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ABSTRACT 

In this thesis, we studied some properties of Brownian motion and 

application in the medical area. 

In Chapters II and Ill, the two—dimensional Brownian motion of circular 

disks is considered where these join to form groups whenever they touch. The 

total number of groups Nt is considered as a function of time. An upper 

bound for Nt is derived and compared to the experimental movement of 

erythrocytes (red blood cells). Cells at pH = 7.4 and pH = 6.3 are shown to 

have a group count that respectively exceeds and falls below the plotted 

bound. This provides evidence that live cells have a tendency to coalesce that 

is not explained by Brownian motion only. 

In Chapter IV, points executing free Brownian motion are randomly 

placed in the region b < r ≤ a of R The distribution of first hitting time 

on the central stationary n—sphere is derived. For n = 3, the moment 

generating function of the first hitting time is derived. 

In Chapter V, a Brownian particle is selected at random from a region E 

in of' and then the probability that the particle will be in a convex region G 

in FR" a time t later, where E C G, is derived. The probabilities for 

(a) E = G, disc or ball and (b) E C G, concentric spheres are calculated. 
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CHAPTER I 

INTRODUCTION 

1.1 HISTORICAL BACKGROUND 

Robert Brown was a distinguished botanist. Although Brown is 

remembered by mathematicians only as the discoverer of Brownian motion, his 

biography in the Encyclopedia Britannica makes no mention of this discovery. 

In the early eighteenth century, Brown was studying the fertilization 

process in several different species of flower. Looking at the pollen in water 

through a microscope, he observed small particles in "rapid oscillatory motion". 

Of the causes of Brownian motion, Brown [1829] writes: 

"I have formerly stated my belief that these motions of the particles 

neither arose from currents in the fluid containing them, nor depended on that 

intestine motion which may be supposed to accompany its evaporation. 

These causes of motion, however, either singly or combined with other, 

—as, the attractions and repulsions among the particles themselves, their 

unstable equilibrium in the fluid in which they are suspended, their 

hygrometrical or capillary action, and in some cases the disengagement of 

volatile matter, or of minute air bubbles, —have been considered by several 

writers as sufficiently accounting for the appearances." 

His theory, is that matter is composed of small particles, which exhibit a 

rapid, irregular motion having its origin in the particles themselves and not in 

the surrounding fluid. 

His contribution was to demonstrate the presence of Brownian motion in 

inorganic as well as organic matter and establish it's importance. 

1 
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The first to express a notion close to the modern theory of Brownian 

motion was Wiener in 1863. 

During 1850 - 1900, many scientists worked on the phenomenon. The 

following main points were noted: 

a. The motion is very irregular, composed of translations and 

rotations, and the trajectory appears to have no tangent. 

b. Two particles appear to move independently. 

C. The activity of the motion is directly proportional to the 

temperature, and inversely proportional to the viscosity of the fluid 

and size of the particles. 

d. The motion never ceases. 

In 1905, Albert Einstein formulated a correct quantitative theory of 

Brownian motion. There are two parts to Einstein's argument. The first is 

mathematical. The result is the following: 

Let p = p(x i) x2, x3) be the probability density of a Brownian particle 

at the point (x1, x2, x3) at time t. Then, Einstein derived the diffusion 

equation 

4t = DV2p 

where D is a positive constant, 

and V2 is the Laplacian operator. 

If the particle is at the origin 0 at time. 0, then 

2 2 2 
- (x1 + x2 + x3) 

4Dt 
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The second part of his argument, which relates D to other physical 

quantities, is physical. 

If the Brownian particles are spheres of radius a, then combined with 

Stokes' theory of friction, we have the Stokes—Einstein relation: 

D KT 
- 6iria 

where P is the absolute temperature, 

j is the coefficient of viscosity 

and K is the Boltzmann's constant. 

A mathematical theory of the behaviour of coagulating particles 

undergoing Brownian motion in three dimensions was first given by 

Smoluchowski (1916) and later elaborated by Chadxasekhar (1943). Other 

formulations of coagulation and reaction based upon diffusion (Noyes, 1961; 

Waite, 1957; Coffins & Kimble, 1949) are essentially identical to those of 

Smoluchowski. Treatment of the problem in a finite two—dimensional medium 

(Owens, 1974; Adam & Dellruck, 1968; Razi Naqvi, 1974) has been largely 

motivated by considerations of movement of molecules on lipid membranes. 

(See Eldridge 1980) 

1.2 BASIC DEFINITION & FORMULAE 

The following definitions (1.2.1, 1.2.2) are quoted from Karlin and Taylor 

(1974). 

1.2.1 ONE DIMENSIONAL BROWNIAN MOTION 

Brownian motion is a stochastic process {X(t); t ≥ 0} with the following 

properties: 

(a) Every increment X(t+s) - X(s) is normally distributed with mean 0 

and variance i2t; 0 is a fixed parameter. 
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(b) For every pair of disjoint time intervals [t1, t2], [t3, t4], the 

increments X(t4) - X(t3) and X(t2) - X(t) are independent random 

variables with distributions given in (a), and similarly for n disjoint 

time intervals where n is an arbitrary positive integer. 

(c) X(0) = 0 and X(t) is continuous at t = 0. 

This means that we postulate that a displacement X(t+s) - X(s) is 

independent of the past, or alternatively, if we know X(s) = x0, then no 

further knowledge of the values of X(T), for r < s has any effect on our 

knowledge of the probability law governing X(t+s) - X(s). Written formally, 

this says that if t > to > t1 > •.. > t, 

P{X(t) ≤ X1 X(t) = x0, X(t1) = x1, •.., X(t) = 

= P{X(t ≤ x)J X(t0) = 

This is a statement of the Markov character of the process. 

Under the condition that X(0) = 0, the variance of X(t) is o.2 t. Hence 

2 is sometimes called the variance parameter of the process. The process 

(t) = 9t) is a Brownian motion process having variance parameter of one, 

called standard Brownian motion. By this device we may always reduce an 

arbitrary Brownian motion to a standard Brownian motion. 

By part (a) of the definition with o.2 = 1, we have 

P{X(t) ≤ x I X(t0) = x} = P{X(t) - X(t0) ≤ x - 

1 

2ir(tt0) F da. 
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The consistency of part (b) of the definition with part (a) follows from 

well—known properties of the normal distribution, 

e.g. if t1 ≤ t2 ≤ t3 then 

X(t3) - X(t) = [X(t3) - X(t2)] + [X(t2) - X(t1)}. 

On the right we have independent normal random variables with mean 0 and 

variances t3 - t2 and t2 - t1, respectively. Hence their sum is normal with 

mean 0 and variance t3 - t1 as it should be. 

1.2.2 MULTIDIMENSIONAL BROWNIAN MOTION 

Let 1XI(t); t ≥ o}, •.. lyN(t); t o} be standard Brownian motion 

processes, statistically independent of one another. The vector—valued process 

defined by 

X(t) [X,(t) , ..., X(t)] 

is called N--dimensional Brownian motion. The motion of a particle 

undergoing Brownian motion in the plane and in space are described by 

two—dimensional and three—dimensional Brownian motions, respectively. 

