
UNIVERSITY OF CALGARY

A Technique for Modeling the Performance of Session-Based Systems with Bursty

Request Arrivals

by

Min Xu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

September, 2008

© Min Xu 2008

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "A Technique for Modeling the Performance of

Session-Based Systems with Bursty Request Arrivals" submitted by Min Xu in partial

fulfilment of the requirements of the degree of Master of Science.

Supervis
epart

Dr. Mahmood Moussavi,
Department of Electrical and Computer Engineering

nainurthy,
omputer Engineering

Dr. Behrouz F21F
Department of Electrical and Computer Engineering

Dr. Zongpeng Li,
Department of Computer Science

Se
Date

11

Abstract

Analytic performance models such as Queuing Network Models (QNMs) and Layered

Queuing Models (LQMs) are important tools that support system sizing, capacity

planning and systems management exercises. This thesis describes a new technique

called the Weighted Average Method (WAM) designed to improve the accuracy of such

models for systems that experience bursty arrivals of customer requests. WAM reflects

the impact of burstiness by considering the customer population distribution at a system.

It is a constructive technique that permits studies of how arbitrary distributions for

workload parameters influence the population distribution and hence performance.

Specifically, WAM uses a fast Monte Carlo simulation to estimate the population

distribution for any given workload. The estimated distribution is combined with an

analytic performance model (e.g., a QNM or a LQM) to predict a system's performance

under that workload. The effectiveness of WAM is evaluated through case studies

involving two different TPC-W installations.

111

Acknowledgements

There are so many people who have played very import parts in the completion of this

thesis.

I would like to thank my supervisor Dr. Diwakar Krishnamurthy for being a patient

supervisor and for supporting this work with ideas, suggestions as well as criticisms.

I am extremely grateful to Dr. Jerry Rolia, who was my internship mentor in HP Labs.

His patience and kindness, as well as his academic experience have been invaluable to

me.

My parents, Shan'an and Xianxiu, and my brother Gang, have been a constantly

unconditional source of support for me, both financially and emotionally throughout my

degree. This thesis would certainly not have existed without them.

My husband Zhan has been, always, my joy and my guiding light, and I thank him.

iv

Table of Contents

Approval Page
Abstract
Acknowledgements iv
Table of Contents v
List of Tables vii
List of Figures and Illustrations viii
List of Symbols, Abbreviations and Nomenclature x

CHAPTER 1: INTRODUCTION 1
1.1. Motivation 1
1.2. Research Objectives 8
1.3. Research Contributions 8
1.4. Publications 11
1.5. Thesis Organization 12

CHAPTER 2: BACKGROUND AND RELATED WORK 13
2.1. Performance Testing Methodologies 13

2.1.1. Trace Generation Techniques 14
2.1.2. Request Generation Techniques 16
2.1.3. Commercial Tools and Standard Benchmarks 18

2.2. Analytic Performance Models 19
2.2.1. System-Level Performance Models 19
2.2.2. Component-Level Performance Models 21
2.2.3. Hierarchical Performance Models 24
2.2.4. Existing Techniques for Modeling Systems with Bursty Request

Arrivals 27
2.3. Summary 32

CHAP 1'bR 3: THE WEIGHTEDAVERAGE METHOD (WAM) 34
3.1. Overview of WAM 34
3.2. WAM for Systems with Varying Number of Concurrent Sessions 36
3.3. WAM for Systems with Constant Number of Concurrent Sessions 43
3.4. Conclusions 45

CHAPTER 4: C-TPC-W CASE STUDY 46
4.1. Experiment Test Bed 47

4.1.1. Experiment Setup 47
4.1.2. Experiment Design 49
4.1.3. Experiment Methodology 54

4.2. Overview of Experimental Results 57
4.3. Predictive Performance Models for C-TPC-W 65
4.4. Results of QNMs and LQMs with WAM 69
4.5. Conclusions 83

v

CHAPTER 5: H-TPC-W CASE STUDY 86
5.1. Experiment Test Bed 87
5.2. Overview of Experimental Results 91
5.3. Modeling Approaches Evaluated for H-TPC-W 93
5.4. Predictive Performance Models for H-TPC-W 96
5.5. Evaluation of Modeling Approaches 101

5.5.1. MEAN 102
5.5.2. MBD 103
5.5.3. WAMEMP 106
5.5.4. WAMMC 107

5.6. Comparison of WAM for C-TPC-W and H-TPC--W 116
5.7. Conclusions 118

CHAPTER 6: SUMMARY AND CONCLUSIONS 120
REFERENCES 125

vi

List of Tables

Table 4.1: Statistics of the session length and the think time 51

Table 4.2: Workload mixes and no-load response time of request types 53

Table 4.3: Response time and resource demand measurements from the case study 56

Table 4.4: Estimates of Hurst parameter for BPSLZ replications 59

Table 4.5: Accuracy for predicting for overall cases 72

Table 4.6: Accuracy for predicting R,,,ea,z for bursty cases 75

Table 4.7: Accuracy for BPSLZ-HiMix- workloads 76

Table 4.8: Accuracy for BPSLZ-77- workloads 77

Table 4.9: Accuracy for predicting R,,jea, for non-bursty workloads 78

Table 5.1: Test bed components 89

Table 5.2: Definition of workload mix 91

Table 5.3: Prediction errors for overall approaches 102

Table 5.4: Comparison for WAMMC and WAMMC-H±Var 112

vii

List of Figures and Illustrations

Figure 1.1: Typical architecture of an enterprise application system 2

Figure 2.1: Example of a STD for a system-level model 21

Figure 2.2: Hierarchical birth-death model for a session-based system 25

Figure 3.1: Performance modeling process with WAM 35

Figure 3.2: The WAM algorithm 38

Figure 3.3 Algorithm of the GetSyntheticResponse method 40

Figure 4.1 Experiment setup for the C—TPC—W system 48

Figure 4.2: CDFs for BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base 61

Figure 4.3: CDFs for EMPSLZ-HiMix-77-Base and EMPSLZ-MedMix-77-Base 62

Figure 4.4: CDFs for BPSLZ-HiMix-71 -BigDB workload 64

Figure 4.5: Measured Rinean values for BPSLZ-HiMix-71 -BigDB 64

Figure 4.6: Queuing network model for C—TPC—W system 65

Figure 4.7: Layered queuing model for C—TPC—W system 66

Figure 4.8: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 1) 79

Figure 4.9: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 2) 80

Figure 4.10: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 3) 80

Figure 4.11: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 4) 81

Figure 4.12: Response times for BPSLZ-HiMix-BigDB-71 81

Figure 4.13: Response times for BPSLZ-HiMix-77 and EMPSLZ-HiMix-77 83

Figure 5.1: H—TPC—W system 89

Figure 5.2: CPU Utilization of (a) front server and (b) database server 92

Figure 5.3 : Measured (a) throughput and (b) response times for three mixes 93

Figure 5.4: STD of hierarchical modeling approach for H-TPC-W system 95

vii'

Figure 5.5: QNM for H-TPC-W system 98

Figure 5.6: LQM for HTPC - W system 99

Figure 5.7(a): Population distribution from MBD-LQM for Browsing-100 104

Figure 5.7(b): Population distribution from MBD-LQM for Browsing-200 105

Figure 5.7(c): Population distribution from MBD-LQM for Browsing-300 105

Figure 5.7(d): Population distribution from MBD-LQM for Browsing-400 106

Figure 5.8(a): Population distribution from WANMC-LQM for Browsing-100 108

Figure 5.8(b): Population distribution from WAMMC-LQM for Browsing-200 108

Figure 5.8(c): Population distribution from WAMMC-LQM for Browsing-300 109

Figure 5.8(d): Population distribution from WAr4MC-LQM for Browsing-400 109

Figure 5.9(a): Population distribution from WAJVIMC-HiVar_LQM for Browsing-100 114

Figure 5.9(b): Population distribution from WANMC-H±Var-LQM for Browsing-200 114

Figure 5.9(c): Population distribution from WAIvIMC-HiVar-LQM for Browsing-300.115

Figure 5.9(d): Population distribution from WANMC-HiVar.-LQM for Browsing-400 115

ix

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

QNM Queuing Network Model

FCFS First Come First Served

PS Processor Sharing

MVA Mean Value Analysis

LQM Layered Queuing Model

TPC-W TPC benchmark W (Web commerce)

C-TPC-W TPC-W system in Carleton university

H-TPC-W TPC-W system in HP-labs

WAM Weighted Average Method

SAS Software As a Service

SURGE Scalable URL Reference Generator

SWAT Session-based Web Application Tester

STD State Transition Diagram

MOL Method of Layers

MAP Markovian Arrival Process

PDE Population Distribution Estimator

BPSLZ Bounded Pareto distribution used in Session
Length and think time distributions

EMPSLZ Empirical distribution used in Session Length
and think time distributions

ABS—Error Mean Absolute Error

Max—Error Maximum of the Absolute Errors

Trend Error Difference between the largest error and the
smallest error

MBD Markov-chain Birth Death method

WAMEMP WAM method with Empirical distribution

WAMMC WAM method with Monte Carlo simulation

CDF Cumulative Distribution Function

PDF Probability Distribution Function

EB Emulated Browser

X

CHAPTER 1: INTRODUCTION

I.I. Motivation

Enterprise application systems are often used to perform business functions such as

online shopping, accounting, production scheduling, and customer relationship

management. Most of the enterprise applications have a multi-tiered architecture [1]. As

shown in Figure 1. 1, a Web server receives requests from customers who can potentially

be spread across the Internet. The Web server forwards a customer request to an

application server. The application server typically implements the business logic of the

enterprise application. It can in turn contact a database server to request data such as

order details and customer account information. The application server dynamically

generates a HTML page using its business logic and the data obtained from the database

server. It transmits the dynamically generated page to the Web server, which in turn

sends it to the customer who initiated the request.

To improve performance and scalability the Web, application, and database servers are

typically deployed on separate physical machines. Furthermore, the servers support

multiple threads or processes to serve many customer requests concurrently. Typically,

more physical machines are added to each tier to handle expected increases in workload.

For example, the application server tier may have ten physical machines each running an

instance of the application server software. This technique is referred to as horizontal

scaling.

1

Web Server

Customers

Application Server

• t

POW

Database Server

Figure 1.1: Typical architecture of an enterprise application system

Enterprise application systems are typically session-based. The workloads of these

systems are often characterized in terms of sessions. A session is defined as a sequence of

interdependent requests submitted to the system by a single entity. For example, the

following is a valid session for an e-commence system: [Home, View, Add,

Purchase]. This session describes a shopper who visits the home page of this system,

2

views the content of the product she is interested in, adds the product into the shopping

cart and finally purchases that product. Besides, the session-based workloads are usually

bursty for the enterprise environments. Burstiness can be used to describe the session

arrival patterns or request arrival patterns in the systems.

Since performance is crucial for enterprise application systems, it is necessary to support

effective techniques for service level assessment, system sizing, and capacity planning.

Service level assessment studies investigate whether a customer is likely to obtain

adequate performance from a system. For example, an e-commerce system provider may

want to design her systems such that the system is able to service 10,000 customer

requests per second while at the same time ensuring that a customer's request does not

experience a delay of more than 500 milliseconds. Service level assessment is important

since poor performance can mean lost customers and hence lost revenue. Sizing is the

process of determining how may software and hardware resources to provision to the

system so that service level requirements can be met. For example, a system architect

may want to determine the number of physical nodes to provision per tier as well as the

number of server threads or process needed on each physical machine in a tier to handle

the system's expected workload. Capacity planning deals with how to upgrade a system

to deal with future increases in customer workload.

Performance testing is often used to support service level assessment, system sizing, and

capacity planning. It involves submitting a synthetic workload to a system under study in

controlled conditions. The synthetic workload emulates the real workload of the system

under study (i.e., requests from real customers of the system). A synthetic workload is

3

constructed from a workload model. The workload model consists of workload attributes

that are likely to impact performance the most and statistical characterizations for those

attributes. Measurements such as customer response times and system resource

utilizations (e.g., CPU utilization) are collected during tests to derive insights on system

performance.

Performance tests must satisfy two main requirements namely, representativeness and

flexibility. A synthetic workload is said to be representative of a real workload if both

workloads yield similar performance when submitted to the system under study.

Including attributes that impact performance in the workload model and specifying

appropriate characterizations for the attributes influences representativeness. Very often

it is difficult to choose characterizations for workload attributes since there may be little

or no data available about characteristics of real workloads. As a result, it is important

for a performance testing methodology to support the flexibility to conduct controlled

sensitivity analyses on the workload attribute characterizations. This allows a tester to

establish the performance behaviour of a system under a range of workloads that the

system might encounter in practice.

Performance analysts often rely on analytic performance modeling in addition to

performance testing. Analytic modeling supports "what-if" analyses. Typically

performance testing is time consuming and hence expensive. As a result only a finite

number of workloads are considered during performance tests. In order to evaluate

system performance under other workloads, a model can be constructed and parameters

of the models can be derived from existing performance tests. The model can be

4

perturbed to understand system behaviour under workloads that were not explored during

performance testing. Furthermore, the model can also help understand performance

behaviour under alternate hardware (e.g., faster CPU) and software configurations (e.g.,

more application server threads). Analytic modeling is also the only approach for cases

where a system is under development and not available for testing.

Queuing Network Models (QNMs) [2] [3] are widely used by practitioners as an analytic

modeling methodology. A QNM consists of a system of queues where each queue is

used to abstract a system resource (e.g., a CPU or disk). The parameters of the model

include the number of concurrent customers in the system, the scheduling disciplines

used in the queues (e.g., First Come First Served, Processor Sharing) and the average

time taken to service a customer request at each resource once the request has acquired

the resource. A QNM can be solved efficiently by using a technique known as Mean

Value Analysis (MVA) [2]. MVA sets up and evaluates analytic expressions for the

queues in a model to provide mean estimates for performance metrics such as customer

response time, number of customer completions per second, and resource utilizations.

MVA achieves computational efficiency by stipulating various assumptions together

referred to as the product form assumptions [3]. The estimates provided by MVA are

accurate if these assumptions are met in the system under study. Due to its efficiency

MVA is widely used for solving QNMs.

The straightforward application of MVA and QNMs to study session-based systems

poses the following challenges:

5

• Several recent studies [4] [5] have indicated that the workloads of real session-based

systems exhibit burstiness in the arrival of requests to the system. Since burstiness

can significantly impact performance, methods must be supported to reflect its

impact within models. Krishnamurthy et al. [6] observed that bursty workloads in

session-based systems exhibited bursts in the number of concurrent customer

sessions using the system. This suggests that it may be important to take into

account the distribution of number of concurrent sessions during performance

modeling exercises. However, traditionally a QNM only accepts a mean number of

concurrent customers as an input. Furthermore, bursty request arrivals violate

product form assumptions thereby limiting the straightforward application of MVA.

• Krishnamurthy et al. [6] showed that several workload attributes as well as the

distribution of system response times influence the distribution of number of

concurrent sessions. While studying systems with burstiness, performance analysts

may require support for fine-grained characterization that allows them to understand

how arbitrary distributions for these workload attributes impacts the distribution of

number of concurrent sessions and hence performance. Currently no MVA-based

technique supports the ability to construct the distribution of number of concurrent

sessions for arbitrary distributions of workload attributes.

• QNMs can typically be used only for estimating the impact of contention among

requests from various customers for hardware resources. They are not designed for

evaluating the impact of contention for software resources such as processes and

threads. Furthermore, they cannot be used to study the impact of various software

request reply relationships (e.g., asynchronous processing). These factors may be of

6

considerable importance for enterprise application systems [7]. Consequently,

QNMs with extensions to handle software related issues need to be evaluated for

these systems.

Even though several techniques that do not use MVA exist for modeling burstiness, there

are significant challenges in applying them in practice. Existing analytic techniques that

address burstiness are more complex than MVA. Typically, exact solution methods for

mean response times do not exist and reliable estimates from approximate solutions are

difficult to obtain. There are also several techniques to evaluate the impact of burstiness

that depend solely on discrete event simulation. The exclusive reliance on simulation

makes these techniques slower when compared to MVA-based analytic techniques

especially for large systems.

This thesis proposes a new performance evaluation technique to study session-based

systems characterized by .bursty request arrivals. The technique applies the well-known

concept of hybrid modeling which typically involves combining simulation with analytic

techniques to analyze complex systems. It relies on a fast Monte Carlo simulation. The

simulation can take as input arbitrary distributions for a set of workload attributes that

influence burstiness. It estimates the population distribution that results from these

distributions. The population distribution provides a measure of the burstiness of the

system. For a system where the number of concurrent sessions varies the population

distribution is defined as the distribution of number of concurrent sessions at the system.

For a system where the number of concurrent sessions is constant the population

distribution is defined as the distribution of number of concurrent requests at the system.

7

The population distribution estimated through the Monte Carlo simulation is combined

with MVA-based predictive models to offer mean estimates of various performance

metrics of interest.

1.2. Research Objectives

The main objectives of this research are as follows:

• Evaluate the ability of straightforward applications of QNMs solved using MVA to

capture the performance impact of burstiness in request arrivals.

• Compare QNMs with extended QNMs called Layered Queuing Models (LQMs).

LQMs[8] can capture the impact of contention for software resources as well as

model various software request-reply relationships.

• Propose a new method to model session-based systems characterized by burstiness.

For efficiency and adoption by practitioners, the method should be able to exploit

MVA-based predictive models. Furthermore, it should support fine-grained

characterization of how various workload attribute distributions impact burstiness

and hence performance.

• Use performance test results collected from session-based systems to validate the

proposed technique.

1.3. Research Contributions

Data collected from performance tests on two different TPC-W [9] systems is used in this

thesis. The central component of a TPC-W system is a multi-tier bookstore application.

It is very widely used in academia and practice as a sample enterprise application. The

8

C-TPC-W system was installed in Carleton University, Ottawa, Ontario, Canada. In this

system the number of concurrent sessions was allowed to change during an experiment.

Hence its population distribution is characterized by the distribution of number of

concurrent sessions. Furthermore this system did not serve images embedded in the

HTML pages of the bookstore's pages. The H-TPC-W system was installed in Hewlett-

Packard (HP) Labs, Palo Alto, California, USA. Since this system used a constant

number of concurrent sessions in each experiment the population distribution is

characterized by the distribution of number of concurrent requests. In contrast to C -

TPC-W, H-TPC-W served the images used in the HTML pages. Based on data collected

from these systems the salient findings are as follows:

• The accuracy of performance predictions from the straightforward application of a

QNM solved using MVA was very poor especially for bursty workloads. For the

bursty workloads considered in C-TPC-W, this approach yielded an average error of

19.34% while predicting the mean response time. The maximum error was as high

as 42.56%. For the H-TPC-W system, the average error for mean response time

predictions is 68.93%.

• A straightforward application of LQMs solved using MVA improved prediction

accuracy but the errors were still very high. For the C-TPC-W system, the MVA-

LQM approach reduced the average mean response time prediction error by 0.24%

for bursty workloads when compared to the QNM. The maximum error was as high

as 32.37%, about 10% improvement with respect to QNMs. For the H-TPC-W

9

system, the average error with the LQM was 50.54% as compared to 68.93% for the

QNM.

• The use of population distributions significantly improved response time predictions

for bursty workloads. Population distributions that were observed during the

performance tests were used in conjunction with QNMs and LQMs developed for

the systems. For the C-TPC-W system average prediction accuracy was 4.87% for

bursty workloads when a LQM was used in combination with the measured

population distributions. This represents an improvement of 14% over the

straightforward application of the LQM. For the H-TPC-W system a LQM used

with the measured population distributions yielded an average prediction accuracy of

7.22%. This represented an improvement of 43% when compared to the

straightforward application of the LQM.

