THE UNIVERSITY OF CALGARY

TOPICS IN BROWNIAN MOTION WITH APPLICATION IN BIOPHYSICS

by

TAK SHING FUNG

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES in Partial fulfillment of the requirements for the DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF
MATHEMATICS AND STATISTICS

CALGARY, ALBERTA
JUNE, 1989
© TAK SHING FUNG, 1989

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

THE UNIVERSITY OF CALGARY FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled "Topics in Brownian motion with application in Biophysics", submitted by Tak Shing Fug in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Supervisor, Dr . E.G. Enns, Department of Mathematics and Statistics

P.F. Ehlers, Department of Mathematics and Statistics

J.K. Wani, Department of Mathematics and Statistics

Genome N. Sheahat
J.N. Sheahan, External Examiner Uni versity of Alberta

ABSTRACT

In this thesis, we studied some properties of Brownian motion and application in the medical area.

In Chapters II and III, the two-dimensional Brownian motion of circular disks is considered where these join to form groups whenever they touch. The total number of groups N_{t} is considered as a function of time. An upper bound for $\mathrm{N}_{\mathrm{t}}^{-1}$ is derived and compared to the experimental movement of erythrocytes (red blood cells). Cells at $\mathrm{pH}=7.4$ and $\mathrm{pH}=6.3$ are shown to have a group count that respectively exceeds and falls below the plotted bound. This provides evidence that live cells have a tendency to coalesce that is not explained by Brownian motion only.

In Chapter IV, points executing free Brownian motion are randomly placed in the region $b<r \leq a$ of $\mathbb{R}^{\mathbf{n}}$. The distribution of first hitting time on the central stationary n-sphere is derived. For $n=3$, the moment generating function of the first hitting time is derived.

In Chapter V, a Brownian particle is selected at random from a region E in \mathbb{R}^{n} and then the probability that the particle will be in a convex region G in \mathbb{R}^{n} a time t later, where $E \subset G$, is derived. The probabilities for (a) $\mathrm{E}=\mathrm{G}$, disc or ball and (b) E C G, concentric spheres are calculated.

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to my supervisor Dr. E.G. Enns, for his supervision, encouragement, invaluable guidance and the time he spent with me during the preparation of this thesis.

A special thank you is offered to Dr. P.F. Ehlers for his time for the comments on the thesis.

A special thank you is owed to Mrs. Janice Bakal, Assistant Director of Academic Computing Services for the encouragement of the completion of my study and the supply of limitless computer time.

I would like to express my thanks to Maria Dourado for painstakingly and speedily typing the manuscript.

Finally, I would like to express my thanks to my wife Linda, and my daughter Priscilla for their understanding.

Dedicated to my parents

TABLE OF CONTENTS

Page
ABSTRACT iii
ACKNOWLEDGEMENTS iv
DEDICATION v
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER I: INTRODUCTION
1.1 Historical Background 1
1.2 Basic definitions \& formulae
1.2.1 One dimensional Brownian motion 3
1.2.2 Multidimensional Brownian motion 5
1.3 Radial Brownian motion 6
1.4 Orientation of the research problem 7
1.5 Methods of geometric probability 9
CHAPTER II: COAGULATIONS OF COLLOIDAL PARTICLES ONDER
BROWNIAN MOTION 13
2.1 Introduction 13
2.2 The rate of disk interaction 16
CHAPTER III: PLANAR BROWNIAN MOTION IN THE PRESENCE OF AN ATTRACTIVE FORCE 25
3.1 Introduction 25
3.2 An upper bound on N_{t}^{-1} 25
3.3 Discussion of the model 41
CHAPTER IV: HITTING PROBABILITIES FOR n-DIMENSIONAL
BROWNIAN HOTION 42
4.1 Introduction 42
4.2 Two dimensional hitting probabilities 44
4.3 N-dimensional hitting probabilities 50
CHAPTER V: BROWNIAN HOTION WITHTN A VIEVING FIELD 61
5.1 Introduction 61
5.2 A disc with $E=G$ 63
5.3 A sphere with $E=G$ 70
5.4 A sphere with E C G 78
APPENDIX I: DISTRIBUTION OF RELATIVE DISPLACEMENTS 84
APPENDIX II: CUBIC SPLINE METHOD 86
REFERENCES 88

LIST OF TABLES

TABLE
TITLE
Page

3.1a	Number of cell groups observed for $\mathrm{pH}=7.4$
3.1b	Number of cell groups observed for $\mathrm{pH}=6.3$

LIST OF FIGURES

FIGURE TITLE Page
2.1 $\mathrm{I}_{0}(\mathrm{x}), \mathrm{K}_{0}(\mathrm{x}), \mathrm{I}_{1}(\mathrm{x})$ and $\mathrm{K}_{1}(\mathrm{x})$ 18
3.1 Brownian motion of erythrocytes at pH 7.4 39
3.2 Brownian motion of erythrocytes at pH 6.3 40
4.1 Expected first hitting for 3 DIM with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ 58
5.2 $\mathrm{Q}_{\mathrm{E}}(\mathrm{t})$ for two dimension with $\mathrm{D}=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ (fixed t) 68
5.3 $\mathrm{Q}_{\mathrm{E}}(\mathrm{t})$ for two dimension with $\mathrm{D}=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ (fixed a) 69
5.4 $Q_{B}(t)$ for three dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ (fixed t) 74$Q_{E}(t)$ for three dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ (fixed a) 755.6$Q_{E}(t)$ for $2 \& 3$ dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ and$\mathrm{t}=1.0 \mathrm{sec}$.76
5.7 $Q_{E}(t)$ for $2 \& 3$ dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ and $\mathrm{t}=1.0 \mathrm{sec}$. 77

CHAPTER I

INTRODUCTION

1.1 HISTORICAL BACKGROUND

Robert Brown was a distinguished botanist. Although Brown is remembered by mathematicians only as the discoverer of Brownian motion, his biography in the Encyclopedia Britannica makes no mention of this discovery.

In the early eighteenth century, Brown was studying the fertilization process in several different species of flower. Looking at the pollen in water through a microscope, he observed small particles in "rapid oscillatory motion".

Of the causes of Brownian motion, Brown [1829] writes:
"I have formerly stated my belief that these motions of the particles neither arose from currents in the fluid containing them, nor depended on that intestine motion which may be supposed to accompany its evaporation.

These causes of motion, however, either singly or combined with other, -as, the attractions and repulsions among the particles themselves, their unstable equilibrium in the fluid in which they are suspended, their hygrometrical or capillary action, and in some cases the disengagement of volatile matter, or of minute air bubbles, -have been considered by several writers as sufficiently accounting for the appearances."

His theory, is that matter is composed of small particles, which exhibit a rapid, irregular motion having its origin in the particles themselves and not in the surrounding fluid.

His contribution was to demonstrate the presence of Brownian motion in inorganic as well as organic matter and establish it's importance.

The first to express a notion close to the modern theory of Brownian motion was Wiener in 1863.

During 1850 - 1900 , many scientists worked on the phenomenon. The following main points were noted:
a. The motion is very irregular, composed of translations and rotations, and the trajectory appears to have no tangent.
b. Two particles appear to move independently.
c. The activity of the motion is directly proportional to the temperature, and inversely proportional to the viscosity of the fluid and size of the particles.
d. The motion never ceases.

In 1905, Albert Einstein formulated a correct quantitative theory of Brownian motion. There are two parts to Einstein's argument. The first is mathematical. The result is the following:

Let $p=p_{t}\left(x_{1}, x_{2}, x_{3}\right)$ be the probability density of a Brownian particle at the point $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ at time t . Then, Einstein derived the diffusion equation

$$
\frac{\partial \mathrm{p}}{\partial t}=\mathrm{D} \nabla^{2} \mathrm{p}
$$

where D is a positive constant, and ∇^{2} is the Laplacian operator.

If the particle is at the origin 0 at time 0 , then

$$
p_{t}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{(4 \pi D t)^{3 / 2}} e^{-\frac{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)}{4 D t}} .
$$

The second part of his argument, which relates D to other physical quantities, is physical.

If the Brownian particles are spheres of radius a, then combined with Stokes' theory of friction, we have the Stokes-Einstein relation:

$$
\mathrm{D}=\frac{\mathrm{KT}}{6 \pi \eta \mathrm{a}}
$$

where T is the absolute temperature,
η is the coefficient of viscosity
and $\quad K$ is the Boltzmann's constant.
A mathematical theory of the behaviour of coagulating particles undergoing Brownian motion in three dimensions was first given by Smoluchowski (1916) and later elaborated by Chadrasekhar (1943). Other formulations of coagulation and reaction based upon diffusion (Noyes, 1961; Waite, 1957; Collins \& Kimble, 1949) are essentially identical to those of Smoluchowski. Treatment of the problem in a finite two-dimensional medium (Owens, 1974; Adam \& Delbruck, 1968; Razi Naqvi, 1974) has been largely motivated by considerations of movement of molecules on lipid membranes. (See Eldridge 1980)

1.2 BASIC DEFINITION \& FORMULAE

The following definitions (1.2.1, 1.2.2) are quoted from Karlin and Taylor (1974).

1.2.1 ONE DIMENSIONAL BROWNIAN MOTION

Brownian motion is a stochastic process $\{\mathrm{X}(\mathrm{t}) ; \mathrm{t} \geq 0\}$ with the following properties:
(a) Every increment $\mathrm{X}(\mathrm{t}+\mathrm{s})-\mathrm{X}(\mathrm{s})$ is normally distributed with mean 0 and variance σ^{2} t; σ is a fixed parameter.
(b) For every pair of disjoint time intervals $\left[t_{1}, t_{2}\right],\left[t_{3}, t_{4}\right]$, the increments $X\left(t_{4}\right)-X\left(t_{3}\right)$ and $X\left(t_{2}\right)-X\left(t_{1}\right)$ are independent random variables with distributions given in (a), and similarly for n disjoint time intervals where n is an arbitrary positive integer.
(c) $\mathrm{X}(0)=0$ and $\mathrm{X}(\mathrm{t})$ is continuous at $\mathrm{t}=0$.

This means that we postulate that a displacement $X(t+s)-X(s)$ is independent of the past, or alternatively, if we know $X(s)=x_{0}$, then no further knowledge of the values of $\mathrm{X}(\tau)$, for $\tau<\mathrm{s}$ has any effect on our knowledge of the probability law governing $\mathrm{X}(\mathrm{t}+\mathrm{s})-\mathrm{X}(\mathrm{s})$. Written formally, this says that if $t>t_{0}>t_{1}>\cdots>t_{n}$,

$$
\begin{aligned}
P\left\{X(t) \leq x \mid X\left(t_{0}\right)\right. & \left.=x_{0}, X\left(t_{1}\right)=x_{1}, \cdots, X\left(t_{n}\right)=x_{n}\right\} \\
& =P\left\{X(t \leq x) \mid X\left(t_{0}\right)=x_{0}\right\}
\end{aligned}
$$

This is a statement of the Markov character of the process.
Under the condition that $\mathrm{X}(0)=0$, the variance of $\mathrm{X}(\mathrm{t})$ is $\sigma^{2} \mathrm{t}$. Hence σ^{2} is sometimes called the variance parameter of the process. The process $\tilde{\mathrm{X}}(\mathrm{t})=\frac{\mathrm{X}(\mathrm{t})}{\sigma}$ is a Brownian motion process having variance parameter of one, called standard Brownian motion. By this device we may always reduce an arbitrary Brownian motion to a standard Brownian motion.

By part (a) of the definition with $\sigma^{2}=1$, we have

$$
\begin{aligned}
P\{X(t) & \left.\leq x \mid X\left(t_{0}\right)=x_{0}\right\}=P\left\{X(t)-X\left(t_{0}\right) \leq x-x_{0}\right\} \\
& =\frac{1}{\sqrt{2 \pi\left(t t_{0}\right)}} \int_{-\infty}^{x-x_{0}} \exp \left[-\frac{\alpha^{2}}{2\left(t t_{0}\right)}\right] d \alpha .
\end{aligned}
$$

The consistency of part (b) of the definition with part (a) follows from well-known properties of the normal distribution, e.g. if $t_{1} \leq t_{2} \leq t_{3}$ then

$$
X\left(t_{3}\right)-X\left(t_{1}\right)=\left[X\left(t_{3}\right)-X\left(t_{2}\right)\right]+\left[X\left(t_{2}\right)-X\left(t_{1}\right)\right] .
$$

On the right we have independent normal random variables with mean 0 and variances $t_{3}-t_{2}$ and $t_{2}-t_{1}$, respectively. Hence their sum is normal with mean 0 and variance $t_{3}-t_{1}$ as it should be.

1.2.2 MULTIDIMENSIONAL BROWNIAN MOTION

Let $\left\{\mathrm{X}_{1}(\mathrm{t}) ; \mathrm{t} \geq 0\right\}, \cdots\left\{\mathrm{X}_{\mathrm{N}}(\mathrm{t}) ; \mathrm{t} \geq 0\right\}$ be standard Brownian motion processes, statistically independent of one another. The vector-valued process defined by

$$
X(t)=\left[X_{1}(t), \cdots, X_{N}(t)\right]
$$

is called N-dimensional Brownian motion. The motion of a particle undergoing Brownian motion in the plane and in space are described by two-dimensional and three-dimensional Brownian motions, respectively.

If the particle is at the origin 0 at time 0 , let $p_{t}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the probability density of a particle reaches the point $\left(\dot{x}_{1}, x_{2}, \ldots, x_{n}\right)$ at time t, then

$$
p_{t}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{(2 \pi t)^{n} /^{2}} e^{-\frac{\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)}{2 t}}
$$

1.3 RADIAL BROWNIAN MOTION

Let $\{\mathrm{X}(\mathrm{t}): \mathrm{t} \geq 0\}$ be an N -dimensional Brownian motion process. The stochastic process defined by

$$
R(t)=\left[X_{1}(t)^{2}+\cdots+X_{N}(t)^{2}\right]^{\frac{1}{2}}, \quad t \geq 0
$$

is called Radial Brownian motion or the Bessel process with parameter $\frac{1}{2}$ N-1. It is a Markov process having continuous sample paths in the state space $[0, \infty)$ (see Karlin and Taylor (1974) page 368).

The probability transition density of the N-dimensional process from r_{1} to r_{2} in a time t is given by (Kent equation 9.1).

$$
\begin{gather*}
p_{t}\left(r_{1}, r_{2}\right)=t^{-1} r_{1}^{\nu} I_{\nu}\left[\frac{r_{1} r_{2}}{t}\right] \exp \left[-\frac{1}{2 t}\left(r_{1}^{2}+r_{2}^{2}\right)\right] r_{2}^{\nu+1} \\
t>0, r_{1}, r_{2}>0 \tag{1.3.1}
\end{gather*}
$$

where $\nu=(\mathrm{N}-2) / 2>-1$ and
$I_{\nu}(\mathrm{x})$ is the modified Bessel function of the first kind

$$
I_{\nu}(x)=\sum_{k=0}^{\infty} \frac{\left[\frac{x}{2}\right]^{2 k+\nu}}{k!\Gamma(k+\nu+1)} .
$$

For $N=1, I_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cosh x$,

$$
\begin{equation*}
p_{t}\left(r_{1}, r_{2}\right)=\sqrt{\frac{2}{\pi t}} \exp \left\{-\frac{r_{1}^{2}+r_{2}^{2}}{2 t}\right\} \cosh \left[\frac{r_{1} r_{2}}{t}\right] . \tag{1.3.2}
\end{equation*}
$$

For $\mathrm{N}=2$,

$$
\begin{equation*}
p_{t}\left(r_{1}, r_{2}\right)=t^{-1} r_{2} I_{0}\left[\frac{r_{1} r_{2}}{t}\right] \exp \left[-\frac{1}{2 t}\left(r_{1}^{2}+r_{2}^{2}\right)\right] . \tag{1.3.3}
\end{equation*}
$$

For $N=3, I_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sinh x$

$$
\begin{equation*}
p_{t}\left(r_{1}, r_{2}\right)=\sqrt{\frac{2}{\pi t}} \exp \left\{-\frac{r_{1}^{2}+r_{2}^{2}}{2 t}\right\} \frac{r_{2}}{r_{1}} \sinh \left[\frac{r_{1} r_{2}}{t}\right] . \tag{1.3.4}
\end{equation*}
$$

By. continuity of sample path, we have

$$
p_{t}\left(0, r_{2}\right)=\lim _{r_{1} \rightarrow 0} p_{t}\left(r_{1}, r_{2}\right) .
$$

Therefore for
(a) $N=1, p_{t}\left(0, r_{2}\right)=\sqrt{\frac{2}{\pi t}} \exp \left\{-\frac{r_{2}^{2}}{2 t}\right\}$
(b) $\mathrm{N}=2, \mathrm{p}_{\mathrm{t}}\left(0, \mathrm{r}_{2}\right)=\frac{\mathrm{r}_{2}}{\mathrm{t}} \exp \left\{-\frac{\mathrm{r}_{2}^{2}}{2 \mathrm{t}}\right\} \quad$ (compare with eqn. 5.2.3)
(c) $N=3, p_{t}\left(0, r_{2}\right)=\sqrt{\frac{2}{\pi t^{3}}} \mathrm{r}_{2}^{2} \exp \left\{-\frac{\mathrm{r}_{2}^{2}}{2 t}\right\}$. (compare with eqn. 5.2.3)

1.4 ORIENTATION OF THE RESEARCH PROBLEM

In 1981, Rowlands and co-workers ([26], [27]) studied the aggregation of human red blood cells (erythrocytes). Aggregation indicates the existence of a long range attractive force between erythrocytes of a given species. Initially, at time $t=0$, single disks are presented. From then onwards, they combine to form double, triple, i-fold disks. The clustering of erythrocytes is referred as rouleaux formation. They adopted Swift and Friedlander's (1964) simplifying assumption that all particles have the same radius (and the implication that all zones of attraction have the same radius $\mathrm{Z} \neq \mathrm{r}$). If N is the total number of particles (single and multiple) the kinetics of coagulation are governed by

$$
\begin{equation*}
\frac{1}{\mathrm{~N}_{\mathrm{t}}}-\frac{1}{\mathrm{~N}_{0}}=\frac{4 \mathrm{KT}}{3 \eta} \frac{\mathrm{Z}}{\mathrm{r}} \mathrm{t} \tag{1.4.1}
\end{equation*}
$$

where \mathbf{k} : Boltzman's constant
T: absolute temperature
η : viscosity of suspending medium
and r : radius of the particle
Equation 1.4.1 is for a three-dimensional process. Cells sediment, however, so the process is compressed into two dimensions and the rate constant will be higher by a factor of 1.5. Equation 1.4.1 becomes

$$
\frac{1}{\mathrm{~N}_{\mathrm{t}}}-\frac{1}{\mathrm{~N}_{0}}=\frac{2 K T}{\eta} \frac{\mathrm{Z}}{\mathrm{r}} \mathrm{t}
$$

which predicts a linear relation between $\mathrm{N}_{\mathrm{t}}^{-1}$ and t .
In an experiment, for a given t, one can count the number of cell groups (i.e. N_{t}). The regression of N_{t}^{-1} on t was computed.

An interaction coefficient Ξ is defined by $\frac{Z}{r}$.
If $\Xi=1$, then it indicates a pure Brownian motion.

If $\Xi>1$, then it indicates a zone of attraction.
If $\Xi<1$, then it indicates a repulsive force.

In the experimental studies, Rowlands et al (1981, 1982) have observed values of Ξ up to approximately three indicating a long range attractive force between normal cells.

The assumptions of Rowlands and associates are:

1. $r_{i}=r_{j}$ for all i, j
2. $\quad D_{i}=D_{j}$ for all i, j
where r_{i} is the radius of i-fold disks
and $\quad D_{i}$ is the diffusion coefficient of $i-f o l d$ disks
3. $\quad \mathrm{t} \gg \frac{\mathrm{r}^{2}}{\mathrm{D}}$.