If the particle is at the origin 0 at time 0, let pt(xi, x2, ..., x) be the 

probability density of a particle reaches the point (, x2, ..., x,a) at time 

t, then 

2 2 
(X I +...+ x) 

1  pt(xi, x2, ..., x) = /2 e 2t 
(2irt) I 
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1.3 RADIAL BROWNIAN MOTION 

Let {X(t): t ≥ O} be an N--dimensional Brownian motion process. The 

stochastic process defined by 

R(t) = [X1(t)2 +...+ XN(t)2], ≥ o 

is called Radial Brownian motion or the Bessel process with parameter . N—i. 

It is a Markov process having continuous sample paths in the state space 

[0, w) (see Karlin and Taylor (1974) page 368). 

The probability transition density of the N--dimensional process from r1 

to r2 in a time t is given by (Kent equation 9.1). 

1 2 2 v+1 Ir r 21 pt(ti, r2) = t1 r - 1 'vLFJ exp[_ (r + r2)j r2 

t > 0, r1, r2 > 0 (1.3.1) 

where u = (N-2)/2 > - 1 and 

Iv(x) is the modified Bessel function of the first kind 

For N = 1, L(x) = cosh x, 

For N=2, 

22 

r exp{— r1r21 cosh pt(ri, r2) = j. 2t J 

pt(ri, 
-1 

r2)=t 

r1 r21 
t J. (1.3.2) 

(1.3.3) 
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For N = 3, I+(x) = sinh x 

pt(ri, r2) = 

22 

exp{ 1 r2 Sin h [rl r2l 
- - r2i+t r2 5 r1 

By. continuity of sample path, we have 

Pt(O, r2) = urn pt(ri, r2). 
r1-+ O 

Therefore for 

2 

(a) N = 1, Pt(O, r2) r21 
= exp{.. j 

(b) N = 2, Pt(O, r2) =2 1- 

(c) N = 3, Pt(O, r2) = 

(1.3.4) 

(compare with eqn. 5.2.3) 

T•jp r exp{ Pti. (compare with equ. 5.2.3) 

1.4 ORIENTATION OF THE RESEARCH PROBLEM 

In 1981, Rowlands and co—workers ([26], [27]) studied the aggregation of 

human red blood cells (erythrocytes). Aggregation indicates the existence of a 

long range attractive force between erythrocytes of a given species. Initially, 

at time t = 0, single disks are presented. From then onwards, they combine 

to form double, triple, .... i—fold disks. The clustering of erythrocytes is 

referred as rouleaux formation. They adopted Swift and Friedlander's (1964) 

simplifying assumption that all particles have the same radius (and the 

implication that all zones of attraction have the same radius Z # r). If N is 

the total number of particles (single and multiple) the kinetics of coagulation 

are governed by 
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1 1 4KTZ 
NN3?l r t 

where k : Boltzman's constant 

T : absolute temperature 

17 viscosity of suspending medium 

and r : radius of the particle 

(1.4.1) 

Equation 1.4.1 is for a three—dimensional process. Cells sediment, however, so 

the process is compressed into two dimensions and the rate constant will be 

higher by a factor of 1.5. Equation 1.4.1 becomes 

1 1 2KTZ 
Ti 

which predicts a linear relation between Nt and t. 

In an experiment, for a given t, one can count the number of cell groups 

(i.e. N). The regression of on t was computed. 

An interaction coefficient is defined by 

If 77 = 1, then it indicates a pure Brownian motion. 

If E > 1, then it indicates a zone of attraction. 

If E < 1, then it indicates a repulsive force. 

In the experimental studies, Rowlands et al (1981, 1982) have observed values 

of up to approximately three indicating a long range attractive force 

between normal cells. 

The assumptions of Rowlands and associates are: 
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1. r.=r  for all i,j 

2. D1=D  for all i,j 

where r1 is the radius of i—fold disks 

and D1 is the diffusion coefficient of i—fold disks 

3. t>> 1ç. 

We try to minimize the above assumption to find an upper bound of 

N 1. Chapters II and III are based on the article that we published (Enns, 

Fung, Rowlands & Sewchand) in Cell Biophysics 5 (1983), p189-195. 

1.5 METHODS OF GEOMETRIC PROBABILITY 

Some new results in Brownian motion are attainable via methods of 

geometrical probability. In particular if one is viewing a cell undergoing 

Brownian motion under a microscope, it may be of interest whether this cell 

will still be in the viewing field at a time t later. This requires a knowledge 

of the distribution of the lengths of random rays under zi—radomness, the 

derivation of which follows. 

Enns and Ehlers (1978, 1980, 1981, 1988) in a series of papers have 

derived the distributions of the lengths of random rays and secants under 

various randomness assumptions. We will provide the background derivations 

necessary for the new work in the thesis. 

u—randomness is defined as selecting a point P at random from a body K 

and also picking a random direction 0. In n--dimensions, the direction 9 will 

be uniformly distributed in [0, nCr] where C is the volume of a unit 

n—sphere. One can now define a ray S of length £ as the distance from P to 

the boundary of K in direction 9. We will assume that K is a convex body 

in Ut". A secant of length L will be formed by projecting the ray backwards 
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to the surface of K. L will not be .used, so we will only concentrate on the 

ray. Now if the body K is translated a distance I in direction 0, then denote 

the translated K by K(40). If one now places a needle of length £ in body K 

in direction 0, then the tip of the needle must lie in K fl K(4 0) for the whole 

needle to lie within K. 

Figure 1.1 

Now since the point P is chosen randomly in K, it must lie in 

K n K(-40) for the ray R to be of length greater than L Therefore: 

P(S > £10) = VEK fl K(-40)1  
V(I) 

- VIK n K(.L,0)1  
V(l) 

where V(.) is the volume of (.). Averaging over 9, one obtains: 
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[V(K fl K(1,O)] 
P(S>t)=  V(K) 

= (1.5.1) 

This defines the normalized overlap function 11(1). All other distributions 

derived in Enns and Ehlers (1978, 1980, 1981, 1988) are in terms of (L) and 

its counterpart w (), which is the normalized overlap surface content of 

K n K(1,0) when averaged over 9. 

Equation (1.5.1) illustrates 12(1) as an average over 0. However, since 

there are two random variables involved in generating R we can also express 

12(1) as an average over the randomly chosen point P. 

Select a point P randomly in K and surround it with an n—sphere of 

radius L 

Figure 1.2 
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Define the solid angles subtended by the body K as 41(1,P) and 42(1,P). 

There may be zero, one or two such angles. Let 4(4P) = 1: 41(1,P) be the 

1 

sum of these internal angles. Then 

P(S > LIP) = (1.5.2) 

Equations (1.5.1) and (1.5.2) therefore relate the two averaging 

procedures. This will be the starting point of our derivation in Chapter V. 



