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ABSTRACT 

This work comprises three different topics: 

1. For an arbitrary convex body in n--dimensional Euclidean space, three 

types of random straight lines may be defined, namely : rays, secants and line 

segments both of whose terminal points are inside the body. After a review of 

univariate rays, bivariate rays are analyzed under different, randomness 

assumptions. As an example, the sphere is examined. 

2., Randomly generated points in Rd are connected to their nearest 

neighbours in terms of Euclidean distance. The resulting connected clusters of 

points are defined as societies. Questions related to the collection of societies 

formed, the internal structure of a society, and the relationships between 

individual points are examined. In particular, the one—dimensional societal 

structure is examined in detail. 

3. Buffon's needle experiment and its variations yield empirical estimates of 

the value of ir. Several of these estimates are derived and compared. 
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CHAPTER ONE 

INTRODUCTION 

1.1 RANDOM BAYS IN CONVEX BODIES 

The theory of geometrical probabilities covers problems that arise when 

we ascribe probability distributions to geometric objects such as points, lines 

and planes (usually in Euclidean spaces), or to geometric operations such as 

rotations or projections. Historically, the first such problem appears to be 

that of Buffon in 1777 (which we discuss in Chapter 5). 

Since the ascription of a measure to the geometric elements is not 

quite an obvious procedure, a number of "paradoxes" can be produced by the 

failure to distinguish the reference set. These are all based on a simple 

confusion of ideas but may be useful in illustrating the way in which 

geometric probabilities should be defined. The Bertrand paradox is such an 

example. In that paradox, the probability that a random chord in a circle 

exceeds the side of an inscribed equilateral triangle can be shown to be , 

or for each of three different models by which the chord is drawn at 

random. Consequently, it is commonplace in geometrical probability that there 

may be more than one probability measure which may be used to describe a 

random geometrical element uniformly' distributed over some given set of such 

elements. 

For an arbitrary convex body in n--dimensional Euclidean space, we 

may define three types of random straight lines, namely: rays, secants and 
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line segments both of whose. terminal points are inside the body. There is 

extensive literature on the distributions and moments of these random line 

segments. 

We will concentrate on rays. After presenting the known results on 

univariate rays, we will derive expressions for distributions of bivariate rays. 

Here, two rays will be generated with one common terminal point. We will 

consider three randomness assumptions and their bivariate extensions. As an 

example, we will examine in detail the sphere and obtain various volume 

estimators. 

APPLICATIONS: 

(i) The subject of stereology represents a major part of the 

applications of geometrical probability (or stochastic geometry, as 

it is also known), see Stoyan et al (1987). The object of 

stereology is to draw inferences about the geometrical properties 

of three dimensional structure when information is . only available 

in some lower—dimensional form, such as random plane sections 

of an opaque solid, or randomly—oriented plane projections of a 

space curve. It is a multidisciplinary effort encompassing the 

biological, geological, material and mathematical sciences and in 

which geometrical probability plays a role. 
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(ii) Kellerer (1971) includes a discussion and reference to 

applications of chord (secant) length distributions (resulting from 

the random intersections of convex bodies by straight lines) to 

such different fields as acoustics, reactor design, ecology, 

microscopy, and radiation physics, just to mention a few. 

1.2 STATISTICAL SOCIETIES 

As far as we know, the problem we formulate and analyse in Chapters 3 

and 4 concerning the nature of the connected clusters of points, has not been 

clearly formulated before (see Naus (1979) for a comprehensive bibliography of 

problems on clusters). 

Consider randomly generated points in Rd connected to their nearest 

neighbours in terms of Euclidean distance. We define the resulting connected 

clusters of points as 'societies'. We may ask the following questions related to 

the collection of societies formed, the internal structure of a society, and the 

relationships between the individual points: 

(a) Let M denote the number of societies formed. What is the 

distribution of M 7 (This of course depends on the number of 

points generated). 

In Chapter 4 we will examine the one—dimensional societal structure in 

detail. The points are assumed to be generated from a uniform distribution 

on the line. We will derive expressions for the distribution of M and the 
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maximum number of societies. Moments are obtained through generating 

functions. We will also consider populations of societies. 

The problem Glaz and Naus (1983) discuss is different. Given N events 

occurring over time, an n:t cluster is defined as n consecutive events all 

contained within an interval of length t. They derive the expectation, 

variance and approximate distribution of the number of n:t clusters. 

(b) Let K denote the size of a society, i.e. the number of individuals 

(points) in a society. What is the distribution of K? 

Define a Poisson ensemble as a set of points distributed in a 

d—dimensional space satisfying the following conditions: 

(i) the probability that a point lies in an infinitesimal volume ÔV 

equals AN + o(e5V), where A is the density of the Poisson law. 

(ii) the probability that more than one point lies in an infinitesimal 

volume SV is close to zero. 

Roberts (1967) considers an infinite plane on which are scattered discs of 

radius R whose centres are points distributed according to the Poisson law 

with density A. A cluster of size n is defined as a set of n discs each of 

which overlaps at least one, other member of the set and none of which 

overlaps a disc which is not a member of the set. The author uses a Monte 

Carlo technique to evaluate the expected size of a cluster. The three— 

dimensional version of this problem is discussed by Roberts and Storey ( 1968). 
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(c) Assume every point has a unique nearest neighbour. What 

proportion of points in a population are nearest neighbours to 0,1,2, 

or more other points? Determine p, the probability that a point 

is nearest neighbour to precisely n points. 

In Chapter 3, we will classify individual points according to the number 

of other individuals that consider the particular individual as their nearest 

neighbbur. 

Clark and Evans (1955) define two points as reflexive nearest neighbours 

when each is the nearest point to the other. They obtain the proportion, of 

reflexives .in a population. We will use this to derive bounds for the classes 

of individual points. Dacey (1969) considers reflexive nth order neighbours 

while Cox (1981) calculates the probability that an arbitrary event in a 

d—dimensional Poisson process is the mth nearest neighbour to its own nth 

nearest neighbour. 

Roberts ( 1969) considers the problem of determining p for points in 

Poisson ensembles in 1, 2 and 3 dimensions. Except in the one—dimensional 

case, for which p is trivial, he only provides' bounds and estimates of p 

using Monte Carlo methods. 

• Newman et al (1983) and Newman and Rinott (1985) study p in several 

models of random points processes (ensembles) and their limits. 

(d) Form the convex hull or some other enclosure of each society and 

find: 

the content (area, volume) covered by a society, 

the fraction of Rd that is "inhabited", i.e. contained in a 

society. 
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Various expectations concerning the convex hull of N independently and 

identically distributed random points in the plane or in space are evaluated by 

Efron (1965). Integral expressions are given for the expected area, expected 

perimeter, expected probability content and expected number of sides. 

APPLICATIONS: 

An obvious ecological application of clusters is in determining the spatial 

pattern of distribution of the individual members of a population of plants or 

of animals. This is of importance in the analysis of population behaviour. 

The distance between individuals (for example, the nearest neighbour distance) 

has been used as a variable in distance analysis. 

1.3 BTJFFON'S PT 

Mathematical probability has been requisitioned for some unusual chores, 

including the proof - or disproof, according to the temper of the author - of 

biblical miracles, and the rationalization of our naive belief that the sun will 

rise tomorrow, (Gridgeman (1960)). Not the least strange is the estimation 

(in the sense of approximation to) the number ir by means of geometrical 

probability. 

In 1777, Georges Louis . Leclerc, later Comte de Buffon, published his 

'Essai d'arithmétique morale' in which he formulated the famous game now 

referred to as 'Buffon's needle'. This he solved elegantly by using the integral 

calculus. In essence he showed that when a straight line is drawn at random 

on a plane surface of parallels, the probability of an intersection is a simple 
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function of 7r. The value of ir can then be estimated by physical or computer 

simulation as has been done by a number of investigators. 

Buffon described his problem as follows: 

'Suppose that a thin rod is thrown in the air in a room whose floor consists 

of parallel boards. Of two players, one bets that the rod will not intersect 

any of the parallel floor joins, while the other bets the opposite, namely that 

the rod will intersect one of these joins. One may ask which of the two has 

the higher odds. This game can be played on a checker board with a sewing 

needle, or a headless pin.' This problem initiated the development of 

geometrical probability, an important subfield of probability theory in which 

concepts of randomness are applied to geothetry. 

We will first review Buffon's original experiment and the estimator 

obtained. Then we will consider a number of ways in which modern 

statistical procedures can yield estimates of 7r from other experimental designs 

with much better precision than the original Buffon procedure. In particular, 

the following variations will be discussed: 

(i) The double grid with a short needle (Laplace's experiment). 

(ii) The double grid with a long needle. 

(iii) The single grid with a long needle. 

The asymptotic sampling' variances of the estimators for ir, as a measure 

of efficiency, will be compared. 

• The new work we will do is to obtain the minimum variance unbiased 

estimator, of ir for the single grid with a long needle, and to compare its 

efficiency with that of the other estimators. 



CHAPTER TWO 

RANDOM RAYS IN CONVEX BODIES 

2.1 INTRODUCTION 

Random transversals of convex bodies have attracted considerable 

interest recently. Kendall and Moran in "Geometrical Probability" ( 1963) offer 

an extensive introduction to the subject. Subsequent literature includes 

Kingman (1969), Coleman ( 1969, 1973, 1989), Alagar (1976) and Enns and 

Ehlers (1978, 1980, 1981, 1988). The introduction to Kellerer's (1971) paper 

includes discussion and references to some applications. 

In the literature mentioned, the straight line paths are either rays, 

secants or line segments within the convex body which do not terminate on 

the surface. Distributions and moments of these quantities are derived for 

various types of randomness. 

In this chapter, we focus on rays. We present known . results on 

univariate rays in Section 2.3. The distributions and moments have been 

obtained from or are written in terms of the normalized overlap volume and 

normalized overlap surface content of the convex body under consideration with 

its translated self, Enns and Elders (1978, 1980). We consider only three 

types of randomness. 

In Section 2.4 we extend the results to bivariate rays in which case 

two rays are generated with one common terminal point. 

In Section 2.5, we present the results when the convex body under 

consideration is a sphere. Estimators of volume are considered in Section 2.6. 



9 

Most of the computation was done with the aid of MACSYMA symbolic 

manipulation program. 

2.2 DEFINITIONS AND NOTATION 

We will provide the definitions we need for the work in this chapter. 

K : an arbitrary convex body in n--dimensional Euclidean space. 

K(t, 0) : the body K translated a distance £ in direction 0. 

the expected value of (.) when averaging X uniformly over its 

domain D. 

V(.) : the volume of (.). 

S(:) : the surface content of (.). 

V[KnK (1,0)] 
=  , the normalized overlap volume of K with K(40), 

V(K) 

(see Figure 2.1). 
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Figure 2.1 

= E9 [ K(1'0)]' 

0 is uniformly distributed over all possible directions. 

