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Abstract 

Analytic performance models such as Queuing Network Models (QNMs) and Layered 

Queuing Models (LQMs) are important tools that support system sizing, capacity 

planning and systems management exercises. This thesis describes a new technique 

called the Weighted Average Method (WAM) designed to improve the accuracy of such 

models for systems that experience bursty arrivals of customer requests. WAM reflects 

the impact of burstiness by considering the customer population distribution at a system. 

It is a constructive technique that permits studies of how arbitrary distributions for 

workload parameters influence the population distribution and hence performance. 

Specifically, WAM uses a fast Monte Carlo simulation to estimate the population 

distribution for any given workload. The estimated distribution is combined with an 

analytic performance model (e.g., a QNM or a LQM) to predict a system's performance 

under that workload. The effectiveness of WAM is evaluated through case studies 

involving two different TPC-W installations. 
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CHAPTER 1: INTRODUCTION 

I.I. Motivation 

Enterprise application systems are often used to perform business functions such as 

online shopping, accounting, production scheduling, and customer relationship 

management. Most of the enterprise applications have a multi-tiered architecture [1]. As 

shown in Figure 1. 1, a Web server receives requests from customers who can potentially 

be spread across the Internet. The Web server forwards a customer request to an 

application server. The application server typically implements the business logic of the 

enterprise application. It can in turn contact a database server to request data such as 

order details and customer account information. The application server dynamically 

generates a HTML page using its business logic and the data obtained from the database 

server. It transmits the dynamically generated page to the Web server, which in turn 

sends it to the customer who initiated the request. 

To improve performance and scalability the Web, application, and database servers are 

typically deployed on separate physical machines. Furthermore, the servers support 

multiple threads or processes to serve many customer requests concurrently. Typically, 

more physical machines are added to each tier to handle expected increases in workload. 

For example, the application server tier may have ten physical machines each running an 

instance of the application server software. This technique is referred to as horizontal 

scaling. 
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Figure 1.1: Typical architecture of an enterprise application system 

Enterprise application systems are typically session-based. The workloads of these 

systems are often characterized in terms of sessions. A session is defined as a sequence of 

interdependent requests submitted to the system by a single entity. For example, the 

following is a valid session for an e-commence system: [Home, View, Add, 

Purchase]. This session describes a shopper who visits the home page of this system, 

2 



views the content of the product she is interested in, adds the product into the shopping 

cart and finally purchases that product. Besides, the session-based workloads are usually 

bursty for the enterprise environments. Burstiness can be used to describe the session 

arrival patterns or request arrival patterns in the systems. 

Since performance is crucial for enterprise application systems, it is necessary to support 

effective techniques for service level assessment, system sizing, and capacity planning. 

Service level assessment studies investigate whether a customer is likely to obtain 

adequate performance from a system. For example, an e-commerce system provider may 

want to design her systems such that the system is able to service 10,000 customer 

requests per second while at the same time ensuring that a customer's request does not 

experience a delay of more than 500 milliseconds. Service level assessment is important 

since poor performance can mean lost customers and hence lost revenue. Sizing is the 

process of determining how may software and hardware resources to provision to the 

system so that service level requirements can be met. For example, a system architect 

may want to determine the number of physical nodes to provision per tier as well as the 

number of server threads or process needed on each physical machine in a tier to handle 

the system's expected workload. Capacity planning deals with how to upgrade a system 

to deal with future increases in customer workload. 

Performance testing is often used to support service level assessment, system sizing, and 

capacity planning. It involves submitting a synthetic workload to a system under study in 

controlled conditions. The synthetic workload emulates the real workload of the system 

under study (i.e., requests from real customers of the system). A synthetic workload is 
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constructed from a workload model. The workload model consists of workload attributes 

that are likely to impact performance the most and statistical characterizations for those 

attributes. Measurements such as customer response times and system resource 

utilizations (e.g., CPU utilization) are collected during tests to derive insights on system 

performance. 

Performance tests must satisfy two main requirements namely, representativeness and 

flexibility. A synthetic workload is said to be representative of a real workload if both 

workloads yield similar performance when submitted to the system under study. 

Including attributes that impact performance in the workload model and specifying 

appropriate characterizations for the attributes influences representativeness. Very often 

it is difficult to choose characterizations for workload attributes since there may be little 

or no data available about characteristics of real workloads. As a result, it is important 

for a performance testing methodology to support the flexibility to conduct controlled 

sensitivity analyses on the workload attribute characterizations. This allows a tester to 

establish the performance behaviour of a system under a range of workloads that the 

system might encounter in practice. 

Performance analysts often rely on analytic performance modeling in addition to 

performance testing. Analytic modeling supports "what-if" analyses. Typically 

performance testing is time consuming and hence expensive. As a result only a finite 

number of workloads are considered during performance tests. In order to evaluate 

system performance under other workloads, a model can be constructed and parameters 

of the models can be derived from existing performance tests. The model can be 
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perturbed to understand system behaviour under workloads that were not explored during 

performance testing. Furthermore, the model can also help understand performance 

behaviour under alternate hardware (e.g., faster CPU) and software configurations (e.g., 

more application server threads). Analytic modeling is also the only approach for cases 

where a system is under development and not available for testing. 

Queuing Network Models (QNMs) [2] [3] are widely used by practitioners as an analytic 

modeling methodology. A QNM consists of a system of queues where each queue is 

used to abstract a system resource (e.g., a CPU or disk). The parameters of the model 

include the number of concurrent customers in the system, the scheduling disciplines 

used in the queues (e.g., First Come First Served, Processor Sharing) and the average 

time taken to service a customer request at each resource once the request has acquired 

the resource. A QNM can be solved efficiently by using a technique known as Mean 

Value Analysis (MVA) [2]. MVA sets up and evaluates analytic expressions for the 

queues in a model to provide mean estimates for performance metrics such as customer 

response time, number of customer completions per second, and resource utilizations. 

MVA achieves computational efficiency by stipulating various assumptions together 

referred to as the product form assumptions [3]. The estimates provided by MVA are 

accurate if these assumptions are met in the system under study. Due to its efficiency 

MVA is widely used for solving QNMs. 

The straightforward application of MVA and QNMs to study session-based systems 

poses the following challenges: 
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• Several recent studies [4] [5] have indicated that the workloads of real session-based 

systems exhibit burstiness in the arrival of requests to the system. Since burstiness 

can significantly impact performance, methods must be supported to reflect its 

impact within models. Krishnamurthy et al. [6] observed that bursty workloads in 

session-based systems exhibited bursts in the number of concurrent customer 

sessions using the system. This suggests that it may be important to take into 

account the distribution of number of concurrent sessions during performance 

modeling exercises. However, traditionally a QNM only accepts a mean number of 

concurrent customers as an input. Furthermore, bursty request arrivals violate 

product form assumptions thereby limiting the straightforward application of MVA. 

• Krishnamurthy et al. [6] showed that several workload attributes as well as the 

distribution of system response times influence the distribution of number of 

concurrent sessions. While studying systems with burstiness, performance analysts 

may require support for fine-grained characterization that allows them to understand 

how arbitrary distributions for these workload attributes impacts the distribution of 

number of concurrent sessions and hence performance. Currently no MVA-based 

technique supports the ability to construct the distribution of number of concurrent 

sessions for arbitrary distributions of workload attributes. 

• QNMs can typically be used only for estimating the impact of contention among 

requests from various customers for hardware resources. They are not designed for 

evaluating the impact of contention for software resources such as processes and 

threads. Furthermore, they cannot be used to study the impact of various software 

request reply relationships (e.g., asynchronous processing). These factors may be of 
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considerable importance for enterprise application systems [7]. Consequently, 

QNMs with extensions to handle software related issues need to be evaluated for 

these systems. 

Even though several techniques that do not use MVA exist for modeling burstiness, there 

are significant challenges in applying them in practice. Existing analytic techniques that 

address burstiness are more complex than MVA. Typically, exact solution methods for 

mean response times do not exist and reliable estimates from approximate solutions are 

difficult to obtain. There are also several techniques to evaluate the impact of burstiness 

that depend solely on discrete event simulation. The exclusive reliance on simulation 

makes these techniques slower when compared to MVA-based analytic techniques 

especially for large systems. 

This thesis proposes a new performance evaluation technique to study session-based 

systems characterized by .bursty request arrivals. The technique applies the well-known 

concept of hybrid modeling which typically involves combining simulation with analytic 

techniques to analyze complex systems. It relies on a fast Monte Carlo simulation. The 

simulation can take as input arbitrary distributions for a set of workload attributes that 

influence burstiness. It estimates the population distribution that results from these 

distributions. The population distribution provides a measure of the burstiness of the 

system. For a system where the number of concurrent sessions varies the population 

distribution is defined as the distribution of number of concurrent sessions at the system. 

For a system where the number of concurrent sessions is constant the population 

distribution is defined as the distribution of number of concurrent requests at the system. 
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The population distribution estimated through the Monte Carlo simulation is combined 

with MVA-based predictive models to offer mean estimates of various performance 

metrics of interest. 

1.2. Research Objectives 

The main objectives of this research are as follows: 

• Evaluate the ability of straightforward applications of QNMs solved using MVA to 

capture the performance impact of burstiness in request arrivals. 

• Compare QNMs with extended QNMs called Layered Queuing Models (LQMs). 

LQMs[8] can capture the impact of contention for software resources as well as 

model various software request-reply relationships. 

• Propose a new method to model session-based systems characterized by burstiness. 

For efficiency and adoption by practitioners, the method should be able to exploit 

MVA-based predictive models. Furthermore, it should support fine-grained 

characterization of how various workload attribute distributions impact burstiness 

and hence performance. 

• Use performance test results collected from session-based systems to validate the 

proposed technique. 

1.3. Research Contributions 

Data collected from performance tests on two different TPC-W [9] systems is used in this 

thesis. The central component of a TPC-W system is a multi-tier bookstore application. 

It is very widely used in academia and practice as a sample enterprise application. The 
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C-TPC-W system was installed in Carleton University, Ottawa, Ontario, Canada. In this 

system the number of concurrent sessions was allowed to change during an experiment. 

Hence its population distribution is characterized by the distribution of number of 

concurrent sessions. Furthermore this system did not serve images embedded in the 

HTML pages of the bookstore's pages. The H-TPC-W system was installed in Hewlett-

Packard (HP) Labs, Palo Alto, California, USA. Since this system used a constant 

number of concurrent sessions in each experiment the population distribution is 

characterized by the distribution of number of concurrent requests. In contrast to C - 

TPC-W, H-TPC-W served the images used in the HTML pages. Based on data collected 

from these systems the salient findings are as follows: 

• The accuracy of performance predictions from the straightforward application of a 

QNM solved using MVA was very poor especially for bursty workloads. For the 

bursty workloads considered in C-TPC-W, this approach yielded an average error of 

19.34% while predicting the mean response time. The maximum error was as high 

as 42.56%. For the H-TPC-W system, the average error for mean response time 

predictions is 68.93%. 

• A straightforward application of LQMs solved using MVA improved prediction 

accuracy but the errors were still very high. For the C-TPC-W system, the MVA-

LQM approach reduced the average mean response time prediction error by 0.24% 

for bursty workloads when compared to the QNM. The maximum error was as high 

as 32.37%, about 10% improvement with respect to QNMs. For the H-TPC-W 
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system, the average error with the LQM was 50.54% as compared to 68.93% for the 

QNM. 

• The use of population distributions significantly improved response time predictions 

for bursty workloads. Population distributions that were observed during the 

performance tests were used in conjunction with QNMs and LQMs developed for 

the systems. For the C-TPC-W system average prediction accuracy was 4.87% for 

bursty workloads when a LQM was used in combination with the measured 

population distributions. This represents an improvement of 14% over the 

straightforward application of the LQM. For the H-TPC-W system a LQM used 

with the measured population distributions yielded an average prediction accuracy of 

7.22%. This represented an improvement of 43% when compared to the 

straightforward application of the LQM. 

• The accuracy of estimating the population distribution using Monte Carlo 

simulations was very good for the C-TPC-W system. For the C-TPC-W system, the 

estimated distributions of number of concurrent sessions are very close to the 

corresponding distributions measured during performance tests. As a result the 

performance predictions made using the estimated distributions were close to those 

made using the measured distributions. This suggests that accurately estimating the 

population distribution given distributions for workload attributes that impact 

burstiness is feasible for this type of a system. 

• The accuracy of estimating the population distribution was very poor for the H-

TPC-W system where the number of concurrent sessions in each performance tests 

10 



was constant. Results show that while it is feasible to accurately estimate the 

distribution of number of concurrent sessions it is very difficult to estimate the 

distribution of number of concurrent requests. Consequently, the thesis concludes 

that supporting fine-grained characterizations of the impact of workload 

characteristics on burstiness is very difficult for systems such as H-TPC-W which 

forces burstiness to be modeled through the distribution of number of concurrent 

requests. These results also suggest that the use of a more realistic performance 

testing approach that lets the number of concurrent sessions vary during a test (e.g., 

the approach adopted in C-TPC-w) can make performance prediction easier for 

session-based systems characterized by burstiness. 

The performance testing measurements for the two TPC-W systems were collected in 

previous work [6] [10]. The objectives of those studies are unrelated to the objectives of 

this thesis. The performance measurements collected by researchers of these two studies 

are reused in this thesis and to validate the proposed modeling technique. Furthermore, 

the thesis uses the Method of Layers (MOL) tool developed by Rolia and Sevcik [11] to 

solve QNM and LQM models. 

1.4. Publications 

Parts of this research have contributed to two papers that have been published as HP Labs 

technical reports. The following two journal papers that derive from these technical 

reports are under submission. 
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1) D. Krishnamurthy, J. Rolia, M. Xu, "WAM - The Weighted Average Method for 

Predicting the Performance of Systems with Bursts of Customer Sessions," in 

submission. 

2) J. Rolia, D. Krishnamurthy, M. Xu, and S. Graupner. "APE: An Automated Performance 

Engineering Process for Software as a Service Environment," in submission. 

Publication 1 presents the early version of the algorithm for the constructive technique to 

estimate the population distributions. The results presented in this case study only include 

the C-TPC-W system. In this thesis, the new results of the improved algorithm for 

estimating the population distribution are reported for both C-TPC-W and H-TPC-W. 

Furthermore, the measured data for the two TPC-W systems and WAM have been used 

in publication 2 to support automated performance evaluation of Software As a Service 

(SAS) environments. 

1.5. Thesis Organization 

The remainder of the thesis is organized as follows. Chapter 2 describes background and 

related work. Chapter 3 introduces the new Weighted Average Method (WAM) technique 

to model the impact of bursts in request arrivals. Chapter 4 and Chapter 5 present the case 

studies for the two TPC-W systems to validate WAM. Summary and conclusions are 

offered in Chapter 6. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

This chapter reviews existing performance testing and performance modeling 

methodologies. In particular existing modeling techniques that address the issue of 

burstiness are discussed. This discussion is used to motivate the modeling technique 

proposed in this thesis. 

Section 2.1 reviews existing performance testing methodologies and discusses the 

techniques used in this thesis. Section 2.2 provides background on the common analytic 

modeling techniques used by practitioners. Section 2.3 reviews existing work that has 

focused on modeling systems characterized by burstiness in request arrivals. 

2.1. Performance Testing Methodologies 

As mentioned in Chapter 1, performance testing involves submitting synthetic workloads 

to a system under study. Generating synthetic workloads for Web-based systems 

typically involves two steps namely, trace generation and request generation. The trace 

generation step handles the complexities of creating a synthetic trace of HTI'P/HTTPS 

requests that adhere to a workload model. The request generation step submits the 

requests in the trace to the system under study. Pre-generating traces reduces overheads 

during request generation, thereby ensuring that the achieved workload characteristics 

stay close to the specified characteristics. The following sections describe these two 

aspects of performance testing. 
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2.1.1. Trace Generation Techniques 

Many tools exist for testing Web server systems that serve static HTML pages. SURGE 

[l2] is a synthetic workload generator for testing Web servers. It has an offline trace 

generation engine that is used to create a trace of HTI'P requests for a set of files hosted 

on the Web server under test. The tool allows a performance analyst to control the 

distributions for file size, HITP response size, file popularity, temporal locality, number 

of embedded references per Web page, and idle time between successive requests. 

In contrast to systems that serve only static HTML files, the trace generation step for 

session-based systems must address the issue of handling inter-request dependencies. 

Inter-request dependencies arise because some requests in a session have to be submitted 

only after certain others requests have already been submitted. For example, in an e-

commerce system a request to order an item can only be submitted after a request to add 

the item to the shopping cart has been submitted. The common approach to handling 

inter-request dependencies within sessions has been the use of a first-order Markov chain 

[9][13][14]. With this approach, the states of the Markov chain represent a system's 

request types. Typically, a request type instructs a session-based application to execute a 

particular script or module. For example, in an e-commerce system the "Home" request 

type may instruct the system to display the homepage and the "Shopping cart" 

request type may execute a script to add items to the shopping cart. Transitions between 

the states model the user behaviour of navigating from one request type to another within 

a session. Transition probabilities determine the number of "visits" to each state in the 

chain and, hence, the mix of request types. Krishnamurthy et al. [6] argue that such an 
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approach has limitations especially for systems were the first-order dependency 

assumption is not valid (i.e., next request to be submitted in a session depends on more 

than just the current request submitted). 

SWAT [6] is a trace generation engine for session-based systems. It does not rely on 

Markov chains to enforce inter-request dependencies. Instead, it uses semantically 

correct request sequences for a system under test. SWAT ensures that sessions present in 

the synthetic workload conform to these sequences so that they are valid for the system 

under test. Specifically, SWAT constructs a synthetic workload with correct inter-

request dependencies that has specified characteristics for a set of workload attributes that 

are likely to impact performance. The characterizations for these attributes can be either 

based on those observed in real systems or perturbations for the purpose of a sensitivity 

analysis. 