CHAPTER II 

COAGULATIONS OF COLLOIDAL PARTICLES 

UNDER BROWNIAN MOTION 

2.1 INTRODUCTION: 

Smoluchowski (1917) succeeded in applying the principles of Brownian 

motion to describe the coagulations of colloidal particles due to the 

introduction of an electrolytic solution. Smoluchowski's theory is based on the 

view that around each discharged particle is a sphere of attraction such that if 

two particles undergoing Brownian motion enter each other's sphere, they 

adhere and never separate again. In his outset, a particle assumed fixed in 

space with a sphere of influence of radius b, is in a medium of infinite extent 

in winch a number of Brownian particles of zero radius (regarded as points) 

are randomly scattered at time t = 0. Suppose that the stationary particle is 

at the origin of our system of coordinates and also assumed that when a point 

touches the boundary of the sphere, it will merge to the origin immediately. 

The point of departure for the theory of diffusion is the random walk. 

Let us consider the one—dimensional space. Each individual moves a short 

distance A to the right or left in a short time r. We define the probability 

that a particle released from the origin at t = 0 reaches point x by time t to 

be p(x,t). 

t-i t t+'r 

0 
I I I XL), x x+X 

13 
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At one time interval earlier, i.e. at time t—r, the particle is at either of 

points x—A or x+A. if we call a the probability that a particle will move to 

the right in time unit r, and /3 the probability that the particle will move to 

the left ( a+fl = 1), 

p(x,t) = a p(x—A, t—r) + /3 p(x+A, t-r). (2.1.1) 

To obtain a diffusion equation from (2.1.1), it is assumed that A and r 

are very small compared to x and t, respectively, and that each term on the 

right hand side of the equation (2.1.1) can be expanded in a Taylor series in 

x and t, 

p(x-A,t-r) p(x,t) - A A2 a2 
- r + + 

p(x+A,t+r) = p(x,t) + A - r + A2 2 - o - Ar 

2p T2 O  
+ r at 

2.. T2 02p 

(2.1.2) 

All of the right—hand derivatives are evaluated at (x,t). If (2.1.2) is 

substituted into (2.1.1) and the relations a+/3 = 1, a—fl = are used, we 

have 

VY 7 -2 + '•-T &4 + A e a + I (2.1.3) 

where the parameters A, r, and e are assumed to be constant. 

Now let us consider the limit as these parameters go to zero. We shall 

not do this indiscriminately; rather we shall suppose that as r becomes small, 

A and e decrease so as to be of the same order of magnitude of r. In other 

words, in the first and second terms on the right—hand side of (2.1.3), 

Ac A2 urn lim = D. 
A,c, r-30 A,r-O 

(2.1.4) 
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Since the other right—hand terms converge to zero, the following equation 

is obtained, 

(2.1.5) 

This is the equation of diffusion for the random walk that results from 

the limiting process. If p in (2.1.5) is multiplied by the total number of 

particles in the system, the particle concentration W is obtain so that 

2 

(2.1.6) 

For simple random walk case (by taking limit it will become Brownian 

motion), jt = 0 since ce—fl = 0, hence (2.1.6) can be written as 

(2.1.7) 

In two dimensions with horizontal and vertical displacements parallel to 

the x— and y— axis, we have - 

ow_D[02W 2wJ — D2 
2+ 5Y 2 DV 

2W. 

have therefore to seek a solution of the diffusion equation: 

owTf- (2.1.8) 

The problem that we are going to solve here is dealing with 

two—dimensional Brownian Motion which can be summarized as follows: 

Consider an array of uniform circular disks of radius b whose motion is 

totally governed by Brownian movement. We assume the disks to be totally 

noninteracting, except on contact, in which case, they adhere, forming a 

doublet. When an i—fold disk touches with a j—fold disk, they form a k—fold 
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disk where k = i+j. We will concentrate on the total number of disk groups 

Nt present per unit area as a function of time t. An upper bound for Nt 

when only Brownian movement is present will be derived. If in an 

experiment, this upper bound is exceeded then we can conclude that there is 

evidence of a force of attraction among the disk groups of different sizes. 

The approach to solving this problem basically follows Smoluchowski's. 

However due to the different dimension and the different assumption of values 

of D1's, the details of the calculations are quite different. 

2.2 THE RATE OF DISK INTERACTION 

We start with the following two-dimensional diffusion equation: 

o2W1 
DV2W =  + 

In polar form and by rotational symmetry, we have 

OW I O2W 1 OWl-=D2 ijj 

with boundary condition: w (R,t) = 0 V t > 0 

initial condition: c (r,0) = p Irl > R. 

In (2.2.1), let y = W(r,t) - p, then 

[02 + 1 • 

4t = D W --r r] 

(2.2.1) 

with boundary condition: y(lt,t) = - p Vt > 0 

initial condition: y(r,0) = 0 Irl > 11. (2.2.2) 

We take the Laplace Transformation of (2.2.2): 

4tI = Df[+ U-V] 
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or 

s - y(r,O) = D 1&2 k   + . ] where k = y(r,t)) 

or 

02 iO s ar• 

with boundary condition '(R,$) = 

(2.2.2) is a modified Bessel Equation of order 0. 

A solution is: 

(r,$) = C1(s) io " S L• Iy r] + C2(s) K0 [,[ r] 

where I0(x) is a modified Bessel function of the first kind, 

K0(x) is a modified Bessel function of the second kind. 

But, 

10(X) kO 

hence I0(x) is unbounded when x is large. 

And also, 

K0(x) I 
X2 

x] + } I(x) + (1!)2 

1 1.x212 
+ [1 + ] L(2!) 

where = lim I i + . + + 

= .57721 56649 

1 
M 

1R .X 
2 

1  
j (3!) + 

(2.2.3) 

(2.2.4) 
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Figure 2.1. I0(x, I(0(x), I1(x) and K1(x) 
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hence K0(x) is bounded for all x. 

The graph for I0(x), K0(x), I1(x) and K1(x) is shown in Figure 2.1. 

The solution (r,$) is bounded for all r, hence C1(s) = 0, 

and from the boundary condition, we have 

= C2(s) K0 [ R] 
therefore 

KO [FTyr] 

s K 0 [Fj'y R) 
(2.2.5) 

Following the arguments of Smoluchowski, a circular disk of radius b is 

being fixed at the origin. At time t = 0, we assume all the circular disks 

have the same radius b, and are randomly scattered. When a circular disk 

touches the stationary disk they adhere, forming a double disk. 

Figure 2.2 
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Since the primary disks adhere on contact, the rate of rouleaux formation 

equals the rate at which the centres diffuse across the dashed line. The latter 

corresponds to a circle of radius 2b inscribed around one of the disks which, 

for the present, is assumed to be stationary. In other words, we can assume 

a single circular disk of radius R = 2b at the origin and the other disks are 

redefined as points diffusing in the medium. When a disk, represented by a 

point touches at I RI = 2b, then we can regard it has merged with the 

central disk. The rate e (R,t) at which disks merge with the central disk is: 

(R,t) = 2irRD Ur— 

or 

From (2.2.5), we have 

But 

and also 

(R, s) = 2irRD 0) 

(R,$) = 2irRD 1 Ko [Fly r] 
[s Ko [R] 

r=R 

r=R 

r=R 

= - 2irRD  P  K0 [[ r] . (2.2.6) 

sKo[jR] 

K 1(z) + K +1(z) = - 2 K(z) 

K(z) = K(z) 



21 

hence 

K1(z) = - K6(z). 

