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Abstract 

Quantum communication allows for many improvements over the communication limits 

imposed by classical physics. This thesis presents a series of new photon pair technolo-

gies developed as part of the on-going drive to exploit quantum entanglement and bring 

quantum communication to real-world applications: an exact model of the detection 

statistics of a probabilistic source of photon pairs from which a fast, simple and pre-

cise method to measure the source's brightness and photon channel transmissions can 

be derived; a source of hybrid photonic entanglement suitable for linking optical fibre 

quantum communication channels with free-space channels; a method that allows for 

characterization of time-bin and entangled time-bin qubits that goes beyond what has 

been accomplished before; and the first experimental demonstration of a fair, loss toler-

ant quantum coin flipping protocol, which is a quantum communication application that 

requires both entanglement and generalized measurements. 
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Chapter 1 

Introduction 

Communication can be described as the process of imparting information from a sender 

to a receiver via a certain medium [1]. 

1.1 The Classical versus Quantum World 

At the end of the nineteenth century humankind thought it lived in a world governed 

by the laws of Newtonian mechanics, Maxwell's equations and other physical theories 

collectively known today as Classical Physics. To the best of humanity's knowledge, 

these physical laws held an iron-clad rule over the world and, as a consequence, impassible 

restrictions were placed on humanity's abilities - particularly in the areas of information 

communication. 

One such area is the field of cryptography, which developed into a science in the mid 

twentieth century. If a sender, often named Alice, wants to send information over a 

public channel to a receiver, named Bob, without an eavesdropper, named Eve, learning 

the information, her options are limited [2, 3]. To encrypt information securely, either 

Alice and Bob must share a secret key that must be as large as the information itself 

or they must rely on one-way functions, which are functions designed to be simple to 

calculate one-way, but computationally difficult to invert and were developed in the later 

half of the century. Unfortunately, both techniques have serious drawbacks. The only 

solution for Alice and Bob to share a secret key is for them to meet beforehand and 

agree on the key. This becomes impractical over large distances or with large amounts of 

secret information or with many sender/receiver pairs in a network setting. The security 
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1.1. THE CLASSICAL VERSUS QUANTUM WORLD 

of one-way functions relies on Eve's inability to invert the function. This is a vulnerability 

as given enough time and computing power, it is always possible for Eve to eventually 

invert the function. The laws of classical physics require that Alice and Bob settle for 

either impractically or vulnerability. 

Another capability restricted by classical physics is coin tossing. In general, coin 

tossing techniques are employed whenever Alice and Bob require a random bit, but Alice 

will win, and presumably gain something of value for one result, and Bob will win on the 

other result. It is therefore advantageous for one or both parties to choose the bit, rather 

than allow random chance to decide [4]. If the two parties are separated by some distance 

such that they cannot actually see a coin toss, and if neither party trusts the other, and 

they cannot agree on a trusted third player to toss the coin, then there does not exist a 

fair method to choose the random bit. With every method allowed by classical physics, 

it is possible for one party to cheat such that he or she always wins the toss. 

A third area limited by classical physics is computation. The difficulty of computa-

tional problems can be classified in terms of the time (i.e. number of steps) and space 

(i.e. required memory), that a computer requires to complete the computation. Easy 

computations require a number of steps that grows polynomially, or slower, as the size 

of the input to the computation grows. Difficult problems, on the other hand, require 

a number of steps that grows exponentially, or faster, as the size of the computation 

grows. Although it has yet to be proved, the consensus of most experts is that certain 

computations, such as solving certain one-way functions used in cryptography, are diffi-

cult problems for computers based on classical physics. If true, these computations will 

always be impractical for large systems. 

While the limits that the laws of classical physics imposed on our communication 

abilities were being understood, the limitations of these laws to explain the physical 

world were also being exposed. In the early twentieth century physics had revealed a 
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1.1. THE CLASSICAL VERSUS QUANTUM WORLD 

number of problems stemming from the classical laws - the ultraviolet catastrophe and 

the fact that electrons inexplicably held stable orbits around nuclei are examples of some 

of the problems that existed [5, 6, 7]. These quandaries were only finally resolved by the 

invention of the modern form of quantum mechanics in the 1920s. However, even as past 

problems were resolved the theory of quantum mechanics brought with it a collection of 

surprising features, often dubbed quantum weirdness, which, as will be demonstrated, 

have an important role to play in information and communication. 

1.1.1 Bits, Qubits and Entangled Qubits 

Classical information is usually represented in bits: an object that can be '0' or T. In 

quantum mechanics, information is represented by the qubit: a particle that exists as 

a two-level system, (i.e. a system described by two orthogonal basis tates) [7]. The 

basis states for the qubit are notated as 10) and Ii). In quantum mechanics the parti-

cle can exist in both states simultaneously. This is known as a coherent superposition: 

cos(0)I0) + esin(9)I1). Here, the parameters 0, with cos20 and sin20 being the proba-

bility to measure the particle in the corresponding basis state, and 0, a coherent phase 

relationship between the basis states, are sufficient to describe any qubit state, as seen in 

figure (1.1). This unique feature of quantum mechanics becomes apparent if one considers 

the coherent superposition state (IO) + 1)). A measurement in the [10), Ii)] basis re-

turns a result of 0 or 1 with 50% chance each, similarly for an incoherent, or probabilistic, 

mixture of 0) and Ii). However, if one measures in the basis [(10)+11)), (0) - Ii))] 

one would find the particle in the state (10) + Ii)) with 100% certainty for the coherent 

superposition, but would still get a 50/50 mixture for the probabilistic mixture. 

The weirdness of quantum mechanics continues as one begins to describe multiple 

particles. Two particles could exist in the state (I0) + Ii)) ® (I0) + Ii)), where 

the tensor product, 0, is the method used to mathematically combine two qubits. If 
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1.1. THE CLASSICAL VERSUS QUANTUM WORLD 

I 0> 

Ii> 

cos(e)Io> + e'sin(e)I 1>. 

Figure 1.1: Qubit states represented on the Bloch sphere: The parameters 0 and 0 
represent the polar and azimuthal angles of the vector on the Bloch Sphere that represents 
the qubit's quantum state. Coherent superpositions lie on the surface of the sphere. 
Completely incoherent mixtures exist as the center of the sphere. 

one measures whether the particle is in the basis spanned by 0) and Ii) then there is 

a 50/50 chance of each particle being detected in either basis state, independent of the 

other particle. However, the particles could exist in a more interesting state known as a 

Bell state: 

I) = (I0)®I0) +Il)®l'))72 

This state has the property that there does not exist single particle states a) and Ib) 

such that the state of both particles can be written as ) = a) (9 b). Whenever the 

state of a composite system cannot be separated into a product of single qubit states the 

composite system is said to be entangled [7]. 

The full weirdness of entanglement becomes apparent in the thought experiment per-

formed by Einstein, Podoisky and Rosen (EPR) in 1935 [8]. Imagine Alice and Bob 

each have one particle of a Bell state as described in equation (1.1). Before measuring 

their particles, Alice or Bob could perform any transformation to it (i.e. rotate the state 

around the Bloch sphere). Quantum mechanics predicts that correlations between their 

detections wil1still exist, regardless of whether Alice or Bob measured first and regard-

less of the distance between them. It is as if Alice's measurement instantaneously affects 
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1.1. THE CLASSICAL VERSUS QUANTUM WORLD 

the state of Bob's particle. EPR called this counter-intuitive property of entanglement 

'spooky action at a distance'. 

In 1964 John Bell took the EPR thought experiment further [9], as will be discussed 

in section 3.1.1, and proved that the correlations between entangled particles are stronger 

than correlations that can exist between classical particles. 

Another unanticipated consequence of quantum mechanics is the no-cloning theorem. 

First discovered in 1982 [10], the theorem, simply put, states that an unknown quantum 

state cannot be copied perfectly. A strange result, considering how simple the copying 

of information is in the classical world that is at the heart of many of the gains quantum 

communication has over classical communication as discussed in the following sections. 

It then took until 1991 [11] before physicists began to realize that communication 

with quantum systems is more powerful than communication with classical systems. A 

few tasks where quantum mechanics provides startling improvements are presented in 

the following sections. 

1.1.2 Cryptography 

As discussed earlier, one issue surrounding cryptography is having Alice and Bob share 

a secret key before their desire to transmit secret information. This is called the key 

establishment problem. With quantum mechanical systems, it becomes possible for the 

two parties to distribute a provably secret key from a distance. Quantum Key Distribu-

tion (QKD) was originally put forth in 1984 by C. H. Bennett and G. Brassard [12] and 

again in 1991 by A. Ekert [11]. The following protocol for QKD is based on a proposal 

by Bennett, Brassard and Mermin in 1992 [13]. 

Imagine that Alice has a source that produces qubits in an entangled Bell state, as 

in equation (1.1). Alice sends one qubit to Bob, over a public channel, and retains one 

qubit for herself. Alice and Bob each randomly choose one of two conjugate bases and 
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1.1. THE CLASSICAL VERSUS QUANTUM WORLD 

measure their qubit in that basis. Alice and Bob then compare their measurement bases, 

over an authenticated public channel, and keep results from measurements where they 

chose the same basis. In theory, these results will be perfectly correlated and can be used 

to form a secret key. However, due to experimental imperfections, such as detector noise, 

some errors will be introduced and the correlations may not be perfect. 

If an eavesdropper, Eve, was present on the channel while Alice and Bob were trying 

to establish their secret key, the laws of quantum mechanics prevent Eve from learning 

the key without introducing errors. First, due to the no-cloning theorem, Eve cannot 

perfectly clone the qubit Alice sent to Bob and keep a copy for herself. She might 

imperfectly clone it; however this will disturb both the original qubit being sent to 

Bob, as well as her copy, and thus introduce errors. Another option is to perform a 

measurement on the intercepted qubit and then create another qubit to send to Bob. 

However, the qubit Eve creates will not be entangled with the qubit Alice originally 

kept and thus not generate perfect correlation between Alice and Bob. She cannot even 

replace the source with another source that produces results she knows in advance as 

this will also introduce errors. Thus, to ensure security, Alice and Bob will select a 

random subset of their measurements and compare results over a public channel. If 

an eavesdropper attempted to access information on a single qubit then Alice and Bob 

will find errors. In general, any deviation from perfect correlation is assumed to be the 

fault of an eavesdropper and, if the correlations between Alice and Bob are high enough, 

standard error correction techniques [14] can be used to create a perfectly correlated key 

and standard privacy amplification [15] techniques can be used to remove any information 

Eve might have about the key. 

Thus, in the world of quantum communication, Alice and Bob can share a secret key 

with which to securely encrypt and exchange information and, unlike the classical world, 

Alice and Bob can prove the security of their key after distribution. 

6 



1.].. THE CLASSICAL VERSUS QUANTUM WORLD 

1.1.3 Coin Tossing 

Coin tossing is another example of a task that can be performed better using qubits 

and quantum mechanics. As discussed earlier, if Alice and Bob need to agree on a 

random bit and it is advantageous for one or both parties to choose the bit (rather 

than allow random chance to decide) and if neither party trusts the other nor a third 

party to toss the coin, then they are at a stalemate. Classically there is no solution to 

this problem. But can a protocol exist in the quantum world? One figure of merit to 

assess this is the maximum winning probablity that a cheating party can create. All 

classical, non-relativistic, protocols have a maximum winning probability of 100% (i.e. a 

cheating player can always. force victory) and are thus referred to as completely broken. 

In 1998 and 1999 two teams proved that a perfect quantum coin tossing protocol, that 

is a protocol with a maximum winning probablity of 50%, regardless of any cheating 

strategy, could not exist [16, 17]. Nevertheless, quantum coin tossing performs better 

than its classical counterpart. 

The first attempt at a quantum coin flipping protocol was presented in 1984 by C. 

H. Bennett and G. Brassard [12], at the same time as QKD, although this turned out 

to be completely broken. In 2000 D. Aharonov, A. Ta-Shma, U. Vazirani and A. C.-C. 

Yao [18] presented the first quantum coin tossing protocol with a maximum winning 

probablity of 92%. Later, in 2004, A. Kitaev proved that the best possible quantum 

coin tossing protocol could have a maximum winning probability of 70.7% [19], 

although the protocol is unknown. Clearly, quantum mechanics provides an improvement 

yet again. Unfortunately, the majority of protocols-do not consider the losses that are 

present in any real implementation and would be completely broken in any real situation. 

In principle, quantum error correcting codes could be used to protect against loses but 

it is not known how to properly apply these codes to this game. In 2008 G. Berlin, C. 

Brassard, F. Bussières and N. Godbout (BBBG) [20] proposed the first protocol that was 
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1.1. THE CLASSICAL VERSUS QUANTUM WORLD 

tolerant to losses. The protocol is also 'fair', meaning that, if Alice cheats, her maximum 

winning probability is equal to Bob's maximum winning probability if he was cheating. 

The protocol, along with an experimental realization, is presented in chapter 4. 

1.1.4 Other Tasks 

On top of QKD and coin tossing there exists numerous other tasks where quantum 

mechanical properties, such as entanglement, allow for quantum protocols that perform 

better than classical protocols. Examples include: 

• Quantum factoring algorithm, proposed by P. Shor in 1994 [21], which can invert 

some one-way functions described earlier in a polynomial number of steps and thus 

make classical cryptography based on these one-way functions insecure. 

• Quantum bit commitment protocols, which allow Alice to send something to Bob 

that commits her to a bit value of her choice, A, in such a way such that Bob 

cannot determine A, but such that Alice can later prove what is A, are more 

secure, although not perfectly secure, than their classical counterparts [22]. 

• Quantum search algorithm, proposed by L. K. Grover in 1996 [23], which can search 

an unsorted quantum database faster than classical search algorithms can search 

an unsorted classical database. 

It is clear that the quantum world provides many benefits over the classical world. 

Communication with quantum systems, such as qubits, provides clear advantages in 

many areas of communication. An important question though, is how does one actually 

implement communication with qubits? 

8 



1.2. IMPLEMENTING QUANTUM COMMUNICATION 

1.2 Implementing Quantum Communication 

Thus far the qubit has been described using a general theoretical model. To bring quan-

tum communication to the real world an actual two-level physical system must be se-

lected. The obvious choice for quantum communication is the same physical system that 

is used for c1asical communication - light. The telecommunications industry has devel-

oped communication technologies based on intense pulses of light for many reasons. Not 

only does light travel at the maximum speed limit of a material, but it also only weakly 

interacts with the environment as it travels and hence remains unperturbed or uncor-

rupted. Quantum communication can enjoy these same benefits, as well as piggy-back 

on the technological achievements of telecommunications industry, by using the single 

particle constituent of the strong laser pulse - the photon. The two-level qubit 'system, 

as described above, can be implemented using any of a ,number of photon properties 

including the simple two-level polarization modes that are natural to photons, or by se-

lecting two modes of a continuous property such as emission time, spatial direction or 

frequency [24]. 

Other issues must be considered for implementations of quantum communication. 

Perhaps the most important is over what medium to transmit the photonic qubits. 

