - 2 1 ~ ~ 9  + 2 2 ~ ~ ~ ~  - 2 1 Q U b  

+22QRTS - 6Qs3 - 6TR' + 4 ~ ~ 9 ,  (B.74) 

j4 = 18Ps3 - 80RPTS + 4 0 s ~ ~ '  + ~ P R ' U  - 24RUQ2 

+15QTR2 - ~ o Q R S ~  + 32PQT2, (B.75) 

ja = 4SQUP - P R ~ U  + 8RPTS  - 18Ps3 - 8RU@ 

+20STQ2 - 1 5 4 ~ ~ ~  + 10QRSZ, (B.76) 

ju = ~ ~ P Q S ~ T  - ~ P R ~ T S  - 5 4 P R d  - 1 2 s ~ ~ ~  

- 8 Q 3 ~ '  + 6R2uQ2 - ~ R S T Q  

+39Q2s3 - ~ Q T R '  + ~ Q P S ~ ,  (B.77) 

jM = 189PQp - I S S R ' T P  - 2 7 0 ~ ~ ' ~ '  + 112TUQi 

-340qStr~S + 16RQ3T2 + 156Q1UR3 + 156Q2RZ?'s 

+27Q2 RB - 93QRLT + 6 2 Q d $ ,  (B.78) 

j4 = PRUQ + 12PQTS - 44511 - ~ Q ' T R  

+ 1 5 ~ ~ 9  - 1 8 ~ ~ 3 ~  - PTP, (B .79) 

j, = 2 1 6 Q ~ ~ s  - 188Q2~# + ~ O ~ Q ~ R ~ S  

+16Q4SU - 1 0 8 ~ ~ s '  - ~ ~ Q ~ T I  

+ 1 4 4 ~ Q p ~ S  - TR'TP - 126~Pp 
- ~ ~ R P Q s ~  - 36R2UQ3, 



j47 = - 3420 Q~ U + 9216 Q~ s T~ - 2304 Q5 S2 U 

+126EE5ps2 - 11556R2Q3S3 - 4544R2Q4T2 

- 3 1 1 0 4 ~ Q 4 ~ ~ ~  + 1052R5Q2T - 783R4Q2s2 

+13232 R ~ Q ~ S U  + 2646p P Q S ~  

- 4 6 0 8 ~ ~ ' ~ ~  + 1 6 4 8 8 P Q 3 ~ s  

+ 7 R 6 T p  + 15552Q4S4, (B.81) 

ja = 3 p 2 u 2  - 57PTS2 + 2 1 7 ~ ' ~ ~  - 5 7 0 ~ ~ ~  

-578Q R T S  + 354QS3 + 3 5 4 ~ R 3  - 236R2sa, (B .82) 

jd9 = 32Tp2U - 1 9 1 ~ ~ ~ ~  + 176RPTS 

-126Ps3 + 104RUQ2 

+40STQ2 - 1 0 5 9 ~ ~ ~  + 7 0 ~  R S ~ ,  (B.83) 

j ,  = p2T2 + lOPQTS  - G ~ T P  

- 1 2 R ~ 9  - ~ Q ~ U  i- ~ o Q ' s ~ ,  (B.84) 

jsl = S U P 2  + 4 3 P Q T S  - R ~ T P  - 6 6 R p s 2  

-12Q3u - ~ O Q ~ T R  + 55Q2s2, (B.85) 

j52 = I ~ Q P S * + ~ Q R T P - ~ P U Q ~ - S T Q ~  

-32sRZP + ~ O R Q ~ S  + ~ P T s ,  (B.86) 

j ,  = 27P2S3 + ~ ~ P Q ~ T s  - ~ Q R ~ T P  - ~ ~ ~ P Q R S *  

+ B S P P  - 24Q4u - ~ O Q ~ T R  

+150@s2 - ~ R ~ Q ~ s ,  (B.87) 

j, = R P ~  - 4PUQ2 + 2 3 Q R T P  + 1 8 ~ ~ 9  







B.6 A GrGbner basis for a binary quintic form which is a 

factor of a square of a quadratic form and a linear form 

> W := [(2*A*C*D+4*B2*D+4*A*B*E) -10*R, (A2*E+4*A*B+D)-5*Q, 

(4*B*C*E+C?*D)-5*T,A2*D-P,(4*B2*E+4*~*c*~+2*~* 

c*E)-~o~s,c?*E-u]~ 

> gbaAs(W, P W A ,  3, C, Dl P, Q, R, S, T, U)); 
There are 588 polynomials in the Griibne basis of I .  