Therefore in (2.2.6), we have 

(R's) = 2irRD p 
1r -

1iIY KiUUR  

K0[,[ R] 

= 2R FU K1[ I  
[1 U  

(2.2.7) 

From Jaeger (1943), the inverse Laplace transform of (2.2.7) yields: 

where 

8D p , i[o, i• Dt T]  (2.2.8) 

OD e  
1(0,1; x) = xu2 du j (u)+ 'Y 8(u) u 

0 

J0: Bessel function of the first kind of order 0 

and Y0: Bessel function of the second kind of order 0. 

A table of I(0,1,x) is given in Jaeger (1943). 

If we remove the restriction that the 'target' disk is stationary, the effect 

is to replace the diffusion coefficient of the single moving disk with the 

relative diffusion coefficient of the two, which is simply 2D when the disks are 

the same size. Furthermore, instead of looking at a single disk, we may 

regard any one of the disks initially present as the reference' disk. 
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Therefore the rate r1 at which disks of group size i with radius R1 combine 

with disks of group size j with radius R as a function of time t is: 

where 

r13 (t) - ' - 8 D1 zi zi  I[oi. D1Ri. t  
'3 

(2.2.9) 

u1: average number of groups of size i per unit area. 

R1: effective distance for formation of i+j - fold—disk group from groups 

of size i and j. 

D: effective diffusion constant for groups of size i and size j moving 

independently. 

When a group of size i of radius R1 touch with a group of size j of radius 

they form an i + j fold group, hence Rij = R1+R. By independence of 

movements of each disk group, hence we have D = D1+D (see Appendix I) 

Initially, at time t = 0, we have only single disks only. There are no 

multiple disks at time t = 0, namely v1(0) = 0 for i > 1. From then 

onwards, they combine to form double, triple . .... disks. In practice we begin 

our observation at a time to > 0, at which time multiple groups may already 

exist. We will estimate the value of to from experimental data. 

The rate of change of various disk groups can be written as: 

d vi - 

Tt— : D1 zi 

j 

and for k ≥ 2, we have 

(2.2.10) 
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where 

dvk_1 ujzijfjj(t) — zik 
dt 

i+j =k 

Iii I[oi;   Rij j 

Dkj Vi fkj(t) (2.2.11) 

In equation (2.2.11), the first summation on the right hand side 

represents the increase in 1k due to the formation of k—fold disk groups by 

coalescing of an i—fold and i—fold disk groups (i+j = k), the factor of must 

be included to account for duplication of indices in i+j = k. The second 

summation represents the decrease in 1k due to the formation of (k+j)—fold 

disks in which one of the interacting disks is k—fold. 

Furthermore, by adding (2.2.10) and (2.2.11) we have: 

tt-- v1v D1 f1(t) - 1'i fkj(t) 

k=2 i+j =k k=2 j 

- D1 v f1(t) 

= ' Y 

i=1 j=1 k=1 

=-4 ' 
i=1 j=1 

zi1zi D f1(t) 

j=1 

Dkj VkVj fkj(t) 

(2.2.12) 
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where Nt zi1 which is the total number of disk groups at time t per 

unit area 

In Chandrasekhar's paper, he assumed that 

D1 = D and R1 = R j for all i and j. 

It is not a very reasonable assumption since D is less than D1 for 'i < j 

due to the increased mass. R1 is also less than R for i < j due to the 

increased size. We will minimize these assumptions to find an upper bound 

for Nt in Chapter III. 



CHAPTER III 

PLANAR BROWNIAN MOTION IN THE PRESENCE 

OF AN ATTRACTIVE FORCE 

3.1 INTRODUCTION 

In Chapter II, we solved the diffusion equation: 

ow 
TV 

with boundary condition V(1t,t) = 0 V t > 0 

initial condition V(r,0) =p V Irl > 

and the rate e (R,t) at which disk merge with the central disk was derived 

(eqn. 2.2.9). The rate r1 at which disk of group size i with radius R1 

combine with disks of group size j with radius R was also derived 

(eqn. 2.2.10). Furthermore, the rate of change of the number of cell groups 

Nt was also found (eqn. 2.2.13). 

In this chapter, we will derive an upper bound on N and an example 

will be shown. 

3.2 AN UPPER BOUND ON N 1 

If a force of attraction exists between the disk groups, the rate of 

formation of a rouleau is greater than that of free Brownian Movement. 

Hence Nt decreases more rapidly than in the free Brownian motion case. 

Suppose that the largest disk group of size m is observed in our observation 

and, for the sake of simplicity, assume m is even; if m is odd, the following 

25 
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argument will hold with m replaced by m+1. Since an increase in disk size 

reduces the velocity of its Brownian movements, the relative translational 

diffusion coefficient 

Dkq = DI, + Dq attains its minimum when k+q = m 

i.e. Dkq V,j when k+q = m 

equality holds when i+j = m. In particular, taking k = , q = , then we 

have D1 D In In = 2 Dm V. 

By the Stokes—Einstein relation (Marshall, 1978) 

D1R1 = kT 

= constant for all groups 

Moreover, D1 R1 = Dm In Rm In 

or 

" - — 2R 
- m m m 

77 77 7 
mm 

but 1, hence 
In In 

Rij<2Rm• 
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Therefore, we can conclude that for any time t, 

Dm t 

2 R In 

(3.2.1) 

But 1(0,1; x) is a decreasing function of x and hence 

I Dt ≤I 
110,1; R2 j 
L ii 

Therefore we have an upper bound for fi(t), namely 

(3.2.2) 

Drn t 

f1 (t) = I[01; Dt] ≤ r(t) = 10,1; 2R (3.2.3) 7r R2 

Let usassumeD1=D,D2 =aD,D1 =a/3D,i≥3where 

a, /3 E (0, 1]. This is a reasonable assumption since D1 decreases when i 

increases. We will use experimental results to estimate a and 3. We can 

make further refinements for D4, D5 etc., but it was found that the results 

were not sensitive to variations in a and /3. Hence further refinement is not 

necessary. For notational convenience, let: 

y1= D i', y2.= D 112, y3 = D N, 
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D Y 

D 2 

where I', i.'2, are calculated values of z', i.'2, Nt under the above 

assumptions. In order to obtain an upper bound on N 1, we replace f1(t) by 

di'1 - 

---I'1 (D 11 I'1+D 12 I'2 ±D 13 I'3 +....)r(t) 
a7t 

= - D[2i1 + (1+a) + (1+a13) f1l vi r(t) 

j=3 

= - D1 2I 2 + (1+a) 12 + (1+afl) (IT - 1' - '2)] r(t). (3.2.4) PI 

= D = - D2[211 + (1+a) uui.'2 + (1+a/3) i  - p2)] r(t) 

{2 y + (i+a) y1y2 + (1+a/3) y (y3 - y1 - 2)} r(t) 

ly', 
(1—a9) + (1-3) a y1y2 + (1+a13) y1 3} r(t) . (3.2.5) 

Similarly, 

= - iI' (D,1 + D) r(t). 

(D1+D) + 2 iijj i' (D1-i-D) 

j=2 

i'i (D1 + Di)] r(t) (3.2.6) 
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Again, 

= - {y2 + (l+a) y1y2 + y1(l+afl)(y3-yç-y2) + a y2 

+ a(1+fl)(y3-yç-y2) y2 + afl(y3_yi_y2)2} r(t) 

= - 1(1-afl) y1y3 + (1-fl) a y2y3 + afi } r(t). 