Telecommunication optical fibre is a nearly ideal option. Optical fibre technologies have 

been studied for decades by the telecommunications industry and are thus very well un-

derstood. It is inexpensive (a fraction of a cent per meter), has very low loss (0.2 dB/km 

at a wavelength of 1550 rim, see figure (1.2)) and is incredibly versatile (optical fibre can 

snake through buildings, travel underground between cities and even under oceans be-

tween continents). Unfortunately, optical fibre is birefringent and thus imparts a random. 

polarization transformation on any quantum information encoded in the polarization 

modes of a photonic qubit. This birefringence also changes with changing temperature 

9 



1.2. IMPLEMENTING QUANTUM COMMUNICATION 

and stress and thus an active polarization compensation would be required to use the 

polarization modes for quantum communication. A potentially easier type of encoding 

to use is the emission time of a photon source, more commonly known as time-bin en-

coding [25]. Perhaps the greatest advantage of optical fibre is the fact that huge optical 

fibre networks already exist thanks to the telecommunications industry. Thus, quantum 

communication over standard optical fibre is highly desirable and could be optimized 

using photons at 1550 nm with time-bin encoding. For these reasons, quantum commu-

nication with these properties has been implemented between cities and at distances over 

100 km [2, 26, 27], and have even lead to commercial products [28]. 
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Figure 1.2: Losses in Optical Fibre: The various processes that contribute to the over-
all absorption inside standard optical fibre create an absorption minimum at 1550 nm 
wavelength [29]. 

On the other hand, it is impractical to install optical fibre between some commu-

nication users. Temporary structures and moving users such as ocean-faring ships and 

orbiting satellites cannot have optical fibre connections to communication networks. For 

these reasons, free-space links are required as well. Air has relatively little absorption 

in the near-infrared (NIR), see figure (1.3), and thus photons with wavelengths around 
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1.2. IMPLEMENTING QUANTUM COMMUNICATION 

810 urn are desired. Air is also non-birefringent and thus the easy-to-use polarization 

encoding can be implemented as well. A fortunate coincidence is that single photon 

detectors for NIR wavelengths are about twice as efficient and have orders of magnitude 

less noise than their 1550 nm counter parts. Thus, over small inter-city links, free-space 

quantum communication has also been implemented [30, 31, 32, 33]. 
T
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Figure 1.3: Losses in the Atmosphere: A transmission window appears just above 800 nm 
wavelength where single photon detectors are particularly efficient 1341. 

Therefore, to gain the communication benefits outlined earlier in this chapter, tech-

nologies to create entanglement between pairs of photons with the properties discussed 

here are required. 

1.2.1 Long Distance Quantum Communication, Repeaters and Networks 

In the future, as the distances over which quantum communication is attempted increases, 

the losses that are inherent in any medium will become an increasingly important issue. 

The telecommunications industry circumvented this problem by including repeaters in 

long links between users. These repeaters essentially amplify signals to overcome any 

signal loss. Unfortunately, this technique is not available in the quantum world due to 
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1.2. IMPLEMENTING QUANTUM COMMUNICATION 

the no-cloning theorem. Instead, new technologies must be developed. 

Current proposals for a quantum repeater require sources of entanglement and quan-

tum memories to store entanglement reliably (for example, by reversably mapping the 

quantum state of a photon to an atomic excitation [35, 36, 37]), as well as another quan-

tum feature known as teleportation [38]. Imagine two parties, Alice and Bob, each have 

one qubit of an entangled photon pair. Alice also has another qubit with a quantum state 

that she wants Bob to have. If Alice performs a two-qubit measurement and projects her 

two qubits onto an entangled Bell state, the quantum state will be teleported to Bob's 

qubit (modulo a correction operation that Alice can classically send to Bob). The idea 

of a quantum repeater is for two users to build-up a supply of shared entanglement and 

then teleport any quantum information when the need arises [39, 40]. Therefore, as the 

need for long-distance quantum communication develops so does the need for quantum 

repeaters, and thus quantum teleportation, and thus sources of entangled photon pairs. 

Teleportation 

Bell State 
Measurement 

Teleportation 

Sources of Entangled 
Photons 

Teleportation 

Figure 1.4: Quantum Repeaters: After the sources of entanglement distribute entangled 
photons around the network Alice's state can send her state to the next user in the 
network. Successive users teleport the state further until it reaches Bob. Alice and Bob 
courtesy of [41]. 

Similarly, quantum repeaters will become necessary as quantum networks consisting 

of different transmission media develop. If a user connected to an optical fibre network 
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1.3. THIS THESIS 

needs to send a qubit to a user connected to a free-space network, some kind of quantum 

repeater will be required to 'convert' the quantum information from a photon suitable 

for fibre transmission to a photon suitable for free-space transmission. Thus, entangled 

photon pairs, with each photons at a desired wavelength, becomes a vital resource for 

any quantum network for quantum communication. 

1.3 This Thesis 

1.3.1 Motivation 

As discussed in this chapter, quantum communication can provide many improvements 

over what can be achieved with classical communication techniques. In particular, the 

tremendous amounts of sensitive information that are now transmitted over public chan-

nels and secured by possibly breakable cryptographic techniques could be protected by 

QKD, which is the only proven technique for verifiable, unconditional security. Quan-

tum communication also provides benefits for other communication tasks, such as coin 

tossing, over the best possible classical protocols. Therefore, strives to develop quantum 

communication technologies are necessary. 

At the heart of all emerging quantum communication technologies is the requirement 

for photonic entanglement: QKD protocols, coin tossing protocols and future quantum 

repeaters all demand sources of entangled photon pairs. The first entanglement ex-

periments were performed in 1972 [42] although the general consensus is that the first 

convincing demonstrations of entanglement and non-locality were performed in 1981 [43] 

but the entangled photons were difficult to create and use. In 1995 [44] more efficient and 

easier to use sources, based on spontaneous parametric down-conversion (see chapter 2), 

were developed and since then continued improvements in these sources have lead them to 

become staple commodities of quantum communication research. Sources producing po-
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larization entangled photons at NIR wavelengths suitable for free-space transmission [32] 

and sources producing time-bin entangled photons at telecommunication wavelengths 

suitable for optical fibre transmission [27] have both become widely available. A much 

less considered component is a source of entanglement with one photon suitable for free-

space transmission (NIR wavelengths with polarization encoding) and one photon for 

optical fibre transmission (telecommunication wavelengths with time-bin encoding) as 

required to link different networks together. We coined the term hybrid entanglement to 

describe such a source. 

The ultimate goal of the quantum entanglement group of the Quantum Cryptography 

and Communication (QC2) Labs is to exploit sources of entanglement for applications 

that cannot be achieved with classical communication. This thesis details the beginning 

steps of these long term goals. Specifically, this thesis details the design, implementa-

tion and verification of a source of hybrid entanglement, as well as a novel method to 

characterize sources of photon pairs, novel techniques for the analysis of entanglement 

and an implementation of a quantum communication task: fair, loss-tolerant quantum 

coin tossing. To the best of our knowledge this is the first time that each of these four 

accomplishments have been demonstrated. 

1.3.2 Organization 

The organization of this thesis is as follows. Chapter 2 introduces methods to produce 

photon pairs, such as spontaneous parametric down-conversion, and an experimental in-

dicator of pair production, the second-order auto-correlation function. Details on another 

method to produce pairs, four-wave mixing in optical fibre, are contained in appendix A. 

Next, a new model describing the statistics of pair production is presented along with 

how this model can be used to quickly characterize a source of photon pairs and predict 

measurement statistics. An experimental realization of a source is then presented along 
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with verification of this model. 

In chapter 3 the theory behind producing, measuring and verifying entanglement is 

presented. Next, the source from chapter 2 is developed into a source of hybrid entan-

glement. This experimental realization is demonstrated through several measurements 

of signatures of entanglement, some of which are made possible by a new generalized-

time-bin analyzing interferometer that allows for a larger variety of measurements than 

the standard time-bin analyzing interferometer. Details on the design and alignment of 

the interferometers are contained in appendices B and C. 

Chapter 4 introduces the BBBG fair, loss-tolerant quantum coin flipping protocol 

and then uses all the developments from previous chapters for the first experimental 

realization. 

In chapter 5 a summary of these results is included along with a discussion of the 

future direction of these research projects. 

1.3.3 Collaborations 

These projects were completed in collaboration with several individuals. In particular, 

Felix Bussières has been involved in all the projects presented in this thesis. John Nguyen, 

Allison. Rubenok and Terence Stuart, all former undergraduate students in QC2, and 

Vladimir Kiselyov, the QC2 engineer, contributed at different stages of these projects. 

The specific contributions of these individuals is presented below. 

Felix and I, with some early assistance from Allison, built the source of photon pairs, 

as described in chapter 2. Original phase-matching calculations were performed by Alli-

son (and later redone by Terence). Felix began work to develop a characterization model 

as in chapter 2. I developed the mathematics behind the model presented in section 2.2.1 

and Felix and I developed the characterization technique presented in section 2.2.2. I 

developed the software used for this experiment (with early help from Terence). 
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In chapter 3, the idea of hybrid entanglement was first suggested by Felix. For the 

interferometers, I designed the pump interferometer and 810-conversion interferometer 

while Felix designed the 1550-conversion interferometer. We worked together on the 

construction of all three interferometers. John designed and constructed the 1550 time-

bin interferometer. Felix and I integrated these into the existing optical setup while 

Vladimir built the custom electronics. I built the C++ software for these experiments 

while Felix build the Labview software and linked the two softwares together. 

In chapter 4, I developed the software to play the coin flipping game. 

More important than any specific result, FClix and I, as a team, put a tremendous 

amount of effort and time into the alignment, optimization and testing of the experimen-

tal setup so that the high quality results presented here were actually achievable. 
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Chapter 2 

Sources of Photon Pairs 

Before developing a source of hybrid entangled qubits for quantum communication the 

building blocks must first be put in place. The first step is to develop a source of photon 

pairs. 

2.1 Theory and Background 

The first sources of photon pairs were based on atomic cascades and were developed for 

fundamental tests of quantum mechanics [43]. These were based on two-photbn decay 

paths via short-lived atomic states. Unfortunately, as the momentum of each emitted 

photon was uncorrelated, only very low collection efficiencies were possible. Improve-

ments made by turning to other physical processes such as non-linear processes in ma-

terials and atomic ensembles, as described in the following sections, made photon pair 

sources useful for quantum communication. 

2.1.1 Spontaneous Parametric Down-conversion 

The next source of photon pairs to be developed was based on parametric amplification. 

This is a three-wave mixing process which depends on the non-linear coefficient 

of a material. Classically this process was used to amplify optical signals at a given 

wavelength. The signal and a pump beam can interact in a x2 non-linear crystal such 

that the pump intensity is partially depleted while the intensity of the signal, as well as a 

third wavelength often called idler, are amplified. However, in the 1970s it was discovered 

that quantum mechanics allows for the amplification process to proceed even without a 

signal bearn to seed the process [45]. There exists a finite probability for each pump 
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photon to interact with vacuum oscillations and produce a photon pair. This process 

now is known as spontaneous parametric down-conversion (SPDC). 

The process can only occur if conservation laws are respected. The wavelengths of the 

pump and down-converted photons, ), ) and Aj respectively, must satisfy both energy 

and momentum conservation equations, the latter being referred to as phase-matching 

(here, k is the wavevector of the photon). 

1_i 1 
A A3 + Aj 

-> - 

= n, k, + nk 

(2.la) 

(2.lb) 

In general it can be difficult to phase-match the three waves as the refractive indices in the 

material (np, m3 and n) depend on wavelength, crystal orientation and temperature. As 

the three waves propagate with different velocities, if phase-matching is not satisfied then 

the waves will move out of phase and begin to phase-match other non-linear processes. 

Overall, if phase-matching is not satisfied, than the probability of down-conversion will 

oscillate around zero and remain vanishingly small as the pump propagates through the 

crystal. To circumvent this difficultly birefringent crystals, where the refractive index 

depends on polarization as well, can be used. In this case, phase-matching is possible if 

both or one of the down-converted photons are polarized orthogonal to the pump beam. 

These are referred to as Type-I and Type-II phase-matching respectively and have been 

used extensively in the past [44, 46]. 

A newer phase-matching technique for SPDC known as quasi-phase matching was first 

investigated in 2001 [47, 48]. In this technique, the electric dipole moment is reversed 

periodically in order to guarantee phase-matching. The overall structure of the crystal 

becomes a periodic poled grating with a poling period A. The phase-matching equation 

for quasi-phase matching is modified by the poling period as below. In general, the poling 
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period's dependency on temperature must also be taken into account. 

- - -# 

n,, k = n, k + m k + (2.2) 

One major benefit to quasi-phase matching is that it allows for the use of non-linearities 

along propagation directions of crystals where birefringent phase-matching is not possible. 

Periodically poled lithium niobate (PPLN) has become a common crystal used with quasi-

phase matching for photon pairs. 

The three phase-matching regimes discussed above (perfect phase matching with 

birefringent crystals, quasi-phase matching with periodically poled crystals, and miss-

matched phases) are compared in figure (2.1) assuming the non-linearities available to 

each were equal. 
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Figure 2.1: Quasi-Phase Matching: The intensity growth as a function of propagation 
distance through the crystal. Perfect phase-matching, as available in birefringent crystals, 
would perform better than quasi-phase matching if the non-linearities were equal [49] 

2.1.2 Four-Wave Mixing and Atomic Ensembles 

Crystals are not the only medium that can produce photon pairs. In general, any medium 

with sufficiently strong non-linear effects can be used. In particular, much work has 
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been done recently on the production of photon pairs directly inside optical fibre as this 

removes the issue of coupling photons from bulk crystals to optical fibres for transmission. 

Optical fibre, which is made of silica oxide, does not have a XM non-linearity but does 

have a third-order effect. This leads to four-wave mixing (FWM) processes where two 

pump beams can produce a photon pair. Standard telecommunication dispersion shifted 

fibre (DSF) has been used to produce photon pairs, with small wavelength separations 

from the pump beam, around telecommunication wavelengths (1550 nm) [50, 51] and 

novel microstructured fibre (MSF) designs have been used to produce photon pairs at 

wider separation in visible and NIR wavelengths (600 nm to 900 nm) [52, 53]. To date, 

no one has reported a photon pair source using optical fibre that produces photon pairs 

with one photon in the NIR (800 nm) and one photon at telecommunication wavelengths 

(1550 nm) although investigations have begun (see appendix A). 

Producing photon pairs with atomic ensembles (AE) has also been explored [40] and 

experiments producing photon pairs at widely separated wavelengths (telecommunication 

and NIR wavelengths) have been achieved [54]. In these types of sources a collection of 

atoms with a lambda energy level system (i.e. two ground states labelled g and s and 

one excited state labelled e) are used. To prepare the AE a weak laser pulse is sent into 

the ensemble such that a single excitation from g to e is created and then decays to s. 

If this process occurred then one photon is emitted during the c to s decay and can be 

detected. Then when a second photon is required a second laser pulse, much stronger 

than the first, is sent through the ensemble such that the state s is guaranteed to form 

another single excitation in e and decay to g, thus emitting a photon. 

2.1.3 Photon Pair Correlation 

All aforementioned sources of photon pairs are of probabilistic nature as each photon in 

the pump beam has some probability to produce a pair (or excite an atom). Thus, the 
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number of emitted photon pairs per time unit follows a statistical distribution such as 

a Poissonian or thermal distribution. These different classical distributions can be iden-

tified through experimental measurements of the second-order auto-correlation function 

(here 1(t) refers to the intensity of the light field at time t while (I) corresponds to the 

expectation value of the measurement) [55]: 

g2(r) - (I(t)I(t+r))  
- (I(t))(I(t + T)) 

(2.3) 

One interpretation of this quantity is that it is the normalized conditional probability 

that if intensity I is measured at time t it is also measured at time (t + r). 