We try to minimize the above assumption to find an upper bound of $\mathrm{N}_{\mathrm{t}}^{-1}$. Chapters II and III are based on the article that we published (Enns, Fung, Rowlands \& Sewchand) in Cell Biophysics 5 (1983), p189-195.

1.5 METHODS OF GEOMETRIC PROBABILITY

Some new results in Brownian motion are attainable via methods of geometrical probability. In particular if one is viewing a cell undergoing Brownian motion under a microscope, it may be of interest whether this cell will still be in the viewing field at a time t later. This requires a knowledge of the distribution of the lengths of random rays under ν-radomness, the derivation of which follows.

Enns and Ehlers (1978, 1980, 1981, 1988) in a series of papers have derived the distributions of the lengths of random rays and secants under various randomness assumptions. We will provide the background derivations necessary for the new work in the thesis.
ν-randomness is defined as selecting a point P at random from a body K and also picking a random direction θ. In n-dimensions, the direction θ will be uniformly distributed in $\left[0, \quad n C_{n}\right]$ where C_{n} is the volume of a unit n -sphere. One can now define a ray S of length ℓ as the distance from P to the boundary of K in direction θ. We will assume that K is a convex body in $\mathbb{R}^{\mathbf{n}}$. A secant of length L will be formed by projecting the ray backwards
to the surface of K . L will not be used, so we will only concentrate on the ray. Now if the body K is translated a distance ℓ in direction θ, then denote the translated K by $\mathrm{K}(\ell, \theta)$. If one now places a needle of length ℓ in body K in direction θ, then the tip of the needle must lie in $\mathrm{K} \cap \mathrm{K}(\ell, \theta)$ for the whole needle to lie within K .

Figure 1.1

Now since the point P is chosen randomly in K, it must lie in $\mathrm{K} \cap \mathrm{K}(-\ell, \theta)$ for the ray R to be of length greater than ℓ. Therefore:

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S}>\ell \mid \theta) & =\frac{\mathrm{V}[\mathrm{~K} \cap \mathrm{~K}(-\ell, \theta)]}{\mathrm{V}(\mathrm{~K})} \\
& =\frac{\mathrm{V}[\mathrm{~K} \cap \mathrm{~K}(\ell, \theta)]}{\mathrm{V}(\mathrm{~K})}
\end{aligned}
$$

where $\mathrm{V}(\cdot)$ is the volume of (\cdot). Averaging over θ, one obtains:

$$
\begin{align*}
\mathrm{P}(\mathrm{~S}>\ell) & =\frac{\xi[\mathrm{V}(\mathrm{~K} \cap \mathrm{~K}(\ell, \theta)]}{\mathrm{V}(\mathrm{~K})} \\
& =\Omega(\ell . \tag{1.5.1}
\end{align*}
$$

This defines the normalized overlap function $\Omega(\ell)$. All other distributions derived in Enns and Ehlers ($1978,1980,1981,1988$) are in terms of $\Omega(\ell)$ and its counterpart $\omega(\ell)$, which is the normalized overlap surface content of $\mathrm{K} \cap \mathrm{K}(\ell, \theta)$ when averaged over θ.

Equation (1.5.1) illustrates $\Omega(\ell)$ as an average over θ. However, since there are two random variables involved in generating \mathbf{R} we can also express $\Omega(\ell)$ as an average over the randomly chosen point P.

Select a point P randomly in K and surround it with an n-sphere of radius ℓ

Figure 1.2

Define the solid angles subtended by the body K as $\phi_{1}(\ell, \mathrm{P})$ and $\phi_{2}(\ell, \mathrm{P})$. There may be zero, one or two such angles. Let $\phi(\ell, P)=\sum_{i} \phi_{i}(\ell, P)$ be the sum of these internal angles. Then

$$
\begin{equation*}
\mathrm{P}(\mathrm{~S}>\ell \mid \mathrm{P})=\frac{\phi(\ell, \mathrm{P})}{\mathrm{nC}_{\mathrm{n}}} . \tag{1.5.2}
\end{equation*}
$$

Equations (1.5.1) and (1.5.2) therefore relate the two averaging procedures. This will be the starting point of our derivation in Chapter V.

CHAPTER II

COAGULATIONS OF COLLOIDAL PARTICLES UNDER BROWNIAN MOTION

2.1 INTRODUCTION:

Smoluchowski (1917) succeeded in applying the principles of Brownian motion to describe the coagulations of colloidal particles due to the introduction of an electrolytic solution. Smoluchowski's theory is based on the view that around each discharged particle is a sphere of attraction such that if two particles undergoing Brownian motion enter each other's sphere, they adhere and never separate again. In his outset, a particle assumed fixed in space with a sphere of influence of radius b, is in a medium of infinite extent in which a number of Brownian particles of zero radius (regarded as points) are randomly scattered at time $t=0$. Suppose that the stationary particle is at the origin of our system of coordinates and also assumed that when a point touches the boundary of the sphere, it will merge to the origin immediately.

The point of departure for the theory of diffusion is the random walk. Let us consider the one-dimensional space. Each individual moves a short distance λ to the right or left in a short time τ. We define the probability that a particle released from the origin at $t=0$ reaches point x by time t to be $p(x, t)$.

At one time interval earlier, i.e. at time $t-\tau$, the particle is at either of points $x-\lambda$ or $x+\lambda$. if we call α the probability that a particle will move to the right in time unit τ, and β the probability that the particle will move to the left $(\alpha+\beta=1)$,

$$
\begin{equation*}
\mathrm{p}(\mathrm{x}, \mathrm{t})=\alpha \mathrm{p}(\mathrm{x}-\lambda, \mathrm{t}-\tau)+\beta \mathrm{p}(\mathrm{x}+\lambda, \mathrm{t}-\tau) \tag{2.1.1}
\end{equation*}
$$

To obtain a diffusion equation from (2.1.1), it is assumed that λ and τ are very small compared to x and t, respectively, and that each term on the right hand side of the equation (2.1.1) can be expanded in a Taylor series in x and t,
$\mathrm{p}(\mathrm{x}-\lambda, \mathrm{t}-\tau)=\mathrm{p}(\mathrm{x}, \mathrm{t})-\lambda \frac{\partial \mathrm{p}}{\partial \mathrm{x}}-\tau \frac{\partial \mathrm{p}}{\partial \mathrm{t}}+\frac{\lambda^{2}}{2} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x}^{2}}+\lambda \tau \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x} \partial \mathrm{t}}+\frac{\tau^{2}}{2} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{t}^{2}}$
$\mathrm{p}(\mathrm{x}+\lambda, \mathrm{t}+\tau)=\mathrm{p}(\mathrm{x}, \mathrm{t})+\lambda \frac{\partial \mathrm{p}}{\partial \mathrm{x}}-\tau \frac{\partial \mathrm{p}}{\partial t}+\frac{\lambda^{2}}{2} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x}^{2}}-\lambda \tau \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x} \partial \mathrm{t}}+\frac{\tau^{2}}{2} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{t}^{2}}$
All of the right-hand derivatives are evaluated at (x, t). If (2.1.2) is substituted into (2.1.1) and the relations $\alpha+\beta=1, \alpha-\beta=\varepsilon$ are used, we have

$$
\begin{equation*}
\frac{\partial \mathrm{p}}{\partial \mathrm{t}}=-\frac{\lambda \varepsilon}{\tau} \frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\frac{\lambda^{2}}{2 \tau} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x}^{2}}+\lambda \varepsilon \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x} \partial t}+\frac{\tau}{2} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{t}^{2}} \tag{2.1.3}
\end{equation*}
$$

where the parameters λ, τ, and ε are assumed to be constant.
Now let us consider the limit as these parameters go to zero. We shall not do this indiscriminately; rather we shall suppose that as τ becomes small, λ and ε decrease so as to be of the same order of magnitude of $\tau^{\frac{1}{2}}$. In other words, in the first and second terms on the right-hand side of (2.1.3),

$$
\begin{equation*}
\lim _{\lambda, \varepsilon, \tau \rightarrow 0} \frac{\lambda \varepsilon}{\tau}=\mu, \lim _{\lambda, \tau \rightarrow 0} \frac{\lambda^{2}}{2 \tau}=\mathrm{D} \tag{2.1.4}
\end{equation*}
$$

Since the other right-hand terms converge to zero, the following equation is obtained,

$$
\begin{equation*}
\frac{\partial \mathrm{p}}{\partial \mathrm{t}}=-\mu \frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\mathrm{D} \frac{\partial^{2} \mathrm{p}}{\partial \mathrm{x}^{2}} \tag{2.1.5}
\end{equation*}
$$

This is the equation of diffusion for the random walk that results from the limiting process. If p in (2.1.5) is multiplied by the total number of particles in the system, the particle concentration W is obtain so that

$$
\begin{equation*}
\frac{\partial W}{\partial t}=-\mu \frac{\partial W}{\partial x}+D \frac{\partial^{2} W}{\partial x^{2}} \tag{2.1.6}
\end{equation*}
$$

For simple random walk case (by taking limit it will become Brownian motion), $\mu=0$ since $\alpha-\beta=0$, hence (2.1.6) can be written as

$$
\begin{equation*}
\frac{\partial W}{\partial \mathrm{t}}=\mathrm{D} \frac{\partial^{2} \mathrm{~W}}{\partial \mathrm{x}^{2}} \tag{2.1.7}
\end{equation*}
$$

In two dimensions with horizontal and vertical displacements parallel to the x - and y - axis, we have

$$
\frac{\partial \mathrm{W}}{\partial \mathrm{t}}=\mathrm{D}\left[\frac{\partial^{2} \mathrm{~W}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{~W}}{\partial y^{2}}\right]=\mathrm{D} \nabla^{2} \mathrm{~W}
$$

We have therefore to seek a solution of the diffusion equation:

$$
\begin{equation*}
\frac{\partial W}{\partial t}=D \nabla^{2} W \tag{2.1.8}
\end{equation*}
$$

The problem that we are going to solve here is dealing with two-dimensional Brownian Motion which can be summarized as follows:

Consider an array of uniform circular disks of radius b whose motion is totally governed by Brownian movement. We assume the disks to be totally noninteracting, except on contact, in which case, they adhere, forming a doublet. When an i -fold disk touches with a j -fold disk, they form a k -fold
disk where $\mathbf{k}=\mathrm{i}+\mathrm{j}$. We will concentrate on the total number of disk groups N_{t} present per unit area as a function of time t. An upper bound for N_{t}^{-1} when only Brownian movement is present will be derived. If in an experiment, this upper bound is exceeded then we can conclude that there is evidence of a force of attraction among the disk groups of different sizes.

The approach to solving this problem basically follows Smoluchowski's. However due to the different dimension and the different assumption of values of D_{i} 's, the details of the calculations are quite different.

2.2 THE RATE OF DISK INTERACTION

We start with the following two-dimensional diffusion equation:

$$
\frac{\partial W}{\partial t}=D \nabla^{2} W=D\left[\frac{\partial^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial y^{2}}\right]
$$

In polar form and by rotational symmetry, we have

$$
\frac{\partial W}{\partial t}=\mathrm{D}\left[\frac{\partial^{2} \mathrm{~W}}{\partial r^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~W}}{\partial \mathrm{r}}\right]
$$

with boundary condition: $\omega(\mathrm{R}, \mathrm{t})=0 \quad \forall \mathrm{t}>0$

$$
\begin{equation*}
\text { initial condition: } \omega(\mathrm{r}, 0)=\rho \quad|\mathrm{r}|>\mathrm{R} . \tag{2.2.1}
\end{equation*}
$$

In (2.2.1), let $y=W(r, t)-\rho$, then

$$
\frac{\partial y}{\partial t}=\mathrm{D}\left[\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{y}}{\partial \mathrm{r}}\right]
$$

with boundary condition: $\mathrm{y}(\mathrm{R}, \mathrm{t})=-\rho \quad \forall \mathrm{t}>0$

$$
\begin{equation*}
\text { initial condition: } y(r, 0)=0 \quad|r|>R . \tag{2.2.2}
\end{equation*}
$$

We take the Laplace Transformation of (2.2.2):

$$
\mathscr{L}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{t}}\right]=\mathrm{D} \mathscr{L}\left[\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{y}}{\partial \mathrm{r}}\right]
$$

or

$$
s \hat{y}-y(r, 0)=D\left[\frac{\partial^{2}}{\partial r^{2}} \hat{y}+\frac{1}{r} \frac{\partial}{\partial r} \hat{y}\right] \text { where } \hat{y}=\mathscr{L}(y(r, t))
$$

or

$$
\begin{equation*}
\frac{\partial^{2} \hat{y}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \hat{y}}{\partial r}-\frac{s}{D} \hat{y}=0 \tag{2.2.3}
\end{equation*}
$$

with boundary condition $\hat{y}(R, s)=\frac{-\rho}{s}$.
(2.2.2) is a modified Bessel Equation of order 0.

A solution is:

$$
\begin{equation*}
\hat{\mathrm{y}}(\mathrm{r}, \mathrm{~s})=\mathrm{C}_{1}(\mathrm{~s}) \mathrm{I}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{r}\right]+\mathrm{C}_{2}(\mathrm{~s}) \mathrm{K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{r}\right] \tag{2.2.4}
\end{equation*}
$$

where $I_{0}(x)$ is a modified Bessel function of the first kind, $\mathrm{K}_{0}(\mathrm{x})$ is a modified Bessel function of the second kind.

But,

$$
I_{0}(x)=\sum_{k=0}^{\infty} \frac{\left[\frac{1}{4} x^{2}\right]^{k}}{k!\Gamma(k+1)}
$$

hence $I_{0}(x)$ is unbounded when x is large.
And also,

$$
\begin{aligned}
\mathrm{K}_{0}(\mathrm{x})= & -\left\{\ln \left[\frac{1}{2} \mathrm{x}\right]+\gamma\right\} \mathrm{I}_{0}(\mathrm{x})+\frac{\frac{1}{4} \mathrm{x}^{2}}{(1!)^{2}} \\
& +\left[1+\frac{1}{2}\right] \frac{\left[\frac{1}{4} \mathrm{x}^{2}\right]^{2}}{(2!)^{2}}+\left[1+\frac{1}{2}+\frac{1}{3}\right] \frac{\left[\frac{1}{4} \mathrm{x}^{2}\right]^{3}}{(3!)!}+\ldots
\end{aligned}
$$

where

$$
\begin{aligned}
\gamma & =\lim _{m \rightarrow \infty}\left[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{m}-\ln m\right] \\
& =.5772156649 \ldots
\end{aligned}
$$

Figure 2.1. $I_{0}(x), K_{0}(x), I_{1}(x)$ and $K_{1}(x)$
hence $K_{0}(x)$ is bounded for all x.
The graph for $\mathrm{I}_{0}(\mathrm{x}), \mathrm{K}_{0}(\mathrm{x}), \mathrm{I}_{1}(\mathrm{x})$ and $\mathrm{K}_{1}(\mathrm{x})$ is shown in Figure 2.1.
The solution $\hat{y}(r, s)$ is bounded for all r, hence $C_{1}(s)=0$,
and from the boundary condition, we have

$$
\frac{-\rho}{\mathrm{s}}=\mathrm{C}_{2}(\mathrm{~s}) \mathrm{K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{R}\right]
$$

therefore

$$
\begin{equation*}
\hat{\mathrm{y}}(\mathrm{r}, \mathrm{~s})=\frac{-\rho}{\mathrm{s}} \frac{\mathrm{~K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}} \mathrm{r}}\right]}{\mathrm{K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{R}\right]} \tag{2.2.5}
\end{equation*}
$$

Following the arguments of Smoluchowski, a circular disk of radius b is being fixed at the origin. At time $\mathrm{t}=0$, we assume all the circular disks have the same radius b , and are randomly scattered. When a circular disk touches the stationary disk they adhere, forming a double disk.

Figure 2.2

Since the primary disks adhere on contact, the rate of rouleaux formation equals the rate at which the centres diffuse across the dashed line. The latter corresponds to a circle of radius 2 b inscribed around one of the disks which, for the present, is assumed to be stationary. In other words, we can assume a single circular disk of radius $\mathrm{R}=2 \mathrm{~b}$ at the origin and the other disks are redefined as points diffusing in the medium. When a disk, represented by a point touches at $|R|=2 b$, then we can regard it has merged with the central disk. The rate $\xi(\mathrm{R}, \mathrm{t})$ at which disks merge with the central disk is:

$$
\xi(\mathrm{R}, \mathrm{t})=\left.2 \pi \mathrm{RD} \frac{\partial \omega}{\partial \mathrm{r}}\right|_{\mathrm{r}=\mathrm{R}}
$$

or

$$
\hat{\xi}(\mathrm{R}, \mathrm{~s})=\left.2 \pi \mathrm{RD} \frac{\partial \hat{\omega}}{\partial \mathrm{r}}\right|_{\mathrm{r}=\mathrm{R}}
$$

From (2.2.5), we have

$$
\left.\begin{align*}
\hat{\xi}(\mathrm{R}, \mathrm{~s}) & =\left.2 \pi \mathrm{RD} \frac{\partial}{\partial \mathrm{r}}\left[-\frac{\rho}{\mathrm{S}} \frac{\mathrm{~K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{r}\right]}{\mathrm{K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{R}\right]}\right]\right|_{\mathrm{r}=\mathrm{R}} \\
& =-2 \pi \mathrm{RD} \frac{\rho}{\mathrm{~s} \mathrm{~K}} \mathrm{~K}_{0}\left[\sqrt{\frac{s}{D}} \mathrm{R}\right] \tag{2.2.6}
\end{align*} \frac{\partial}{\partial \mathrm{r}} \mathrm{~K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}} \mathrm{r}}\right]\right|_{\mathrm{I}=\mathrm{R}} .
$$

But

$$
\mathrm{K}_{\nu-1}(\mathrm{z})+\mathrm{K}_{\nu+1}(\mathrm{z})=-2 \mathrm{~K}_{\nu}^{\prime}(\mathrm{z})
$$

and also

$$
\mathrm{K}_{\nu}(\mathrm{z})=\mathrm{K}_{\nu}(\mathrm{z})
$$

hence

$$
K_{1}(z)=-K_{0}^{\prime}(z) .
$$

Therefore in (2.2.6), we have

$$
\begin{align*}
\hat{\xi}(R, s) & =\frac{2 \pi R D \rho}{s} \sqrt{\frac{s}{D}} \frac{K_{1}\left[\sqrt{\frac{s}{D}} R\right]}{K_{0}\left[\sqrt{\frac{s}{D}} R\right]} \\
& =2 \pi R \rho \sqrt{\frac{D}{s} \frac{K_{1}\left[\sqrt{\frac{s}{D}} R\right]}{K_{0}\left[\sqrt{\frac{s}{D}} R\right]}} . \tag{2.2.7}
\end{align*}
$$

From Jaeger (1943), the inverse Laplace transform of (2.2.7) yields:

$$
\begin{equation*}
\xi(\mathrm{R}, \mathrm{t})=\frac{8 \mathrm{D}}{\pi} \rho \mathrm{I}\left[0,1 ; \frac{\mathrm{Dt}}{\mathrm{R}^{2}}\right] \tag{2.2.8}
\end{equation*}
$$

where

$$
I(0,1 ; x)=\int_{0}^{\infty} \frac{e^{-x u^{2}}}{J \gamma(u)+Y z(u)} \frac{d u}{u}
$$

J_{0} : Bessel function of the first kind of order 0
and Y_{0} : Bessel function of the second kind of order 0 .

A table of $I(0,1, x)$ is given in Jaeger (1943).
If we remove the restriction that the 'target' disk is stationary, the effect is to replace the diffusion coefficient of the single moving disk with the relative diffusion coefficient of the two, which is simply 2 D when the disks are the same size. Furthermore, instead of looking at a single disk, we may regard any one of the disks initially present as the 'reference' disk.