(t ,0)]K  EfS[(KnK 

S(K) 

This represents the mean normalized overlap surface of K with its 

translated self by a distance £. 
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C(4P) : the n—sphere of radius £ centered at P. 

the conical subsets of C(4P) that fall partially outside K. In 

two—dimensions, these are pie—shaped slices. For example, the 

shaded area in Figure 2.2 represents ir(4P). 

Figure 2.2 
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(1,P) : the total angle subtended at P by components of ir(,P). 

4(t,P) : the complement to (t,P). 

RAY a ray is defined as a line segment with one terminal point on the 

surface of K and the other in the interior of K. 

R : the random variable denoting ray length under p—randomness, 

pEIV, A, £, i', A, a}. 

SECANT : a secant is defined as a line segment with both terminal points on 

the surface of K. 

L : the random variable denoting secant length under p—randomness, 

p  {v, A, c, i, A, a}. 

U :' the random variable denoting the distance between two points 

chosen independently and uniformly from within K. 

21r2 
C 
n 

nr ml 
L.J 

the volume of the unit n—sphere. 

Note that the subscripts will be omitted whenever there is no ambiguity. 
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Type of randomness: 

u—randomness: A point within K and a direction, each with independent 

uniform distributions, can be used to define a ray and a 

secant. 

A—randomness: Two points chosen independently within K, each with a 

uniform distribution. These points define three random 

lengths, namely a ray, a secant and the distance between the 

two points. 

a—randomness: Two points are selected independently, one on the surface of 

K and the other inside K. Both points are obtained from 

uniform distributions over their respective domains. These 

points define a ray and a secant. 

i'—randomness: A point P is selected at random within K. Two directions 01 

and 02 are chosen each with independent uniform distributions 

and independent of P. P, 01 and 02 define two rays. 

A—randomness: Three points P, Q and 0 are selected independently from 

within K, each with a uniform distribution. Two rays are 

defined from P, one through Q and the other through 0. 

as —randomness: One point, P, is selected randomly on the surface of K. Two 

points Q and 0 are chosen independently within K, each from 

a uniform distribution. Two rays can be defined with P as 

the common terminal point. 
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aK rand0mness. A point Q is chosen at random from within K. Two points 

P and 0 are selected at random on the surface of K, 

independently of each other. We may define two rays with Q 

as the common terminal point. 

2.3 UMVARLATE RAYS 

The background results we present here are from a series of papers by 

Enns and Ehlers (1978, 1980, 1981, 1988) in which they derive the 

distributions and moments of the lengths of random rays and secants under 

various randomness assumptions. 

2.3.1 ti-randomness: 

A point 'P is chosen at random from within K. A ray is defined from 

P in some random direction 0. If the body K is translated a distance r in 

direction 0, then denote the translated K by K(r,0). If one now places a 

needle of length r in the body K in direction 0, then the tip •of the needle 

must lie in KflK(r,0) for the whole needle to lie within K (see Figure 2.1). 

Now since point P is chosen randomly in K, it must lie in KflK(—r,0) for the 

ray R to be of length greater than r. Therefore, 

V[KnK (-r,0)] 
Pr(R > r0) =   

V(K) 

- V[KflK(r,0)] 

V(K) 

where R now denotes the ray length. 
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Averaging over 9, one obtains: 

IV[KnK ( r,O)fi 
Pr(R > r) = E9  V(K) 

= 12(r) . (2.1) 

This defines the normalized overlap function 12(r). 

Equation (2.1) illustrates 12(r) as an average over 9. However, since there are 

two random variables involved in generating R, we can also express 12(r) as an 

average over the randomly chosen point P. We surround the point P with an 

n—sphere of radius r, C(r,P). Define the solid angles subtended by the body 

K as 41(r,P) and 2(r,P) (see Figure 2.3). 

Figure 2.3 
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Let 4(r,P) = E 41(r,P) be the sum of these internal angles. Then 

Pr(R> rJP) = 4(r,P) 

uC n 

(2.2) 

Equations (2.1) and (2.2), therefore, relate the two averaging procedures. 

From (2.1) we get the probability density function of the ray—length R 

to be 

f(r) = - 1'(r) (2.3) 

where the prime denotes differentiation with respect to r. 

Let S be the random variable denoting the "backward" ray corresponding 

to R, namely R + S = L, the secant length. Then 

Pr(R > r, S > s) 12(r + s) (2.4) 

and the marginal distributions are 

Pr(R > x) = Pr(S > x) = (x) 

If H(1) = Pr(L < £) is the secant length distribution with corresponding 

probability density function h(s), then 

h(e) = Id 1 11  (2.5) 
d12 

The moments are 

E(Rm) = m J rm_l Q (r) dr . (2.6) 
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Hence 

E(R) = E(S) = E(L)/2 (2.7) 

and 

E(IR—SI) = E(L)/2 

2.3.2 A—randomness: 

(2.8) 

Two points are selected at random from within K. The probability 

density function of the ray formed under A—randomness is 

—C r" 11'(r) 

V(K) 

The kth moment is given by 

E(Rk)   
(n+k) C 1 

I 
= 00 r 1 (r) dr 

V(K) j  
0 

2.3.3 a—randomness: 

(2.9) 

(2.10) 

Let two points be chosen independently and at random, one from 

within K and the other on the surface K. The ray formed has the following 

probability density function: 

f(r) =   nC r 1 w(r) 

2V(K) 

where w (r) is the normalized overlap surface as defined in Section 2.2. 
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The kth moment is given by 

E(Rk) -   nC [ r 1 w K(r) dr. 
2V (K) 

2.3.4 The Sphere 

0 

(2.12) 

For the n—sphere of radius a, we have the normalized overlap volume 

(r) 
2C 

n—i 

C 
n 

1 J(l_X2)(n_i)/2 dx, 

r/2a 

The overlap surface has normalized content of 

C r ] 2 (n—i)/2 
w(r) = (r) +   r j nC La] [ [ j  

xl 

The moments are 

E (R) 

E IRA] 

r[] r[ lctl] 

= (2r)k [;] r 

r[] r[Mr1] 

= 2" rk " 1   
L2n+kJ i- 7r r [ J 12n+k1 

2 

E I 
CRkI •i 2n+k 

= L [2(n+k) 
E[R 

0 ≤ r ≤ 2a . (2.13) 

(2.14) 

for k > —1 (2.15) 

for k > —(n+1) (2.16) 

(2.17) 
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When n = 3, the first moments are 

E(R) = 3r/4 

E(RA) = 48r/35 

E(R) = 6r/5 

2.4 BWARIATE RAYS 

2.4.1 li—randomness 

A point P is chosen at random from within K. let 11 and S be the 

random variables denoting the lengths of two rays defined from P by random 

directions 01 and 02 which are chosen independently. We will define the 

normalized overlap volume of K with K(r, 0) and K(s, 02) as 

IV[KflK(r,01 ) It K(s,02)]1 

1 
(r,$) = E0 021 V(K) 

' 

= Pr(R > r, S > s) . (2.1.8) 

(See Figure 2.4). 
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Figure 2.4 
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From equation (2.2) we have 

1(r,P) 
Pr(R>r)=ED.  

I nC 
L ' 

• The two rays R and S are independent when conditioned on P and the 

bivariate extension becomes 

4(r,P)4(s,P)1 
Pr(R> r, S > s) = (DC)2 

='i/'(r,$) 

2.4.2 A—randomness 

(2.19) 

Two points P and Q are chosen independently and at random from 

within K. Let U be the random variable denoting the distance between P 

and Q. Then, the probability density function of U, f(u), can be written as 

14(u,P) u' 1 
f(u) du = EP.[ du 

V(K) } 

(see Figure 2.5) 

(2.20) 
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Figure 2.5 

A third point 0 is generated at random within K, independently of P and Q. 

Let V be the random variable denoting the distance between P and 0. Then 

fA(u,v) du dv =E 
14(u,P) u' 1 dii 4(v,P) v" dv 

V(K) } 
- (uv)"' 
  (nC)2 b(u,v) du dv 
[V(K)]2 

(2.21) 
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Hence 

InC 12 

fA(u,v) = [v ( K)] (uv)' 1,1' (u,v) 

By normalization, we obtain 

] 1 j (uv)' (u,v) dudv = I IV(K) 2 I 
InC I 

0 0 L nJ 

(2.22) 

(2.23) 

Using the fact that 0 (u,v) = Pr(R > ii, S > v) and integrating (2.23) twice, 

we get 

E[(RS)1] = IV(K)12 F 
t. nJ 

From univariate rays, we have 

f(u) - nO ni  u' 1 Q (u) 

V(K) 

But 

1w 

f(u) = f(u,v) dv 

Hence 

RC u' 1 nC 
-  U  I n 

V(K) ( K) (u,v) dv 
0 

n  U  1w n—i 

v (x,v) dv 
V(K)  J  

0 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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Also 

1(x) =(x,O) =(O,x) 

and 

b(O,O) = (0) = 1 

(2.28) 

Consider the following situation Two points, P and Q, chosen 

independently and at random from within K define a line segment U. 

Suppose a ray, R, is defined from P under v-randomness (see Figure 2.6). 

Figure 2.6 



25 

We obtain, 

Pr(R > r, u ≤ U ≤ u + du) 

=E 
f4(r,P) (u,P) u"' du 

ln V(K) 

nc 
-   u' 1 (r,u)du.. 
V(K) 

Therefore 

Pr(R> r, U < u) 
nC 

= J x'(r,x) ± V(K)  
0 

C 
- u 

U 
V(K) {u(ru) - J xn 0 

O'&(r,x) 

a 
dx} 

(2.29) 

(2.30) 

THEOREM  2.1 

Under 3k—randomness, the joint probability density function of R and S is 

I C ]2 O2 (r,$) 

h(r,$) = V(K). (rs)   
Or Os 

Proof: 

To prove this result, we will need the following: 

(2.31) 

V[C(r,P)] - V[ir(r,P)] = 4(r,P) j- (2.32) 

V[C(r,P) fl K] - V[ir(r,P) fl K] = 4(r,P) - (2.33) 
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Hence 

V[ir(r,P) fl K] = V[C(r,P) fl K] - 4(r,P) (2.34) 

and 

(V[ir(r,P) fl K]) (V[ir(s,P) fl K]) 

= [V[C(r,P) n K] - 4(r,P) ] [v[c(s,p) fl K] - 4(s,P) I_-] 

= (V[C(r,P) fl K]) (V[C(s,P) fl K]) 

(r )n 
+ 4(r,P) 4(s,P) 

n2 

- V[C(r,P) fi K] (s,P) Sn 

- V[C(s,P) n. K] 4(r,P) - . (2.35) 