D '2 = 7 i'jPj D1 r(t) -  P2 1  1. D2 r(t) 

i-i-j=2 j=1 

= - y1y2(1+a) - 2a y - y2(l+f3) a{y3 - Y1 - 2}] r(t) 

=  [y2  - (1-afi) y1y2 - a(1-fl) y - a(i+fl) y2y3] r(t). 

Dividing (3.2.4) by (3.2.8), we have 

d Yi - y2 (1-afi) + (1-fl) ayy + ( 1+afl) y1y3 

d y2 - - y + ( 1-afi) y1y2 + 00 70)y + a( 1+fl) y2y3 

Dividing (3.2.4) by (3.2.7), we have 

d  - y2 (1-afi) .+ (1-fl) a y y + ( 1+ afi) yy 

d Y3 - (1-afi) y1y3 + (1-fl) ay2y3 + a fly 

(3.2.7) 

(3.2.8) 

(3.2.9) 

(3.2.10) 
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Let u = y y = y 
.y3 y 

Therefore 

0 ≤ U, v ≤ 1. 

dy - u2 y2(1-a/3)+(1-$) a u y v y3 3 3+(1+afi) U y2 

- (1-a/i) U y + ( 1-13) a v y + a 13 

- u2(1-a/i) +.( 1—fi) an v + ( 1+afl) U 
(1-a#) u + (1-fl) a v + a/I 

du_ u 
or 3TY (1-a/i)u+(1-/I)av+a/3 

Similarly 

or ' ay - (1-a#) u + (1—/i) a v + a# 

(3.2.11) 

dv -u2 + uv(1-afi) + v2 a(1-i3) + a(1+13) v  
(1-a/I) u+ ( 1-/I) a v + a/I 

dv -  - u2 +Off  

dividing (3.2.12) by (3.2.11) we have 

dv av 

with initial condition u(0) = 1, v(0) = 0. 

This linear differential equation has solution 

(3.2.12) 

(3.2.13) 

v = cu - (3.2.14) 
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At time t = to, our initial observed time, 

Nt = N1, u(t0) = u1 - 1'1( to)  

V(to) = vi - z12(to)  

and therefore 
2 

C E u1 1 - V1 + U1 . (3.2.15) 

Combining (3.2.15) and (3.2.11), we have 

u2 1 
or I a# + (1-afl) u + (1-fl) a(C u - 

du - dy 

U - 

r - 

or Lii = afl Lii U + (lafl) U + (1- B) aC - - 2( 22-.a)j + C [  

or y3 = K u 00 exp{(1_afl) u + 

At, t=t0 

Q13 
y3 =Ku 1 exp{(1-afl)ui+ 

(2C (2-a) Ua - a u2)} . (3.2.16) 

(2C (2-a) u - a u)} 
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or K = D N 0 -op u1 exp1_[(1_a13) u1 + 

Recall y2 = vy3, we have 

dy dy dy 

and therefore 

+ 

dv 
Y3 = — [— y + (1—afi) y1y2 + 1—fi) y + 1+fi) Y2Y3] 

+v[(1—ai) y1y3 + a(1—fi) y2y3 + 0 y] r(t) 

or dv. = {u y1 - a y2} r(t). 

But from (3.2.13) 

therefore 

du 
du a  u 
av = = - 

af 

du ii dy 
U-t =  av — u2 UT 

ii 
- 2 {u y1 - a y2} r(t) 

=  2 {u2 y3 - a v y3} r(t) 

U  = __ — 112 {u 2 - a v} y3 r(t) 

=—uy3 r(t) 

r(t) 
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i du TT a.= — uy3r(t) 

therefore 

to 

- r(t) dt. 

D m  t 
8 jt 

011; 2R2 
In 

to - 

dt 

16R 2 
M rY 
TI 

= - lrDm  j 1(0,1; x) dx 
T y0 

Dt 0 Dm t 

T  
where Yo = 2  R and y - 2R 2 

In In 

T T 

(3.2.17) 

Next, we want to find an estimate of to: 

3d2,3 d 
= D Tt N = - {( 1—af3) y,y3 + ( 1—i3) cy2y3 + afi y2} r(t) 

= - y {(1—afi) U + (1-3) av + af3} r(t), 

so that 
__ 

r(t) = - _12 [Udt Nt] a+(1—)u+1—)v' 
DN 
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and so 

Empirically finding dl 

ldl 

t=to 

t=to 
[afl+(1_aiii+ckl_Ii)vi]. (3.2.18) 

we can find r(t0). From Jaeger's table, we can 

find to from the calculated value of r(t0) in (3.2.18). For known values of to, 

u1, v1, we can perform the numerical integration in (3.2.17). Hence, from 

(3.2.17) we can calculate y3 and lT ' = 3- can be calculated. Finally, we use 

an example to complete our present chapter. 

EXAMPLE 

Experiments were conducted in which a cell suspension in plasma was 

transferred to a haemacytometer chamber and allowed to settle. By using 

time—lapse cine microphotography of erythrocytes, it was possible to count the 

total number of red cells and rouleaux in a fixed region as a function of time 

t. A complete description of the experimental procedure is in Rowlands et al 

(1982). 

Experimental evidence suggests that the diffusion coefficient of a single 

cell is D = 1.596 x io m2s while for double and triple cells it is O.86D 

and O.73D respectively: i.e. a = 0.86, 3 = 0.8488. We tried several values 

of a, /3 but the results were found to be insensitive to variations of a and 8. 

Observation was started at time to, initial counting gave u1 = 0.9 and 

vi = 0.1. The maximum group size that we observed in time interval 

[t0, t + t0] was 6, hence m = 6. Also the radius of a single cell is taken as 

R = 4.3 x 10 °m. The data used in our calculation are in Table 3.1. 
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For PH = 7.4 or live cells, by cubic spline approximation (use ICSCCU 

in IMSL), we find: 

d  ii 
= 51.57 x 10-14 

It=tO 

which yields 

Therefore 

r(t0) = 32.7707. 

1(0,1; x) = r(t) = 12.869. 

Using D3R3 = DR,, we have B.3 = 0 RI .73 = 5.89 x 10 6m. 

Jaeger's table (1943), then gives 

from which 

D3to -  002 
2R2 

3 

to = 119.9 sec. 

Since to is found and u1 = 0.9, hence in (3.2.18), for any given value of t, we 

can find out the value of u(t), and hence N1 can be calculated. The graph of 

versus t is plotted in Figure 3.1. The smooth curve is the theoretical 

curve of the upper bound of N1. The points in the graph are the 

experimental data. In Figure 3.1, the data points He above the theoretical 

curve, hence there is an evidence that a force of attraction exists among the 

cell groups other than the Brownian Motion. 
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1. 

For PH = 6.3, or dead cells, as for PH = 7.4, we find: 

d 1 
i N(t) 

t=to 
= 13.679 x 10 -14 

r(t0) = 8.69245 

I[o,1. D3t0 - 3.4135. 2R2 I 
3J 

D3to - 

0.35 2R2 
3 

to = 2084.4 sec. 