If one considers the second-order auto-correlation function at zero time difference, 

g(2) (0), it is possible to show that for all classical light sources g(2) (0) ≥ 1 [55]. In partic-

ular, for a light field described by a Poisson distribution, as is the case for coherent light 

emitted by a laser, g (2) (0) = 1 and for a light field described by a thermal distribution, 

as is the case for black body radiation, g(2) (0) = 2. 

In fact, the (2) (0) can be used as a confirmation of a quantum mechanical ource 

of photon pairs. In the quantum mechanical description (here I is replaced with the 

normally ordered ft, which is the an operator that gives the number of photons in a 

field [55]): 

((n)2) - (ii) 
g(2)(0) = 1 + (2.4) 

In this description, the classical results above are still true but now g(2) (0) can be calcu-

lated for photons as well as light fields. In particular, as photons can, in principle, exist 

as a single particle (i.e. a beam consisting of just one photon) it is possible to calculate 

the theoretical g(2) (0) with equation (2.4) and find that g(2) (0) = 0 - A value not allowed 

by the classical description of light. Thus, g(2) (0) < 1 is an indicator of a non-classical 

field of light. 

As part of the characterization of a source of photon pairs we define an operational 
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definition of the g(2) (0), in line with previous work [56], for the following setup. The 

two photons of each photon pair produced by a source are deterministically separated. 

One beam is immediately sent to a single photon detector (detector H) while the second 

beam is split again at a 50/50 beamsplitter before the photons are detected by one of two 

single photon detectors (detectors A and B - note that detectors H, A and B response 

is either 'detected nothing' or 'detected something'. Their response is the same whether 

they detect 1, 2 or 106 photons). Only when the first detector reports a detection are the 

second detectors activated. This detector is said to herald the presence of light at the 

other detectors. This setup is known as the Hanbury Brown and Twiss (I-IBT) setup [57]. 

The single photon g(2) (0) can then be defined as the normalized conditional probability 

that, if a photon is detected at A, another photon will be detected at B: 

=  PABIPI  , (2.5) 
PAIH X PBIH 

This definition follows the properties discussed above. g(2) (0) = 1 for uncorrelated pho-

tons following a Poisson distribution, g(2) (0) = 2 for stimulated photons following a 

thermal distribution and g(2) (0) = 0 for a source that emits single photons. For a prob-

abilistic source of photon pairs that emits pairs with a Poisson or thermal distribution, 

like the non-linear crystals described earlier, one may think that the g(2) (0) = 1 or 2 with 

this definition. This is not true because the heralding feature of detector H removes the 

vacuum component from detectors A and B and thus alters the statistics. That is why 

this setup is often referred to as a Heralded Single Photon Source (HSPS). Although it is 

not a perfect single photon source, the heralding signal indicates the presence of at least 

one photon, and, for this reason, HSPSs have been used for quantum communication 

tasks in the past [58, 59, 60, 61]. 
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2.2 Characterization Model 

In most applications, it is beneficial or even essential to know the mean number of photon 

pairs p emitted per unit of time, a quantity that is here referred to as the brightness. For 

entanglement based QKD, Ma et al. have shown that both the secret key generation rate 

and the maximum distance over which a secret key can be established can be maximized 

by properly tuning the brightness [62]. Another example is the security of QKD based 

on HSPS, which relies on the ability of the sender to assess the photon statistics in a 

precise way [58, 59, 60, 61]. Also, de Riedmatten et al. have shown that the visibility in 

Bell-state measurements, which is a key element of proposed quantum repeaters, crucially 

depends on the brightness [63]. Most recently, H. C. Lim et al. created a model that 

permits an entanglement distributor in a quantum network to determine the brightness 

that optimizes the entanglement visibility (see sections 3.1.1,3.3) for any pair of users 

in a quantum network, when given user-specific parameters such as the single photon 

transmission to each user [64]. 

Assessing the brightness of a source of photon pairs is a non-trivial task when limited 

to lossy channels and non photon-number-resolving detectors. This problem can be solved 

provided one knows the exact value of the total transmission of all photon channels. 

However, evaluating the loss associated with coupling a single photon from free-space 

to a single mode fibre is not simple. One technique requires mode-matching a probe 

laser to the single photon mode, but this can be imprecise and unpractical (see [65, 

66, 67] as examples). The brightness can also be inferred from measurements of the 

second-order autocorrelation function, g(2) (0) [68]. However, as the time required for 

9(')(0) measurements depends on three-fold coincidence detection stemming from two 

simultaneously generated pairs, such measurements are time consuming to implement 

(see [69] and [70] as examples). Therefore, a method from which the brightness and the 
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losses of the transmission lines can be determined with precision, speed and simplicity is 

necessary. 

To this end, the following sections detail how one can assess the brightness and the 

photon channel transmissions of a source of photon pairs by solely measuring single 

and two-fold coincidence detections stemming from photons belonging to one pair. This 

makes this method very fast and efficient. 

2.2.1 Model 

To assess the properties of a source of photon pairs, we developed an exact model of the 

detection statistics of the experimental setup detailed in figure (2.2) [711. 

Photon 
pair source 

lqrwwk 

Separation 

Fibre coupling 

50/SO 

D11 

Figure 2.2: The sources of photon pairs we consider comprise all probabilistic sources, 
including those based on nonlinear crystals, optical fibres or atomic ensembles. The 
distribution of the number of produced photon pairs per measurement time window 
can be given by any distribution such as Poissonian or thermal and is assumed to be 
known in advance. The pairs are deterministically separated, potentially by a dichroic 
beamsplitter in the case of collinear generation with non-degenerate wavelengths, or by 
non-collinear generation, into two separate channels. Each beam is filtered to remove all 
pump light and then the pairs are coupled into optical fibres. One beam is split again at 
a 50/50 beamsplitter before the photons are detected by non-photon number resolving 
single photon detectors D11, DA and DB. It is important to note here that the 50/50 
beamsplitter and DB used in this setup is not required to determine the brightness and the 
transmissions. Indeed, to assess the brightness and the transmissions only the detectors 
D11 and DA are necessary. In this work, the beamsplitter and DB were added only to 
provide a way to verify the validity of the predictions through the g(2) (0) measurement. 
Modifying the model (vector P and matrices, see below) to accommodate for a setup 
with no beamsplitter arid DB is straightforward. 

To model the detection statistics of this experimental setup we construct a column 
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vector P, as shown in equation (2.6), which describes the joint state of the detectors: 

P = (PADTI PAD!? PAB!? PAfiti PAIR PADH PAI3H PABH )T (2.6) 

Each element of P describes the probability that a set of detectors clicked or not per 

measurement time window. The measurement time window is defined as the elementary 

observation time for which detections are considered for statistical analysis (i.e. a finite 

time window centered on one pump pulse; see later) and thus, P describes the state of the 

detectors after receiving the photons contained within one measurement time window. 

For example, PAR is the probability that detector DA clicked, during the measurement 

time window, and DH and D2 did not. The goal is to determine how this vector, initially 

in state p0 = ( o )T is affected by single and multiple.photon pair emissions as well 

as detector dark counts during one measurement time window. First, we describe the 

interaction of one photon pair with the detectors using the following transition matrix: 

/ 1-?7Jq+(77A+?7B)(71fj-1) 0 0 0 0 0 0 0 
TjA(11Iff) (l-,n3)(l-m) 0 0 0 0 0 0 

0 (1-flA)(1-tijj.) 0 0 0 0 0 
0 0 1-(iiA+7D) 0 0 0 0 

0 (1-,?H) flA(1 ,7H) 0 l- ?7H 0 0 0 
?7A?7J'f 7?Ji(171B) 0 flA 0 1flJ3 0 0 
?1I3T1H 0 7Jf(1-?A) 'lB 0 0 1'lA 0 
0 flBflfl 0 . fljj 77B ?A 1 

Each element of All,, describes the probability for a pair to cause a transition of the 

three detectors. Each term is written as a function of T/H, ?7A and 77B which are the 

overall transmissions of each channel, from the photon pair source to DH, DA and DE 

respectively, including all optical losses, fibre coupling losses, detector inefficiencies, and 

the 50/50 beamsplitter. For example, M,1(1, 1) is the probability for the system to make 

a transition from AITJ to A11 (i.e. to remain in the state where no detectors clicked), 

which must equal: PAR + pq = (1 - - T1A + r/Ar1H) + (1 - 'OH - riB + rlB'OH) = 

1 - 'OH + (hA + 'OB)('OH - 1). Similarly, M(2, 1) is the probability to make a transition 

from AIFI to AIFI (i.e. no detectors clicked before and, provided one photon pair 

arrives, only DA clicks), which equals 'OA(l - 17H). All the upper diagonal elements 

= 
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are equal to 0 as photons cannot make detectors "unclick". The rest of the matrix is 

constructed following the same physical reasoning. Furthermore, to conserve the total 

probability, each column of M,1 sums to 1. The result of one photon pair interacting with 

the detectors is thus given by MP0. 

Second, the evolution of the system when i photon pairs are created during the 

measurement time window is described by (M,7)P0, as the detectors are not number 

resolving and losses and the beamsplitter choice for individual pairs in multi-pair emission 

are independent. 

In addition to the absorption of a photon, thermal excitations can also cause detector 

clicks. These dark counts can be taken into account by constructing another matrix 

lVldc. Thus, the evolution resulting from dark counts and i photon pairs is described by 

Md(M)Po. Noting the dark count probabilities per measurement time window as dH, 

dA and d8, we get 

/ (1—dA)(1—dB)(1—dlq) 0 
dA(1—d13)(1—dH) (1—dD)(1—dH) 
(1—dA)dD(1—dfl) 
(1—dfl)(1—dfl)dH 
dAdfl(1—dH) 
dA(1—dB)dfj 
(1—dA)d2dH 
ddBd.q 

o 0 0 
o 0 0 

o (1—dA)(1—dH) 0 0 
o 0 (1—dA)(1—dB) 0 

dD(1—djj) dA(1— dH) 0 1—djq 
(1—dD)djj 0 dA(1—dD) 0 
o (1—dA)d,1 (1—dA)dfl 0 

dfldil dAd Ii (1AdJ3 djj 

0 
0 
0 

1—dB 
o 1—dA0 
d2 1A 

o 0 
o 0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

(2.8) 

Thus, when an unknown number of photon pairs are incident, it is possible to calculate 

the final vector P through 

P= 
i=O 

Pj jvldc(Mtl)ZPO, (2.9) 

where pi is the probability to create i photon pairs per measurement time window. Pro-

vided that the probability distribution for pi is known this equation holds for all distribu-

tions, such as Poissonian, thermal or any distributions between the two [72]. Note that all 

matrices commute so the order in which they are applied does not matter. The construc-

tion of the matrices ensures that all elements of P are bounded individually between 0 

and 1 and that the elements of P sum to 1 (i.e. the total probability is conserved). We 

note that the model is exact and there are no approximations. 
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2.2.2 Determining channel transmissions 

With this model one can precisely determine the values of 77H, and 77B by measuring 

single and two-fold coincidence detection probabilities stemming from single pairs only. 

However, these measurements require that the pump power (or equivalently the bright-

ness of the photon pair source) is low enough so that multi-pair events are negligible: 

pi <<pi for i> 1. Fortunately, this model also allows an experimental verification of this 

condition. The verification arises from correlations in detections on DA and on DH. To 

measure this, PH is defined to be the heralding probability, i.e. the probability for DH to 

click independent of the other detectors, pi = PAi + PA2H + PABH + PABH, and similar 

expressions are defined for PAH and PA- We then define a parameter G = PAH/(PHPA) 

quantifying the strength of the correlation between detections at DA and DH. The 

model described by equation (2.9) predicts that, for Poisson, thermal and in between 

distributions, the value of C equals one at a very low brightness, when the coincidences 

are dominated by dark counts and detections are uncorrelated, and equals one again at 

high heralding probabilities, when the coincidence detections stem mostly from multi-

pair emissions and correlations are smeared out. In between, the value of C can go well 

above 1 and this is an indication that multi-pair emissions are negligible. As we show 

here, this allows one to experimentally obtain an upper bound for it when proceeding as 

follows. 

1. The dark count probability per measurement time window for each detector is 

measured (d11, da, db). 

2. The pump power is lowered and the transmissions are optimized until a value of C 

significantly higher than 1 is measured (C > 1). 

3. A plot of C versus is produced numerically assuming that the fibre coupling is 

perfect and that there are no additional optical losses, thereby setting the values 
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of H  and nA equal to the specified detection efficiency of the detectors. 

4. An upper bound for is obtained from the plot by identifying the largest value of 

that produces a value of C equal to the measured value. 

They key point is that, for a given j. and dark count probabilities, C is decreased towards 1 

when the transmissions are decreased. Thus, using this method, the true value of p must 

be smaller than the upper bound as the transmissions are overestimated. This, in return, 

allows one to obtain a lower bound for the ratio, r = pi/pj>i, of the probability of 

single pair emissions, Pi, over the probability of multi-pair emissions, Pi>1 = 1 - po - pi. 

As an illustration, using 71H = 60% and nA = 25%, corresponding to the detection 

efficiencies of our detectors, and using their respective measured dark count probabilities 

(see section 2.4.2), we produced the solid line shown on figure (2.3) where we assumed a 

Poisson distribution, pi = exp(—)/i!. 
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Figure 2.3: Correlation strength C versus brightness p. The solid line corresponds to 
= 60% and r1A = 25%. It reaches a maximum value at very low p and then sharply 

decreases to 1 for i = 0 (not visible). The meanings of the dotted and dashed lines are 
discussed in section 2.4.2 and [711 respectively. 

Once the pump power is properly set and the lower bound on r is sufficiently high, 

equation (2.9) can be truncated to i = 1 and one can show that the probability for DH to 

click on a photon and not a dark count is given by v2 = (PH - dH)/(1 - dj). Similarly, 
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we get p4'2 = (PA - dA)/(1 - dA) and the equivalent for p. In the same way, we can get 

expressions for the coincidence probabilities PAH and PBH. Then, using these expressions 

and an experimental data collection run with a heralding probability that guarantees 

negligible multi-pair events, one can solve for the four unknowns p, nH, nA and ?7B, since 

the dark count probabilities can be measured directly. These unknowns can be calculated 

through equations (2.10) through (2.12). The equivalent set for DB is constructed by 

replacing nA and l) by and pb'), respectively: 

- PAH -  p)dA(1 -  dH) - pdH(1 -  dA) -  dAdH 

p(1—dA)(1—dH) 

(1) 
PAH - P!.i d(1 - dH) - pdH(1 -  dA) - dAdH  

?7A =  p(1—dA)(1—dII) 

(1) 
PH(1) Pi = - = PA  

77H 71A 

Note that these predictions apply to any statistical distribution for which the multi-pair 

events can be neglected (for example, through the method described above). However, to 

determine the value of the brightness, one must have prior knowledge of the distribution 

and how to relate it to the measured value of pi. In the case of a Poissonian source, 

we have p, exp(—p which can be solved numerically for . The case of a thermal 

distribution is similar with Pi = (tanh // cosh v')2 

Once the transmissions are precisely known, one can use equation (2.9) to find the 

brightness that corresponds to any measured heralding probability. This will then allow 

one to predict the complete detection statistics vector P. 