Also 

V[C(r,P) fl K] 4(s,P)1 

Ef J = Pr(U < r, R > s) (2.36) 
V(K) nC  

and 

IV[C(r,P) fi K] V[C(s,P) fi K]] 

Pr(U < r, V < s) = Ej V(K) V(K) J. . (2.37) 

Using equations, (2.19), (2.35), (2.36) and (2.37), we obtain 



27 

Pr(R < r, S < s) 

From (2.22), we can write 

rv[R(r,p) fl K] V[ir(s,P) n K]} 
V(K) V(K) 

2 

= Pr(U < r, V < s) + (rs) I  LV(K)] (r,$) 

sn c 
V (K) Pr(R > s, U < r) 

rXlC 

 V(K) Pr(R > r, U < s) 

Pr(U < r, V < s) = 
nC 2 " 

1 u 1 I I u 1 v" 1 (u,v) dudv V(K)12 
( K)] j J 

(2.38) 

1nC ] 2 1(rs)t' n b(u,$) du 

= LV(K)i (r,$) -  un O On 

r" js O(r,v)—vdv 

n2  Ov 
0 

+1 I   dudv 
r s (uv)n1 02 b (u,v) 

J J n2 OuOv 
00 

(2.39) 

Upon substituting (2.30) and (2.39) into (2.38) and simplifying, one obtains 

C 2   O21(u,v) 
Pr(R < r, S < s) = [v;] jr js (uv)   dudv 

oIla av 
00 

11 
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2.4.3 a-randomness 

A point P is chosen at random on the surface of K. Another point Q 

is selected at random from within K. The distribution function for the length 

of the ray defined by the two points is given by 

IV[C(r,P) n K]1 
Pr(}t < r) = Epsi V(K) I 

(see Figure 2.7) 

Here the expectation is taken over the surface of K. 

Figure 2.7 

(2.40) 
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Note that we could write the distribution function with Q as the pivotal point 

instead of P (Figure 2.8). 

Figure 2.8 
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In this, case 

IV[C(r,Q) n K] 
Pr(R < r) = EQKI V(K) (2.41) 

Suppose a third point 0 is chosen at random from within K, 

independently of P and Q. We will call this as —randomness. Let S be the 

length of the ray from P to 0. The bivariate equivalent of (2.40) is 

Pr(R < r, S < s) = Ep; 
{V[C(r,P) fl C(s,P) n K] 
1 V(K) 

IV[C(r0)P) n K]} 
= Epsi V(K) 

(2.42) 

where r0 = niin(r,$). 

If, instead, we select the third point at random on the surface of K, 

then the bivariate extension of (2.41) becomes 

Pr(R. < r, S < s) 
1v[c(r,Q) fl C(s,Q) fl K] 

= EQK1 V(K) 

IV[C(r ,Q) n K]1 
=E .1  °  . (2.43) 

Q;KL V(K) J 

We will call this —randomness. 

Equations (2.40) to (2.43) then provide a direct geometrical method for 

calculating the ray—length distributions. 

2.5 THE SPHERE 

Let K be a sphere (in three—dimensions) of radius a. We obtain the 

bivariate ray distributions through straightforward geometric methods which we 

first develop for the univariate cases. 
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2.5.1 z.'— and I'—randomness 

We will show 

or 

or 

r3 - 12ra2 + 16a3  
= 

16a3 

3r2 - 12a2 
= 

16a3 

12a2 3r2  
f(r) = - 11'(r) = 

16a3 

(2.44) 

(2.45) 

Suppose the point P is at a distance t from the centre of the sphere 

(Figure 2.9). It is the random variable denoting a ray length from P in some 

random direction. 

Figure 2.9 
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• The solid angle, 2ir(l - cos0), is the surface area subtended by the 

planar angle 20 on a sphere . of unit radius. Therefore, 

Pr(R> nt) = 
(Solid angle corresponding to the planar angle 20) 

total solid angle 

2ir(l - cos0) 

4ir 

Cos 0). 

2rt ]][l [r2+t2_a2 

where 

r2 + t2 - a2 
Cos  =  

2rt 

Therefore, 

f(rIt) = - Pr(R > nit) 

= r2 + a2 - t2  

4tr2 

(2.46) 

(2.47) 

The probability density function of T, the distance from P to the centre of 

the sphere is (see Appendix Al) 

3t2 

g(t)=—. 
a3 

The constraint on r is 

a—t < r < a+t 

(2.48) 
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which implies that 

t > max (a—r, r—a) 

Therefore 

a 

f(r) = j f(rt) g(t) dt for r < a 

a—r 

(2.49) 

f(rlt) g(t) dt f9r r > a 

so that 

12a2 - 3i:2 

1(r) =  16a3 which is (2.45). 

Consider another ray S defined from the same point P in some other random 

direction, independent of the first. We may write 

f(r,slt) = f(rlt) f(slt) 

Hence 

- ( 2+a 2_t 2)(s 2+a2_t2) 

- 16t2r2s2 
(2.50) 

ra 

f(r,slt) g(t) dt (2.51) 

m 

where m is as shown in Figure 2.10. 
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S A 

U 

Figure 2.10 

We obtain: 

(lOr-t-15a)s 2 - 2r3 + 20a2r 

80a, 182 

- 15ar2 + (10r 2+20a2)s - 2s3 

- 80a, 3r2 

za 

for O<r<a 

r < s < 2a—r 

for O<s<a 

s<r<2a—s 
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2r5-20a2r3 + 20a3r2 - (1Or3_15ar2_2Oa3)s2 + 16a5 

80a3r2s2 

for a<r<2a 

2a—r < S < r 

255_(10r2+20a2)53 + ( 15ar2+20a3)52 + 20a3r2 + 16a5 

80a3r2s 2 

for a<s<2a 

2a—s < r < s 

(2.52) 

If we let 

f1(r,$) = f(r,$) on A 

f2(r,$) = f(r,$) on B 

(2.53) 

f3(r,$) = f(r,$) on C 

f4(r,$) = f(r,$) on D, 

then the marginal probability density function 

j 

r 2a—r 2a 

f(r) = f2(r,$)ds + j f1(r,$)ds + j f4(r,s,)ds (when r < a) 

0 r 2a-r 

12a2 - 3r2 

16a3 
which is (2.45). 

The same result is obtained for the whole region. 
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Knowing f(r,$), we proceed to find 1' (r,$). For example, if a < s < 2a 

and 2a—s < r < s, which is region D in Figure 2.10, we get 

1' (r,$) = Pr(R > r, S > s) 

j2a dy 
j y 

r y 

f4(x,y)dx + f3(x,y)dx 

= [5rS4 - s5 - (100 - 20a2)s3 + (30ar2 - 60a2r - 40a3)s2 

+ 80a3rs - 40a3r2 + 32a5] /( 160a3rs). 

In a similar manner we. obtain: 

b (r,$) = [32a5 - 40a3r2 + 20a2r3 - r5 - (6000 - 5r4 - 80a3r)s 

- (lOrS - 30ar2 + 40a3)s2] /( 160a3rs) 

for a<r<2a 

2a—r < s < r 

(region C) 

1' (r,$) = IS4 + 5rs3 + (10r2-20a2)s2 + (30ar2 - 60a2r)s 

+ 10r4 - 120a2r2 + 160a3r]/(160a3r) 

for 0 < s < a 

s<r<2a—s 

(region B) 



37 

• (r,$) = [1084 + (10r2+30ar_120a2)52 + r4 - 

+ (50 - 60a2r + 160a3)s] /( 160a3s) 

for O<r<a 

r<s<2a—r 

(region A) 

(2.54) 

2.5.2 A— and !—randomness 

For univariate rays we will show 

—C r' c'(r) 
1(r) =   

V(K) 

12a2r3 - 3r5  

16a° 
(2.55) 

Point P is at a distance t from the centre of the sphere. The ray R is 

defined from P through another random point Q also chosen randomly from 

within the sphere (Figure 2.11). 
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Figure 2.11 

Then 
* 

F(rlt) = Pr(R < nt) = V 
V(K) 

where d = 
2t 

(See Appendix A2 for V*). 

12a3 
- a2 (t+d) + 1 (t+d)3 + (r2_d2)d] 

4a3 

a2 - r2 - t2 

(2.56) 
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Thus 

f(rlt) = d F(rt)Hi = 

0 + (a2t2)r 

4a3t 

Using (2.48) and the same form as (2.49), we obtain 

12a2r3 - 3r5 
f(r) =  16a6 which is (2.55). 

(2.57) 

Another ray S is defined from the point P through some other random point 

0 selected within the sphere. We then have 

Thus 

f(r,slt) -   

- [ra+(a2_t 2)r} [s3+(a2 t2)s] 

16a6t2 

f(r,$) = ja f(r,s It) g(t) dt 

m 

where m and g(t) are as defined in Subsection 2.5.1. 

Hence 

f(r,$) 

(10r4-i-15ar3)s 3 + (20a2r4_2r6)s. 

80a 

(10r3+ 20a2r)s4 - 2rs6+15ar3s3 

80a9 

(2.58), 

for O<r<a 

r < s < 2a—r 

for O<s<a 

s<r<2a—s 
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(20a3r-f-15ar3--10r4)s3 + (2r&20a2r4+20a3r3+16a5r)s 

80a9 

for a<r<2a 

2a-r < s < r 

2rs5 - (10rSi20a2r)s4 + (15ar 3+20a3r)s3 + (20a3r3+16a5r)s 

80a9 

for a<s<2a 

2a-s < r < s. 

(2.59) 

The marginal probability density functions can be shown to be equal to (2.55). 

2.5.3 - and &-randomness 

From univariate rays we have 

C 21 (n-1)/2 

w(r) 1(r) + :1 [] ] 

and 

r 
Na 

uC r'w(r) 
f(r) = 

2V(K) 

(2.60) 

6ar2 - 30 

=    4a4 (2.61) 
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Suppose point P is at a distance t from the centre of the sphere. 

Another point Q is chosen at random on the surface of the sphere such that 

P and Q define a ray R (Figure 2.12) 

Figure 2.12 
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Let S(c,a) = surface area of the spherical cone with planar angle a 

= 2ira2(1 - cosa) 

= ira(r2—t2—a2-i-2at)/t 

Then 

F(rlt) 

and 

= Pr(R < rt) = S(c,a) 

S(K) 

- (r2_t 2—a2+2at) 

4at 

f(rlt) =. 

Use of (2.48) and 2.49) yields 

6ar2 - 30 
f(r) =  4a4 which is (2.61). 

(2.62) 

If some other point 0 is chosen at random on the surface of the sphere, 

independent of the other two points, then P and 0 define another ray, say S. 