In Figure 3.2, the data points lie below the theoretical curve as would be 

expected for Brownian Motion only. 
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* 

TABLE 3.la (PH = 7.4) 

Obs e rved time Number of cell groups obse r ved 
(minute) 

in an area of 1.2 x io m2 

0 188 

5 164 

10 154 

15 131 

20 129 

30 118 

40 110 

50 106 

60 96 

70 86 

75 86 
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TABLE 3.lb (P11 = 6.3) 

* 

Obs e rved time Number of cell groups obse r ved 
(minute) in an area of 1.2 x10 m2 

0 227 

5 213 

10 204 

15 199 

20 192 

30 186 

40 185 

50 177 

60 179 

70 174 

80 169 

90 166 

100 163 

110 164 

120 161 

Source S. Rowlands and L.S. Sewchand. 

Comment The number of cell groups increases twice. This is due to the 

fact that we are observing the central region of our viewing area 

and cells can freely enter and leave our viewing area. 



39 

4 

1.2-

'-p 

1.0•-

0.8 - 

0.6 1 1. I I I I I I I I I I I I I I I 1 I I I I 

0 1000 2000 3000 4000 5000 

(sec) 

FIGURE 3.1. Brownian motion of erythrocytes at pH 7.4 
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FIGURE 3.2. Brownian motion of erythrocytes at pH 6.3. 
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3.3 DISCUSSION OF THE MODEL 

In general, the particles of any particular class will not be spheres. So, 

one must incorporate some factor relating the Stokes radius of each aggregate 

particle to that of the fundamental particle. In turn, the Stokes radius of the 

fundamental particle must be related to a characteristic geometric radius. The 

mathematical model that has been developed is under the assumption that the 

Stokes radii of all classes are equal to their physical radii. This has been 

confirmed reasonably well for erythrocytes (Groom & Anderson, 1972; Skalak 

et al, 1981). 

Points lying below the upper bound of N 1 indicates that cells are 

executing free Brownian motion. This is a crucial statement, one may derive 

a lower bound of Ni', then cells with all data points lying within the lower 

bound and upper bound of N 1, one can claim that such cells are executing 

free Brownian motion. 

Cells which He outside these bounds would give us an indication that the 

cells have some type of force acting in conjunction with Brownian motion. 



CHAPTER IV 

HITTING PROBABILITIES FOR n—DIMENSIONAL 

BROWNIAN MOTION 

4.1 INTRODUCTION: 

Consider an n-sphere of radius b held stationary at the origin of our 

system of co-ordinates and in a medium of infinite extent in which a number 

of Brownian particles of zero radius are scattered at time t = 0. Our 

familiar diffusion can be expressed as: 

- D 2 - D oW 02w 02w  Vw— 5x2+5x2+"+5x2 
1 2 n 

where w is the concentration of the particles in the system. 

By radial symmetry and n-sphere polar co-ordinates, we have 

Ow I O2w n-i OwTF D t12 

with boundary condition w(b,t) = 0 V t > 0 

initial condition w(r,0) = p V Irl > b. (4.1.1) 

Using the same argument as in Chapter 2.2, 

let y = w(r,t) - p; then 

Ft P r -5•j 

with boundary condition 

and initial condition 

y(b,t) = - p 

y(r,0) = 0 

42 

v  > 0 

In > b. (4.1.2) 
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The Laplace Transform of (4.1.2), is then 

where k = 

or 

nftl UV I 
r or] = s - y(r,O) 

n-1 s 

with boundary condition (b,$) = . (4.1.3) 

By Gradshteyn and Ryzik (1965) page 971 and regularity of K(x) when 

X -, CO, the solution of (4.1.3) is 

U- 1 K [ r] 
1b1 ' 

S [?j K [Jib] 
(4.1.4) 

The rate (b,t) at which particles merge with the central n—sphere with radius 

b is: 

or 

(R,t) = surface area of n—sphere I) $. (r,t) 

n-i 
(R,$) = nC 11 r • D 

r=b 

2 

where - 2 z'  is the volume of the unit n—sphere. 

ni' LJ 

r=b 

(4.1.5) 
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n- i 

But (r, S) = K J  I -n/2 
1 

n - b] 

Using the identity (Watson, page 79): 

(4.1.6) becomes 

.. (r, s) = 

and therefore 

Ci ni 

In 

+ f ui r K [J r]}. (4.1.6) 

zK(z) - nK(z) = - zK+i(z) 

n 

b  

Iii-
.-1L,1U 

-n/2 

b) r I f rK[4r] } 7 

[Fj'y  
£11  •2  

r=bK fl h1ib 
72 1L4D 

Putting (4.1.7) into (4.1.5) we have 

(b,$) = nC bhhi D 

(4.1.7) 

(4.1.8) 

4.2 TWO DIMENSIONAL HITTING PROBABILITIES 

Imagine a Brownian particle beginning at distance R from the centre of 

a stationary circle of radius b and define R(t) as its distance at time t. We 

want the probability of the Brownian particle hitting the stationary circle after 

a duration of time t. 
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We define: 

F(b,t; B.) = P{R(t) ≤ bR(0) = R} 

= inin[t: R(t) ≤ b I R(0) = R} 

G(b,t; R) = P{r ≤ t} 

Li 
aD 

I  E(b,s; B.) = j e--St F(b,t; R) dt 

0 

O(b,s; R) = J e st G(b,t; R) dt 

0 

R > b 

From the above definition, F(b,t; B.) satisfies the backward diffusion equation, 

namely, 

IOR2 
2 1 

3t 

See Karlin & Taylor (1981) pages 214-216. 

Taking Laplace Transform on (4.2.1), we have 

or equivalently, 

r52fr 1 5fr1 
fr = D[ + RIt] 

(4.2.1) 

O 2E 1 O s 
+ - u F = 0. (4.2.2) 



46 

The general solution of (4.2.2) is 

E(b,s; R) = A i0[j R] + B K0 [ ] 
where A, B may depend on s and on b. 

As R -i w, only K0 is bounded, therefore A = 0 and 

E(b,s; R) = B(s,b) K0[JTjy R]. 

By continuity of the sample functions and the Markovian nature of the 

process R(t), we have, for b < R, 

ft 

F(b,t; R) = j F(b,t—x; b) • g(b,x; It) dx 

0 

= J F(b,t—x; b) dx G(b,x; It). 