• The accuracy of estimating the population distribution using Monte Carlo

simulations was very good for the C-TPC-W system. For the C-TPC-W system, the

estimated distributions of number of concurrent sessions are very close to the

corresponding distributions measured during performance tests. As a result the

performance predictions made using the estimated distributions were close to those

made using the measured distributions. This suggests that accurately estimating the

population distribution given distributions for workload attributes that impact

burstiness is feasible for this type of a system.

• The accuracy of estimating the population distribution was very poor for the H-

TPC-W system where the number of concurrent sessions in each performance tests

10

was constant. Results show that while it is feasible to accurately estimate the

distribution of number of concurrent sessions it is very difficult to estimate the

distribution of number of concurrent requests. Consequently, the thesis concludes

that supporting fine-grained characterizations of the impact of workload

characteristics on burstiness is very difficult for systems such as H-TPC-W which

forces burstiness to be modeled through the distribution of number of concurrent

requests. These results also suggest that the use of a more realistic performance

testing approach that lets the number of concurrent sessions vary during a test (e.g.,

the approach adopted in C-TPC-w) can make performance prediction easier for

session-based systems characterized by burstiness.

The performance testing measurements for the two TPC-W systems were collected in

previous work [6] [10]. The objectives of those studies are unrelated to the objectives of

this thesis. The performance measurements collected by researchers of these two studies

are reused in this thesis and to validate the proposed modeling technique. Furthermore,

the thesis uses the Method of Layers (MOL) tool developed by Rolia and Sevcik [11] to

solve QNM and LQM models.

1.4. Publications

Parts of this research have contributed to two papers that have been published as HP Labs

technical reports. The following two journal papers that derive from these technical

reports are under submission.

11

1) D. Krishnamurthy, J. Rolia, M. Xu, "WAM - The Weighted Average Method for

Predicting the Performance of Systems with Bursts of Customer Sessions," in

submission.

2) J. Rolia, D. Krishnamurthy, M. Xu, and S. Graupner. "APE: An Automated Performance

Engineering Process for Software as a Service Environment," in submission.

Publication 1 presents the early version of the algorithm for the constructive technique to

estimate the population distributions. The results presented in this case study only include

the C-TPC-W system. In this thesis, the new results of the improved algorithm for

estimating the population distribution are reported for both C-TPC-W and H-TPC-W.

Furthermore, the measured data for the two TPC-W systems and WAM have been used

in publication 2 to support automated performance evaluation of Software As a Service

(SAS) environments.

1.5. Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 describes background and

related work. Chapter 3 introduces the new Weighted Average Method (WAM) technique

to model the impact of bursts in request arrivals. Chapter 4 and Chapter 5 present the case

studies for the two TPC-W systems to validate WAM. Summary and conclusions are

offered in Chapter 6.

12

CHAPTER 2: BACKGROUND AND RELATED WORK

This chapter reviews existing performance testing and performance modeling

methodologies. In particular existing modeling techniques that address the issue of

burstiness are discussed. This discussion is used to motivate the modeling technique

proposed in this thesis.

Section 2.1 reviews existing performance testing methodologies and discusses the

techniques used in this thesis. Section 2.2 provides background on the common analytic

modeling techniques used by practitioners. Section 2.3 reviews existing work that has

focused on modeling systems characterized by burstiness in request arrivals.

2.1. Performance Testing Methodologies

As mentioned in Chapter 1, performance testing involves submitting synthetic workloads

to a system under study. Generating synthetic workloads for Web-based systems

typically involves two steps namely, trace generation and request generation. The trace

generation step handles the complexities of creating a synthetic trace of HTI'P/HTTPS

requests that adhere to a workload model. The request generation step submits the

requests in the trace to the system under study. Pre-generating traces reduces overheads

during request generation, thereby ensuring that the achieved workload characteristics

stay close to the specified characteristics. The following sections describe these two

aspects of performance testing.

13

2.1.1. Trace Generation Techniques

Many tools exist for testing Web server systems that serve static HTML pages. SURGE

[l2] is a synthetic workload generator for testing Web servers. It has an offline trace

generation engine that is used to create a trace of HTI'P requests for a set of files hosted

on the Web server under test. The tool allows a performance analyst to control the

distributions for file size, HITP response size, file popularity, temporal locality, number

of embedded references per Web page, and idle time between successive requests.

In contrast to systems that serve only static HTML files, the trace generation step for

session-based systems must address the issue of handling inter-request dependencies.

Inter-request dependencies arise because some requests in a session have to be submitted

only after certain others requests have already been submitted. For example, in an e-

commerce system a request to order an item can only be submitted after a request to add

the item to the shopping cart has been submitted. The common approach to handling

inter-request dependencies within sessions has been the use of a first-order Markov chain

[9][13][14]. With this approach, the states of the Markov chain represent a system's

request types. Typically, a request type instructs a session-based application to execute a

particular script or module. For example, in an e-commerce system the "Home" request

type may instruct the system to display the homepage and the "Shopping cart"

request type may execute a script to add items to the shopping cart. Transitions between

the states model the user behaviour of navigating from one request type to another within

a session. Transition probabilities determine the number of "visits" to each state in the

chain and, hence, the mix of request types. Krishnamurthy et al. [6] argue that such an

14

approach has limitations especially for systems were the first-order dependency

assumption is not valid (i.e., next request to be submitted in a session depends on more

than just the current request submitted).

SWAT [6] is a trace generation engine for session-based systems. It does not rely on

Markov chains to enforce inter-request dependencies. Instead, it uses semantically

correct request sequences for a system under test. SWAT ensures that sessions present in

the synthetic workload conform to these sequences so that they are valid for the system

under test. Specifically, SWAT constructs a synthetic workload with correct inter-

request dependencies that has specified characteristics for a set of workload attributes that

are likely to impact performance. The characterizations for these attributes can be either

based on those observed in real systems or perturbations for the purpose of a sensitivity

analysis.

The workload attributes modeled by SWAT are as follows. With SWAT, sessions arrive

into the system from the outside world. The distribution of the times between successive

session arrivals, defined as the session inter-arrival time, can be specified by the

performance analyst. Each session behaves as a user by alternating between submitting a

request and waiting for a response. The time a session spends idle before issuing its next

request is defined as the think time. SWAT allows the think time distribution to be

specified. The number of requests in a session is defined as the session length. SWAT

also allows the distribution of session lengths to be specified. In addition to these

attributes, SWAT permits control over the workload mix. Workload mix specifies the

relative frequencies of occurrences for the different request types in the system. SWAT

15

outputs a trace file containing a user specifiable number of sessions such that the trace

conforms to the distributions and workload mix.

2.1.2. Request Generation Techniques

There are three different types of request generation schemes that are typically supported

by existing request generators namely, user-equivalents, aggregate, and mixed. These

methods are briefly described as follows.

The user-equivalents method (also known as closed method) is very widely used by

performance analysts. The SURGE workload generator described previously uses this

method. The closed method is based on the ON/OFF approach. A performance test uses

a fixed number of software processes or threads called user-equivalents. Each user-

equivalent emulates a user's Web browsing behavior. It alternates between submitting

requests specified in a trace (ON state) and lying idle for a predetermined period of time

(OFF state). The load on the system under study can be increased by increasing the

number of user-equivalents. The primary limitation of this approach is that it does not

permit control over characteristics of the aggregate request arrival process observed at the

system. For example, it is not possible to specify the exact instants at which requests have

to arrive at the system under study. This is because the time instants at which a user

equivalent issues requests depends on system state; long delays for requests resulting

from a heavily loaded system will increase the time between successive requests from a

user equivalent. Furthermore, due to the dependency with system state, when the system

is heavily loaded the rate at which requests arrive at the system tends to increase less

significantly as the number of user-equivalents is increased. As a result, a large number

16

of user-equivalents may be needed to cause significant stress (e.g., overload) on the

system under study.

Request generation engines that employ aggregate workload generation (also known as

the open approach) address these limitations. S-Clients [15] and httperf [16] are request

generators that support this method. With this scheme, there is no notion of a user

equivalent. Instead, requests are issued at the appropriate time instants, independent of

system load, so that a specified request arrival process is achieved at the system.

Furthermore, since the request generator does not wait for the response of a particular

request before submitting its next request, aggregate workload generation allows systems

to be stressed while making use of fewer resources when compared to request generators

relying on the user-equivalents approach. While the aggregate approach provides

performance measures for aggregate system behavior, it does not provide corresponding

measures for individual user behavior.

Mixed workload generation combines aspects of the user-equivalents and aggregate

approaches. This approach is particularly appropriate for describing session-based

workloads and is the approach used by SWAT. With this approach, user sessions arrive

in an open manner. Sessions are initiated at the specified time intervals irrespective of

the number of sessions already present in the system under study. However, each

individual session behaves in a manner similar to a user-equivalent. In contrast to the

user-equivalents approach, the number of concurrent sessions in the system can vary

continuously during the course of a performance test. The httperf [16] request generator

17

supports a mixed request generation module. SWAT uses this module to submit its

synthetic trace of sessions

2.1.3. Commercial Tools and Standard Benchmarks

There are also several commercial tools [17][18] for performance testing session-based

systems. However, to the best of my knowledge, these tools only address request

generation issues and do not provide any automated trace generation capabilities.

Typically, performance test teams have to manually code session emulation scripts that

take into account inter-request dependencies for the system being studied. Such an

approach can be time-consuming. Also, script development can get increasingly complex

when finer control is needed over characteristics such as workload mix and session length

distribution.

The industry-standard TPC-W [9] benchmark is widely used in academic and practice for

investigating performance issues pertaining to multi-tier, session-based application

systems. The benchmark was proposed to facilitate standardized comparisons of

hardware and software platforms from different vendors that could be used for executing

e-commerce applications. The benchmark suite contains specifications for developing a

multi-tiered bookstore application. The suite also contains a workload generator for

conducting performance tests on the bookstore application. The workload generator

follows the user-equivalents approach. Several open-source implementations of the TPC-

W bookstore and the workload generator have been developed [19][20]. These

implementations have been widely used to emulate the behaviors of real multi-tier

application systems in performance studies [10][21].

18

This thesis considers two different TPC-W systems to demonstrate the proposed

modeling technique. The C-TPC-W system uses the TPC-W bookstore implemented

using the commercial off-the-shelf software. This system was tested using SWAT instead

of the default user-equivalents based TPC-W workload generator. The H-TPC-W system

uses the University of Wisconsin open-source TPC-W implementation [19]. This system

was tested using the default, user-equivalents-based workload generator. This thesis

discusses the implications of these two different workload generation approaches on

performance modeling.

2.2. Analytic Performance Models

As mentioned in Chapter 1, an analytic performance model solves a system of equations

to estimate performance metrics for a system. In this section various analytic modeling

techniques such as system-level performance models, component-level performance

models, and hierarchical models [22] are discussed. These analytic modeling techniques

are very useful for computer systems performance analysis

2.2.1. System-Level Performance Models

A system-level performance model considers the system as a "black box" [22]. The

internal details of the box are not modeled explicitly. Instead, the technique relies on

only the throughput function of the box. Throughput is defined as the number of

completions per second by the system. The throughput function gives the average

throughput of the system as a function of k the concurrency of the system. The meaning

of k depends on the manner in which the system is modeled. For example, k can

represent the average number of concurrent customer sessions in the system and X(k) is

19

then the number of sessions completed per second when there is k concurrent sessions in

the system. Alternately, k can represent the number of concurrent customer requests in

the system and X(k) is then the average number of customer requests completed per

second when k concurrent customer requests in the system.

A system-level performance model can be solved by using the state transition approach.

The definition of state depends on problem at hand. Typical examples of state are the

number of concurrent sessions in the system and the number of concurrent request in the

system. As shown in Figure 2.1, the state transition diagram (STD) illustrates the states

that a system can be found in as well as how it transitions from state to state. An arrival

transition increases system state by 1 while a departure transition decreases system state

by 1. As shown in Figure 2.1, the transitions are characterized by state dependent on

arrival and departure rates. A set of equations called flow equilibrium equations can be

set up for the STD. These equations can be solved to estimate the state probabilities p(k).

p(k) is defined as the fraction of time spent by the system at state k. The state

probabilities can then be used to obtain performance metrics such as mean system

utilization, mean response time, and mean system throughput.

It should be noted that the technique makes several assumptions. In particular, the times

spent at the various states must be exponentially distributed. This is often referred to as

the Markovian assumption and for this reason these models are also called as Markov

models. Performance predictions from this technique can be inaccurate if these

assumptions are not satisfied. Several variants of the STD shown in Figure 2.1 are also

possible. For example, models that place an upper limit on the state can be used to

20

represent systems which impose limits on the maximum number of concurrent sessions or

requests allowed. Similarly, state independent arrival and departure rates can also be

used.

Figure 2.1: Example of a STD for a system-level model

2.2.2. Component-Level Performance Models

In contrast to system level models, component-level performance models take into

account the different resources of the system and the way they are used by different

requests. QNMs are widely used as component-level models. A QNM consists of a

system of inter-connected queues. Each queue is used to model resources such as

processors, disks, and networks. As mentioned in Chapter 1, the MVA technique can be

used to efficiently solve the system of queues of obtain mean values of performance

estimates such as response time, resource utilizations, and throughput.

A QNM takes as input several parameters. A resource service demand D has to be

specified for each resource in the QNM. D is defined as the mean time consumed by a

resource to satisfy a customer's requests. Note that D does not include the time spent by

21

the customer request waiting to get access to the resource. It only represents the time

spent in the resource after the request obtains access to the resource. D can typically be

estimated from measurements collected during performance tests [23]. In addition to the

demand a queuing discipline has to be specified for each queue. Examples of queuing

discipline include First Come First Served (FCFS) and Processor Sharing (PS) [22].

QNMs support the concept of multiple customer classes. Multi-class models are used for

systems, which have different groups of customers where each group stresses system

resources in a significantly different manner than the other groups. For multi-class

QNMs the demand values for a resource must be specified separately for each customer

class using that resource.

QNMs can have open customer classes as well as closed customer classes. The number

of requests present in the queuing network from an open customer class can be

unbounded. In contrast, a closed customer class has a fixed number of requests in the

network. A QNM that only has open customer classes is called as an open QNM while a

QNM that only has closed customer classes is defined as a closed QNM. In an open

QNM requests arrive into the network as per an arrival rate A. The arrival rate is an

input parameter for the model. The request consumes various resources and departs the

system. For a stable system, the system throughput equals the arrival rate. In a closed

QNM a fixed number of customers "circulate" in the system. The number of concurrent

customers is an input parameter for the model. A customer submits a request to the

system which consumes various resources. However, instead of departing the system

after consuming the resources the request is replaced by another request from the same

22

customer. The average time between successive requests from a customer can be

specified as a mean think time. The system throughput depends on the number of

concurrent customers, the system response time and the think time.

While a QNM can reflect contention among requests from various customers for

hardware resources, it cannot be directly used to reflect the impact of contention for

software resources. Examples of software resources include software processes, threads,

semaphores, and locks. Furthermore it is also difficult to model with QNMs request-

reply relationships such as fork/join, asynchronous processing, and processing involving

both synchronous and asynchronous phases. These interactions are commonly

encountered in software systems. LQMs are extended QNMs proposed to address these

limitations. A LQM consists of system of QNMs that allow a software resource to

provide some service to customers while also acting as a customer for other resources

(e.g., a hardware resource). Rolia and Sevcik [11] devised an algorithm called the

Method of Layers (MOL) that solves the system of QNMs iteratively using MVA to

obtain mean performance estimates. Balsamo et al. conclude that extended QNM-based

approaches, such as LQMs, are the most appropriate modeling abstraction for multi-

tiered software systems [7].

The MVA technique yields accurate predictions only when certain assumptions are met.

As mentioned in Chapter 1, the set of assumptions is referred to as product form

assumptions [3]. In particular MVA's performance estimates can be inaccurate when a

system experiences burstiness in the arrival of requests. Other conditions that MVA

cannot handle include priority scheduling, highly variable resource demands at FCFS

23

resources, and blocking relationship among resources. This thesis proposes a new

technique to model systems with bursty requests arrivals. In contrast to a closed QNM

which considers only the mean customer population, this technique captures the impact

of burstiness by considering the customer population distribution.

2.2.3. Hierarchical Performance Models

Hierarchical performance models combine system and component-level models. The

hierarchical technique has been used to study the performance of mixed systems that are

characterized by both open customer arrivals and closed customer circulations [24].

They have also been used to study the load dependent behaviour of multi-threaded

software servers [25].

Figure 2.2 presents the STD for a hierarchical model that can be used for a session-based

system. This model is used as a baseline for comparison with WAM. In general, a

hierarchical model has a higher level model that uses state dependent arrival and

departure rates to calculate the state probabilities and hence performance metrics such as

response time. The departure rates are obtained by solving the lower level model which

is a closed QNM or LQM whose predictions are obtained through MVA.

In Figure 2.2, the state of the system represents the number of concurrent sessions in the

system. The state Sk varies from 0 to N where N is the maximum number of concurrent

sessions in the system. Sessions arrive at the system from the outside world. Each

session arrival causes the number of concurrent sessions to increase by 1. The rates at

which such transitions occur are given by the state dependent session arrival rates 4• A

24

PA

session submits L requests on an average where L is the mean session length. Z denotes

the mean think time between successive requests in a session. Each session completion

causes the number of concurrent sessions to decrease by 1. The rates at which such

transitions occur are given by the session death rates lu ck.

I • I was

P3k #11x(k-1)

Component-
Level Model

Figure 2.2: Hierarchical birth-death model for a session-based system

At a given state k, k concurrent sessions are competing for the session-based system's

resources. Consequently, as shown in (2.1) the death rate lusk can be calculated as the

session throughput XSk obtained by solving a closed QNM with a session population

of k and mean think time of Z.

25

/1 sk - Xsk =
(Rk+Z)L

k
(2.1)

In (2.1) Rk is the mean request response time obtained from the component-level

predictive model when there are k sessions observed in the system. Balance equations

involving the birth and death rates can be solved to obtain the probability Pk of residing

in each state k as follows:

1
PO Nk,

1+H
kI 1=1 X si

k2
1)k 1)O* rj

(2.2)

(2.3)

The probabilities Pk, for k=O ... N defines the population distribution. Equations (2.2) and

(2.3) can be written in terms of customer request arrival and completion rates. The

request arrival rate 2k is the session arrival rate Ack multiplied by the mean session

length L. Similarly, the request throughput Xk is the session throughput XSk multiplied

by the mean session length L. Using these relationships (2.2) and (2.3) can be rewritten in

terms of request-level rates as follows:

1
Nk,%

1+H :'
k=I i=I Xi

k2
Pk, =Po* 11

i=1 Xi

(2.4)

(2.5)

The mean request response time for the system is estimated using Little's law [231 as

follows:

26

PkXkRk

where

R _k=1
mean N

1Xk

Pk represents the population distributions, Xk

(2.6)

represents the customer request

throughputs, and Rk represents the mean request response time at population level k.

2.2.4. Existing Techniques for Modeling Systems with Bursty Request Arrivals

This thesis focuses only on burstiness in the arrival of requests to a session-based system.

The term bursty is also used in literature to describe workloads characterized by high

variability and correlation in resource service demands. For a given customer request

arrival pattern and mean request service time, the performance of a resource with bursty

service times is likely to be different than that of a resource with less bursty demands.

Bondi and Whitt [26] studied the impact of high service time variability on the

performance metrics of a closed network of queues and discussed the implications of the

results for analytic performance modeling. Eager et al. [27] proposed an efficient

technique for solving a closed network of queues with high service time variability.

More recently, Casale et al. [28] proposed an analytic technique to compute upper and

lower bounds of performance indices for closed systems with bursty service processes.

Addressing this type of burstiness is not the direct focus of this work. However, analytic

techniques that can reflect the impact of high variability in service times can be integrated

with the WAM technique proposed in this thesis in a straightforward manner to study

such systems.