2.2.3 Application to a Heralded Single Photon Source 

The transmissions and the brightness, along with the knowledge of the pair distribution 

type, can be used to predict the g(2) (0) of an HSPS for any desired heralding probability 

PH, in an HBT experiment [57]. As stated earlier, the distribution of the number of 
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photons in that mode follows the distribution of the number of photon pairs created 

by the source except for a reduced vacuum component, Po, due to the heralding. A 

g(2) (o) < 1, which is achievable with a HSPS, implies a nonclassical source (for a perfect 

single photon source g(2) (0) = 0). Alternatively, a g(2) (0) ≥ 1 describes a classical 

source (for Poissonian g(2)(0) = 1 and for thermal g(2) (0) = 2, see section 2.1.3). As an 

experimental test of the model, predictions can be compared with real measurements of 

the g(2)(0). In this experiment, which can be seen as measuring a subset of equation (2.9), 

detectors DA and DB are activated only when DR clicks. The g(2) (0) is defined as 

g2 (0) pADIH  
PAIR X PBIH 

(2.13) 

where pABIR is the probability that both DA and DB click provided that DR clicked, etc. 

For a specific heralding probability pj.j, one .can directly measure g(2) (0) using the 

setup of figure (2.2) by keeping only the events where DR clicked. On the other hand, 

the g(2) (0) can also be predicted for the same heralding probability using equation (2.9). 

The experimental results of this verification are presented in the next section. 

One interesting theoretical result regarding optimization of an HSPS can be derived 

from this model. Considering a Poissonian distribution at low brightness and assuming 

that dark counts are negligible, one can derive from equation (2.9) that g(2) (0) = p(2 - 7R) 

Similarly, for a thermal distribution the g(2) (0) is higher by a factor of 2: g(2) (0) = 2,a(2 - 7/H). 

In the case of spectral and/or spatial correlations, where the coincidence detection prob-

ability 7/HA = CI]H'riA is decreased by a factor c [71], and with a Poissonian source, 

g(2)(0) = /2(2/c  7/H). This indicates that for a HSPS, the transmission to the heralding 

detector is a crucial parameter to optimize. 
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2.3 Experimental Setup 

The experimental setup is shown in figure (2.4) and is detailed in the following sectidns. 

Pulsed 
laser diode 
532 rim 

I'— Fibre coupling 

= Pump filter 

Lens 

2.3.1 Optical setup 

Figure 2.4: Experimental setup. 

lnGaAs SPDs 
(ldQuantique) 

Ups 

To produce photon pairs, a 1 cm long periodically poled lithium niobate (LiNbO3) crystal 

(PPLN) with a three available grating period of 7.05 jim, 7.10 pm and 7.15 jim designed 

by Stratophase (SFG2-10) was purchased. Using the Sellmeier equation LiNbO3 coef-

ficients from [73] and assuming a 530.6 nm pump laser, phase-matching curves can be 

calculated for the crystal, as seen in figure (2.5) [74, 75]. Based on these calculations, the 

crystal was heated to 176 °C using an oven and PID temperature controller from Thor-

labs (PV1O and TC200 respectively). Then, with the 7.05 pm poling period collinear 

SPDC to one or several photon pairs can occur, with each pair consisting of one 807 nm 

and one 1546 nm photon. 

For the pump laser, a pulsed diode laser from PicoQuant (PDL-800-B) that creates 

50 Ps pulses at 530.6 nm was selected. The diode emits at 1061 nm and was frequency 

doubled to 530.6 nm. Afterwards, excess 1061 nm light is filtered using a dispersive prism 

from Thorlabs (PS851). Light was then focused onto the PPLN and afterwards a dichroic 
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Figure 2.5: Phase matching calculation for PPLN with a 7.05 1um grating period pumped 
with a 530.6 nm laser. 

mirror from CVI Melles Griot was used to separate the down-converted photons. After 

excess pump light was removed with Thorlabs long-pass colour filters (FCL715 followed 

by FGL78O with cutoff wavelengths at 715 nm and 780 nm respectively to minimize 

fluorescence problems) the photons were coupled into SMF28 optical fibres. 

The 810 nm photons were sent towards DH, a free-running silicon (Si) single photon 

counting module from Perkin-Elmer (SPCM-AQR-14-FC). This detector has a 60% sin-

gle photon detection efficiency (quantum efficiency) at 800 nm, is rated to have under 100 

false detections (dark counts) per second and is engineered to have a maximum deadtime 

of 40 ns (32 ns typical). The 1550 nm photons were sent through a 50/50 fibre bearnsplit-

ter designed and constructed by the Fibre Optics Laboratory at École Polytechnique de 

Montréal. Afterwards the photons reached one of DA or D2, which were gated Indium 

Gallium Arsenide (InGaAs) single photon detectors from IdQuantique (id201). These 

detectors can be set to have quantum efficiencies between 10% to 25% but due to excess 

dark counts these detectors can only be activated (gated) for a short time window cen-

tered around the expected arrival time of the photons. This time window width was set 

to 5 ns and the detector deadtime was set to 10 /is. 
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2.3.2 Electronics setup 

The detection statistics were recorded using a Time-Digital-Converter (TDC) from ACAM 

(ATMD-GPX). This device can monitor nine channels (one start channel and eight stop 

channels) for electrical signals and reports the time difference from the start pulse to each 

stop pulse with 80 Ps resolution, which can be continuously downloaded to a computer. 

The start pulse for the TDC was provided by the clocking signal which was produced 

by a delay generator from Stanford Research Systems (D0535). The clocking signal was 

also used to trigger , the pulsed laser diode and the InGaAs detectors. The stop pulses 

collected by the TDC included the detection signal from the Si detector, two detection 

signals from the InGaAs detectors and two gate-out signals also from the InGaAs detec-

tors. Each InGaAs detector emits a gate-out pulse when it is triggered if the detector 

is not currently in deadtime due to a previous detection. These gate-out signals were 

collected so that events where one or both detectors were dead could be discarded from 

analysis. The detections on the Si detector were considered valid only if they arrived 

within a 5 ns window centered on the expected arrival time of the photons, as measured 

by the TDC. These data were transferred to PC via application drivers specially designed 

by ACAM for our application and were analyzed in real-time using in-house C++ and 

Labview software. Due do low data rates between the TDC and the PC the clocking 

signal triggering the laser and InGaAs detectors was set to 30 kHz while determining 

the transmissions. This low repetition rate ensured that the saturation effects in the 

detection electronics were avoided. 
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2.4 Experimental Results 

2.4.1 Bandwidth Measurements 

The first measurements of the photon pair source were measurements of the coherence 

length I of the downconverted 810 nm photons. We built a balanced, free-space Michelson 

interferometer in the path of the 810 nm photons and coupled the output of one arm 

into fibre. We controlled the path length of one arm with a nanomax translation stage 

while the path length of the other arm could be continuously varied using a piezo-electric 

actuator. At each step of the translation stage we measured interference visibility by 

observing count rates on the Si detector as the piezo was continuously scanned. From 

these visibility measurements the coherence length was measured to be 90 1am. From 

these measurements we calculated the bandwidth to be A810 7 nm. 

A2 
A/\810 =  

7nm (2.14) 

Based on energy conservation of the SPDC process, the bandwidth of the 1550 nm 

photons is L\A1550 sti 27nm. 

= A55o(A2  + A2 532) -150LAsio 27 nm (2.15) 
810 532 810 

As the downconverted photons' coherence time, which equals 1/c = 0.27 ps, is much 

smaller than the pump pulse duration, which is 50 ps, one can confidently assume that 

this source of photon pairs follows Poissonian statistics [72]. 

2.4.2 Confirmation of Model 

We first measured dark count probabilities to be dA = 2.87 x iO, d2 = 3.84 x i0 and 

dH = 2.5x 10 per 5 ns. Next, we lowered the pump power using neutral density filters in 

order to increase the correlation strength between DH and DA to a value of C = 20.6±1.0, 

corresponding to a heralding probability of 0.287 ± 0.001%. Intersecting this value with 
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the solid line of figure (2.3) gives an upper bound of p ≤ 0.0480 ± 0.0013, yielding 

r ≥ 41.0 ± 2.2, which was considered sufficiently high to continue. Next we measured 

single and coincidence detection probabilities and calculated the following values: 97H = 

0.1212±0.0031, 77A = 0.0145±0,0005, 77B = 0.0162±0.0005 and tt = 0.02375±0.00016, 

corresponding to r = 83.5 ± 0.6. The C curve corresponding to these values is plotted as 

the dotted line on figure (2.3), and the predicted value of C at t = 0.02375 is 23.9 ± 0.5, 

which is close to the measured value of 20.6. 

Using these values together with equation (2.9), we produced a plot of the predicted 

PABIH , PAIH and PBIH for a wide range of the brightness (and consequently, of the herald-

ing probability). We compared these predictions to the measured values on figure (2.6a) 

and (2.6b). Next we compared predicted and measured g(2) (0), as shown on figure (2.7a). 

On the same figure we plotted the value of the brightness corresponding to each herald-

ing probability. In all cases, the agreement between the predicted and measured values 

is excellent. We note that for these measurements, the repetition rate was increased 

to 5 MHz and the InGaAs detectors were activated for 5 ns only when the Si detector 

clicked synchronously (within a 5 ns window) with the pump, as required for g(2)(0) mea-

surements in the HBT setup. This resulted in an average detection rate of 30 kHz, with 

randomly distributed time differences, for the InGaAs detectors and was thus sufficient 

to ensure that saturation effects in the detection electronics was not an issue. 
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Figure 2.6: (a) Predicted (solid lines) and measured (points) conditional detection prob-
abilities PAIH and pBIH• (b) Predicted (solid line) and measured (points) conditional 
coincidence probability pABIH . The dashed lines on both plots are the one standard 
deviation uncertainty bounds on the predicted values which were generated using the 
uncertainty bounds on the measured transmissions. 
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Figure 2.7: (a) Predicted autocorrelation g(2)(0) for Poissonian (solid line) and thermal 
(dotted line) distributions, measured values (points), and the corresponding brightness 
(dash-dotted line). The measured data agrees very well with the Poissonian distribution. 
Arrows indicate which scale corresponds to which line and dashed lines are the one 
standard deviation uncertainty bounds on the predicted values. (b) As the heralding 
probability reaches the noise level of DH (dashed line), the model correctly predicts that 
the g(2) (0) approaches one, as uncorrelated dark counts begin to dominate over photon 
clicks. 
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2.5 Discussion 

This method drastically reduces the time needed to characterize the source as measure-

ments of single and two-fold coincidence detections at a low heralding probability are 

sufficient to determine the transmissions. These can then be used to predict the bright-

ness of a photon pair source and the q(2)(0) of a RSPS for any heralding probability. 

In contrast, a single direct measurement of the g(2) (0) at a given heralding probability 

requires three-fold coincidence detections stemming from multi-pair emissions, which are 

less likely to happen. In this experiment, at a heralding probability of 0.287%, two-

fold coincidences were approximately 700 times more likely than three-fold coincidences. 

Consequently, a direct g(2)(0) measurement required much more time. 

This model allows an entanglement distributor in a quantum network to quickly 

and precisely tune the brightness on demand as required to optimize the performance 

of entanglement based QKD, to assess the security of HSPS-based QKD or to optimize 

quantum repeater error rates and distances, all in the context of fluctuating experimental 

conditions such as photon channel transmissions. Finally, in [71], we showed that our 

model correctly reproduces the detection statistics even if the photons are spectrally 

and/or spatially correlated, and that this only leads to an overestimation of the brightness 

of the source and thus does not affect security of QKD. The simplicity of the proposed 

method makes it very attractive for the field of quantum communication in general. 
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Chapter 3 

Sources of Entanglement 

3.1 Theory and Background 

One of the unique, and most important, features of quantum mechanics is entanglement. 

Simply put, two particles are said to be entangled if the state of a composite system 

cannot be separated into a product of single qubit states [7]. The two particles in the 

state 

(l0) + c11)) ® (10) + e'01 11))  

are not entangled because one can easily say that particle one is in the state — (I0) + e11)) 

and particle two is in the state (10) + C2 1)). Each particle can be fully described 

independently of the other. However, the state 

I(I)+) = (100)+111) (3.2) 

cannot be factorized into two separate states and thus the full description of either 

particle's state requires the other particle. This state is an entangled state. 

Entanglement has profound affects on statistical correlations one can observe in ex-

perimental situations. Imagine that one has a source that emits the entangled Bell state 

described by equation (3.2). If one projects the first qubit onto 0) (i.e. measures whether 

the particle is in the state 0)), one will ha\re a 50% chance of a detection. The same 

holds for particle two. This is akin to projecting onto the north pole of the Bloch sphere 

in figure (3.1). If one projects both particles onto ID) one will either detect both particles 

or neither particle. Detections of the particles are perfectly correlated. 

However, the above thought experiment could be reproduced with a completely clas-
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+ZorlO> 

-Y or 
IO>+e'"2 Ii> 

-Zorj 1> 

Figure 3.1: Qubit states represented on the Bloch sphere: The parameters 0 and 
represent the polar and azimuthal angles of the vector on the Bloch Sphere that represents 
a qubit's quantum state. Another commonly used notation is to describe the quantum 
state by its relation to the Z, Y and X axes. For instance, 0) and 1) are the states +Z 
and —Z and form the Z-axis. 

sical source of particles. Imagine a second source that emits both particles in the state 

IOU) with a probability of 50% or both particles in the state Ill) also with a probability 

of 50%. If one projects both qubits onto 0) one will again see perfect correlation: either 

both particles are detected or neither particle is detected. To demonstrate that there 

exists a difference between the entangled Bell State and the classical mixture one can use 

the density matrix formalism. A density matrix is defined as 

f) 

where pi is the probability that a source emits the state Calculating the density 

(3.3) 
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matrix of the state emitted by each source described above yields the following result: 

Pentangled source = 1 X 

1 

2 

/1 0 0 

0000 

0000 

0 0 1,i 

Pclassicat source = 0.5 >< 00) (001 + 0.5 >< Ill) (il' 

0 0 

1 0000 

2 0000 

\ 0 0 0 1; 

(3.4) 

(3.5) 

The density matrices are clearly different and therefore there must exist projection 

measurements that lead to different measurement results. 

3.1.1 Visibility and CHSH 

There are two widely used experiments to assess the non-classical nature of qubit pairs. 

These are known as coincidence visibility measurements and violations of the CHSH 

inequality, both of which are described here. 

Instead of the states described by equations (3.4) and (3.5), imagine that we have 

a single source that emits the entangled Bell state with probability V and the classical 

mixture with probability (1 - V). 

p = VI)(Pl + (1 - V)(0.5100)(00I + 0.5111)(11I) (3.6) 

And instead of projecting each particle onto JO), imagine that we project each particle 

onto an equal superposition of JO) and 1) with adifferent phase for each particle 01 and 
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02: + e1)) (this is akin to projecting each particle onto astate somewhere on 

the equator of the Bloch sphere in figure (3.1)). The probability to measure a coincidence 

detection will equal (with 0 = ç + 2): 

P(coincidence detection) = (1 + V cos()). (3.7) 

Therefore, the probability of a coincidence detection depends on the phase settings of each 

measurement and, more importantly, if one scans the phase of one measurement (which 

is akin to rotating the projection around the equator in figure (3.1)) the coincidence 

detection probability will vary sinusoidally with a maximum value of (1 + V) and a 

minimum value of (1 - V). In particular, we see that the visibility, a. defined in 

equation (3.8), equals 

visibility = 
maximum value - minimum value 

maximum value + minimum value* (3.8) 

=v 

Thus, as a maximally entangled state will have a visibility of 1 and with the measurements 

described above the quality of source of entanglement can be assessed by measuring these 

visibility curves. If V > 1 then, due to the Peres criterion [76], the two particles must 

be entangled. 