0 

Since 

t 
JO j - F(t—u) g(u) du = E(s) (s) 

0 

= E(s) .d(O'(u)) 

and 

°(G'(b,s; R)) = s O(b,s; It) - G(b,0; It) 

= s O(b,s; It), 

therefore by taking the Laplace Transform of (4.2.3), we have: 

(4.2.3) 
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E(b,s; R) = '(b,s; b) • s O(b,s; R) 

or. O(b,s; R) = 1 F(b,s; R)  
S E(b,s; b) 

1K0 
S 

K0 

(4.2.4) 

Let Ya denote the first hitting time of a Brownian particle p1 with initial 

distance R from the centre of the circle, then 

- 
E(esy It) I'D et dP{YR ≤ t} 

0 

=e t P{YR ≤t}I t:=tu + s P{YR ≤t}e t dt 
t=o 

= s O(b,s; R) = K0  

K0 

SW 

0 

(4.2.5) 

The particle p1 under consideration was randomly placed within the region 

b < r < a, such that the density function of it's distance to the origin is: 

f(r) = 

2r  
b<r≤a a2 -b2 

0 otherwise 

Define r to be the time for p1 to hit the inner circle, then 

(4.2.6) 
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-a 

P(T ≤ t) = 
2r l:(Yr ≤ t) a2-b2 dr 

a 
2  

- a2—b2 

b 

If N points are independently and randomly placed in the 

then (4.2.7) may be written as: 

P(r ≤ t) = 

b 

a 

1('r ≤ t)rdr 

r IP ( r ≤ t) dr . (4.2.7) 

region b < r < a, 

(4.2.8) 

where ° = ir(a2—b2) i.e. p is the density of particles. 

If TN is the time until the first of the N particles collides with the 

central circle, then 

P(TN > t) = [P(r > t)]N. 

Let N and a approach w so that the density p remains constant. If T is the 

time until first absorption for points with initial density p, then 

P(T > t) = lim P(T N > t) 
N-' oD 
a—+ co 

= urn [1 - P(r I t)]N 
N-' w 
a-' co 

=lirn 
N-' w 
a-' w 

[i ia j'd. I t) rdr 
N 

—2irp JOD  1(Yr I t) rdr 

= e (4.2.9) 
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But 4 I t) rdr 
= J JOD e P(Y I t) rdr dt 

t=O r=b 

= r K0 

K0 

= 1 bK1 

S r 

FT Y • 

Fus 

From equation (4.1.8) i.e. (b,$) = 27rp b K1 Fly  
FI& Koj b 

or equivalently 

Therefore (4.2.9) becomes 

03 

we have 

- '(r I t) rdr (b, s)  
S 2irp 

1 (r I (b, s)  
t) rdr = 0L s 2 p j 

[(bs)] 

limP(TN >t)=e S 
N-9w 
a -

rt 
—j (b,x) dx 
0 

=e 

(4.2.10) 

(4.2.11) 

(4.2.12) 
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(b,x) is numerically tabulated in Jaeger (1943) and decreases monotonically to 

0. Hence (4.2.12) is an example of a distribution with a decreasing hazard 

rate, DHR. 

Let TiN be the time for i—th collision, and define GjN(t) = P(TiN I t). 

Denote Q = P(r < t) =   P(Y I t) rdr, then the probability density 

N(t) of TiN can be expressed as: 

= (i1)1Ni)! Q1' (lQ)! dt for i > 1 (4.2.13) 

where Q' 1 corresponds to probability of i—i particles with r < t and 

(i.....Q)Nl corresponds to probability of N—i particles with r > t. 

From (4.2.11) we have 

j t 

(4.2.13) becomes 

Co 

(b,x) dx = 2irp "(Yr I t) rdr = NQ, 

1 'ft li-i 

g(t) = (i—l)! Lo j (bx) dxl 

_Jt (b,x)dx 

e  (4.2.14) 

4.3 n—DIMENSIONAL HITTING PROBABILITIES 

N points are randomly scattered in the region b < r < a of It" such 

that the distribution of the number of points in any volume is a Poisson 

distribution. An n—sphere of radius b is centred at the origin. One wishes to 

determine the distribution of first and i—th collision time on the central sphere 

under the assumption that the points are executing free Brownian motion. 
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Let V(r) and A(r) be the volume and surface content of an n—sphere 

of radius r, then 

V(r) = C r", A(r) = nC, r n-I 

2,x n/ 
where C - nr and r(n) is the gamma function. n [n 

Following a similar argument as in two dimensions. 

Denote Y  be the first hitting time of a Brownian particle with initial 

distance R from the centre of the n—sphere. The point P1 under consideration 

was randomly placed within the region b < r I a, such that the density 

function of it's distance to the origin is: 

- n 
nC r -I 

f  = 
n b<r≤a 

C (a —bfl ) (4.3.1) 

0 otherwise. 

Define 7 be the time for P1 hits the inner n—sphere, then 

CO 

P(r ≤ t) = P(Yr I t) n C r1 dr n 
a —bn 

(4.3.2) can be written as: 

P(r ≤ t) = N 10r I t) r n-I dr 

where p is the density of particles in the region b < r I a 

(4.3.2) 
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[i.e. p 

= Cn(a"—b")] 

Let TN be the time of first hit, we have 

P(TN > t) = [1 - P(r ≤ t)]N 

Now 

[1 
n-i 

N P(Y<t)r dr 

flpC ( r < t) r 1 dr 

urn P(TN > t) = e 
N-'w 
a-4 0D 

N 

00 .00 

Io -st  ° ≤ t) r -i drj = e P ( r ≤ t) r n-I drdt 

rw 
1 I n-i 

= . r E[er] dr. 

From John Kent (1978), we have  Kv 

E [er] 1b] '' 
tFJ 

r 

Fr' K 

FUS where ii = 

(43.3) 

(4.3.4) 

(4.3.5) 
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Putting (4.3.5) into (4.3.4), we have 

I -w 

P(Yr<t)r n-i dr 

Lb 

But 

r" ''K vI FISY r] 

b1' 00 

=  b] ] r r) dr. (4.3.6) 

fl jb fl 

dr = Im r K [ r] dr -  .r K [ r]dr. (4.3.7) 7 _1 7 —, 
0 0 

Using the identities (see Gradshteyn & Ryzik, p.683, p.685): 

and 

we obtain 

co n 

JrKn 

and 

rw 

I x K(ax) dx = a 1  r (I+r v] 

ji v+l i' i'-2-t x K(ax) dx = 2 a r(u-i-1) - a 

0 

-1.w r] dr = 2 _1[_.. isy 

=2 

K+i(a), 

r ll+.nI' , -'•*ll r  2 2 

n 

[Fjsy] •' [,n] (4.3.8) 



54 

j b 

0 

K11 _11 r] dr = b J (ub) K11 —1[Fi';y ub] du 

0 

b 

[ITT 

bu du 

+1-2 

Putting (4.3.8), (4.3.9) into (4.3.7), we have 

hence 

where 

Therefore 

co rh1l lFisy r] dr= [Fjsy b] -' 

1 
( r ≤ t) r n 1 dri 

LbJ 

(b,$) = nC 

K[ 

+1 K[J b] 

JC Lrrs  

bhh1D[T  11 [ 

_,-i 1(b ,  

limP(TN>t)=e L I  
N-4 aD 

a-4 co 

(4.3.9) 

-  (b,$)  
sncnp 

(from 4.1.8). 

- ft e(b,x)dx 

=e (4.3.10) 
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Again, it is a distribution with a decreasing hazard rate DHR. The density 

function of i-th collision time on the central n-sphere is identical to (4.2.14) 

except 

(b,$) = p nC b" ' 

K[4bJ 

K1 [FIST bJ 

Define a random variable T such that T = TN when n -i a and a -+ 

i.e. urn TN = T. 
N-4 co 
a-+ OD 

The moment generating function of T is calculated for n = 3. 