The workload attributes modeled by SWAT are as follows. With SWAT, sessions arrive 

into the system from the outside world. The distribution of the times between successive 

session arrivals, defined as the session inter-arrival time, can be specified by the 

performance analyst. Each session behaves as a user by alternating between submitting a 

request and waiting for a response. The time a session spends idle before issuing its next 

request is defined as the think time. SWAT allows the think time distribution to be 

specified. The number of requests in a session is defined as the session length. SWAT 

also allows the distribution of session lengths to be specified. In addition to these 

attributes, SWAT permits control over the workload mix. Workload mix specifies the 

relative frequencies of occurrences for the different request types in the system. SWAT 
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outputs a trace file containing a user specifiable number of sessions such that the trace 

conforms to the distributions and workload mix. 

2.1.2. Request Generation Techniques 

There are three different types of request generation schemes that are typically supported 

by existing request generators namely, user-equivalents, aggregate, and mixed. These 

methods are briefly described as follows. 

The user-equivalents method (also known as closed method) is very widely used by 

performance analysts. The SURGE workload generator described previously uses this 

method. The closed method is based on the ON/OFF approach. A performance test uses 

a fixed number of software processes or threads called user-equivalents. Each user-

equivalent emulates a user's Web browsing behavior. It alternates between submitting 

requests specified in a trace (ON state) and lying idle for a predetermined period of time 

(OFF state). The load on the system under study can be increased by increasing the 

number of user-equivalents. The primary limitation of this approach is that it does not 

permit control over characteristics of the aggregate request arrival process observed at the 

system. For example, it is not possible to specify the exact instants at which requests have 

to arrive at the system under study. This is because the time instants at which a user 

equivalent issues requests depends on system state; long delays for requests resulting 

from a heavily loaded system will increase the time between successive requests from a 

user equivalent. Furthermore, due to the dependency with system state, when the system 

is heavily loaded the rate at which requests arrive at the system tends to increase less 

significantly as the number of user-equivalents is increased. As a result, a large number 
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of user-equivalents may be needed to cause significant stress (e.g., overload) on the 

system under study. 

Request generation engines that employ aggregate workload generation (also known as 

the open approach) address these limitations. S-Clients [15] and httperf [16] are request 

generators that support this method. With this scheme, there is no notion of a user 

equivalent. Instead, requests are issued at the appropriate time instants, independent of 

system load, so that a specified request arrival process is achieved at the system. 

Furthermore, since the request generator does not wait for the response of a particular 

request before submitting its next request, aggregate workload generation allows systems 

to be stressed while making use of fewer resources when compared to request generators 

relying on the user-equivalents approach. While the aggregate approach provides 

performance measures for aggregate system behavior, it does not provide corresponding 

measures for individual user behavior. 

Mixed workload generation combines aspects of the user-equivalents and aggregate 

approaches. This approach is particularly appropriate for describing session-based 

workloads and is the approach used by SWAT. With this approach, user sessions arrive 

in an open manner. Sessions are initiated at the specified time intervals irrespective of 

the number of sessions already present in the system under study. However, each 

individual session behaves in a manner similar to a user-equivalent. In contrast to the 

user-equivalents approach, the number of concurrent sessions in the system can vary 

continuously during the course of a performance test. The httperf [16] request generator 
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supports a mixed request generation module. SWAT uses this module to submit its 

synthetic trace of sessions 

2.1.3. Commercial Tools and Standard Benchmarks 

There are also several commercial tools [17][18] for performance testing session-based 

systems. However, to the best of my knowledge, these tools only address request 

generation issues and do not provide any automated trace generation capabilities. 

Typically, performance test teams have to manually code session emulation scripts that 

take into account inter-request dependencies for the system being studied. Such an 

approach can be time-consuming. Also, script development can get increasingly complex 

when finer control is needed over characteristics such as workload mix and session length 

distribution. 

The industry-standard TPC-W [9] benchmark is widely used in academic and practice for 

investigating performance issues pertaining to multi-tier, session-based application 

systems. The benchmark was proposed to facilitate standardized comparisons of 

hardware and software platforms from different vendors that could be used for executing 

e-commerce applications. The benchmark suite contains specifications for developing a 

multi-tiered bookstore application. The suite also contains a workload generator for 

conducting performance tests on the bookstore application. The workload generator 

follows the user-equivalents approach. Several open-source implementations of the TPC-

W bookstore and the workload generator have been developed [19][20]. These 

implementations have been widely used to emulate the behaviors of real multi-tier 

application systems in performance studies [10][21]. 
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This thesis considers two different TPC-W systems to demonstrate the proposed 

modeling technique. The C-TPC-W system uses the TPC-W bookstore implemented 

using the commercial off-the-shelf software. This system was tested using SWAT instead 

of the default user-equivalents based TPC-W workload generator. The H-TPC-W system 

uses the University of Wisconsin open-source TPC-W implementation [19]. This system 

was tested using the default, user-equivalents-based workload generator. This thesis 

discusses the implications of these two different workload generation approaches on 

performance modeling. 

2.2. Analytic Performance Models 

As mentioned in Chapter 1, an analytic performance model solves a system of equations 

to estimate performance metrics for a system. In this section various analytic modeling 

techniques such as system-level performance models, component-level performance 

models, and hierarchical models [22] are discussed. These analytic modeling techniques 

are very useful for computer systems performance analysis 

2.2.1. System-Level Performance Models 

A system-level performance model considers the system as a "black box" [22]. The 

internal details of the box are not modeled explicitly. Instead, the technique relies on 

only the throughput function of the box. Throughput is defined as the number of 

completions per second by the system. The throughput function gives the average 

throughput of the system as a function of k the concurrency of the system. The meaning 

of k depends on the manner in which the system is modeled. For example, k can 

represent the average number of concurrent customer sessions in the system and X(k) is 
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then the number of sessions completed per second when there is k concurrent sessions in 

the system. Alternately, k can represent the number of concurrent customer requests in 

the system and X(k) is then the average number of customer requests completed per 

second when k concurrent customer requests in the system. 

A system-level performance model can be solved by using the state transition approach. 

The definition of state depends on problem at hand. Typical examples of state are the 

number of concurrent sessions in the system and the number of concurrent request in the 

system. As shown in Figure 2.1, the state transition diagram (STD) illustrates the states 

that a system can be found in as well as how it transitions from state to state. An arrival 

transition increases system state by 1 while a departure transition decreases system state 

by 1. As shown in Figure 2.1, the transitions are characterized by state dependent on 

arrival and departure rates. A set of equations called flow equilibrium equations can be 

set up for the STD. These equations can be solved to estimate the state probabilities p(k). 

p(k) is defined as the fraction of time spent by the system at state k. The state 

probabilities can then be used to obtain performance metrics such as mean system 

utilization, mean response time, and mean system throughput. 

It should be noted that the technique makes several assumptions. In particular, the times 

spent at the various states must be exponentially distributed. This is often referred to as 

the Markovian assumption and for this reason these models are also called as Markov 

models. Performance predictions from this technique can be inaccurate if these 

assumptions are not satisfied. Several variants of the STD shown in Figure 2.1 are also 

possible. For example, models that place an upper limit on the state can be used to 
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represent systems which impose limits on the maximum number of concurrent sessions or 

requests allowed. Similarly, state independent arrival and departure rates can also be 

used. 

Figure 2.1: Example of a STD for a system-level model 

2.2.2. Component-Level Performance Models 

In contrast to system level models, component-level performance models take into 

account the different resources of the system and the way they are used by different 

requests. QNMs are widely used as component-level models. A QNM consists of a 

system of inter-connected queues. Each queue is used to model resources such as 

processors, disks, and networks. As mentioned in Chapter 1, the MVA technique can be 

used to efficiently solve the system of queues of obtain mean values of performance 

estimates such as response time, resource utilizations, and throughput. 

A QNM takes as input several parameters. A resource service demand D has to be 

specified for each resource in the QNM. D is defined as the mean time consumed by a 

resource to satisfy a customer's requests. Note that D does not include the time spent by 
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the customer request waiting to get access to the resource. It only represents the time 

spent in the resource after the request obtains access to the resource. D can typically be 

estimated from measurements collected during performance tests [23]. In addition to the 

demand a queuing discipline has to be specified for each queue. Examples of queuing 

discipline include First Come First Served (FCFS) and Processor Sharing (PS) [22]. 

QNMs support the concept of multiple customer classes. Multi-class models are used for 

systems, which have different groups of customers where each group stresses system 

resources in a significantly different manner than the other groups. For multi-class 

QNMs the demand values for a resource must be specified separately for each customer 

class using that resource. 

QNMs can have open customer classes as well as closed customer classes. The number 

of requests present in the queuing network from an open customer class can be 

unbounded. In contrast, a closed customer class has a fixed number of requests in the 

network. A QNM that only has open customer classes is called as an open QNM while a 

QNM that only has closed customer classes is defined as a closed QNM. In an open 

QNM requests arrive into the network as per an arrival rate A. The arrival rate is an 

input parameter for the model. The request consumes various resources and departs the 

system. For a stable system, the system throughput equals the arrival rate. In a closed 

QNM a fixed number of customers "circulate" in the system. The number of concurrent 

customers is an input parameter for the model. A customer submits a request to the 

system which consumes various resources. However, instead of departing the system 

after consuming the resources the request is replaced by another request from the same 
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customer. The average time between successive requests from a customer can be 

specified as a mean think time. The system throughput depends on the number of 

concurrent customers, the system response time and the think time. 

While a QNM can reflect contention among requests from various customers for 

hardware resources, it cannot be directly used to reflect the impact of contention for 

software resources. Examples of software resources include software processes, threads, 

semaphores, and locks. Furthermore it is also difficult to model with QNMs request-

reply relationships such as fork/join, asynchronous processing, and processing involving 

both synchronous and asynchronous phases. These interactions are commonly 

encountered in software systems. LQMs are extended QNMs proposed to address these 

limitations. A LQM consists of system of QNMs that allow a software resource to 

provide some service to customers while also acting as a customer for other resources 

(e.g., a hardware resource). Rolia and Sevcik [11] devised an algorithm called the 

Method of Layers (MOL) that solves the system of QNMs iteratively using MVA to 

obtain mean performance estimates. Balsamo et al. conclude that extended QNM-based 

approaches, such as LQMs, are the most appropriate modeling abstraction for multi-

tiered software systems [7]. 

The MVA technique yields accurate predictions only when certain assumptions are met. 

As mentioned in Chapter 1, the set of assumptions is referred to as product form 

assumptions [3]. In particular MVA's performance estimates can be inaccurate when a 

system experiences burstiness in the arrival of requests. Other conditions that MVA 

cannot handle include priority scheduling, highly variable resource demands at FCFS 

23 



resources, and blocking relationship among resources. This thesis proposes a new 

technique to model systems with bursty requests arrivals. In contrast to a closed QNM 

which considers only the mean customer population, this technique captures the impact 

of burstiness by considering the customer population distribution. 

2.2.3. Hierarchical Performance Models 

Hierarchical performance models combine system and component-level models. The 

hierarchical technique has been used to study the performance of mixed systems that are 

characterized by both open customer arrivals and closed customer circulations [24]. 

They have also been used to study the load dependent behaviour of multi-threaded 

software servers [25]. 

Figure 2.2 presents the STD for a hierarchical model that can be used for a session-based 

system. This model is used as a baseline for comparison with WAM. In general, a 

hierarchical model has a higher level model that uses state dependent arrival and 

departure rates to calculate the state probabilities and hence performance metrics such as 

response time. The departure rates are obtained by solving the lower level model which 

is a closed QNM or LQM whose predictions are obtained through MVA. 

In Figure 2.2, the state of the system represents the number of concurrent sessions in the 

system. The state Sk varies from 0 to N where N is the maximum number of concurrent 

sessions in the system. Sessions arrive at the system from the outside world. Each 

session arrival causes the number of concurrent sessions to increase by 1. The rates at 

which such transitions occur are given by the state dependent session arrival rates 4• A 
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PA 

session submits L requests on an average where L is the mean session length. Z denotes 

the mean think time between successive requests in a session. Each session completion 

causes the number of concurrent sessions to decrease by 1. The rates at which such 

transitions occur are given by the session death rates lu ck. 

I • I was 

P3k #11x(k-1) 

Component-
Level Model 

Figure 2.2: Hierarchical birth-death model for a session-based system 

At a given state k, k concurrent sessions are competing for the session-based system's 

resources. Consequently, as shown in (2.1) the death rate lusk can be calculated as the 

session throughput XSk obtained by solving a closed QNM with a session population 

of k and mean think time of Z. 
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/1 sk - Xsk = 
(Rk+Z)L 

k 
(2.1) 

In (2.1) Rk is the mean request response time obtained from the component-level 

predictive model when there are k sessions observed in the system. Balance equations 

involving the birth and death rates can be solved to obtain the probability Pk of residing 

in each state k as follows: 

1  
PO Nk, 

1+H 
kI 1=1 X si 

k2 
1)k 1)O*   rj 

(2.2) 

(2.3) 

The probabilities Pk, for k=O ... N defines the population distribution. Equations (2.2) and 

(2.3) can be written in terms of customer request arrival and completion rates. The 

request arrival rate 2k is the session arrival rate Ack multiplied by the mean session 

length L. Similarly, the request throughput Xk is the session throughput XSk multiplied 

by the mean session length L. Using these relationships (2.2) and (2.3) can be rewritten in 

terms of request-level rates as follows: 

1 
Nk,% 

1+H :' 
k=I i=I Xi 

k2 
Pk, =Po* 11 

i=1 Xi 

(2.4) 

(2.5) 

The mean request response time for the system is estimated using Little's law [231 as 

follows: 
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PkXkRk 

where 

R _k=1  
mean N 

1Xk 

Pk represents the population distributions, Xk 

(2.6) 

represents the customer request 

throughputs, and Rk represents the mean request response time at population level k. 

2.2.4. Existing Techniques for Modeling Systems with Bursty Request Arrivals 

This thesis focuses only on burstiness in the arrival of requests to a session-based system. 

The term bursty is also used in literature to describe workloads characterized by high 

variability and correlation in resource service demands. For a given customer request 

arrival pattern and mean request service time, the performance of a resource with bursty 

service times is likely to be different than that of a resource with less bursty demands. 

Bondi and Whitt [26] studied the impact of high service time variability on the 

performance metrics of a closed network of queues and discussed the implications of the 

results for analytic performance modeling. Eager et al. [27] proposed an efficient 

technique for solving a closed network of queues with high service time variability. 

More recently, Casale et al. [28] proposed an analytic technique to compute upper and 

lower bounds of performance indices for closed systems with bursty service processes. 

Addressing this type of burstiness is not the direct focus of this work. However, analytic 

techniques that can reflect the impact of high variability in service times can be integrated 

with the WAM technique proposed in this thesis in a straightforward manner to study 

such systems. 
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Several studies have indicated that multi-tier session-based systems experience bursty 

request arrivals and that burstiness can adversely affect performance. Menasce et al. [5] 

characterized the workloads observed at an e-commerce system and an auction system. 

The authors found that both systems were characterized by bursty arrivals of requests 

over several timescales. They invoke the properties of the well-known ON-OFF process 

[29] to argue that the bursts observed at fine timescales, i.e., several dozen seconds, were 

due to the heavy-tailed [30] nature of the session length distributions observed at the 

systems and the presence of think times in sessions. Vallamsetty et al. also noticed 

similar burstiness in the arrival of requests at another real e-commerce system [4]. 

Krishnamurthy et al. [6] showed for a multi-tier system that distributions which cause 

highly variable session lengths, think times, and request resource demands result in high 

variability in the distribution of number of concurrent sessions and hence burstiness in 

request arrivals at fine timescales. This suggests that modeling customer population 

distribution may be helpful for modeling the impact of bursty request arrivals in session-

based systems. In addition to such fine timescale burstiness, burstiness has also been 

observed at coarser timescales, e.g., hours, days, in real-session based systems [31]. 

Burstiness can have a big impact on how predictable or repeatable a system's behaviour 

is in response to similar workloads. Crovella and Lipsky showed that the steady-state 

values for performance measures from multiple statistically identical simulation runs that 

use heavy-tailed distributions can result in very different measures for each run [32]. 

Observations obtained using a heavy-tailed distribution exhibits non-negligible 

probabilities for very large and very small values. Krishnamurthy et al. [6] confirmed the 
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result of Crovella and Lipsky for multi-tier software systems. For a TPC-W system 

servicing bursty workloads, the authors found that multiple statistically identical 

measurements run with the same mean resource demands and same throughput resulted 

in significantly different mean response time measurements. These results suggest the 

need for modeling approaches that characterize a range of possible system behaviours 

under bursty workloads. 

MVA of closed QNMs and LQMs, techniques widely used by practitioners, only consider 

the average customer population of a system. More complex techniques exist which 

could potentially be used for modeling the impact of burstiness. Classical queuing theory 

offers G/G/* queues [33] that can take into account the first and second moments of any 

arbitrary request inter-arrival time distribution. However, exact solution methods for 

mean response times do not exist for networks of such queues and reliable estimates from 

approximate solutions are difficult to obtain [33]. Furthermore, heavy-tail-like 

distributions that are a characteristic of bursty systems require more than the first two 

moments for a proper characterization. Recently, Psounis et al. [34] considered a single 

multi-server queue that is subjected to heavy-tail-like distributions. However, the 

approach has not been extended to queuing networks. 

Several researchers have proposed Markovian Arrival Processes (MAPs) for modeling 

bursty request arrivals [28] [35]. However, queuing networks having MAPs cannot be 

solved using efficient analytic techniques such as MVA. These techniques typically rely 

solely on discrete event simulations which are more time consuming than applying MVA. 
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Menasce and Almeida propose MVA-based techniques that consider heavy-tailed 

distributions and bursty request arrivals for Web server systems [22]. Specifically, they 

describe a QNM that reflects the impact of a heavy-tailed file size distribution at Web 

servers serving static HTML pages. The authors argue that a multi-class model where 

the classes represent requests for files belonging to different file size ranges is more 

suited for capturing the impact of the heavy-tailed distribution than a single class model. 