More generally, for a maximally entangled state, if one particle is projected onto a 

fixed state and the projection of the second particle is scanned around a full circle on 

the Bloch sphere in figure (3.2), the visibility will be maximized if the fixed projection 

of particle one lies on the circle scanned by the projection of particle two. Conversely, 

if the projection of particle two remains perpendicular to the fixed projection of particle 

one then the measured visibility will be zero. The visibility can take values between zero 

and one for intermediate cases. 

The second common experiment used to verify the non-classical nature is a test of the 

CHSH inequality. This test is based on the work of John Bell [9] in 1964 and Clauser, 
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10> 
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Figure 3.2: Two Entanglement Visibility Curves on the Bloch Sphere: The projection 
of particle one (solid arrow) is fixed at 0) while the projection of particle two (dashed 
and dotted arrows) traces one of two circles on the Bloch sphere. In one case the circle 
(dashed) passes through the fixed projection of particle one and the resulting visibility 
is maximized (V = 1). In the other case (dotted circle) the projection of particle two 
remains perpendicular (i.e. on the equator of equal superposition) to the fixed projection 
of particle one and the visibility is zero. 

Home, Shimony and Holt (CHSH) [77] in 1969 and allows identifying if the correlations 

under test must be explained using theories that do not obey local realism (see later). 

It is actually stronger than the Peres criterion and visibility curves as not all entangled 

states will violate the inequality; however all states that do violate the inequality are 

entangled. The description here is the CHSH form of Bell's inequality. 

To perform this experiment one must be -able to perform a certain projective mea-

surement. Mathematically, one must measure the observable M = +I)1 - 

where ) and l.1) are some pair of basis states. Now, imagine that one has a source 

of two particles. If one performs a projective measurement on the first particle in one of 

two bases (a and b) and the second particle in one of two other bases (c and d) one can 

measure a quantity known as the correlation coefficient, as in equation (3.9), for each 

combination of bases. Here, a and 6 determine the bases chosen for each particle (i.e. 

a = a or b, /3 = c or d) and P+_ is the probability to project particle one onto I&) and 
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particle two onto in their respective bases (similarly for P +, P_.... and P_k). 

E(a8) = P++ +P - P+ - (3.9) 

CHSH demonstrated that if this experiment is preformed with a classical mixture, 

similar to the one described earlier, then the following inequality is true (S is typically 

referred to as the S-parameter). 

S = E(a, c) + E(b, c) + E(b, d) - E(a, d)I ≤ 2 (3.10) 

It was also demonstrated that with a source of perfect entanglement as described 

earlier in equation (3.2), and the correct measurement settings, one can violate this 

inequality and achieve S 2\/. Therefore, an experiment with a proper set of four 

measurement settings that produces S > 2 can be used to verify that a source emits 

entangled particles. Specifically, if one projects onto the equator of the Bloch sphere, 

l) = (10) + e'1 1), one set of four measurement settings that would allow one to 

violate the CHSH inequality are: 

a - I') = Ic = —7r/4) 

b—p k)=I=/) 

C-4 

d I'') 10 = ir/2) 

(3.11) 

Countless articles regarding interpretations of Bell's inequality and the numerous 

experiments confirming that entanglement, as allowed by quantum mechanics, violates 

the inequality have been written. The general consensus is that entanglement violates 

one (or both) of the following two assumed properties of the physical world, which are 

required for the derivation Bell's inequality. The first assumption is that a measurement 

of one particle does not affect the state of the other particle. This is known as locality. 

The second assumed property is that both particles are emitted with definite states 
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although these may be unknown to the experimenter. This is known as realism. A source 

of a classical mixture is well described by local realism while a source of entanglement 

can only be described by violating at least one of these assumptions. Extensive articles 

have been written on these features (for example, see [24] for a discussion of experimental 

loopholes) but it is sufficient here to say that a violation of Bell's inequality is a signature 

of entanglement. 

Finally, to connect visibility measurements to Bell's inequality it is important to note 

that S = 2v'V if certain conditions are met. These conditions are that the coincidence 

curve is a sinus and that the probability to detector a particle does not depend on the 

measurement basis (and that the loopholes discussed in [24] are closed). Therefore, to 

ensure that all local realistic models of the measured state are ruled out, visibilities of 

the measured state need to be V> i// 0.707. 

3.1.2 Producing and Measuring Entanglement 

In general, to produce a source of entangled photons, something must be added to a 

pre-existing source of photon pairs. This something must be added such that there exists 

two possible methods in which a photon pair could be produced. If these two methods 

produce orthogonal states, and when a pair is produced it is impossible to know which 

of the two methods occurred, then the resulting state is entangled. 

With the Type-I down-conversion crystal discussed in Chapter 2 producing entan-

glement in the polarization degree of freedom of the downconverted photons can be 

straightforward. An early example was demonstrated by Kwiat t al. [46] in 1999 by 

placing two identical Type-I crystals back to back, but with the optical axis of the sec-

ond crystal at 90° with respect to the first, as in figure (3.3). Then, pump light polarized 

at 45° with respect to each of the optical axes is equally likely to down-convert in either 

crystal. If down-conversion occurs, and the crystals are thin enough, it is impossible to 
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know in which crystal the downconversion occured and thus polarization entanglement, 

as in equation (3.12), is achieved. 

.44 

Punp 

= (IHH) + eIVV)) 

jo)jo) from #1 

Il)AII)B from #2 

(3.12) 

Figure 3.3: Entanglement generation with type-I spontaneous parametric down-conver-
sion: The two crystals produce photon pairs in orthogonal polarization directions. If 
they are placed back-to-back then a pump polarized such that SPDC can occur in either 
crystal will produce entanglement. Image from [24] 

Notice the similarity between equation (3.12) and equation (3.2). The horizontal 

polarized component, H), is mapped to 0) and vertical, IV), to Ii). The same polar-

ization entangled state has been generated with periodically polled crystals [78], optical 

fibre [51] and atomic ensembles [79] in cleverly designed experiments in which the method 

of generating each polarization state is indistinguishable. 

Measuring a polarization qubit is a straightforward task. Each photon can be pro-

jected onto any polarization state, anywhere on the Bloch sphere, by using a quarter-wave 

plate (QWP), half-wave plate (HWP), polarization beam splitter (PBS) and detector. 

Another type of entanglement, which is compatible with all sources of photon pairs, 

and was first demonstrated by Brendel et al. in 1999 [25], is time-bin entanglement. The 

pump light is first passed through an interferometer with a large path-length difference, 

and phase Op, such that two pulses exit the interferometer at two different times (these 

are commonly labeled as early, short, or to, and late, long, or /;i), as in figure (3.4). If 
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down-conversion occurs in the source of photon pairs it is impossible to know which pulse 

created the photon pair and thus time-bin entanglement is created. 

10 1 
= (Itoto) + eItiti)) (3.13) 

Figure 3.4: Entanglement with an interferometer: Two pulses exit the interferometer and 
as each are equally likely to cause down -conversion in the crystal time-bin entanglement 
is created. Image from [24] 

Again, notice the similarity to equation (3.2). The early component, t0), is mapped 

to 0) and late, It,) to 1). A full mathematical description of these time-bin states could 

be expressed via a Gaussian distribution, at the central time of the wavepacket, with an 

extension given by the coherence length of the photon. If the time difference between 

Ito) and I1) is larger than the coherence time of the photons then the overlap between 

between these basis states is arbitrarily close to zero (i.e. (t0j11) = 0). 

Measurements on a a time-bin qubit are more challenging than on a polarization 

qubit. One could simply measure the arrival time of the photon but then one can only 

project onto Ito) and It,) and thus there is nothing to continuously vary to generate 

visibility curves or violate the CHSH inequality. A better method is to pass each photon 

through another interferometer with the same path-length difference, and phase 0, as 

the pump interferometer in figure (3.4). The following equation details this action on 

a time-bin qubit (notationally, the time-bin inside the ket is the time-bin the photon 

belonged to after creation and the subscripted time-bin is the time-bin that the photon 
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exists in after leaving the measurement interferometer): 

1 
7(Ito) + eIti)) 

1 
-' —(Ito)to + e io Ito)ti + eIti)ti + 

2 
1 

= (Ito)to + (c Ito) + e"Iti))ti + eIti)t2) 

(3.14) 

Each component of the time-bin state has a equal probability of traveling through each 

arm of the measurement interferometer. Thus, the photon exits the measurement in-

terferometer in one of three time-bins. A detection in the first time-bin corresponds to 

a projection onto Ito), with the photon having traveled through both interferometer's 

shorter arms, and a detection in the third time-bin corresponds to a projection onto t1), 

with the photon having traveled through both interferometer's longer arms. A detec-

tion in the middle time-bin corresponds to a projection onto (Ito) + e()Iti)) and 

interference between the paths long-short and short-long. This is a projection measure-

ment onto the equator of the Bloch sphere in figure (3.1) and follows the mathematics 

developed in equations (3.6) through (3.8). Therefore, by scanning the phase of the 

measurement interferometers one can verify the presence of entanglement by generating 

visibility curves and violating the CHSH inequality, as described in section 3.1.1. It 

should be noted that as only the phase difference, (, - ), appears in any measurement 

terms the phase of the pump interferometer can be taken as the reference phase. Thus, 

ç is set to zero for the remainder of document. 

Other degrees of freedom of photons, including momentum or mode entanglement [80] 

and energy-time entanglement [81, 82, 83], have been used to create entanglement. 

3.1.3 Hybrid Entanglement 

As discussed in Chapter 1 polarization encoding at 810 nm is useful for free-space trans-

mission while time-bin encoding at 1550 nm is useful for optical fibre transmission. How-
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ever, to link free-space and fibre quantum channels a source of hybrid entanglement, an 

810 nm polarization qubit entangled with a 1550 nm time-bin qubit, is required. The 

following details how to create hybrid entanglement when starting with time-bin entan-

glement. 

Conversion interferometer 

Time-Bin 
JU 

 I QWP 

 1HWP 

PBS z 
Polarization 

Figure 3.5: A time-bin to polarization conversion interferometer made from a folded 
Mach-Zelinder design 

To convert a time-bin qubit to a polarization qubit one needs another interferometer. 

However, instead of beamsplitters this interferometer must be built with polarization 

beam splitters and be preceded by a HWP, as in figure (3.5). Each arm of the interfer-

ometer must also contain a QWP. The HWP is aligned such that each basis state of the 

qubit is split equally at the PBS, as both time-bin states have the same polarization. 

Specifically, horizontally polarized light traverses the long arm while vertically polarized 

light traverses the short arm. Thus, the horizontal component is delayed in time, and 

acquires a phase shift, with respect to the vertical component. The QWP in each arm 

is aligned such that the polarization of light in each arm is rotated 90° and all light is 

emitted out the same arm of the interferoimieter. As the input light was composed of two 

time-bin states and there are two paths in this conversion interferomneter there are three 

possible time-bins for the output light, if the time difference imposed by the conversion 

interferometer is equal to the time difference of the input time-bins states. By post-

selecting only the middle time-bin the net effect of the conversion interferometer is to 
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convert the time-bin qubit into a polarization qubit, as shown in the following equations. 

1 
(IH)to + I11)ti) 

1 
" —('V) + III)o + IV)ti + lI-I)) 
2 

(IV)to + eIH)ti + IV) ti + eIH)t2) 

-* (IH)+eIV)) 
72 

This new polarization qubit can then be analyzed using the polarization optics described 

in the previous section. In principle this conversion process can be made deterministic 

(i.e. without requiring post-selection) using optical switches. 

Interestingly, there are two possible interpretations to this conversion interferometer. 

If the conversion interferometer is seen as part of the source of entangled photons (i.e. 

with Alice along with the source of photon pairs) then the source can be interpreted as 

producing hybrid entanglement. However, if the conversion interferometer is seen as part 

of the measurement (i.e. with Bob along with the polarization optics) then the source 

(3.15) 

produces standard time-bin entanglement and one does not have hybrid entanglement. 

Instead, what one has is a generalized way to measure and analyzing time-bin entangle-

ment. As described in the previous section, the standard time-bin interferometer allows 

only for projections onto the poles and the equator of the Bloch Sphere (Ito), It,) and 

(Ito) + eIti)), see figure (3.1)). This new type of interferometer, in combination with 

the polarization optics, allows for continuous measurements along any circle around the 

Bloch sphere - a feat never before achieved with time-bin qubits. 

3.2 Experimental Setup 

The experimental setup for the production of entanglement is shown in figure (3.6). This 

setup is similar to the setup of figure (2.4) in section 2.3 but contains the interferometers 
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required to produce and analyze entanglement. These differences are detailed in the 

following sections. 

Pump interferometer 

532 nm 

Eff 
Pulsed 

laser diode 
80 MHz 
50 p 

50/50 

AA 
DM 810 nm 

Conversion interferometer 

PPLN 
crystal 

Time-Bin Analyzer Fibre coupling 

( 

41 Piezo 50/50 

3.2.1 Optical setup 

- Pump filter 

   QWP 

 'HWP 

PBS 

( Faraday mirror 

( Si APD 

laGaAsAPD 

Figure 3.6: Experimental setup 

Polarization 
Analyzer  

H 

The optical setup was the same as described in section 2.3.1 except for the addition of 

four interferometers used to create and analyze time-bin entanglement: one interferome-

ter to create the time-bin state in the PUIIiP beam and three interferometers to analyze 

the time-bin qubits. For the 810 urn light we built an interferoineter that converts the 

time-bin qubit to a polarization qubit instead of the standard time-bin analyzing inter-

ferometer. For the 1550 nip light we built both the standard analyzer and a conversion 

interferometer. These interferometers are hereafter referred to as the 810-conversion in-

terferometer, the 1550 time-bin interferometer, the 1550-conversion interferometer and 

the pump interferometer respectively. Their design, construction and alignment are de-

tailed in appendix B. After the output of the 810-conversion interferometer the 810 urn 

photons were sent through a QWP, HWP and PBS (Edmund Optics NT46-554, NT46-
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555 and NT47-779). Each output of the PBS was coupled into SFM28 optical fibre and 

sent to a separate Si single photon detector. The 1550 nm photons were coupled into po-

larization maintaining fibre and then sent through either the 1550 time-bin interferometer 

or the 1550-conversion interferometer. The SMF28 output of the 1550-conversion inter-

ferometer was sent through a home-made fibre polarization controller and then through 

a fibre PBS (General Photonics PBS-001-P-03-SM-.NC). The outputs of this PBS (or the 

two outputs of the 1550 time-bin interferometer) were sent to separate InGaAs single 

photon detectors. 