Therefore the rate $r_{i j}$ at which disks of group size i with radius R_{i} combine with disks of group size j with radius R_{j} as a function of time t is:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{ij}}(\mathrm{t})=\frac{8 \mathrm{D}_{\mathrm{ij}} \nu_{\mathrm{i}} \nu_{\mathrm{i}}}{\pi} \mathrm{I}\left[0,1 ; \frac{\mathrm{D}_{\mathrm{i} j} \mathrm{t}}{\mathrm{R}_{\mathrm{ij}}}\right] \tag{2.2.9}
\end{equation*}
$$

where
ν_{i} : average number of groups of size i per unit area.
R_{ij} : effective distance for formation of $\mathrm{i}+\mathrm{j}$ - fold-disk group from groups of size i and j.
$D_{i j}$: effective diffusion constant for groups of size i and size j moving independently.

When a group of size i of radius R_{i} touch with a group of size j of radius R_{j}, they form an $i+j$ fold group, hence $R_{i j}=R_{i}+R_{j}$. By independence of movements of each disk group, hence we have $D_{i j}=D_{i}+D_{j}$ (see Appendix I)

Initially, at time $t=0$, we have only single disks only. There are no multiple disks at time $\mathrm{t}=0$, namely $\nu_{\mathrm{i}}(0)=0$ for $\mathrm{i}>1$. From then onwards, they combine to form double, triple, disks. In practice we begin our observation at a time $\mathrm{t}_{0}>0$, at which time multiple groups may already exist. We will estimate the value of t_{0} from experimental data.

The rate of change of various disk groups can be written as:

$$
\begin{equation*}
\frac{\mathrm{d} \nu_{1}}{\mathrm{dt}}=-\nu_{1} \sum_{\mathrm{j}} \mathrm{D}_{\mathrm{ij}} \nu_{\mathrm{j}} \mathrm{f}_{\mathrm{ij}}(\mathrm{t}) \tag{2.2.10}
\end{equation*}
$$

and for $k \geq 2$, we have

$$
\begin{equation*}
\frac{\mathrm{d} \nu_{\mathrm{k}}}{\mathrm{dt}}=\frac{1}{2} \sum_{\mathrm{i}+\mathrm{j}=\mathrm{k}} \nu_{\mathrm{i}} \nu_{\mathrm{j}} \mathrm{f}_{\mathrm{ij}}(\mathrm{t})-\nu_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{D}_{\mathrm{kj}} \nu_{\mathrm{j}} \mathrm{f}_{\mathrm{kj}}(\mathrm{t}) \tag{2.2.11}
\end{equation*}
$$

where

$$
\mathrm{f}_{\mathrm{ij}}=\frac{8}{\pi} \mathrm{I}\left[0,1 ; \frac{\mathrm{D}_{\mathrm{i} j} \mathrm{t}}{\mathrm{R}_{\mathrm{ij}}}\right] .
$$

In equation (2.2.11), the first summation on the right hand side represents the increase in ν_{k} due to the formation of k -fold disk groups by coalescing of an i-fold and j-fold disk groups ($i+j=k$), the factor of $\frac{1}{2}$ must be included to account for duplication of indices in $i+j=k$. The second summation represents the decrease in ν_{k} due to the formation of $(k+j)-$ fold disks in which one of the interacting disks is k -fold.

Furthermore, by adding (2.2.10) and (2.2.11) we have:

$$
\begin{align*}
\frac{d}{d t} N_{t}= & \frac{1}{2} \sum_{k=2} \sum_{i+j=k} \nu_{i} \nu_{j} D_{i j} \dot{f}_{i j}(t)-\sum_{k=2} \nu_{k} \sum_{j} D_{k j} \nu_{j} f_{k j}(t) \\
& -\nu_{1} \sum_{j} D_{1 j} \nu_{j} f_{1 j}(t) \\
= & \frac{1}{2} \sum_{i=1} \sum_{j=1} \nu_{i} \nu_{j} D_{i j} f_{i j}(t)-\sum_{k=1} \sum_{j=1} D_{k j} \nu_{k} \nu_{j} f_{k j}(t) \\
= & -\frac{1}{2} \sum_{i=1} \sum_{j=1} \nu_{i} \nu_{j} D_{i j} f_{i j}(t) \tag{2.2.12}
\end{align*}
$$

where $N_{t}=\sum_{i=1} \nu_{i}$ which is the total number of disk groups at time t per unit area

In Chandrasekhar's paper, he assumed that

$$
D_{i}=D_{j} \text { and } R_{i}=R_{j} \text { for all } i \text { and } j
$$

It is not a very reasonable assumption since D_{j} is less than D_{i} for $i<j$ due to the increased mass. R_{i} is also less than R_{j} for $i<j$ due to the increased size. We will minimize these assumptions to find an upper bound for N_{t}^{-1} in Chapter III.

CHAPTER III

PLANAR BROWNIAN MOTION IN THE PRESENCE OF AN ATTRACTIVE FORCE

3.1 INTRODUCTION

In Chapter II, we solved the diffusion equation:

$$
\frac{\partial W}{\partial t}=D \nabla^{2} W
$$

with boundary condition $W(R, t)=0 \quad \forall t>0$
initial condition $W(r, 0)=\rho \quad \forall|r|>R$
and the rate $\xi(\mathrm{R}, \mathrm{t})$ at which disk merge with the central disk was derived (eqn. 2.2.9). The rate $r_{i j}$ at which disk of group size i with radius R_{i} combine with disks of group size j with radius R_{j} was also derived (eqn. 2.2.10). Furthermore, the rate of change of the number of cell groups $\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{N}_{\mathrm{t}}$ was also found (eqn. 2.2.13).

In this chapter, we will derive an upper bound on $\mathrm{N}_{\mathrm{t}}^{-1}$ and an example will be shown.

3.2 AN UPPER BOUND ON N ${ }_{t}^{-1}$

If a force of attraction exists between the disk groups, the rate of formation of a rouleau is greater than that of free Brownian Movement. Hence N_{t} decreases more rapidly than in the free Brownian motion case. Suppose that the largest disk group of size m is observed in our observation and, for the sake of simplicity, assume m is even; if m is odd, the following
argument will hold with m replaced by $m+1$. Since an increase in disk size reduces the velocity of its Brownian movements, the relative translational diffusion coefficient

$$
\mathrm{D}_{\mathrm{kq}}=\mathrm{D}_{\mathrm{k}}+\mathrm{D}_{\mathrm{q}} \text { attains its minimum when } \mathrm{k}+\mathrm{q}=\mathrm{m}
$$

i.e. $\quad D_{i j} \geqq D_{k q} \quad \forall_{i, j} \quad$ when $\quad k+q=m$
equality holds when $i+j=m$. In particular, taking $k=\frac{m}{2}, q=\frac{m}{2}$, then we have $\mathrm{D}_{\mathrm{ij}} \underline{\underline{\underline{m}}} \mathrm{D}_{\frac{\mathrm{m}}{2} \frac{\mathrm{~m}}{2}}=2 \mathrm{D}_{\frac{\mathrm{m}}{2}}, \forall_{\mathrm{i}, \mathrm{j}}$.

By the Stokes-Einstein relation (Marshall, 1978)

$$
\begin{aligned}
\mathrm{D}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}} & =\frac{\mathrm{kT}}{6 \pi \eta} \\
& =\text { constant for all groups }
\end{aligned}
$$

Moreover, $D_{i j} R_{i j}=D_{\frac{m}{2} \frac{m}{2}} R_{\frac{m}{2} \frac{m}{2}} \quad \forall_{i, j}$
or

$$
D_{\frac{D_{i j}}{2} \frac{m}{2}} R_{i j}=R_{\frac{m}{2} \frac{m}{2}}=2 R_{\frac{m}{2}}
$$

but

$$
\frac{D_{i j}}{D_{\frac{m}{2} \frac{m}{2}}} \geq 1, \text { hence }
$$

$$
\mathrm{R}_{\mathrm{ij}} \leqq 2 \mathrm{R}_{\frac{\mathrm{m}}{2}}
$$

Therefore, we can conclude that for any time t,

$$
\begin{equation*}
\frac{\mathrm{D}_{\mathrm{i} j} \mathrm{t}}{\mathrm{R}_{\mathrm{ij}}^{2}} \geqq \frac{\mathrm{D}_{\mathrm{m}}^{2}}{2 \mathrm{R}_{\frac{\mathrm{m}}{2}}^{2}} \tag{3.2.1}
\end{equation*}
$$

But $\mathrm{I}(0,1 ; \mathrm{x})$ is a decreasing function of x and hence

$$
\begin{equation*}
I\left[0,1 ; \frac{D_{i j} t}{R_{i j}^{2}}\right] \leq I\left[0,1 ; \frac{\frac{D}{m}_{2}^{t}}{2 R_{\frac{m}{2}}^{2}}\right] \tag{3.2.2}
\end{equation*}
$$

Therefore we have an upper bound for $\mathrm{f}_{\mathrm{ij}}(\mathrm{t})$, namely

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ij}}(\mathrm{t})=\frac{8}{\pi} \mathrm{I}\left[0,1 ; \frac{\mathrm{D}_{\mathrm{ij}} \mathrm{t}}{\mathrm{R}_{\mathrm{ij}}^{2}}\right] \leq \mathrm{r}(\mathrm{t})=\frac{8}{\pi} \mathrm{I}\left[0,1 ; \frac{\frac{\mathrm{D}}{\frac{\mathrm{~m}}{2}}^{\mathrm{t}}}{2 \mathrm{R}_{\frac{\mathrm{m}}{2}}^{2}}\right] \tag{3.2.3}
\end{equation*}
$$

Let us assume $\mathrm{D}_{1}=\mathrm{D}, \mathrm{D}_{2}=\alpha \mathrm{D}, \mathrm{D}_{\mathrm{i}}=\alpha \beta \mathrm{D}, \mathrm{i} \geq 3$ where $\alpha, \beta \in(0,1]$. This is a reasonable assumption since D_{i} decreases when i increases. We will use experimental results to estimate α and β. We can make further refinements for D_{4}, D_{5} etc., but it was found that the results were not sensitive to variations in α and β. Hence further refinement is not necessary. For notational convenience, let:

$$
\mathrm{y}_{1}=\mathrm{D} \hat{\nu}_{1}, \mathrm{y}_{2}=\mathrm{D} \hat{\nu}_{2}, \mathrm{y}_{3}=\mathrm{D} \hat{\mathrm{~N}}_{\mathrm{t}}
$$

where $\hat{\nu}_{1}, \hat{\nu}_{2}, \hat{\mathrm{~N}}_{\mathrm{t}}$ are calculated values of $\nu_{1}, \nu_{2}, \mathrm{~N}_{\mathrm{t}}$ under the above assumptions. In order to obtain an upper bound on $\mathrm{N}_{\mathrm{t}}^{-1}$, we replace $\mathrm{f}_{\mathrm{ij}}(\mathrm{t})$ by $r(t)$,

$$
\begin{align*}
\frac{d \hat{\nu}_{1}}{d t} & =-\hat{\nu}_{1}\left(D_{11} \hat{\nu}_{1}+D_{12} \hat{\nu}_{2}+D_{13} \hat{\nu}_{3}+\ldots .\right) r(t) \\
& =-D\left[2 \hat{\nu}_{1}^{2}+(1+\alpha) \hat{\nu}_{1} \hat{\nu}_{2}+(1+\alpha \beta) \hat{\nu}_{1} \sum_{j=3} \nu_{j}\right] r(t) \\
& =-\mathrm{D}\left[2 \hat{\nu}_{1}^{2}+(1+\alpha) \hat{\nu}_{1} \hat{\nu}_{2}+(1+\alpha \beta) \hat{\nu}_{1}\left(\hat{N}_{t}-\hat{\nu}_{1}-\hat{\nu}_{2}\right)\right] r(t) \cdot(3.2 .4) \\
\frac{d y_{1}}{d t}= & D \frac{d}{d t} \hat{\nu}_{1}=-D^{2}\left[2 \hat{\nu}_{1}^{2}+(1+\alpha) \hat{\nu}_{1} \hat{\nu}_{2}+(1+\alpha \beta) \hat{\nu}_{1}\left(\hat{\mathrm{~N}}_{\mathrm{t}}-\hat{\nu}_{1}-\hat{\nu}_{2}\right)\right] \mathrm{r}(\mathrm{t}) \\
= & -\left\{2 \mathrm{y}_{1}^{2}+(1+\alpha) \mathrm{y}_{1} \mathrm{y}_{2}+(1+\alpha \beta) \mathrm{y}_{1}\left(\mathrm{y}_{3}-\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right\} \mathrm{r}(\mathrm{t}) \\
= & -\left\{\mathrm{y}_{1}^{2}(1-\alpha \beta)+(1-\beta) \alpha \mathrm{y}_{1} \mathrm{y}_{2}+(1+\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{3}\right\} \mathrm{r}(\mathrm{t}) \tag{3.2.5}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{d y_{3}}{d t}= & D \frac{d}{d t} \hat{N}_{t}=-\frac{D}{2} \sum_{i} \sum_{j} \hat{\nu}_{i} \hat{\nu}_{j}\left(D_{i}+D_{j}\right) r(t) \\
= & -\frac{D}{2}\left[\hat{\nu}_{1}^{2}\left(D_{1}+D_{1}\right)+2 \hat{\nu}_{1} \sum_{j=2} \hat{\nu}_{j}\left(D_{1}+D_{j}\right)\right. \\
& \left.+\sum_{i} \sum_{j \geq 2} \hat{\nu}_{i} \hat{\nu}_{j}\left(D_{i}+D_{j}\right)\right] r(t) \tag{3.2.6}
\end{align*}
$$

$$
\begin{gather*}
=-\left\{y_{1}^{2}+(1+\alpha) y_{1} y_{2}+y_{1}(1+\alpha \beta)\left(y_{3}-y_{1}-y_{2}\right)+\alpha y_{2}^{2}\right. \\
\left.+\alpha(1+\beta)\left(y_{3}-y_{1}-\mathrm{y}_{2}\right) \mathrm{y}_{2}+\alpha \beta\left(\mathrm{y}_{3}-\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}\right\} \mathrm{r}(\mathrm{t}) \\
=-\left\{(1-\alpha \beta) \quad \mathrm{y}_{1} \mathrm{y}_{3}+(1-\beta) \alpha \mathrm{y}_{2} \mathrm{y}_{3}+\alpha \beta \mathrm{y}_{3}^{2}\right\} \mathrm{r}(\mathrm{t}) \tag{3.2.7}
\end{gather*}
$$

Again,

$$
\begin{align*}
\frac{d y_{2}}{\mathrm{dt}} & =\mathrm{D} \frac{\mathrm{~d}}{\mathrm{dt}} \hat{\nu}_{2}=\frac{\mathrm{D}}{2} \sum_{\mathrm{i}+\mathrm{j}=2} \hat{\nu}_{\mathrm{i}} \hat{\nu}_{\mathrm{j}} \mathrm{D}_{\mathrm{ij}} \mathrm{r}(\mathrm{t})-\hat{\nu}_{2} \sum_{\mathrm{j}=1} \hat{\nu}_{\mathrm{j}} \mathrm{D}_{2 \mathrm{j}} \mathrm{r}(\mathrm{t}) \\
& =\left[\mathrm{y}_{1}^{2}-\mathrm{y}_{1} \mathrm{y}_{2}(1+\alpha)-2 \alpha \mathrm{y}_{2}^{2}-\mathrm{y}_{2}(1+\beta) \alpha\left\{\mathrm{y}_{3}-\mathrm{y}_{1}-\mathrm{y}_{2}\right\}\right] \mathrm{r}(\mathrm{t}) \\
& =\left[\mathrm{y}_{1}^{2}-(1-\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{2}-\alpha(1-\beta) \mathrm{y}_{2}^{2}-\alpha(1+\beta) \mathrm{y}_{2} \mathrm{y}_{3}\right] \mathrm{r}(\mathrm{t}) \tag{3.2.8}
\end{align*}
$$

Dividing (3.2.4) by (3.2.8), we have

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{y}_{1}}{\mathrm{~d} \mathrm{y}_{2}}=\frac{\mathrm{y}_{1}^{2}(1-\alpha \beta)+(1-\beta) \alpha \mathrm{y}_{1} \mathrm{y}_{2}+(1+\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{3}}{-\mathrm{y}_{1}^{2}+(1-\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{2}+\alpha(1-\beta) \mathrm{y}_{2}^{2}+\alpha(1+\beta) \mathrm{y}_{2} \mathrm{y}_{3}} \tag{3.2.9}
\end{equation*}
$$

Dividing (3.2.4) by (3.2.7), we have

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{y}_{1}}{\mathrm{~d} \mathrm{y}_{3}}=\frac{\mathrm{y}_{1}^{2}(1-\alpha \beta)+(1-\beta) \alpha \mathrm{y}_{1} \mathrm{y}_{2}+(1+\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{3}}{(1-\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{3}+(1-\beta) \alpha \mathrm{y}_{2} \mathrm{y}_{3}+\alpha \beta \mathrm{y}_{3}^{2}} \tag{3.2.10}
\end{equation*}
$$

Let $u=\frac{y_{1}}{y_{3}}, v=\frac{y_{2}}{y_{3}}, \quad 0 \leq u, v \leq 1$.

Therefore

$$
\begin{align*}
& \frac{d y_{1}}{d y_{3}}=\frac{u^{2} y_{3}^{2}(1-\alpha \beta)+(1-\beta) \alpha u y_{3} v y_{3}+(1+\alpha \beta) u y_{3}^{2}}{(1-\alpha \beta) u y_{3}^{2}+(1-\beta) \alpha v y_{3}^{2}+\alpha \beta y_{3}^{2}} \\
& =\frac{u^{2}(1-\alpha \beta)+(1-\beta) \alpha u v+(1+\alpha \beta) u}{(1-\alpha \beta) u+(1-\beta) \alpha v+\alpha \beta} \\
& y_{3} \frac{d u}{d y_{3}}=\frac{u}{(1-\alpha \beta) u+(1-\beta) \alpha v+\alpha \beta} . \tag{3.2.11}
\end{align*}
$$

or

Similarly

$$
v+y_{3} \frac{d v}{d y_{3}}=\frac{-u^{2}+u v(1-\alpha \beta)+v^{2} \alpha(1-\beta)+\alpha(1+\beta) v}{(1-\alpha \beta) u+(1-\beta) \alpha v+\alpha \beta}
$$

or $\quad y_{3} \frac{d v}{d y_{3}}=\frac{-u^{2}+\alpha v}{(1-\alpha \beta) u+(1-\beta) \alpha v+\alpha \beta}$
dividing (3.2.12) by (3.2.11) we have

$$
\begin{equation*}
\frac{\mathrm{dv}}{\mathrm{~d} \mathbf{u}}=\frac{\alpha \mathbf{v}}{\mathbf{u}}-\mathrm{u} \tag{3.2.13}
\end{equation*}
$$

with initial condition $u(0)=1, \mathrm{v}(0)=0$.
This linear differential equation has solution

$$
\begin{equation*}
\mathrm{v}=\mathrm{cu}^{\alpha}-\frac{\mathrm{u}^{2}}{2-\alpha} \tag{3.2.14}
\end{equation*}
$$

At time $t=t_{0}$, our initial observed time,

$$
\begin{array}{r}
\mathrm{N}_{\mathrm{t}_{0}}=\mathrm{N}_{1}, \mathrm{u}\left(\mathrm{t}_{0}\right)=\mathrm{u}_{1}=\frac{\nu_{1}\left(\mathrm{t}_{0}\right)}{N_{1}} \\
\mathrm{v}\left(\mathrm{t}_{0}\right)=\mathrm{v}_{1}=\frac{\nu_{2}\left(\mathrm{t}_{0}\right)}{N_{1}}
\end{array}
$$

and therefore

$$
\begin{equation*}
\mathrm{C}=\left[\mathrm{v}_{1}+\frac{\mathrm{u}_{1}^{2}}{2-\alpha}\right] \mathrm{u}_{1}^{\alpha} . \tag{3.2.15}
\end{equation*}
$$

Combining (3.2.15) and (3.2.11), we have

$$
\text { or } \quad\left[\alpha \beta+(1-\alpha \beta) u+(1-\beta) \alpha\left(\mathrm{Cu}^{\alpha}-\frac{\mathrm{u}^{2}}{2-\alpha}\right)\right] \frac{\mathrm{du}}{\mathrm{u}}=\frac{\mathrm{dy}_{3}}{\mathrm{y}_{3}}
$$

$$
\text { or } \ln \mathrm{y}_{3}=\alpha \beta \ln \mathrm{u}+(1-\alpha \beta) \mathrm{u}+(1-\beta) \alpha\left[\mathrm{C} \frac{\mathrm{u}^{\alpha}}{\alpha}-\frac{\mathrm{u}^{2}}{2(2-\alpha)}\right]+\mathrm{C}^{\prime}
$$

$$
\begin{equation*}
\text { or } \quad y_{3}=K u^{\alpha \beta} \exp \left\{(1-\alpha \beta) u+\frac{1-\beta}{2(2-\alpha)}\left(2 \mathrm{C}(2-\alpha) \mathrm{u}^{\alpha}-\alpha \mathrm{u}^{2}\right)\right\} . \tag{3.2.16}
\end{equation*}
$$

At, $\mathrm{t}=\mathrm{t}_{0}$

$$
\mathrm{y}_{3}=\mathrm{K}_{1}^{\alpha \beta} \exp \left\{(1-\alpha \beta) \mathrm{u}_{1}+\frac{1-\beta}{2(2-\alpha)}\left(2 \mathrm{C}(2-\alpha) \mathrm{u}_{1}^{\alpha}-\alpha \mathrm{u}_{1}^{2}\right)\right\}
$$

or $\quad K=D N_{t_{0}} u_{1}^{-\alpha \beta} \exp \left\{-\left[(1-\alpha \beta) u_{1}+\frac{(1-\beta)}{2}\left(2 \mathrm{v}_{1}+u_{1}^{2}\right)\right]\right\}$.