This technique is specific to systems that serve static files. It is not intended for 

transaction-oriented, session-based systems of the kind considered in this work. The 

authors also propose another heuristic technique that uses a QNM to reflect the impact of 

burstiness in request arrivals. The technique splits a given HTTP request log into equal 

sized time periods. It counts the number of time periods for which the average request 

arrival rate exceeded the request arrival rate observed over the entire log. This count is 

used to compute a burstiness factor which is in turn used to inflate the service demand of 

the bottleneck device in a QNM [22]. However, the technique was not validated with 

respect to measurements and was not proposed as a constructive technique that permits a 

performance analyst to assess the impact of distributions that contribute to burstiness on 

mean response time behaviour. 

As mentioned previously, the hierarchical technique described in Section 2.2.3 can 

consider the population distribution. As shown in Section 2.2.3, the balance equations 

can be solved to estimate the population distribution. Equations (2.1) and (2.6) can then 

be used to compute performance metrics. However, as mentioned in Section 2.2.1, the 

population distribution estimates are accurate only for workloads that cause the times 
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spent in the system states to be exponentially distributed. However, this is not expected 

to be the case for systems affected by burstiness. 

This thesis proposes and evaluates a new approach to estimate population distribution 

called WAM. WAM applies the well-known concept of hybrid modeling to session-based 

systems. Hybrid modeling typically combines simulation with analytic modeling 

techniques to study complex systems. The WAM technique is motivated by the 

hierarchical approach described in Section 2.2.3 but does not rely on a birth-death model 

to estimate population distribution. Instead for any given workload it exploits a fast 

Monte Carlo simulation to quickly estimate the population distribution, i.e., per 

population level probabilities P(k) for k = 0.. .N, rather than relying on the closed 

formulas given by Equations (2.2) and (2.3), or (2.4) and (2.5) for the birth-death process. 

The estimated distribution is combined with a performance model (e.g., a QNM or a 

LQM) to predict a system's performance under that workload. The primary advantage of 

the newly proposed method is that it is not limited by the exponential distribution 

assumption in the hierarchical approach. WAM is more robust with respect to the 

distributions that contribute to bursty behaviour. For example, it permits in a 

straightforward manner the study of how arbitrary distribution functions for workload 

parameters such as session inter-arrival time, think time, and session length impact the 

population distribution and hence performance. 

Summarizing, the WAM technique is proposed with an objective to achieve the following 

advantages over other techniques reviewed in this section that address the issue of 

burstiness: 
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• Robustness with respect to arbitrary distributions - This allows the impact of 

arbitrary distributions or workload traces to be studied. 

• Support for constructive capability - This allows fine-grained control over how 

distributions of various workload parameters that influence burstiness impact 

performance. This capability also allows a range of possible behaviors to be 

characterized for heavy-tailed workloads. 

• Efficient when compared to alternatives that rely solely on simulation - As 

described in Chapter 3, the WAM technique can exploit efficient MVA-based 

predictive models. It also relies on fast, Monte Carlo simulations to estimate the 

population distribution. Due to its use of MVA and fast simulations, for large 

systems WAM is likely to be faster than techniques that solely rely on discrete event 

simulations (e.g., techniques that use MAPs) to evaluate the impact of bursts. 

The following chapters describe the design and validation of the WAM technique. 

2.3. Summary 

This chapter reviewed performance testing and performance modeling methodologies. In 

particular, modeling techniques that address the issue of burstiness were described. 

Burstiness can significantly degrade system performance and hence it is important for 

analytic modeling techniques to capture its impact. A brief overview of the WAM 

approach for modeling burstiness was provided and its potential advantages were 

discussed. 

Chapter 3 describes the WAM technique in more detail. Chapters 4 and 5 use 

performance test results collected from two different TPC-W systems to validate the 
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technique. In particular, WAM is used in conjunction with both QNMs and LQMs for 

those systems. The WAM-based models are compared with the following analytic 

modeling approaches: 

• Closed QNMs of the systems solved using MVA. These models only consider mean 

population. 

• Closed LQMs of the systems solved using MVA. These models only consider mean 

population. 

• The hierarchical method of Section 2.2.3 applied with closed QNMs of the systems 

solved using MVA. 

• The hierarchical method of Section 2.2.3 applied with closed LQMs of the system 

solved using MVA. 
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CHAPTER 3: THE WEIGHTED AVERAGE METHOD (WAM) 

This chapter describes the WAM technique for improving the accuracy of performance 

predictions for systems characterized by burstiness. Section 3.1 provides a high-level 

overview of WAM. Section 3.2 describes WAM for mixed systems characterized by 

open session arrivals. Section 3.3 discusses how WAM has to be adapted to study closed 

systems where the number of concurrent sessions is constant. Section 3.4 concludes the 

chapter. 

3.1. Overview of WAM 

Figure 3.1 shows the process of applying WAM to predict the performance of a system 

under study under a given workload. WAM is a trace-based technique. The method 

takes as input a trace of sessions representing a particular workload. The trace can either 

be a historical trace or a synthetic trace generated by a tool such as SWAT. Both types of 

traces record session identifiers, the time at which the first request in a session arrives at 

the system under study, the set of think times for a session and an identifier for the last 

request in a session. In addition a historical trace records response times for requests in a 

session. Response time is defined as the difference between the instant at which a request 

was completed by a system and the instant at which the request arrived at the system. 

Historical traces collected at production systems can be used to predict a system's 

performance if it were subjected to those workloads. Synthetic traces can be used to 

explore how characterizations for various workload attributes that influence burstiness 

impact system performance. The WAM technique also relies on a predictive model for 
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the system under study. The model should be capable of providing accurate performance 

estimates for various customer population levels. 
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Figure 3.1: Performance modeling process with WAM 
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As mentioned previously, WAM estimates the population distribution and uses it to take 

into account the impact of bursts. The population distribution is a function of workload 

characteristics (e.g., distributions of session inter-arrival time, session think times, and 

session length) and the response times encountered by the requests in sessions. The 

request response times are unknown for a synthetic trace. As a result, WAM uses the 

trace in conjunction with mean response times from the predictive model to estimate the 

population distribution. Since request response times are known for a historical trace 

WAM does not need the predictive model for estimating the population distributions for 

such traces. For both types of traces, the estimated population distribution is used in 

combination with the predictive model to offer mean estimates of performance metrics 

such as request response time and throughput. 

3.2. WAM for Systems with Varying Number of Concurrent Sessions 

WAM is described for mixed systems where the number of concurrent sessions varies 

over time. This type of system is considered first since session-based systems typically 

exhibit such type of behaviour. As mentioned in Chapter 1, the population distribution 

for such systems is defined as the distribution of number of concurrent customer sessions. 

Closed QNMs or LQMs that are often used by practitioners can only consider the mean 

customer session population. This thesis argues that such an approach may not be 

appropriate for bursty systems. Instead WAM offers predictions that consider the 

population distribution instead of just the mean population. 

WAM is motivated by the hierarchical approach described in Section 2.2.3. However it 

uses population distribution estimator (PDE) to quickly estimate the population 
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distribution, i.e., per population level probabilities P(k) for k = 0.. .N, rather than relying 

on the closed formulae for the birth-death process from (2.2) and (2.3). The remainder of 

the performance prediction method is similar to that shown in Figure 2.2. The population 

distribution estimation process is now described. The algorithm for the population 

distribution estimator in WAM is summarized in Figure 3.2. 

The WAM approach relies upon the following: 

• A trace file of sessions S; 

• A sequence R of mean request response time estimates R(k) for k = 0.. .N for the 

system - one for each concurrent session population level k as obtained by solving a 

predictive model with a mean customer think time of Z seconds; 

• A sequence X of mean request throughputs X(k) for k = 0. . .N for the system - one 

for each concurrent session population level k. 

As mentioned previously, the trace file S can be based on a historical session log from a 

real system, or it can be synthetically generated using a tool such as SWAT. Each request 

has a session identifier, a start time and end time such that (end time - start time) is the 

response time of the request, and a flag that indicates whether a request is the last request 

for its session. For all but the last request in a session, the request's think time is defined 

as the time between its end time and the start time of the next request in the session. The 

first request of a session has a start time that is equal to its session's arrival time. The 

sequence R of response time estimates is obtained from a performance model for the 

system, e.g., a QNM or a LQM. The sequence X of throughput estimates are obtained 

from the trace S using the method described shortly. 
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1. Create a Future Event List (FEL). FEL stores events in chronological order. 
2. Current_Population=O 
3. State_Start_Ti,ne=O 
4. State_End_Time=O 
5. Initialize elements of Aggregate_State_Time array to 0. This array has Nn, elements where Nmax is the 
maximum population. 
6. Initialize elements of Aggregate_State_Completions array to 0. This array has Nnzax elements. 
7. Obtain Predictive_Model_Response_Time array by solving a predictive model. This array has N,,,ax 
elements. 

8. Create request submission events corresponding to first requests of all sessions in trace S. Store the 
events in the FEL 
9. While FEL is non-empty 

Select earliest event in FEL 
If event is submission of a request 

If request is first request in a session 
State—End—Time = start time of request 
Aggregate_State_Timne[Current_Population]+=(State_End_Timn-State_Start_Timne) 
Completions=Request completions in the period (State—Start—Time, State—End—Time) 
Aggregate_State_Comnpletions[Current_Population]+=Comnpletions 
State_Start_Tinze=State_End_Ti,ne 
Current_Population+=1 

End If 
If S is a historical trace 

Response—Time = Get actual response time of request 
End If 
If  is a synthetic trace 

Response—Time = GenSyntheticResponse(State_Start_Time , Current—Population, FEL) 
End If 
Create a request completion event at (State_Start_Time+Response_Time) 
Update FEL with the event 
Continue 

If event is completion of a request 
If request is last request in a session 

State—End—Time = end time of request 
Aggregate_State_Time[Current_Population] +=(State_End_Timne-State_Start_Timne) 
Comnpletions=Re quest completions in the period (State—Start—Time, State_End_Time) 
Aggregate_State_Completions{Current_Population]+=Completions 
State_Start_Tinze=State_End_Timne 
Current—Population - =1 
Continue 

End If 
Think_Time = Get think time of request 
Create a request submission event at (State_Start_Timne+Think_Time) 
Update FEL with the event 
Continue 

End While 
10. Compute Total _Time as sum of elements of Aggregate_State_Time 
11. Compute Pk values by dividing each element of Aggregate_State_Time by Total—Time 
12. Compute Xk by dividing each element of Aggregate—State—Completions with the corresponding element 
of Aggregate_State_Time 
13. Use equation (2.6) to compute mean response time 

Figure 3.2: The WAM algorithm 

38 



The population distribution estimator operates as follows. When using a historical trace 

file S, per request response times are known so the sequence R of response time estimates 

is not needed to compute the population distribution. The population distribution 

estimator computes the P(k) for k = 0.. .N values by traversing the trace of sessions S 

noting when the first request of each session starts and the last completes. In this way it is 

able to keep track of and report the aggregate time that the system has spent at each 

session population level. When normalized with respect to the total simulated time this 

gives the population distribution P(k), k = 0. . .N. Furthermore, as shown in Figure 3.2 the 

population distribution estimator also tracks the aggregate number of request completions 

observed at each session population level. Knowledge of these completions and the 

aggregate time spent at each session population level allows to compute estimates of X(k) 

for k = 0.. .N. The simulations are very quick, essentially requiring the time to traverse 

the trace file and are robust with respect to arbitrary workload parameter distributions. 

When using a synthetically generated session trace file, the session arrival times, think 

times, and session lengths are known from the trace. However, only the first request's 

start time is known. The request response times and hence the request end times are not 

known. As the population distribution estimator traverses the session trace, each time it 

encounters a new request, it estimates the request response time using the 

GetSyntheticResponse method. This method, which will be discussed shortly, estimates a 

request's response time by considering the initial population level when the request is 

made and the possible changes of population level between the request's start time and its 

estimated end time. The estimated response time Reti,,ijte is used to estimate the end time 
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for the request as start time + Restj,,,aje. The request's think time is recorded in the trace 

and could be from any desired distribution. The next request has a start time equal to the 

end time + think time from the previous request. 

The GetSyntheticResponse method is used to estimate request response times and hence 

the request end times for a synthetic trace. As shown in Figure 3.3, this method estimates 

the response time of a request by considering the initial population level at the instant the 

request is submitted and the subsequent changes in population levels during the requests 

estimated duration. 

1. current Tune = current time, T = currentTj,ne 
2. Current population at currentTi,ne = 
3. tmpEndTuine=currentTime + R[] (R[i] is a value from sequence R when population = i) 
4. endTiineAdjustinentFactor = 
5. nextArrivalTime=getNextArrivalTi,ne(sessionA,','ivalTi,neArray) 

6. NextCoinpletionTuine=getNextcompletionTiine(sessioncompletionTinzeArray) 

While (nextArrivalTinze < tmpEndTinze 11 nextGoinpletionTiine <tnzpEndTinze) 
If (nextGompletionTu,ne < nextArrivalTi,ne) 

T = nextCompletionTuine 
endTirneAdjustinentFactor = endTiineAdjustmentFacto,' - (T - cur,'entTime) / R[i] 
i=i-1 
current Ti me = T 
trnpEndTimne = T + endTirneAdjustmnentFactor * Rh]; 
nextCompletionTiine = getNextComnpletionTinze(sessionCornpletionTirneArray) 

End If 
If (nextComnpletionTimne> nextArrivalTimne) 

T = nextArrivalTimne 
endTimeAdjustnmentFacto,' = endTinzeAdjustmnentFactor - (T - currentTime) I R[i] 
i = i + 1 
currentTirne = T 
tmnpEndTirne = T + endTimeAdjustmnentFactor * R[i] 

nextArrivalTime = getNextArrivalTumne(sessionArrivalTimeArray) 
End If 

End While 

Figure 3.3 Algorithm of the GetSyntheticResponse method 
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Consider the first request in a session. The arrival time for the first request is known and 

is denoted as currentTime. The population at this instant is calculated as i. The response 

time is initially estimated as R where R is the mean response time prediction from the 

predictive model at population level 1. The end time of the request is temporarily obtained 

as tmpEndTinie = currentTime + R. A variable called the endTimeAdjustinentFactor is 

maintained for each request and its value is initialized to 1. This variable can take values 

from 0 to 1. It represents the amount of processing that remains for a request. A value of 

1 indicates that the system has just started to process the request while a value of 0 

indicates that the request has been completely processed. 

The tmpEndTime estimate has to be adjusted to reflect changes to the population as the 

request is being processed. In the time period [currentTime, tmpEndTime], the 

population level can change due to the arrival or departure of other sessions. An arrival 

of a session can cause increased contention among requests for system resources. 

Consequently, the estimated end time tmpEndTirne has to be increased to take into 

account this contention. Similarly, tinpEndTime has to be decreased to reflect the 

potential decreased contention due to departing sessions. Two alternative scenarios will 

now be considered. The first scenario considers the arrival of a new session at time T 

where T is in the interval [currentTime, tinpEndTime]. The second scenario considers a 

session departure (other than that of the session being processed) at T. 

When a session arrives at T, the endTimeAdjustmentFactor is updated as follows. 
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T - currentTime 
endTimeAdjustmentFactor = endTimeAdjustmentFactor 

R, 
(3.1) 

In (3.1) i is the population observed just before a new session. After calculating the new 

endTimeAdjustmentFactor, the population is increased by 1 to i+1 to reflect the new 

session and the new end time of the current request is computed as follows: 

tmpEndTime = T + R1 * endTimeAdjustmentFactor (3.2) 

Equation (3.2) indicates that the remainder of the request (as measured by 

endTimeAdjustinentFactor) will be processed slower by the system (i.e., at the "rate" of 

For the scenario where a session departs at time 2', the endTimeAdjustmentFactor is 

updated as before by using (3.1). However, now the population is decreased by 1 to i-i 

and the updated request end time is computed as follows: 

tmpEndTime =2' + R11 * endTimeAdjustmentFactor (3.3) 

Equation (3.3) indicates that the remainder of the request will be processed faster by the 

system (i.e., at the "rate" of 1/R11 ). 

The"currentTirne is updated as T and the value of T is updated to the next session arrival 

or session departure event. The calculations of the endTimeAdjustinentFactor and the 

tmpEndTime are repeated until there is no new session arrival or session departure (other 

than the session being processed) during the time interval [currentTime, tnipEndTime]. 

The difference between the final value of tmpEndTime and the request start time gives an 

estimate of the request's response time. As mentioned previously, the arrival time of the 
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next request in the session is computed by adding the think time to tmpEndTime. The 

GetSyntheticResponse method is again invoked for this new request to compute its end 

time. 

As shown in Figure 3.2, the population distribution estimated in this fashion is used with 

(2.6) to compute the mean response time. For synthetic traces, GetSyntheticResponse 

provides a heuristic approximation of the real response time of a request. The 

effectiveness of this approximation is explored further in Sections 4.4 and 5.5. 

Due to its use of Monte Carlo simulations, WAM can be used to explore the 

predictability of a system's behaviour. By using different seeds for random number 

generation, SWAT can be used to generate multiple synthetic session trace files that 

match the desired workload distributions. Each trace may provide different estimates for 

the population distribution and may result in a different estimate for mean system request 

response time. As mentioned in chapter two, this is expected for systems influenced by 

bursty workloads such as heavy-tailed distributions. Each execution is an example of how 

the system may behave. A range of estimated mean response times, from multiple 

simulations, provides information about how variable, i.e., unpredictable, a system's 

behaviour can be expected to be. 