3.2.2 Electronics setup 

The electronic setup was the same as described in section 2.3.2 except for the following 

changes. Detection signals from the Si SPDs were combined in an OR gate and the 

result was combined in an AND gate with a clocking signal from the laser. This signal 

was used to trigger the InGaAs SPDs. The gate-out signals from the two InGaAs (see 

section 2.3.2) were combined in another AND gate and the result was used to start the 

TDC. This ensured that data was only collected when at least one Si SPD registered 

a detection at the expected time and both InGaAs detectors were not in the middle of 

deadtime. These improved electronics allowed us to trigger the' pump laser at between 

5 MHz and 10 MHz. Detections were considered valid only if they appeared within a 

320 ps window as measured by the TDC. This reduction from 5 ns used in section 2.3.2 

was necessary as our time-bins were separated by 1.44 ns. Statistics were again collected 

with in-house C++ and Labview software developed for these experiments. 
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3.3 Experimental Results 

3.3.1 With Standard Time-Bin Interferometer 

For the first set of measurements the 810 nm photons were sent through the 810-

conversion interferometer and then the HWP, which was set at 22.5° (the QWP was 

removed), followed by separation at the PBS. A detection in a Si detector then corre-

sponded to a projection onto the X-Y circle of the Bloch sphere (i.e. an equal super-

position of two linear polarization states: ( Fl) + &'° V)) or, equivalently, between 

the two time-bin states: (Ito) + e'11110 It,)) - see figure (3.1) for a description of the Z, 

X, Y notation to describe quantum states) with a phase given by the interferometer. A 

detection in the other Si detector corresponded to a detection of the orthogonal state. 

The 1550 nm photons were sent through the 1550 time-bin interferometer and thus a 

detection in an InOaAs detector also corresponded to a projection onto the X-Y circle 

(i.e. an equal superposition of the two time-bin states with a phase given by the interfer-

ometer: ( to) + C1550 It,))). This is the standard time-bin measurement as described 

in section 3.1.2. As our setup includes two detectors for each photon there are four vis-

ibility curves (i.e. one for each pair of detectors). An average entanglement visibility of 

90.2 ± 1.8% was measured by scanning the phase of the 1550 time-bin interferometer, as 

seen in figure (3.7). 
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Figure 3.7: Entanglement visibility results using 810-conversion interferometer and 1550 
time-bin interferometer, while scanning the phase of the latter. Experimental points are 
squares and vertical lines arc one standard deviation uncertainty bounds. Curves show 
an average visibility of 90.2 + 1.8%. 

For the second set of measurement results the CHSH version of Bell's inequality was 

violated. The 810 nm photons were sent through the 810-conversion interferometer and 

the 1550 nin photons were sent through the 1550 time-bin interferomcter. The four 

settings used for the CHSH violation and the four correlation coefficients are presented 

below in table (3.1) and (3.2) (note that a HWP angle of 0 rotates a state by 40 on the 

Bloch sphere). These values give an S-parameter of S = 2.61 ± 0.14, which is a clear 

violation of the inequality. 
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Table 3.1: Measurement settings for CHSH violation 
810 nm HWP Settings 1550 nm Voltage Settings 

a==—ir/16 
b=q5=ir/16 

c=çb=0 
d=cb=ir/2 

Table 3.2: Results demonstrating CHSH violation 
a b 

c —0.686 ± 0.035 —0.641 ± 0.035 
d 0.657 ± 0.035 —0.628 ± 0.035 

3.3.2 With Conversion Time-Bin Interferometer 

The 810 nm photons were sent through the 810-conversion interferometer and the 1550 nm 

photons were now sent through the 1550-conversion interferometer. As discussed 'in sec-

tion 3.1.3, the following visibility measurements can be thought of as analyzing time-bin 

qubits by projecting onto states on circles around the Bloch sphere not always accessible 

with the standard time-bin analyzing interferometer. Here, we use the Z,Y,X notation 

as described in figure (3.1). For circles 1 through 3 the 1550-conversion interferometer 

was set to project the 1550 nm photons onto ±X (i.e. equal superpositions of Ito) and 

It,)). For each curve, the QWP was set such that rotating the HWP projected the 810 nm 

photon onto states on one of three orthogonal circles on the Bloch sphere, as described in 

figures (3.8) through (3.10) and described more fully in appendix C. For circles 4 through 

6 the 1550-conversion interferometer was set to project the 1550 nm photons onto ±Z 

(i.e.Ito) and It,)) and then measurements were taken with the same three QWP settings 

as before, as described in figures (3.11) through (3.13) and also described more fully in 

appendix C. These measurements were designed such that maximal visibility would be 

measured on circles 1, 2, 4 and 5 and zero visibility on circles 3 and 6. All results are 

summarized in table (3.3). Background counts were not subtracted. 
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Figure 3.8: Entanglement visibility circle 1: (a) The projection of the 810 nm photons 
was rotated around the X-Y circle. (b) The 1550 nm photons were projected onto ±X 
(c),(d) Visibility curves showing an average visibility of 92.0 ± 1.5%. 
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Figure 3.9: Entanglement visibility circle 2: (a) The projection of the 810 nm photons 
was rotated around the Z-X circle. (b) The 1550 nm photons were projected onto ±X 
(c),(d) Visibility curves showing an average visibility of 91.6 ± 1.3%. 
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Figure 3.10: Entanglement visibility circle 3: (a) The projection of the 810 nm photons 
was rotated around the Z-Y circle. (b) The 1550 nm photons were projected onto ±X 
(c),(d) Visibility curves showing an average visibility of 7.4 ± 4.2%. 
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Figure 3.11: Entanglement visibility circle 4: (a) The projection of the 810 nm photons 
was rotated around the Z-Y circle. (b) The 1550 nm photons were projected onto ±Z 
(c),(d) Visibility curves showing an average visibility of 96.7 ± 1.5%. 
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Figure 3.12: Entanglement visibility circle 5: (a) The projection of the 810 nm photons 
was rotated around the Z-X circle. (b) The 1550 nm photons were projected onto ±Z. 
(c),(d) Visibility curves showing an average visibility of 95.6 ± 1.9%. 
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Figure 3.13: Entanglement visibility circle 6: (a) The projection of the 810 nm photons 
was rotated around the X-Y circle. (b) The 1550 nm photons were projected onto ±Z 
(c),(d) Visibility curves showing an average visibility of 4.1 ± 2.6%. 
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Table 3.3: Visibility results summary 
1550 nm 810 nm Measured 
projection projection 

circle 
Visibility 

±X with X-Y 90.2 ± 1.8% 
1550 time-bin 
interferometer 

±X with 
1550 conversion 
interferometer 

X-Y 
Z-X 
Z-Y 

92.5± 1.5% 
91.6±1.3% 
7.4 ± 4.2% 

±Z with Z-Y 96.7 ± 1.5% 
1550 conversion Z-X 95.6 ± 1.9% 
interferometer X-Y 4.1 ± 2.6% 

3.4 Discussion 

The high visibility measurements, 91.6% ± 1.3%:5 V ≤ 96.7% ± 2.3%, and the violation 

of the CHSH form of Bell's inequality, S = 2.61 ± 0.14 verify that our source does indeed 

produce hybrid entangled photons. These measurements make this the first source of 

hybrid entanglement needed to allow quantum repeaters to link free-space and optical 

fibre quantum communication channels. Although, further development (i.e. spectral 

filtering) is needed before teleportation experiments, required for quantum repeaters 

themselves, can be performed, albeit in the lab. Nevertheless, these results indicate 

that this source can be readily used in a number of quantum communication tasks. In 

particular, it is well suited for QKD, which requires that V > 78% (or S > 2.21) to 

guarantee security against coherent attacks [2]. 

Furthermore, when considering the conversion interferometers as part of the analysis 

(instead of part of the state preparation) these results demonstrate, for the first time, the 

ability to project a time-bin qubit anywhere on the Bloch sphere instead of just the poles 
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and equator, as in the standard time-bin analyzer. This added versatility makes this 

source well suited for quantum communication tasks that require projections onto non-

orthogonal bases, such as quantum coin flipping. This new versatility in measurements 

of time-bin qubits, along with the high quality of this novel form of entanglement, makes 

these results particularly consequential for'the field of quantum communication. 
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Chapter 4 

Quantum Coin Flipping 

4.1 Background 

Coin flipping is a communication task that can be performed better in the quantum 

mechanical world. As discussed earlier, the task is for Alice and Bob to select a random 

bit (i.e. a coin flip), but it is beneficial for one or both parties to choose the bit rather 

than allow random chance to decide, If Alice and Bob are at the same place the task is 

straightforward. One of them can simply flip a coin and then both can see the result. 

However, if Alice and Bob are separated by some large distance, and neither trusts the 

other and they cannot agree on a third-party to flip the coin, it is unreasonable to let 

one player flip the coin. That player could simple declare himself or herself the winner 

while the other must trust the result. They are at a stalemate. 

In principle, one solution is to have both players send the other a random bit (A 

and B) simultaneously and let the coin flip result be equal to A G B. Unfortunately, 

protocols based on this idea, known as relativistic protocols [84], are extremely difficult 

to implement as their security is based on the simultaneity of the classical transmission 

and thus the physical distance btween the players. If one player can lie about his or 

her location the protocol breaks down. A protocol where one player can cheat such that 

he or she always wins is described as completely broken. The only option at this point 

is to break the symmetry of the protocol and expect the first player to communicate 

information before the second. In this case, it turns out that there does not exist a 

classical coin flipping protocol that is not completely broken. The second player can 

always use the information sent by the first to his or her advantage and win the game. 
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Surprisingly, coin flipping performed via the exchange of quantum states, along with 

classical information, can perform better than coin tossing with classical information 

alone. This is usually assessed by determining the maximum winning probability one 

player can achieve for any possible cheating strategy. The first attempt at a quantum 

coin flipping protocol was presented 1984 by C. H. Bennett and G. Brassard [12], at the 

same time as QKD, although it turned out to be completely broken. In 1998 and 1999 

two teams proved that a perfect quantum coin tossing protocol, that is a protocol with 

a maximum winning probability of 50%, could not exist [16, 17]. In 2000 D. Aharnov, 

A. Ta-Shma, U. Vazirani and A. C.-C. Yao [18] developed the ATVY protocol, which 

was the first quantum coin tossing protocol with a maximum winning probability under 

100%. It surpassed the flaws of the original BB84 protocol and achieved a maximum 

winning probability of 92% for any cheating strategy Alice or Bob could employ. Later, in 

2004, A. Kitaev proved that that best possible quantum coin tossing protocol could have 

a maximum winning probability of 70.7% [19] and A. Ambainis proposed a new 

protocol with a maximum winning probability of 75% [85]. Unfortunately, these protocols 

have one practical vulnerability: they would be completely broken in any implementation 

that involves losses. It is possible for one player to exploit the communication asymmetry 

and the unavoidable losses in a quantum channel to ensure victory. 

The above protocols, which are based on the idea of bit commitment, proceed as 

follows. Alice encodes her bit, A, in a quantum state and sends it to Bob. Alice is now 

committed to A even though Bob cannot measure the state to conclusively determine A 

because he does not know in which basis Alice encoded her bit. Bob then sends B, a 

classical bit, to Alice and finally, Alice reveals A, as well as how she encoded it into her 

quantum state so that Bob can verify that Alice is being honest. The coin flip itself is 

A B. While this base structure works in theory, any implementation needs to address 

what should happen if there are losses in the quantum channel i.e. Bob does not receive 
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the qubit. If the protocol is allowed to continue (see [18]) then Alice's best strategy 

to win is straightforward. She simple doesn't send a qubit and then she exploits the 

communication asymmetry by waiting until she knows B to pick an A such that she will 

win. Bob will have no way to verify that Alice is cheating and thus, she'll win 100% of the 

time. On the other hand, if the protocol is allowed to restart then Bob has the advantage. 

There may exist an Unambiguous State Discrimination (USD) measurement [86], which 

is a measurement that has a probability to conclusively identify between two states. If 

such a measurement is possible (see [85]) Bob can repeatedly tell Alice that he did not 

receive a photon until his USD conclusively tells him what state Alice sent. At which 

point he picks B such that he will win and thus he can win 100% of the time. 

Not only are these protocols completely broken but, as explained in the following 

section, they are also un-fair. There is an asymmetry in the results of each protocol as 

the maximum winning probability for one player is higher than the maximum winning 

probability for the other. 

Although the asymmetry in the classical communication means that perfect coin 

flipping is impossible (both classical and quantum mechanically) quantum protocols that 

are not completely broken exist. However, they must be designed such that one cannot 

exploit the communication asymmetry and implementation imperfections such as losses 

to guarantee victory. As well, an ideal protocol should be fair. 

4.2 A Fair, Loss Tolerant Protocol 

The following protocol, developed by G. Berlin, G. Brassard, F. Bussières and N. Godbout 

in 2008 [20] and referred to as the BBBG protocol hereafter, was the first proposed fair 

loss-tolerant protocol. 

Alice and Bob agree on the following two sets of basis states (here, NI'(X,A)) indicates 
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basis X and bit value A): 

where, 

I+) = cos(0)JO) + sin(0)II) 

J+) = sin(0)JO) - cos(1) 

Then the protocol proceeds as follows: 

(4.1) 

(4.2) 

1. Alice prepares a qubit in a randomly chosen state I1bX,A) and sends it to Bob. 

2. Bob measures the received qubit in a randomly chosen basis, ), and calls the result 

. If he does not detect a photon Alice and Bob restart the protocol. 

3. Bob sends a randomly chosen classical bit, B, to Alice. 

4. Alice reveals her original X and A to Bob. 

5. If X = k but A the protocol is aborted. Either an error occurred or Alice lied 

to Bob. If X 0 k Bob has no way to verify A and the protocol continues. 

6. The coin flip is A B 

Regardlessly of the value of 0, if both players play the protocol honestly then the, 

probability for each to win is 50%, as both are picking a random bit value that contributes 

to the outcome of the coin toss. If one of the players decides to cheat then the game is 

different. As explained in more detail below, the protocol cannot be completely broken 

by exploiting losses. Bob is allowed to declare that he did not receive a qubit and restart 
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the protocol, as opposed to the ATVY protocol [18], and there does not exist a USD 

measurement that Bob can employ to conclusively determine A, as opposed to [85]. 

Thus the protocol is loss-tolerant. 

If Bob plans to cheat he needs to be able to determine A from one measurement of 

the quantum state Alice sent. This amounts to being able to distinguish between the 

density matrix for A = 0 and the density matrix for A = 1. 

1 1 
Po = 'cb(o,o))(b(O,O)I + 

- 1 / 1+COS2() cos()sin() 

2 cos(o)sin(o) 

1 1 
Pi = h/'o,'))(1/'(o,i)I + 

/ 
1 

2 

sin2(c) —cos(0)sin(0) 

—cos()sin() 1 + cos2() 

Unfortunately for Bob, there does not exist a USD measurement to distinguish be-

tween these two density matrices. Thus, Bob can not gain from asking Alice to re-send 

her qubit. His best strategy is to perform a Helstrom measurement [87], which is a mea-

surement designed to output A with minimum error. Here, the Helstrom measurement 

corresponds to measuring one of the basis vectors exactly half-way between kb (o,o)) and 

I+) (or I''(o')) and I—): 

(4.3) 

cos(q/2)0) + sin(q5/2)I1) 

IB') sin(/2)0 - cos(/2)l1) 

This measurement correctly distinguishes between the two density matrices 

following probability [87]: 

+ Triio - iI = + —cos(o) 

(4.4) 

with the 

(4.5) 

Bob can then pick a properly chosen 'random' bit for step three of the protocol and win 

with the same probability. With the remaining probability Bob loses the coin toss. Note 
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that after Alice declares her bit Bob can either accept the loss or declare that Alice is 

the cheater. In either case though, Bob loses his ability to confidently detect if Alice is 

cheating, as in step five of the protocol. 