(Note that this is 6k—randomness as defined in Subsection 2.4.3). We then 

have 

rs 
f(r,slt) - ____ 

4a2t2 

We use the same form as (2.51) to obtain 

(2.63) 
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3r2s 

4a5 

3rs2 

4a5 

3rs ( 2a—r) 

4a5 

for O<r<a 

r < s < 2a—r 

for O<s<a 

s < r < 2a—s 

for a<r<2a 

2a—r < S < r 

3r5(2a—s) 
=   for a<s<2a 

4a5 

2a—s < r < s . (2.64) 

The marginal probability density function (2.61) is easily retrieved from f(r,$). 

REMARK: With f.(r,$) as defined in (2.53), we observe the following to be 

true: 

f1(r,$) = f2(s,r) 

f3(r,$) = f4(s,r) 

2.6 ESTIMATION OF VOLUME 

2.6.1 Some Unbiased Estimators 

(2.65) 

In this section we generate various unbiased estimators of 

V = (4ira3/3), the volume of a sphere, under ii - and i'—randomness. We use 

different models and compare the efficiency of the estimators via their 

variances. Table 2.1 below summarizes the results. 
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Table 2.1: Unbiased Estimators for the volume of a sphere, 

V=4ira3/3 

MODEL ESTIMATOR 
VARIANCE 

a6 

I. R is a univariate ray 

under u—randomness 

H. R1 and R2 are two 

univariate rays 
independently generated 
under zi—randomness 

III. R is a univariate ray 

under u—randomness. 
S is its corresponding 

"backward" ray. 

L=R+S 

IV. R and S are two rays 

generated under 

i'—randomness 

V1 =2tR3 35.93 

V = 2ir [.3 +R] 17.96 
2 

irL 
3 

'IT 
V 3  3 

V4 = !i (RS)312 

V5 = 47(R 2S) 

V6 = C(RS)3/2 

where 

8007  
- 1056-225ir 

V7 = (R+S)3 17 

V8 - 247r D2 
11 

.I.L 

1 =: K[I + 1] 3 

OR 

V9 = 64.18 IRS 
13 

5.85 

13.28 

14.54 

34.27 

23.95 

33.36 

41.19 
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It is interesting to note that V3, which is the only estimator to 

involve a secant, is the most efficient while V9 is the least efficient. V1, 

involving only one ray, is not much better than V9. 

2.6.1 Fixed—angle li-randomness 

In the quest to generate better estimators for the volume of the 

sphere,, the following unusual type of randomness was suggested. 

Point Q is generated at random from within a sphere. A ray R is 

defined from Q in some random direction 9. Suppose another ray S is made 

at a fixed angle, a, from R. One could conceivably obtain the joint 

distribution of B. and S from which estimators of volume would be derived. 

These estimators would be functions of the fixed angle a. One might ask if 

there is an optimum value of a which would make this method better than 

the others we have considered in terms of the efficiency of the, estimators. 

We made a start on the problem and obtained expressions for B. and S 

in terms of uniformly distributed random variables 0 and fi. We ran into 

some computational difficulties in our attempt to make the transformation to 

the joint distribution of R and S. We present the partial work on this in 

Appendix A3. 



CHAPTER THREE 

STATISTICAL SOCIETIES 

3.1 INTRODUCTION 

In the following two chapters, we discuss a problem of "societies", 

clusters of' points formed by geometric nearest neighbour attachment rules. 

Related nearest—neighbour problems are treated by Roberts (1967, 1969), 

Roberts and Storey (1968), Newman et al (1983) and Newman and Rinott 

(1985), while Clark and Evans ( 1955), Dacey (1969) and Cox (1981) deal with 

reflexive nearest neighours. 

Consider a population of n points gençrated by some random process in 

From each point, we draw an arrow to its nearest neighbour (in terms of 

Euclidean distance), assumed to exist uniquely with probability one. We 

thereby generate clusters of points that are connected by arrows. We call 

these clusters " societies". 

In Section 3.2 we introduce a classification of individuals in a society 

acêording to the number of other individuals that consider a particular 

individual as their nearest neighbour. 

In Section 3.3, we derive the proportion of reflexive nearest neighbours. 

and relate it to the classification of individuals. 
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3.2 CLASSES OF INDIVIDUALS 

Within a society with k points or individuals, we will define three classes 

of individuals. Let V. denote the number of individuals that consider the jth 

individual to be their nearest neighbour. Suppose that an individual may visit 

only his nearest neighbour. Then we will say that the ith individual is: 

Lonely if V1 = 0 

Normal if V. = 1, and 

Friendly if V1 ≥ 2, i = l,2, ..., k. 

The range of V1 depends. on the dimension. In one—dimension, V1 ≤ 2; 

in two—dimensions, V1 5; in thrcc dimensions, V1 ≤ 11; and so forth. 

Obviously, since each individual is joined to a unique nearest neighbour, 

we have that 

Ic 
, V.=k. 

1=1 ' 

(3.1) 

If, in addition, we define Lk, Nk, and Fk as the number of lonely, 

normal, and friendly individuals, respectively, in a society of size k, then we 

also have: 

Lk + N   + F = k. (3.2) 
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If .,' .it' and 5 are index sets corresponding to the three classes of 

individuals, then: 

or 

v.=o, 
iE2' 1 

V.=N, 
iE.K 1 k 

V. > 2F . (3.3) 
iE5 1 

From (3.1), ( 3.2), and (3.3) one obtains: 

11 V 1 = Lk + N  + F  ≥ N  + 2F  
i=1  

F  ≤ (3.4) 

As one expects, there are more lonely than friendly individuals in a 

soóiety! 

In one dimension, since V< 2, every society will have an equal number 

of lonely and friendly individuals. More specifically, F2 = L2 = 0 and 

Fk=Lk={l,2} for k>2. 

It should be noted that the values of Lk and Fk (which define NO do 

not necessarily define the societal pattern of the individuals uniquely. For 

example, if we have a society with k = 5 individuals in IR2, the patterns in 

Figure 3.1 both give us L5 = F5 = 2. 
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S 
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 'S S 54  

S/ S 

I 

Figure 3.1 

3.3 REFLEXIVE NEAREST NEIGHBOURS 

S 

In natural populations, many individuals are spatially related to one 

another in a "reflexive" manner; that is, in many cases two individuals are 

closer to each other than either one is to any other individual. When the 

distance between two such individuals is smaller compared with distances to 

other individuals, there is an obvious occurrence of pairs. It can be shown 

that in a randomly distributed population, the relation of nearest neighbour is 

reflexive for a definite proportion of individuals. 

Consider an individual, I, in a population of density A distributed at 

random in two—dimensional space. The probability that there is a point, I2 

at a distance between r and r + dr from I can be written, for dr small, as 

dp1 = AdA = A(2irrdr) .  
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The probability that and '2 are reflexive nearest neighbours, given 

that '2 is at a distance r from I, is the same as the probability that the 

region representing the union of the circles defined by I and '2 (see Figure 

3.2) is empty of other points. This is 

= e_(uth0 (3.6) 

2 where A(union) = r r•-3 
+ - 3. 

= the area of the union of the two circles in 

Figure 3.2. 

Figure 3.2 
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Therefore, the probability that I and 12 form a reflexive pair is 

(2) = 2irrA ex[ - Ar2 -I + ] dr 
r 3J 

0 

6 i 
=   = 0.6215 
3+8ir 

(3.7) 

This is also the expected proportion of individuals that belong to reflexive 

pairs in a population of random patterns 

Now, if an individual i belongs to a reflexive pair, then V. 1; i.e. 

individuals belonging to reflexive pairs are either normal or friendly. Thus 

and 

P(i E fl + P(i E 5) ≥ 0.6215 

P(i E ≤ 0.3785 . (3.8) 

This holds for the two—dimensional case (see also Roberts (1969)). 

We can extend this analysis to n--dimensional space. In place of the 

circles in Figure 3.2, we now have identical n--dimensional spheres with 

volume: 
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A = C rn 
n 

n/2 

r 2 + i 

r'1 

(C is defined in Section 2.2). 

The volume of the intersection of the two spheres is given by 

B= 2( 1) /2 r n J (1_x2)')' . "[Ti 

Let 

P* 

where 

A—B 

A 

- 2r[ + i] 

n 

IT 

= ji (1_x2)(1)/2 

(3.9) 

(3.10) 

(3.11) 
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Given an individual Ii in n--dimensional space, the probability that there 

is a point 12 in the space between A and A + dA from I, for dA small, is 

dp1 = )dA (3.12) 

The probability that I and '2 are reflexive nearest neighbours, given that 12 

is between A and A ± dA from I1, is 

- — (uthon) - (3.13) 

where 

A(union) = 2A - B = A(1+p*). 

Hence the probability, p(fl), that an individual is the nearest neighbour to its 

own nearest neighbour in n--dimensional space is given by 

p(fl) = )te_XA(l+p*) dA 

0 

From (3.11) and (3.14) we obtain 

(l) = 0.6667 

(2) = 0.6215 

= 0.5926 

(3.14) 

(3.15) 
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In one—dimension, if we define p as the probability that an individual 

is .the nearest neighbour of exactly m other points, then obviously: 

p0 = p2 = 

p m = 0 for m ≥ 3 . (3.16) 

Most of the questions related to the collection of societies formed and to 

the internal structure of a society appear to be very difficult to tackle in 

general. In the following chapter, we provide a detailed examination of the 

one—dimensional societal structure., 



CHAPTER FOUR 

ONE-DIMENSIONAL SOCIETIES:  

UNIFORM DISTRIBUTION 

4.1 INTRODUCTION 

In this chapter, we look at the simplest societal structure which is 

one—dimensional. We will consider a random process which generates points 

on the line from a uniform distribution. 

Glaz and Naus (1983) discuss a somewhat different problem of multiple 

clusters on the line. A review of the distribution theory of spacings is done 

by Pyke (1965, 1972) while David and Groeneveld (1982) study measures of 

variation of the distribution of spacings. 

If M is the number of societies formed by n points, then let 

P(m) = P{M=m I n points}. We derive an expression for P(m) and solve it 

for several extremal cases. In general, we present a generating function 

representation from which moments are obtained. 

We derive expressions for the distribution of the maximum number of 

societies and we discuss the extension of this work to populations of societies 

(super—societies) in place of individuals. 

4.2 FORMULATION 

We consider n individual locations X1, i = 1,... ,n, which are i.i.d. random 

variables from a uniform distribution on some interval. Let X(.) i = 1,... ,n 
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denote the corresponding order statistics and let A. = X(j+l)_X(j). I = 

1,... ,n-1 denote the lengths of the spacings between adjacent positions. The A1 

are identically distributed and all orders of ranks of the A. are equally likely. 

We need only know their relative magnitudes to determine the number of 

societies these points form. 

We now consider the number of societies M formed by a population of n 

points. Clearly, M satisfies 1 ≤ M ≤ [R], where [x] denotes the greatest 

integer less than or equal to x. Now obviously, 

P2(1) = P3(1) = 1 . (4.1) 

If we define A* = max [A1,... ,A 1], then this maximum interval may be 

used to partition the distribution of M. 