3.3. WAM for Systems with Constant Number of Concurrent Sessions 

Many practitioners and academics employ user-equivalents (i.e., closed) request 

generation while evaluating session-based systems. For example, a number of 

performance studies [1O][36] used the user-equivalents based default TPC-W workload 

43 



generator. A consequence of such a choice is that the number of concurrent sessions is 

constant during a performance test. Each user-equivalent acts as a session and all 

sessions start (near) simultaneously and end (near) simultaneously. Such a scenario is not 

likely to be valid for real session-based systems. A workload generator that is more 

representative of real systems would allow the number of concurrent sessions to vary [37] 

facilitating the method described in the previous section. However, due to the prevalent 

wide use of user-equivalents based request generation this thesis proposes techniques to 

adapt WAM for such studies. 

As mentioned in Chapter 1, for a closed system the population distribution is defined as 

the distribution of concurrent requests at the system. In other words the state is now the 

number of concurrent requests contending for system resources. This number can vary 

from 0 to N,,jax where N,, is the number of concurrent sessions (i.e., number of user-

equivalents). Another way of interpreting the state is that it represents only those 

sessions that are consuming and waiting for system resources and excludes sessions that 

are "thinking". The predictive model for a closed system quantifies the contention among 

requests for system resources. Specifically, it provides response time estimates for 

various numbers of concurrent requests in the system. Due to the new choice of system 

state the predictive model uses a mean think time of zero second. 

The simulation process remains similar to that for mixed systems except that WAM now 

keeps track of the number of concurrent requests in the system. Furthermore, the events 

of interest are now the arrival and departure of requests as opposed to the arrival and 

departure of sessions. For synthetic traces, whenever a new request arrives or departs the 
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GetSyntheticResponse method is invoked to estimate request response times. Lastly, as 

mentioned before, the predictive model used for this type of system provides 

performance estimates for various numbers of concurrent requests. The mean response 

time is computed as before by applying (2.6). 

3.4. Conclusions 

This chapter described WAM. WAM is a hybrid technique that combines simulation with 

analytic modeling. For a mixed system, the technique estimates the distribution of 

number of concurrent sessions for any given workload. For a closed system, WAM 

estimates the distribution of number of concurrent requests for a given workload. The 

estimated population distribution is used in combination with a predictive model to offer 

predictions for metrics such as mean request response time and mean throughput. In the 

ensuing chapters the effectiveness of WAM is assessed by using it to model the 

performance of two different TPC-W systems. 
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CHAPTER 4: C-TPC-W CASE STUDY 

This chapter presents a case study of a multi-tier TPC-W application system. The system 

was installed at Carleton University in Ottawa, Canada [6]. It is referred to as C-TPC-W. 

Several performance test experiments were carried out for this system. C-TPC-W does 

not use the default user-equivalents based TPC-W workload generator for these 

experiments. It instead uses the SWAT workload generator that employs mixed 

workload generation. As a result, the number of concurrent sessions varies over each 

experiment. 

Measurements collected from experiments are used to characterize the accuracy of WAM. 

Specifically, the system is subjected to several controlled synthetic workloads generated 

by the SWAT tool. Experiments using the synthetic workloads yield measurements that 

provide insights on how the system's performance is affected by distributions of session 

inter-arrival time, session length, and session think times and workload mix. A QNM 

and an LQM are developed for the system. For each experiment, the corresponding 

measurements are used to obtain parameters for these models. The WAM technique is 

then independently used in combination with the LQM and QNM to predict the mean 

response time for that experiment. The predicted mean response times are then compared 

with the measured mean response time for the experiment. The process is repeated for all 

experiments to assess the accuracy of WAM for various bursty as well as non-bursty 

workloads. 

The experiment test bed for the C-TPC-W is described in section 4.1. Section 4.2 

analyzes the measurements collected from experiments to derive insights on how various 
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workloads impact the system's performance. The predictive performance models, both a 

QNM and a LQM, are developed for the C-TPC-W system in section 4.3. Section 4.4 

compares the straightforward application of these models that does not consider the 

population distribution with the hierarchical Markov chain approach described in Section 

2.2.3 and WAM which considers the population distributions. 

4.1. Experiment Test Bed 

4.1.1. Experiment Setup 

The experimental setup consists of a client node, a Web and application server node and a 

database node connected together by a non-blocking Fast Ethernet switch, which 

provides dedicated 100 Mbps connectivity to each node. The client node is dedicated 

exclusively to an httperf Web request generator [16] that submits the synthetic workloads 

generated by SWAT. Logs generated by httperf record request response times observed 

during an experiment. The logs also record for each session the times at which requests 

are issued, the times at which requests completed, and the number of requests submitted. 

This information can be analyzed to determine the measured population distribution 

during an experiment. The Web/App server node implements the TPC-W application's 

business logic software and communicates with the TPC-W database. The DB server 

node executes the database server software which manages the TPC-W database. Finally, 

a windows performance monitoring utility is employed that collects a user-specified sets 

of performance measures from both server nodes at regular specified sampling intervals. 

The experiment setup is shown in the Figure 4.1. 
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Client Node 

Web/App Server Node DB Server Node 

Figure 4.1 Experiment setup for the C-TPC-W system 

The C - TPC -w application is deployed on Web, application, and database servers that are 

part of a commercial off-the-shelf software product. The name of the product has been 

withheld due to a non-disclosure agreement with the vendor. The system is configured to 

not serve images. Image request were not submitted in any of the experiments. This 

choice is consistent with the policy followed in several production systems [4][38]. In 

these systems images are hosted on separate servers or on content distribution networks. 

It is noted that the experiments presented in this study are not TPC-W benchmark runs. 

The TPC-W bookstore system merely serves as an example system for the study. 

All the experiments employ HTTP 1.1 over SSL. Configuration parameters related to 

HTTP 1. 1, e.g., persistent connection timeout, are chosen to force a single connection per 

session irrespective of session duration or the load on the system. This ensures that two 

workloads with the same number of sessions, mean session length, and mean think time 
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impose the same connection establishment and connection shutdown overheads on the 

Web server. Consequently, any difference in performance between them is solely due to 

the difference in the high-level workload characteristics, i.e., session length distribution, 

think time distribution, and workload mix. 

The number of server processes and the threading levels are set as follows. The number 

of Web server threads is set to be 1000. This was much greater than the maximum 

number of concurrent connections encountered in the experiments. The number of 

application server processes is fixed at 16, an upper limit imposed by the application. The 

number of database server threads for the database server was set to the upper limit of 32. 

The primary performance metric of interest for the study is the user-perceived mean 

response time (R,,jea,i) for the requests at the TPC-W system. This metric is of interest for 

system sizing, capacity planning and service level management excises. Response time is 

defined as the time between initiating a TCP connection for a HITP request and 

receiving the last byte of the corresponding H'ITP response. The measured response time 

indicates the delay suffered by the request at the TPC-W system, provided the network 

and the client workload generator node are not saturated. 

4.1.2. Experiment Design 

The following factors are considered for the experiments: a) session inter-arrival time 

distribution; b) session length distribution; c) think time distribution; d) workload mix; 

and, e) application settings. 
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For the session inter-arrival time distribution, session arrivals are assumed to be 

uncorrelated. This is consistent with several previous studies, e.g., [39]. Consequently, 

an exponential distribution is used to generate session inter-arrival times for all 

experiments. The mean session inter-arrival time is chosen to achieve desired utilizations 

at the bottleneck resources. It should be noted that an exponential session inter-arrival 

time distribution does not imply a non-bursty, uncorrelated arrival of requests. As 

mentioned in Chapter 2, the burstiness of the request arrival pattern at the system depends 

on various attributes such as the distributions of session length and think time. Evidence 

of bursty request arrivals in workloads used for this study is presented in Section 4.2. 

For the session lengths and think times, two different distributions are considered namely, 

empirical and bounded Pareto. These are used to represent the expected and worst cases 

for variability, respectively. 

The empirical distributions are obtained from workload data collected from a large e-

commence system [38]. Since that system did not server requests for images embedded in 

Web pages, the request inter-arrival times within a session as measured at the system are 

used as an approximation of the think times within sessions. 

The bounded Pareto distribution [40], a "heavy-tail-like" distribution, is used to study the 

impact of distributions that have a slightly heavier tail related to the empirical distribution. 

The probability density function of the bounded Pareto distribution is defined as followed: 

f(X=x)= a*k'  (4.1) 
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Where a is defined as the Pareto index, which governs the rate at which the tail of the 

distribution decays; k is defined as the minimum possible value for any random variable 

X; p is defined as the maximum possible value for any random variable X. 

In this case study, the parameter p is set to the maximum observation for the session 

length or the think time obtained from the empirical distribution. Then k and a are 

chosen such that the mean of the empirical distribution is matched. The value of 

a chosen in this manner are 1.16 for the session length distribution and 1.10 for the think 

time distribution. Table 4.1 shows the minimum, maximum and the mean of observations 

obtained with the distribution for the synthetic workloads used in the study. 

Table 4.1: Statistics of the session length and the think time 

Empirical Bounded Pareto 

Session Length (requests per session) 
Minimum 3 3 
Maximum 120 120 
Mean 9.44 9.44 

Think Time (s) 
Minimum 0 12 
Maximum 900 900 
Mean 46.54 46.54 

Three workload mixes are considered with different levels of variability in request 

resource demands. The workload mix includes H±M±x, MedMix and LowM±x 

workloads with high, medium, and low resource demand variation, respectively. The 

HIM±x and the MedMix share the same average resource demands but MedMix has a 

little lower variation in demands so that it is comparable how the demand variations in 

the workloads impact the system's performance. The LowMix has lower average 

resource demand as well as the lower variation of demands for each request type, which 

used to compare to the other two mixes to show the impact on the system. 
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Firstly the mean "no-load" response time (R,,ea,,) is measured for each of the 14 TPC-W 

request types. The R values are obtained when the number of concurrent sessions is 

set to one. Consequently, they reflect the end-to-end resource demands across all 

resources for request types for the TPC-W system. The TPC-W Shopping mix [9] is 

used as a high demand variation mix (HiMix) in this study. A slightly different mix is 

defined with slightly lower variation in demand (MedMix). To construct such a mix, the 

proportion of requests belonging to the top two resource intensive request types Buy 

request and Buy confirm and the non-resource intensive Home request type are 

reduced, while the proportion of requests belonging to the Product detail request 

type, relative to the HiMix, is increased accordingly. Finally, the LowMix is constructed 

to reflect a mix that has a slightly lower mean demand and lower variation in demand 

than both the HiMix and the MedMix. As show in the table 4.2, this is achieved by 

eliminating certain resource intensive request types such as Buy request followed by 

a concomitant increase to the less resource intensive Home request type. 

The response time MeanR,,,11 for each mix is computed as followed: 

14 

IVleanR,,iea,j = L R,,a,jtype=j * P1 (4.2) 
/=1 

Where Rea,i,i,e..j represents the no-load mean response time when type is i (total 14 

request types are considered), and pi represents the proportion of request type i. 
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Table 4.2: Workload mixes and no-load response time of request types 

Request Type R mean (S) HiMix MedMix LowMix 

Home 0.09 16.00% 9.00% 23.46% 
New Product 0.18 5.00% 5.00% 5.00% 
Best sellers 0.18 5.00% 5.00% 5.00% 
Product details 0.23 17.00% 27.80% 17.00% 
Search request 0.07 20.00% 20.00% 20.00% 
Search results 0.13 17.00% 17.00% 17.00% 
Shopping cart 0.24 11.60% 11.60% 11.60% 
Customer registration 0.21 3.00% 3.00% 0.00% 
Buy request 0.63 2.60% 0.00% 0.00% 
Buy confirm 0.25 1.20% 0.00% 0.00% 
Order display 0.18 0.66% 0.66% 0.00% 
Order inquiry 0.05 0.75% 0.75% 0.75% 
Admin request 0.09 0.10% 0.10% 0.10% 
Admin confirm 0.14 0.09% 0.09% 0.09% 

MeanR mean (S) 0.16 0.16 0.14 

CO  of Request Response Time 0.62 0.41 0.39 

The coefficient of variation (COV) of request response time in table 4.2 is involved to 

evaluate the variance of the resource demand times for each mix. It is computed as 

followed: 

COV=  (4.3) 
JV/eanR,,1<,, 

= I (R,,1111)'p=j - MeanR inca,, 2 * p (4.4) 
1J 

Where o represents the standard deviation of the data sets and MeanR,,,ea,, represents the 

overall mean response time for this workload mix. Table 4.2 shows the design causes the 

MedMix to have a slightly lower coefficient of variation (COV) of request response time 

than the HiMix while a slightly higher COV of request response time than the LowMix. 

53 



In this way, the experiments are designed to indicate how the system performs under the 

workloads with different resource demand variations stressing the system. 

To establish the robustness of this modeling technique, the experiments are conducted 

with three different application settings Base, HighDiskU and BigDB. The Base 

setting corresponded to a TPC-W application configured with 1,000 books in the 

database. For the workloads under studied with this setting, the Web server node CPUs 

were found to be the bottleneck. The HighDiskU setting differs from the Base setting in 

terms of database server configuration. Specifically, the database server's main memory 

cache settings were modified to cause more database node disk IJOs for a given workload 

when compared to the Base setting. However, in spite of the increased JIOs, the Web 

server node CPUs were still the bottleneck for all the workloads explored for the 

HighDiskU setting. Finally, the BigDB setting corresponded to a TPC-W application 

with 100,000 books in the database. This configuration allowed to verify the 

effectiveness of this approach when the bottleneck shifts from the Web server node CPUs 

to the database server node CPU. 

4.1.3. Experiment Methodology 

Due to time constraints, not a full-factorial investigation of the workload and application 

factors was conducted discussed in the previous section. Instead SWAT was used to 

create carefully controlled workloads designed to exhibit the performance impact of 

combinations of the factors considered. As mentioned in Section 2.1.1, SWAT can create 

a trace of sessions with each session in the trace containing request sequences that are 

valid for the TPC-W system. Table 4.3 lists the workloads that were created by SWAT. 
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Each workload is described by four hyphen-separated tokens. The first token describes 

the session length and think time distribution of the workload. For each workload, the 

choice of distribution type, i.e., empirical or bounded Pareto, is always chosen to be the 

same for session length and think time distribution. BPSLZ indicates the use of the 

bounded Pareto distributions of Table 4.3 while EMPSLZ indicates the use of the 

empirical distributions of Table 4.3. The subsequent tokens describe the workload mix, 

the mean utilization of each processor in the Web/App server node (Uwb,cpu) observed 

over the experiment duration, and the application settings, in that order. 

From Table 4.3, eleven experiments are conducted for this study. Each experiment is 

designed to study the impact of a given workload. As shown in Table 4.3, several 

statistically independent replications are conducted for each experiment. To achieve this, 

SWAT is used with different random number generator seeds to create several session 

traces that are statistically identical with respect to the workload characteristics described 

in Section 4.1.2. In each experiment replication 10,000 sessions are submitted to the 

TPC-W system. The duration of a replication varied, from approximately 3 hours to 5 

hours depending on the mean session inter-arrival time used. Each replication yielded 

around 95,000 response time observations. From Table 4.3, in total thirty nine experiment 

replications were conducted for this study. 
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Table 4.3: Response time and resource demand measurements from the case study 

Workload Rmoan (s) Mean Rmean (s) DW.b,CPU (ms) °W,b,DI8k (ms) DDB,CPU (ms) DDB.DJ,k (ms) 

8PSLZ-HiMix-77-HighDskU 

1.1 

1.11 
191.64 8.44 46.54 19.04 

0.93 190.65 8.49 46.8 18.94 
1.3 194.33 8.25 46.51 17.65 

BPSLZ-HiMix-71 .8igDB 

2.02 

2.09 

189.53 8.95 110.76 6.67 
2.06 190.35 8.85 110.88 6.66 
1.63 189.54 9.38 111.42 7.08 
2.65 195.86 9.04 112.31 6.76 

BPSLZ.HiMix-77-Base 
1.03 

1.06 

191.02 8.27 39.11 5.48 
0.93 190.45 8.54 38.83 5.37 
1.22 193.57 8.13 38.95 5.36 

EMPSLZ-HiMix-77-Base 

0.85 

0.94 

189.45 8.42 39.57 5.86 
0.9 191.58 8.71 39.47 5.39 
0.97 191.15 8.43 39.6 5.76 
1.02 190.45 9.07 39.49 5.44 

EMPSLZ-MedMjx-77.Base 

0.75 

0.75 

188.39 9.24 34.08 5.49 
0.75 191.57 8.52 36.8 5.6 
0.76 188.79 8.43 34.18 5.47 
0.74 186.59 8.41 34.2 5.49 

BPSLZ-MedMix-77-Base 

0.92 

0.93 

189.99 8.32 32.94 5.35 
0.86 190.17 8.14 33.97 5.52 
1.02 191.45 9.96 33.82 5.57 

MPSLZ-LowMix-77-Base 

0.67 

0.72 

176.89 6.27 26.04 4.57 
0.79 179.09 6.61 25.95 4.84 

0.69 177.4 6.23 25.98 4.56 
0.71 177.18 6.41 25.96 4.91 

BPSLZ-HiMix-71-Base 

0.67 

0.69 

184.45 8.88 38.91 5.46 
0.7 185.72 9.1 39.07 5.57 
0.6 183.67 9.14 38.97 5.46 
0.78 186.19 9.35 39.05 5.55 

EMPSLZ-MedMix-71 -Base 

0.56 

0.55 

183.09 9.33 36.26 5.32 
0.55 183.38 9.88 33.18 5.52 
0.57 183.89 8.97 33.99 5.44 

0.53 183.2 9.31 34.04 5.52 

EMPSLZ-LowMix-71-Base 

0.49 

0.52 

171.55 6.7 25.98 4.79 
0.52 172.11 6.84 25.94 4.96 
0.54 174.75 7.15 25.96 4.75 
0.52 173.59 8.1 26.06 4.72 

EMPSLZ-MedMix.65.Base 
0.43 

0.44 
178.09 10.97 34.06 5.7 

0.44 178.75 10.36 34.06 5.69 

The following observations were consistent across all experiments. The httperf provided 

highly reproducible results. As expected, multiple repetitions of an experiment replication 

yielded almost the same mean response time measures. Furthermore, there was very little 

difference between the achieved workload characteristics, as measured from httperf logs 

collected from experiment replications, and the specified workload characteristics. This 

verifies that the client node was not saturated in this study. The worst-case mean and 

peak network traffic during the experiments was only 0.40 Mbps and 0.83 Mbps, 
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respectively. This is because the CPU intensive nature of HTTPS and application server 

processing limited request throughputs. The low network traffic indicates that the 

response time measured by httperf is likely to be dominated by the delay encountered at 

the TPC-W system. The disks at both server nodes were very lightly utilized. Virtually 

no memory paging activity was observed at either server node. Finally, job flow balance 

was achieved for all experiments with the number of request completions equalling to the 

number of request arrivals. 