27

Several studies have indicated that multi-tier session-based systems experience bursty

request arrivals and that burstiness can adversely affect performance. Menasce et al. [5]

characterized the workloads observed at an e-commerce system and an auction system.

The authors found that both systems were characterized by bursty arrivals of requests

over several timescales. They invoke the properties of the well-known ON-OFF process

[29] to argue that the bursts observed at fine timescales, i.e., several dozen seconds, were

due to the heavy-tailed [30] nature of the session length distributions observed at the

systems and the presence of think times in sessions. Vallamsetty et al. also noticed

similar burstiness in the arrival of requests at another real e-commerce system [4].

Krishnamurthy et al. [6] showed for a multi-tier system that distributions which cause

highly variable session lengths, think times, and request resource demands result in high

variability in the distribution of number of concurrent sessions and hence burstiness in

request arrivals at fine timescales. This suggests that modeling customer population

distribution may be helpful for modeling the impact of bursty request arrivals in session-

based systems. In addition to such fine timescale burstiness, burstiness has also been

observed at coarser timescales, e.g., hours, days, in real-session based systems [31].

Burstiness can have a big impact on how predictable or repeatable a system's behaviour

is in response to similar workloads. Crovella and Lipsky showed that the steady-state

values for performance measures from multiple statistically identical simulation runs that

use heavy-tailed distributions can result in very different measures for each run [32].

Observations obtained using a heavy-tailed distribution exhibits non-negligible

probabilities for very large and very small values. Krishnamurthy et al. [6] confirmed the

28

result of Crovella and Lipsky for multi-tier software systems. For a TPC-W system

servicing bursty workloads, the authors found that multiple statistically identical

measurements run with the same mean resource demands and same throughput resulted

in significantly different mean response time measurements. These results suggest the

need for modeling approaches that characterize a range of possible system behaviours

under bursty workloads.

MVA of closed QNMs and LQMs, techniques widely used by practitioners, only consider

the average customer population of a system. More complex techniques exist which

could potentially be used for modeling the impact of burstiness. Classical queuing theory

offers G/G/* queues [33] that can take into account the first and second moments of any

arbitrary request inter-arrival time distribution. However, exact solution methods for

mean response times do not exist for networks of such queues and reliable estimates from

approximate solutions are difficult to obtain [33]. Furthermore, heavy-tail-like

distributions that are a characteristic of bursty systems require more than the first two

moments for a proper characterization. Recently, Psounis et al. [34] considered a single

multi-server queue that is subjected to heavy-tail-like distributions. However, the

approach has not been extended to queuing networks.

Several researchers have proposed Markovian Arrival Processes (MAPs) for modeling

bursty request arrivals [28] [35]. However, queuing networks having MAPs cannot be

solved using efficient analytic techniques such as MVA. These techniques typically rely

solely on discrete event simulations which are more time consuming than applying MVA.

29

Menasce and Almeida propose MVA-based techniques that consider heavy-tailed

distributions and bursty request arrivals for Web server systems [22]. Specifically, they

describe a QNM that reflects the impact of a heavy-tailed file size distribution at Web

servers serving static HTML pages. The authors argue that a multi-class model where

the classes represent requests for files belonging to different file size ranges is more

suited for capturing the impact of the heavy-tailed distribution than a single class model.

This technique is specific to systems that serve static files. It is not intended for

transaction-oriented, session-based systems of the kind considered in this work. The

authors also propose another heuristic technique that uses a QNM to reflect the impact of

burstiness in request arrivals. The technique splits a given HTTP request log into equal

sized time periods. It counts the number of time periods for which the average request

arrival rate exceeded the request arrival rate observed over the entire log. This count is

used to compute a burstiness factor which is in turn used to inflate the service demand of

the bottleneck device in a QNM [22]. However, the technique was not validated with

respect to measurements and was not proposed as a constructive technique that permits a

performance analyst to assess the impact of distributions that contribute to burstiness on

mean response time behaviour.

As mentioned previously, the hierarchical technique described in Section 2.2.3 can

consider the population distribution. As shown in Section 2.2.3, the balance equations

can be solved to estimate the population distribution. Equations (2.1) and (2.6) can then

be used to compute performance metrics. However, as mentioned in Section 2.2.1, the

population distribution estimates are accurate only for workloads that cause the times

30

spent in the system states to be exponentially distributed. However, this is not expected

to be the case for systems affected by burstiness.

This thesis proposes and evaluates a new approach to estimate population distribution

called WAM. WAM applies the well-known concept of hybrid modeling to session-based

systems. Hybrid modeling typically combines simulation with analytic modeling

techniques to study complex systems. The WAM technique is motivated by the

hierarchical approach described in Section 2.2.3 but does not rely on a birth-death model

to estimate population distribution. Instead for any given workload it exploits a fast

Monte Carlo simulation to quickly estimate the population distribution, i.e., per

population level probabilities P(k) for k = 0.. .N, rather than relying on the closed

formulas given by Equations (2.2) and (2.3), or (2.4) and (2.5) for the birth-death process.

The estimated distribution is combined with a performance model (e.g., a QNM or a

LQM) to predict a system's performance under that workload. The primary advantage of

the newly proposed method is that it is not limited by the exponential distribution

assumption in the hierarchical approach. WAM is more robust with respect to the

distributions that contribute to bursty behaviour. For example, it permits in a

straightforward manner the study of how arbitrary distribution functions for workload

parameters such as session inter-arrival time, think time, and session length impact the

population distribution and hence performance.

Summarizing, the WAM technique is proposed with an objective to achieve the following

advantages over other techniques reviewed in this section that address the issue of

burstiness:

31

• Robustness with respect to arbitrary distributions - This allows the impact of

arbitrary distributions or workload traces to be studied.

• Support for constructive capability - This allows fine-grained control over how

distributions of various workload parameters that influence burstiness impact

performance. This capability also allows a range of possible behaviors to be

characterized for heavy-tailed workloads.

• Efficient when compared to alternatives that rely solely on simulation - As

described in Chapter 3, the WAM technique can exploit efficient MVA-based

predictive models. It also relies on fast, Monte Carlo simulations to estimate the

population distribution. Due to its use of MVA and fast simulations, for large

systems WAM is likely to be faster than techniques that solely rely on discrete event

simulations (e.g., techniques that use MAPs) to evaluate the impact of bursts.

The following chapters describe the design and validation of the WAM technique.

2.3. Summary

This chapter reviewed performance testing and performance modeling methodologies. In

particular, modeling techniques that address the issue of burstiness were described.

Burstiness can significantly degrade system performance and hence it is important for

analytic modeling techniques to capture its impact. A brief overview of the WAM

approach for modeling burstiness was provided and its potential advantages were

discussed.

Chapter 3 describes the WAM technique in more detail. Chapters 4 and 5 use

performance test results collected from two different TPC-W systems to validate the

32

technique. In particular, WAM is used in conjunction with both QNMs and LQMs for

those systems. The WAM-based models are compared with the following analytic

modeling approaches:

• Closed QNMs of the systems solved using MVA. These models only consider mean

population.

• Closed LQMs of the systems solved using MVA. These models only consider mean

population.

• The hierarchical method of Section 2.2.3 applied with closed QNMs of the systems

solved using MVA.

• The hierarchical method of Section 2.2.3 applied with closed LQMs of the system

solved using MVA.

33

CHAPTER 3: THE WEIGHTED AVERAGE METHOD (WAM)

This chapter describes the WAM technique for improving the accuracy of performance

predictions for systems characterized by burstiness. Section 3.1 provides a high-level

overview of WAM. Section 3.2 describes WAM for mixed systems characterized by

open session arrivals. Section 3.3 discusses how WAM has to be adapted to study closed

systems where the number of concurrent sessions is constant. Section 3.4 concludes the

chapter.

3.1. Overview of WAM

Figure 3.1 shows the process of applying WAM to predict the performance of a system

under study under a given workload. WAM is a trace-based technique. The method

takes as input a trace of sessions representing a particular workload. The trace can either

be a historical trace or a synthetic trace generated by a tool such as SWAT. Both types of

traces record session identifiers, the time at which the first request in a session arrives at

the system under study, the set of think times for a session and an identifier for the last

request in a session. In addition a historical trace records response times for requests in a

session. Response time is defined as the difference between the instant at which a request

was completed by a system and the instant at which the request arrived at the system.

Historical traces collected at production systems can be used to predict a system's

performance if it were subjected to those workloads. Synthetic traces can be used to

explore how characterizations for various workload attributes that influence burstiness

impact system performance. The WAM technique also relies on a predictive model for

34

the system under study. The model should be capable of providing accurate performance

estimates for various customer population levels.

Performance
Prediction

WAM Algorithm

Historical Trace
 ,1

Predictive Model

Population
Distribution
Estimator

WAM
Computation

A

• Population
Distribution

/ ,

(Synthetic Trace

SWAT

t
Input:
(1) Session inter-arrival time distribution
(2) Session lençjtli dstribution
(a) Think time distribution
4) Workload mix

WAM A gorithm

Population
Distribution
Estimator

Predictive Model

• Population
Distribution

V

WAM
Computation

(Performance
Prediction

 2

Figure 3.1: Performance modeling process with WAM

35

As mentioned previously, WAM estimates the population distribution and uses it to take

into account the impact of bursts. The population distribution is a function of workload

characteristics (e.g., distributions of session inter-arrival time, session think times, and

session length) and the response times encountered by the requests in sessions. The

request response times are unknown for a synthetic trace. As a result, WAM uses the

trace in conjunction with mean response times from the predictive model to estimate the

population distribution. Since request response times are known for a historical trace

WAM does not need the predictive model for estimating the population distributions for

such traces. For both types of traces, the estimated population distribution is used in

combination with the predictive model to offer mean estimates of performance metrics

such as request response time and throughput.

3.2. WAM for Systems with Varying Number of Concurrent Sessions

WAM is described for mixed systems where the number of concurrent sessions varies

over time. This type of system is considered first since session-based systems typically

exhibit such type of behaviour. As mentioned in Chapter 1, the population distribution

for such systems is defined as the distribution of number of concurrent customer sessions.

Closed QNMs or LQMs that are often used by practitioners can only consider the mean

customer session population. This thesis argues that such an approach may not be

appropriate for bursty systems. Instead WAM offers predictions that consider the

population distribution instead of just the mean population.

WAM is motivated by the hierarchical approach described in Section 2.2.3. However it

uses population distribution estimator (PDE) to quickly estimate the population

36

distribution, i.e., per population level probabilities P(k) for k = 0.. .N, rather than relying

on the closed formulae for the birth-death process from (2.2) and (2.3). The remainder of

the performance prediction method is similar to that shown in Figure 2.2. The population

distribution estimation process is now described. The algorithm for the population

distribution estimator in WAM is summarized in Figure 3.2.

The WAM approach relies upon the following:

• A trace file of sessions S;

• A sequence R of mean request response time estimates R(k) for k = 0.. .N for the

system - one for each concurrent session population level k as obtained by solving a

predictive model with a mean customer think time of Z seconds;

• A sequence X of mean request throughputs X(k) for k = 0. . .N for the system - one

for each concurrent session population level k.

As mentioned previously, the trace file S can be based on a historical session log from a

real system, or it can be synthetically generated using a tool such as SWAT. Each request

has a session identifier, a start time and end time such that (end time - start time) is the

response time of the request, and a flag that indicates whether a request is the last request

for its session. For all but the last request in a session, the request's think time is defined

as the time between its end time and the start time of the next request in the session. The

first request of a session has a start time that is equal to its session's arrival time. The

sequence R of response time estimates is obtained from a performance model for the

system, e.g., a QNM or a LQM. The sequence X of throughput estimates are obtained

from the trace S using the method described shortly.

37

1. Create a Future Event List (FEL). FEL stores events in chronological order.
2. Current_Population=O
3. State_Start_Ti,ne=O
4. State_End_Time=O
5. Initialize elements of Aggregate_State_Time array to 0. This array has Nn, elements where Nmax is the
maximum population.
6. Initialize elements of Aggregate_State_Completions array to 0. This array has Nnzax elements.
7. Obtain Predictive_Model_Response_Time array by solving a predictive model. This array has N,,,ax
elements.

8. Create request submission events corresponding to first requests of all sessions in trace S. Store the
events in the FEL
9. While FEL is non-empty

Select earliest event in FEL
If event is submission of a request

If request is first request in a session
State—End—Time = start time of request
Aggregate_State_Timne[Current_Population]+=(State_End_Timn-State_Start_Timne)
Completions=Request completions in the period (State—Start—Time, State—End—Time)
Aggregate_State_Comnpletions[Current_Population]+=Comnpletions
State_Start_Tinze=State_End_Ti,ne
Current_Population+=1

End If
If S is a historical trace

Response—Time = Get actual response time of request
End If
If is a synthetic trace

Response—Time = GenSyntheticResponse(State_Start_Time , Current—Population, FEL)
End If
Create a request completion event at (State_Start_Time+Response_Time)
Update FEL with the event
Continue

If event is completion of a request
If request is last request in a session

State—End—Time = end time of request
Aggregate_State_Time[Current_Population] +=(State_End_Timne-State_Start_Timne)
Comnpletions=Re quest completions in the period (State—Start—Time, State_End_Time)
Aggregate_State_Completions{Current_Population]+=Completions
State_Start_Tinze=State_End_Timne
Current—Population - =1
Continue

End If
Think_Time = Get think time of request
Create a request submission event at (State_Start_Timne+Think_Time)
Update FEL with the event
Continue

End While
10. Compute Total _Time as sum of elements of Aggregate_State_Time
11. Compute Pk values by dividing each element of Aggregate_State_Time by Total—Time
12. Compute Xk by dividing each element of Aggregate—State—Completions with the corresponding element
of Aggregate_State_Time
13. Use equation (2.6) to compute mean response time

Figure 3.2: The WAM algorithm

38

The population distribution estimator operates as follows. When using a historical trace

file S, per request response times are known so the sequence R of response time estimates

is not needed to compute the population distribution. The population distribution

estimator computes the P(k) for k = 0.. .N values by traversing the trace of sessions S

noting when the first request of each session starts and the last completes. In this way it is

able to keep track of and report the aggregate time that the system has spent at each

session population level. When normalized with respect to the total simulated time this

gives the population distribution P(k), k = 0. . .N. Furthermore, as shown in Figure 3.2 the

population distribution estimator also tracks the aggregate number of request completions

observed at each session population level. Knowledge of these completions and the

aggregate time spent at each session population level allows to compute estimates of X(k)

for k = 0.. .N. The simulations are very quick, essentially requiring the time to traverse

the trace file and are robust with respect to arbitrary workload parameter distributions.

When using a synthetically generated session trace file, the session arrival times, think

times, and session lengths are known from the trace. However, only the first request's

start time is known. The request response times and hence the request end times are not

known. As the population distribution estimator traverses the session trace, each time it

encounters a new request, it estimates the request response time using the

GetSyntheticResponse method. This method, which will be discussed shortly, estimates a

request's response time by considering the initial population level when the request is

made and the possible changes of population level between the request's start time and its

estimated end time. The estimated response time Reti,,ijte is used to estimate the end time

39

for the request as start time + Restj,,,aje. The request's think time is recorded in the trace

and could be from any desired distribution. The next request has a start time equal to the

end time + think time from the previous request.

The GetSyntheticResponse method is used to estimate request response times and hence

the request end times for a synthetic trace. As shown in Figure 3.3, this method estimates

the response time of a request by considering the initial population level at the instant the

request is submitted and the subsequent changes in population levels during the requests

estimated duration.

1. current Tune = current time, T = currentTj,ne
2. Current population at currentTi,ne =
3. tmpEndTuine=currentTime + R[] (R[i] is a value from sequence R when population = i)
4. endTiineAdjustinentFactor =
5. nextArrivalTime=getNextArrivalTi,ne(sessionA,','ivalTi,neArray)

6. NextCoinpletionTuine=getNextcompletionTiine(sessioncompletionTinzeArray)

While (nextArrivalTinze < tmpEndTinze 11 nextGoinpletionTiine <tnzpEndTinze)
If (nextGompletionTu,ne < nextArrivalTi,ne)

T = nextCompletionTuine
endTirneAdjustinentFactor = endTiineAdjustmentFacto,' - (T - cur,'entTime) / R[i]
i=i-1
current Ti me = T
trnpEndTimne = T + endTirneAdjustmnentFactor * Rh];
nextCompletionTiine = getNextComnpletionTinze(sessionCornpletionTirneArray)

End If
If (nextComnpletionTimne> nextArrivalTimne)

T = nextArrivalTimne
endTimeAdjustnmentFacto,' = endTinzeAdjustmnentFactor - (T - currentTime) I R[i]
i = i + 1
currentTirne = T
tmnpEndTirne = T + endTimeAdjustmnentFactor * R[i]

nextArrivalTime = getNextArrivalTumne(sessionArrivalTimeArray)
End If

End While

Figure 3.3 Algorithm of the GetSyntheticResponse method

40

Consider the first request in a session. The arrival time for the first request is known and

is denoted as currentTime. The population at this instant is calculated as i. The response

time is initially estimated as R where R is the mean response time prediction from the

predictive model at population level 1. The end time of the request is temporarily obtained

as tmpEndTinie = currentTime + R. A variable called the endTimeAdjustinentFactor is

maintained for each request and its value is initialized to 1. This variable can take values

from 0 to 1. It represents the amount of processing that remains for a request. A value of

1 indicates that the system has just started to process the request while a value of 0

indicates that the request has been completely processed.

The tmpEndTime estimate has to be adjusted to reflect changes to the population as the

request is being processed. In the time period [currentTime, tmpEndTime], the

population level can change due to the arrival or departure of other sessions. An arrival

of a session can cause increased contention among requests for system resources.

Consequently, the estimated end time tmpEndTirne has to be increased to take into

account this contention. Similarly, tinpEndTime has to be decreased to reflect the

potential decreased contention due to departing sessions. Two alternative scenarios will

now be considered. The first scenario considers the arrival of a new session at time T

where T is in the interval [currentTime, tinpEndTime]. The second scenario considers a

session departure (other than that of the session being processed) at T.

When a session arrives at T, the endTimeAdjustmentFactor is updated as follows.

41

T - currentTime
endTimeAdjustmentFactor = endTimeAdjustmentFactor

R,
(3.1)

In (3.1) i is the population observed just before a new session. After calculating the new

endTimeAdjustmentFactor, the population is increased by 1 to i+1 to reflect the new

session and the new end time of the current request is computed as follows:

tmpEndTime = T + R1 * endTimeAdjustmentFactor (3.2)

Equation (3.2) indicates that the remainder of the request (as measured by

endTimeAdjustinentFactor) will be processed slower by the system (i.e., at the "rate" of

For the scenario where a session departs at time 2', the endTimeAdjustmentFactor is

updated as before by using (3.1). However, now the population is decreased by 1 to i-i

and the updated request end time is computed as follows:

tmpEndTime =2' + R11 * endTimeAdjustmentFactor (3.3)

Equation (3.3) indicates that the remainder of the request will be processed faster by the

system (i.e., at the "rate" of 1/R11).

The"currentTirne is updated as T and the value of T is updated to the next session arrival

or session departure event. The calculations of the endTimeAdjustinentFactor and the

tmpEndTime are repeated until there is no new session arrival or session departure (other

than the session being processed) during the time interval [currentTime, tnipEndTime].

The difference between the final value of tmpEndTime and the request start time gives an

estimate of the request's response time. As mentioned previously, the arrival time of the

42

next request in the session is computed by adding the think time to tmpEndTime. The

GetSyntheticResponse method is again invoked for this new request to compute its end

time.

As shown in Figure 3.2, the population distribution estimated in this fashion is used with

(2.6) to compute the mean response time. For synthetic traces, GetSyntheticResponse

provides a heuristic approximation of the real response time of a request. The

effectiveness of this approximation is explored further in Sections 4.4 and 5.5.