In particular, 

- * 

P (1) u i = E P IM=1IA.=A 1 PIA.=A* 

1=1 ri 1 J L' 

Now 

P [M=1I A.=A*] = P 1(1) if i = 1, n—i 

= 0 otherwise. 

Also 

P [A.=A] = 

Hence 

P (1) = P 1(i). P) 

(4.2) 

(4.3) 

(4.4) 
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By iteration one obtains: 

P(i) = 
2 2 

(n—i)! 

* 

In general, the partition according to A yields 

n—i * * 

P(m) = E P[M=mlA.=A] P[A.=A] 

where 

* 

P. Ai =A = P ni - (m) 

rn—i 
=E P1(j) P 1(m—j) 

1=1 

Hence, for n > 4 

if i = 1, n—i 

if 2 ≤ i ≤ n-2. 

n-2 rn—i P (j) P (m—j) 
n 

P (m) = P 1(m) + E  ri-i  

1=2 j=i n—i 

where we know that 

.P 2(1) = P3(i)= 

4.3 ITERATIVE METHOD 

(4.5) 

(4.7) 

The distribution of M may be found by solving equation (4.7) recursively. 

For small values of m, many of the terms in the double summation are zero. 

For example, 

n-2 
(n—i) P (2) = 2P (2) + E P.(i) P n—i(i). n n—i i  

1=2 
(4.8) 
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Use of (4.5) yields 

P (2) = P 1(2) + ? (2-1)  
U 

where 

P3(2) = 0. 

Recursively solving one finds: 

P(2) = 
( n-2 

(n-l)! I2 + 1_n} 

which is valid for n > 2. 

Similarly, for n > 6, 

(n-i) P(3) = 2P 1(3) +2P2(1) P 2(2) 

for n > 4, (4.9) 

+ :: I P1(i) P.(2) + P.(2) P.(i)] 
where 

P5(3) = 0 

Using (4.5) and (4.10), we obtain 

n-5 

P(3)=-J-- P (3)+- 
n-i n-i (n-l)! 

(4.10) 

(4.11) 

n-2 
n-5+3 - (n-i) 2 2}. (4.12) 
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This yields: 

2  fi 
P (3) = n-5 (n—l)! i (3"'—i) - (n2) 2fl1 n 

This formula is valid for n ≥ 

+ (n_i)(n_3)} . (4.13) 

4.4 GENERATING FUNCTION METHODS 

To solve (4.7), we introduce two generating functions: 

• [] 
G(s) = E S, P(M=rn) 

m=i 

Go 
b (Z's) = z" Ga(s) 

n=2 

Multiplying (4.7) by m and summing, one finds 

(4.14) 

(4.15) 

n-2 
(n—i) G(s) - 2G 1(s) = E G.(s) G 1(s), n > 4 (4.16) 

i=2 

where 

G2(s) = G3(s) = s. 

Multiplying (4.16) by z and summing, one finds 

Z 1' (Z's) - (i+2z) 1' (Z,$) - sz2 = b 2(z,$). . (4.17) 
az— 

A simpler form of (4.17) may be obtained by letting 0 (Z,$) z 0 (z,$). 
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Then (4.17) becomes: 

• 0 (z,$) = s + 25(z,$) + 2(z,$) 

This is a Ricatti differential equation. We substitute 

(z, S) = w (z, S) Hi w (z,$) 

to obtain: 

dz2 - 2j w(z,$) + s w(z,$) = 0. 

This factors into: 

(D - 1 - (D - 1 + w (z,$) = 0 where D = Tz-

Hence 

c (z,$) = ae(1+/1 + be'' 

(4.18) 

(4.19) 

where a and b are constants to be determined. Now the boundary conditions 

0 (0,$) = 0 and 0 '(O,$) = s imply that w (0,$) = 1 and w '(O,$) = 0. 

Therefore 

(1+T) e(1_ - (1— 4Ti) e''1 

2Wi 
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or 

ü(z,$) ez [, ii cosh ((4T:i)z) - sinh((,[I:1)z)] . (4.20) = 

From w (z,$) we find 0 (z,$) and hence 1' (z,$) to be: 

1'(Z's) =  sz  
,Jii coth (( fIi)z) - 1 

(4.21) 

We proceed to expand b (z,$) in a series in z, the coefficients of which are 

Ga(s), n = 1,2..... 

M sz 
&(Z's) = B G (s) z' =   

n=2 Ti coth ((A[Ii)z) - 1 

Therefore 

•  1 (1') coth((1{I)z)-1 
b(Z's) 

sz 

Now, 

w 2211 B 21 

Cothx= B  2n  

11=0 ( 2n)! 

where B., i = 0,1,2,... are Bernoulli numbers (see Appendix A4). 

Hence 

1 
= B az" 

(z,$) • n=-2 

(4.22) 

(4.23) 

(4.24) 
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where 

a2 = 

1 
a 1 -

2n-2 

22n B2 (1—s)" 

(2n)!s 
n = 1,2,... 

a21 = 0 . n = 1,2..... 

Hence 

or 

00 00 
(Z's) = E Ga(s) z' = I E a 

n=2 Ln=-2 

W tO 

E a n z"E G xl (s) znl = 1. 
n=-2 n=2 

G(s) is obtained by solving the following system of equations: 

n-2 

aj-2 Gn—j = 0 
j=O  

a2 G2 = 1 

or, in matrix form: 

(4.25) 

(4.26) 
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a2 a1 a0 a1   a 
n-3 

o a2 a1 a0   a 

o 0 a2   

0 0 0   

o 0 a2 a1 a0 

o 0 a2 a1 

o 0 a2 

G 
n 

G 
n—i 

G2 

0 

0 

0 

0 

1 
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The following table gives G (s) for some values of n 

TABLE 4.1: G(s) for n = 2, 3, 4, 5, 6, 7, 8 

n G(s) 

2,3 

4 

5 

6 

7 

8 

5 

s[ 

s[ 

1 

1 

f22B22! ] 1 

- j ] 
(i) 

1— 

22B 
2 2 

2! 

22B 
2 

2! 

(1) + (1_)2 f22B212 
- 

IL 2! J 

4[22B2 
1 - 1 2! j (1—s) + (1_)2 [3[22B _2!2] 2 

- 

24B4 

4! 

24B 
2 

1 - [22B 22B 2 2 4 B.1 
2! 2] (1-s) + (1_S)2 [6 [ 2 2] - 3 4] 1 

I 126B B 1 r2! 22B2]a f26B61lj 
+ (1—) 3 J21  2 4] 

[I 2!4!  [-6 !  ii] 

A closed—form representation for G(s) seems rather involved. 
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4.5 MOMENTS 

Given G(s), the probability generating function for some random variable 

X, the mean and variance of X may be obtained from G(s), namely 

E(X) = G'(l) 

Var(X) = G''(l) + G'(l) - [G'(l)]2 

Let E(M) and Var(M) denote the mean and variance of the number of 

societies formed in a population of n individuals. 

Differentiating (4.15), we obtain 

00 Go 
G(1)z' =  E E (M)z" (4.27) 

as n=2 n=2 n 

O2 (z,$) OD 

2  L=1 = n=2 

Hence 

w w w 
• Var (M)z'1 = N G'' (1)z + J G'(l)z" 
n=2 n=2 n=2 

From (4.24) we obtain 

Co 
S . a U z' 

n=-2 
S=1 

Go 

- [G'(1)]2z" 
n=2  

(4.28) 

(4.29) 

(4.30) 
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Co d 
E a Z 

US n 
n=-2 

d2 
TP 

OD 
E a z'1 

n=-2 n 

s=1 

S=1 

- (3z-3-z2)  
- 3z2 

90-90z+30z2-2z4 
- 45z 2 

Using (4.30), (4.31) and (4.32) we obtain 

Thus 

  I = 0 b(z,$) z2+ w [s:] z" 
Os ' s=l n=3 

E(M)=1 n=2 

Similarly, 

Ob(z,$) - 

Hence 

Co 
Var (M)z 

n=2 '1 

n≥ 3. 

j20-14zl+42z'-60z'+3Oz4 ou 

45 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

fl] . (4.35) 

• [20-14z7+420-600+3W] [ 00 
- 45 

= z4 + 

n=o 

a mi2 [] Zn—Z2 Zn n=3 LJ 

(4.36) 
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Thus 

Var(M)=0 n=2,3 

. n=4 

2n 
= ff n≥5. 

4.6 ALTERNATIVE FORMULATION 

(4.37) 

in this section we consider an alternative recursive formula for P(m) 

which, for computational purposes, is preferable to equation (4.7). This 

formula was conjectured after observing the patterns that emerge from 

computing P(m) for some values of n and m using (4.7). 

Theorem 4.1. 

P 2rn (m' = P (m + I i - 2(rn-1)] • p (rn—i) 
n—i n—i j n—i 

for n > 3 and rn ≥ 1. [Note that P(0) = 01. 

(4.38) 

Proof: With G(s) and b (z,$) as defined in Section 4.4, we obtain 

25(1—s) . Gn = (n—i). [G - s G 1] (4.39) 

and therefore 

25(1—s) z - z(i—zs) + z2s + b = 0 . (4.40) 

b (z,$) as given by equation (4.21), and its derivatives, satisfy (4.40). This 

proves the equivalence of (4.7) and (4.38). , ci 
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The heuristic interpretation of (4.38) is as follows. Denote by Ekm the event 

that the left—most k points defined by A1, A2, .., Ak_i, taken as a 

population, form m societies. Then 

P(Ek,m )= Pk(m). 

Equation (4.38) then represents the partition 

E =flE 1E 1 U 1E n  
n,m n,m n-1,M] L n,m n_i,m_i] u [E n,m fl E ], n—i,m-i-i 

where, however, E n,m n n E 1m+i= i• It follows that 

P1E £ ] 2m 
n,m n_i,mj = 

which is the conditional probability that addition of the right—most point to 

the. population formed by the left—most n—i points does not increase the 

number of societies. The unconditional probability that addition of X() does 

not increase the number of societies is 

PIE n  rn ( n—i,m n,m 
= m P 1(m) 

= E1(m) 

2 
- 

using results of Sections 4.4 and 4.5. 

For m = 1, equation (4.38) becomes 

P(i) = (i) 
n—i 

which is equation (4.4). 
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Tables 4.2, 4.3 and 4.4 in Section 4.9 give P(m) for selected values of n and 

In. 

4.7 MAXIMUM NUMBER OF SOCIETIES 

In this section, we derive an expression for 

'2r = the probability that a population of size n = 2r consists of r 

societies, 

= the probability that a population of even size consists entirely of 

two-element societies. 