4.2. Overview of Experimental Results 

Table 4.3 provides several sanity checks with regards to the experimentation. The table 

presents the average per-request demands in milliseconds placed on the CPUs and disk of 

the Web/App server node, DWeb,CPU and Dw,Djg, respectively, and the database server 

node, DDB,CPU and DDB,D!Sk, respectively. It also provides the mean response time of 

requests that were submitted in an experiment replication, R,l?ea,?, and the mean R,,jea,j over 

all replications in an experiment. The following observations can be made from Table 

4.3. 

• The demand values for an experiment's replications are always nearly identical. 

This confirms that statistically identical replications place similar demands on the 

system and that burstiness does not affect average demands. 

• For a given application setting, workloads with the same mix cause similar demands 

on system resources. This can for example be verified by comparing the demand 

measurements for the BPSLZ-HiMix-77-Base, EM PSLZ-HiMix-77-Base, and 

BPSLZ-HiMix-71 -Base workloads. 
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• The measurements show that the mixes chosen for the study behaved as intended. 

From Table 4.3, for a given application setting the MedMix workloads impose 

almost the same average demands on the system as the HiMix workloads (compare 

for example EM PSLZ-Hi Mix-77-Base and EM PSLZ-MedMix-77-Base). As 

expected, the LowM±x workloads place slightly lower demands on the system than 

the HiMix and MedMix workloads. 

• The application settings explored also exhibited the intended behaviors. For example, 

the BPSLZ-HiMix-77-HighDiskU workload exerts more demand on the database 

server's CPU and disk when compared to the BPSLZ-HiMix-77-Base workload. 

Similarly, the database server CPU demand for the BPSLZ-HiMix-71-BigDB 

workload is significantly more than that of the BPSLZ-HiMix-71 -Base workload. 

Furthermore the BPSLZ replications are analyzed to determine whether they caused 

bursty arrival of customer requests. The Hurst parameter has been widely used in 

literature to quantify request burstiness [41]. A Hurst parameter estimate in the range of 

0.5 to 1.0 for a time series indicates the presence of bursts (i.e., prolonged patterns of 

consecutive large or consecutive small values) over multiple timescales. For a given 

experiment replication, the series of times between successive request arrivals at the 

TPC-W system (i.e., the request inter-arrival times) is recorded. The Hurst parameter is 

then estimated for this time series using various methods shown in Table 441 Table 4.4 

'For a description of these methods the reader is referred to the paper by Taqqu et al. [41]. 
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shows the Hurst parameter estimates for a BPSLZ-HiMix-77-Base replication and a 

BPSLZ-HiMix-71 -BigDB replication. Similar results were observed for the other 

replications. From Table 4.4, the Hurst parameter estimates are all greater than 0.5 

indicating the presence of request bursts over several timescales in these workloads. This 

also shows that these workloads are bursty in spite of not requesting images. 

Table 4.4: Estimates of Hurst parameter for BPSLZ replications 

Method BPSLZ-HiM ix-77-Base BPSLZ-HiM ix-71 -BigDB 

Aggregated Variance 0.81 0.82 

Absolute Values of the Aggregated Series 0.70 0.71 

R/S 0.61 0.62 

Periodogram 0.59 0.59 

Results pertaining to the Base application setting along with a detailed discussion can be 

found in the earlier publication [6]. Now briefly description some of the salient findings 

of the results from a performance modeling perspective are given. As mentioned 

previously, additional results pertaining to the other two new application settings are 

presented also. 

Distributions that cause highly variable session lengths and think times can cause 

bursty population distributions - This observation can be reached by first comparing 

the BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base workloads in Table 4.3. 

These workloads only differ with respect to their session length and think time 

distributions. From Table 4.3, they place almost identical demands on the TPC-W 

system's resources. The CPUs and disks in the systems have similar utilizations for both 

workloads. However, from Table 4.3, the mean R,,zea,, for the BPSLZ-HiMix-77-Base 
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workload is about 13% higher than that of the EMPSLZ-HiMix-77-Base workload. 

Similarly, from Table 4.3, the mean for BPSLZ-MedMix-77-Base workload is 

about 24% higher than that of the EMPSLZ-MedMix-77-Base workload. These results 

suggest that the bounded Pareto session length and think time distributions are 

responsible for the performance degradation. 

As mentioned in Section 2.2.4, high variability in session lengths and think times impact 

performance since they can cause bursty request arrivals. Specifically, such distributions 

yield large numbers of very small and very large session length and think time values. 

Consequently, BPSLZ-like workloads will have larger numbers of very long duration 

and very short duration sessions than EMPSLZ-like workloads. As a result, for any 

given mean session inter-arrival time, the likelihood of observing very large and very 

small number of concurrent sessions is more with a BPSLZ workload than with an 

EMPSLZ workload. This is illustrated in Figure 4.2 which shows the cumulative 

distribution function (CDF) of number of concurrent sessions for BPSLZ-HiMix-77-

Base and EMPSLZ-HiMix-77-Base workloads2. Since the number of requests that can 

arrive at the system is positively correlated with the number of concurrent sessions, this 

phenomenon causes a more uneven or bursty arrival of requests. 'This increase in 

burstiness can sometimes, as in the experiments, be significant enough to cause periods 

2 The CDF for a workload was obtained by combining data from all its experiment replications. 
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of heightened contention for system resources during which requests incur very long 

response times. 

50 100 150 200 250 300 350 

x = Number of Concurrent Sessions 
400 450 

Figure 4.2: CDFs for BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base 

Mixes characterized by higher variability in request demands cause bursty 

population distributions - This conclusion can be verified from Table 4.3 by comparing 

the EMPSLZ-HiMix-77-Base and EM PSLZ-Med Mix-77-Base workloads. Recalling 

from the previous sections, both these workloads are similar in all respects except their 

workload mix. From Table 4.2, both workloads place the same mean aggregate demands 

on the system's resources. However, the HiMix workload is characterized by a slightly 

higher variability in request demands. Both workloads cause nearly identical utilizations 
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of the CPUs and disks in the system. However, the mean R,,zea,j for the EMPSLZ-HiMix-

77-Base workload is about 25% higher than that of the EMPSLZ-MedMix-77-Base 

workload. Figure 4.3 plots the CDFs of number of concurrent sessions for the workloads. 

From Figure 4.3, it can be seen that the HiMix workload exhibits a slightly longer tail 

than the MedMix workload. The reason for this behaviour is again due to the increased 

variability of session durations; the larger proportions of resource intensive, e.g., Buy 

request, and non resource intensive, e.g., Home, requests within sessions of the 

HiMix workload increases the likelihood of very long duration and very short duration 

sessions. This leads to periods of increased contention among sessions leading to a higher 

mean R,,zea,j. 
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Figure 4.3: CDFs for EMPSLZ-HiMix-77-Base and EMPSLZ-MedMix-77-Base 
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Bursty workloads exhibit high variability in R,,zea,z - As mentioned in Section 2.2.4, 

workloads characterized by heavy-tailed distributions lead to unpredictability in system 

behaviour. This phenomenon can be observed for the BPSLZ-HiMix-71-BigDB 

workload. Recalling from the previous section, this workload caused the database server 

node CPU to be the bottleneck. The mean database server node CPU utilization over the 

duration of each replication was 84%. From Table 4.3, the highest R,,iea,t value of 2.65 

seconds for this workload is 63% higher than the lowest Rmean value of 1.63 seconds. 

This is in spite of the fact that the experiment replications are statistically identical, cause 

near identical demands and utilizations on the system's resources, and lasted for nearly 5 

hours. Similar trends can be observed for the BPSLZ-HiMix-77-Base and BPSLZ-

MedMix-77-Base workloads. 

The reason for the variation in R,,iea,j can again be explained in terms of the population 

distribution. Figure 4.4 plots the CDF of number of concurrent sessions for the four 

replications of the BPSLZ-HiMix-71 -BigDB workload. Figure 4.5 plots the R,,,ea,, values 

for these replications. Figure 4.4 shows that the CDF is different for the different 

replications. In particular, replication 4's CDF exhibits the longest tail and results in the 

highest Rmean while replication 3's CDF has the shortest tail and causes the lowest R,, ea,i. 

WAM can help performance analysts estimate the extent of variability in R,,,ea,j for bursty 

workloads by repeating the analysis multiple times with different session traces. 
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Figure 4.5: Measured Rmean values for BPSLZ-HiMix-71-BigDB 
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4.3. Predictive Performance Models for C-TPC-W 

Web/App Server Node Client Node Database Node 

Figure 4.6: Queuing network model for C-TPC-W system 

The QNM model, as shown in Figure 4.6, includes a think time delay service center and 

queuing service center for all the hardware resources, namely client node CPU, Web/App 

server node CPUs and disk, database server node CPU and database server node disk. 

The value 2 shown on the upper left of the Web/App node CPU indicates that the 

Web/App server has two CPUs. Other hardware resources are very lightly loaded so they 

are not included in the model. A customer that flows from the client node CPU through to 

the database server node CPU and back to the client node CPU completes a HTTP 

request. Customers flow from queue to queue. After visiting a CPU, a customer may have 

one or more alternative queues visit. The routing choices do not depend on the current 

state of the system, but are random and have probabilities such that the desired ratio of 

demands is incurred at the resources. 
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Figure 4.7: Layered queuing model for C-TPC-W system 

Figure 4.7 shows the LQM for the TPC-W system. LQMs are extended QNMs that 

include information about logical resources such as threading levels for application 

servers and software request-reply relationships. The LQM for the TPC-W system 

includes the same think time delay centre and hardware resources. The logical resources 

in the model are the client browsers, Web server threads, application server threads and 

database server threads. Threading levels other than one are shown by placing a value 

near the upper right hand side of an icon. In this model, the requests are blocked between 

software resources and between software resources and hardware resources. 

From Figure 4.7, there is one client browser for each concurrent session using the system. 

A customer using a client browser may visit its node's CPU or may think. A HTTP 

request causes a blocking call to the Web server. If a Web server thread is available then 
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the request is accepted. The thread uses some CPU resource from the Web/App server 

node CPUs and then makes a request to the application server. If an application server 

thread is available then the request is accepted. The application server thread uses some 

CPU resource from the Web/App server node CPUs and then makes a request to the 

database server. If a database server thread is available then the request is accepted. The 

thread uses some CPU and disk resource from the database server node and releases the 

calling thread. The released calling thread from the application server can then complete 

its first phase of work and release the calling thread from the Web server. 

From Figure 4.7, after finishing its first phase and releasing the calling thread from the 

Web server the application server thread continues on to a second phase of service. The 

second phase of service keeps the application server thread busy so that it cannot service 

another calling thread. However at the same time the calling thread from the Web Server 

that was released after the first phase of service can complete its work and release the 

calling thread from the client browser. This completes an HTTP request. 

During an HTTP request, if a thread is not available when a server is called, the calling 

thread blocks until a thread becomes available. Once a thread completes its work it is 

available to serve another caller. Such threading can lead to software queueing delays in 

addition to any contention for hardware resources that are incurred by active threads. 

The numbers of threads used for each tier in the model reflect the application settings as 

described in Section 4.1. 
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Both the QNM and LQM need as parameters the resource demands, the average think 

time and the number of customers in the system to calculate the performance metrics for 

the tested system using MVA. 

To obtain resource demand values, for each experiment replication the CPU utilizations 

for the Web server threads, application server threads, and the database server threads are 

measured. Besides, the CPU and disk utilizations for the Web/App server node and the 

database server node, the elapsed time of the run, and the number of request completions, 

are measured as well. This enables to compute the average resource demand per request 

for the Web server threads, application server threads, database server threads, and for the 

Web/App server node and database server node as a whole. The aggregate demand 

values used in the models are given in Table 4.3. The formula [23] to calculate the 

demand is as follows: 

Dk=Uk/X (4.5) 

Where Uk represents the utilization of the resource k, X represents the measured per-

request throughput which is obtained as the total number of request completions divided 

by the total elapsed time of an experiment replication. It is noted that there was a very 

small difference between the utilization of a node and the sum of the utilizations of 

software processes running on that node. Thus this is modeled as background load in the 

LQM. 
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The average think time for each request can be computed from the httperf logs collected 

from each experiment replication. The LQM and QNM obtained in this manner can 

provide mean response time estimates for different session populations. 

4.4. Results of QNMs and LQMs with WAM 

This section applies the QNM and LQM models of Section 4.3 with WAM to predict the 

mean response times for the experiments of Section 4.2. These results are further 

compared with the straightforward application of QNMs and LQMs and the hierarchical 

Markov chain birth-death approach of Section 2.2.3 for session based systems. All the 

modeling approaches used the Method of Layers (MOL) solver developed by Rolia and 

Sevcik [11]. 

Table 4.5 shows the four different modeling approaches that are explored for both QNMs 

and LQMs. The MEAN approaches ignore the distribution of number of concurrent 

sessions. They solve a predictive model for only one customer population, namely, the 

mean number of concurrent sessions observed during an experiment replication. The 

MBD methods use the Markov birth-death approach described in Section 2.2.3 to estimate 

the population distribution and The birth-death model used a constant, state-

independent birth rate  that equals the mean session arrival rate observed during a 

measurement experiment replication. The WAMEMP methods predict R,,iea,i for an 
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experiment replication by using WAM in conjunction with the empirical population 

distribution as measured during the replication. However, in practice, this measured 

population distribution may not be available to a performance analyst. The WANMC 

method can be used to estimate the measured population distributions. For a given 

experiment replication, it uses the corresponding synthetic SWAT trace as input to a 

Monte Carlo simulation along with response times from the predictive model as per the 

algorithm in Section 3.2. The estimated population distribution is then used to compute 

R,nean. The accuracy of WA?IMC will be evaluated by comparing its R,,iea,j predictions to 

those of WAr4EMP. 

In general all the methods yielded good throughput estimates. The absolute errors for 

throughput were within 2% for the WANMC methods and the MED methods. The 

accuracy of the MEAN methods was slightly poorer. The throughput estimates of the 

MEAN-LQM and MEAN-QNM methods were within 3.5% and 4.0% of measured values, 

respectively. The reason for the good throughput estimates can be understood by noting 

that the think times are much larger than the mean response times in the experiments. 

From Little's law, the system throughput is largely influenced by the think time and is not 

affected significantly by errors in mean response time predictions. 

Models with state-dependent birth rates were also tried but their accuracy was poorer than the state-
independent approach. 
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In contrast to the throughput estimates, there are significant differences in prediction 

accuracy for R,,,ea,, across the different methods. Three different error metrics are used to 

characterize the R,,,ea,, prediction accuracy of the modeling approaches. The mean 

absolute error (ABS Error) is defined as follows: 

ABS Error =100*  (4.6) 

yi 

Where e1 is the difference between the measured and predicted mean response time and y 

is the measured response time for the i1h replication in a set of replications. The 

maximum of the absolute e values, expressed as a percentage, calculated for a set of 

replications is denoted as the maximum absolute error (max—Error). The trend error 

(Trend—Error) is an indicator of the range of errors obtained with a modeling 

approach. It is defined as the difference between the largest e value and the smallest e 

value, expressed as a percentage, for a set of replications. Table 4.5 shows the error 

measures for models pertaining to the entire set of thirty nine replications. The table gives 

results for the MEAN, MBD, WAMEMP, and WAMMC methods in conjunction with LQM and 

QNM. 
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Table 4.5: Accuracy for predicting for overall cases 

Modeling Approach ABS— Error (%) Trend— Error (%) max— Error (%) 

MEAN-LQM 11.77% 42.50% 32.37% 

MEAN-QNM 13.10% 63.75% 42.56% 
MBD-LQM 10.52% 45.09% 32.56% 

MBD-QNM 12.97% 66.01% 42.68% 

WAMEMP-LQM 6.57% 27.76% 15.80% 
WAMEMP-QNM 10.01% 43.82% 26.84% 
WAMMC-LQM 7.33% 34.64% 20.25% 

WAMMC-QNM 11.64% 56.48% 29.75% 

Firstly the MEAN cases are considered. These are the only cases that do not take 

population distribution into account. From Table 4.5, the ABS Error is lower for the 

MEAN-LQM approach than the MEAN-QNM approach. The MEAN-LQM approach also 

does better in terms of Max—Error and Trend—Error. The improved prediction 

accuracy is due to the LQM taking into account the performance impacts of finite server 

thread pools and two phases of application server processing. However, the 

ADS—Error of about 12% and the Max—Error of about 32% are still large for the 

MEAN-LQM approach. These errors are large despite individual per session population 

level R,i,ea,i predictions from the LQM agreeing well with the corresponding measured 

values. This suggests there will be benefits from considering the population distributions. 