Recall $\mathrm{y}_{2}=\mathrm{vy}_{3}$, we have

$$
\frac{\mathrm{dy}_{2}}{\mathrm{dt}}=\mathrm{v} \frac{\mathrm{dy}_{3}}{\mathrm{dt}}+\mathrm{y}_{3} \frac{\mathrm{dv}}{\mathrm{dt}}
$$

and therefore

$$
\begin{aligned}
\mathrm{y}_{3} \frac{\mathrm{dv}}{\mathrm{dt}}= & -\left[-\mathrm{y}_{1}^{2}+(1-\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{2}+\alpha(1-\beta) \mathrm{y}_{2}^{2}+\alpha(1+\beta) \mathrm{y}_{2} \mathrm{y}_{3}\right] \mathrm{r}(\mathrm{t}) \\
& +\mathrm{v}\left[(1-\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{3}+\alpha(1-\beta) \mathrm{y}_{2} \mathrm{y}_{3}+\alpha \beta \mathrm{y}_{3}^{2}\right] \mathrm{r}(\mathrm{t})
\end{aligned}
$$

or $\quad \frac{d v}{d t}=\left\{u y_{1}-\alpha y_{2}\right\} r(t)$.

But from (3.2.13)

$$
\frac{d u}{d v}=\frac{\frac{d u}{d t}}{\frac{d v}{d t}}=\frac{u}{\alpha v-u^{2}}
$$

therefore

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{u}{\alpha v-u^{2}} \frac{d v}{d t} \\
& =\frac{u}{\alpha v-u^{2}}\left\{u y_{1}-\alpha y_{2}\right\} r(t) \\
& =\frac{u}{\alpha v-u^{2}}\left\{u^{2} y_{3}-\alpha v \dot{y}_{3}\right\} r(t) \\
& =\frac{u}{\alpha v-u^{2}}\left\{u^{2}-\alpha v\right\} y_{3} r(t) \\
& =-u y_{3} r(t)
\end{aligned}
$$

i.e. $\quad \frac{d u}{d t}=-u \quad y_{3} r(t)$
therefore $\int_{u_{1}}^{u(t)} \frac{d u}{\mathrm{uy}_{3}}=-\int_{t_{0}}^{t} r(t) d t$.

$$
=-\frac{8}{\pi} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{I}\left[0,1 ; \frac{\frac{\mathrm{m}}{2}_{\mathrm{t}}^{2 \mathrm{R}_{\frac{\mathrm{m}}{2}}^{2}}}{\frac{\mathrm{D}^{2}}{2}}\right] \mathrm{dt}
$$

$$
\begin{equation*}
=-\frac{16 \mathrm{R}_{\frac{\mathrm{m}}{2}}^{2}}{\pi \mathrm{D}_{\frac{\mathrm{m}}{2}}^{2}} \int_{\mathrm{y}_{0}}^{\mathrm{y}} \mathrm{I}(0,1 ; \mathrm{x}) \mathrm{dx} \tag{3.2.17}
\end{equation*}
$$

where $\quad y_{0}=\frac{D_{\frac{m}{2}}{ }^{t}}{2 R_{\frac{m}{2}}^{2}}$ and $y=\frac{D_{m}^{2}}{2 R_{\frac{m}{2}}^{2}}$.

Next, we want to find an estimate of t_{0} :

$$
\begin{aligned}
\frac{\mathrm{dy}_{3}}{\mathrm{dt}} & =\mathrm{D} \frac{\mathrm{~d}}{\mathrm{dt}} \hat{\mathrm{~N}}_{\mathrm{t}}=-\left\{(1-\alpha \beta) \mathrm{y}_{1} \mathrm{y}_{3}+(1-\beta) \alpha \mathrm{y}_{2} \mathrm{y}_{3}+\alpha \beta \mathrm{y}_{3}^{2}\right\} \mathrm{r}(\mathrm{t}) \\
& =-\mathrm{y}_{3}^{2}\{(1-\alpha \beta) \mathrm{u}+(1-\beta) \alpha \mathrm{v}+\alpha \beta\} \mathrm{r}(\mathrm{t})
\end{aligned}
$$

so that

$$
\mathrm{r}(\mathrm{t})=\frac{-1}{\mathrm{D} \hat{\mathrm{~N}}_{\mathrm{t}}^{2}}\left[\frac{\mathrm{~d}}{\mathrm{dt}} \hat{\mathrm{~N}}_{\mathrm{t}}\right] \frac{1}{\alpha \beta+(1-\alpha \beta) \mathrm{u}+\alpha(1-\beta) \mathrm{v}}
$$

and so $\quad r\left(t_{0}\right)=\left.\frac{1}{D} \frac{d}{d t} \frac{1}{\hat{N}_{t}}\right|_{t=t_{0}}\left[\frac{1}{\alpha \beta+(1-\alpha \beta) u_{1}+\alpha(1-\beta) v_{1}}\right]$.

Empirically finding $\left.\frac{d}{d t} \frac{1}{\hat{N}_{\mathrm{t}}}\right|_{\mathrm{t}=\mathrm{t}_{0}}$ we can find $\mathrm{r}\left(\mathrm{t}_{0}\right)$. From Jaeger's table, we can find t_{0} from the calculated value of $r\left(t_{0}\right)$ in (3.2.18). For known values of t_{0}, $\mathrm{u}_{1}, \mathrm{v}_{1}$, we can perform the numerical integration in (3.2.17). Hence, from (3.2.17) we can calculate y_{3} and $\hat{\mathrm{N}}_{\mathrm{t}}^{-1}=\frac{\mathrm{D}}{\mathrm{y}_{3}}$ can be calculated. Finally, we use an example to complete our present chapter.

EXAMPLE

Experiments were conducted in which a cell suspension in plasma was transferred to a haemacytometer chamber and allowed to settle. By using time-lapse cine microphotography of erythrocytes, it was possible to count the total number of red cells and rouleaux in a fixed region as a function of time t. A complete description of the experimental procedure is in Rowlands et al (1982).

Experimental evidence suggests that the diffusion coefficient of a single cell is $D=1.596 \times 10^{-14} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ while for double and triple cells it is 0.86 D and 0.73 D respectively: i.e. $\alpha=0.86, \beta=0.8488$. We tried several values of α, β but the results were found to be insensitive to variations of α and β.

Observation was started at time t_{0}, initial counting gave $u_{1}=0.9$ and $\mathrm{v}_{1}=0.1$. The maximum group size that we observed in time interval $\left[t_{0}, t+t_{0}\right]$ was 6 , hence $m=6$. Also the radius of a single cell is taken as $\mathrm{R}=4.3 \times 10^{-6} \mathrm{~m}$. The data used in our calculation are in Table 3.1.

For PH $=7.4$ or live cells, by cubic spline approximation (use ICSCCU in IMSL), we find:

$$
\left.\frac{\mathrm{d}}{\mathrm{dt}} \frac{1}{\mathrm{~N}(\mathrm{t})}\right|_{\mathrm{t}=\mathrm{t}_{0}}=51.57 \times 10^{-14}
$$

which yields

$$
r\left(t_{0}\right)=32.7707
$$

Therefore

$$
I(0,1 ; x)=\frac{\pi}{8} r\left(t_{0}\right)=12.869
$$

Using $D_{3} R_{3}=D_{1} R_{1}$, we have $R_{3}=\frac{R_{1}}{0.73}=5.89 \times 10^{-6} \mathrm{~m}$. Jaeger's table (1943), then gives

$$
\frac{\mathrm{D}_{3} \mathrm{t}_{0}}{2 \mathrm{R}_{3}^{2}}=0.02
$$

from which

$$
\mathrm{t}_{0}=119.9 \mathrm{sec}
$$

Since t_{0} is found and $u_{1}=0.9$, hence in (3.2.18), for any given value of t, we can find out the value of $u(t)$, and hence N_{t}^{-1} can be calculated. The graph of N_{t}^{-1} versus t is plotted in Figure 3.1. The smooth curve is the theoretical curve of the upper bound of N_{t}^{-1}. The points in the graph are the experimental data. In Figure 3.1, the data points lie above the theoretical curve, hence there is an evidence that a force of attraction exists among the cell groups other than the Brownian Motion.

For $\mathrm{PH}=6.3$, or dead cells, as for $\mathrm{PH}=7.4$, we find:

$$
\begin{gathered}
\left.\frac{\mathrm{d}}{\mathrm{dt}} \frac{1}{\mathrm{~N}(\mathrm{t})}\right|_{\mathrm{t}=\mathrm{t}_{0}}=13.679 \times 10^{-14} \\
\mathrm{r}\left(\mathrm{t}_{0}\right)=8.69245 \\
I\left[0,1 ; \frac{\mathrm{D}_{3} \mathrm{t}_{0}}{2 \mathrm{R}_{3}^{2}}\right]=3.4135 \\
\frac{\mathrm{D}_{3} t_{0}}{2 \mathrm{R}_{3}^{2}}=0.35 \\
\mathrm{t}_{0}=2084.4 \mathrm{sec}
\end{gathered}
$$

In Figure 3.2, the data points lie below the theoretical curve as would be expected for Brownian Motion only.

TABLE 3.1a ${ }^{*}(\mathrm{PH}=7.4)$

Obs erved time (minute)
Number of cell groups obse ryed
in an area of $1.2 \times 10^{-7} \mathrm{~m}^{2}$
0 188
5 164
10 154
15 131
20 129
30 118
40 110
50 106
60 96
70 86
75 86

TABLE 3.1b ${ }^{*}(\mathrm{PH}=6.3)$

0 227
5 213
10 204
15 199
20 192
30 186
40 185
50 177
60 179
70 174
80 169
90 166
100 163
110 164
120 161
*Source : S. Rowlands and L.S. Sewchand.Comment : The number of cell groups increases twice. This is due to thefact that we are observing the central region of our viewing areaand cells can freely enter and leave our viewing area.

FIGURE 3.1. Brownian motion of erythrocytes at pH 7.4

FIGURE 3.2. Brownian motion of erythrocytes at pH 6.3.

3.3 DISCUSSION OF THE MODEL

In general, the particles of any particular class will not be spheres. So, one must incorporate some factor relating the Stokes radius of each aggregate particle to that of the fundamental particle. In turn, the Stokes radius of the fundamental particle must be related to a characteristic geometric radius. The mathematical model that has been developed is under the assumption that the Stokes radii of all classes are equal to their physical radii. This has been confirmed reasonably well for erythrocytes (Groom \& Anderson, 1972; Skalak et al, 1981).

Points lying below the upper bound of $\mathrm{N}_{\mathrm{t}}^{-1}$ indicates that cells are executing free Brownian motion. This is a crucial statement, one may derive a lower bound of N_{t}^{-1}, then cells with all data points lying within the lower bound and upper bound of $\mathrm{N}_{\mathrm{t}}^{-1}$, one can claim that such cells are executing free Brownian motion.

Cells which lie outside these bounds would give us an indication that the cells have some type of force acting in conjunction with Brownian motion.

CHAPTER IV

HITTING PROBABILITIES FOR n-DIMENSIONAL BROWNIAN MOTION

4.1 INTRODUCTION:

Consider an n-sphere of radius b held stationary at the origin of our system of co-ordinates and in a medium of infinite extent in which a number of Brownian particles of zero radius are scattered at time $t=0$. Our familiar diffusion can be expressed as:

$$
\frac{\partial w}{\partial t}=D \nabla^{2} w=D\left[\frac{\partial^{2} w}{\partial x_{1}^{2}}+\frac{\partial^{2} w}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} w}{\partial x_{n}^{2}}\right]
$$

where w is the concentration of the particles in the system.
By radial symmetry and n -sphere polar co-ordinates, we have

$$
\frac{\partial w}{\partial t}=D\left[\frac{\partial^{2} w}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial w}{\partial r}\right]
$$

with boundary condition $\mathrm{W}(\mathrm{b}, \mathrm{t})=0 \quad \forall \mathrm{t}>0$
initial condition $\quad \mathrm{w}(\mathrm{r}, 0)=\rho \quad \forall|\mathrm{r}|>\mathrm{b}$.
Using the same argument as in Chapter 2.2,
let $\mathrm{y}=\mathrm{w}(\mathrm{r}, \mathrm{t})-\rho$; then

$$
\frac{\partial y}{\partial \mathrm{t}}=\mathrm{D}\left[\frac{\partial^{2} \mathrm{y}}{\partial r^{2}}+\frac{\mathrm{n}-1}{\mathrm{r}} \frac{\partial \mathrm{y}}{\partial \mathrm{r}}\right]
$$

with boundary condition

$$
\begin{array}{ll}
\mathrm{y}(\mathrm{~b}, \mathrm{t})=-\rho & \forall \mathrm{t}>0 \\
\mathrm{y}(\mathrm{r}, 0)=0 & |\mathrm{r}|>\mathrm{b} \tag{4.1.2}
\end{array}
$$

and initial condition

The Laplace Transform of (4.1.2), is then

$$
\mathrm{D}\left[\frac{\partial^{2} \hat{\mathrm{y}}}{\partial \mathrm{r}^{2}}+\frac{\mathrm{n}-1}{\mathrm{r}} \frac{\partial \hat{y}}{\partial \mathrm{r}}\right]=\mathrm{s} \hat{\mathrm{y}}-\mathrm{y}(\mathrm{r}, 0)
$$

where $\hat{\mathrm{y}}=\mathscr{L}(\mathrm{y}(\mathrm{r}, \mathrm{t}))$
or

$$
\frac{\partial^{2} \hat{y}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial \hat{y}}{\partial r}-\frac{s}{D} \hat{y}=0
$$

with boundary condition

$$
\begin{equation*}
\hat{\mathrm{y}}(\mathrm{~b}, \mathrm{~s})=\frac{-\rho}{\mathrm{s}} . \tag{4.1.3}
\end{equation*}
$$

By Gradshteyn and Ryzik (1965) page 971 and regularity of $\mathrm{K}_{\mathrm{n}}(\mathrm{x})$ when $x \rightarrow \infty$, the solution of (4.1.3) is

$$
\begin{equation*}
\hat{\mathrm{y}}(\mathrm{r}, \mathrm{~s})=\frac{-\rho}{\mathrm{s}}\left[\frac{\mathrm{~b}}{\mathrm{r}}\right]^{\frac{n^{-}-1}{2} \mathrm{~K}_{\mathrm{n}_{-1}}\left[\sqrt{\frac{s}{D}} \mathrm{r}\right]} \frac{K_{\frac{n_{-1}}{2}-1}\left[\sqrt{\frac{s}{D}} b\right]}{} \tag{4.1.4}
\end{equation*}
$$

The rate $\xi(\mathrm{b}, \mathrm{t})$ at which particles merge with the central n -sphere with radius b is:

$$
\xi(R, t)=\text { surface area of } n \text {-sphere }\left.\cdot D \cdot \frac{\partial y}{\partial r}(r, t)\right|_{r=b}
$$

or

$$
\xi(\mathrm{R}, \mathrm{~s})=\left.\mathrm{nC}_{\mathrm{n}} \mathrm{r}^{\mathrm{n}-\mathrm{i}} \cdot \mathrm{D} \cdot \frac{\partial \hat{\mathrm{y}}}{\partial \mathrm{r}}(\mathrm{r}, \mathrm{~s})\right|_{\mathrm{r}=\mathrm{b}}
$$

where $\quad C_{n}=\frac{2 \pi^{n / 2}}{n \Gamma\left[\frac{n}{2}\right]}$ is the volume of the unit n-sphere.

But $\quad \frac{\partial \hat{y}}{\partial \mathrm{r}}(\mathrm{r}, \mathrm{s})=\frac{-\rho}{\mathrm{s}} \frac{\mathrm{b}^{\frac{\mathrm{n}}{2}-1}}{\mathrm{~K}_{\frac{n}{2}-1}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{b}\right]}\left\{\mathrm{r}^{-\mathrm{n} / 2}\left[1-\frac{n}{2}\right] K_{\frac{n}{2}}-1\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{r}\right]\right.$

$$
\begin{equation*}
+\sqrt{\frac{\frac{s}{D}}{D}} r^{1-\frac{n}{2}} K_{\frac{n}{2}-1}^{\prime}\left\{\left[\sqrt{\frac{s}{D}} r\right]\right\} \tag{4.1.6}
\end{equation*}
$$

Using the identity (Watson, page 79):

$$
\mathrm{zK}_{\mathrm{n}}^{\prime}(\mathrm{z})-\mathrm{nK}_{\mathrm{n}}(\mathrm{z})=-\mathrm{zK}_{\mathrm{n}+1}(\mathrm{z})
$$

(4.1.6) becomes

$$
\frac{\partial \hat{y}}{\partial \mathrm{r}}(\mathrm{r}, \mathrm{~s})=\frac{\rho}{\mathrm{s}} \frac{\frac{\mathrm{n}}{2}-1}{\mathrm{~K}_{\frac{n}{2}-1}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}} \mathrm{~b}}\right]} \mathrm{r}^{-\mathrm{n} / 2}\left\{\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{r} \mathrm{~K}_{\frac{\mathrm{n}}{}}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{r}\right]\right\}
$$

and therefore

$$
\begin{equation*}
\left.\frac{\partial \hat{y}}{\partial r}(r, s)\right|_{r=b}=\frac{\rho}{s} \sqrt{\frac{s}{D}} \frac{K_{\frac{n}{2}}\left[\sqrt{\frac{s}{D}} b\right]}{\frac{K_{n}}{2}-1\left[\sqrt{\frac{s}{D}} b\right]} \tag{4.1.7}
\end{equation*}
$$

Putting (4.1.7) into (4.1.5) we have

$$
\begin{equation*}
\hat{\xi}(b, s)=\mathrm{nC}_{\mathrm{n}} b^{\mathrm{n}-1} D \frac{\rho}{\mathrm{~s}} \sqrt{\frac{K_{\mathrm{s}}}{D}\left[\frac{\frac{\mathrm{n}}{2}}{\frac{\mathrm{~s}}{D} b} \mathrm{~K}_{\frac{n}{2}-1}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~b}\right]\right.} \tag{4.1.8}
\end{equation*}
$$

4.2 TW0 DIMENSIONAL HITTING PROBABILITIES

Imagine a Brownian particle beginning at distance R from the centre of a stationary circle of radius b and define $R(t)$ as its distance at time t. We want the probability of the Brownian particle hitting the stationary circle after a duration of time t.