Equation (4.38) provides the corresponding probabilities for populations of 

odd size: 

P21(r_1) = (2r-1) P2 (r) (4.40a) 

which is the probability that a population of odd size consists entirely of 

two-element societies except for a single three-element society. The intuitive 

argument for this result is as follows: 

Consider a population of 2r elements split into r societies. Now remove any 

element, forming a new population of size 2r-1. The erstwhile partner of the 

discarded element must then join one of its adjacent societies to form a new 

three-element society. Clearly, the number of ways N2ri(r_l) of splitting the 

new population into r-1 societies is equal to the number of ways N2r(r) of 

splitting the original population into r societies. The total number of ways of 
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splitting n individuals into societies equals the total number of ways of 

arranging the n-i spacings between them; Al, ..., A 1, which in turn equals 

(n-l)!. Since P(m) = N (m) , the result follows. 
(n-i)! 

For n = 2r and m = r, equation (4.7) reduces to 

r-1 
(2r-1) P 2r ( r) = E P2k(k) P2(rk)(r_k)) 

k=1 
(4.41) 

where we have used P2r 1(r) = 0 and the fact that P1(j) P2 .(r-j) is non-zero 

only for j = = integer. The generating function 

OD E 81  2r (r) 
r=1 

satisfies 

2s H(s) - s = H(s) + H2(s), H(0) = 0, H, (0) = 1, 

which has solution 

H(s) = tan fi. 

From the power series expansion of H(s) we obtain 

(4.42) 

22r(22r -1) 

P2(r) = (2r)! (4.43) 

where B 2 is a Bernoulli number. Using equation (4.40a), we obtain the 

corresponding probability for odd-sized populations: 

P (r-i) = (2r-i) 22r(22r -1) lB 
2r-1 (2r)! I 2r1 (4.44) 
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IBI 2 (2r)! (2ir)  

Since  2r 2r for large r, we find that, for large populations, 

IP 21 2r r2) 2r+2 
(r) 2 -J and P (r) [J 4r 2r 2r+1 

It is reasonable, of course, that odd populations have a greater probability of 

achieving the maximum number of societies since the single three—element 

society can occur in 11 ways. 

4.8 SUPER—SOCIETIES  

This work may be extended to populations of societies in place of 

in.ividuals. For example, if a population of n individuals forms m societies, 

these may be joined by some attachment criterion to form a collection of 

super—societies. Two possible attachment criteria are: 

(a) the nearest distance between individuals in different societies; 

(b) the nearest distance between convex hulls enclosing societies. (More 

generally, one might use the nearest distance between any enclosure 

of societies). 

Consider a situation where n = 2r individuals form m = r societies. 

These r societies would in turn form 1, 2, ..., [•] super—societies. If we use 

criterion (a) above to connect societies, we arrive at the following result: 
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Theorem 4.2. 

P 2r (M S =i M=r)= 
22r-3 (r-l)! 

(2r-l)! 

Proof: We will carry out a proof by induction. 

Let n = 8, r = 4. Substituting into (4.45) we get 

P(M=i, M=4) = 105 

which can easily be obtained by direct computation. 

Suppose (4.45) is true for r = k. Thus for r = k+i we have 

But 

P2(k+l)(M=1, M=k+i) = 

22(k + 1) -a k! 

[2(k+i)-l]! 

22k -' k! 

(2k+i)! 

* 

P2(k+l)(M=i, M=k+i) = 2 P(A2=A ) P2k(M=1, M=k) 

Using (4.43) and (4.45) we have: 

2 22k-3 (k-l)! 

[2(k+i)—l] (2k—l)! 

22k -ik! 

2r (MS=1I M=r )=   
4(22r4)IB I 

2r 

(4.45) 

a 

(4.46) 
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For general n, we can write 

P (Ms=1 M=m) = n 'Pn—i (M=1, M=m) I  

Hence 

P(M=1 
n S 

+ E P.(M=1) P.(M=1, M=M-1) 

m = 1, 2, ..., [] 

11 

= ) IP 1(M=1) M=m) 

(2.47) 

+ N P1(M=1) P1(M=i, M=M—')l . (4.48) 

Tables 4.5, 4.6 and 4.7 in Section 4.9 give P(M5=k, M=m) and P(M=k) 

for some values of n, m and k. 
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4.9 TABLES 

TABLE 4.2: P(in) for 4 < n < 12 

1 2 3 4 5 6 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0.6667 0.3333-

0.3333 0.6667 

0.1333 0.7333 0.1333 

0.0444 0.5778 0.3778 

0.0127 0.3619 0.5714 0.0540 

0.0032 0.1905 0.6095 0.1968 

0.0007 0.0871 0.5122 0.3781 0.0219 

0.0001 0.0354 0.3596 0.5074 0.0975 

0.0000 0.0130 0.2187 0.5324 0.2270 0.0089 

Note: P2(1) = P3(1) = 1 
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TABLE 4.3: P(m) for n = 20, .30, 40, 80. 

n=20 n=30 n=40 a = 80 

m P (m) U U U U m P (m) m P (m) m P (m) 

2 < .0001 5 < .0001 8 < .0001 19 < .0001 

3 0.0002 6 0.0008 9 0.0016 20 0.0004 

4 0.0079 7 0.0123 10 0.0136 21 0.0024 

5 0.0915 8 0.0786 11 0.0657 ' 22 0.0102 

'6 0.3245 9 0.2351 . 12 0.1803 23 0.0324 

7 0.3959 10 0.3420 13 0.2869 24 0.0779 

8 0.1618 11 0.2413 14 0.2651 25 0.1422 

9 0.0180 12 0.0788 15 0.1399 26 0.1974 

10 0.0002 13 0.0106 16 0.0406 27 0.2080 

14 0.0005 17 0.0060 28 0.1659 

15 < .0001 18 0.0004 29 0.0996 

19 < .0001 30 0.0447 

31 0.0148 

32 0.0035 

33 0.0006 

34 < .0001 
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TABLE 4.4: P(m) for m = 2, 5, 10, 20. 

m=2 m=5 m=10 m = 20 

n P(m) n P(m) n p (m) n P(m) 

4 0.3333 10 0.0219 20 0.0002 44 < .0001 
5 0.6667 11 0.0975 21 0.0020 45 0.0003 
6 0.7333 12 0.2270 22 0.0089 46 0.0010 
7 0.5778 13 0.3667 23 0.0264 47 0.0026 
8 0.3619 14 0.4606 24 0.0601 48 0.0058 
9 0.1905 15 0.4787 25 0.1119 49 0.0117 

10 0.0871 16 0.4276 26 0.1770 50 0.0215 
11 0.0354 17 0.3369 27 0.2446 51 0.0364 
12 0.0130 18 0.2385 28 0.3012 52 0.0570 
13 0.0044 .19 0.1539 29 0.3355 53 0.0832 
14 0.0013 20 0.0915 30 0.3420 54 0.1138 
15 0.0004 21 0.0505 31 0.3220 55 0.1467 
16 0.0001 22 0.0261 32 0.2823 56 0.1789 
17 < .0001 23 0.0127 33 0.2319 57 0.2071 

24 0.0058 34 0.1794 58 0.2284 
25 0.0025 35 0.1313 59 0.2407 
26 0.0011 36 0.0913 60 0.2431 
27 0.0004 37 0.0606 61 0.2356 
28 0.0002 38 0.0384 62 0.2198 
29 < .0001 39 0.0233 63 0.1977 

40 0.0136 64 0.1717 
41 0.0077 65 0.1442 
42 0.0042 66 0.1174 
43 0.0022 67 0.0926 
44 0.0011 68 0.0710 
45 0.0005 69 0.0529 
46 0.0003 70 0.0384 
47 0.0001 71 0.0272 
48 < .0001 72 0.0187 

73 0.0126 
74 0.0083 
75 0.0053 
76 0.0033 
77 < .0030 
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TABLE 4.5: P(M=1, M=m) for 8 ≤ n < 12 

\ 1 2 3 4 5 6 P(M=1) 

8 0.0127 0.3619 0.5714 0.0381 0.9841 

9 0.0032 0.1905 0.6095 0.1373 0.9405 

10 0.0007 0.0871 0.5122 0.2612 0.0085 0.8697 

11 0.0001 0.0354 0.3596 0.4277 0.0368 0.8596 

12 0.0000 0.0130 0.2187 0.3771 0.0838 0.0015 0.6941 

TABLE 4.6: P n s (M =2 M=m) for 8 < n < 12 
- - 

4 5 6 P 11 (M8=2) 

8 0.0159 0.0159 

9 0.0595 0.0595 

10 0.1169 0.0134 0.1303 

11 0.0797 0.0607 0.1404 

12 0.1553 0.1432 0.0064 0.3049 

P(M=3, M=6) = 0.0010 for n = 12 
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TABLE 4.7: P(M=k) for 8 ≤ n < 12 

n\ \ 1 2 3 

8 0.9841 0.0159 

9 0.9405 0.0595 

10 0.8697 0.1303 

11 0.8596 0.1404 

12 0.6941 0.3049 0.0010 

P  (ms =1) = 1 for n < 7 

P(M=1) M=m) = P(M=m) for in = 1, 2, 3. 



CHAPTER FIVE 

BUFFON'S PT 

5.1 INTRODUCTION 

The famous needle experiment of Buffon and its variations provide 

empirical estimates of the value of ir. Some of the estimators are discussed in 

Mantel (1953), Gridgeman (1960), Schuster (1974), Penman and Wichura 

(1975) and Solomon (1978). 

In Section 5.2, we review Buffon's original experiment and the 

estimator obtained. We go on to investigate estimators from variations 

involving short and long needles, single and double grids. 

Our approach is to estimate 0 = first. In this way, we avoid some 

pitfalls in treating asymptotic variances of our estimates, yet estimating or 'ir 

gives us the same information. We obtain estimators which utilise the 

available statistical information as fully as possible. Efficiency comparison is 

done through asymptotic variances. 

5.2 THE BIWFON NEEDLE PROBLEM 

• In the classical formulation of the Buffon needle problem, a needle (line 

segment) of length £ is dropped at random on a set of equidistant parallel 

lines in the plane that are d units apart, £ < d. One asks for the probability 

p of an intersection. Let x denote the distance of the needle's midpoint to 
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the nearest line and 4, the acute angle formed by the needle and a 

perpendicular from the midpoint to the line (see Figure 5.1). 

I 
d 

Figure 5.1 

Consider the possible positions for the needle as equally likely outcomes. Then 

the measure of the set of total outcomes is 

ir/2 d/2 

dxd=. (5.1) 

From Figure 5.1 we evaluate the measure of the set of favourable cases 

(intersections) as 

J
ir/2 (t/2)cos4 

J dxd=4. (5.2) 
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Therefore 

21 
p = Fa.. 

Suppose we let d = 1 and 0 = . Then 

'p= 210. 