Due to its use of Monte Carlo simulations, WAM can be used to explore the

predictability of a system's behaviour. By using different seeds for random number

generation, SWAT can be used to generate multiple synthetic session trace files that

match the desired workload distributions. Each trace may provide different estimates for

the population distribution and may result in a different estimate for mean system request

response time. As mentioned in chapter two, this is expected for systems influenced by

bursty workloads such as heavy-tailed distributions. Each execution is an example of how

the system may behave. A range of estimated mean response times, from multiple

simulations, provides information about how variable, i.e., unpredictable, a system's

behaviour can be expected to be.

3.3. WAM for Systems with Constant Number of Concurrent Sessions

Many practitioners and academics employ user-equivalents (i.e., closed) request

generation while evaluating session-based systems. For example, a number of

performance studies [1O][36] used the user-equivalents based default TPC-W workload

43

generator. A consequence of such a choice is that the number of concurrent sessions is

constant during a performance test. Each user-equivalent acts as a session and all

sessions start (near) simultaneously and end (near) simultaneously. Such a scenario is not

likely to be valid for real session-based systems. A workload generator that is more

representative of real systems would allow the number of concurrent sessions to vary [37]

facilitating the method described in the previous section. However, due to the prevalent

wide use of user-equivalents based request generation this thesis proposes techniques to

adapt WAM for such studies.

As mentioned in Chapter 1, for a closed system the population distribution is defined as

the distribution of concurrent requests at the system. In other words the state is now the

number of concurrent requests contending for system resources. This number can vary

from 0 to N,,jax where N,, is the number of concurrent sessions (i.e., number of user-

equivalents). Another way of interpreting the state is that it represents only those

sessions that are consuming and waiting for system resources and excludes sessions that

are "thinking". The predictive model for a closed system quantifies the contention among

requests for system resources. Specifically, it provides response time estimates for

various numbers of concurrent requests in the system. Due to the new choice of system

state the predictive model uses a mean think time of zero second.

The simulation process remains similar to that for mixed systems except that WAM now

keeps track of the number of concurrent requests in the system. Furthermore, the events

of interest are now the arrival and departure of requests as opposed to the arrival and

departure of sessions. For synthetic traces, whenever a new request arrives or departs the

44

GetSyntheticResponse method is invoked to estimate request response times. Lastly, as

mentioned before, the predictive model used for this type of system provides

performance estimates for various numbers of concurrent requests. The mean response

time is computed as before by applying (2.6).

3.4. Conclusions

This chapter described WAM. WAM is a hybrid technique that combines simulation with

analytic modeling. For a mixed system, the technique estimates the distribution of

number of concurrent sessions for any given workload. For a closed system, WAM

estimates the distribution of number of concurrent requests for a given workload. The

estimated population distribution is used in combination with a predictive model to offer

predictions for metrics such as mean request response time and mean throughput. In the

ensuing chapters the effectiveness of WAM is assessed by using it to model the

performance of two different TPC-W systems.

45

CHAPTER 4: C-TPC-W CASE STUDY

This chapter presents a case study of a multi-tier TPC-W application system. The system

was installed at Carleton University in Ottawa, Canada [6]. It is referred to as C-TPC-W.

Several performance test experiments were carried out for this system. C-TPC-W does

not use the default user-equivalents based TPC-W workload generator for these

experiments. It instead uses the SWAT workload generator that employs mixed

workload generation. As a result, the number of concurrent sessions varies over each

experiment.

Measurements collected from experiments are used to characterize the accuracy of WAM.

Specifically, the system is subjected to several controlled synthetic workloads generated

by the SWAT tool. Experiments using the synthetic workloads yield measurements that

provide insights on how the system's performance is affected by distributions of session

inter-arrival time, session length, and session think times and workload mix. A QNM

and an LQM are developed for the system. For each experiment, the corresponding

measurements are used to obtain parameters for these models. The WAM technique is

then independently used in combination with the LQM and QNM to predict the mean

response time for that experiment. The predicted mean response times are then compared

with the measured mean response time for the experiment. The process is repeated for all

experiments to assess the accuracy of WAM for various bursty as well as non-bursty

workloads.

The experiment test bed for the C-TPC-W is described in section 4.1. Section 4.2

analyzes the measurements collected from experiments to derive insights on how various

46

workloads impact the system's performance. The predictive performance models, both a

QNM and a LQM, are developed for the C-TPC-W system in section 4.3. Section 4.4

compares the straightforward application of these models that does not consider the

population distribution with the hierarchical Markov chain approach described in Section

2.2.3 and WAM which considers the population distributions.

4.1. Experiment Test Bed

4.1.1. Experiment Setup

The experimental setup consists of a client node, a Web and application server node and a

database node connected together by a non-blocking Fast Ethernet switch, which

provides dedicated 100 Mbps connectivity to each node. The client node is dedicated

exclusively to an httperf Web request generator [16] that submits the synthetic workloads

generated by SWAT. Logs generated by httperf record request response times observed

during an experiment. The logs also record for each session the times at which requests

are issued, the times at which requests completed, and the number of requests submitted.

This information can be analyzed to determine the measured population distribution

during an experiment. The Web/App server node implements the TPC-W application's

business logic software and communicates with the TPC-W database. The DB server

node executes the database server software which manages the TPC-W database. Finally,

a windows performance monitoring utility is employed that collects a user-specified sets

of performance measures from both server nodes at regular specified sampling intervals.

The experiment setup is shown in the Figure 4.1.

47

Client Node

Web/App Server Node DB Server Node

Figure 4.1 Experiment setup for the C-TPC-W system

The C - TPC -w application is deployed on Web, application, and database servers that are

part of a commercial off-the-shelf software product. The name of the product has been

withheld due to a non-disclosure agreement with the vendor. The system is configured to

not serve images. Image request were not submitted in any of the experiments. This

choice is consistent with the policy followed in several production systems [4][38]. In

these systems images are hosted on separate servers or on content distribution networks.

It is noted that the experiments presented in this study are not TPC-W benchmark runs.

The TPC-W bookstore system merely serves as an example system for the study.

All the experiments employ HTTP 1.1 over SSL. Configuration parameters related to

HTTP 1. 1, e.g., persistent connection timeout, are chosen to force a single connection per

session irrespective of session duration or the load on the system. This ensures that two

workloads with the same number of sessions, mean session length, and mean think time

48

impose the same connection establishment and connection shutdown overheads on the

Web server. Consequently, any difference in performance between them is solely due to

the difference in the high-level workload characteristics, i.e., session length distribution,

think time distribution, and workload mix.

The number of server processes and the threading levels are set as follows. The number

of Web server threads is set to be 1000. This was much greater than the maximum

number of concurrent connections encountered in the experiments. The number of

application server processes is fixed at 16, an upper limit imposed by the application. The

number of database server threads for the database server was set to the upper limit of 32.

The primary performance metric of interest for the study is the user-perceived mean

response time (R,,jea,i) for the requests at the TPC-W system. This metric is of interest for

system sizing, capacity planning and service level management excises. Response time is

defined as the time between initiating a TCP connection for a HITP request and

receiving the last byte of the corresponding H'ITP response. The measured response time

indicates the delay suffered by the request at the TPC-W system, provided the network

and the client workload generator node are not saturated.

4.1.2. Experiment Design

The following factors are considered for the experiments: a) session inter-arrival time

distribution; b) session length distribution; c) think time distribution; d) workload mix;

and, e) application settings.

49

For the session inter-arrival time distribution, session arrivals are assumed to be

uncorrelated. This is consistent with several previous studies, e.g., [39]. Consequently,

an exponential distribution is used to generate session inter-arrival times for all

experiments. The mean session inter-arrival time is chosen to achieve desired utilizations

at the bottleneck resources. It should be noted that an exponential session inter-arrival

time distribution does not imply a non-bursty, uncorrelated arrival of requests. As

mentioned in Chapter 2, the burstiness of the request arrival pattern at the system depends

on various attributes such as the distributions of session length and think time. Evidence

of bursty request arrivals in workloads used for this study is presented in Section 4.2.

For the session lengths and think times, two different distributions are considered namely,

empirical and bounded Pareto. These are used to represent the expected and worst cases

for variability, respectively.

The empirical distributions are obtained from workload data collected from a large e-

commence system [38]. Since that system did not server requests for images embedded in

Web pages, the request inter-arrival times within a session as measured at the system are

used as an approximation of the think times within sessions.

The bounded Pareto distribution [40], a "heavy-tail-like" distribution, is used to study the

impact of distributions that have a slightly heavier tail related to the empirical distribution.

The probability density function of the bounded Pareto distribution is defined as followed:

f(X=x)= a*k' (4.1)

50

Where a is defined as the Pareto index, which governs the rate at which the tail of the

distribution decays; k is defined as the minimum possible value for any random variable

X; p is defined as the maximum possible value for any random variable X.

In this case study, the parameter p is set to the maximum observation for the session

length or the think time obtained from the empirical distribution. Then k and a are

chosen such that the mean of the empirical distribution is matched. The value of

a chosen in this manner are 1.16 for the session length distribution and 1.10 for the think

time distribution. Table 4.1 shows the minimum, maximum and the mean of observations

obtained with the distribution for the synthetic workloads used in the study.

Table 4.1: Statistics of the session length and the think time

Empirical Bounded Pareto

Session Length (requests per session)
Minimum 3 3
Maximum 120 120
Mean 9.44 9.44

Think Time (s)
Minimum 0 12
Maximum 900 900
Mean 46.54 46.54

Three workload mixes are considered with different levels of variability in request

resource demands. The workload mix includes H±M±x, MedMix and LowM±x

workloads with high, medium, and low resource demand variation, respectively. The

HIM±x and the MedMix share the same average resource demands but MedMix has a

little lower variation in demands so that it is comparable how the demand variations in

the workloads impact the system's performance. The LowMix has lower average

resource demand as well as the lower variation of demands for each request type, which

used to compare to the other two mixes to show the impact on the system.

51

Firstly the mean "no-load" response time (R,,ea,,) is measured for each of the 14 TPC-W

request types. The R values are obtained when the number of concurrent sessions is

set to one. Consequently, they reflect the end-to-end resource demands across all

resources for request types for the TPC-W system. The TPC-W Shopping mix [9] is

used as a high demand variation mix (HiMix) in this study. A slightly different mix is

defined with slightly lower variation in demand (MedMix). To construct such a mix, the

proportion of requests belonging to the top two resource intensive request types Buy

request and Buy confirm and the non-resource intensive Home request type are

reduced, while the proportion of requests belonging to the Product detail request

type, relative to the HiMix, is increased accordingly. Finally, the LowMix is constructed

to reflect a mix that has a slightly lower mean demand and lower variation in demand

than both the HiMix and the MedMix. As show in the table 4.2, this is achieved by

eliminating certain resource intensive request types such as Buy request followed by

a concomitant increase to the less resource intensive Home request type.

The response time MeanR,,,11 for each mix is computed as followed:

14

IVleanR,,iea,j = L R,,a,jtype=j * P1 (4.2)
/=1

Where Rea,i,i,e..j represents the no-load mean response time when type is i (total 14

request types are considered), and pi represents the proportion of request type i.

52

Table 4.2: Workload mixes and no-load response time of request types

Request Type R mean (S) HiMix MedMix LowMix

Home 0.09 16.00% 9.00% 23.46%
New Product 0.18 5.00% 5.00% 5.00%
Best sellers 0.18 5.00% 5.00% 5.00%
Product details 0.23 17.00% 27.80% 17.00%
Search request 0.07 20.00% 20.00% 20.00%
Search results 0.13 17.00% 17.00% 17.00%
Shopping cart 0.24 11.60% 11.60% 11.60%
Customer registration 0.21 3.00% 3.00% 0.00%
Buy request 0.63 2.60% 0.00% 0.00%
Buy confirm 0.25 1.20% 0.00% 0.00%
Order display 0.18 0.66% 0.66% 0.00%
Order inquiry 0.05 0.75% 0.75% 0.75%
Admin request 0.09 0.10% 0.10% 0.10%
Admin confirm 0.14 0.09% 0.09% 0.09%

MeanR mean (S) 0.16 0.16 0.14

CO of Request Response Time 0.62 0.41 0.39

The coefficient of variation (COV) of request response time in table 4.2 is involved to

evaluate the variance of the resource demand times for each mix. It is computed as

followed:

COV= (4.3)
JV/eanR,,1<,,

= I (R,,1111)'p=j - MeanR inca,, 2 * p (4.4)
1J

Where o represents the standard deviation of the data sets and MeanR,,,ea,, represents the

overall mean response time for this workload mix. Table 4.2 shows the design causes the

MedMix to have a slightly lower coefficient of variation (COV) of request response time

than the HiMix while a slightly higher COV of request response time than the LowMix.

53

In this way, the experiments are designed to indicate how the system performs under the

workloads with different resource demand variations stressing the system.

To establish the robustness of this modeling technique, the experiments are conducted

with three different application settings Base, HighDiskU and BigDB. The Base

setting corresponded to a TPC-W application configured with 1,000 books in the

database. For the workloads under studied with this setting, the Web server node CPUs

were found to be the bottleneck. The HighDiskU setting differs from the Base setting in

terms of database server configuration. Specifically, the database server's main memory

cache settings were modified to cause more database node disk IJOs for a given workload

when compared to the Base setting. However, in spite of the increased JIOs, the Web

server node CPUs were still the bottleneck for all the workloads explored for the

HighDiskU setting. Finally, the BigDB setting corresponded to a TPC-W application

with 100,000 books in the database. This configuration allowed to verify the

effectiveness of this approach when the bottleneck shifts from the Web server node CPUs

to the database server node CPU.

4.1.3. Experiment Methodology

Due to time constraints, not a full-factorial investigation of the workload and application

factors was conducted discussed in the previous section. Instead SWAT was used to

create carefully controlled workloads designed to exhibit the performance impact of

combinations of the factors considered. As mentioned in Section 2.1.1, SWAT can create

a trace of sessions with each session in the trace containing request sequences that are

valid for the TPC-W system. Table 4.3 lists the workloads that were created by SWAT.

54

Each workload is described by four hyphen-separated tokens. The first token describes

the session length and think time distribution of the workload. For each workload, the

choice of distribution type, i.e., empirical or bounded Pareto, is always chosen to be the

same for session length and think time distribution. BPSLZ indicates the use of the

bounded Pareto distributions of Table 4.3 while EMPSLZ indicates the use of the

empirical distributions of Table 4.3. The subsequent tokens describe the workload mix,

the mean utilization of each processor in the Web/App server node (Uwb,cpu) observed

over the experiment duration, and the application settings, in that order.

From Table 4.3, eleven experiments are conducted for this study. Each experiment is

designed to study the impact of a given workload. As shown in Table 4.3, several

statistically independent replications are conducted for each experiment. To achieve this,

SWAT is used with different random number generator seeds to create several session

traces that are statistically identical with respect to the workload characteristics described

in Section 4.1.2. In each experiment replication 10,000 sessions are submitted to the

TPC-W system. The duration of a replication varied, from approximately 3 hours to 5

hours depending on the mean session inter-arrival time used. Each replication yielded

around 95,000 response time observations. From Table 4.3, in total thirty nine experiment

replications were conducted for this study.

55

Table 4.3: Response time and resource demand measurements from the case study

Workload Rmoan (s) Mean Rmean (s) DW.b,CPU (ms) °W,b,DI8k (ms) DDB,CPU (ms) DDB.DJ,k (ms)

8PSLZ-HiMix-77-HighDskU

1.1

1.11
191.64 8.44 46.54 19.04

0.93 190.65 8.49 46.8 18.94
1.3 194.33 8.25 46.51 17.65

BPSLZ-HiMix-71 .8igDB

2.02

2.09

189.53 8.95 110.76 6.67
2.06 190.35 8.85 110.88 6.66
1.63 189.54 9.38 111.42 7.08
2.65 195.86 9.04 112.31 6.76

BPSLZ.HiMix-77-Base
1.03

1.06

191.02 8.27 39.11 5.48
0.93 190.45 8.54 38.83 5.37
1.22 193.57 8.13 38.95 5.36

EMPSLZ-HiMix-77-Base

0.85

0.94

189.45 8.42 39.57 5.86
0.9 191.58 8.71 39.47 5.39
0.97 191.15 8.43 39.6 5.76
1.02 190.45 9.07 39.49 5.44

EMPSLZ-MedMjx-77.Base

0.75

0.75

188.39 9.24 34.08 5.49
0.75 191.57 8.52 36.8 5.6
0.76 188.79 8.43 34.18 5.47
0.74 186.59 8.41 34.2 5.49

BPSLZ-MedMix-77-Base

0.92

0.93

189.99 8.32 32.94 5.35
0.86 190.17 8.14 33.97 5.52
1.02 191.45 9.96 33.82 5.57

MPSLZ-LowMix-77-Base

0.67

0.72

176.89 6.27 26.04 4.57
0.79 179.09 6.61 25.95 4.84

0.69 177.4 6.23 25.98 4.56
0.71 177.18 6.41 25.96 4.91

BPSLZ-HiMix-71-Base

0.67

0.69

184.45 8.88 38.91 5.46
0.7 185.72 9.1 39.07 5.57
0.6 183.67 9.14 38.97 5.46
0.78 186.19 9.35 39.05 5.55

EMPSLZ-MedMix-71 -Base

0.56

0.55

183.09 9.33 36.26 5.32
0.55 183.38 9.88 33.18 5.52
0.57 183.89 8.97 33.99 5.44

0.53 183.2 9.31 34.04 5.52

EMPSLZ-LowMix-71-Base

0.49

0.52

171.55 6.7 25.98 4.79
0.52 172.11 6.84 25.94 4.96
0.54 174.75 7.15 25.96 4.75
0.52 173.59 8.1 26.06 4.72

EMPSLZ-MedMix.65.Base
0.43

0.44
178.09 10.97 34.06 5.7

0.44 178.75 10.36 34.06 5.69

The following observations were consistent across all experiments. The httperf provided

highly reproducible results. As expected, multiple repetitions of an experiment replication

yielded almost the same mean response time measures. Furthermore, there was very little

difference between the achieved workload characteristics, as measured from httperf logs

collected from experiment replications, and the specified workload characteristics. This

verifies that the client node was not saturated in this study. The worst-case mean and

peak network traffic during the experiments was only 0.40 Mbps and 0.83 Mbps,

56

respectively. This is because the CPU intensive nature of HTTPS and application server

processing limited request throughputs. The low network traffic indicates that the

response time measured by httperf is likely to be dominated by the delay encountered at

the TPC-W system. The disks at both server nodes were very lightly utilized. Virtually

no memory paging activity was observed at either server node. Finally, job flow balance

was achieved for all experiments with the number of request completions equalling to the

number of request arrivals.

4.2. Overview of Experimental Results

Table 4.3 provides several sanity checks with regards to the experimentation. The table

presents the average per-request demands in milliseconds placed on the CPUs and disk of

the Web/App server node, DWeb,CPU and Dw,Djg, respectively, and the database server

node, DDB,CPU and DDB,D!Sk, respectively. It also provides the mean response time of

requests that were submitted in an experiment replication, R,l?ea,?, and the mean R,,jea,j over

all replications in an experiment. The following observations can be made from Table

4.3.

• The demand values for an experiment's replications are always nearly identical.

This confirms that statistically identical replications place similar demands on the

system and that burstiness does not affect average demands.

• For a given application setting, workloads with the same mix cause similar demands

on system resources. This can for example be verified by comparing the demand

measurements for the BPSLZ-HiMix-77-Base, EM PSLZ-HiMix-77-Base, and

BPSLZ-HiMix-71 -Base workloads.

57

• The measurements show that the mixes chosen for the study behaved as intended.

From Table 4.3, for a given application setting the MedMix workloads impose

almost the same average demands on the system as the HiMix workloads (compare

for example EM PSLZ-Hi Mix-77-Base and EM PSLZ-MedMix-77-Base). As

expected, the LowM±x workloads place slightly lower demands on the system than

the HiMix and MedMix workloads.