As to the Markov Chain birth-death approach MBD, From Table 4.5, results show only 

slight improvements in ABS—Error. For example, the technique when used in 

conjunction with the LQM (MBD-LQM) achieves a reduction in ABS—Error of only 

about 1.3% when compared to MEAN-LQM. 
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WAM with the empirical population distribution from a historical trace with measured 

response times, WANEMP, improves accuracy significantly. From Table 4.5, the 

ABS—Error drops by nearly 5% with WAMEMP-LQM when compared to MEAN-LQM. 

Moreover, Max—Error and Trend—Error drop by about 16% and 15%, 

respectively when compared to MEAN- LQM. Similar improvements are noticed when 

comparing WANEMP - QNM and MEAN_QNM. This confirms the importance of considering 

the population distributions in modeling process. 

Finally, the results of WAM with a population distribution estimated using the algorithm 

discussed in chapter 3 (WANMC), from Table 4.5, show the effectiveness of the approach. 

The WAMMC methods performed nearly as well as their corresponding WANEMP methods. 

For example, from Table 4.5 the error metrics for WANMC-LQM are very similar to that of 

WAMEMP-LQM. However, WANMC has an advantage over WAMEMP. It allows the WAM 

method to be applied in a constructive manner to predict the performance of systems 

when varying workload parameters and when a historical trace with measured response 

times is simply not available. 

The WANMC results, validate the population distribution estimator's use of the R,iiea,z 

prediction from a predictive model for the current population level to estimate the 

response time of an individual request with GetSyntheticResponse method as described in 

Section 3.2. It is suggested that the approach works well for these cases because the think 

times encountered in the synthetic workloads used for the study are much longer, on the 

order of tens of seconds, than the response times which are on the order of hundreds of 

milliseconds or seconds. As a result the population distribution is governed more by the 
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session length, think time, and session inter-arrival time distributions than the response 

time distribution for each population level. It is noted that an analysis of the empirical 

think time distribution of Table 4.1 indicates that the assumption of think times being 

much longer than response times is likely to be valid for real session-based workloads. 

Now several subsets of the results are considered in more detail. Results are discussed for 

the following cases: bursty workloads; higher and lower contention for the bottleneck; 

higher and medium coefficients of variation for request resource demands; non-bursty 

workloads; and, workloads with heavy-tail-like distributions. Finally, a case is presented 

that demonstrates the constructive capability of WAMMC. 

The WAM approach is particularly effective for bursty workloads - Table 4.6 

summarizes the error measures for only those seventeen experiment replications that 

employed the bounded Pareto session length and think time distributions of Table 4.1. 

For bursty workloads using just the mean population provides very poor R,,iea, estimates. 

From Table 4.6, the ABS—Error is 19.10% for the MEAN-LQM approach. From Table 

4.5 and Table 4.6, the MEAN-LQM approach applied to the bursty workloads results in 

about 7% greater ABS Error than overall for all workloads. For these 17 workloads 

the WAM method results in a greater reduction in ABS Error than overall for all 

workloads. For example, from Table 4.6, the ABS Error for WAMEMP- LOM is about 

14% lower than that for MEAN-LQM. This represents about 9% more reduction in error 

than when considering all the workloads. A similar trend can be noticed with WAIvIEMP-

QNM. The WAMMC-LQM and WANMC-QNM methods result in slightly increased 

ABS—Error when compared to their counterparts that use the empirically measured 
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population distribution. However, the errors are still significantly less than those 

obtained with the MEAN and MED methods. 

Table 4.6: Accuracy for predicting R,,jea,j for bursty cases 

Bursty Workloads (17) 

Modeling Approach ABS— Error (%) Trend Error (%) Max Error (%) 
MEAN-LQM 19.10% 28.04% 32.37% 
MEAN-QNM 19.34% 45.11% 42.56% 
MBD-LQM 16.98% 30.06% 32.56% 
MBD-QNM 17.98% 46.79% 42.68% 
WAMEMP-LQM 4.87% 25.84% 14.58% 
WAMEMP-QNM 6.60% 28.43% 17.43% 
WAMMC-LQM 6.41% 34.64% 20.25% 
WAMMC-QNM 8.93% 41.08% 29.75% 

The gains from WAM are significant when there is higher contention for the 

bottleneck resource - To illustrate this effect Table 4.7 compares the error metrics for 

the BPSLZ-HiMix-77 and BPSLZ-HiMix-71 replications. For the sake of clarity results 

are shown only for the MBD-LQM, WAIvIEMP-LQM, and WANMC-LQM methods. From the 

Table 4,7, when UWeb,CPU is 71% (BPSLZ-HiMix-71 Workload), WAMEMP-LQM results 

in an improvement of about 6%, 3%, and 10% in ABS Error, Trend Error and 

Max Error, respectively, when compared to MBD-LQM. These numbers increase to 

16%, 6%, and 18% when UWCb,CPU is 77% (BPSLZ-HiMix-77 Workload). Previous 

studies have shown that the burstiness induced by heavy-tails becomes more pronounced 

at higher utilizations [42]. Consequently, the BPSLZ-HiMix-77 workload is more bursty 

than the BPSLZ-HiMix-71 workload. The increased gain in accuracy for the BPSLZ-

HiMix-77 workload provides further evidence that WAMEMP is very effective for 

predicting the behaviour of bursty workloads. Similar results can be found in WAI'4MC-
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LQM methods. It shows WAMMC-LQM is also effective to model the C-TPC-W system 

under bursty workloads. 

Table 4.7: Accuracy for BPSLZ-HiMix- workloads 

Workload Modeling Approach ABS— Error (%) Trend— Error (%) Max—Error (%) 

BPSLZ-HiMix-77 
MBD-LQM 20.95% 14% 28% 
WAMEMP-LQM 4.52% 8% 10% 
WAMMC-LQM 6.68% 10% 14% 

BPSLZ-HiMix-71 
MBD-LQM 12.32% 19% 21% 
WAMEMP-LQM 5.98% 16% 11% 
WAMMC-LQM 6.84% 10% 12% 

WAM is particularly effective for mixes characterized by higher variability in 

request resource demands -Table 4.8 compares the MBD-LQM and WAM methods for the 

BPSLZ-HiMix-77 and BPSLZ-MedMix-77 workloads. Recall from Section 4.1 that the 

HiMix workload exhibits more variability in demands than the MedMix workload since 

it has a greater percentage of resource intensive and resource non-intensive requests. 

From Table 4.8, the MBD-LQM method results in an ABS Error of 13.43% and a 

Max—Error of 17% for the MedMix workload. The method performs even poorer for 

the HiMix workload with the ABS—Error and Max—Error increasing to 20.95% and 

28%, respectively. From Table 4.8, the WAM methods are significantly more accurate 

than MBD-LQM for both workloads. The gains in ABS—Error while using the WAMMC-

LQM method over the MED - LQM method are nearly 11% for the MedMix workload and 

14% for the HiMix workload. 

76 



Table 4.8: Accuracy for BPSLZ-77- workloads 

Workload Modeling Approach ABS— Error (%) Trend— Error (%) Max— Error (%) 

BPSLZ-HiMix-77 

MBD-LQM 20.95% 14% 28% 
WAMEMP-LQM 4.52% 8% 10% 
WAMMC-LQM 6.68% 10% 14% 

BPSLZ-MedMix-77 

MBD-LQM 13.43% 9% 17% 
WAMEMP-LQM 2.42% 4% 4% 
WAMMC-LQM 2.03% 2% 3% 

WAM is effective for cases with non-bursty workloads -Table 4.9 summarizes the 

error measures for those experiment replications that did not use the bounded Pareto 

session length and think time distributions. From Table 4.9 and Table 4.5, the MEAN-

LQM and MBD-LQM approaches have a much lower ABS—Error for these workloads 

than overall for all workloads. The ABS—Error for WAMEMP-LQM is comparable to 

those of MEAN-LQM and MBD-LQM. However, WAMEMP-LQM method results in a 

smaller range of errors when compared to the other two approaches. For example, the 

Max—Error and Trend—Error for WAMEMP-LQM are about 9% and 7% lower, 

respectively than those of MEAN-LQM. Furthermore, the WAMMC methods result in 

almost similar errors to those of their counterpart WAMEMP methods. These results show 

that the WAM technique can provide more robust performance estimates than the other 

approaches and is suitable for both bursty as well as non-bursty workloads. 
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Table 4.9: Accuracy for predicting R for non-bursty workloads 

Non-Bursty Workloads (22) 

Modeling Approach ABS Error (%) Trend— Error (%) Max Error (%) 

MEAN-LQM 6.11% 35.05% 24.92% 
MEAN-QNM 8.27% 43.51% 22.32% 
MBD-LQM 5.53% 35.70% 23.17% 
MBD-QNM 9.11% 44.34% 21.01% 
WAMEMP-LQM 7.87% 27.76% 15.89% 
WAMEMP-QNM 12.65% 38.37% 26.48% 
WAMMC-LQM 8.04% 30.24% 15.92% 
WAMMC-QNM 13.74% 40.53% 26.73% 

WAM captures the complex effects of heavy-tail-like distributions - Figures 4.8 to 

4.11 show the probability distribution function (PDF) of number of concurrent sessions 

for the BPSLZ-HiMix-71-BigDB experiment replications estimated using WAMMC-LQM 

and MBD-LQM. Figure 4.12 compares the measured Rmewt values for this workload with 

those predicted values using the four modeling methods in conjunction with LQM. As 

discussed in Section 4.2, the R,, ea,z values measured for this case varied by up to a factor 

of 1.63 even though the measured demands and device utilizations were nearly identical 

for all the replications. 

Figures 4.8 to 4.11 reveal that the MBD-LQM method does not capture the differences in 

measured PDFs among the replications. The PDFs estimated by MBD-LQM are nearly 

identical for all the replications. In contrast, WAMMC-LQM closely tracks the changes in 

PDFs. The PDFs estimated through simulation are very close to their counterpart 

measured PDFs. Consequently, from Figure 4.12, the R,,,ea,, values predicted by MBD-

LQM are nearly the same for all the replications. In contrast, the R,ea,j values predicted by 

WAMMC-LQM closely track the measured R,teaii values. From Figure 4.12, MEAN-LQM 
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also suffers from the same limitation as MED - LQM and predicts almost the same R,,,ea,j for 

all the replications. It is noted that for non-bursty workloads there is less concentration of 

probability mass towards very large and very small populations. As a result the accuracy 

obtained with the other methods starts to approach that obtained with WAM. 

50 100 150 200 250 300 350 

x = Number of Concurrent Sessions 
400 

Figure 4.8: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 1) 
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Figure 4.9: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 2) 
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Figure 4.10: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 3) 
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Figure 4.11: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 4) 
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Another consequence of the ability to accurately estimate the population distribution is 

that WAM can assess the predictability of performance. As shown in Figure 4.12, WAM 

is the only method able to capture the variation in measured R,,zea,i values for the 

statistically identical replications of the BPSLZ-HiMix-71 -BigDB workload. The results 

are similar for the other bursty cases, though less pronounced. 

Finally, it is shown that WAM is better suited for predicting the impact on system 

performance of changes in workload characteristics than the other methods. Figure 4.13 

plots the mean of measured R,,,ea,z values over all replications for both the BPSLZ-HiMix-

77 and EMPSLZ-HiMix-77 workloads. It also shows the mean of the predicted R,,iea, 

values over all replications for both workloads while employing the MEAN-LQM, MBD-

LQM, WANEMP-LQM, and WAMMC-LQM methods. From the Figure 4.13, WAM captures 

the increase in the measured mean R,,iea,z that is caused by increased heavy-tail behaviour 

for session lengths and think times in the BPSLZ-HiMix-77 workload. While the 

measured increase is approximately 125 ms, the increase predicted by WAMEMP-LQM 

and WANMC-LQM is about 101 ms and 89 ms, respectively. In contrast, the MEAN.-LQM 

and MED - LQM methods do not reflect the impact of the changes and offer almost 

identical results for both workloads. 
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Figure 4.13: Response times for BPSLZ-HiMix-77 and EMPSLZ-HiMix-77 

4.5. Conclusions 

This chapter used the C-TPC-W system to study the effectiveness of WAM. The results 

indicate that modeling approaches that only consider the mean number of concurrent 

customers produce very poor estimates of mean response time for systems with bursty 

workloads. The average prediction error for bursty workloads is nearly 19.34% and 

19. 10% for the QNM, and the LQM, respectively. Furthermore, the maximum prediction 

errors are nearly 43% and 32% for the QNM, and the LQM, respectively. For bursty 

workloads, using the QNM and LQM models in combination with a Markov birth-death 

model does not improve the average and the maximum prediction accuracy significantly. 

In contrast, the WAM approach significantly improves the accuracy of mean response 

time predictions. For bursty workloads, average prediction accuracy by WAM in 
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conjunction with the measured population distribution improved by 12% and 11% for 

LQMs and QNMs, respectively, as compared to the Markov birth-death approach. 

Moreover, the LQM-based WAM approach had much lower average error and range of 

errors than the QNM-based WAM approach. Furthermore, WAM also enabled the 

prediction of very different mean response times reported by multiple statistically 

identical runs for cases that include heavy-tail-like distributions. In effect, WAM can be 

used to assess whether a system has unpredictable behaviour by reporting a range of 

possible behaviours. 

The accuracy of WAM's predictions for the system studied is due both to WAM's 

approach for estimating customer session population distribution and the benefits 

obtained from using LQMs rather than QNMs. The results presented likely benefit from 

the relatively large think times between requests. The think times were on the order of 46 

seconds with response times typically less than a second. The session population 

distribution involves estimating the time spent by the system in various states. This in 

turn depends on the time spent by the various sessions in a workload at the system. It 

follows that accurate estimates of the population distribution can be obtained if the time 

spent by a session at the system is estimated accurately. In C-TPC-W since think times 

are much larger than response times the time spent by a session is dominated by the think 

times encountered in the session. As a result, accurate population distribution estimates 

can be obtained in spite of approximating the real request response time using the mean 

response times obtained from the predictive model. It should be noted that the think 
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times chosen were realistic since they were based on empirical measurements from a 

large e-commerce site [38]. 

The next chapter applies WAM on the H-TPCW system. That differs from C-TPC-W in 

several important ways. First, it uses the default user-equivalents based workload 

generator that is part of the TPC-W suite. As a result, the number of concurrent sessions 

remains constant during an experiment. Secondly, H-TPCW workloads contain requests 

to the images embedded in the HTML pages returned by the system. Thirdly, H-TPCW is 

implemented on a different hardware and software platform. 
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CHAPTER 5: H-TPC-W CASE STUDY 

This chapter presents a case study for a multi-tier TPC-W application system which was 

deployed at HP Labs in Palo Alto, California, USA [10]. As mentioned previously, the 

H-TPC-W test bed differs from the C-TPC-W test bed in that user-equivalents based 

workload generation was used. Consequently, the population distribution is characterized 

in terms of the distribution of number of concurrent requests in the system. Furthermore, 

the source of burstiness in H-TPC-W' s workloads is due to the presence of image 

requests. Whenever a client receives a HTML response from the system it immediately 

issues requests for a number of requests for images embedded in that HTML page. Since 

the arrival of an HTML request is likely to be followed immediately by the arrival of its 

embedded images the H-TPC-W workloads exhibit burstiness. This case study 

characterizes such burstiness through the population distribution. 

Section 5.1 describes the H-TPC-W test bed. Section 5.2 briefly discusses the 

experimental results. Section 5.3 discusses the various modeling methods used for H-

TPC-W. A QNM and a LQM are developed for H-TPC-W in Section 5.4. Section 5.5 

uses these models to assess the effectiveness of WAM. Section 5.6 compares the 

accuracies of WAM for C-TPC-W and H-TPCW and argues for the use of realistic 

workload generation techniques in performance tests. Specifically, it describes how 

employing user-equivalents based workload generation for session-based systems limits 

the effectiveness of WAM. 
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5.1. Experiment Test Bed 

H-TPC--W was deployed on different software and hardware platforms than the C-TPC-

W system. Figure 5.1 shows the experimental setup. The details of the software/hardware 

used are given in Table 5.1. Figure 5.1 shows that the H-TPC-W system includes three 

types of nodes, client node, front server node and DB server node, which are connected 

by a non-blocking Fast Ethernet switch. There are two client nodes. Each client node 

executes a fixed number of user-equivalents during a performance test. A user-

equivalent is called as an Emulated Browser (EB) and each EB4 mimics a session. A 

session generates a series of requests with successive requests being separated by a think 

time. The front server node executes the Web/Application server. The Web/Application 

server processes both the image and non-image requests issued by the BBs. The DB 

server node executes the database server that manages the TPC-W database. All of the 

three nodes ran on the Linux platform. 

As mentioned previously, the system is configured to serve image files. A session first 

submits a TPC-W interaction (e.g., Home) to the system by establishing a TCP 

connection. The system dynamically generates a HTML response for this interaction. 

The session then parses the HTML response to get a list of associated image URLs. In 

H-TPC-W, the maximum number of images downloaded concurrently is set to four. As 

a result, the session establishes up to four concurrent TCP connections to download these 
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images from the front server. The number of images for different types of HTML 

responses and the sizes of these images are described in the TPC-W specifications. For 

this case study a request is defined to consist of an HTML response and all of its 

associated images. The request response time is defined as the time between receiving 

the last byte of the last image and issuing the first byte of the corresponding TPC-W 

interaction. 

The number of server processes and the treading levels was not recorded during the 

measurement experiments. The Web/Application server has a flexible number of server 

processes that varies with load. However, the actual number of server processes was not 

monitored during the measurement experiments. The database server has a fixed number 

of processes that is large compared to the number of EBs. In this case study, a database 

with 10,000 items and 1,440,000 customers is used. 