(5.3) 

(5.4) 

Since £ ≤ 1, then 0 ≤ p ≤ .20 ≤ 1 and 0 ≤ 0 ≤ .. If n independent throws of 

the needle, 1, 0 ≤ 1 ≤ 1 result in N crossings on the single grid, then N is 

binomially distributed with parameters ii, p and 

1 21n 
(5.5) 

is an unbiased estimator of 0 (i.e. E( ) = 0). N is a sufficient statistic for 0 

and 0, is a minimum variance unbiased estimator (MVUE) of 0. 

Furthermore, 01 is the maximum likelihood estimator (MLE) of 0 and 

therefore has 100% asymptotic efficiency (see Appendix AS) in this experiment. 

Now 

p(1-p) 02 1 

Var( 1) =  412n. = n. 
- I P - i] (5.6) 

The efficiency of , as measured by the reciprocal of its variance, is 

maximized by taking p as close to 1 as possible. In this case p = 20, and 

therefore, 
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nVar() = 02[L. - i] (5.7) 

An application of the 6-method (see Appendix A5) shows that Buffon's 

estimator 

(5.8) 

is an asymptotically unbiased 100% efficient estimator of 1 with asymptotic 

variance 

.1 - AVar( 1) = ir4var( 1) = 5.63 
- L2 'r  ii 11 (5.9) 

Here, as in the rest of the chapter, the asymptotic variance has been 

numerically evaluated at the "true" value 3.1416 of ir. 

5.3 LAPLACE'S EXPERIMENT - THE DOUBLE GRID 

Consider two sets of parallel lines over the plane where one set is 

orthogonal to the other, call them A-lines and B-lines. Suppose the lines are 

separated by unit distance. A needle of length £ ≤ 1 is now thrown onto this 

grid of lines (see Figure 5.2). This is the Laplace extension. 
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,6  

Denote by 

PA 

AB 

AB 

B—lines 

Figure 5.2 

A—lines 

the probability of crossing an A—line, 

the probability of simultaneously crossing an A—line and a 

B—line, and 

the probability of crossing an A—line but not a B—line. 

Similarly, define PBI AB and p Then these crossing probabilities, 

originally obtained by Laplace, are 

210 

- £2 £ 2 

AB ir 

AB = AB = £(2-1)/7r = 

= 1 - + = 1.410+120. (5.10) 
AB 7 

The needle is thrown n times, resulting in NA crossings of the A—lines and NB 

crossings of the B—lines. Then both 
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0A 

N N 
and0 _ B 

2 In 2 In 
(5.11) 

are unbiased estimators of 0 and have, the same distribution as 0. Schuster 

(1974) proposed the combined estimator 

N+NABA B (5.12) 

41n 

and posed the interesting question of whether the efficiency of 2 (based on n 

throws of the needle onto the double grid) is twice that of (based on iithrows onto the single grid). This would indeed be the case if the event that 

the needle crosses an A—line were independent of the event that it crosses a 

B—line, for then and °B would be independent. A little reflection, 

however, shows ' that these events, and therefore and °B' are negatively 

correlated, so in fact the efficiency of the combined estimator will be 

greater than twice the efficiency of This idea of combining antithetic (i.e. 

negatively correlated) variates to obtain an estimator with reduced variance is 

well—known to statisticians (see, for example, Hammersley and Morton (1956)). 

Using the crossing probabilities, we can readily calculate the variance of 02 

(se Perlman and Wichura (1975) and Solomon (1978)). Introduce the 

indicator random variables 

I.(A) = fI 0 if not, if an A—line is crossed on the jth throw 

and similarly define L(B), so that 
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n n 

NA = L(A) , NB = L(B) and 
i=1 1=1 

in 

= - s I I1(A) + I1(B)] 
2 4tn i=1• 

The n pairs II,(A), I1(B)] are independent but L(A) and I.(B) are dependent 

and so 

Var(02) -   [Vax I.(A) + Var I1(B) + 2 Cov[I.(A), I.(B) 
2n  1 ]] 

- 16t  

=n T1-
[+_o] (5.13) 

It is apparent that the estimator 02 has greatest efficiency when £ = 1. In 

this case, = 1-30 which imposes the 

ir≥3. Also 

nVar(2) = 02 
- 1] 

and so 

AVar(ir2) = 
2 [.3R 1.76 

n 

tighter constraint 0 ≤ 0 ≤ or 

(5.14) 

(5.15) 

Comparing (5.9) and (5.15), it is seen that by doubling the grid we have 

obtained an estimator 2 which is  :  = 3.20 times as efficient as where 

In a large number of throws, the double grid experiment contains 

approximately 3.20 times as much statistical information about the value of ir 

per throw as the single grid experiment. 



86 

However, the estimator 02 does not fully utilize all the information 

about 0 provided by the double grid experiment. The full information 

obtained from n throws of the needle onto the double grid is summarized by 

the statistic N = [NAB, NA , NAB, NA], where NAB is the number of times 

the needle simultaneously crosses an A—line and a B—line, etc. Clearly, N has 

the multinomial distribution with cell probabilities IPAB ) DAB' AB' PA] 

given in (5.10). Thus, the probability distribution of N is given by 

PIIN 
UN 

t 
= n) = C(n) [PAB] [PA] AB AB [p _AB AB [PAn] AB 

N N 

where C(n) = 

Since 

h() = £ AB [2-1)} 

m =4t—€. 

= C(n) h(n) 0 [ ] AB 
(U N 

nABJ L -H 1_ AB) LU CnA_BJ 1! 

2n . - (' A"AB) 

L rnAB--lJ i 

njiB = n - [NAB + nAn + "AB] 

(5.16) 

(5.17) 

(5.18) 

the Factorization Criterion for sufficiency (see Appendix AS) and (5.16) imply 

that NAB + NAn + NAB is a sufficient statistic for 0. 
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If we define N. 3 to be the number of times in n throws that the needle 

crosses exactly j lines (j = 0,1,2), we have No = NA, N1 = NA + NAB, 

N2 = NAB and EN. = n, then the sufficient statistic can be expressed as 

N1 + N2, the number of times in n throws that the needle crosses at least 

one line. 

Now 

N1 + N2 N  Binomial (n,p * *) where p = m0 = (4t-1)0 

(since PXB = 1 - [(41-t2)0]), so N1 + N2 is a sufficient statistic for 0. The 

estimator, 

N+N 
03=  1 2 

m n 
(5.19) 

is MVUE and, being the MLE of 0, has 100% asymptotic efficiency in the 

double grid experiment. Its variance is 

0 [ 1 
Var( 3) = - o] (5.20) 

which, by (5.17), is minimized by the needle length £ = 1. In this case 
* 

m = 3, p = 30, 

and 

nVar( 3) = 0211 1] 
[30 

AVar( 3) = [ - = 0.466 

(5.21) 

(5.22) 
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where 0 = I and '3 '3 

03 

Comparing (5.15) and (5.22) we see that the fully efficient estimator ir3 is 

= 3.77 times as efficient as 2' reflecting the fact that 2 is based on 

NA + NB = NAB + NA + NAB + NAB 

=N1 +2N2 (5.23) 

which is not a function of the sufficient statistic N1 + N2. A' mothi here is 

that the method of antithetic variates, advocated for a wide variety of 

problems, should not be applied before a careful search for a sufficient 

statistic. Furthermore, comparing (5.9) and (5.22) we see that, in a large 

number of throws, one throw of the needle onto the double grid approximately 

contains not 3.20 but actually 1J = 12.08 times the statistical information 

about the value of ir as one throw onto the single grid. 

5.4 DOUBLE GRID, LONG NEEDLE 

Consider a unit—spaced square grid. Let £ > 1. The expected number 

of intersections of the needle with the grid, per fall, is 

E 41 
0 ir (5.24) 

Assuming n throws of the needle, we can get say c intersections at the jth 

fall; i = 1,2,...,n and write 
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as an estimate of ir = 41 
E 
0' 

(5.25) 

(5.26) 

where is the average number of intersections per fall. By the S method, we 

can get 

and 

1612 
E(E _)2 N E(ir- 4)2 - 

0 

-2 

AVar(-4) = 
1612 n 

C 

(5.27) 

(5.28) 

where c2 is the variance of the number of intersections obtained at the fail of 
C 

the needle. 

Let £ >>.1 so that certain marginal effects can be disregarded. These 

marginal effects arise from the actual location of the end of the line within 

the squares in which it falls and they would slightly increase the value of 

over what is now developed here but would have no effect on E(c). 

For any given angle 4 at which the needle of length £ falls, there would 

be £ sin4 intersections with vertical lines and £ c0s4 intersections with 

horizontal lines. Thus, the expected number of intersections per fall is given 

by 

ir/2 

E(c) = J £(si$ + cos) d - 41 
-.-. 

0 

(5.29) 
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The expected square of the number of intersections is 

lr/2 

E(c2) = . I £2(sin4 + cos4)2 d4 irJ 
0 

Thus 

and 

=12 [i+] 

C I ir 2 
'Jr 

72 2 
AVarir4 - 1 (ir + 2ir - 16) 

0.094 
n 

(5.30) 

(5.31) 

(5.32) 

Comparing (5.9) with (5.32), we see that the precision in estimating ir from 

the double grid with a long needle is about 60 times as good as the single 

grid with a short needle. Equivalently, the information in one fall in a large 

number of throws of the long • needle here is about the same as in 60 falls of 

the needle in the original Buffon needle problem when the length of the needle 

is equal to the distance between the parallel lines. 
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5.5 SINGLE GRID, LONG NEEDLE 

A needle of length £ > 1 is thrown onto a plane ruled by unit—spaced 

parallel lines. The number of intersections can range from 0 to M where 

M = [ £ ] + 1 and [ £ ] is the greatest integer less than or equal to L The 

distribution of the number of intersections is (Diaconis (1976)): 

where 

P0 ir = 1— + 51 

p1 = 5 + 5 - 25. for 1 < i ≤ M-2 1-1 1+1 

M-1 = - 25M-1 

PM 

p1 

= 5M-1 

the probability of i intersections 

= {1sina1_iaj} = atFj _i2 _icos_ir 1[ 

cosa. = - 

Letting 0 = 1 we obtain 
71 

0• £2_i + cos•1 []} = 1 - 20f0, say. 

(5.33) 
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Thus 

p1 

PM 

PO 

f• 12 ' ( i_1 

= 20L, say 

= 

- (i—i) cos l 1 
£ 

/J 

cos1 ft -  2 2.j 2 + 2i cos 11 1 

ITI  
for 1 ≤ i ≤ M-1 

2 ffJ2- (M2) 2 (M-2) cos'11 + 21 2_(M_1) 2 

Hi 
+ 2(M-1) cos-1 I M 1 

i 

2Of, say 

= 2 1) 2 - (M-1) cos-1 = 201M' say. (5.34) 

=1-2; 

Pi = 29f1, 1 ≤i≤M 

where the f.'s are free of 0, hence ir. 