• The application settings explored also exhibited the intended behaviors. For example,

the BPSLZ-HiMix-77-HighDiskU workload exerts more demand on the database

server's CPU and disk when compared to the BPSLZ-HiMix-77-Base workload.

Similarly, the database server CPU demand for the BPSLZ-HiMix-71-BigDB

workload is significantly more than that of the BPSLZ-HiMix-71 -Base workload.

Furthermore the BPSLZ replications are analyzed to determine whether they caused

bursty arrival of customer requests. The Hurst parameter has been widely used in

literature to quantify request burstiness [41]. A Hurst parameter estimate in the range of

0.5 to 1.0 for a time series indicates the presence of bursts (i.e., prolonged patterns of

consecutive large or consecutive small values) over multiple timescales. For a given

experiment replication, the series of times between successive request arrivals at the

TPC-W system (i.e., the request inter-arrival times) is recorded. The Hurst parameter is

then estimated for this time series using various methods shown in Table 441 Table 4.4

'For a description of these methods the reader is referred to the paper by Taqqu et al. [41].

58

shows the Hurst parameter estimates for a BPSLZ-HiMix-77-Base replication and a

BPSLZ-HiMix-71 -BigDB replication. Similar results were observed for the other

replications. From Table 4.4, the Hurst parameter estimates are all greater than 0.5

indicating the presence of request bursts over several timescales in these workloads. This

also shows that these workloads are bursty in spite of not requesting images.

Table 4.4: Estimates of Hurst parameter for BPSLZ replications

Method BPSLZ-HiM ix-77-Base BPSLZ-HiM ix-71 -BigDB

Aggregated Variance 0.81 0.82

Absolute Values of the Aggregated Series 0.70 0.71

R/S 0.61 0.62

Periodogram 0.59 0.59

Results pertaining to the Base application setting along with a detailed discussion can be

found in the earlier publication [6]. Now briefly description some of the salient findings

of the results from a performance modeling perspective are given. As mentioned

previously, additional results pertaining to the other two new application settings are

presented also.

Distributions that cause highly variable session lengths and think times can cause

bursty population distributions - This observation can be reached by first comparing

the BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base workloads in Table 4.3.

These workloads only differ with respect to their session length and think time

distributions. From Table 4.3, they place almost identical demands on the TPC-W

system's resources. The CPUs and disks in the systems have similar utilizations for both

workloads. However, from Table 4.3, the mean R,,zea,, for the BPSLZ-HiMix-77-Base

59

workload is about 13% higher than that of the EMPSLZ-HiMix-77-Base workload.

Similarly, from Table 4.3, the mean for BPSLZ-MedMix-77-Base workload is

about 24% higher than that of the EMPSLZ-MedMix-77-Base workload. These results

suggest that the bounded Pareto session length and think time distributions are

responsible for the performance degradation.

As mentioned in Section 2.2.4, high variability in session lengths and think times impact

performance since they can cause bursty request arrivals. Specifically, such distributions

yield large numbers of very small and very large session length and think time values.

Consequently, BPSLZ-like workloads will have larger numbers of very long duration

and very short duration sessions than EMPSLZ-like workloads. As a result, for any

given mean session inter-arrival time, the likelihood of observing very large and very

small number of concurrent sessions is more with a BPSLZ workload than with an

EMPSLZ workload. This is illustrated in Figure 4.2 which shows the cumulative

distribution function (CDF) of number of concurrent sessions for BPSLZ-HiMix-77-

Base and EMPSLZ-HiMix-77-Base workloads2. Since the number of requests that can

arrive at the system is positively correlated with the number of concurrent sessions, this

phenomenon causes a more uneven or bursty arrival of requests. 'This increase in

burstiness can sometimes, as in the experiments, be significant enough to cause periods

2 The CDF for a workload was obtained by combining data from all its experiment replications.

60

of heightened contention for system resources during which requests incur very long

response times.

50 100 150 200 250 300 350

x = Number of Concurrent Sessions
400 450

Figure 4.2: CDFs for BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base

Mixes characterized by higher variability in request demands cause bursty

population distributions - This conclusion can be verified from Table 4.3 by comparing

the EMPSLZ-HiMix-77-Base and EM PSLZ-Med Mix-77-Base workloads. Recalling

from the previous sections, both these workloads are similar in all respects except their

workload mix. From Table 4.2, both workloads place the same mean aggregate demands

on the system's resources. However, the HiMix workload is characterized by a slightly

higher variability in request demands. Both workloads cause nearly identical utilizations

61

of the CPUs and disks in the system. However, the mean R,,zea,j for the EMPSLZ-HiMix-

77-Base workload is about 25% higher than that of the EMPSLZ-MedMix-77-Base

workload. Figure 4.3 plots the CDFs of number of concurrent sessions for the workloads.

From Figure 4.3, it can be seen that the HiMix workload exhibits a slightly longer tail

than the MedMix workload. The reason for this behaviour is again due to the increased

variability of session durations; the larger proportions of resource intensive, e.g., Buy

request, and non resource intensive, e.g., Home, requests within sessions of the

HiMix workload increases the likelihood of very long duration and very short duration

sessions. This leads to periods of increased contention among sessions leading to a higher

mean R,,zea,j.

0,9

0.8

0.7

0.6

11
><

0
0.4

0.3

0.2

0.1

0 _L

0 50

EM PSLZ-HiMix-77-Base

EM PSLZ-MedMix-77-Base
/
I

I
/

I I I I I

100 150 200 250 300 350 400 450

x = Number of Concurrent Sessions

Figure 4.3: CDFs for EMPSLZ-HiMix-77-Base and EMPSLZ-MedMix-77-Base

62

Bursty workloads exhibit high variability in R,,zea,z - As mentioned in Section 2.2.4,

workloads characterized by heavy-tailed distributions lead to unpredictability in system

behaviour. This phenomenon can be observed for the BPSLZ-HiMix-71-BigDB

workload. Recalling from the previous section, this workload caused the database server

node CPU to be the bottleneck. The mean database server node CPU utilization over the

duration of each replication was 84%. From Table 4.3, the highest R,,iea,t value of 2.65

seconds for this workload is 63% higher than the lowest Rmean value of 1.63 seconds.

This is in spite of the fact that the experiment replications are statistically identical, cause

near identical demands and utilizations on the system's resources, and lasted for nearly 5

hours. Similar trends can be observed for the BPSLZ-HiMix-77-Base and BPSLZ-

MedMix-77-Base workloads.

The reason for the variation in R,,iea,j can again be explained in terms of the population

distribution. Figure 4.4 plots the CDF of number of concurrent sessions for the four

replications of the BPSLZ-HiMix-71 -BigDB workload. Figure 4.5 plots the R,,,ea,, values

for these replications. Figure 4.4 shows that the CDF is different for the different

replications. In particular, replication 4's CDF exhibits the longest tail and results in the

highest Rmean while replication 3's CDF has the shortest tail and causes the lowest R,, ea,i.

WAM can help performance analysts estimate the extent of variability in R,,,ea,j for bursty

workloads by repeating the analysis multiple times with different session traces.

63

0.9

0.8

0.7

0.6
><

> V 0.5

0
0.4

0.3

0.2

0.1

Rephcationl

-. Replication2

- Replication3

 Replication4

I I I

0 50 100 150 200 250 300 350 400 450

x = Number of Concurrent Sessions

Figure 4.4: CDFs for BPSLZ-HiMix-71-BigDB workload

3000

2500 -

2000

1500

500

0 Replication I Replication 2 Replication 3 Replication 4

Figure 4.5: Measured Rmean values for BPSLZ-HiMix-71-BigDB

64

4.3. Predictive Performance Models for C-TPC-W

Web/App Server Node Client Node Database Node

Figure 4.6: Queuing network model for C-TPC-W system

The QNM model, as shown in Figure 4.6, includes a think time delay service center and

queuing service center for all the hardware resources, namely client node CPU, Web/App

server node CPUs and disk, database server node CPU and database server node disk.

The value 2 shown on the upper left of the Web/App node CPU indicates that the

Web/App server has two CPUs. Other hardware resources are very lightly loaded so they

are not included in the model. A customer that flows from the client node CPU through to

the database server node CPU and back to the client node CPU completes a HTTP

request. Customers flow from queue to queue. After visiting a CPU, a customer may have

one or more alternative queues visit. The routing choices do not depend on the current

state of the system, but are random and have probabilities such that the desired ratio of

demands is incurred at the resources.

65

Hardware resource layer

Voftware resource layer

Client
Browser

Client Node

1000

Web Application
Server Server

DISK

16 32

Web/App Server Node Database Node

DE

Figure 4.7: Layered queuing model for C-TPC-W system

Figure 4.7 shows the LQM for the TPC-W system. LQMs are extended QNMs that

include information about logical resources such as threading levels for application

servers and software request-reply relationships. The LQM for the TPC-W system

includes the same think time delay centre and hardware resources. The logical resources

in the model are the client browsers, Web server threads, application server threads and

database server threads. Threading levels other than one are shown by placing a value

near the upper right hand side of an icon. In this model, the requests are blocked between

software resources and between software resources and hardware resources.

From Figure 4.7, there is one client browser for each concurrent session using the system.

A customer using a client browser may visit its node's CPU or may think. A HTTP

request causes a blocking call to the Web server. If a Web server thread is available then

66

the request is accepted. The thread uses some CPU resource from the Web/App server

node CPUs and then makes a request to the application server. If an application server

thread is available then the request is accepted. The application server thread uses some

CPU resource from the Web/App server node CPUs and then makes a request to the

database server. If a database server thread is available then the request is accepted. The

thread uses some CPU and disk resource from the database server node and releases the

calling thread. The released calling thread from the application server can then complete

its first phase of work and release the calling thread from the Web server.

From Figure 4.7, after finishing its first phase and releasing the calling thread from the

Web server the application server thread continues on to a second phase of service. The

second phase of service keeps the application server thread busy so that it cannot service

another calling thread. However at the same time the calling thread from the Web Server

that was released after the first phase of service can complete its work and release the

calling thread from the client browser. This completes an HTTP request.

During an HTTP request, if a thread is not available when a server is called, the calling

thread blocks until a thread becomes available. Once a thread completes its work it is

available to serve another caller. Such threading can lead to software queueing delays in

addition to any contention for hardware resources that are incurred by active threads.

The numbers of threads used for each tier in the model reflect the application settings as

described in Section 4.1.

67

Both the QNM and LQM need as parameters the resource demands, the average think

time and the number of customers in the system to calculate the performance metrics for

the tested system using MVA.

To obtain resource demand values, for each experiment replication the CPU utilizations

for the Web server threads, application server threads, and the database server threads are

measured. Besides, the CPU and disk utilizations for the Web/App server node and the

database server node, the elapsed time of the run, and the number of request completions,

are measured as well. This enables to compute the average resource demand per request

for the Web server threads, application server threads, database server threads, and for the

Web/App server node and database server node as a whole. The aggregate demand

values used in the models are given in Table 4.3. The formula [23] to calculate the

demand is as follows:

Dk=Uk/X (4.5)

Where Uk represents the utilization of the resource k, X represents the measured per-

request throughput which is obtained as the total number of request completions divided

by the total elapsed time of an experiment replication. It is noted that there was a very

small difference between the utilization of a node and the sum of the utilizations of

software processes running on that node. Thus this is modeled as background load in the

LQM.

68

The average think time for each request can be computed from the httperf logs collected

from each experiment replication. The LQM and QNM obtained in this manner can

provide mean response time estimates for different session populations.

4.4. Results of QNMs and LQMs with WAM

This section applies the QNM and LQM models of Section 4.3 with WAM to predict the

mean response times for the experiments of Section 4.2. These results are further

compared with the straightforward application of QNMs and LQMs and the hierarchical

Markov chain birth-death approach of Section 2.2.3 for session based systems. All the

modeling approaches used the Method of Layers (MOL) solver developed by Rolia and

Sevcik [11].

Table 4.5 shows the four different modeling approaches that are explored for both QNMs

and LQMs. The MEAN approaches ignore the distribution of number of concurrent

sessions. They solve a predictive model for only one customer population, namely, the

mean number of concurrent sessions observed during an experiment replication. The

MBD methods use the Markov birth-death approach described in Section 2.2.3 to estimate

the population distribution and The birth-death model used a constant, state-

independent birth rate that equals the mean session arrival rate observed during a

measurement experiment replication. The WAMEMP methods predict R,,iea,i for an

69

experiment replication by using WAM in conjunction with the empirical population

distribution as measured during the replication. However, in practice, this measured

population distribution may not be available to a performance analyst. The WANMC

method can be used to estimate the measured population distributions. For a given

experiment replication, it uses the corresponding synthetic SWAT trace as input to a

Monte Carlo simulation along with response times from the predictive model as per the

algorithm in Section 3.2. The estimated population distribution is then used to compute

R,nean. The accuracy of WA?IMC will be evaluated by comparing its R,,iea,j predictions to

those of WAr4EMP.

In general all the methods yielded good throughput estimates. The absolute errors for

throughput were within 2% for the WANMC methods and the MED methods. The

accuracy of the MEAN methods was slightly poorer. The throughput estimates of the

MEAN-LQM and MEAN-QNM methods were within 3.5% and 4.0% of measured values,

respectively. The reason for the good throughput estimates can be understood by noting

that the think times are much larger than the mean response times in the experiments.

From Little's law, the system throughput is largely influenced by the think time and is not

affected significantly by errors in mean response time predictions.

Models with state-dependent birth rates were also tried but their accuracy was poorer than the state-
independent approach.

70

In contrast to the throughput estimates, there are significant differences in prediction

accuracy for R,,,ea,, across the different methods. Three different error metrics are used to

characterize the R,,,ea,, prediction accuracy of the modeling approaches. The mean

absolute error (ABS Error) is defined as follows:

ABS Error =100* (4.6)

yi

Where e1 is the difference between the measured and predicted mean response time and y

is the measured response time for the i1h replication in a set of replications. The

maximum of the absolute e values, expressed as a percentage, calculated for a set of

replications is denoted as the maximum absolute error (max—Error). The trend error

(Trend—Error) is an indicator of the range of errors obtained with a modeling

approach. It is defined as the difference between the largest e value and the smallest e

value, expressed as a percentage, for a set of replications. Table 4.5 shows the error

measures for models pertaining to the entire set of thirty nine replications. The table gives

results for the MEAN, MBD, WAMEMP, and WAMMC methods in conjunction with LQM and

QNM.

71

Table 4.5: Accuracy for predicting for overall cases

Modeling Approach ABS— Error (%) Trend— Error (%) max— Error (%)

MEAN-LQM 11.77% 42.50% 32.37%

MEAN-QNM 13.10% 63.75% 42.56%
MBD-LQM 10.52% 45.09% 32.56%

MBD-QNM 12.97% 66.01% 42.68%

WAMEMP-LQM 6.57% 27.76% 15.80%
WAMEMP-QNM 10.01% 43.82% 26.84%
WAMMC-LQM 7.33% 34.64% 20.25%

WAMMC-QNM 11.64% 56.48% 29.75%

Firstly the MEAN cases are considered. These are the only cases that do not take

population distribution into account. From Table 4.5, the ABS Error is lower for the

MEAN-LQM approach than the MEAN-QNM approach. The MEAN-LQM approach also

does better in terms of Max—Error and Trend—Error. The improved prediction

accuracy is due to the LQM taking into account the performance impacts of finite server

thread pools and two phases of application server processing. However, the

ADS—Error of about 12% and the Max—Error of about 32% are still large for the

MEAN-LQM approach. These errors are large despite individual per session population

level R,i,ea,i predictions from the LQM agreeing well with the corresponding measured

values. This suggests there will be benefits from considering the population distributions.

As to the Markov Chain birth-death approach MBD, From Table 4.5, results show only

slight improvements in ABS—Error. For example, the technique when used in

conjunction with the LQM (MBD-LQM) achieves a reduction in ABS—Error of only

about 1.3% when compared to MEAN-LQM.

72

WAM with the empirical population distribution from a historical trace with measured

response times, WANEMP, improves accuracy significantly. From Table 4.5, the

ABS—Error drops by nearly 5% with WAMEMP-LQM when compared to MEAN-LQM.

Moreover, Max—Error and Trend—Error drop by about 16% and 15%,

respectively when compared to MEAN- LQM. Similar improvements are noticed when

comparing WANEMP - QNM and MEAN_QNM. This confirms the importance of considering

the population distributions in modeling process.

Finally, the results of WAM with a population distribution estimated using the algorithm

discussed in chapter 3 (WANMC), from Table 4.5, show the effectiveness of the approach.

The WAMMC methods performed nearly as well as their corresponding WANEMP methods.

For example, from Table 4.5 the error metrics for WANMC-LQM are very similar to that of

WAMEMP-LQM. However, WANMC has an advantage over WAMEMP. It allows the WAM

method to be applied in a constructive manner to predict the performance of systems

when varying workload parameters and when a historical trace with measured response

times is simply not available.

The WANMC results, validate the population distribution estimator's use of the R,iiea,z

prediction from a predictive model for the current population level to estimate the

response time of an individual request with GetSyntheticResponse method as described in

Section 3.2. It is suggested that the approach works well for these cases because the think

times encountered in the synthetic workloads used for the study are much longer, on the

order of tens of seconds, than the response times which are on the order of hundreds of

milliseconds or seconds. As a result the population distribution is governed more by the

73

session length, think time, and session inter-arrival time distributions than the response

time distribution for each population level. It is noted that an analysis of the empirical

think time distribution of Table 4.1 indicates that the assumption of think times being

much longer than response times is likely to be valid for real session-based workloads.

Now several subsets of the results are considered in more detail. Results are discussed for

the following cases: bursty workloads; higher and lower contention for the bottleneck;

higher and medium coefficients of variation for request resource demands; non-bursty

workloads; and, workloads with heavy-tail-like distributions. Finally, a case is presented

that demonstrates the constructive capability of WAMMC.

The WAM approach is particularly effective for bursty workloads - Table 4.6

summarizes the error measures for only those seventeen experiment replications that

employed the bounded Pareto session length and think time distributions of Table 4.1.

For bursty workloads using just the mean population provides very poor R,,iea, estimates.

From Table 4.6, the ABS—Error is 19.10% for the MEAN-LQM approach. From Table

4.5 and Table 4.6, the MEAN-LQM approach applied to the bursty workloads results in

about 7% greater ABS Error than overall for all workloads. For these 17 workloads

the WAM method results in a greater reduction in ABS Error than overall for all

workloads. For example, from Table 4.6, the ABS Error for WAMEMP- LOM is about

14% lower than that for MEAN-LQM. This represents about 9% more reduction in error

than when considering all the workloads. A similar trend can be noticed with WAIvIEMP-

QNM. The WAMMC-LQM and WANMC-QNM methods result in slightly increased

ABS—Error when compared to their counterparts that use the empirically measured

74

population distribution. However, the errors are still significantly less than those

obtained with the MEAN and MED methods.