"The terms EB and session are used interchangeably in this thesis. 
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Client Node I 

Figure 5.1: H-TPC-W system 

Client Node 2 

Front Server Node 

DS Server Node 

Table 5.1: Test bed components 

Node Software Processor RAM 

Client Node Emulated Browsers Pentium Ill /1 GHz 2 GB 

Front Server Node Apache2.O/Tomcat4.O Pentium Ill /1 GHz 3 GB 

DB Server Node MySQL4.O Pentium Ill /1 GHz 3 GB 

Measurement runs used the standard TPC-W workload generation method with 

parameters as defined by the TPC-W benchmark. During each run measurements were 

collected from both the EBs and the server nodes. EBs provided information such as the 

session identifier, submission time of request, and request response time. However, 
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finer-grained information on the requests was not recorded. For example, even though 

the EB logs record the submission and completion time of an entire request they do not 

contain information on the submission and completion times of individual images making 

up that request. As explained in Section 5.4, lack of such information influenced the 

modeling decisions while developing a QNM and LQM for the system. In addition to the 

log files from the EBs, the SAR [43] Linux utility was used to collect CPU and disk 

utilizations for each of the nodes at a sampling interval of one second. 

As the H-TPC-W uses user-equivalents based workload generation, the number of 

concurrent sessions in the system always equals the number of EBs. Totally 14 different 

request types have been defined in the TPC-W benchmark specification. As specified by 

TPC-W, the think time between successive requests in a session follows an exponential 

distribution with a mean of 7 seconds. 

The TPC-W benchmark defines three types of workload mixes namely, Browsing, 

Shopping and Ordering. For each mix, the proportions of the total 14 types of requests 

(i.e., TPC-W interactions) specified by TPC-W [9] can be seen in Table 5.2. In Table 5.2, 

the average number of images per request for each mix is computed from the collected 

measurements. The sizes of the images associated with each request type are obtained 

from the TPC-W specifications and shown in Table 5.2. Finally, the average size of 

images for each mix is calculated from the measurements collected. 

For each workload mix, a set of experiments were run with the number of EBs set to 30, 

100, 200, 300, 400, 500 and 600. Each experiment ran for 5 hours. The first 20 minutes 
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and the last 20 minutes are considered as the warm-up and cool-down periods, and thus 

omitted in the analysis. The experiments showed that the system was CPU bound. 110 

(either at the disk or network) was not found to be significant [10]. 

Table 5.2: Definition of workload mix 

Request Type Browsing (%) Shopping (%) Ordering (%) Number of Images 

Home 29.00 16.00 9.12 11 

New Products 11.00 5.00 0.46 9 

Best Sellers 11.00 5.00 0.46 9 

Product Details 21.00 17.00 12.35 6 

Search Reqeust 12.00 20.00 14.53 9 

Search Results 11.00 17.00 13.08 9 

Shopping Cart 2.00 11.60 13.53 9 

Customer Registration 0.82 3.00 12.86 4 

Buy Request 0.75 2.60 12.73 3 

Buy Confirm 0.69 1.20 10.18 2 

Order Inquiry 0.30 0.75 0.25 3 

Order Display 0.25 0.66 0.22 2 

Admin Request 0.10 0.10 0.12 6 

Admin Confirm 0.09 0.09 0.11 5 

Average Number of Images (Per Request) 8.5 8.1 6.3 

Average Image Size (Per Image) 4KB 4KB 4KB 

5.2. Overview of Experimental Results 

An overview of the measurements for H-TPC-W is discussed first to show derived 

insights on how the workloads used for the study impact system performance. For a 

more detailed discussion of the results, the reader is referred to the paper [10] by Zhang 

et al. The following are some key observations from the measurements. 

The front server is a bottleneck when the system is processing Shopping and 

Ordering mixes - Figure 5.2(a) shows that the CPU utilization of the front tier reaches 

90-98% when the number of BBs is greater than 500, while Figure 5.2(b) shows the CPU 

utilization of the database tier is under 40-60% for Shopping and Ordering mixes. As 

for the Browsing mix, it is not obvious which resource is the bottleneck. When the 
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number of. EBs reaches 400, 500, 600, the utilizations of the front server ranges from 

70%-80% while the utilization of the database server also ranges from 70%-80%. 

100/ 

80% 

60% 

40% 
0 

20% 

0/ 

  6o0w81ng Mo 

  Ordering Mix 

- - - - - Shopping MS 

/ 
/ 

/ 
, 

/ 

ISO 200 000 400 500 600 

100/. 

80% - 

60% 

40% 
0 

20% 

0%  

Browsing 1.80 
01401109 Mix 

- - Shopping 1.1,0 

ISO 200 200 400 

Number of EBs Number of EBs 

(a) (b) 

Figure 5.2: CPU Utilization of (a) front server and (b) database server 

500 600 

The system becomes overloaded with 400 EBs, 400 EBs and 500 EBs under the 

Browsing mix, Shopping mix and Ordering mix, respectively. The collected 

measured data in Figure 5.3(a) shows that the system throughput flattens at higher 

number of EBs because of device saturation. For Browsing mix, as shown in Figure 

5.3(a), the throughput reaches 40 requests per second and does not increase any more 

after 400 EBs. For Shopping mix, the plot of the throughput in Figure 5.3(a) shows the 

maximum can reach 53 requests per second and it flattens out after 400 EBs. For the 

Ordering mix, the throughput in Figure 5.3(a) seems to increase with the number of EBs. 

However, the figure also shows that the rate of increase becomes less marked after 500 

EBs. 
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Figure 5.3 Measured (a) throughput and (b) response times for three mixes 

600 

The Browsing mix causes poorer performance when compared to the Shopping mix 

and Ordering mix. The mean response time of the three mixes for various numbers of 

EBs plotted in Figure 5.3(b). The response time figures show significant nonlinear 

behaviour. For example, the mean response time values increase from 163 ms for 

Browsing-200 to 8100 ms for Browsing-600. The tripling of the number of emulated 

browsers caused mean response time to increase by a factor of 50! Ordering-600 shows 

similar behaviour with respect to Ordering-500. 

5.3. Modeling Approaches Evaluated for H-TPC-W 

Since the H-TPC-W system differs from the C-TPC-W system, there are slight 

differences in the modeling approaches evaluated for this study. Similar to the previous 

chapter, these methods are used independently with a QNM and a LQM for the H-TPC-

W system. The QNM and the LQM for H-TPC-W will be described in Section 5.4. The 

modeling methods using these models are described in detail as follows: 
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MEAN - The MEAN method considers only the number of EBs in an experiment. This is 

identical to the MEAN approach followed in the previous chapter. Since this method 

considers all sessions including those that are thinking, a think time of 7 seconds is used 

while solving the QNM and the LQM. 

MED - The main difference between the MBD method used in this chapter to the one used 

in the previous chapter is the use of the request population distribution instead of the 

session population distribution. Figure 5.4 shows the STD for the MBD method for H-

TPC-W system. As mentioned in Chapter 2, the state of the system is the number of 

concurrent requests contending for system resources. Since the number of EBs is constant, 

state dependent birth rates are used in this method. The birth rate tk is obtained using 

the following formula: 

At, (5.1) 

In (5.1) k represents the number of concurrent requests contending for or using system 

resources, N represents the number of EBs and Z represents the average think time 

between requests within a EB (in this case 7 seconds). The reason behind the arrival 

rates can be described as follows. When there are k requests in the system, there are 

(N - k) EBs are in the thinking state. The (k + 1) state can be reached if any one of 

these thinking sessions submits a request. Each EB can issue a request every Z seconds 

and hence the request arrival rate from all these thinking EBs is (N - k) I Z . As shown 

in Figure 5.4, this represents the arrival rate for advancing to the (k + 1) state. 
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Figure 5.4: STD of hierarchical modeling approach for H-TPC-W system 

The death rates /1k are state dependent and obtained by solving a LQM or a QNM. 

Specifically, the death rate Pk is obtained by solving the predictive model for a 

population of k and a think time of zero. The reason for the zero think time can be 

explained as follows. As mentioned in Chapter 3, the average number of concurrent 

requests can be visualized as only those sessions that are either contending for or using 

the system's resources. It does not include sessions that are in the thinking state. As a 

result, for this method the QNM and the LQM are solved with a think time of 0 seconds. 

Thus the fraction of time spent at each population level can be computed as follows, 
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Nk,2, 

k=I i=1 Xi 

P k, = p*H') 
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(5.2) 

(5.3) 

The mean request response time for the system is estimated using Little's law [23] as 

follows: 

N 

0 _j1  
Ltmean -  N 

PXR 

(5.4) 

Pix! 

WAMEMP - This method uses the distribution of concurrent requests as measured during 

an experiment instead of using the closed formulae shown in (5.2) and (5.3). 

WAMMC - This method estimates the distribution of number of concurrent requests using 

Monte Carlo simulations as described in Chapter 3. The effectiveness of the simulations 

can be characterized by comparing how close the response time predictions obtained with 

WAMMC are to the corresponding ones obtained with WAMEMP. 

5.4. Predictive Performance Models for H-TPC-W 

Figure 5.5 and 5.6 show the QNM and LQM, respectively, for H-TPC-W. Similar to the 

previous case study, the QNM can only capture the impact of contention for hardware 

resources. The LQM can capture the impact of contention for software resources such as 

Web, application, and database server threads as well as hardware contention. The QNM 

and LQM are similar to each other in all other aspects. The mean think time is indicated 
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as Z in both the models. As discussed in the previous section, the mean think time used 

in the model differs for different modeling approaches. 

Both the QNM and LQM employ two classes of customers to model the impact of image 

downloads. The HTML class represents the non-image portion of a request. A customer 

belonging to this class contends with other HTML class customers (i.e., non-image portion 

of requests emanating from other EBs). She also contends with the image downloads 

initiated by other EBs in the system. This image portion of a request is represented in the 

models as a separate IMAGE class. As mentioned previously, both models take as input 

the number of concurrent requests in the system. The number of HTML class customers is 

set to be the same as the number of concurrent requests. As mentioned previously, the 

TPC-W workload generator used in this study opens four concurrent connections to 

download images. Consequently, the number of IMAGE class customers is set to be 

four times that of the number of HTML class customers. 
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Figure 5.5: QNM for H-TPC-W system 

The mean response time for a request is estimated as the mean response time for a HTML 

class customer. This approach assumes that a request's response time is dominated by 

the contention (i.e., queuing at resources) it faces with the HTML portions of other 

requests and the IMAGE portions of other requests. It is not dominated by the request 

service times at resources. In other words, this approach assumes that time a request 

spends waiting to get access to a resource is much longer than the time it spends getting 

service from that resource. The validity of this assumption is discussed shortly. 
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Figure 5.6: LQM for H-TPC-W system 

The resource demands for the IMAGE class and HTML class have to be estimated since 

only the overall utilization of the front server node and database server node by both 

classes is measured. Since IMAGEs exist only on the front server they do not place any 

demands on the database server's resources. For the front server node the total demand at 

a resource k denoted by Dbk is obtained by dividing the node's utilization by the 

request throughput. This represents the demand for servicing one HTML request and the 

Nj,, g IMAGE requests associated with that request. This study assumes that an IMAGE 

class request and a HTML class request incur the same demand. In the model, the 

population of IMAGE class requests is 4 times that of the HTML class. This implies that 
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each IMAGE class request in this model is actually dealing with Njg /4 IMAGE requests. 

Consequently, the demands for both classes can be estimated as follows: 

DwCbk 
DHTML_We!,,k =  

1 + Nj,ng 
(5.5) 

N *fl D img Web,k  

JMAGE—Wab,k - 4 * (1+ N 
\ 1mg 

In (5.5) and (5.6) DHTMyeh,k and D!MAGE_Weh,k represent the resource demand for HTML 

class and IMAGE class, respectively. Nj,,jg is different for different mixes and can be 

obtained from Table 5.2. The demand placed by the HTML class on the database server 

node is obtained by dividing that node's utilization by the request throughput. 

As mentioned in Section 5.1, the number of processes for the front server node was not 

recorded. This parameter was used to calibrate the LQM. A value of 3 for both the 

Web/Application server and the database server is found to be appropriate. Specifically, 

for each experiment mean response time predictions are extracted from the LQM for 

different numbers of concurrent requests. These predictions are compared with the 

corresponding experimentally observed mean response times for various numbers of 

concurrent requests. A threading level of 3 for the front server and the database server 

resulted in a consistently good match between predicted and measured mean response 

times across different experiments. The LQM validation process suggested that unlike 

C—TPC—W two phase processing did not seem occurring in H—TPC—W. 

100 



The lack of finer-grained measurement data limited the ability to pursue more detailed 

models for H-TPC--W. Specifically, the EB logs did not record the arrival and 

completion times of image requests. As a result more advanced features of the LQM 

capable of modeling the parallel download of images in more detail were not explored. 

Furthermore, as mentioned previously, it was not possible to measure the resource 

demands separately for IMAGE requests and HTML requests necessitating the 

approximations used for estimating the demands of the two classes used in the models. 

However, the simplifying assumptions did not limit the accuracy of the LQM. As 

mentioned previously, the LQM provided mean response time estimates that were 

consistent across the different experiments. 

5.5. Evaluation of Modeling Approaches 

The prediction of system throughput is based on the prediction results of the average 

request response time. In this thesis, the average system throughput is calculated as 

follows using Little's law: 

X=NEB /(Z+R) (5.7) 

In (5.7) N EB represents the number of EBs in the system, Z is the average think time and 

R is the predicted average request response time. In most of the experiments, think time 

Z is usually much greater than the average response timeR. Thus the system throughput 

is dominated by the known value NEB and Z . However, for those cases where the 

request response time R is compatible to the think time, the accuracy of the prediction of 

the R directly impacts the accuracy of the system throughput. Therefore, the prediction 
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of the average response time can better reflect the effectiveness of the modeling 

approaches investigated for H-TPC-W system. In this case study, MEAN-QNM had the 

worst throughput prediction error with an average prediction error of 34%. 

Table 5.3 shows the summary of mean response time prediction errors for all the 

approaches evaluated for the H-TPC-W system. The error metrics are calculated as 

described in Section 4.4. 

Table 5.3: Prediction errors for overall approaches 

Approach ABS— Error (%) Trend— Error (%) Max— Error (%) 

MEAN-LQM 50.54% 133% 83% 
MEAN-QNM 68.93% 61% 95% 
MBD-LQM 22.18% 106% 54% 
MBD-QNM 53.31% 122% 92% 
WANEMP-LQM 7.22% 21% 18% 
WAMEMP-QNM 31.17% 108% 78% 
WAMMC-LQM 56.00% 111% 107% 
WA4MC-LQM-HiVar 28.57% 82% 84% 

5.5.1. MEAN 

The results of the MEAN approach are discussed first. As shown in Table 5.3, the MEAN 

approaches' prediction accuracy is very poor. For all the workloads considered, the 

MEAN-QNM results in an ABS—Error of 68.93% and a Max—Error of 95%. MEAN-

LQM yields better accuracy than MEAN-QNM. The ABS—Error and Max—Error are 

50.54% and 83%, respectively. However, these errors are still unacceptably large. The 

errors are large in spite of using a validated LQM. It can be recalled from the previous 

section that the LQM yielded good estimates of mean response time for various 

concurrent request populations. The reason for the large errors is probably because the 

MEAN approach does not consider the burstiness at the system caused due to the 
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embedded image requests. Attention is focused next on techniques that consider the 

distribution of concurrent requests at the system to capture the impact of burstiness. 

5.5.2. MBD 

MBD, the method that uses the STD of Figure 5.4 to estimate the population distribution is 

considered next. From Table 5.3, it can be observed that the MBD technique improves 

ABS—Error significantly when compared to MEAN for both LQM and QNM. The 

ABS—Error of MBD-LQM drops to 22%, about 28% improvement compared to MEAN-

LQM, and that of MBD-QNM results in nearly 16% improvement in prediction accuracy 

when compared to MEAN-QNM. However, as shown in Table 5.3, the Trend Error 

and Max—Error are still significantly large for the MED method. 

The population distributions estimated by MBD-LQM significantly diverge from the 

corresponding empirically measured population distributions. For example, Figure 5.7 

plots the population distributions from MBD-LQM for the Browsing mix when the 

number of EBs is 100, 200, 300 and 400. Figure 5.7 shows that distributions estimated 

from MBD do not match the empiric1ally measured distributions. At low load, for example 

100 EBs, the population distribution output by MBD-LQM seems to match the 

corresponding empirical distribution (Figure 5.7 (a)). However, when the load increases 

to 200 EBs, the distributions estimated by MBD is less bursty than the corresponding 

empirically measured distribution (Figures 5.7 (b)). Specifically, MBD estimates slightly 

lower probabilities for higher population levels and slightly higher probabilities for lower 

population levels than what the measurements indicate. When the load increases to 300 
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and 400 EBs, the system becomes extremely overloaded as discussed in Section 5.2. In 

this case, as shown in Figure 5.7(c) and 5.7(d), there is a significant discrepancy between 

the distribution predicted by MED and the empirically measured population distribution. 