For Alice to cheat, she must send some quantum state to Bob before learning Bob's 

bit B. For Alice's optimal cheating strategy she must send some quantum state such 

that after she learns Bob's bit B, she can declare to Bob that she sent one of the four 

states in equation (4.1) that maximizes her probability to win. This problem turns out 

to be closely related to the bit commitment problem mentioned in Chapter 1 [22]. The 

optimal cheating strategy is to randomly send one of the following two states: 

IA) = cos(—/2)l0) + sin(—/2)I1) (4.6) 

IA) = sin(—/2)I0) - cos(—/2)I1) 

Accounting for the 50% of coin flips where Bob cannot verify what Alice sent, he will 

believe Alice with the following probability: 

1 1 3+sin()  
+ (1 + F(popi)) = 4 (4.7) 

In the cases where Bob's measurement does not agree he will declare that Alice has lied 

to him and tried to cheat and he will abort the protocol. 

Finally, if both players cheat the game will likely end in an abort. As Alice is cheating, 

she will always declare an A value, in step 4 of the protocol after she learns B, such that 

she wins the toss. As Bob is cheating, and likely refuses to lose, he will declare Alice a 

cheater regardless of his own measurement. Thus, the protocol will end in an abort. 
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4.2. A FAIR, LOSS TOLERANT PROTOCOL 

As for the value of 0, it seems natural to choose 0 = Z as this gives four symmetri-

cally distributed states around the Bloch sphere that are often used in other quantum 

communication tasks such as QKD. A graphical representation of all the states discussed 

here are presented in figure (4.1). 

0> 

(4.8) 

A=O 

Figure 4.1: BB84 Quantum Coin Flipping States: On this slice of the Bloch sphere, Alice 
prepares one of the four states diagramed with solid lines (both states in the top right 
corner correspond to a bit value of A = 0 while bottom left corner corresponds to bit 
value of A = 1). The optimal cheating states for Alice and optimal cheating projection 
measurements for Bob are indicated by dashed lines. 

The above cheating analysis applied to these states yields the following results pre-

sented in table (4.1). 
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4.2. A FAIR, LOSS TOLERANT PROTOCOL 

Table 4.1: The maximum winning probability and abort probability for the BBBG coin 
tossing protocol when q = ir/4 

Alice Wins Bob Wins Bob Aborts 
No Cheater 50% 50% 0% 
Alice Cheats 92.7% 0% 7.3% 
Bob Cheats 14.6% 85.4% 0% 

If one intends to cheat there is clearly an advantage to play as Alice. However, one 

can make the protocol fair by finding a set of 'fair-cheating' states that ensures that 

the maximum winning probability for each player is equal. By equating equation (4.5) 

to (4.7) and solving for 0, one finds: 

3+sin() 

- = 36.8° 

By using these specific non-symmetrically distributed states the protocol becomes sym-

metric in the maximum winning probability. A graphical representation of these states 

is presented in figure (4.2) and the cheating analysis applied to these states is presented 

below. Note that in the case where Bob is cheating, if Alice is about to win, Bob may 

refuse to lose the coin toss and declare that Alice is cheating and abort the protocol. 

The 10% in the 'Bob Cheats' row of table (4.2) could be moved to the abort column 

depending on how Bob chooses to play the game (i.e. if he absolutely refuses to lose). 

(4.9) 

Table 4.2: The maximum winning probability and abort probability for the BBBC coin 
tossing protocol 

Alice Wins Bob Wins Bob Aborts 
No Cheater 50% 50% 0% 
Alice Cheats 90.0% 0% 10.0% 
Bob Cheats 10.0% 90.0% 0% 
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4.3. EXPERIMENTAL SETUP 

X=1 

A=1 

1> 

Figure 4.2: Fair Quantum Coin Flipping States: On this slice of the Bloch sphere, Alice 
prepares one of the four states diagramed with solid lines (Both states in the top right 
corner correspond to a bit value of A = 0 while bottom left corner corresponds to bit 
value of A = 1). The optimal cheating states for Alice and optimal cheating projection 
measurement for Bob are indicated by dashed lines. 

4.3 Experimental Setup 

For practical reasons Alice requires a source of entanglement or a perfect single photon 

source. If Alice's source sometimes accidentally prepares multiple qubits with the same 

value of X and A (as is the case with laser pulses attenuated to the single photon level 

and photon pair implementations based on HSPSs) Bob could tell Alice that he did not 

receive anything until he receives many qubits at once. Then he could measure each 

qubit and compile the results to determine A with high confidence. On the other hand, 

if a source produces a pair of entangled qubits, then projecting one qubit at Alice's side 

prepares a state on the second qubit being sent to Bob. As the projection of each qubit 

is random, should the source produce multiple entangled pairs then Alice's projection of 

one qubit from each pair will not encode the same A on all the qubits she sends to Bob. 

If either player detects multiple photons they need to restart the protocol immediately 

as detections will no longer be correlated. 
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4.4. RESULTS 

Another benefit of using a source of entanglement is that it allows for random selec-

tions of X, A and k (Alice's basis, Alice's bit and Bob's basis respectively). With our 

hybrid entanglement setup described in section 3.2 the random arrival time of the photon 

at the detector allows for random state selection, as required by step one of the protocol: 

the first and third arrival time corresponds to projections onto to) and t1) respectively 

(basis X = 0) and the second arrival time corresponds to projections onto a superposi-

tion of the two time-bin states (X = 1). With the standard time-bin analyzer only the 

un-fair BB84 states, see equation (4.8), can be implemented in this fashion as only equal 

superpositions are accessible in the middle arrival time. With our novel interferometers 

any projection is possible and thus it is possible to implement the BBBG protocol with 

both the fair and un-fair states, as well as the optimal cheating strategies, with random 

basis selection. 

For these experiments, Alice is considered to be the source of entanglement along with 

the 810-conversion interferometer and associated polarization optics and detectors. The 

projection of her photon prepares the identical state onto the photon being sent to Bob. 

Bob possesses the 1550-conversion interferometer and detectors. Data were collected 

as in section 3.2.2 and analyzed using in-house developed software. A single computer 

played the roles of both Alice and Bob. 

4.4 Results 

Before beginning coin tossing Alice and Bob must verify that they share entanglement 

and must establish a phase reference. This was done by measuring a entire visibility 

curve, by scanning the phase of the 810-conversion interferometer, and then adjusting 

the phase to a maximum in the coincidence detection probability. 

As explained earlier, changing the measurement bases of the middle arrival time is 
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4.5. DISCUSSION 

straightfbrward: Alice can adjust the HWP after the 810-conversion interferometer while 

Bob can adjust the fibre polarization controller after the 1550-conversion interferometer. 

First, the game was played with the BB84 states, as described in equation (4.8), first 

with no-cheater and then with Alice cheating and finally with Bob cheating. Alice and 

Bob used the optimal cheating strategies as described above. Second, coin flipping was 

repeated with the fair-cheating basis states. The results are presented below in table (4.3) 

and match very well with theoretical predictions. 

Table 4.3: BBBG coin tossing results. The first column and second column correspond 
to the BB84 and Fair states respectively. Over 40, 000 coin flips were collected for each 
setting so that the statistical error on each experimental point is under 0.2% 

Cheater 
]3]384 

Alice Wins 
Basis 

Bob Wins 
States 
Abort 

Fair 
Alice Wins 

Basis 
Bob Wins 

States 
Abort 

None Theory 50.0% 50.0% 0% 50.0% 50.0% 0% 
Experimental 49.1% 49.3% 1.6% 49.0% 49.0% 2.0% 

Alice Theory 92.7% 0% 7.3% 90.0% 0% 10.0% 
Experimental 91.1% 0% 8.9% 86.5% 0% 13.5% 

Bob Theory 14.6% 85.4% 0% 10.0% 90.0% 0% 
Experimental 17.8% 82.2% 0% 13.3% 86.7% 0% 

4.5 Discussion 

We present the first demonstration of the BBBG quantum coin flipping protocol. All 

experimental values agree very well with theoretical predictions. In particular, the results 

in table (4.3) clearly demonstrate the difference between using the BB84 basis states and 

the fair-cheating basis states: There is a statistically significant increase (decrease) in 

Bob's (Alice's) maximum probability to win when using the fair cheating basis states. 

Also, in the fair basis the maximum probability to win for each player is equal to within 

error. 
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4.5. DISCUSSION 

• All winning probabilities are slightly lower than theoretical values because of detector 

noise, imperfect entanglement visibility and imperfect phase alignment. These errors 

open up an avenue of attack for Bob. Whenever Alice would win, a cheating Bob could 

abort the protocol by declaring that he measured a different result than what Alice 

declared. If errors are present in an implementation then Bob can always claim an error 

occurred, whether or not Alice actually cheated, until he wins the coin flip. Unfortunately, 

to date, there is no protocol that is tolerant to errors. In our experiments, these errors 

decrease the winning probability (increase in abort probability) by between 1.6% and 

3.5%. 

These results successfully demonstrate the first loss-tolerant quantum coin flipping 

protocol. On top of this, it is a demonstration that would not be possible without the 

hybrid entanglement and novel analyzing interferometers developed here. Overall, it is 

clear evidence that in some cases communication tasks can be performed better with 

quantum mechanics. 
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Chapter 5 

Summary and Outlook 

Quantum communication can, in certain cases, provide improvements over the best capa-

bilities of classical communication. In particular, QKD for communication security and 

quantum coin flipping for distant bit agreement between two adversarial parties both, in 

theory, provide improvements over their classical counterparts. 

At the heart of all developing technologies for quantum communication are sources of 

entangled photon pairs. These highly non-classical sources exhibit the weirdness of the 

quantum world by showing stronger statistical correlations than anything in the classical 

(i.e. local realistic) world while at the same time being resistant to perfect copying or 

cloning. And it is these very properties that make them required not just for the specific 

gains that quantum communication protocols offer but also for the construction of future 

quantum networks complete with quantum repeaters based on quantum teleportation. 

This thesis demonstrates several new photon pair technologies of interest to the field of 

quantum communication. First, a source of photon pairs was constructed and then char-

acterized using a novel theoretical model based on statistical matrices. We demonstrated 

the ability to characterize the brightness, or mean number of photon pairs emitted per 

laser pulse, from our source considerably faster than previous methods. As a verification, 

the model was used to predict measured detection probabilities and statistical correla-

tions over a wide range of brightness. The ability to assess the brightness quickly has 

tremendous importance to quantum communication where QKD security and quantum 

repeater success rate depends crucially on the brightness. 

Second, using our photon pair source we developed the first source of hybrid entan-

glement between two photons: one photon was suitable for transmission through optical 

73 



fibre channels and one photon was suitable for transmission through free-space channels. 

Such sources of entanglement are required for quantum repeaters to link together fibre 

and free-space quantum networks into one coherent network. This source of entanglement 

was verified through standard time-bin visibility curves and a CHSH violation as well 

as through the use of novel analyzers with the ability to access the entire Bloch sphere. 

We demonstrated entanglement visibility curves around Bloch sphere circles never before 

accessed with time-bin entanglement. 

Finally, as an application for these novel photon pair technologies we successfully 

implemented a quantum coin flipping protocol that requires entanglement to prevent 

completely successful cheating. We implemented the situation where both parties played 

fair as well as each parties used optimal cheating strategy. The latter was only possi-

ble with our novel interferometer design. All results agreed very well with theoretical 

predictions. 

This table top quantum coin tossing experiment is only the first quantum commu-

nication task that can be implemented with this new , entanglement source and novel 

technologies. As further experimental control is developed full quantum state tomogra-

phy (i.e. the reconstruction of the full density matrix associated with the state of the 

phonts [88]), which has never been done with time-bin qubits, could be performed on 

this source. Long-distance quantum coin flipping along with long-distance QKD, en-

tanglement visibility measurements, CHSH violations and more will all be possible with 

further developments using an installed optical fibre link between our QC2 labs at the 

University of Calgary and lab space at the Southern Alberta Institute for Technology 

(SAlT). Further into the future, even longer distance experiments could be performed 

with this entanglement source between three locations, with one connected via free-space 

and one connected via optical fibre. 

Moreover, with work on spectral filtering it will be possible to begin quantum tele-
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portation experiments as required for future quantum repeater experiments. These could 

be the first quantum repeater experiments linking together different media into a single 

quantum network. 

With the experiments performed here, several new photon pair technologies for quan-

tum communication have demonstrated their usefulness for the field of quantum com-

munication in general. The world of quantum mechanics may be a strange one, but it is 

destined to become an ever increasing part of our communication infrastructure. 
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Appendix A 

Details on Four-Wave Mixing Phase Matching in Optical Fibre 

A.1 Phase-Matching Theory 

Optical fibre, which is made of silica oxide, does not have a x2 non-linearity but does 

have a third-order x3 non-linearity. As a result, second-order non-linear processes, like 

parametric down-conversion, are typically non-existent in optical fiber. Instead, third-

order non-linear effects known as four-wave mixing (FWM) are dominant. In a FWM 

process of particular interest two pump photons can interact to produce a photon pair if 

the appropriate conservation laws are satisfied [89]: 

2w,, = w8 + w 

2n,,w,, = n8w8 + njw + 2'yP,, 

(A.la) 

(A.lb) 

In this process a pump laser, at wavelength ),, with power F,,, is required. The 

effect of the third-order non-linearity is to modify the phase matching condition by a 

power dependent term proportional to the nonlinear parameter 'y   where n, is 

nonlinear-index coefficient, w is the frequency of the pump field and Aeff is the effective 

area of the field (details to follow). Only the collinear case (all wavevectors are parallel) 

is examined here as all fields are guided by the optical fibre. 

Several experiments using various fibre types and a single pump beam have produced 

photon pairs [50, 51, 52, 53]. What has been received little consideration in the past 

is FWM to produce photon pairs at widely separated wavelengths (i.e. 1550 nm and 

810 nm) and the use of two pump beqms at widely separated wavelengths. 

To examine this case, equation (A.1) can be re-derived without the assumption that 

both pump photons are at the same wavelength. Here, the notation is changed such that 
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A.I. PHASE-MATCHING THEORY 

fields 1 and 2 represent the two pump fields, 3 represents the signal field and 4 represents 

the idler field. 

Here, 

Where, 

Wi + W2 = W3 + W4 

fl1W1 + fl2W2 = n3w3 + n4w4 + 111 -I- 12P2 

ji = 2('y + "f4i - 'Yii - Y2i - 1 

nnlwj ji 
Yji = F  

(A.2a) 

(A.2b) 

(A.3) 

(A.4) 

Again, nn, is the nonlinear index coefficient, which has a typical value of 2 x 10_20 m2/W [29], 

w is the frequency of the j' field, and Fjj is the overlap of the two fields. If only the 

fundamental mode of the fibre is considered then all fields propagate with a Gaussian 

distribution, e_x21 y2/w?, where wj is the field radius, and then: 

(A.5) 

In general, the field radius is well approximated by the following analytic approxima-

tion [90] 

a(0.65 + 1.619V 213 + 2.879V 6) (A.6) 

where a is the radius of the fibre core and V is the known as the normalized frequency: 

V = Aj V 71cladding - fl2 core 
(A.7) 

If one assumes that the pump fields have identical frequencies, and thus overlaps, and 

that the signal and idler fields are generated close to the pump frequency, equation (A.5) 

reduces to: 

irw2 Aeff 

and equation (A.2) reduces to equation (A.1). 
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A.2. PHASE-MATCHING IN STANDARD OPTICAL FIBER 

A.2 Phase-Matching in Standard Optical Fiber 

Standard telecommunication dispersion shifted fibre (DSF) has been used, with a single 

pump beam, to produce photon pairs, with small wavelength separations from the single 

pump beam, around telecommunication wavelengths (1550 nm) [50, 51]. 