Table 4.6: Accuracy for predicting R,,jea,j for bursty cases

Bursty Workloads (17)

Modeling Approach ABS— Error (%) Trend Error (%) Max Error (%)
MEAN-LQM 19.10% 28.04% 32.37%
MEAN-QNM 19.34% 45.11% 42.56%
MBD-LQM 16.98% 30.06% 32.56%
MBD-QNM 17.98% 46.79% 42.68%
WAMEMP-LQM 4.87% 25.84% 14.58%
WAMEMP-QNM 6.60% 28.43% 17.43%
WAMMC-LQM 6.41% 34.64% 20.25%
WAMMC-QNM 8.93% 41.08% 29.75%

The gains from WAM are significant when there is higher contention for the

bottleneck resource - To illustrate this effect Table 4.7 compares the error metrics for

the BPSLZ-HiMix-77 and BPSLZ-HiMix-71 replications. For the sake of clarity results

are shown only for the MBD-LQM, WAIvIEMP-LQM, and WANMC-LQM methods. From the

Table 4,7, when UWeb,CPU is 71% (BPSLZ-HiMix-71 Workload), WAMEMP-LQM results

in an improvement of about 6%, 3%, and 10% in ABS Error, Trend Error and

Max Error, respectively, when compared to MBD-LQM. These numbers increase to

16%, 6%, and 18% when UWCb,CPU is 77% (BPSLZ-HiMix-77 Workload). Previous

studies have shown that the burstiness induced by heavy-tails becomes more pronounced

at higher utilizations [42]. Consequently, the BPSLZ-HiMix-77 workload is more bursty

than the BPSLZ-HiMix-71 workload. The increased gain in accuracy for the BPSLZ-

HiMix-77 workload provides further evidence that WAMEMP is very effective for

predicting the behaviour of bursty workloads. Similar results can be found in WAI'4MC-

75

LQM methods. It shows WAMMC-LQM is also effective to model the C-TPC-W system

under bursty workloads.

Table 4.7: Accuracy for BPSLZ-HiMix- workloads

Workload Modeling Approach ABS— Error (%) Trend— Error (%) Max—Error (%)

BPSLZ-HiMix-77
MBD-LQM 20.95% 14% 28%
WAMEMP-LQM 4.52% 8% 10%
WAMMC-LQM 6.68% 10% 14%

BPSLZ-HiMix-71
MBD-LQM 12.32% 19% 21%
WAMEMP-LQM 5.98% 16% 11%
WAMMC-LQM 6.84% 10% 12%

WAM is particularly effective for mixes characterized by higher variability in

request resource demands -Table 4.8 compares the MBD-LQM and WAM methods for the

BPSLZ-HiMix-77 and BPSLZ-MedMix-77 workloads. Recall from Section 4.1 that the

HiMix workload exhibits more variability in demands than the MedMix workload since

it has a greater percentage of resource intensive and resource non-intensive requests.

From Table 4.8, the MBD-LQM method results in an ABS Error of 13.43% and a

Max—Error of 17% for the MedMix workload. The method performs even poorer for

the HiMix workload with the ABS—Error and Max—Error increasing to 20.95% and

28%, respectively. From Table 4.8, the WAM methods are significantly more accurate

than MBD-LQM for both workloads. The gains in ABS—Error while using the WAMMC-

LQM method over the MED - LQM method are nearly 11% for the MedMix workload and

14% for the HiMix workload.

76

Table 4.8: Accuracy for BPSLZ-77- workloads

Workload Modeling Approach ABS— Error (%) Trend— Error (%) Max— Error (%)

BPSLZ-HiMix-77

MBD-LQM 20.95% 14% 28%
WAMEMP-LQM 4.52% 8% 10%
WAMMC-LQM 6.68% 10% 14%

BPSLZ-MedMix-77

MBD-LQM 13.43% 9% 17%
WAMEMP-LQM 2.42% 4% 4%
WAMMC-LQM 2.03% 2% 3%

WAM is effective for cases with non-bursty workloads -Table 4.9 summarizes the

error measures for those experiment replications that did not use the bounded Pareto

session length and think time distributions. From Table 4.9 and Table 4.5, the MEAN-

LQM and MBD-LQM approaches have a much lower ABS—Error for these workloads

than overall for all workloads. The ABS—Error for WAMEMP-LQM is comparable to

those of MEAN-LQM and MBD-LQM. However, WAMEMP-LQM method results in a

smaller range of errors when compared to the other two approaches. For example, the

Max—Error and Trend—Error for WAMEMP-LQM are about 9% and 7% lower,

respectively than those of MEAN-LQM. Furthermore, the WAMMC methods result in

almost similar errors to those of their counterpart WAMEMP methods. These results show

that the WAM technique can provide more robust performance estimates than the other

approaches and is suitable for both bursty as well as non-bursty workloads.

77

Table 4.9: Accuracy for predicting R for non-bursty workloads

Non-Bursty Workloads (22)

Modeling Approach ABS Error (%) Trend— Error (%) Max Error (%)

MEAN-LQM 6.11% 35.05% 24.92%
MEAN-QNM 8.27% 43.51% 22.32%
MBD-LQM 5.53% 35.70% 23.17%
MBD-QNM 9.11% 44.34% 21.01%
WAMEMP-LQM 7.87% 27.76% 15.89%
WAMEMP-QNM 12.65% 38.37% 26.48%
WAMMC-LQM 8.04% 30.24% 15.92%
WAMMC-QNM 13.74% 40.53% 26.73%

WAM captures the complex effects of heavy-tail-like distributions - Figures 4.8 to

4.11 show the probability distribution function (PDF) of number of concurrent sessions

for the BPSLZ-HiMix-71-BigDB experiment replications estimated using WAMMC-LQM

and MBD-LQM. Figure 4.12 compares the measured Rmewt values for this workload with

those predicted values using the four modeling methods in conjunction with LQM. As

discussed in Section 4.2, the R,, ea,z values measured for this case varied by up to a factor

of 1.63 even though the measured demands and device utilizations were nearly identical

for all the replications.

Figures 4.8 to 4.11 reveal that the MBD-LQM method does not capture the differences in

measured PDFs among the replications. The PDFs estimated by MBD-LQM are nearly

identical for all the replications. In contrast, WAMMC-LQM closely tracks the changes in

PDFs. The PDFs estimated through simulation are very close to their counterpart

measured PDFs. Consequently, from Figure 4.12, the R,,,ea,, values predicted by MBD-

LQM are nearly the same for all the replications. In contrast, the R,ea,j values predicted by

WAMMC-LQM closely track the measured R,teaii values. From Figure 4.12, MEAN-LQM

78

also suffers from the same limitation as MED - LQM and predicts almost the same R,,,ea,j for

all the replications. It is noted that for non-bursty workloads there is less concentration of

probability mass towards very large and very small populations. As a result the accuracy

obtained with the other methods starts to approach that obtained with WAM.

50 100 150 200 250 300 350

x = Number of Concurrent Sessions
400

Figure 4.8: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 1)

79

50 100 150 200 250 300

x = Number of Concurrent Sessions
350 400

Figure 4.9: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 2)

0.03

0.025

0.02

0.01

0.005

0
0 50 100 150 200 250 300 350

x = Number of Concurrent Sessions
400 450

Figure 4.10: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 3)

80

0.03

0.025

0.02

0.015

0.01

0.005

0
400 0 50 100 150 200 250 300 350

x = Number of Concurrent Sessions
45C

Figure 4.11: Population distributions for BPSLZ-HiMix-BigDB-71 (Replication 4)

3000

2500

2000

I,
Le

1000

500

Measured

WAMEMP-LOM

WAMMC-LQM

MBD-LQM
[T1 MEAN-LQM

Repllcaton 3

Figure 4.12: Response times for BPSLZ-HiMix-BigDB-71

Replloaton 4

81

Another consequence of the ability to accurately estimate the population distribution is

that WAM can assess the predictability of performance. As shown in Figure 4.12, WAM

is the only method able to capture the variation in measured R,,zea,i values for the

statistically identical replications of the BPSLZ-HiMix-71 -BigDB workload. The results

are similar for the other bursty cases, though less pronounced.

Finally, it is shown that WAM is better suited for predicting the impact on system

performance of changes in workload characteristics than the other methods. Figure 4.13

plots the mean of measured R,,,ea,z values over all replications for both the BPSLZ-HiMix-

77 and EMPSLZ-HiMix-77 workloads. It also shows the mean of the predicted R,,iea,

values over all replications for both workloads while employing the MEAN-LQM, MBD-

LQM, WANEMP-LQM, and WAMMC-LQM methods. From the Figure 4.13, WAM captures

the increase in the measured mean R,,iea,z that is caused by increased heavy-tail behaviour

for session lengths and think times in the BPSLZ-HiMix-77 workload. While the

measured increase is approximately 125 ms, the increase predicted by WAMEMP-LQM

and WANMC-LQM is about 101 ms and 89 ms, respectively. In contrast, the MEAN.-LQM

and MED - LQM methods do not reflect the impact of the changes and offer almost

identical results for both workloads.

82

1200

800

g600
In
a

400

200

Measured

WAMEMP-LQM

F{lltTff{[f[fffll WAMMC-LQM
MBD-LQM

I MEAN-LOM

BPSLZ-HiMIx-T7 EMPSLZ-HiMix-77

Figure 4.13: Response times for BPSLZ-HiMix-77 and EMPSLZ-HiMix-77

4.5. Conclusions

This chapter used the C-TPC-W system to study the effectiveness of WAM. The results

indicate that modeling approaches that only consider the mean number of concurrent

customers produce very poor estimates of mean response time for systems with bursty

workloads. The average prediction error for bursty workloads is nearly 19.34% and

19. 10% for the QNM, and the LQM, respectively. Furthermore, the maximum prediction

errors are nearly 43% and 32% for the QNM, and the LQM, respectively. For bursty

workloads, using the QNM and LQM models in combination with a Markov birth-death

model does not improve the average and the maximum prediction accuracy significantly.

In contrast, the WAM approach significantly improves the accuracy of mean response

time predictions. For bursty workloads, average prediction accuracy by WAM in

83

conjunction with the measured population distribution improved by 12% and 11% for

LQMs and QNMs, respectively, as compared to the Markov birth-death approach.

Moreover, the LQM-based WAM approach had much lower average error and range of

errors than the QNM-based WAM approach. Furthermore, WAM also enabled the

prediction of very different mean response times reported by multiple statistically

identical runs for cases that include heavy-tail-like distributions. In effect, WAM can be

used to assess whether a system has unpredictable behaviour by reporting a range of

possible behaviours.

The accuracy of WAM's predictions for the system studied is due both to WAM's

approach for estimating customer session population distribution and the benefits

obtained from using LQMs rather than QNMs. The results presented likely benefit from

the relatively large think times between requests. The think times were on the order of 46

seconds with response times typically less than a second. The session population

distribution involves estimating the time spent by the system in various states. This in

turn depends on the time spent by the various sessions in a workload at the system. It

follows that accurate estimates of the population distribution can be obtained if the time

spent by a session at the system is estimated accurately. In C-TPC-W since think times

are much larger than response times the time spent by a session is dominated by the think

times encountered in the session. As a result, accurate population distribution estimates

can be obtained in spite of approximating the real request response time using the mean

response times obtained from the predictive model. It should be noted that the think

84

times chosen were realistic since they were based on empirical measurements from a

large e-commerce site [38].

The next chapter applies WAM on the H-TPCW system. That differs from C-TPC-W in

several important ways. First, it uses the default user-equivalents based workload

generator that is part of the TPC-W suite. As a result, the number of concurrent sessions

remains constant during an experiment. Secondly, H-TPCW workloads contain requests

to the images embedded in the HTML pages returned by the system. Thirdly, H-TPCW is

implemented on a different hardware and software platform.

85

CHAPTER 5: H-TPC-W CASE STUDY

This chapter presents a case study for a multi-tier TPC-W application system which was

deployed at HP Labs in Palo Alto, California, USA [10]. As mentioned previously, the

H-TPC-W test bed differs from the C-TPC-W test bed in that user-equivalents based

workload generation was used. Consequently, the population distribution is characterized

in terms of the distribution of number of concurrent requests in the system. Furthermore,

the source of burstiness in H-TPC-W' s workloads is due to the presence of image

requests. Whenever a client receives a HTML response from the system it immediately

issues requests for a number of requests for images embedded in that HTML page. Since

the arrival of an HTML request is likely to be followed immediately by the arrival of its

embedded images the H-TPC-W workloads exhibit burstiness. This case study

characterizes such burstiness through the population distribution.

Section 5.1 describes the H-TPC-W test bed. Section 5.2 briefly discusses the

experimental results. Section 5.3 discusses the various modeling methods used for H-

TPC-W. A QNM and a LQM are developed for H-TPC-W in Section 5.4. Section 5.5

uses these models to assess the effectiveness of WAM. Section 5.6 compares the

accuracies of WAM for C-TPC-W and H-TPCW and argues for the use of realistic

workload generation techniques in performance tests. Specifically, it describes how

employing user-equivalents based workload generation for session-based systems limits

the effectiveness of WAM.

86

5.1. Experiment Test Bed

H-TPC--W was deployed on different software and hardware platforms than the C-TPC-

W system. Figure 5.1 shows the experimental setup. The details of the software/hardware

used are given in Table 5.1. Figure 5.1 shows that the H-TPC-W system includes three

types of nodes, client node, front server node and DB server node, which are connected

by a non-blocking Fast Ethernet switch. There are two client nodes. Each client node

executes a fixed number of user-equivalents during a performance test. A user-

equivalent is called as an Emulated Browser (EB) and each EB4 mimics a session. A

session generates a series of requests with successive requests being separated by a think

time. The front server node executes the Web/Application server. The Web/Application

server processes both the image and non-image requests issued by the BBs. The DB

server node executes the database server that manages the TPC-W database. All of the

three nodes ran on the Linux platform.

As mentioned previously, the system is configured to serve image files. A session first

submits a TPC-W interaction (e.g., Home) to the system by establishing a TCP

connection. The system dynamically generates a HTML response for this interaction.

The session then parses the HTML response to get a list of associated image URLs. In

H-TPC-W, the maximum number of images downloaded concurrently is set to four. As

a result, the session establishes up to four concurrent TCP connections to download these

87

images from the front server. The number of images for different types of HTML

responses and the sizes of these images are described in the TPC-W specifications. For

this case study a request is defined to consist of an HTML response and all of its

associated images. The request response time is defined as the time between receiving

the last byte of the last image and issuing the first byte of the corresponding TPC-W

interaction.

The number of server processes and the treading levels was not recorded during the

measurement experiments. The Web/Application server has a flexible number of server

processes that varies with load. However, the actual number of server processes was not

monitored during the measurement experiments. The database server has a fixed number

of processes that is large compared to the number of EBs. In this case study, a database

with 10,000 items and 1,440,000 customers is used.

"The terms EB and session are used interchangeably in this thesis.

88

Client Node I

Figure 5.1: H-TPC-W system

Client Node 2

Front Server Node

DS Server Node

Table 5.1: Test bed components

Node Software Processor RAM

Client Node Emulated Browsers Pentium Ill /1 GHz 2 GB

Front Server Node Apache2.O/Tomcat4.O Pentium Ill /1 GHz 3 GB

DB Server Node MySQL4.O Pentium Ill /1 GHz 3 GB

Measurement runs used the standard TPC-W workload generation method with

parameters as defined by the TPC-W benchmark. During each run measurements were

collected from both the EBs and the server nodes. EBs provided information such as the

session identifier, submission time of request, and request response time. However,

89

finer-grained information on the requests was not recorded. For example, even though

the EB logs record the submission and completion time of an entire request they do not

contain information on the submission and completion times of individual images making

up that request. As explained in Section 5.4, lack of such information influenced the

modeling decisions while developing a QNM and LQM for the system. In addition to the

log files from the EBs, the SAR [43] Linux utility was used to collect CPU and disk

utilizations for each of the nodes at a sampling interval of one second.

As the H-TPC-W uses user-equivalents based workload generation, the number of

concurrent sessions in the system always equals the number of EBs. Totally 14 different

request types have been defined in the TPC-W benchmark specification. As specified by

TPC-W, the think time between successive requests in a session follows an exponential

distribution with a mean of 7 seconds.

The TPC-W benchmark defines three types of workload mixes namely, Browsing,

Shopping and Ordering. For each mix, the proportions of the total 14 types of requests

(i.e., TPC-W interactions) specified by TPC-W [9] can be seen in Table 5.2. In Table 5.2,

the average number of images per request for each mix is computed from the collected

measurements. The sizes of the images associated with each request type are obtained

from the TPC-W specifications and shown in Table 5.2. Finally, the average size of

images for each mix is calculated from the measurements collected.

For each workload mix, a set of experiments were run with the number of EBs set to 30,

100, 200, 300, 400, 500 and 600. Each experiment ran for 5 hours. The first 20 minutes

90

and the last 20 minutes are considered as the warm-up and cool-down periods, and thus

omitted in the analysis. The experiments showed that the system was CPU bound. 110

(either at the disk or network) was not found to be significant [10].

Table 5.2: Definition of workload mix

Request Type Browsing (%) Shopping (%) Ordering (%) Number of Images

Home 29.00 16.00 9.12 11

New Products 11.00 5.00 0.46 9

Best Sellers 11.00 5.00 0.46 9

Product Details 21.00 17.00 12.35 6

Search Reqeust 12.00 20.00 14.53 9

Search Results 11.00 17.00 13.08 9

Shopping Cart 2.00 11.60 13.53 9

Customer Registration 0.82 3.00 12.86 4

Buy Request 0.75 2.60 12.73 3

Buy Confirm 0.69 1.20 10.18 2

Order Inquiry 0.30 0.75 0.25 3

Order Display 0.25 0.66 0.22 2

Admin Request 0.10 0.10 0.12 6

Admin Confirm 0.09 0.09 0.11 5

Average Number of Images (Per Request) 8.5 8.1 6.3

Average Image Size (Per Image) 4KB 4KB 4KB

5.2. Overview of Experimental Results

An overview of the measurements for H-TPC-W is discussed first to show derived

insights on how the workloads used for the study impact system performance. For a

more detailed discussion of the results, the reader is referred to the paper [10] by Zhang

et al. The following are some key observations from the measurements.

The front server is a bottleneck when the system is processing Shopping and

Ordering mixes - Figure 5.2(a) shows that the CPU utilization of the front tier reaches

90-98% when the number of BBs is greater than 500, while Figure 5.2(b) shows the CPU

utilization of the database tier is under 40-60% for Shopping and Ordering mixes. As

for the Browsing mix, it is not obvious which resource is the bottleneck. When the

91

number of. EBs reaches 400, 500, 600, the utilizations of the front server ranges from

70%-80% while the utilization of the database server also ranges from 70%-80%.

100/

80%

60%

40%
0

20%

0/

 6o0w81ng Mo

 Ordering Mix

- - - - - Shopping MS

/
/

/
,

/

ISO 200 000 400 500 600

100/.

80% -

60%

40%
0

20%

0%

Browsing 1.80
01401109 Mix

- - Shopping 1.1,0

ISO 200 200 400

Number of EBs Number of EBs

(a) (b)

Figure 5.2: CPU Utilization of (a) front server and (b) database server

500 600

The system becomes overloaded with 400 EBs, 400 EBs and 500 EBs under the

Browsing mix, Shopping mix and Ordering mix, respectively. The collected

measured data in Figure 5.3(a) shows that the system throughput flattens at higher

number of EBs because of device saturation. For Browsing mix, as shown in Figure

5.3(a), the throughput reaches 40 requests per second and does not increase any more

after 400 EBs. For Shopping mix, the plot of the throughput in Figure 5.3(a) shows the

maximum can reach 53 requests per second and it flattens out after 400 EBs. For the

Ordering mix, the throughput in Figure 5.3(a) seems to increase with the number of EBs.

However, the figure also shows that the rate of increase becomes less marked after 500

EBs.

92

80

2. 40

15

g'20
0

 Browsing Mix
 O.daring Mix
- - - - Shopping Mix

vvv,

100 200 300 400 500 600

8000

7000

.-..6000

05000

4000

a
3000

15

2000

1000

ISO 200 300 400
Number of EBs Number of EBs

(a) (b)

500

Figure 5.3 Measured (a) throughput and (b) response times for three mixes

600

The Browsing mix causes poorer performance when compared to the Shopping mix

and Ordering mix. The mean response time of the three mixes for various numbers of

EBs plotted in Figure 5.3(b). The response time figures show significant nonlinear

behaviour. For example, the mean response time values increase from 163 ms for

Browsing-200 to 8100 ms for Browsing-600. The tripling of the number of emulated

browsers caused mean response time to increase by a factor of 50! Ordering-600 shows

similar behaviour with respect to Ordering-500.