We define:

$$
\begin{aligned}
& F(b, t ; R)=P\{R(t) \leq b \mid R(0)=R\} \\
& \tau=\min [t: R(t) \leq b \mid R(0)=R] \\
& G(b, t ; R)= \begin{cases}P\{\tau \leq t\} & R>b \\
1 & R \leq b\end{cases} \\
& \hat{F}(b, s ; R)=\int_{0}^{\infty} e^{-s t} F(b, t ; R) d t \\
& \hat{G}(b, s ; R)=\int_{0}^{\infty} e^{-s t} G(b, t ; R) d t
\end{aligned}
$$

From the above definition, $F(b, t ; R)$ satisfies the backward diffusion equation, namely,

$$
\begin{equation*}
\frac{\partial \mathrm{F}}{\partial \mathrm{t}}=\mathrm{D}\left[\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{R}^{2}}+\frac{1}{\mathrm{R}} \frac{\partial \mathrm{~F}}{\partial \mathrm{~K}}\right] \tag{4.2.1}
\end{equation*}
$$

See Karlin \& Taylor (1981) pages 214-216.
Taking Laplace Transform on (4.2.1), we have

$$
\mathrm{s} \hat{\mathbf{F}}=\mathrm{D}\left[\frac{\partial^{2} \hat{\mathrm{~F}}}{\partial \mathrm{R}^{2}}+\frac{1}{\mathrm{R}} \frac{\partial \hat{\mathrm{~F}}}{\partial \mathrm{R}}\right]
$$

or equivalently,

$$
\begin{equation*}
\frac{\partial^{2} \hat{F}}{\partial R^{2}}+\frac{1}{R} \frac{\partial \hat{F}}{\partial R}-\frac{s}{D} \hat{F}=0 \tag{4.2.2}
\end{equation*}
$$

The general solution of (4.2.2) is

$$
\hat{F}(b, s ; R)=A I_{0}\left[\sqrt{\frac{s}{D}} R\right]+B K_{0}\left[\sqrt{\frac{s}{D}} R\right]
$$

where A, B may depend on s and on b.

As $R \rightarrow \infty$, only K_{0} is bounded, therefore $A=0$ and

$$
\hat{F}(b, s ; R)=B(s, b) K_{0}\left[\sqrt{\frac{s}{D}} R\right]
$$

By continuity of the sample functions and the Markovian nature of the process $R(t)$, we have, for $b \leq R$,

$$
\begin{align*}
F(b, t ; R) & =\int_{0}^{t} F(b, t-x ; b) \cdot g(b, x ; R) d x \\
& =\int_{0}^{t} F(b, t-x ; b) d_{x} G(b, x ; R) \tag{4.2.3}
\end{align*}
$$

Since

$$
\begin{aligned}
\mathscr{L}\left[\int_{0}^{t} F(t-u) g(u) d u\right] & =\hat{F}(s) \hat{g}(s) \\
& =\hat{F}(s) \cdot \mathscr{L}\left(\hat{G}^{\prime}(u)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}\left(\mathrm{G}^{\prime}(\mathrm{b}, \mathrm{~s} ; \mathrm{R})\right) & =\mathrm{s} \hat{\mathrm{G}}(\mathrm{~b}, \mathrm{~s} ; \mathrm{R})-\mathrm{G}(\mathrm{~b}, 0 ; \mathrm{R}) \\
& =\mathrm{s} \hat{\mathrm{G}}(\mathrm{~b}, \mathrm{~s} ; \mathrm{R})
\end{aligned}
$$

therefore by taking the Laplace Transform of (4.2.3), we have:

$$
\begin{align*}
& \hat{F}(b, s ; R)=\hat{F}(b, s ; b) \cdot s \cdot \hat{G}(b, s ; R) \\
& \hat{G}(b, s ; R)=\frac{1}{s} \frac{\hat{F}(b, s ; R)}{\hat{F}(b, s ; b)} \\
&=\frac{1}{s} \frac{K_{0}\left[\sqrt{\frac{s}{D}} R\right]}{K_{0}\left[\sqrt{\frac{s}{D}} b\right]} \tag{4.2.4}
\end{align*}
$$

or

Let Y_{R} denote the first hitting time of a Brownian particle p_{1} with initial distance R from the centre of the circle, then

$$
\begin{align*}
E\left(e^{-s Y_{R}}\right) & =\int_{0}^{\infty} e^{-s t} d P\left\{Y_{R} \leq t\right\} \\
& =\left.e^{-s t} P\left\{Y_{R} \leq t\right\}\right|_{t=0} ^{t=\infty}+s \int_{0}^{\infty} P\left\{Y_{R} \leq t\right\} e^{-s t} d t \\
& =s \hat{G}(b, s ; R)=\frac{K_{0}\left[\sqrt{\frac{s}{D}} R\right]}{K_{0}\left[\sqrt{\frac{s}{D}} b\right]} \tag{4.2.5}
\end{align*}
$$

The particle p_{1} under consideration was randomly placed within the region $b<r \leqq a$, such that the density function of it's distance to the origin is:

$$
f(r)= \begin{cases}\frac{2 r}{a^{2}-b^{2}} & \quad b<r \leqq a \tag{4.2.6}\\ 0 & \text { otherwise }\end{cases}
$$

Define τ to be the time for p_{1} to hit the inner circle, then

$$
\begin{align*}
\mathrm{P}(\tau \leq \mathrm{t}) & =\int_{\mathrm{b}}^{\mathrm{a}} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \frac{2 \mathrm{r}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \mathrm{dr} \\
& =\frac{2}{\mathrm{a}^{2}-\mathrm{b}^{2}} \int_{b}^{a} \mathrm{r}\left(Y_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{dr} . \tag{4.2.7}
\end{align*}
$$

If N points are independently and randomly placed in the region $\mathrm{b}<\mathrm{r} \leq \mathrm{a}$, then (4.2.7) may be written as:

$$
\begin{equation*}
\mathrm{P}(\tau \leq \mathrm{t})=\frac{2 \pi \rho}{\mathrm{~N}} \int_{\mathrm{b}}^{\mathrm{a}} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{rdr} \tag{4.2.8}
\end{equation*}
$$

where $\rho=\frac{N}{\pi\left(a^{2}-b^{2}\right)}$ i.e. ρ is the density of particles.
If T_{N} is the time until the first of the N particles collides with the central circle, then

$$
\mathrm{P}\left(\mathrm{~T}_{\mathrm{N}}>\mathrm{t}\right)=[\mathrm{P}(\tau>\mathrm{t})]^{\mathrm{N}}
$$

Let N and a approach ∞ so that the density ρ remains constant. If T is the time until first absorption for points with initial density ρ, then

$$
\begin{align*}
\mathrm{P}(\mathrm{~T}>\mathrm{t})= & \lim _{\substack{N \rightarrow \infty \\
\mathrm{a} \rightarrow \infty}} \mathrm{P}\left(\mathrm{~T}_{\mathrm{N}}>\mathrm{t}\right) \\
= & \lim _{\substack{\mathrm{N} \rightarrow \infty \\
\mathrm{a} \rightarrow \infty}}[1-\mathrm{P}(r \leq \mathrm{t})]^{\mathrm{N}} \\
= & \left.\lim _{\substack{\mathrm{N} \rightarrow \infty \\
\mathrm{a} \rightarrow \infty}}\left[1-\frac{2 \pi \rho}{N}\right]_{\mathrm{b}}^{\mathrm{a}} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{rdr}\right]^{\mathrm{N}} \\
& -2 \pi \rho \int_{\mathrm{b}}^{\infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{rdr} \tag{4.2.9}\\
= & e
\end{align*}
$$

But $\mathscr{L}\left[\int_{b}^{\infty} P\left(Y_{r} \leq t\right) r d r\right]=\int_{t=0}^{\infty} \int_{r=b}^{\infty} e^{-s t} P\left(Y_{r} \leq t\right) r d r d t$

$$
=\frac{1}{\mathrm{~s}} \int_{\mathrm{b}}^{\infty} \mathrm{r} \frac{\mathrm{~K}_{0}\left[\sqrt{\sqrt{\frac{s}{D}} \mathrm{r}}\right]}{\mathrm{K}_{0}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}} \mathrm{~b}}\right]} \mathrm{dr}
$$

$$
\begin{equation*}
=\frac{1}{s} \frac{b}{\sqrt{\frac{s}{D}}} \frac{K_{1}\left[\sqrt{\frac{s}{D}} b\right]}{\left.K_{0} \sqrt{\frac{s}{D}} b\right]} \tag{4.2.10}
\end{equation*}
$$

From equation (4.1.8) i.e. $\left.\hat{\xi}(\mathrm{b}, \mathrm{s})=2 \pi \rho \frac{\mathrm{~b}}{\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}}} \frac{\mathrm{K}_{1} \sqrt{\sqrt{\frac{s}{D}}} \mathfrak{K _ { 0 }}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{b}\right.}{}\right]$ we have

$$
\mathscr{L}\left[\int_{b}^{\infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{rdr}\right]=\frac{\hat{\xi}(\mathrm{b}, \mathrm{~s})}{\mathrm{s} 2 \pi \rho}
$$

or equivalently

$$
\begin{equation*}
\int_{b}^{\infty} \mathrm{P}\left(Y_{\mathrm{r}} \leq t\right) r d r=\mathscr{L}^{-1}\left[\frac{\hat{\xi}(\mathrm{~b}, \mathrm{~s})}{\mathrm{s} 2 \pi \rho}\right] \tag{4.2.11}
\end{equation*}
$$

Therefore (4.2.9) becomes

$$
\begin{gather*}
\lim _{\substack{N \rightarrow \infty \\
a \rightarrow \infty}} P\left(T_{N}>t\right)= \\
e^{-\mathscr{L}^{-1}\left[\frac{\hat{\xi}(b, s)}{s}\right]} \tag{4.2.12}\\
=e^{-\int_{0}^{t} \xi(b, x) d x}
\end{gather*}
$$

$\xi(\mathrm{b}, \mathrm{x})$ is numerically tabulated in Jaeger (1943) and decreases monotonically to 0 . Hence (4.2.12) is an example of a distribution with a decreasing hazard rate, DHR.

Let $T_{i N}$ be the time for i-th collision, and define $G_{i N}(t)=P\left(T_{i N} \leq t\right)$. Denote $\mathrm{Q}=\mathrm{P}(\tau \leq \mathrm{t})=\frac{2 \pi \rho}{\mathrm{~N}} \int_{\mathrm{b}}^{\mathrm{m}} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{rdr}$, then the probability density $\mathrm{g}_{\mathrm{iN}}(\mathrm{t})$ of T_{iN} can be expressed as:

$$
\begin{equation*}
\mathrm{g}_{\mathrm{iN}}(\mathrm{t})=\frac{N!}{(\mathrm{i}-1)!(N-i)!} Q^{i-1}(1-Q)^{N-i} \frac{d Q}{d t} \text { for } i \geq 1 \tag{4.2.13}
\end{equation*}
$$

where $Q^{\mathrm{i}-1}$ corresponds to probability of i-1 particles with $\tau<\mathrm{t}$ and $(1-Q)^{N-i}$ corresponds to probability of $N-i$ particles with $\tau>t$.

From (4.2.11) we have

$$
\int_{0}^{t} \xi(\mathrm{~b}, \mathrm{x}) \mathrm{dx}=2 \pi \rho \int_{\mathrm{b}}^{\infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{rdr}=\mathrm{NQ}
$$

(4.2.13) becomes

$$
\begin{equation*}
\mathrm{g}_{\mathrm{iN}}(\mathrm{t})=\frac{1}{(\mathrm{i}-1)!}\left[\int_{0}^{t} \xi(\mathrm{~b}, \mathrm{x}) \mathrm{dx}\right]^{\mathrm{i}-1} \mathrm{e}^{-\int_{0}^{t} \xi(\mathrm{~b}, \mathrm{x}) \mathrm{dx}} \xi(\mathrm{~b}, \mathrm{t}) \tag{4.2.14}
\end{equation*}
$$

4.3 n-DIMENSIONAL HTTTING PROBABILITIES

N points are randomly scattered in the region $b<r \leq a$ of R^{n} such that the distribution of the number of points in any volume is a Poisson distribution. An n-sphere of radius b is centred at the origin. One wishes to determine the distribution of first and i -th collision time on the central sphere under the assumption that the points are executing free Brownian motion.

Let $V_{n}(r)$ and $A_{n}(r)$ be the volume and surface content of an n-sphere of radius r, then

$$
V_{n}(r)=C_{n} r^{n}, A_{n}(r)=n C_{n} r^{n-1}
$$

where $C_{n}=\frac{2 \pi^{n / 2}}{n \Gamma\left[\frac{n}{2}\right]}$ and $\Gamma(n)$ is the gamma function.
Following a similar argument as in two dimensions.
Denote Y_{R} be the first hitting time of a Brownian particle with initial distance R from the centre of the $n-s p h e r e$. The point P_{1} under consideration was randomly placed within the region $b<r \leq a$, such that the density function of it's distance to the origin is:

$$
f(r)= \begin{cases}\frac{n C_{n} r^{n-1}}{C_{n}\left(a^{n}-b^{n}\right)} & b<r \leq a \tag{4.3.1}\\ 0 & \text { otherwise. }\end{cases}
$$

Define τ be the time for P_{1} hits the inner n -sphere, then

$$
\begin{equation*}
\mathrm{P}(\tau \leq t)=\int_{b}^{\infty} \mathrm{P}\left(Y_{r} \leq t\right) \frac{n C_{n} r^{n-1}}{a^{n}-b^{n}} d r \tag{4.3.2}
\end{equation*}
$$

(4.3.2) can be written as:

$$
\mathrm{P}(\tau \leq \mathrm{t})=\frac{\mathrm{n} \rho \mathrm{C}_{\mathrm{n}}}{\mathrm{~N}} \int_{\mathrm{b}}^{\mathrm{a}} \mathrm{P}\left(\mathrm{Y}_{\mathrm{r}} \leq \mathrm{t}\right) \mathrm{r}^{\mathrm{n}-1} \mathrm{dr}
$$

where ρ is the density of particles in the region $b<r \leq a$

$$
\left[\text { i.e. } \rho=\frac{\mathrm{N}}{\mathrm{C}_{\mathrm{n}}\left(\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}\right)}\right]
$$

Let T_{N} be the time of first hit, we have

$$
\begin{aligned}
P\left(T_{N}>t\right) & =[1-P(\tau \leq t)]^{N} \\
& =\left[1-\frac{n \rho C_{n}}{N} \int_{b}^{a} P\left(Y_{r} \leq t\right) r^{n-1} d r\right]^{N} \\
\lim _{\substack{N \rightarrow \infty \\
a \rightarrow \infty}} P\left(T_{N}>t\right) & =e^{-n \rho C_{n} \int_{b}^{\infty} P\left(Y_{r} \leq t\right) r^{n-1} d r} .
\end{aligned}
$$

Now

$$
\begin{align*}
\mathscr{L}\left[\int_{b}^{\infty} P\left(Y_{r} \leq t\right) r^{n-1} d r\right] & =\int_{0}^{\infty} e^{-s t} \int_{b}^{\infty} P\left(Y_{r} \leq t\right) r^{n-1} d r d t \\
& =\frac{1}{s} \int_{b}^{\infty} r^{n-1} E\left[e^{-s Y_{r}}\right] d r \tag{4.3.4}
\end{align*}
$$

From John Kent (1978), we have

$$
\begin{equation*}
\mathrm{E}\left[\mathrm{e}^{-\mathrm{sYr}}\right]=\left[\frac{\mathrm{b}}{\mathrm{r}}\right]^{\nu} \frac{\mathrm{K}_{\nu}\left[\sqrt{\frac{\mathrm{s}}{\mathrm{D}}} \mathrm{r}\right.}{\mathrm{K}_{\nu}\left[\sqrt{\frac{\mathrm{s}}{\mathrm{D}} \mathrm{~b}}\right]} \text { where } \nu=\frac{\mathrm{n}-2}{2} . \tag{4.3.5}
\end{equation*}
$$

Putting (4.3.5) into (4.3.4), we have

$$
\begin{equation*}
\left.\mathscr{L}\left[\int_{b}^{\infty} P\left(Y_{r} \leq t\right) r^{n-1} d r\right]=\frac{b^{\nu}}{s} \sqrt{K_{\nu}\left(\sqrt{\frac{s}{D}}\right.} b\right] \int_{b}^{\infty} r^{n-1 \nu} K_{\nu}\left[\sqrt{\frac{s}{D}} r\right] d r \tag{4.3.6}
\end{equation*}
$$

But

$$
\begin{equation*}
\int_{b}^{\infty}{ }^{n-1-1} K_{\nu}\left[\sqrt{\frac{s}{D}} r\right] d r=\int_{0}^{\infty} \frac{n}{r^{2}} K_{\frac{n}{2}}-1\left[\sqrt{\frac{s}{D}} r\right] d r-\int_{0}^{b} \frac{n}{2} K_{\frac{n}{2}}\left[\sqrt{\frac{s}{D}} r\right] d r .(4 \tag{4.3.7}
\end{equation*}
$$

Using the identities (see Gradshteyn \& Ryzik, p.683, p.685):

$$
\int_{0}^{\infty} \mathrm{x}^{\mu} \mathrm{K}_{\nu}(\mathrm{ax}) \mathrm{dx}=2^{\mu-1} \mathrm{a}^{\mu-1} \Gamma\left[\frac{1+\mu+\nu}{2}\right] \Gamma\left[\frac{1+\mu-\nu}{2}\right]
$$

and

$$
\int_{0}^{1} \mathrm{x}^{\nu+1} \mathrm{~K}_{\nu}(\mathrm{ax}) \mathrm{dx}=2^{\nu} \mathrm{a}^{\nu-2} \Gamma(\nu+1)-\mathrm{a}^{-1} \mathrm{~K}_{\nu+1}(\mathrm{a})
$$

we obtain

$$
\begin{gather*}
\int_{0}^{\infty} \frac{n}{r^{2}} K_{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}} r\right] d r=2^{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}} r\right]^{-\frac{n}{2}-1} \Gamma\left[\frac{1+\frac{n}{2}+\frac{n}{2}-1}{2}\right] \cdot \Gamma\left[\frac{1+\frac{n}{2}-\frac{n}{2}+1}{2}\right] \\
=2^{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}}\right]^{-\frac{n}{2}-1} \Gamma\left[\frac{n}{2}\right] \tag{4.3.8}
\end{gather*}
$$

and

$$
\begin{align*}
& \int_{0}^{b} \frac{\frac{n}{2}}{r^{2}} K_{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}} r\right] d r=b \int_{0}^{1}(u b)^{\frac{n}{2}} K_{\frac{n}{2}}\left[\sqrt{\frac{s}{D}} u b\right] d u \\
& \quad=b^{1+\frac{n}{2}} \int_{0}^{1} u^{\frac{n}{2}} K_{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}} b u\right] d u \\
& \quad=b^{1+\frac{n}{2}}\left[2^{\frac{n}{2}}-1\left[\sqrt{\frac{s}{D}} b\right]^{-\frac{n}{2}+1-2} \Gamma\left[\frac{n}{2}\right]-\left[\sqrt{\frac{s}{D}} b\right]^{-1} K_{\frac{n}{2}}\left[\sqrt{\frac{s}{D}} b\right]\right] . \tag{4.3.9}
\end{align*}
$$