Consider an experiment with n throws of the needle. Full information is 

given by 

= (N0) N1, ..., NM.) (5.35) 
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where N. = the number of times i lines were intersected in the n throws. 

N multinomial (p0) p1, ..., PM). 

Thus 

P(N=n)= 
N N N0! N1! •.. NM! 

where c(n) = 

N0 N1  PM NM 
O Pi ••• 

= c(n) (1 - 291)fl_T (29)T f 1 N N2 M fm 

[n—(Nl-hN2+...+NM )]! N1! ••• NM! 

M 
T = EN.. 

1=1 

By the Factorization theorem, T is a sufficient statistic for 0 and 

Now, 

* M 
T N  Binomial n, p = E p. 

1=1 

(5.36) 

(5.37) 

E(T) = np = 2n010 (5.38) 
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Therefore 

2nf0 

is unbiased for 0. The estimator 

Var( 05) L L.. 29 • 
2n f0 

is MVTJE for 0 and 

(5.39) 

(5.40) 

Minimizing Var(05) is equivalent to maximizing f0. Since f0 is an 

increasing function of 1, this is achieved by lengthening the needle. Note that 

f0 approaches ir/2 as £ becomes large, in which case Var( 5) approaches zero. 

Also 

_ir21 ir 
AVar(ir5) - ii-. - 1] (5.41) 

where ii =L. 
05 

5.6 EFFICIENCY COMPARISON 

In Table 5.1, we compare the efficiencies of the estimators we have 

investigated via their asymptotic variances. For ir5 we consider several values 

of £. 
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Table 5.1: Comparing asymptotic variances of the estimators of 'ir 

EXPERIMENT (WITH 

LINES SEPARATED 

BY UNIT DISTANCE) 

ESTIMATOR ( i-) n(AVar(.)) 

21n 
Single grid, £ ≤ 1 i.. = - 5.63 

N 

2tn 
Double grid, £ ≤ 1 2 =   1.76 

, (4t-12)n 

N1 + N2 

4e 
Double grid, £ > 1 = - 0.094 

0.466 

where U is the average 
number of 
intersections 
per fall. 

Single grid, £ ≥ 1 ir5 = (2nf0)/T 0.325 (1 = 10) 

M 
where T = S N. and 

i=1' 

fo =• F12 1) 0.003 (1 = 1000) 
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We observe that the best estimators are from long needle experiments. In 

particular, ir5 with £ = 1000 is about 1900 times as efficient as iv  In other 

words, the statistical information in one fall in a large number of throws of 

the long needle, £ = 1000, onto the single grid is about the same as 1900 falls 

of the needle in the original Buffon needle problem when the length of the 

needle is equal to the distance between the parallel lines. 
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APPENDICES 

Al: DISTRIBUTION OF THE DISTANCE FROM A RANDOM POINT 

WITHIN A SPHERE TO THE CENTRE OF THE SPHERE. 

Consider a point P chosen at random inside a sphere of radius a. Let T 

be the random variable denoting the distance from P to the centre of the 

sphere (see Figure Al.l). 

Figure Al.l 
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Let V(x) be the volume of a• sphere of radius x. Then 

V(t) 3 
G(t) =Pr(T ≤ t) = = 

V(a) 

Hence 

g(t) =! 
a3 

(Al. 1) 

(A1.2) 
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A2: VOLUME OF A SPHERICAL CONE 

Consider the sphere in Figure A2.1. 

Figure A2.1 

From elementary calculus, we know that the volume of a spherical cap, 

height h, 0 ≤ h ≤ 2a, is: 

V[cap, h] = ir 12-a' - a2(a—h) + . (a_h)3} . (A2.1) 

Therefore 

V[cap, a—t—d] = ir 1`3 - a2(t+d) + (t+d)3} . (A2.2) 
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Also 

where 

V cone ABC = (r2 - d2)d 

d = (a2 _:2 - r2) 

2t 

Hence 

V = V[cap, a—t--d] + 'Vcone ABC 

(A2.3) 

= 'ir 12-a3 - a2(t+d) + (t+d)3'+ (,2 - d2)d} (A2.4) 
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A3: FIXED—ANGLE 1'—RANDOMNESS 

The randomness assumption we consider here is the one mentioned in 

Subsection 2.6.1. 

We will use the following notation from analytic geometry: 

a vector directed from point A to point B 

a : alternative notation for a vector. 
N 

flail : the length of vector a. 

a• b : the scalar product of a and b which is the product of their lengths 

and the cosine of the angle between them. 

A point Q is chosen at random inside the sphere. A ray B. is defined 

from Q in some random direction 0. Suppose another ray S is made at a 

fixed angle a from R (Figure A3.1). 

Let JJQBJJ = 1, so that 

qB = (0, cos0, sin0. 

Also let 

fi be the angle on the cone—circle (Figure A3.2) and d be perpendicular 
-4 

to QB. 



Jignre A3.1 

Figure A3.2 
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Then 

= tana (sinfi, y, z) for some y, z and QB = 0 

so that 

y cosO + z sinO = 0 

or 

y = - z tanO 

Note that fidil = tana, so that 

II(sinfl, y, z)II = 1 

hence 

or 

sjn2f3 + y2 + z2 = 1 

Y2 + Z2 = cos2/3 

Substituting (A3.1) into (A3.2) yields 

or 

Thus 

and 

z2 tan2O + z2 = cos2/3 

y= 

ev 

Therefore 

cosO cosfi 

- z tanO = - sinO cos13 

tana (sinfi, - sinO cosfi, cosO cosfi) 

(A3.1) 

(A3.2) 
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= (sin/3 tana, cosO— sinO cos8 tana, 

sinO + cosO cosfi tana) 

The parametric equations of the straight line passing through the point Q: 

(0,t,0) and having direction QE are: 

x= tsin/3tana = fr 

y = t +  (cos O - sinO cos$ tana) = t + Ly 

z =I (sinO  + cos  cosfl tana) = 

where £ is an arbitrary variable parameter. 

This line cuts the sphere x2 + y2 + z2 = a2 at 

(€x)2 + (t + ty0)2 + (ez0)2 = a2 

or 

£2(x2 +v2 +z2)+2ty + t2—a2 =0. 
0 ' O 0 0 

But x2 +y2 +z2 =1+tan2a=sec2a. 

Therefore 

£2 sec2a + 2t4r + t2 - a2 = 0 

and 

[t2y2 + (a2—t2)sec2a - ty0]/sec2a 



108 

Hence 

A general point on the curve of intersection between the cone 

and the sphere has co—ordinates: 

x = x 
0 

y = t + 40 

z=lz 

where £ = P t2y2 + (a2—t2)sec2a - ty]/sec2a 

x = sin/3 tana 

y = cosO - sinO cos9 tana 

z = sinO + cosO cosfi tana 

(A3.3) 

Let F be this point. 

Then 

(IIQFII)2 = S2 = 12 sec2a 

or 

s = t cosa (sinO cosfi tana - cosO) 

+ Cos  Jt2(cosO - sinô cosfl tana) 2 + (a2—t 2)sec 2a . (A3.4) 

Note that the intersection curve is not planar. 

The parametric equations of the straight line passing through Q: (0,t,0) 

with direction QB are 
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x=0 

y = t + m cosO 

z= msinO 

where m is an arbitrary, variable parameter. The line cuts the sphere at 

(t + m cosO)2 + (m sin 0)2 = a2 

Hence 

M = a2 - t2 sin29 - t cos,9 (A3.5) 

The point of intersection of this line with the sphere" 

has co—ordinates: 

x= 0 

y = t + in cosO 

z = in sinO 

where m = ,a2 - t2 sin 20 - t cosO 

Let P be this point. 

Then 

= a2 - t2 sinO - t cosO. 

(A3) 

(A3.7) 

We have, therefore, obtained r and s in terms of the random variables 0 and 

fi which are both uniformly distributed. 
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s = t cosa(sinO cosfi tana - cosO) 

+ cosat2(cosO - sinO cosfl tana) 2 + .(a2—t2)sec2a 

r = ,a2 - t2 s1n20 - t cosO 

0 N  1J(0,ir) 

N U(0,2ir) 

a is a constant 

We may use these relationships to derive the probability density functions for 

r and s. For general a the derivations are rather involved. But, for example, 

if a = ir, we easily retrieve the expressions for the "forward" and "backward" 

rays. 
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A4: BERNOULLI NUMBERS 

The rational numbers B (n ≥ 1) defined by 

e-1 n=1 fl. 

(A4.1) 

are called Bernoulli numbers. 

All Bernoulli numbers with odd index, except for B1 = - ., equal zero. 

We give values of the first. 6 Bernoulli numbers with even index: 

- fl - 1 1 
"642' 

8 TO 10 - 

691 
'l2 2730 
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A5: ON STATISTICAL ESTIMATION 

Let X1, X2, ..., X denote a random sample of size n from a distribution 

that has probability density function f(x; 0) which depends on the parameter 

0E11. 

1. SUFFICIENCY: 

The statistic T is said to be a sufficient estimator of the parameter 0 if 

and only if for each value of T, the conditional distribution of the random 

sample, given T=t, is independent of 0. A sufficient statistic summarizes all 

the relevant information supplied by the sample. 

2. FACTORIZATION CRITERION: 

The statistic T is a sufficient estimator 0 if and only if the joint density 

or probability distribution of the random sample can be factored so that 

f(x1, ...) x; 0) = g[T(x1, ..., x); 0] h(x1, ..., x) (A5.1) 

where g depends on x1, ..., x, only through T and h is independent of 0. 
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3. MAXIMUM LIKELIHOOD 

A statistic T is said to be a maximum likelihood estimator (MLE) of 0 

if it maximizes the likelihood function 

L(0) = f(x1, ..., x 0) 

4. ASYMPTOTIC EFFICIENCY: 

If standard, regularity conditions are satisfied, then the asymptotic 

efficiency of an estimator S of 0 is 

1/n I(0 
AEff(b   

AVar(S) 

where AVar(S) is the asymptotic variance of S 

I( 0) is the Fisher information number defined by 

1(0) = E0f[_. log f(X;0)] 2J ao 

(A5.2) 

(A5.3) 

and ii 1(0) is the information (about 0) contained in the sample X1, ... ,X. 

If AEff(S) = 1, then S is said to be 100% asymptotically efficient. 
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5. THE 6-METHOD: 

From C.R. Rao (1973) pp 385, we have the following: 

Let (T), n = 1, 2, ..., be a sequence of statistics such that 

,ii (T - 0) L N N[O, u2(0)] 

Let g be a function of a single variable admitting the first derivative g'. 

Then 

[g(T) - g(0)] L a X N N[O, (g'(0) o.(9))2] if g'(0) 0 0. 

Thus 

AVar[g(T)] = {g'(0)}2 AVar(T) 

(X L x means convergence in distribution or in law). 