5.3. Modeling Approaches Evaluated for H-TPC-W

Since the H-TPC-W system differs from the C-TPC-W system, there are slight

differences in the modeling approaches evaluated for this study. Similar to the previous

chapter, these methods are used independently with a QNM and a LQM for the H-TPC-

W system. The QNM and the LQM for H-TPC-W will be described in Section 5.4. The

modeling methods using these models are described in detail as follows:

93

MEAN - The MEAN method considers only the number of EBs in an experiment. This is

identical to the MEAN approach followed in the previous chapter. Since this method

considers all sessions including those that are thinking, a think time of 7 seconds is used

while solving the QNM and the LQM.

MED - The main difference between the MBD method used in this chapter to the one used

in the previous chapter is the use of the request population distribution instead of the

session population distribution. Figure 5.4 shows the STD for the MBD method for H-

TPC-W system. As mentioned in Chapter 2, the state of the system is the number of

concurrent requests contending for system resources. Since the number of EBs is constant,

state dependent birth rates are used in this method. The birth rate tk is obtained using

the following formula:

At, (5.1)

In (5.1) k represents the number of concurrent requests contending for or using system

resources, N represents the number of EBs and Z represents the average think time

between requests within a EB (in this case 7 seconds). The reason behind the arrival

rates can be described as follows. When there are k requests in the system, there are

(N - k) EBs are in the thinking state. The (k + 1) state can be reached if any one of

these thinking sessions submits a request. Each EB can issue a request every Z seconds

and hence the request arrival rate from all these thinking EBs is (N - k) I Z . As shown

in Figure 5.4, this represents the arrival rate for advancing to the (k + 1) state.

94

N/Z (N-i)iZ (N-2)/Z

/11 /12 /13

(N-k)/Z liz

/1k fl_v

k

LQM/QNM
Zrousts.in.sysfwn = 4'.

Figure 5.4: STD of hierarchical modeling approach for H-TPC-W system

The death rates /1k are state dependent and obtained by solving a LQM or a QNM.

Specifically, the death rate Pk is obtained by solving the predictive model for a

population of k and a think time of zero. The reason for the zero think time can be

explained as follows. As mentioned in Chapter 3, the average number of concurrent

requests can be visualized as only those sessions that are either contending for or using

the system's resources. It does not include sessions that are in the thinking state. As a

result, for this method the QNM and the LQM are solved with a think time of 0 seconds.

Thus the fraction of time spent at each population level can be computed as follows,

95

1
Nk,2,

k=I i=1 Xi

P k, = p*H')
i=1 Xi

(5.2)

(5.3)

The mean request response time for the system is estimated using Little's law [23] as

follows:

N

0 _j1
Ltmean - N

PXR

(5.4)

Pix!

WAMEMP - This method uses the distribution of concurrent requests as measured during

an experiment instead of using the closed formulae shown in (5.2) and (5.3).

WAMMC - This method estimates the distribution of number of concurrent requests using

Monte Carlo simulations as described in Chapter 3. The effectiveness of the simulations

can be characterized by comparing how close the response time predictions obtained with

WAMMC are to the corresponding ones obtained with WAMEMP.

5.4. Predictive Performance Models for H-TPC-W

Figure 5.5 and 5.6 show the QNM and LQM, respectively, for H-TPC-W. Similar to the

previous case study, the QNM can only capture the impact of contention for hardware

resources. The LQM can capture the impact of contention for software resources such as

Web, application, and database server threads as well as hardware contention. The QNM

and LQM are similar to each other in all other aspects. The mean think time is indicated

96

as Z in both the models. As discussed in the previous section, the mean think time used

in the model differs for different modeling approaches.

Both the QNM and LQM employ two classes of customers to model the impact of image

downloads. The HTML class represents the non-image portion of a request. A customer

belonging to this class contends with other HTML class customers (i.e., non-image portion

of requests emanating from other EBs). She also contends with the image downloads

initiated by other EBs in the system. This image portion of a request is represented in the

models as a separate IMAGE class. As mentioned previously, both models take as input

the number of concurrent requests in the system. The number of HTML class customers is

set to be the same as the number of concurrent requests. As mentioned previously, the

TPC-W workload generator used in this study opens four concurrent connections to

download images. Consequently, the number of IMAGE class customers is set to be

four times that of the number of HTML class customers.

97

2

IMAGE 4
Request
ThinkZ

HTML
Request
Thlnk=Z

CPU DISK

Client Node Front Server Database Node

Figure 5.5: QNM for H-TPC-W system

The mean response time for a request is estimated as the mean response time for a HTML

class customer. This approach assumes that a request's response time is dominated by

the contention (i.e., queuing at resources) it faces with the HTML portions of other

requests and the IMAGE portions of other requests. It is not dominated by the request

service times at resources. In other words, this approach assumes that time a request

spends waiting to get access to a resource is much longer than the time it spends getting

service from that resource. The validity of this assumption is discussed shortly.

98

Hardware resource layer Software resource layer

*

IMAGE
Request

CPU

0 \1-1/
Client Node

Web!
Application

Server

Front Server Node Database Node

Figure 5.6: LQM for H-TPC-W system

The resource demands for the IMAGE class and HTML class have to be estimated since

only the overall utilization of the front server node and database server node by both

classes is measured. Since IMAGEs exist only on the front server they do not place any

demands on the database server's resources. For the front server node the total demand at

a resource k denoted by Dbk is obtained by dividing the node's utilization by the

request throughput. This represents the demand for servicing one HTML request and the

Nj,, g IMAGE requests associated with that request. This study assumes that an IMAGE

class request and a HTML class request incur the same demand. In the model, the

population of IMAGE class requests is 4 times that of the HTML class. This implies that

99

each IMAGE class request in this model is actually dealing with Njg /4 IMAGE requests.

Consequently, the demands for both classes can be estimated as follows:

DwCbk
DHTML_We!,,k =

1 + Nj,ng
(5.5)

N *fl D img Web,k

JMAGE—Wab,k - 4 * (1+ N
\ 1mg

In (5.5) and (5.6) DHTMyeh,k and D!MAGE_Weh,k represent the resource demand for HTML

class and IMAGE class, respectively. Nj,,jg is different for different mixes and can be

obtained from Table 5.2. The demand placed by the HTML class on the database server

node is obtained by dividing that node's utilization by the request throughput.

As mentioned in Section 5.1, the number of processes for the front server node was not

recorded. This parameter was used to calibrate the LQM. A value of 3 for both the

Web/Application server and the database server is found to be appropriate. Specifically,

for each experiment mean response time predictions are extracted from the LQM for

different numbers of concurrent requests. These predictions are compared with the

corresponding experimentally observed mean response times for various numbers of

concurrent requests. A threading level of 3 for the front server and the database server

resulted in a consistently good match between predicted and measured mean response

times across different experiments. The LQM validation process suggested that unlike

C—TPC—W two phase processing did not seem occurring in H—TPC—W.

100

The lack of finer-grained measurement data limited the ability to pursue more detailed

models for H-TPC--W. Specifically, the EB logs did not record the arrival and

completion times of image requests. As a result more advanced features of the LQM

capable of modeling the parallel download of images in more detail were not explored.

Furthermore, as mentioned previously, it was not possible to measure the resource

demands separately for IMAGE requests and HTML requests necessitating the

approximations used for estimating the demands of the two classes used in the models.

However, the simplifying assumptions did not limit the accuracy of the LQM. As

mentioned previously, the LQM provided mean response time estimates that were

consistent across the different experiments.

5.5. Evaluation of Modeling Approaches

The prediction of system throughput is based on the prediction results of the average

request response time. In this thesis, the average system throughput is calculated as

follows using Little's law:

X=NEB /(Z+R) (5.7)

In (5.7) N EB represents the number of EBs in the system, Z is the average think time and

R is the predicted average request response time. In most of the experiments, think time

Z is usually much greater than the average response timeR. Thus the system throughput

is dominated by the known value NEB and Z . However, for those cases where the

request response time R is compatible to the think time, the accuracy of the prediction of

the R directly impacts the accuracy of the system throughput. Therefore, the prediction

101

of the average response time can better reflect the effectiveness of the modeling

approaches investigated for H-TPC-W system. In this case study, MEAN-QNM had the

worst throughput prediction error with an average prediction error of 34%.

Table 5.3 shows the summary of mean response time prediction errors for all the

approaches evaluated for the H-TPC-W system. The error metrics are calculated as

described in Section 4.4.

Table 5.3: Prediction errors for overall approaches

Approach ABS— Error (%) Trend— Error (%) Max— Error (%)

MEAN-LQM 50.54% 133% 83%
MEAN-QNM 68.93% 61% 95%
MBD-LQM 22.18% 106% 54%
MBD-QNM 53.31% 122% 92%
WANEMP-LQM 7.22% 21% 18%
WAMEMP-QNM 31.17% 108% 78%
WAMMC-LQM 56.00% 111% 107%
WA4MC-LQM-HiVar 28.57% 82% 84%

5.5.1. MEAN

The results of the MEAN approach are discussed first. As shown in Table 5.3, the MEAN

approaches' prediction accuracy is very poor. For all the workloads considered, the

MEAN-QNM results in an ABS—Error of 68.93% and a Max—Error of 95%. MEAN-

LQM yields better accuracy than MEAN-QNM. The ABS—Error and Max—Error are

50.54% and 83%, respectively. However, these errors are still unacceptably large. The

errors are large in spite of using a validated LQM. It can be recalled from the previous

section that the LQM yielded good estimates of mean response time for various

concurrent request populations. The reason for the large errors is probably because the

MEAN approach does not consider the burstiness at the system caused due to the

102

embedded image requests. Attention is focused next on techniques that consider the

distribution of concurrent requests at the system to capture the impact of burstiness.

5.5.2. MBD

MBD, the method that uses the STD of Figure 5.4 to estimate the population distribution is

considered next. From Table 5.3, it can be observed that the MBD technique improves

ABS—Error significantly when compared to MEAN for both LQM and QNM. The

ABS—Error of MBD-LQM drops to 22%, about 28% improvement compared to MEAN-

LQM, and that of MBD-QNM results in nearly 16% improvement in prediction accuracy

when compared to MEAN-QNM. However, as shown in Table 5.3, the Trend Error

and Max—Error are still significantly large for the MED method.

The population distributions estimated by MBD-LQM significantly diverge from the

corresponding empirically measured population distributions. For example, Figure 5.7

plots the population distributions from MBD-LQM for the Browsing mix when the

number of EBs is 100, 200, 300 and 400. Figure 5.7 shows that distributions estimated

from MBD do not match the empiric1ally measured distributions. At low load, for example

100 EBs, the population distribution output by MBD-LQM seems to match the

corresponding empirical distribution (Figure 5.7 (a)). However, when the load increases

to 200 EBs, the distributions estimated by MBD is less bursty than the corresponding

empirically measured distribution (Figures 5.7 (b)). Specifically, MBD estimates slightly

lower probabilities for higher population levels and slightly higher probabilities for lower

population levels than what the measurements indicate. When the load increases to 300

103

and 400 EBs, the system becomes extremely overloaded as discussed in Section 5.2. In

this case, as shown in Figure 5.7(c) and 5.7(d), there is a significant discrepancy between

the distribution predicted by MED and the empirically measured population distribution.

These results suggest that the MBD method's assumption that the distributions of time

spent at various states are exponential may not be valid for H-TPC-W.

0.6

Measured

MBD-LQM

0.5

0.4

>0.3

CL

0.2

0.1

0
0 20 40 60 80 100

x = Number of Concurrent Requests

Figure 5.7(a): Population distribution from MBD-LQM for Browsing-100

104

><
11

0.25

0.2

0.15

0.05

0
50 100 150

x = Number of Concurrent Requests
0

Figure 5.7(b): Population distribution from MBD - LQM for Browsing-200

0.1

0.08

0.06

x
a-

0.04

0.02

0

Measured

MBD-LQM

I I

200

50 100 150 200 250 300

x = Number of Concurrent Requests

Figure 5.7(c): Population distribution from MBD-LQM for Browsing-300

0.025

Measured

MBD-LQM

0.02

0.015

0.005

100 200 300 400

x = Number of Concurrent Requests

Figure 5.7(d): Population distribution from MBD-LQM for Browsing-400

5.5.3. WAMEMP

WAMEMP, the method which uses the measured population distribution from an

experiment, is considered next. From Table 5.3, it can be seen that WAMEMP significantly

improves the prediction accuracies of the LQM. Table 5.3 shows the ABS—Error for

WAMEMP-LQM is 7.22%, nearly 43% less than that of MEAN.- LQM and 15% less than that

of MBD-LQM. The gains in Trend Error and Max—Error are even more significant

for WAMEMP-LQM. The Trend Error drops by nearly 112% and 85% from MEAN-

LQM, and MBD-LQM, respectively. The Max—Error drops by nearly 65% and 36%

from MEAN-LQM, and MBD-LQM, respectively. These results show that taking into

account the population distribution can capture the impact of burstiness and hence

improve the accuracy of performance predictions.

106

WAJVIEMP also improves the accuracy for QNM when compared to the MEAN and MED

methods. The ABS Error decreases by nearly 38% and 22% when compared to MEAN-

QNM and MED - QNM, respectively. However, since the QNM does not capture software

contention, the errors for WAIVIEMP-QNM are still very large. Due to very inaccurate

predictions from QNM, QNM results are ignored for the rest of the discussions.

5.5.4. WAMMC

In this method, Monte Carlo simulation is applied to estimate the distribution of number

of concurrent requests as described in Chapter 3. From Table 5.3, the ABS—Error is

nearly 56%, the Trend—Error is nearly 111%, and the max—Error is nearly 107%

for this method. This indicates that WAMMC failed to adequately model the H-TPC-W

system. The reasons for WAIVIMC'S poor performance are discussed as follows.

Figure 5.8 plots the population distributions estimated by WAMMC for Browsing mix in

various numbers of EBs and compares them with the corresponding empirical population

distributions. It shows that in a WAMMC estimated distribution the probabilities for higher

populations are lower when compared to the corresponding measured distribution. This

implies that WAMMC predicts the time spent by the system at higher populations to be

much shorter than what is observed in the experiments. The burstiness of the system is

not captured properly by WAMMC.

107

0.7

Measure

WAMMC-LQM
0.6

0.5

7 0.4
11
><

O03

0.2

0.1

10 20 30

x = Number of Concurrent Requests
40

Figure 5.8(a): Population distribution from WAMMC-LQM for Browsing-100

0.5

0.4

0.3

0.

0.2

0.1

Measured

WAMMC-LQM

I I I I

20 40 60 80

x = Number of Concurrent Requests
100

Figure 5.8(b): Population distribution from WAMMC-LQM for Browsing-200

108

0.3

Measured

WAMMC-LQM

0.25

0.2

0.15

0.05

50 100 150 200

x = Number of Concurrent Requests
250

Figure 5.8(c): Population distribution from WAMMC-LQM for Browsing-300

71 0.08

0.06

0.04

0.02

Measured

WAMMC-LQM

50 100 150 200 250 300 350

x = Number of Concurrent Requests

Figure 5.8(d): Population distribution from WAMMC-LQM for Browsing-400

109

To further investigate the reasons for the poor results with WAMMC, for each experiment

the log file generated by the Monte Carlo simulation is compared with the EB log file

collected from the measurement. It can be recalled from Chapter 3 that a simulation log

file used the mean request response time estimates from the LQM to approximate the real

request response times after considering the population changes during the simulation.

Analysis of the EB log files showed that the real request response times exhibited

considerable variability at each population level. The response times observed for any

given population level spanned a very wide range. The simulation logs did not exhibit

such a high variability in request response times. This is due to the use of the mean

request response time prediction to approximate the real request response times. The

LQM can only give the mean response time estimate for each population. It cannot

capture the variability in response time.

The issue of response time variability is further clarified through an example. Consider

the workload Browsing-300. The EB logs show that 35,585 requests occurred when the

population level at the system was 5. The measured data shows the response times of

these requests range from 2ms to 5675ms. The average response time of these requests is

ll2ms and the standard deviation is 179ms. The WAMMC method estimates the response

time for all these requests as l2lms or around which is the mean response time output by

the LQM for Browsing-300 when the population level is 5. Even though the mean

response time prediction is pretty close to the actual mean response time at this

population, WAMMC ignores the variation in response time at the specified population

110

level. This is probably one of the main reasons for the simulated population distribution

not being as bursty as the empirical distribution.

Due to the less bursty nature of the simulated population distributions, WANMC's

predictions of the mean response times are much lower than the measured data. For

example, the predictions from WAMMC-LQM are 84ms, 6lms and 3lms for Browsing-

300, Shopping-300 and Ordering-300, respectively. The corresponding actual mean

response times measured are 865ms, 235ms and 57ms.

To verify whether capturing the response time distribution will help improve predictions

from WAMMC, a new approach called WAMMC-HiVar is devised. This approach uses

information about the empirical response time distributions observed for each population

level to inject some variability into the response times used during simulation.

Specifically, this method maintains arrays of response time values for all population

levels observed in a measurement. An array contains all the response time values

observed for its corresponding population during an experiment run. Similar to the

WAMMC method, WAMMC-Hi Var initially obtains a mean response time prediction from

the LQM for a request based on the population calculated for the instant at which the

request is submitted. However, in contrast to WAMMC, this initial estimate is multiplied

by a scale factor to inject some variability. The scale factor is computed as follows.

Firstly, as with WAMMC, the population level for the instant at which a request is

submitted is determined. Secondly, the response time array corresponding to this

population is chosen. Finally, the scale factor is computed by dividing a randomly

111

chosen response time value from this array by the median of the response time values in

the array. The results of this method are discussed as follows.

Table 5.3 shows the prediction results of WAMMC-LQM-HiVar for all cases. For each

experiment, simulations are performed with 10 different seeds. The result for each case

is the average value from the 10 replications. From Table 5.3, the ABS—Error drops to

28.57% for WAMMC-LQM-HiVar. This represents about 27% improvement when

compared to the WAIVJMC-LQM method. The Max—Error and the Trend—Error for

WAMMC-LQM-HiVar also achieve about 23% and 29% improvements when compared

to the results for WAIVIMC-LQM. For example, for Browsing mix, Table 5.4 shows the

detailed prediction results when the number of EBs is 100, 200, 300, and 400. The table

further confirms that WAMMC-LQM-HiVar's accuracy is significantly better than that of

WAI4MC-LQM. For example, the predictions of WAMMC-LQM-HiVar for Browsing-

100, Browsing-200, Browsing-300 and Browsing-400 are 5lms, l7lms, and 695ms,

and 1090ms, respectively. These numbers are higher than their corresponding numbers

for WAI4MC-LQM of 44ms, 58ms, 84ms and 322ms, respectively. These results confirm

that accurate modeling of the response time distribution of the system is necessary for

achieving good performance predictions.

Table 5.4: Comparison for WAMMC and WANMC-HiVar

Comparison of Response Times (ms)

Cases Measured WANMC-LQM WAMMC-HiVar-LQM

Browsing-100 62 44 51
Browsing-200 164 58 171
Browsing-300 865 84 695
Browsing-400 2772 322 1090

112

Figure 5.9 shows further information of the plots of the population distributions for the

Browsing mix when the number of EBs is 100, 200, 300 and 400 for WANMC-LQM-

HiVar method. It shows that the WAMMC-LQM-H±Var can achieve more bursty

distributions when compared to the WAMMC-LQM method. This leads an improvement in

mean response time predictions for Browsing-1 00, Browsing-200, and Browsing-300

as shown in Table 5.4.

Table 5.4 and Figure 5.9(d) show that WANMC-LQM-H±Var method has limitations

when applied to a very heavily loaded system. Recalling from Section 5.2, for the

Browsing mix with 400 EBs the front server node and the database server node CPU

utilizations are 75% and 69%, respectively and the system throughput flattens after 400

EBs for Browsing mix. From Table 5.4, with 400 EBs WAIIMC-LQM-Hi Var predicts a

mean response time of 1090 ms when compared to the measured mean response time of

2772 ms. Similarly, as shown in Figure 5.9(d) the population distribution estimated by

WAMMC-LQM-H±Var diverges significantly from the measured population distribution.