Putting (4.3.8), (4.3.9) into (4.3.7), we have

$$
\int_{b}^{\infty} r^{n-1-\nu} K_{\nu}\left[\sqrt{\frac{s}{D}} r\right] d r=\left[\sqrt{\frac{s}{D}} b\right]^{-1} b^{\frac{n}{2}+1} K_{\frac{n}{2}}\left[\sqrt{\frac{\mathrm{~s}}{D}} b\right]
$$

hence

$$
\mathscr{L}\left[\int_{b}^{\infty} P\left(Y_{r} \leq t\right) r^{n-1} d r\right]=\frac{b^{n-1}}{s} \sqrt{\frac{D}{s}} \frac{K_{n}\left[\sqrt{\frac{s}{D}} b\right]}{K_{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}} b\right]}=\frac{\hat{\xi}(b, s)}{\operatorname{snC}_{n} \rho}
$$

where

$$
\hat{\xi}(b, s)=\mathrm{nC}_{\mathrm{n}} b^{\mathrm{n}-1} \mathrm{D} \frac{\rho}{\mathrm{~s}} \sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \frac{\mathrm{~K}_{\frac{n}{2}}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~b}\right]}{\mathrm{K}_{\frac{n}{2}-1}\left[\sqrt{\frac{s}{D}} \mathrm{~b}\right]} \text { (from 4.1.8). }
$$

Therefore

$$
\begin{equation*}
\lim _{\substack{\mathrm{N} \rightarrow \infty \\ \mathrm{a} \rightarrow \infty}} P\left(\mathrm{~T}_{\mathrm{N}}>t\right)=e^{-\mathscr{L}^{-1}\left[\frac{\hat{\xi}(b, s)}{s}\right]}=e^{-\int^{t} \xi(b, x) d x} \tag{4.3.10}
\end{equation*}
$$

Again, it is a distribution with a decreasing hazard rate DHR. The density function of i -th collision time on the central n -sphere is identical to (4.2.14) except

$$
\hat{\xi}(b, s)=\rho \mathrm{nC}_{\mathrm{n}} b^{\mathrm{n}-1} \sqrt{\frac{D}{\mathrm{~s}}} \frac{\mathrm{~K}_{\frac{n}{2}}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~b}\right]}{\frac{K_{n}-1}{\frac{2}{2}}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~b}\right]}
$$

Define a random variable T such that $T=T_{N}$ when $n \rightarrow \infty$ and $a \rightarrow \infty$, i.e.

$$
\lim _{\substack{N \rightarrow \infty \\ \mathrm{a} \rightarrow \infty}} \mathrm{~T}_{\mathrm{N}}=\mathrm{T} .
$$

The moment generating function of T is calculated for $n=3$. If $\mathrm{n}=3$,

$$
\hat{\xi}(\mathrm{b}, \mathrm{~s})=4 \pi \mathrm{~b}^{2} \rho \sqrt{\frac{\mathrm{D}}{\mathrm{~s}} \frac{\mathrm{~K}_{3}}{\frac{3}{2}}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~b}\right]} \frac{\mathrm{K}_{1}}{\frac{2}{2}}\left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~s}\right] .
$$

Since (see Watson page 80)

$$
K_{n+\frac{1}{2}}(x)=\left[\frac{\pi}{2 x}\right]^{\frac{1}{2}} e^{-x} \sum_{r=0}^{n} \frac{(n+r)!}{r!(n-r)!(2 x)^{r}}
$$

we have

$$
\hat{\xi}(b, s)=4 \pi b^{2} \rho \sqrt{\frac{D}{s}}\left[1+\sqrt{\frac{D}{s}} \frac{1}{b}\right]
$$

or

$$
\xi(\mathrm{b}, \mathrm{t})=4 \pi \rho \mathrm{bD}\left[\frac{\mathrm{~b}}{\sqrt{\pi \mathrm{Dt}}}+1\right]
$$

Therefore

$$
P(T>t)=e^{-\int^{t} 4 \pi \rho b D\left[\frac{b}{\sqrt{\pi D x}}+1\right] d x}
$$

and the probability density function $f(t)$ of T :

$$
\mathrm{f}(\mathrm{t})=4 \pi \rho \mathrm{bD}\left[1+\frac{\mathrm{b}}{\sqrt{\pi \mathrm{Dt}}}\right] \mathrm{e}^{-4 \pi \rho \mathrm{bD}\left[\mathrm{t}+\frac{2 \mathrm{~b} \sqrt{\mathrm{t}}}{\sqrt{\pi \mathrm{D}}}\right]}
$$

The moment generating function $\mathscr{E}\left(\mathrm{e}^{-\mathrm{ST}}\right)$ of T becomes:

$$
\begin{aligned}
\mathscr{E}\left(e^{-s T}\right) & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =4 \pi \rho b D \int_{0}^{\infty}\left[1+\frac{b}{\sqrt{\pi D t}}\right] e^{-4 \pi \rho b D}\left[t+\frac{2 b \sqrt{t}}{\sqrt{\pi D}}\right] e^{-s t} d t .
\end{aligned}
$$

Using integral table (Gröbner and Hofreiter) and change of variables, we have

$$
\begin{align*}
& \mathscr{E}\left(\mathrm{e}^{-\mathrm{ST}}\right)=8 \pi \rho \mathrm{bD}\left\{\frac{1}{2(\mathrm{~s}+4 \pi \rho \mathrm{DD})}-\frac{\mathrm{e}^{\frac{16 \rho^{2} \mathrm{~b}^{4} \pi \mathrm{D}}{\mathrm{~s}+4 \pi \rho \mathrm{D}}}}{\mathrm{~s}+4 \pi \rho \mathrm{DD}}\left[\frac{\sqrt{\pi}}{2}\left[1-\operatorname{erf}\left[\frac{4 \rho \mathrm{~b}^{2} \sqrt{\pi D}}{\sqrt{\mathrm{~s}+4 \pi \rho \mathrm{DD}}}\right]\right]\right] \frac{4 \rho \mathrm{~b}^{2} \sqrt{\pi D}}{\sqrt{\mathrm{~s}+4 \pi \rho \mathrm{bD}}}\right. \\
& +\frac{b}{\sqrt{\pi D}} \frac{1}{2} \sqrt{\frac{\pi}{s+4 \pi \rho D D}} e^{\frac{16 \rho^{2} b^{4} \pi D}{s+4 \pi \rho b D}}\left[1-\operatorname{erf}\left[\frac{4 \rho b^{2} \sqrt{\pi D}}{\sqrt{s+4 \pi \rho b D}}\right]\right\} \\
& =8 \pi \rho \mathrm{bD}\left\{\frac{1}{2(\mathrm{~s}+4 \pi \rho \mathrm{bD})}+\frac{\mathrm{bs}}{\left.2 \sqrt{\mathrm{D}(\mathrm{~s}+4 \pi \rho \mathrm{bD})^{3} /^{2}}\left[1-\operatorname{erf}\left[\frac{4 \rho \mathrm{~b}^{2} \sqrt{\pi \mathrm{D}}}{\sqrt{\mathrm{~s}+4 \pi \rho \mathrm{bD}}}\right]\right) \mathrm{e}^{\frac{16 \rho^{2} \mathrm{~b}^{4} \pi \mathrm{D}}{\mathrm{~s}+4 \pi \rho \mathrm{bD}}}\right\} .}\right. \tag{4.3.11}
\end{align*}
$$

where $\operatorname{erf}(t)=\frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-x^{2}} d x$.

Using $\operatorname{erf}(\mathrm{t})=-1+2 \Phi(\sqrt{2} \mathrm{t})$
where $\Phi(\mathrm{x})$ is the cumulative distribution for standard Normal distribution, i.e.

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-y^{2}}{2}} d y
$$

(4.3.11) can be expressed as
$\mathscr{E}\left(\mathrm{e}^{-\mathrm{sT}}\right)=8 \pi \rho \mathrm{bD}\left\{\frac{1}{2(\mathrm{~s}+4 \pi \rho \mathrm{bD})}\right.$

$$
\begin{equation*}
\left.+\frac{\mathrm{bs}}{\sqrt{D(s+4 \pi \rho b D)^{3}{ }^{2}}}\left[1-\Phi\left[\frac{4 \sqrt{2} \rho b^{2} \sqrt{\pi D}}{\sqrt{s+4 \pi \rho b D}}\right]\right]^{\frac{16 \rho^{2} b^{4} \pi D}{s+4 \pi \rho b D}}\right\} \tag{4.3.12}
\end{equation*}
$$

Hence the mean time μ for the first absorption of points is:

$$
\mu=-\left.\frac{\partial}{\partial \mathrm{S}} \mathscr{E}\left(\mathrm{e}^{\mathrm{ST}}\right)\right|_{\mathrm{s}=0}=\frac{1}{4 \pi \rho \mathrm{bD}}-\frac{\mathrm{e}^{4 \rho \mathrm{~b}^{3}}}{\mathrm{D}} \sqrt{\frac{\mathrm{~b}}{\pi \rho}}(1-\Phi(\sqrt{8 \rho \mathrm{~b}} \mathrm{~b}))
$$

With diffusion coefficient $\mathrm{D}=0.5 \mathrm{~cm}^{2} / \mathrm{s}$, the mean first hitting time for 3 dimension is plotted in figure 4.1 for different values of radius and density.

Figure 4.1 indicates that the expected first hitting time (a) decreases with the size of central sphere and (b) decreases with the density of the points.
expected first hitting time for 3 DIM with $\mathrm{D}=0.5 \mathrm{~cm}^{2} / \mathrm{s}$

Figure 4.1

Next, we want to determine the probability $\mathrm{P}\left\{\mathrm{Y}_{\mathrm{R}}<\infty\right\}$ where $\mathrm{R}>\mathrm{b}$. But

$$
\mathrm{P}\left\{\mathrm{Y}_{\mathbb{R}}<\infty\right\}=\lim _{\mathrm{s} \downarrow 0} \mathrm{E}\left(\mathrm{e}^{-\mathrm{s} \mathrm{Y}_{\mathrm{R}}}\right)
$$

From (4.3.5), we have

$$
\begin{equation*}
\left.\mathrm{P}\left\{\mathrm{Y}_{\mathrm{R}}<\infty\right\}=\lim _{\mathrm{s} \downarrow 0}\left[\frac{\mathrm{~b}}{\mathrm{R}}\right]^{\nu} \frac{\mathrm{K}_{\nu}\left(\sqrt{\frac{\mathrm{s}}{\mathrm{D}}} \mathrm{R}\right.}{\mathrm{K}_{\nu} \left\lvert\, \sqrt{\frac{\mathrm{s}}{\mathrm{D}}} \mathrm{~b}\right.}\right] \text { where } \nu=\frac{\mathrm{n}-2}{2} . \tag{4.3.13}
\end{equation*}
$$

Since $\mathrm{K}_{\nu}(\mathrm{x}) \sim \frac{\Gamma(\nu)}{2}\left[\frac{\mathrm{x}}{2}\right]^{-\nu}$ as $\mathrm{x} \rightarrow 0$, for $\nu>0$ (4.3.13) can be written as:

$$
\begin{align*}
P\left\{Y_{\mathbb{R}}<\infty\right\} & \left.=\left[\frac{b}{R}\right]^{\frac{n-2}{2}}\left\{\frac{\Gamma\left[\frac{n-2}{2}\right]}{2}\right]\left[\frac{\sqrt{\frac{s}{D}} R}{2}\right]^{-\frac{n-2}{2}}\right\}\left\{\left[\left[\frac{\left.\Gamma \frac{n-2}{2}\right]}{2}\right]^{-1} \cdot\left[\frac{\sqrt{\frac{s}{D}} \mathrm{~b}}{2}\right]\right]^{\frac{n-2}{2}}\right\} \\
& =\left[\frac{\mathrm{b}}{\mathrm{~h}}\right]^{\mathrm{n}-2} \quad \forall \mathrm{n}>2 . \tag{4.3.14}
\end{align*}
$$

For $n=2$, from (4.2.5), we have

$$
\left.P\left\{Y_{R}<\infty\right\}=\lim _{s \rightarrow 0} \frac{K_{0}\left[\sqrt{\frac{s}{D}} R\right]}{K_{0}\left[\sqrt{\frac{s}{D}} b\right.}\right] .
$$

Since $K_{0}(x) \sim-\log x$, as $x \rightarrow 0$, we have

$$
\begin{equation*}
P\left\{Y_{R}<\infty\right\}=\lim _{\mathrm{s} \rightarrow 0} \frac{\log \left(\sqrt{\frac{\mathrm{~s}}{\mathrm{D}} \mathrm{R}}\right)}{\log \left[\sqrt{\frac{\mathrm{s}}{\mathrm{D}} \mathrm{~b}}\right]} . \tag{4.3.15}
\end{equation*}
$$

By L'Hopital rule, (4.3.15) can be written as:

$$
\begin{equation*}
\left.P\left\{Y_{\mathrm{R}}<\infty\right\}=\lim _{\mathrm{s} \rightarrow 0} \frac{\frac{\mathrm{~d}}{\mathrm{ds}} \log \left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{R}\right]}{\frac{d}{d s} \log \left[\sqrt{\frac{\mathrm{~s}}{\mathrm{D}}} \mathrm{~b}\right.}\right]=1 \tag{4.3.16}
\end{equation*}
$$

i.e. the point will always hit the circle.

In free Brownian motions in one dimension there is probability one that the particle will sooner or later hit the origin. In two dimensions, there is probability one that the particle with initial distance R from the origin will sooner or later hit the central circle of radius b with $b<R$. For dimension $\mathrm{n} \geqq 3$, the probability of hitting the central n -sphere will be $\left[\frac{\mathrm{b}}{\mathrm{R}}\right]^{\mathrm{n}-2}$. i.e.

$$
P\{R(t) \leqq b \mid R(0)=R \text { for some } t>0\}=\left[\frac{b}{R}\right]^{n-2}, n \leqq 3
$$

Kakutani (1944) used a completely different approach to obtain the probability of $\frac{b}{R}$ for three dimensions. For $n \geq 3$ dimensions, one can find egn. (4.3.14) in Port and Stone's (1978) page 56.

CHAPTER V

BROWNIAN MOTION WITHIN A VIEWING FIELD

5.1 INTRODUCTION:

If a particle undergoing Brownian motion is selected at random from a region E in $\mathbb{R}^{\mathbf{n}}$, then what is the probability that the particle will be in a convex region G in $\mathbb{R}^{\mathbf{n}}$ a time t later, where $E \subset G$. For example, one may select a particle while viewing cells under a microscope and ask the probability that the particle will be in the viewing field a time t later. We will consider particles that may leave the viewing field but return before time t. If a particle is selected at time $t=0$, then define the random variable R_{t} as the distance of the particle from its starting position a time t later. Then we have $G_{t}(r)=P\left\{R_{t}<r\right\}$ and $g_{t}(r)=\frac{d G_{t}(r)}{d r}$.

A particle is now chosen at random from E in $\mathbb{R}^{\mathbf{n}}$ and observed again a time t later. Then define:

Figure 5.1

Let P be the random point chosen in E. Then surround P with an n-dimensional spherical shell of radius r, see Figure 5.1. Then the probability that the particle is in G when it has moved a net distance of $R_{t}=r$ is related to the angle $\phi(\mathrm{r}, \mathrm{P})$ subtended by the spherical shell in G , namely

$$
\begin{equation*}
Q_{E, G}(t \mid P)=\int_{0}^{\infty} g_{t}(r) \frac{\phi(r, P)}{n C_{n}} d r \tag{5.1.1}
\end{equation*}
$$

where $n C_{n}$ is the total solid angle in \mathbb{R}^{n}. We have used the fact that Brownian motion is spherically symmetric, hence the likelihood of a particle being in any given solid angle is the same as in any other solid angle of the same magnitude.

The using results (1.1) and (2.3) from Enns and Ehlers (1988), one may write:

$$
\begin{align*}
\Omega_{\mathrm{E}, \mathrm{G}}(\ell) & =\mathscr{E}_{\mathrm{P}}\left[\frac{\phi(\ell, \mathrm{P})}{\mathrm{nC}}\right] \\
& =\mathscr{E}_{\theta}[\mathrm{V}(\mathrm{E}(\ell, \theta) \mathrm{n})] / \mathrm{V}(\mathrm{E}) \tag{5.1.2}
\end{align*}
$$

where $\mathscr{C}_{P_{E}}(\cdot)$ is the expected value of (\cdot) when P is uniformly averaged over the region E. Similarly $\mathrm{E}(\ell, \theta)$ is the region E translated a distance ℓ in direction θ and the translated overlap volume with G is uniformly averaged over all possible directions.

Equation (5.1.1) may then be rewritten as

$$
\begin{equation*}
Q_{E, G}(t)=\mathscr{E}_{P_{E}}\left[Q_{E, G}(t \mid P)\right]=\int_{0}^{\infty} g_{t}(r) \Omega_{E, G}(r) d r \tag{5.1.3}
\end{equation*}
$$

Now also from Enns and Ehlers (1988), one defines a ν-random ray as the line segment from a point P chosen randomly and uniformly in $E \subset G$ to the boundary of G where the direction of the ray is randomly generated from all possible directions. Then the length of this ray S satisfies:

$$
\begin{equation*}
P(S \geq \ell)=\bar{F}(\ell)=\Omega_{\mathrm{E}, \mathrm{G}}(\ell) \tag{5.1.4}
\end{equation*}
$$

with

$$
\text { p.d.f. } \mathrm{f}(\ell)=-\mathrm{d} \Omega_{\mathrm{E}, \mathrm{G}}(\ell) / \mathrm{d} \ell .
$$

An integration by parts yields alternative versions of (5.1.3) as:

$$
\begin{align*}
& Q_{E, G}(t)= \int_{0}^{\infty} G_{t}(r) f(r) d r \\
&=\mathscr{E}\left[G_{t}(S)\right], \text { where the expectation is with } \\
& \quad \text { respect to the measure } \nu . \\
&=\cdot P\left\{R_{t}<S\right\} . \tag{5.1.5}
\end{align*}
$$

Below, $Q_{E, G}(t)$ is calculated for the following cases:
(a) $\mathrm{E}=\mathrm{G}$, disc or ball and (b) $\mathrm{E} \subset \mathrm{G}$, concentric balls.

5.2 DISC WITH E = G

At time $t=0$, the particle considered is at origin 0 and executes free Brownian Motion with diffusion coefficient D. Let $W_{t}(x, y)$ be the probability density that a particle reaches (x, y) in the time t. Then

$$
W_{t}(x, y)=\frac{1}{4 \pi D t} e^{-\frac{\left(x^{2}+y^{2}\right)}{4 D t}}
$$

which satisfies the diffusion equation:

$$
\frac{\partial}{\partial t} \mathrm{~W}_{\mathrm{t}}(\mathrm{x}, \mathrm{y})=\mathrm{D} \nabla^{2} \mathrm{~W}_{\mathrm{t}}=\mathrm{D}\left[\frac{\partial^{2}}{\partial \mathrm{x}^{2}} \mathrm{~W}_{\mathrm{t}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}} \mathrm{~W}_{\mathrm{t}}\right]
$$

Since what interests us is the distance of the particle from the centre of diffusion, origin O, it is more convenient to convert to polar co-ordinates.