(B. 103) 





(B. 108) 











(B. 123) 





- ~ ~ E R P D ~ T  - 3 3 ~ ~ 9 ~ ~  - ~ S E Q * D ~ T  

+90EQD2SR - P D U P  - I I E ~ P T D Q  

+ 7 0 E 2 p D S R  + 5 0 ~ ~ s ~ ~ ~  - ~ ~ ~ Q D E ~ R ~  - 8 T E 3 p 2  

- ~ O Q S E ~ P  + ~ ~ P E S R ~ ,  (B.131) 

km = (4pd - 5 Q 2 ~ ) ~ 3  - Z E P T ~ Q  + S S E D ~ Q ~  

- D P ? T E ~  + ~ D S Q ~ P  + ~ D E ~ ~ P  - ~ o E ~ R D Q ~  

-E3p2s + ~ Q R E ~ P ,  (B. 132) 

k230 = (12PTQ - 2 4 P S R +  1 5 s ~ ~ ) ~ ~  

+ 4 E D 2 ~ P  - 1 0 E p Q D 2 S  - ~ E D ~ R ~ P  

+5ERQ2D2 + ~ D S E * P  - 1 4 p E 2 R D Q  

+20E2Q3D + R E ~ P  - ~ Q ~ E ~ P ,  

k r n  = ( ~ P T  + lOPQS - 4 0 ~ ~ ~  + ~ ~ R Q ~ ) D ~  

+ ~ E D ~ P ~ S  - 4 0 E Q R P p  

+25E@D2 - D R P P  + ~ O D Q ~ E ~ P  - ~ Q @ P ~ ,  (B.134) 

km = ( 1 6 P ~  +25Q3 - ~ O Q R P ) @  

- 8 P f l 2 E R  + 3 P 2 ~ l D Q  - p~~ + 5 D 2 Q 2 E p ,  (B.135) 

k234 = D ~ U - ~ E D ~ T + ~ O E ~ D ~ S -  

I O D ~ E ~ R + S E ~ D Q - E S P ,  (~.136) 

k235 = C2 E - U, (B.137) 

km = ~ B ~ E ~ + B C ~ D ' + S B D T - ~ O E B S  

- 6 S C D + 5 C E R ,  (B.138) 



A Grijebner basis for j59, j58, j57, jss, j54, js2, j51, j50, j48, 

j45, j42, j41, j40, j39, j34, j33, j32, j31, j ~ ,  j , , j ,  j ,  6 ,  with reSpect to lecographic 

order is 

[108eu2r +219gpu2 -300t4us+ 100t6 +27u4? - 162tu3rs+8s3u3, 

3u3q - 12tu2r - 16u2s2 + 50usP - 25e, 

27u3? - 162tu2rs+60ur6 +8s3u2+ 155ups2 + 12pu2q- 100se, 

27pu2r2 -546urs+60t5r +227ps3u- 145t4s2+12t4uq+27su3r? 

- 162tu2rs2 +8s4u2,2484s~u2? -2736@urs2 +2520st5r +6511t2s4u 

- 4160t4s3 +783gu3? -4794tu2rs3 +232s5u2 - 324tu3$ -756u?e 

+240qt6, -9u29 +38turs  -20rt3 - 2 4 ~ ~ ~ + 4 s u ~ ~ + 1 5 ~ s ~  -4euq ,  

108u3$ - 567tu2r2s+252ur2e +32rs3u2 +390rupg  - 260rst4 

+ 116q6su -80qe+24ts4u- 15t3s3,48rtu2q-116qpstt+80qt' 

- 8 1 u 2 9 s -  12ut2r2+230trus2-140rse-24s4u+15t2s~108~tu2 

- 468?pus + 240?t4 +518rts3u - 320rt3s2 +48rf  uq-  1 1 6 q ~ s 2 u  

+80sqt4 - 81u2?$ - 24sSu+ 15ps4,-1296u3r4 +9936tu2@s 

- 3024ur3t3 - 27339s3u2 - 18252r2u$3 + 10080~s t4  +960rqp 

+ 14734rts4u -9100r6s3 -3364q~s3u+2320s2qt' -696s6u+435ps5, 

8tu2$ -4r i?uq-46tqsZu+40sq~ -27u2r3 + X!?rr?s - 7 0 9 9  

- 8 r u s 3 + 5 r 9 2 t 2 , 1 2 ~ u ~ + 3 q u 2 ? - 6 2 t q u r s + 2 0 r q t 3 + 3 q s 3 u  







B.8 A Griibner basis for k25, k23, k22, k18, k15, k13, k10, kg, k4, k2 











Appendix C 

MAPLE Work Sheet 

Here we use the variables x and y instead of Xo and XI. 