This suggests that mere knowledge of response time distribution may not be adequate

especially for heavily loaded systems. It is likely that knowledge about the correlations

in the response times sequence (i.e., the response time process) is needed to accurately

predict the behaviour of such systems.

It should be noted that WANMC-LQM-HiVar cannot be used as a constructive method.

This is because it requires detailed knowledge of the response time distributions for each

population level and possibly even the correlations in the response time sequence. Such

information is not likely to be available in practice to a performance analyst.

113

0.7

0.6

0.5

x 0.4
11
>(

0.3

0.2

0.1

0

 Measure

- - - WAMMC-HiVar-LQM

- I I

0 10 20 30

x = Number of Concurrent Requests
40

Figure 5.9(a): Population distribution from WANMC-HiVar-LQM for Browsing-100

0.3

0.2

0.1

0

I

 Measured

- WAMMC-HiVa-LQM

0 20 40 60 80

x = Number of Concurrent Requests
100

Figure 5.9(b): Population distribution from WAMMC-H±Var-IJQM for Browsing-200

114

0.14

 Measured

- WAMMC-HiVar-LQM
0.12

0.1

>< _.O.08
11
><

0.06

0.04

0.02

50 100 150 200

x = Number of Concurrent Requests
250

Figure 5.9(c): Population distribution from WAMMC-HiVar-LQM for Browsing-300

0.03

0.02

0
0

Measured

- WAMMC-HiVar-LQM

I Ilk I I I

50 100 150 200 250 300 350

x = Number of Concurrent Requests

Figure 5.9(d): Population distribution from WAMMC-HiVar-LQM for Browsing-400

115

It can be recalled that the WAMMC method provided accurate response time predictions

for the C-TPC-W system. This was in spite of using just the mean response time

estimates from the LQM for estimating request response times and not considering the

detailed per population response time distributions. The reasons for the differences in

behaviour of WANMC for C-TPC-W and H-TPC-W are discussed in the next section.

5.6. Comparison of WAM for C-TPC-W and H-TPC-W

The reason for the success of WANMC for C-TPC-W is discussed first. For C-TPC-W,

WAI'4MC was used to predict the distribution of number of concurrent sessions. Accurately

predicting this distribution involves accurately predicting the time spent at various states

in the system. To predict the time spent at various states in the system well, one needs to

have good predictions for the times spent by sessions in the system and the session

arrival process. The session arrival process (i.e., sequence of session inter-arrival times)

is in general specified as an input in performance studies and is hence, as was the case

with C-TPC-W, known. The time spent by a session depends on the session length, the

session think times, and the response times for the session's requests. For C-TPC-W, a

session's duration is largely determined by its think times. As discussed in Chapter 4,

this is because the think times are much larger than the response times. As a result,

session durations and hence the population distribution can be accurately determined if

inputs used in the performance evaluation process such as the sequences of session inter-

arrival times, think times, and session lengths are known. There is very little dependency

with the response time distribution or the sequence of request response times which are

116

both unknown. The ability to accurately predict the population distribution ensures the

accuracy of mean response time predictions.

Due to the different definition of a state, to predict the population distribution for H-

TPC-W one must know the request arrival process and the times spent by requests in the

system. Both these quantities are typically not known to a performance analyst due to the

following two properties. Firstly, the sequence of times spent by requests (i.e., sequence

of request response times) in a session is unknown. Analytic models such as LQMs can

only estimate the mean response time for a system under steady state conditions. As

mentioned in the previous section, they cannot estimate the response time sequence for a

workload. Secondly, the time at which a request from a session arrives at a system

depends on the response time incurred by the previous request in the session. Since the

response time for the previous request is unknown, the request arrival process is also

unknown. In essence, these dependencies with system response times make it very

difficult to predict the population distribution in a constructive way as was possible for

C-TPC-W.

These results motivate the need for a workload generation method for session-based

systems that is more realistic than the widely used user-equivalents approach. The

inability to predict the distribution of number of concurrent requests adversely impacts

the ability to predict mean response time for bursty workloads. This is in spite of having

a LQM that provided good per request population estimates of mean response times.

This thesis argues that a mixed workload generation approach such as the one employed

for C-TPC-W is more realistic for session-based systems and enables accurate mean

117

response time predictions for bursty workloads. It should also be noted that many

measurement studies of session-based systems use the mean think time of 7 seconds

specified by TPC-W. This value is much lower than the mean think times observed in

real session-based systems. Based on insights derived from this research such

unrealistically low think times can not only impact the representativeness of performance

tests but also adversely impact the ability to predict mean response time for bursty

workloads.

5.7. Conclusions

This chapter assessed the effectiveness of WAM for H-TPC-W. As with C-TPC-W, the

results indicate that methods that incorporate the population distribution can improve the

accuracy of predictive models. However, the study showed that it was not possible to

constructively estimate the population distribution for H-TPC-W. This stems from the

need to estimate the population distribution at the granularity of a request due to the use

of user-equivalent's based workload generation. The distribution of number of

concurrent requests is significantly dependent on system response times. Since detailed

information about system response times (e.g., the response time distribution or the

response process) are typically unknown, the request response time distribution cannot be

simulated accurately. In contrast, with mixed workload generation the population

distribution has to be characterized at the granularity of sessions. For realistic systems

where session think times are much larger than system response times, the population

distribution has very little dependency with system response times. It can be accurately

constructed based solely on inputs to the performance evaluation process such as the

118

sequences of session inter-arrival times, session think times, and session lengths. In light

of these results, this thesis suggests that the widely used practice of user-equivalents

based workload generation complicates the ability to accurately predict the performance

of systems characterized by burstiness.

119

CHAPTER 6: SUMMARY AND CONCLUSIONS

In this thesis, a new technique called the Weighted Average Method (WAM) is

introduced for improving the accuracy of predictive models for systems with bursty

request arrivals. The technique is appropriate for session-based systems such as e-

commerce systems and enterprise application systems. Others have shown that real

session based systems exhibit such bursty behaviours so sizing, capacity planning, and

on-going management exercises should benefit from WAM.

The technique was motivated by a well-known hierarchical method that combines a

Markov birth-death process and QNMs. The general approach is applied but the closed

expression for estimating population distribution is replaced with a fast Monte Carlo

simulation technique that arbitrary distributions that affect burstiness for request arrivals

can be taken into account. Furthermore, both QNMs and LQMs are considered in this

thesis. Measurements from two TPC-W systems allow to compare the effectiveness of all

these methods at predicting the mean request response time.

The results indicate that modeling approaches that only consider the mean number of

concurrent customers produce very poor estimates of mean response time for systems

with bursty workloads. For the C-TPC-W system, the average mean response time

prediction error for bursty workloads is nearly 19.34% and 19.10% for the QNM, and the

LQM, respectively. Furthermore, the maximum mean response time prediction errors for

bursty workloads are nearly 43% and 32% for the QNM, and the LQM, respectively. For

the H-TPC-W system, the average prediction errors reach 69% and 51% for QNM and

LQM, respectively. The results also indicate that LQMs are better than QNMs since they

120

take into account contention for software resources and software request-reply

relationships.

The use of population distributions significantly improved response time predictions

especially for bursty workloads. Population distributions that were observed during the

performance tests were used in conjunction with QNMs and LQMs developed for the

systems. For the C-TPC--W system, the average mean response time prediction accuracy

was 5% for bursty workloads when the system's LQM was used in combination with the

measured population distributions. This represents an improvement of 14% over the

straightforward application of LQM. For the H-TPC-W system the use of the empirically

measured population distributions in combination with the LQM for the system reduced

the average prediction error from 50% to 7%. These results motivate the need for a

technique that can estimate the population distribution given arbitrary characterizations

for workload parameters that impact the distribution.

WAM is designed to support constructive estimation of the population distribution for

any given workload. This will permit analysts to explore how arbitrary distributions for

workload parameters that influence burstiness impact performance. The effectiveness of

the constructive capability of WAM was investigated for C-TPC-W and H-TPC-W.

For C-TPC-W, WAM was able to accurately estimate the population distribution for any

given workload. As a result the performance predictions made using the estimated

distributions were accurate. This result suggests that accurately estimating the population

distribution given distributions for workload attributes that impact burstiness is feasible

121

for this type of a system. This was exploited to explore the impact of changes to

workload parameters on the customer population distributions and hence on system

behaviour. Furthermore, the constructive capability enabled the prediction of very

different mean response times reported by multiple statistically identical runs for cases

that include heavy-tail-like distributions. In effect, WAM can be used to assess whether a

system has unpredictable behaviour by reporting a range of possible behaviours.

In contrast to C-TPC-W, WAM's population distribution estimates were very poor for

H-TPC-W. Consequently, performance predictions using these estimated distributions

were not accurate. Since H-TPC-W was used as a closed system, burstiness had to be

modeled through the distribution of number of concurrent requests. In contrast to the

distribution of number of concurrent sessions, the distribution of number of concurrent

requests has a significant dependency with system response times. As a result, since

system response times are typically unknown, it is very difficult to estimate the

distribution of number of concurrent requests. The thesis concludes that constructive

characterization of how various workload characteristics impact burstiness and

performance is difficult for closed systems.

The results from the case studies suggest that the use of a realistic performance testing

approach such as the one used in C-TPC-W that lets the number of concurrent sessions

vary during an experiment can make performance prediction easier for session-based

systems characterized by burstiness. This is due to the fact that for such systems

burstiness can be characterized at the granularity of a session. With realistically large

think times, the distribution of number of concurrent sessions has very little dependency

122

with system response times. It can be determined accurately based only on the inputs of

the performance evaluation process such as the distributions of session inter-arrival time,

session think times, and session length. The ability to accurately estimate the distribution

of number of concurrent sessions enables modeling of the impact of bursty request

arrivals in session-based systems. In contrast, the widely used user-equivalents based

testing approach complicates modeling by forcing burstiness to be characterized at the

granularity of a request.

A significant number of experiment hours were spent exploring two different systems,

multiple application settings (for C-TPC-W) and workloads to better establish the

generality of the proposed approach. For example, the various C-TPC-W application

settings allowed to realize very different system behaviours in terms of the relative

demands placed on the system resources. Based on the experiences from this work, three

conditions have been identified that are essential for WAM to yield accurate predictions

for a system. Firstly, the system being modeled by WAM must exhibit variation in the

number of concurrent sessions. Secondly, WAM requires a good predictive model for

the system under study. The model should provide good per population performance

estimates for the system. Finally, as mentioned previously, the think times in the system

must be larger than the response times.

Future work includes extending the technique to consider multi-class models and load

dependent service rates for session-based systems. Specifically, techniques will be

developed to ensure the efficiency of WAM for multi-class models. Support for load

dependent service rates is important for modeling Software as a Service environments

123

where the amount of resources allocated to applications can fluctuate dynamically based

on load. Future work will also apply and validate WAM for other multi-tier software

systems, including enterprise application systems.

Two recent studies [28] [44] have proposed MAP-based analytic techniques that can

yield approximate mean response time estimates for systems characterized by burstiness.

These techniques were publicized after the conclusion of the research presented in this

thesis. Comparing these techniques with WAM would be another topic that deserves

future investigations.

124

REFERENCES

[1]. W. Eckerson, "Three tier client/server architecture: achieving scalability, performance,
and efficiency in client server applications," Open Information Systems, vol. 10, no. 1, pp.
1-12, Jan. 1995.

[2]. J. P. Buzen, "Computation algorithms for closed queuing networks with exponential
servers," Communications of the AcM, vol. 16, no. 9, pp. 527-53 1, Sept. 1973.

B. D. Lazowska, G. Scott Graham, K. Sevcik, J. Zahorjan, Quantitative System
Performance: C'omnputer System Analysis Using Queuing Network Models. Prentice Hall,
1984.

[4]. U. Vallamsetty, K. Kant, and P. Mohapatra, "Characterization of e-commerce traffic,"
Electronic Commerce Research, vol. 3, no. 1-2, pp. 167-192, Jan. 2003.

D. Menasce, V. Almeida, R. Reidi, F. Pelegrinelli, R. Fonesca, and W. Meira Jr., "In
search of invariants in e-business workloads," in ACM Conference on Electronic
Commerce, pp. 56-65, Oct. 2000.

[6]. D. Krishnamurthy, I. Rolia, and S. Majumdar, "A synthetic workload generation technique
for stress testing session based systems." IEEE Transactions on Software Engineering, vol.
32, no. 11, pp. 868-882, Dec. 2006.

[7]. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, "Model-based performance
prediction in software development: a survey," IEEE Transactions on Software
Engineering, vol. 30, no. 5, pp. 295-3 10, May 2004.

[8]. M. Woodside, J. E. Nielsen, D. C. Petriu, and S. Majumdar, "The stochastic rendezvous
network model for performance of synchronous client-server-like distributed software,"
IEEE Transactions on Computers, vol. 44, no. 1, pp. 20-34, Jan, 1995.

[9]. Transaction Processing Performance Council, "TPC benchmark W (Web commerce)
specification," Feb. 2002, http://www.tpc.org/tpcw/spec/tpcw Vi.8.pdf.

[10]. Q. Zhang, L. Cherkasova, and E. Smirni, "A regression-based analytic model for dynamic
resource provisioning of multi-tier applications," in 4th International Conference on
Autonomic computing, 2007, pp. 27-27.

[11]. J. Rolia, K. Secvik, "The Method of Layers", IEEE Transactions on Software
Engineering, vol. 21, no. 8, pp. 689-700, Aug.1995.

[12]. P. Barford and M. Crovella, "Generating representative web workloads for network and
server performance evaluation," in Proceedings of ACM SIGMETRICS Conference, 1998,
pp. 151-160.

[13]. K. Kant, V. Tewary, and R. Iyer, "Geist: A generator for e-Commerce and internet server
traffic," in Proceedings of 2001 IEEE Intl Symp: Performance Analysis of Systems and
Software (ISPASS 01), 2001, pp. 49-56.

[14]. D. Menasce, V. Almeida, R. Fonesca, and M. Mendes, "A methodology for workload
characterization of e-commerce sites," in Proceedings of ACM Conference on Electronic
Commerce, 1999, pp. 119-128.

[3].

[5].

125

[15]. G. Banga and P. Druschel, "Measuring the capacity of a web server under realistic loads,"
World Wide Web, vol. 2, no. 1, pp. 69-83, May 1999.

[16]. D. Mosberger and T. Jin, "httperf: A tool for measuring web server performance," in
Proceedings of the Workshop on Internet Server Performance, 1998, pp. 59-67.

[17]. W. Mar, "LoadRunner architecture," http://www.wusonmar.com/uoadrun.htm.

[18]. W. Mar, "WinRunner.info", http://www.wi1sonmar.com/1winrun.htm.

[19]. T. Bezenek et al., "Java TPC-W Implementation Distribution," June 2003,
http://www.ece.wisc.edu/-pharniltpcw.shtml.

[20]. Rice University, "TPC-W," http://www.cs.rice.edu/CS/Systems/DynaServer/TPC-W/.

[21]. C. Stewart, T. Kelly, and A. Zhang, "Exploiting nonstationarity for performance
prediction," ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 31-44, June 2007.

[22]. D. Menasce and V. Almeida, Capacity Planning for Web Services: Metrics, Models and
Methods, Prentice Hall Inc., 2001.

[23]. R. Jam, The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling, John Wiley & Sons Inc., 1991.

[24]. D. Menasce and V. Almeida, Capacity Planning and Performance Modeling: From
Mainframes to Client-Server Systems, Prentice Hall, 1994.

[25]. D. Menasce and M. Bennani, "Analytic performance models for single class and multiple
class multithreaded software servers," in Proceedings of the International Computer
Measurement Group (CMG) Conference, 2006, pp. 475-482.

[26]. A. B. Bondi and W. Whitt. "The influence of service-time variability in a closed network
of queues," Performance Evaluation, vol. 6, no. 3, pp. 219-234, Sep. 1986.

[27]. D. Eager, D. Sorin, and M. Vernon, "AMVA Techniques for high service time
variability," in Proceedings ofACM SIGMETRICS Conference, 2000, pp. 217-228.

[28]. G. Casale, N. Mi, and E.Smirni. "Bound analysis of closed queuing networks with
workload burstiness," in Proceedings of the 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, 2008, pp. 13-24.

[29]. W. Leland, M. Taqqu, W. Williner, and D. Wilson, "On the self-similar nature of
ethernet traffic (extended version)," IEEE/ACM Transactions on Networking, vol. 2, no. 1,
pp. 1-15, Feb. 1994.

[30]. N. Markovich, Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and
Practice (Wiley Series in Probability and Statistics), Wiley-Interscience, 2007.

[31]. V. Almeida, M. Arlitt, and J. Rolia, "Analyzing a web-based system's performance
measures at multiple time scales," ACM SIGMETRICS Performance Evaluation Review,
vol. 30, no. 2, pp. 3-9, Sept. 2002.

[32]. M. E. Crovella and L. Lipsky, "Long-lasting transient conditions in simulations with
heavy-tailed workloads," in Proceedings of the Winter Simulation Conference, 1997,
pp. 1005 - 1012.

[33]. L. Kleinrock, Queueing System Volume 1: Theory, John Wiley & Sons Inc., 1975.

126

[34]. K. Psounis, P. Molinero-Fernández, B. Prabhakar, and F. Papadopoulos, "Systems with
multiple servers under heavy-tailed workloads," Performance Evaluation, vol. 62, no. 1-4,
pp. 456-474, Oct. 2005.

[35]. M. Andersson, J. Cao, M. Kihl, and C. Nyberg, "Performance modeling of an apache Web
server with bursty arrival traffic," in Proceedings of the International Conference on
Internet Computing, 2003, pp. 508-5 14.

[36]. N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel, "Performance impacts of
autocorrelated flows in multi-tiered systems", Per Evaluation, vol. 64, no. 9-12,
pp. 1082-1101, Oct. 2007.

[37]. B. Schroeder, A Wierman, and M. Harchol-Balter, "Open versus closed: A cautionary
tale", in Proceedings of the 3rd conference on 3rd Symposium on Networked Systems
Design & Implementation, 2006, pp. 239-252.

[38]. M. Arlitt, D. Krishnamurthy, and J. Rolia, "Characterizing the scalability of a large web-
based shopping system," ACM Transactions 0/i Internet Technology, vol. 1, no. 1, pp. 44-
69, Aug. 2001.

[39], V. Paxon and S. Floyd, "Wide area traffic: The failure of Poisson modeling," IEEE/ACM
Transactions on Networking, vol. 3, no. 3, pp. 226-244, June 1995.

[40]. M. Harchol-Balter, M. Crovella, and C. Murta. "On choosing a task assignment policy for
a distributed server system," Parallel and Distributed Computing, vol. 59, no. 2, pp. 204-
228, Nov. 1999.

[41]. M. Taqqu, V. Teverovsky, and W. Willinger, "Estimators for long-range dependence: an
empirical study," Fractals, vol. 3, no. 4, pp. 785-798, 1995.

[42]. K. Park, G.T. Kim, and M. Crovella, "On the relationship between file sizes, transport
protocols, and self-similar network traffic," Proceedings of the International Conference
of Network Protocols, pp. 171-180, Oct. 1996.

[43]. B. Calkins, "Solaris 9 System Monitoring and Tuning", Dec. 2002,
http://www.informi t.com/articles/article.aspx?p=30362&seqNum=6.

[44]. A. Horváth, G. Horváth, and M. Telek, "A joint moments based analysis of networks of
map/map/i queues," In Proceedings of 5th International Conference on the Quantitative
Evaluation of Systems (QEST), Sept. 2008.

127