Let $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$, then $\mathrm{dxdy}=\mathrm{rdrd} \theta$ and in polar form, $\mathrm{W}_{\mathrm{t}}(\mathrm{x}, \mathrm{y})$ can be expressed as:

$$
\begin{aligned}
W_{t}(x, y) d x d y & =W_{t}(r, \theta) \operatorname{rdrd} \theta \\
& =\frac{1}{4 \pi D t} r e^{\frac{r^{2}}{4 D t}} \operatorname{drd} \theta
\end{aligned}
$$

Therefore

$$
\begin{gather*}
P\{R(t)<r \mid r(0)=0\}=\frac{1}{4 \pi D t} \int_{0}^{2 \pi} \int_{0}^{r} r_{1} e^{\frac{r^{2}}{4 D t}} d r_{1} d \theta \\
=\frac{1}{2 D t} \int_{0}^{r} e^{-\frac{r^{2}}{4 D t}} r_{1} d r_{1}=1-e^{-\frac{r^{2}}{4 D t}} \tag{5.2.1}
\end{gather*}
$$

Denote $P\{R(t)<r \mid r(0)=0\}$ by $G_{t}(r)$, hence

$$
\begin{equation*}
G_{t}(r)=1-e^{-\frac{r^{2}}{4 D t}} \tag{5.2.2}
\end{equation*}
$$

and the probability density (Karlin and Taylor (1974) page 370)

$$
\begin{equation*}
g_{t}(r)=\frac{\partial}{\partial r} G_{t}(r)=\frac{r}{2 D t} e^{-\frac{r^{2}}{4 D t}} \tag{5.2.3}
\end{equation*}
$$

Using equation (5.1) in Enns and Ehlers (1988), putting $E=G$ (i.e. $b=a$), and for in dimension, we have

$$
\Omega(\mathrm{r})= \begin{cases}2 \frac{\mathrm{C}_{n-1}}{\mathrm{C}_{\mathrm{n}}} \int_{0}^{\alpha} \sin ^{\mathrm{n}} \theta \mathrm{~d} \theta & 0 \leqq \mathrm{r} \leqq 2 \mathrm{a} \tag{5.2.4}\\ 0 & \text { otherwise }\end{cases}
$$

where $\cos \alpha=\frac{\mathrm{r}}{2 \mathrm{a}}$ and $\mathrm{C}_{\mathrm{n}}=\frac{2 \pi^{\mathrm{n} / 2}}{\mathrm{n} \Gamma\left[\frac{n}{2}\right]}$.
$\Omega(\mathrm{r})$ may also be expressed as

$$
\Omega(\mathrm{r})= \begin{cases}2 \frac{\mathrm{C}_{\mathrm{n}-1}}{\mathrm{C}_{\mathrm{n}}} \int_{\frac{\mathrm{r}}{2 a}}^{1}\left(1-\mathrm{u}^{2}\right)^{\frac{\mathrm{n}-1}{2}} d u & 0 \leqq \mathrm{r} \leqq 2 a \tag{5.2.5}\\ 0 & \\ \text { otherwise. }\end{cases}
$$

Hence for $\mathrm{n}=2$, we have

$$
\Omega(\mathrm{r})=\frac{4}{\pi} \int_{\frac{\mathrm{r}}{2 \mathrm{a}}}^{1}\left(1-\mathrm{u}^{2}\right)^{\frac{1}{2}} d u
$$

and therefore, using 5.1.4,
the probability density for the ray R , is:

$$
\mathrm{f}_{\mathrm{R}}(\mathrm{r})= \begin{cases}\frac{1}{\pi a^{2}} \sqrt{4 \mathrm{a}^{2}-\mathrm{r}^{2}} & 0 \leq \mathrm{r} \leqq 2 \mathrm{a} \tag{5.2.6}\\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{align*}
Q_{B}(t) & =\int_{0}^{\infty} G_{t}(r) \cdot f_{R}(r) \cdot d r \\
& =\int_{0}^{2 a}\left[1-e^{\frac{-r^{2}}{4 D t}}\right] \frac{\sqrt{4 a^{2}-r^{2}}}{\pi a^{2}} d r \\
& =\frac{1}{\pi a^{2}}\left[\int_{0}^{2 a} \sqrt{4 a^{2}-r^{2}} d r-\int_{0}^{2 a} e^{\frac{r^{2}}{4 D t}} \sqrt{4 a^{2}-r^{2}} d r\right] \tag{5.2.7}
\end{align*}
$$

Write $I_{1}=\int_{0}^{2 a} \sqrt{4 a^{2}-r^{2}} d r$ and $I_{2}=\int_{0}^{2 a} e^{-\frac{r^{2}}{4 D t}} \sqrt{4 a^{2}-r^{2}} d r$
and let
$\mathrm{r}=2 \mathrm{a} \sin \theta, \mathrm{dr}=2 \mathrm{a} \cos \theta \mathrm{d} \theta$. Then we have

$$
\begin{align*}
I_{1} & =4 a^{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=2 a^{2}\left[\theta+\left.\frac{\sin 2 \theta}{2}\right|_{0} ^{\pi / 2}\right] \\
& =\pi a^{2} \tag{5.2.8}
\end{align*}
$$

while

$$
\begin{aligned}
I_{2} & =4 a^{2} \int_{0}^{\pi / 2} e^{-\frac{a^{2} \sin ^{2} \theta}{D t}} \cos ^{2} \theta d \theta \\
& =4 a^{2}\left[\int_{0}^{\pi / 2} e^{-\frac{a^{2} \sin ^{2} \theta}{D t}} d \theta-\int_{0}^{\pi / 2} e^{-\frac{a^{2} \sin ^{2} \theta}{D t}} \sin ^{2} \theta d \theta\right]
\end{aligned}
$$

$$
=4 a^{2}\left[\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left[\frac{a^{2}}{D t}\right]^{i} \int_{0}^{\pi / 2} \sin ^{2 i} \theta d \theta-\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left[\frac{a^{2}}{D t}\right]^{i} \int_{0}^{\pi / 2} \sin ^{2(i+1)} \theta d \theta\right]
$$

Using $\int_{0}^{\pi / 2} \sin ^{2 \mathrm{~m}} \theta \mathrm{~d} \theta=\frac{\sqrt{\pi}}{2} \frac{\Gamma\left(m+\frac{1}{2}\right)}{\mathrm{m}!}$, then we have

$$
\begin{align*}
I_{2} & =4 a^{2}\left[\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left[\frac{a^{2}}{D t}\right]^{i} \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(i+\frac{1}{2}\right)}{i!}-\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left[\frac{a^{2}}{D t}\right]^{i} \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(i+\frac{3}{2}\right)}{(i+1)!}\right] \\
& =\sqrt{\pi} a^{2}\left[\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left[\frac{a^{2}}{D t}\right]^{i} \frac{\Gamma\left(i+\frac{1}{2}\right)}{(i+1)!}\right] \tag{5.2.9}
\end{align*}
$$

By putting (5.2.9), (5.2.8) into (5.2.7), we have

$$
\begin{equation*}
Q_{E}(t)=\frac{1}{\sqrt{\pi}} \sum_{i=1}^{\infty} \frac{(-1)^{i+1} \Gamma\left(i+\frac{1}{2}\right)}{i!(i+1)!}\left[\frac{a^{2}}{D t}\right]^{i} \tag{5.2.10}
\end{equation*}
$$

Numerical integration is required to evaluate $Q_{E}(t)$ in eqn. (5.2.7). For a given time t, the graph of $Q_{E}(t)$ versus radius a is plotted in Figure 5.2.
For a given radius a, the graph of $Q_{E}(t)$ versus time t is plotted in Figure 5.3.

Both graphs indicate that (a) $Q_{E}(t)$ decreases with time t and (b) $Q_{E}(t)$ increases with size of viewing field.
$Q(t)$ for two dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}($ fixed $t)$

Figure 5.2
$Q(t)$ for two dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ (fixed a)

Figure 5.3

5.3 A SPHERE WITH E = G

The probability density $W_{t}(x, y, z)$ of a Brownian particle reaching (x, y, z) at time t when it is at the origin 0 at time $t=0$ can be expressed as:

$$
W_{\mathrm{t}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{1}{(4 \pi \mathrm{Dt})^{3} /^{2}} \mathrm{e}^{-\frac{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}{4 \mathrm{D}}}
$$

Let $\mathrm{x}=\mathrm{r} \cos \theta \sin \varphi, \mathrm{y}=\mathrm{r} \sin \theta \sin \varphi, \mathrm{z}=\mathrm{r} \cos \varphi$ (see diagram)

where $0<\theta<2 \pi, 0<\varphi<\pi, \mathrm{r}>0$ and the Jacobian $|\mathrm{J}|=\mathrm{r}^{2} \sin \varphi$. In spherical co-ordinates, we have

$$
W_{t}(x, y, z) d x d y d z=\frac{1}{(4 \pi D t)^{3 / 2}} e^{-\frac{r^{2}}{4 D t}} r^{2} \sin \varphi \operatorname{drd} \theta d \varphi
$$

Integrating over θ and φ, we obtain (Karlin and Taylor (1974) page 368)

$$
\begin{equation*}
g_{t}(r) d r=\frac{4 \pi r^{2} e^{-\frac{r^{2}}{4 D t}}}{(4 \pi D t)^{3 / 2}} d r \tag{5.3.1}
\end{equation*}
$$

Therefore

$$
\begin{align*}
G_{t}(r) & =P\{R(t)<r \mid R(0)=0\} \\
& =\frac{4 \pi}{(4 \pi D t)^{3} /^{2}} \int_{0}^{r} r_{1}^{2} e^{-\frac{r^{2}}{4 D t}} d r_{1} \\
& =\frac{1}{\sqrt{\pi D t}}\left[\int_{0}^{r} e^{-\frac{r_{1}^{2}}{4 D t}} d r_{1}-r e^{-\frac{r^{2}}{4 D t}}\right] . \tag{5.3.2}
\end{align*}
$$

Putting $\mathrm{n}=3$ in (5.2.4) we have

$$
\Omega(\mathrm{r})= \begin{cases}\frac{3}{2} \int_{0}^{\alpha} \sin ^{3} \theta \mathrm{~d} \theta & 0 \leqq \mathrm{r} \leqq 2 \mathrm{a} \\ 0 & \text { otherwise }\end{cases}
$$

where $\cos \alpha=\frac{\mathrm{r}}{2 \mathrm{a}}$.
$\Omega(\mathrm{r})$ can also be expressed as:

$$
\begin{gather*}
\Omega(r)=\left\{\begin{array}{lc}
{\left[\frac{\mathrm{r}}{2 \mathrm{a}}+\frac{\mathrm{r}^{3}}{24 \mathrm{a}^{3}}+\frac{2}{3}\right] \cdot \frac{3}{2}} & 0 \leq \mathrm{r} \leq 2 \mathrm{a} \\
0 & \text { otherwise }
\end{array}\right. \tag{5.3.3}\\
\mathrm{Q}_{\mathrm{B}}(\mathrm{t})=\int_{0}^{\infty} g_{t}(\mathrm{r}) \Omega(\mathrm{r}) \mathrm{dr} \\
=\frac{3}{4 \sqrt{\pi D t} D t}\left\{\int_{0}^{2 a} \frac{r^{5}}{24 a^{3}} e^{-\frac{r^{2}}{4 D t}} d r-\frac{1}{2 a} \int_{0}^{2 a} r^{3} e^{-\frac{r^{2}}{4 D t}} d r+\frac{2}{3} \int_{0}^{2 a} r^{2} e^{-\frac{r^{2}}{4 D t}} d r\right\} \tag{5.3.4}
\end{gather*}
$$

$$
\text { Let } \begin{align*}
I_{1} & =\int_{0}^{2 a} \frac{r^{5}}{24 a^{3}} e^{-\frac{r^{2}}{4 D t}} d r \\
& =\frac{1}{24 a^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k} 4^{k+3} a^{2 k+6}}{2(k+3) 4^{k}(D t)^{k} k!} \\
& =\frac{4}{3 a^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k} a^{2 k+6}}{(k+3)(D t)^{k} k!} \tag{5.3.5}
\end{align*}
$$

$$
\text { Let } \quad I_{2}=-\frac{1}{2 a} \int_{0}^{2 a} r^{3} e^{\frac{r^{2}}{4 D t}} d r
$$

$$
\begin{equation*}
=-\frac{4}{a} \sum_{k=0}^{\infty} \frac{(-1)^{k} a^{2 k+4}}{(k+2)(D t)^{k} k!} . \tag{5.3.6}
\end{equation*}
$$

$$
\text { Let } \quad I_{3}=\frac{2}{3} \int_{0}^{2 a} r^{2} e^{\frac{r^{2}}{4 D t}} d r
$$

$$
=\frac{2}{3} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{2 k+3} a^{2 k+3}}{k!4^{k}(D t)^{k}(2 k+3)}
$$

$$
\begin{equation*}
=\frac{16}{3} \sum_{k=0}^{\infty} \frac{(-1)^{k} a^{2 k+3}}{k!(D t)^{k}(2 k+3)} . \tag{5.3.7}
\end{equation*}
$$

Putting (5.3.5), (5.3.6) and (5.3.7) into (5.3.4), we have

$$
\begin{equation*}
Q_{E}(t)=\frac{3 a^{3}}{D t \sqrt{\pi D t}} \sum_{k=0}^{\infty} \frac{(-1)^{k} a^{2 k}}{(2 k+3)(k+2)(k+3)(D t)^{k} k!} \tag{5.3.8}
\end{equation*}
$$

Numerical integration is required to evaluate $Q_{\mathbb{R}}(t)$ in eqn.(5.3.4). For a given time, the graph of $Q_{B}(t)$ versus radius a is plotted in Figure 5.4.
For a given radius a, the graph of $Q_{E}(t)$ versus time t is plotted in Figure 5.5.

Both graphs (Figure 5.4 and Figure 5.5) indicate that (a) $Q_{E}(t)$ decreases with time $t(b) Q_{R}(t)$ increases with the size of viewing field.

Comparison of $Q_{\mathbb{R}}(t)$ between two dimensions and three dimensions is plotted in Figure 5.6 for time fixed at 1.0 second with radius a varying. Comparison of $Q_{R}(t)$ between two dimensions and three dimensions is plotted in Figure 5.7 for radius a fixed at 1.0 cm with time t varying.

Both graphs (Figure 5.6, and Figure 5.7) indicate that a particle is more likely to leave the viewing field in three dimensions than in two dimensions due to one extra degree of freedom.
$Q(t)$ for three dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}($ fixed $t)$

Figure 5.4
$Q(t)$ for three dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ (fixed a)

Figure 5.5
${ }_{\mathrm{E}}^{\mathrm{Q}}(\mathrm{t})$ for $2 \& 3$ dimension with $\mathrm{D}=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ and $t=1.0 \mathrm{sec}$

Figure 5.6
$Q(t)$ for $2 \& 3$ dimension with $D=0.5 \mathrm{~cm}^{2} / \mathrm{s}$ and $a=1.0 \mathrm{~cm}$

Figure 5.7.

5.4 A SPHERE WITH E C G

From Enns and Ehlers (1988), if E is an n-ball of radius a centered within G, an n-ball of radius of radius $b>a$, then

$$
\Omega_{\mathrm{E}, \mathrm{G}}(\ell)= \begin{cases}1 & \text { if } 0 \leqq \ell \leqq b-a \\ \frac{C_{n-1}}{C_{n}}\left[\int_{0}^{\alpha} \sin ^{n} \theta d \theta+\left[\frac{b}{a}\right]^{n} \int_{0}^{\beta} \sin ^{n} \theta d \theta\right] & \text { if } b-a \leqq \ell \leqq b+a \\ 0 & \text { if } \ell \leqq b+a\end{cases}
$$

where $\cos \alpha=\frac{\ell^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{a} \ell}, \cos \beta=\frac{\ell^{2}+\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{~b} \ell}$ and

$$
\mathrm{C}_{\mathrm{n}}=\frac{2 \pi^{\mathrm{n} / 2}}{\mathrm{n} \Gamma\left[\frac{\mathrm{n}}{2}\right]}
$$

For $\mathrm{n}=3$, we have

$$
\Omega_{\mathrm{E}, \mathrm{G}}(\ell)= \begin{cases}1 & \text { if } 0 \leqq \ell \leqq \mathrm{~b}-\mathrm{a} \\ \frac{3}{4}\left[\int_{0}^{\alpha} \sin ^{3} \theta \mathrm{~d} \theta+\left[\frac{b}{a}\right]^{3} \int_{0}^{\beta} \sin ^{3} \theta \mathrm{~d} \theta\right] & \text { if } b-a \leqq \ell \leqq b+a . \\ 0 & \text { if } \ell \leqq b+a\end{cases}
$$

From (5.1.3) and (5.3.1),

$$
\begin{align*}
\mathrm{Q}_{\mathrm{E}, \mathrm{G}}(\mathrm{t})= & \int_{0}^{\infty} g_{t}(\mathrm{r}) \Omega(\mathrm{r}) \mathrm{dr} \\
= & \frac{4 \pi}{(4 \pi D t)^{3}{ }^{2}}\left\{\int_{0}^{\mathrm{b}-\mathrm{a}} \mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}^{2} / 4 \mathrm{Dt}} \mathrm{dr}\right. \\
& +\frac{3}{4}\left[\int_{\mathrm{b}-\mathrm{a}}^{\mathrm{b}+\mathrm{a}} \mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}^{2} / 4 \mathrm{Dt}} \mathrm{dr} \int_{0}^{\alpha} \sin ^{3} \theta \mathrm{~d} \theta\right. \\
& \left.\left.+\left[\frac{b}{a}\right]^{3} \int_{\mathrm{b}-\mathrm{a}}^{\mathrm{b}+\mathrm{a}} \mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}^{2} / 4 \mathrm{Dt}} \mathrm{dr} \int_{0}^{\beta} \sin ^{3} \theta \mathrm{~d} \theta\right]\right\} \tag{5.4.1}
\end{align*}
$$

where $\cos \alpha=\frac{\mathrm{r}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ar}}, \cos \beta=\frac{\mathrm{r}^{2}+\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{br}}$.
Denote the first integral on right hand side of (5.4.1) by I_{1}. Then

$$
\begin{aligned}
I_{1} & =\frac{4 \pi}{(4 \pi D t)^{3 / 2}} \int_{0}^{b-a} r^{2} e^{-r^{2} / 4 D t} d r \\
& =\frac{1}{2 D t \sqrt{\pi D t}}\left[-2 D t(b-a) e^{-W_{1}}+2 D t \sum_{K=0}^{\infty} \frac{(-1)^{k}(b-a)^{2 k+1}}{K!(4 D t)^{k}(2 K+1)}\right]
\end{aligned}
$$

where $W_{1}=\frac{(b-a)^{2}}{4 D t}$.

Denote the second double integral on right hand side of (5.4.1) by I_{2}, then

$$
I_{2}=\int_{b-a}^{b+a} \mathrm{r}^{2} e^{-r^{2} / 4 \mathrm{Dt}} \mathrm{dr} \int_{0}^{\alpha} \sin ^{3} \theta d \theta
$$

I_{2} can be expressed as:

$$
\begin{align*}
& I_{2}=-\int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t}\left[\frac{r^{2}+a^{2}-b^{2}}{2 a r}\right] d r+\frac{1}{3} \int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t}\left[\frac{r^{2}+a^{2}-b^{2}}{2 a r}\right]^{3} d r \\
&+\frac{2}{3} \int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t} d r . \tag{5.4.3}
\end{align*}
$$

Denote the third double integral on right hand side of (5.4.1) by I_{3}. Then
$I_{3}=\int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t} d r \int_{0}^{\beta} \sin ^{3} \theta d \theta$.