First evaluate G stated in Lemma 4.16, by substituting 

1 af p = -- 
f a x '  



rn %2 (& f(x, y))= r m2 r %l%2 (& f(x, y)) + r3 %13 + 4 - 6  
f(xl yI3 f(zl Y) 

m 13 %I %2 ($ f(x, I)) %12 (& f ( ~ ,  Y ) ) ~  m T 
+6  - 3  

fbl Y) f(z, d2 

Now we collect the terms of G. 

> mlEect(ezpcznd(4*f ( x ,  Y)~*G), [f (z? ?I), (dif f (f (x ,  Y): 4 ) l  (dif f (f (z, Y), ~ 3 s ) )  2 

Idiff (f (x, Y), X,X? x)), (dif f (f (2, Y), x, X,Z? 4 1 ,  distn'hted); 

(12r - 1 2 9 m f  12?+ 1 2 m 2 3  + l 2 m 3  -24? - 12m2r) ($f(z, y)) 

(& f t ~ ?  ill4 f(z7 Y) + 
(-12m2r- 1 2 m r - 9 m 2 g  - 127'3+12mfZ+12m2+9~m+12?) 

(gi f(x1 Y)I2 (& f(x, Y)I2 f ( ~ ?  !A2 + 
( 8 m r - 4 m 2 g  +4?m+12m2r-12m? -8m2)($f(x, y))(&f(z, Y ) ) ~  

f(t? YI2 + 
(6 mz r' + 12 rn r? - 6 r3 rn - 12m2 r )  (& f(z, 2)) (6 f(x, 9))  (& f(z, y)) f(z, y)3 

+(4mr-49+8m2r-4m2r?+4$m+12r?-12r-4m2+4-8m?) 

(&f(x, Y ) ) ~  



NOW we rewrite this differential equation according to our notations, meaning 

we get, 

4f6g=(16m2r+4r'-16m?)(@f)3 f3+(r 'm-m2?)(#  f ) l f 4  

+ (12r- 12r3m+12?+12m2?+12m~ -24? -12rn~r ) ($ f ) (&f )~  f 

+(-12m2r-12mr-9mz~-12~+12m~+12m2+9r3m+1213)($f)2(&f)2 f 

+(8mr-4m2?+4?m+12m2r-12m?-8m2)(@f) (& f)3f 

+ (6m2? + 12m? - 6 3 m -  12m2r) (gf) (&f)(@f) f 3  

+ (4mr-4r3+8m2r  -4m2r2+4r3m+12?-12r-4m2+4-8m~)(&f)6 .  



Appendix D 

Covariant calculations for binary quintic forms 

> f :=x-2*ya2* (x+y) ; 

We shall calculate iP( f) : 

> aith(1inalg) : 

Warning, neu definition for norm 

Uarning, new definition for trace 

Next we calculate X(f) : 



Next we calculate J(f) : 

> j:=det(array( [[diff(fBx),diff(f,~)l,[diff(h,x).diff(h,y)ll) 1; 

j := 483' y3+96xSy4 - 9 6 ~ ~ ~ ~  - 48x3y" 

Next we calculate (8, fP)(')( f )  : 

> pjl:=det((array [hiiff ( j ,x)  ,diff (j,y)l, Cdiff Cp,x) ,cliff (p,y)l] 1); 

pj l  := -580608 z6 y3+1382400 x5 y4+1382400 x4 y5-580608 t3 y6-248832 2 y7-248832 z7 $ 

Next we calculate (3!P)(2)(f) : 

Next we calculate (K, ?)('I( f )  : 

Next we calculate (-(1/5) * (IP,$)(')(f) - (T,X)(')(f) * f - (1/6) * T2(f) * 

f + (1/10) * K * (3, fP)(2)( f ) ) )  : 



Now we will follow the same calculations for g : 

> hl:det(=ay( [[diff (g,x,x) ,diff (g,x,y)], @iff ( ~ , X J Y )  sdiff (g~y,y)] l  

1); 

> pjll:=det(array( [[diff (j1.x) , d i f f ( j l , ~ ) ] ,  ~diff(~l,x),diff(pl,~)]l 

1) ; 

p j l l  := -1728 (216x8 + 144x7y + 144x6 3) x 



> gp2:=diff(g,x,x)*diff(p1,y,y)-2*diff(g,x,y)*diff(p1,x,y)+diff(g,y,y)* 

diff (pi  ,x,x) ; 

gp2 := 3456 z3 
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