These results suggest that the MBD method's assumption that the distributions of time 

spent at various states are exponential may not be valid for H-TPC-W. 
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Figure 5.7(a): Population distribution from MBD-LQM for Browsing-100 
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Figure 5.7(b): Population distribution from MBD - LQM for Browsing-200 
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Figure 5.7(c): Population distribution from MBD-LQM for Browsing-300 



0.025 

Measured 

MBD-LQM 

0.02 

0.015 

0.005 

100 200 300 400 

x = Number of Concurrent Requests 

Figure 5.7(d): Population distribution from MBD-LQM for Browsing-400 

5.5.3. WAMEMP 

WAMEMP, the method which uses the measured population distribution from an 

experiment, is considered next. From Table 5.3, it can be seen that WAMEMP significantly 

improves the prediction accuracies of the LQM. Table 5.3 shows the ABS—Error for 

WAMEMP-LQM is 7.22%, nearly 43% less than that of MEAN.- LQM and 15% less than that 

of MBD-LQM. The gains in Trend Error and Max—Error are even more significant 

for WAMEMP-LQM. The Trend Error drops by nearly 112% and 85% from MEAN-

LQM, and MBD-LQM, respectively. The Max—Error drops by nearly 65% and 36% 

from MEAN-LQM, and MBD-LQM, respectively. These results show that taking into 

account the population distribution can capture the impact of burstiness and hence 

improve the accuracy of performance predictions. 
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WAJVIEMP also improves the accuracy for QNM when compared to the MEAN and MED 

methods. The ABS Error decreases by nearly 38% and 22% when compared to MEAN-

QNM and MED - QNM, respectively. However, since the QNM does not capture software 

contention, the errors for WAIVIEMP-QNM are still very large. Due to very inaccurate 

predictions from QNM, QNM results are ignored for the rest of the discussions. 

5.5.4. WAMMC 

In this method, Monte Carlo simulation is applied to estimate the distribution of number 

of concurrent requests as described in Chapter 3. From Table 5.3, the ABS—Error is 

nearly 56%, the Trend—Error is nearly 111%, and the max—Error is nearly 107% 

for this method. This indicates that WAMMC failed to adequately model the H-TPC-W 

system. The reasons for WAIVIMC'S poor performance are discussed as follows. 

Figure 5.8 plots the population distributions estimated by WAMMC for Browsing mix in 

various numbers of EBs and compares them with the corresponding empirical population 

distributions. It shows that in a WAMMC estimated distribution the probabilities for higher 

populations are lower when compared to the corresponding measured distribution. This 

implies that WAMMC predicts the time spent by the system at higher populations to be 

much shorter than what is observed in the experiments. The burstiness of the system is 

not captured properly by WAMMC. 
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Figure 5.8(a): Population distribution from WAMMC-LQM for Browsing-100 
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Figure 5.8(b): Population distribution from WAMMC-LQM for Browsing-200 
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Figure 5.8(c): Population distribution from WAMMC-LQM for Browsing-300 
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Figure 5.8(d): Population distribution from WAMMC-LQM for Browsing-400 
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To further investigate the reasons for the poor results with WAMMC, for each experiment 

the log file generated by the Monte Carlo simulation is compared with the EB log file 

collected from the measurement. It can be recalled from Chapter 3 that a simulation log 

file used the mean request response time estimates from the LQM to approximate the real 

request response times after considering the population changes during the simulation. 

Analysis of the EB log files showed that the real request response times exhibited 

considerable variability at each population level. The response times observed for any 

given population level spanned a very wide range. The simulation logs did not exhibit 

such a high variability in request response times. This is due to the use of the mean 

request response time prediction to approximate the real request response times. The 

LQM can only give the mean response time estimate for each population. It cannot 

capture the variability in response time. 

The issue of response time variability is further clarified through an example. Consider 

the workload Browsing-300. The EB logs show that 35,585 requests occurred when the 

population level at the system was 5. The measured data shows the response times of 

these requests range from 2ms to 5675ms. The average response time of these requests is 

ll2ms and the standard deviation is 179ms. The WAMMC method estimates the response 

time for all these requests as l2lms or around which is the mean response time output by 

the LQM for Browsing-300 when the population level is 5. Even though the mean 

response time prediction is pretty close to the actual mean response time at this 

population, WAMMC ignores the variation in response time at the specified population 
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level. This is probably one of the main reasons for the simulated population distribution 

not being as bursty as the empirical distribution. 

Due to the less bursty nature of the simulated population distributions, WANMC's 

predictions of the mean response times are much lower than the measured data. For 

example, the predictions from WAMMC-LQM are 84ms, 6lms and 3lms for Browsing-

300, Shopping-300 and Ordering-300, respectively. The corresponding actual mean 

response times measured are 865ms, 235ms and 57ms. 

To verify whether capturing the response time distribution will help improve predictions 

from WAMMC, a new approach called WAMMC-HiVar is devised. This approach uses 

information about the empirical response time distributions observed for each population 

level to inject some variability into the response times used during simulation. 

Specifically, this method maintains arrays of response time values for all population 

levels observed in a measurement. An array contains all the response time values 

observed for its corresponding population during an experiment run. Similar to the 

WAMMC method, WAMMC-Hi Var initially obtains a mean response time prediction from 

the LQM for a request based on the population calculated for the instant at which the 

request is submitted. However, in contrast to WAMMC, this initial estimate is multiplied 

by a scale factor to inject some variability. The scale factor is computed as follows. 

Firstly, as with WAMMC, the population level for the instant at which a request is 

submitted is determined. Secondly, the response time array corresponding to this 

population is chosen. Finally, the scale factor is computed by dividing a randomly 
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chosen response time value from this array by the median of the response time values in 

the array. The results of this method are discussed as follows. 

Table 5.3 shows the prediction results of WAMMC-LQM-HiVar for all cases. For each 

experiment, simulations are performed with 10 different seeds. The result for each case 

is the average value from the 10 replications. From Table 5.3, the ABS—Error drops to 

28.57% for WAMMC-LQM-HiVar. This represents about 27% improvement when 

compared to the WAIVJMC-LQM method. The Max—Error and the Trend—Error for 

WAMMC-LQM-HiVar also achieve about 23% and 29% improvements when compared 

to the results for WAIVIMC-LQM. For example, for Browsing mix, Table 5.4 shows the 

detailed prediction results when the number of EBs is 100, 200, 300, and 400. The table 

further confirms that WAMMC-LQM-HiVar's accuracy is significantly better than that of 

WAI4MC-LQM. For example, the predictions of WAMMC-LQM-HiVar for Browsing-

100, Browsing-200, Browsing-300 and Browsing-400 are 5lms, l7lms, and 695ms, 

and 1090ms, respectively. These numbers are higher than their corresponding numbers 

for WAI4MC-LQM of 44ms, 58ms, 84ms and 322ms, respectively. These results confirm 

that accurate modeling of the response time distribution of the system is necessary for 

achieving good performance predictions. 

Table 5.4: Comparison for WAMMC and WANMC-HiVar 

Comparison of Response Times (ms) 

Cases Measured WANMC-LQM WAMMC-HiVar-LQM 

Browsing-100 62 44 51 
Browsing-200 164 58 171 
Browsing-300 865 84 695 
Browsing-400 2772 322 1090 
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Figure 5.9 shows further information of the plots of the population distributions for the 

Browsing mix when the number of EBs is 100, 200, 300 and 400 for WANMC-LQM-

HiVar method. It shows that the WAMMC-LQM-H±Var can achieve more bursty 

distributions when compared to the WAMMC-LQM method. This leads an improvement in 

mean response time predictions for Browsing-1 00, Browsing-200, and Browsing-300 

as shown in Table 5.4. 

Table 5.4 and Figure 5.9(d) show that WANMC-LQM-H±Var method has limitations 

when applied to a very heavily loaded system. Recalling from Section 5.2, for the 

Browsing mix with 400 EBs the front server node and the database server node CPU 

utilizations are 75% and 69%, respectively and the system throughput flattens after 400 

EBs for Browsing mix. From Table 5.4, with 400 EBs WAIIMC-LQM-Hi Var predicts a 

mean response time of 1090 ms when compared to the measured mean response time of 

2772 ms. Similarly, as shown in Figure 5.9(d) the population distribution estimated by 

WAMMC-LQM-H±Var diverges significantly from the measured population distribution. 

This suggests that mere knowledge of response time distribution may not be adequate 

especially for heavily loaded systems. It is likely that knowledge about the correlations 

in the response times sequence (i.e., the response time process) is needed to accurately 

predict the behaviour of such systems. 

It should be noted that WANMC-LQM-HiVar cannot be used as a constructive method. 

This is because it requires detailed knowledge of the response time distributions for each 

population level and possibly even the correlations in the response time sequence. Such 

information is not likely to be available in practice to a performance analyst. 
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Figure 5.9(a): Population distribution from WANMC-HiVar-LQM for Browsing-100 
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Figure 5.9(c): Population distribution from WAMMC-HiVar-LQM for Browsing-300 
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It can be recalled that the WAMMC method provided accurate response time predictions 

for the C-TPC-W system. This was in spite of using just the mean response time 

estimates from the LQM for estimating request response times and not considering the 

detailed per population response time distributions. The reasons for the differences in 

behaviour of WANMC for C-TPC-W and H-TPC-W are discussed in the next section. 

5.6. Comparison of WAM for C-TPC-W and H-TPC-W 

The reason for the success of WANMC for C-TPC-W is discussed first. For C-TPC-W, 

WAI'4MC was used to predict the distribution of number of concurrent sessions. Accurately 

predicting this distribution involves accurately predicting the time spent at various states 

in the system. To predict the time spent at various states in the system well, one needs to 

have good predictions for the times spent by sessions in the system and the session 

arrival process. The session arrival process (i.e., sequence of session inter-arrival times) 

is in general specified as an input in performance studies and is hence, as was the case 

with C-TPC-W, known. The time spent by a session depends on the session length, the 

session think times, and the response times for the session's requests. For C-TPC-W, a 

session's duration is largely determined by its think times. As discussed in Chapter 4, 

this is because the think times are much larger than the response times. As a result, 

session durations and hence the population distribution can be accurately determined if 

inputs used in the performance evaluation process such as the sequences of session inter-

arrival times, think times, and session lengths are known. There is very little dependency 

with the response time distribution or the sequence of request response times which are 
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both unknown. The ability to accurately predict the population distribution ensures the 

accuracy of mean response time predictions. 

Due to the different definition of a state, to predict the population distribution for H-

TPC-W one must know the request arrival process and the times spent by requests in the 

system. Both these quantities are typically not known to a performance analyst due to the 

following two properties. Firstly, the sequence of times spent by requests (i.e., sequence 

of request response times) in a session is unknown. Analytic models such as LQMs can 

only estimate the mean response time for a system under steady state conditions. As 

mentioned in the previous section, they cannot estimate the response time sequence for a 

workload. Secondly, the time at which a request from a session arrives at a system 

depends on the response time incurred by the previous request in the session. Since the 

response time for the previous request is unknown, the request arrival process is also 

unknown. In essence, these dependencies with system response times make it very 

difficult to predict the population distribution in a constructive way as was possible for 

C-TPC-W. 

These results motivate the need for a workload generation method for session-based 

systems that is more realistic than the widely used user-equivalents approach. The 

inability to predict the distribution of number of concurrent requests adversely impacts 

the ability to predict mean response time for bursty workloads. This is in spite of having 

a LQM that provided good per request population estimates of mean response times. 

This thesis argues that a mixed workload generation approach such as the one employed 

for C-TPC-W is more realistic for session-based systems and enables accurate mean 
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response time predictions for bursty workloads. It should also be noted that many 

measurement studies of session-based systems use the mean think time of 7 seconds 

specified by TPC-W. This value is much lower than the mean think times observed in 

real session-based systems. Based on insights derived from this research such 

unrealistically low think times can not only impact the representativeness of performance 

tests but also adversely impact the ability to predict mean response time for bursty 

workloads. 

5.7. Conclusions 

This chapter assessed the effectiveness of WAM for H-TPC-W. As with C-TPC-W, the 

results indicate that methods that incorporate the population distribution can improve the 

accuracy of predictive models. However, the study showed that it was not possible to 

constructively estimate the population distribution for H-TPC-W. This stems from the 

need to estimate the population distribution at the granularity of a request due to the use 

of user-equivalent's based workload generation. The distribution of number of 

concurrent requests is significantly dependent on system response times. Since detailed 

information about system response times (e.g., the response time distribution or the 

response process) are typically unknown, the request response time distribution cannot be 

simulated accurately. In contrast, with mixed workload generation the population 

distribution has to be characterized at the granularity of sessions. For realistic systems 

where session think times are much larger than system response times, the population 

distribution has very little dependency with system response times. It can be accurately 

constructed based solely on inputs to the performance evaluation process such as the 
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sequences of session inter-arrival times, session think times, and session lengths. In light 

of these results, this thesis suggests that the widely used practice of user-equivalents 

based workload generation complicates the ability to accurately predict the performance 

of systems characterized by burstiness. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

In this thesis, a new technique called the Weighted Average Method (WAM) is 

introduced for improving the accuracy of predictive models for systems with bursty 

request arrivals. The technique is appropriate for session-based systems such as e-

commerce systems and enterprise application systems. Others have shown that real 

session based systems exhibit such bursty behaviours so sizing, capacity planning, and 

on-going management exercises should benefit from WAM. 

The technique was motivated by a well-known hierarchical method that combines a 

Markov birth-death process and QNMs. The general approach is applied but the closed 

expression for estimating population distribution is replaced with a fast Monte Carlo 

simulation technique that arbitrary distributions that affect burstiness for request arrivals 

can be taken into account. Furthermore, both QNMs and LQMs are considered in this 

thesis. Measurements from two TPC-W systems allow to compare the effectiveness of all 

these methods at predicting the mean request response time. 

The results indicate that modeling approaches that only consider the mean number of 

concurrent customers produce very poor estimates of mean response time for systems 

with bursty workloads. For the C-TPC-W system, the average mean response time 

prediction error for bursty workloads is nearly 19.34% and 19.10% for the QNM, and the 

LQM, respectively. Furthermore, the maximum mean response time prediction errors for 

bursty workloads are nearly 43% and 32% for the QNM, and the LQM, respectively. For 

the H-TPC-W system, the average prediction errors reach 69% and 51% for QNM and 

LQM, respectively. The results also indicate that LQMs are better than QNMs since they 
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take into account contention for software resources and software request-reply 

relationships. 

The use of population distributions significantly improved response time predictions 

especially for bursty workloads. Population distributions that were observed during the 

performance tests were used in conjunction with QNMs and LQMs developed for the 

systems. For the C-TPC--W system, the average mean response time prediction accuracy 

was 5% for bursty workloads when the system's LQM was used in combination with the 

measured population distributions. This represents an improvement of 14% over the 

straightforward application of LQM. For the H-TPC-W system the use of the empirically 

measured population distributions in combination with the LQM for the system reduced 

the average prediction error from 50% to 7%. These results motivate the need for a 

technique that can estimate the population distribution given arbitrary characterizations 

for workload parameters that impact the distribution. 

WAM is designed to support constructive estimation of the population distribution for 

any given workload. This will permit analysts to explore how arbitrary distributions for 

workload parameters that influence burstiness impact performance. The effectiveness of 

the constructive capability of WAM was investigated for C-TPC-W and H-TPC-W. 

For C-TPC-W, WAM was able to accurately estimate the population distribution for any 

given workload. As a result the performance predictions made using the estimated 

distributions were accurate. This result suggests that accurately estimating the population 

distribution given distributions for workload attributes that impact burstiness is feasible 
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for this type of a system. This was exploited to explore the impact of changes to 

workload parameters on the customer population distributions and hence on system 

behaviour. Furthermore, the constructive capability enabled the prediction of very 

different mean response times reported by multiple statistically identical runs for cases 

that include heavy-tail-like distributions. In effect, WAM can be used to assess whether a 

system has unpredictable behaviour by reporting a range of possible behaviours. 

In contrast to C-TPC-W, WAM's population distribution estimates were very poor for 

H-TPC-W. Consequently, performance predictions using these estimated distributions 

were not accurate. Since H-TPC-W was used as a closed system, burstiness had to be 

modeled through the distribution of number of concurrent requests. In contrast to the 

distribution of number of concurrent sessions, the distribution of number of concurrent 

requests has a significant dependency with system response times. As a result, since 

system response times are typically unknown, it is very difficult to estimate the 

distribution of number of concurrent requests. The thesis concludes that constructive 

characterization of how various workload characteristics impact burstiness and 

performance is difficult for closed systems. 

The results from the case studies suggest that the use of a realistic performance testing 

approach such as the one used in C-TPC-W that lets the number of concurrent sessions 

vary during an experiment can make performance prediction easier for session-based 

systems characterized by burstiness. This is due to the fact that for such systems 

burstiness can be characterized at the granularity of a session. With realistically large 

think times, the distribution of number of concurrent sessions has very little dependency 
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with system response times. It can be determined accurately based only on the inputs of 

the performance evaluation process such as the distributions of session inter-arrival time, 

session think times, and session length. The ability to accurately estimate the distribution 

of number of concurrent sessions enables modeling of the impact of bursty request 

arrivals in session-based systems. In contrast, the widely used user-equivalents based 

testing approach complicates modeling by forcing burstiness to be characterized at the 

granularity of a request. 

A significant number of experiment hours were spent exploring two different systems, 

multiple application settings (for C-TPC-W) and workloads to better establish the 

generality of the proposed approach. For example, the various C-TPC-W application 

settings allowed to realize very different system behaviours in terms of the relative 

demands placed on the system resources. Based on the experiences from this work, three 

conditions have been identified that are essential for WAM to yield accurate predictions 

for a system. Firstly, the system being modeled by WAM must exhibit variation in the 

number of concurrent sessions. Secondly, WAM requires a good predictive model for 

the system under study. The model should provide good per population performance 

estimates for the system. Finally, as mentioned previously, the think times in the system 

must be larger than the response times. 

Future work includes extending the technique to consider multi-class models and load 

dependent service rates for session-based systems. Specifically, techniques will be 

developed to ensure the efficiency of WAM for multi-class models. Support for load 

dependent service rates is important for modeling Software as a Service environments 
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where the amount of resources allocated to applications can fluctuate dynamically based 

on load. Future work will also apply and validate WAM for other multi-tier software 

systems, including enterprise application systems. 

Two recent studies [28] [44] have proposed MAP-based analytic techniques that can 

yield approximate mean response time estimates for systems characterized by burstiness. 

These techniques were publicized after the conclusion of the research presented in this 

thesis. Comparing these techniques with WAM would be another topic that deserves 

future investigations. 
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