Using the same argument as in I_{2}, we have

$$
\begin{align*}
& I_{3}=-\int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t} \cdot\left[\frac{r^{2}+b^{2}-a^{2}}{2 b r}\right] d r+\frac{1}{3} \int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t}\left[\frac{r^{2}+b^{2}-a^{2}}{2 b r}\right]^{3} d r \\
&+\frac{2}{3} \int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t} d r \tag{5.4.4}
\end{align*}
$$

From definition of $I_{1}, I_{2}, I_{3}, Q_{E, G}(t)$ can be expressed as:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{E}, \mathrm{G}}(\mathrm{t})=\mathrm{I}_{1}+\frac{3}{8 \mathrm{Dt} \sqrt{\pi \mathrm{Dt}}}\left[\mathrm{I}_{2}+\left[\frac{\mathrm{b}}{\mathrm{a}}\right]^{3} \mathrm{I}_{3}\right] \tag{5.4.5}
\end{equation*}
$$

For the following calculations we write $u_{1}=b-a, u_{2}=b+a, W_{1}=\frac{u_{1}^{2}}{4 D t}$ and
$W_{2}=\frac{\mathrm{u}_{2}^{2}}{4 \mathrm{Dt}}$. Evaluating the first integral in (5.4.3), we have
$-\int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t}\left[\frac{r^{2}+a^{2}-b^{2}}{2 a r}\right] d r$

$$
\begin{equation*}
=\frac{D t}{a}\left\{e^{-W_{2}}\left(u_{2}^{2}+4 D t-u_{1} u_{2}\right)-e^{-W_{1}}\left(u_{1}^{2}+4 D t-u_{1} u_{2}\right)\right\} \tag{5.4.6}
\end{equation*}
$$

Similarly, the first integral in (5.4.4) can be expressed as:

$$
\begin{align*}
& -\int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t}\left[\frac{r^{2}+b^{2}-a^{2}}{2 b r}\right] d r \\
& \quad=\frac{D t}{b}\left\{e^{-W_{2}}\left(u_{2}^{2}+4 D t+u_{1} u_{2}\right)-e^{W_{1}}\left(u_{1}^{2}+4 D t+u_{1} u_{2}\right)\right\} . \tag{5.4.7}
\end{align*}
$$

Evaluating the second integral in (5.4.3), we have

$$
\begin{align*}
\frac{1}{3} \int_{b-a}^{b+a} & r^{2} e^{-r^{2} / 4 D t} \frac{\left(r^{2}+a^{2}-b^{2}\right)^{3}}{8 a^{3} r^{3}} d r \\
= & -\frac{D t}{12 a^{3}}\left\{e^{-W_{2}}\left[u_{2}^{4}+8 D t \quad u_{2}^{2}+32 D^{2} t^{2}-3 u_{12}^{u_{2}^{3}}-12 u_{1} u_{2} D t+3 u_{1}^{2} u_{2}^{2}\right]\right. \\
& -e^{\left.-W_{1}\left[u_{1}^{4}+8 D t \quad u_{1}^{2}+32 D^{2} t^{2}-3 u_{1}^{3} u_{2}-12 u_{1} u_{2} D t+3 u_{1}^{2} u_{2}^{2}\right]\right\}} \\
& \quad-\frac{\left(u_{1} u_{2}\right)^{3}}{24 a^{3}} \int_{u_{1}}^{u_{2}} \frac{1}{r} e^{-r^{2} / 4 D t} d r . \tag{5.4.8}
\end{align*}
$$

Similarly the second integral in (5.4.4) can be expressed as:

$$
\begin{align*}
\frac{1}{3} \int_{b-a}^{b+a} & r^{2} \cdot e^{-r^{2} / 4 D t} \frac{\left(r^{2}+b^{2}-a^{2}\right)^{3}}{8 b^{3} r^{3}} d r \\
= & -\frac{D t}{12 b^{3}}\left\{e^{W_{2}}\left[u_{2}^{4}+8 D t u_{2}^{2}+32 D^{2} t^{2}+3 u_{1} u_{2}^{3}+12 u_{1} u_{2} D t+3 u_{1}^{2} u_{2}^{2}\right]\right. \\
& \left.-e^{-W_{1}}\left[u_{1}^{4}+8 D t u_{1}^{2}+32 D^{2} t^{2}+3 u_{1}^{3} u_{2}+12 u_{1} u_{2} D t+3 u_{1}^{2} u_{2}^{2}\right]\right\}
\end{align*}
$$

Evaluating the third integral in (5.4.3) and (5.4.4), we have

$$
\begin{equation*}
\frac{2}{3} \int_{b-a}^{b+a} r^{2} e^{-r^{2} / 4 D t}=-\frac{4}{3} D t\left[u_{2} e^{-W_{2}}-u_{1} e^{-W_{1}} \int_{u_{1}}^{u_{2}} e^{-r^{2} / 4 D t} d r\right] \tag{5.4.10}
\end{equation*}
$$

Combining similar terms and upon simplification we have

$$
\begin{align*}
I_{2}+\left[\frac{b}{a}\right]^{3} I_{3} & =\frac{8}{3} \frac{D^{2} t^{2}}{a^{3}} e^{-W_{2}}\left\{\left(a^{2}+b^{2}\right)-a b-2 D t\right\} \\
& -\frac{8}{3} \frac{D t}{a^{3}} e^{-W_{1}}\left\{a^{4}-a^{3} b+\left(a^{2}+b^{2}+a b\right) D t-2 D^{2} t^{2}\right\} \\
& +\frac{4}{3} \frac{a^{3}+b^{3}}{a^{3}} D t \sum_{k=0}^{\infty} \frac{(-1)^{k}\left[(a+b)^{2 k+1}-(b-a)^{2 k+1}\right]}{k!(2 k+1)(4 D t)^{k}} \tag{5.4.11}
\end{align*}
$$

Putting (5.4.2), (5.4.11) into (5.4.5),

$$
\left.\begin{array}{l}
Q_{E, G}(t)=\frac{1}{\sqrt{\pi D t}}\left\{\left[-(b-a) e^{W_{1}}+\sum_{k=0}^{\infty} \frac{(-1)^{k}(b-a)^{2 k+1}}{k!(2 k+1)(4 D t)^{k}}\right]\right. \\
+\frac{D t}{a^{3}}\left[\left(a^{2}+b^{2}\right)-a b-2 D t\right] e^{-W_{2}}-\frac{1}{a^{3}}\left[a^{4}-a^{3} b+\left(a^{2}+b^{2}+a b\right) D t-2 D^{2} t^{2}\right] e^{W_{1}} \\
\left.+\frac{1}{2} \frac{a^{3}+b^{3}}{a^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left[(a+b)^{2 k+1}-(b-a)^{2 k+1}\right]}{k!(2 k+1)(4 D t)^{k}}\right\} \\
=\frac{1}{\sqrt{\pi D t}}\left\{\frac{D t}{a^{3}} e^{-W_{2}}\left[\left(a^{2}+b^{2}\right)-a b-2 D t\right]-\frac{e^{-W_{1}}}{a^{3}}\left[\left(a^{2}+b^{2}+a b\right) D t-2 D^{2} t^{2}\right]\right. \\
\quad+\frac{1}{2}\left[1+\frac{b^{3}}{a^{3}}\right] \sum_{k=0}^{\infty} \cdot(-1)^{k}(b+a)^{2 k+1} \\
k!(2 k+1)(4 D t)^{k} \tag{5.4.12}
\end{array}\right] .
$$

When $\mathrm{E}=\mathrm{G}$, i.e. $\mathrm{b}=\mathrm{a}$, we have

$$
\begin{align*}
Q_{E, G}(t)= & \frac{1}{\sqrt{\pi D t}}\left\{\frac{D t}{a^{3}}\left(a^{2}-2 D t\right) e^{-a^{2} / D t}-\frac{1}{a^{3}}\left(3 a^{2} D t-2 D^{2} t^{2}\right)\right. \\
& \left.+\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 a)^{2 k+1}}{k!(2 k+1)(4 D t)^{k}}\right\} . \tag{5.4.13}
\end{align*}
$$

Expand and combine similar terms in (5.4.13), upon simplification, we have

$$
\mathrm{Q}_{\mathrm{E}, \mathrm{G}}(\mathrm{t})=\frac{3 \mathrm{a}^{3}}{\mathrm{Dt} \sqrt{\pi \mathrm{Dt}}} \sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}} \mathrm{a}^{2 \mathrm{k}}}{(2 \mathrm{k}+3)(\mathrm{k}+2)(\mathrm{k}+3)(\mathrm{Dt})^{k} \mathrm{k}!}
$$

which is identical to eqn. (5.3.8).

APPENDIX I

DISTRIBUTION OF RELATIVE DISPLACEMENT

Let D_{i}, D_{j} be the diffusion coefficient of i-fold and j-fold disk respectively, both disks execute free Brownian motion in two dimensions. Under the assumption of independence of movements of each disk group, the distribution of relative displacement will be derived as follow.

At time $0, \mathrm{i}$-fold and j -fold disks are both at origin 0 . After time t the position vector $\vec{r}_{i}=\left(x_{i}, y_{j}\right)$ for i -fold $\vec{r}_{i}=\left(x_{j}, y_{j}\right)$ for j-fold is normally distributed with the same vector $\overrightarrow{0}$ and covariance matrix Σ_{i} and Σ_{j} respectivedly.
That is, for i-fold disk, $\overrightarrow{\mathrm{r}}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \sim \mathrm{N}\left(\overrightarrow{0}, \Sigma_{\mathrm{i}}\right)$
where

$$
\Sigma_{i}=\left[\begin{array}{ll}
2 \mathrm{D}_{\mathrm{i}} \mathrm{t} & 0 \\
0 & 2 \mathrm{D}_{\mathrm{i}} \mathrm{t}
\end{array}\right]
$$

or the probability density function $P_{t}\left(\vec{r}_{\mathfrak{i}}\right)$ of $\overrightarrow{\mathrm{r}}_{\mathfrak{i}}$ is

$$
\begin{aligned}
P_{t}\left(\vec{r}_{\mathrm{i}}\right) & =(2 \pi)^{-1}\left|\Sigma_{i}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \Sigma_{\mathrm{i}}^{-1}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)^{\prime}\right] \\
& =\left(4 \pi \mathrm{D}_{\mathrm{i}} \mathrm{t}\right)^{-1} \exp \left[-\frac{1}{2} \frac{\left(\frac{x_{i}^{2}}{2}+\mathrm{y}_{\mathrm{i}}^{2}\right.}{2 \mathrm{D}_{\mathrm{i}} \mathrm{t}}\right]
\end{aligned}
$$

For j-fold disk,

$$
\vec{r}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right) \sim \mathrm{N}\left(\overrightarrow{0}, \Sigma_{\mathrm{j}}\right)
$$

where

$$
\Sigma_{\mathrm{j}}=\left[\begin{array}{ll}
2 \mathrm{D}_{\mathrm{j}} \mathrm{t} & 0 \\
0 & 2 \mathrm{D}_{\mathrm{j}} \mathrm{t}
\end{array}\right]
$$

and the probability density function $P_{t}\left(\vec{r}_{j}\right)$ of \vec{r}_{j} is

$$
\begin{aligned}
P_{t}\left(\vec{r}_{\mathrm{j}}\right) & =(2 \pi)^{-1}\left|\Sigma_{\mathrm{i}}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right) \Sigma_{\mathrm{j}}^{-1}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)^{\prime}\right] \\
& =\left(4 \pi \mathrm{D}_{\mathrm{j}} \mathrm{t}\right)^{-1} \exp \left[-\frac{1}{2} \frac{\left(\mathrm{x}_{\mathrm{j}}^{2}+\mathrm{y}_{\mathrm{j}}^{2}\right)}{2 D_{\mathrm{j}} \mathrm{t}}\right]
\end{aligned}
$$

Since $\overrightarrow{\mathrm{r}}_{\mathrm{i}}, \overrightarrow{\mathrm{r}}_{\mathrm{j}}$ are independent, using well known property is multivariate normal distribution (see Srivastava and Kharti (1979) page 46),
we have $\quad \vec{r}_{i}-\vec{r}_{j}=N\left(\overrightarrow{0}, \Sigma_{i}+\Sigma_{j}\right)$
i.e. $\quad P_{t}\left(\vec{r}_{1}-\vec{r}_{2}\right)=\left[4 \pi\left(D_{i}+D_{j}\right) t\right]^{-1} \exp \left[-\frac{1}{2} \frac{\left(x_{i} x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}{2\left(D_{i}+D_{j}\right) t}\right]$.

On comparing this distribution of the relative displacements with the corresponding result for the individual displacements, we conclude that the relative displacements do follow the laws of Brownian motion with the diffusion coefficient $D_{i}+D_{j}$. In fact, it is also true for n dimensions.

APPENDIX II

CUBIC SPLINE INTERPOLATION METHOD

Given the data $g\left(t_{1}\right), \ldots, g\left(t_{n}\right)$ with $a=x_{1}<, \ldots,<x_{n}=b, a$ piecewise cubic interpolant f to g can be constructed as follows. On each interval $\left[x_{i}, x_{i+1}\right]$, we have f agree with some polynomial P_{i} of order 4 ,

$$
\begin{gathered}
f(t)=P_{i}(t) \quad \text { for } \quad x_{i} \leq t \leq x_{i+1} \text { for some } P_{i} \in \mathbb{P}_{4} . \\
i=1, \ldots, n-1
\end{gathered}
$$

where \mathbb{P}_{4} is the linear space of all polynomial of order 4. The i-th polynomial piece P_{i} is made to satisfy the conditions

$$
P_{i}\left(x_{i}\right)=g\left(x_{i}\right), P_{i}\left(x_{i+1}\right)=g\left(x_{i+1}\right)
$$

and

$$
P_{i}\left(x_{i}\right)=s_{i}, P_{i}^{\prime}\left(x_{i+1}\right)=s_{i+1}
$$

for

$$
\mathrm{i}=1,2, \ldots, \mathrm{n}-1 .
$$

Here s_{1}, \ldots, s_{n} are free parameters. The resulting piecewise function f agrees with g at x_{1}, \ldots, x_{n} and $f \in C^{\prime}[a, b]$.

By Newton form and divided difference (see de Boor (1978), page 4) P_{i}, P_{i} can be expressed as

$$
P_{i}(t)=C(i, 0)+C(i, 1)\left(t-x_{i}\right)+C(i, 2)\left(t-x_{i}\right)^{2}+C(i, 3)\left(t-x_{i}\right)^{3}
$$

where

$$
t \in\left[x_{i}, x_{i+1}\right]
$$

with

$$
C(i, 0)=P_{i}\left(x_{i}\right)=g\left(x_{i}\right)
$$

$$
\begin{aligned}
& C(i, 1)=P_{i}^{\prime}\left(x_{i}\right)=s_{i} \\
& C(i, 2)=\frac{P_{i}^{\prime \prime}\left(x_{i}\right)}{2} \\
& C(i, 3)=\frac{P_{i}^{\prime \prime}\left(x_{i}\right)}{6}
\end{aligned}
$$

$C(i, 1), C(i, 2)$ and $C(i, 3)$ can be obtained by using ICSCCU in IMSL. The algorithm and details are discussed in Chapter IV of de Boor's book (page 49-59).

BIBLIOGRAPHY

1. Abramowitz, M. and Stegun, I. (1970): "Handbook of Mathematical Functions". Dover Publications Inc.
2. Adam, G. \& Delbruck, M. (1968): "Structural Chemistry in Molecular Biology" Freeman, San Francisco.
3. Brown Robert (1829): "Additional Remarks on Active Molecules". Philosophical Magazine N.S. 6(1829), 161-166.
4. Chandrasekhar, S. (1943): "Stochastic Problems in Physics and Astronomy". Reviews of Modern Physics vol. 15 1-91.
5. Collins, F.C. \& Kimble, G.E. (1949). "Diffusion-controlled reaction rates". J. of Colloid Science 4, 425.
6. Dahlquist, G. and Bjorck, A. (1974): "Numerical Methods". Prentice Hall, Inc.
7. de Boor, Carl (1978): "A Practical Guide to Spline". Springer-Verlag.
8. Eldridge, C.A. (1980): "A Theory of Brownian Coagulation in a Bounded Planar Region". Journal of Theor. Biology vol. 87, 385-400.
9. Enns, E.G. and Ehlers, P.F. (1978): "Random Paths through a Convex Region". J. Appl. Prob. 15, 144-152.
10. Enns, E.G. and Ehlers, P.F. (1980): "Random Paths originating within a convex region and terminating on its surface". Aust. J. Statistics. 22(1), 60-68.
11. Enns, E.G. and Ehlers, P.F. (1981): "Random Secants of a convex body generated by surface randomness". J. Appl. Prob. 18, 157-166.
12. Enns, E.G., Fung, T.S., Rowlands, S. and Sewchand, L.S. (1983):
"Planar Brownian Motion in the Presence of an Attractive Force". Cell Biophysics 5, 189-195.
13. Enns, E.G., Smith, B.R.. and Ehlers, P.F. (1984): "Hitting spheres with straight-line motion or Brownian motion." J. Appl. Prob. 21, 70-79.
14. Enns, E.G. and Ehlers, P.F. (1988): "Chords through a convex body generated from within an embedded body". J. Appl. Prob. 25, 700-707.
15. Feller, W. (1970): "An Introduction to Probability Theory and Its Applications". Vols. I and II. Wiley, New York.
16. Gradshteyn, I. and Ryzik, I. (1965): "Table of Integrals, Series and Products". Academic Press, New York.
17. Grobner and Hofreiter (1961): "Integraltafel" 2 Teil, Springer-verlag.
18. Groom, A.C. \& Anderson, J.C. (1972): "Measurement of the size distribution of human erythrocytes by a sedimentation method". J. Cell Physiol. 79, 127.
19. Hardy, C.D. \& Beck, J.S. (1986): "Coagulation in Cell Suspensions: Extensions of the von Smoluchowski Model". J. theor. Biol. 120, 181-189.
20. Ito, K., McKean, H.P. (1974): "Diffusion Processes and their Sample Paths". Springer-Verlag.
21. Jaeger, J.C. (1943): "Heat Flow in a region bounded internally by a circular cylinder". Proceedings Royal Society Edinburgh A61, 223-230.
22. Karlin, S. and Taylor, H. (1974): "A First Course in Stochastic Processes". Second Edition, Academic Press.
23. Karlin, S. and Taylor, H. (1981): "A Second Course in Stochastic Processes". Academic Press.
24. Kakutani, S. (1944): "On Brownian Motion in n-Space". Proc. Acad. Japan Vol. 20 648-652.
25. Kent, John (1978): "Some probabilistic properties of Bessel functions". The Annals of Probability 1978, vol. 6, No. 5, 760-770.
26. Lamb, C.E. (1932). Hydrodynamics, 6th Edition. Cambridge; Cambridge University Press.
27. Marshall, A.G. (1978): "Biophysical Chemistry : Principles, Techniques and Applications". John Wiley and Sons Inc.
28. Naqvi, K.R. (1974): "Diffusion-controlled reactions in two-dimensional fluids: discussion of lipids in biological membranes". Chemical Physics Letters 28, 280-284.
29. Nelson, Edward (1967): "Dynamical Theories of Brownian Motion". Princeton University Press.
30. Noyes, R.M. (1961): "Effect of diffusion rates on chemical kinetics". Progress in Reaction Kinetics 1, 129.
31. Okubo, A. (1980): "Diffusion and Ecological Problems : Mathematical Models". Springer-Verlag.
32. Owens, S.C. (1974): "Two dimensional diffusion theory: Cylindrical diffusion model applied to fluorescence quenching". J. Chem. Phys. 62, 3204.
33. Port, S. and Stone, C. (1978): "Brownian Motion and Classical Potential Theory". Academic Press. 55-57.
34. Rowlands, S., Sewchand, L.S. and Enns, E.G. (1982): "A quantumn mechanical interaction of human erythrocytes". Canadian Journal of Physiology and Pharmacology Vol. 60, No. 1, 52-59.
35. Rowlands, S., Sewchand, L.S., Lovlin, R.E., Beck, J.S. and Enns, E.G. (1981): "A Frohlich Interaction of Human Erythrocytes". Physics Letters Vol. 82 A, No. 8, 436-438.
36. Skalak, R., Zarda, P.R., Jan, K.M. \& Chien, S. (1981): "Mechanics of rouleaux formation". Biophysics J. 35, 771.
37. Smoluchowski, M.V. (1917): "Investigation into a mathematical theory of the kinetics of coagulation of colloidal solutions". Zeitschrift fur physikalische Chemie 92, 129-168.
38. Spitzer, F. (1956): "Some Theorems Concerning 2-dimensional Brownian Motion". Trans. Amer. Math. Soc. 87, 187-197.
39. Srivastava, M.S. and Kharti, C.G. (1979): "An Introduction to Multivariate Statistics". Elsevier North Holland, Inc.
40. Swift, D.L. and Friedlander S.K. (1964): "The Coagulation of Hydrosols by Brownian Motion and Laminar Shear Flow". Journal of Collid Science 19, 621-647.
41. Watson, G.N. (1948): "A Treatise on the Theory of Bessel Functions". Second Edition, Cambridge University Press.
42. Waite, T.R. (1957): "Theoretical Treatment of the kinetics of diffusionlimited reactions". Physical Review 107, 463.
43. Wendel, J.G. (1980): "Hitting Spheres with Brownian motion". Ann. Probability, 8, 164-169.