Using a refractive index profile for SMF28 from [91] along with the theory outlined 

above, it is possible to calculate phase-matching curves for FWM in standard fiber. The 

results of these calculations are presented in figure (A.1). These figures demonstrate 

that with a single pump, FWM in SMF28 will not allowing phase-matching to produce a 

signal field at 1550 iiiii and an idiom field at 810 nih, which are the desired wavelengths de-

scribed in the main text. As the refractive index profile is fixed nothing can be changed 

to allow for the desired phase-matching. With dual pumping schemes the wavelength 

separation between signal (or idler) photons and pump beams is around 1 nm. The tech-

nical challenges associated with separating these two beams makes FWM with standard 

telecommunication fibre an undesirable option for the goals outlined in the main text. 
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Figure Al: (a) Phase matching curves for FWM in SMF28 with a single pump. Top 
(bottom) curves are the phase-matched signal (idler) wavelength. Pairs of curves with 
larger separations correspond to larger pump powers inside the fibre. (h) Phase matching 
curves for FWM in SMF28 with two pumps. Each red circle corresponds to two specific 
pump wavelengths. The nearest blue circle corresponds to the phase-matched signal and 
idler wavelength. All red-blue circle pairs are separated by less than 1 nm. 
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A.3. PHASE-MATCHING IN MICROSTRUCTURED FIBER 

A .3 Phase-Matching in Microstructured Fiber 

Novel microstructured fibre (MSF) designs have also been examined for the generation 

of photon pairs. These fibres are constructed with a pure silica core and a honey-comb 

structure of silica and air-pockets for a cladding. Through different core sizes and cladding 

designs MSFs with custom refractive index profiles can be fabricated (see figure (A.2)). 

Also, by shrinking the core size MSFs create larger non-linear effects than standard fibre. 

To date, MSFs have been used to produce photon pairs at wider separation in visible 

and NIR wavelengths (600 nm to 900 nm) [52, 53]. No one has reported a photon pair 

source using MSF that produces photon pairs with one photon in the NIR (800 nrn) and 

one photon at telecommunication wavelengths (1550 nm). To examine this possibility 

the refractive index profile of MSFs must be determined. 
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Figure A.2: (a) the refractive index profile of I'vISF can be customized by adjusting the 
design of the fiber. (h) MSF contain a pure silica core and a cladding composed of a 
honey-comb structure of air and silica (photo from [92]). (c) the dispersion profile of 
MSF steepens and the zero-dispersion wavelength (arrows) shifts to shorter wavelengths. 

We use the model presented in [921 to determine the index profile of an MSF. This 

model uses two parameters: the core size, a, and the fraction of air in the cladding, S. 

With these parameters, and using the Sellmeicr equation silica coefficients from [93] the 
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A.3. PHASE-MATCHING IN MICROSTRUCTURED FIBER 

index of the core and cladding are modeled as: 

core = npure silica 

cladding = (1 - S)flpure silica + Sflair 

(A.9a) 

(A.9b) 

and then the index profile of the MSF can be found by solving the standard propagation 

constant elgenvalue equation [89]. We only consider the fundamental mode of the fibre. 

Ji[ha]  
'Jo[ha] = (V2 — h2' K, [(V2 - h2)a]  

K0[(V2 - 
(A.10) 

Where ii = Vn2 2 c core - flj., V is the normalized frequency, a is the core radius, and J 

and K are Bessel functions. By solving this equation for h it is possible to determine 

ri01f for a specific fibre design (a and S) at a specific wavelength. 

With a modeled MSF refractive index profile and the theory outlined earlier, it is 

possible to calculate phase-matching curves for FWM. Some result are presented in fig-

ure (A.3). These results demonstrate that a properly designed MSF can phase-match to 

produce signal at 1550 nm and idler at 810 nm with a single pumping scheme or with a 

duel pumping scheme. This makes MSF a more appealing option than SMF28. 
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Figure A.3: FWM in MSF: With a (a) single pump or with (b) two pumps a properly 
designed MSF can phase-match near the desired wavelengths. 
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A.4. EXPERIMENTAL WORK 

A.4 Experimental Work 

To further this work we have begun collaborations with a group at the École Poly-

technique in Montréal and a group at the Université de Limoges in France who have 

experience fabricating MSFs with a wide variety of designs. They have fabricated an 

MSF that produces signal and idler light at the desired wavelengths, see figure (A.4), 

and we have measured the spectrum at the single photon level, see figure (A.5). 

Work is continuing to verify the production of FWM at the single photon level through 

measurements of the g(2)(0). The experimental setup in figure (A.6) is in the middle of 

construction. 

-10--

-20-

-30-

-70-

'F 

80 - LI I 
600 800 

Wavelength (nm) 

1600 

•1 

Figure A.4: The classical FWM production spectrum of an MSF fabricated at XLIM. A 
single pump at 1064 nm produces light at 810 nm and 1545 nm. 
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Figure A.5: The FWM production spectrum at the single photon level of an MSF fabri-
cated at XLIM. 
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Figure AG: Setup for experiments to verify the production of photon pairs through 
g(2)(0) measurements with a novel MSF design. 
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Appendix B 

Details on Interferometer Design and Alignment 

B. 1 Interferometer Design 

To create and analyze time-bin entanglement three interferometers are required: one 

interferometer to create the time-bin state in the pump beam and one interferometer 

to analyze each time-bin qubit. For the 810 nm light we built an interferometer that 

converts the time-bin qubit to a polarization qubit instead of the standard time-bin an-

alyzing interferometer. For the 1550 nm light we built both the standard analyzer and 

a conversion interferometer. We also built an interferometer for the 530.6 nm pump 

light. These interferometers are hereafter referred to as the 810-conversion interferome-

ter, the 1550 time-bin interferometer, the 1550-conversion interferometer and the pump 

interferometer respectively. 

We built the pump interferometer using a 50/50 beamsplitter (Thorlabs BSO13) that 

separated the pump light into the two arms of the folded Mach-Zehnder interferometer. 

Each arm was terminated with a retrorefiector (Edmund Optics NT45-202) designed to 

reverse the direction of the beam without a vertical translation. For alignment purposes 

the retrorefiector on each arm was mounted on a translation stage (Thorlabs PT1/M). 

One stage moved perpendicular to the beam direction to overlap the output beam from 

each arm while the second stage moved parallel to the beam direction so that the path 

length difference could be adjusted. The second stage was fitted with a piezo-electric 

actuator from Piezomechanik to allow for fine adjustments of the phase difference. To 

provide increased phase-stability, all optics were mounted on a plate of Zerodur glass from 

Schott AD, which has a particularly small thermal expansion coefficient of 1 x iO K-'. 
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This was placed inside an PVC insulting box and temperature stabilized with a PID 

temperature controller (Thorlabs TED200C and AD590) to 28.0 ± 0.1°C. 

The 810-conversion interferometer was built with the same retrorefiectors, transla-

tion stages, Zerodur, piezo-electric actuator and temperature control system (stabilized 

to 27.9 ± 0.4°C) as the pump interferometer. However, instead of a BS this interferom-

eter was built with a PBS (Edmund optics NT47-048) preceded by a HWP (Thorlabs 

WPHO5M-808). Each arm of the interferometer also contained a QWP (Edmund Optics 

NT46-554). The HWP was aligned such that the horizontally polarized 810 nm photons 

were rotated to ( H) + IV)). The rest of the interferometer operation follows the 

description in the main text. 

The 1550 time-bin interferometer was entirely built with fibre optic components. A 

fibre 50/50 beamsplitter separated the 1550 nm light into the two arms of the Michelson 

interferometer. Each arm was terminated with a fibre Faraday mirror to remove any 

birefrengence effects in the fibre optic arms. The long arm was coiled around a round 

piezo-electric actuator (Piezomechanik) to allow for phase adjustments by stretching the 

fibre and thus increasing the path length. This interferometer was also placed inside an 

insulting PVC box and stabilized with a similar PID temperature controller to 26.36 ± 

0.05°C. 

The 1550-conversion interferometer was also built entirely with fibre optic compo-

nents. A fibre PBS (General Photonics PBS-001-P-03-PM-NC) separated the 1550 nm 

light into the two arms of the Mach-Zehnder interferometer. The input and both outputs 

of this PBS were equipped with polarization maintaining fibre. The input PM fibre was 

aligned at 45° with respect to the PBS. The output arms of the first PBS were fused to 

two other PM fibres serving as inputs to a second PBS (General Photonics PBS-001-P-

03-SM-NC). The output of the second PBS was SFM28 optical fibre. The net effect of 

this interferometer is the same as described by equation (3.15). This interferometer was 
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also place inside an insulting box that was stabilized with a similar PID temperature 

controller to 28.0 ± 0.1°C. 

B.2 Interferometer Alignment 

As described earlier, for high quality entanglement measurements the time difference 

introduced by all interferometers must be equal. The 1550 time-bin interferometer was 

constructed to have a 29,4 cm path length difference, which corresponds to a time differ-

ence of 1.44 ns (given that the index of SFM28 optical fibre is 1.4682). 

To align the other interferometers to the same time difference a broadband amplified 

spontaneous emission (ASE) source was used. Light from the ASE source was sent 

through the 1550 time-bin interferometer and then through the pump interferometer. 

The path length difference of the pump interferometer was adjusted until maximum 

interference visibility was observed. The coherence length of this ASE was measured to 

be 36 m. As this is much smaller than the coherence length of our down-converted 

light (see section 2.4.1), we were confident that we would see high visibility with the 

1550 nm down-converted photons. The same procedure was followed to align the path 

length difference of the 810-conversion interferometer. 

To set the path length difference of the 1550-conversion interferometer which was 

another fibre interferometer, the effective refractive index, neff of the fibre was needed. 

To determine the effective index, the following procedure was developed. The 1550-

conversion interferometer was built with a small path length difference ( 1 cm). The 

ASE was sent through this interferometer and then through the balanced free-space 

Michelson interferometer used in section 2.4.1. The translation stage of the free-space in-

terferometer was adjusted until maximum visibility was achieved. Then, Al,ut 1.000 cm 

was precisely cut from the longer arm of the 1550-conversion interferometer and the ASE 
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B.2. INTERFEROMETER ALIGNMENT 

was again sent through both interferometers. The translation stage was again adjusted 

until maximum visibility was again achieved. The effective index was calculated using 

Alstage, the difference in the two positions of the translation stage. 

21stage  
neff (B.1) 

1cuf 

This procedure was repeated four times and produced a value of ng = 1.4722 ± 0.0062. 

For the final construction of the 1550-conversion interferometer, the two fibre arms 

were cut such that the path length difference was r'J 1 cm longer than required: 

1.44nm  
CX +lcm=30.3cm. 

neff 

(B.2) 

Next, the ASE was sent through the 1550 time-bin interferometer, which is the ref-

erence interferometer for these experiments, and the free-space Michelson interferometer 

and the path length difference of the latter was adjusted until maximum visibility was 

achieved. Then, the ASE was sent through the 1550-conversion interferometer and the 

free-space Michelson interferometer and again the path length of the latter was adjusted 

until maximum visibility was achieved. The difference in the path length differences of 

the free-space interferometer, along with the measured effective index of the PM fibre, 

was used to determine precisely how much fibre to cut from the 1550-conversion interfer-

ometer such that its path length would be aligned on the reference interferometer. The 

final alignment was made by sending the ASE through the 1550-conversion interferome-

ter and the 1550 time-bin interferometer and adjusting the temperature of each box until 

maximum visibility was achieved. 
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Appendix C 

Details on Visibility Measurements 

As described in the main text, the 810 nm photons were sent through the 810-conversion 

interferometer and the 1550 nm photons were sent through the 1550-conversion inter-

ferometer. As discussed in section 3.1.3, the following visibility measurements can be 

thought of as analyzing time-bin qubits by projecting onto circles around the Bloch 

sphere not always accessible with the standard time-bin analyzing interferometer. Here, 

we use the Z,Y,X notation as described in figure (3.1). For circles 1 through 3 the 

1550-conversion interferometer was set to project the 1550 nm photons somewhere onto 

the X-Y circle (i.e. equal superpositions of to) and '')) with an unknown phase. For 

each curve, the QWP was set such that rotating the HWP projected the 810 nm photon 

onto one of three orthogonal circles on the Bloch sphere, as described in figures (3.8) 

through (3.10) again with an unknown phase. For each set of visibility curves the phase 

of the 810-conversion interferometer was adjusted, as described below, to compensate for 

this ambiguity. 

For the first visibility curves the QWP after the 810-conversion interferometer was set 

such that rotating the following HWP also projected the 810 nm photon onto the X-Y 

circle (i.e. equal superpositions between the two polarization states (I H) + (t8b0 I V)) 

or, equivalently, between the two time-bin states: (J to) + &810 It,))) on one Si detector 

and the orthogonal state on the other Si detector. These measurements are equivalent to 

the standard time-bin visibility curves, but performed with the novel interferometer, even 

though the phase of each interferometer was unknown. Figure (3.8) showed an average 

visibility of 92.0% -11.5%. 

For the second visibility curves it was stated that the QWP was set such rotating the 
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HWP projected the 810 nm photons onto the Z-X circle. However, as the phase of each 

interferometer was unknown, the projection may not have passed through the X-axis. 

Nevertheless, it is known that the 810 nm photons were projected onto a circle that 

encompassed two points from the equator of equal superpositions and both poles. To 

ensure maximal visibility the HWP was initially set to project onto the equator of equal 

superpositions and then the phase of the 810-conversion interferometer was adjusted until 

a maximum coincidence detection probability was found. This non-local phase alignment 

between the two interferometers ensured that initially the two photons were projected 

onto the same state. Afterwards the HWP was rotated to produce figure (3.9), which 

showed an average visibility of 91.6% ± 1.3%. 

For the third visibility curves it was stated that rotating the HWP projected the 

810 nm photons onto the Z-Y circle. In fact, the same QWP and HWP settings as in 

the second set of curves were used. However, the HWP was initially set to project onto 

the equator of equal superpositions and then the phase of the 810-conversion interfer-

ometer was re-adjusted until a coincidence detection probability mid-way between the 

maximum and minimum was found. This corresponded to adjusting the phase by ir/2 

so that scanning the HWP setting was equivalent to scanning a circle perpendicular to 

the previous two measurements. This produced figure (3.10), which showed an average 

visibility of 7.4% 14.7%. 

For circles 4 through 6 the 1550-conversion interferometer was set to project the 

1550 nm photons onto Z (i.e.Ito) and ti)) and then measurements were taken with the 

same three QWP settings as before, as described in figures (3.11) through (3.13). Since 

the phase of the 1550-conversion interferometer does not affect these measurements it was 

not necessary to compensate for the phase ambiguity with a non-local phase alignment. 

For the fourth and fifth visibility curves the QWP was set such that rotating the HWP 

projected the 810 nm photon onto circles that encompassed two points from the equator 
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of equal superpositions and both poles. The QWP was adjusted so that the phase of 

these projections differed by 7r/2. figures (3.11) and (3.12) showed average visibilities of 

96.7% ± 2.3% and 95.6% + 1.9% for these measurements. 

Finally, for the sixth visibility curves the QWP set such that rotating the HWP 

projected the 810 nm photons onto the equator of equal superposition, although with 

an unknown phase at each measurement. Figure (3.13) showed and average visibility of 

96.7% ± 2.3% 
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