If n = 3, 

(b,$) = 4irb2p 

Since (see Watson page 80) 

n 
(n+r)!  

= e L r! (n-r)! (2x)r 
r=0 

we have 

or 

(b,$) = 4irb2p N [' + IrT 'd 
(b,t) = 4irpbD 1 b7rFt + 1 
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Therefore 

t 

-I 4irpbDI b  + 

P(T>t)=e 

and the probability density function f(t) of T: 

_ D j f(t) = 4 17rpbD i + b 1 e 4pbD [t + 2b 

The moment generating function (e T) of T becomes: 

CO 

(e T) = I -St e f(t)dt 

-4irpbDlt + 2b1] 
D 

= 4irpbD + b 1 e L e-st dt. 
[?Dtj 

Using integral table (Gröbner and Hofreiter) and change of variables, we have 

16p 2b4 irD  
S+ irpbD 

(eT) = 8 pbD{2(S+4 PbD)   [ erf[1)21  4pb2, irD 

fs+4irpbDJJj [s+4irpbD 

  16p2b4 irD  
2  

1 fs+47rpbD iv  e5+4ivt 1 erf 4pbJirD 1 1 } 
+ FIT  H LS+4PbDii. 

16a2b4irD 

8irpbD{ 1  bs  I1_erfI4'2A113 '1e 
= 2(s+41rpbD)'2U(S+4PbD)3/2 1 [4i+4irpbDjj (4.3.11) 
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21 rt ..x2 
where erf(t) = - e 

Using erf(t) = - 1 + 2 ([ t) 

where (x) is the cumulative distribution for standard Normal distribution, 

i.e. 

1•x -y2 

1 I edy 

(4.3.11) can be expressed as 

'(e T) = 81rpbD{2(s+4bD) 

1g.,21. 
U R 
4 ....Ti 

i./ 

3/  s+4pbD 2 1] }. (4.3.12) + bs  4 P 
(s+4 pbD) b 2 

Hence the mean time for the first absorption of points is: 

p = - (e T) 09 
S=O 
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expected first hitting time for 3 DIM with D = 0.5 cms 
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Figure 4.1 

Legend 
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. rad0.5 cm 
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Next, we want to determine the probability P{Y1< w} where R > b. 

But 

—sY 
P{YR< co} = urn E(e R) 

Si, 0 

From (4.3.5), we have 

P{YR< } = 1I1 []'' :  
jl 

n-2 
where ii = . (4.3.13) 

Since K(x) N   [] as x —+ 0, for ii > 0 (4.3.13) can be written as: 

n-2 n-2 
n-2 

b r [] IA{ Ri r [!!•]-1 IA[ bi I 
P{YR<w}=[R] { 2 [ 2 j Jl 2 J [ 2 jj J 

V n > 2. (4.3.14) 

For n = 2, from (4.2.5), we have 

P{Y< w} = urn 
S-40 

K0 

Since K0(x) N - log x, as x —, 0, we have 

P{Y< co} = urn 
s-+ 0 log 

K0 

log 

Fi'T 

14 u 

b 

By L'flopital rule, (4.3.15) can be written as: 

.Fisy 

R 

b 

(4.3.15) 
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log 
P{YR< a} = urn 

Ts-

S-4 dlog 
1W, 

R 

b 

= 1 (4.3.16) 

i.e. the point will always hit the circle. 

In free Brownian motions in one dimension there is probability one that 

the particle will sooner or later hit the origin. In two dimensions, there is 

probability one that the particle with initial distance It from the origin will 

sooner or later hit the central circle of radius b with b < R. For dimension 

n ≥ 3, the probability of hitting the central n—sphere will be [] 
i.e. 

P{R(t) < b I R(0) = R for some t > 0} = [lb]2 n ≥ 3. 

Kakutani (1944) used a completely different approach to obtain the 

probability of for three dimensions. For n ≥ 3 dimensions, one can find 

egn. (4.3.14) in Port and Stone's (1978) page 56. 



CHAPTER V 

BROWNIAN MOTION WITHIN A VIEWING FIELD 

5.1 INTRODUCTION: 

If a particle undergoing Brownian motion is selected at random from a 

region E in ll", then what is the probability that the,, particle will be in a 

convex region G in IR a time t later, where E C G. For example, one may 

select a particle while viewing cells under a microscope and ask the probability 

that the particle will be in the viewing field a time t later. We will consider 

particles that may leave the viewing field but return before time t. If a 

particle is selected at time t = 0, then define the random variable Rt as the 

distance of the particle from its starting position a time t later. Then we 

have Gt(r) = P{Rt < r} and g(r) = dGt(r)  
dr 

A particle is now chosen at random from E in Q' and observed again a 

time t later. Then define: 

QB,a(t) = P{particle chosen randomly in E. 

is in G atim: t later} 

/ 

/ 
I 
I 

Figure 5.1 
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Let P be the random point chosen in E. Then surround P with an 

n--dimensional spherical shell of radius r, see Figure 5.1. Then the probability 

that the particle is in G when it has moved a net distance of Rt r is 

related to the angle q5(r,P) subtended by the spherical shell in G, namely 

CO 

QE,G(tIP) = J g(r) 

0 

(5.1.1) 

where nC is the total solid angle in ll". We have used the fact that 

Brownian motion is spherically symmetric, hence the likelihood of a particle 

being in any given solid angle is the same as in any other solid angle of the 

same magnitude. 

The using results ( 1.1) and (2.3) from Enns and Ehlers (1988), one may 

write: 

lq5(t,P)1 
G() = 

B,  'EL "° i 

= [V(E(t,O)nG)}/V(E) (5.1.2) 

where , (.) is the expected value of (.) when P is uniformly averaged over 
B 

the region E. Similarly E(1, 9) is the region E translated a distance £ in 

direction 9 and the translated overlap volume with G is uniformly averaged 

over all possible directions. 

Equation (5.1.1) may then be rewritten as 

QB,a(t) = B[ 1)] = J g(r) 01,G(r) dr (5.1.3) 
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Now also from Enns and Ehlers (1988), one defines a v—random ray as 

the line segment from a point P chosen randomly and uniformly in E C G to 

the boundary of G where the direction of the ray is randomly generated from 

all possible directions. Then the length of this ray S satisfies: 

with 

P(S ≥ = ) = 

p.d.f. f(s) = - dI EG(l) /dL 

An integration by parts yields alternative versions of (5.1.3) as: 

= JOD Gt(r) f(r) dx 

= '[G(S)], where the expectation is with 

respect to the measure ii. 

(5.1.4) 

= P{R < S}. (5.1.5) 

Below, QEG(t) is calculated for the following cases: 

(a) E = G, disc or ball and (b) E C (3, concentric balls. 

5.2 DISC WITH E = G 

At time t = 0, the particle considered is at origin 0 and executes free 

Brownian Motion with diffusion coefficient D. Let W(x,y) be the probability 

density that a particle reaches (x,y) in the time t. Then 

..(2 y2)  

1  e 4Dt W(x,y) = 4irDt 
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which satisfies the diffusion equation: 

W(x,y) = DV2W = DI Ox  a2 2 W + a2  W']. 52 

Since what interests us is the distance of the particle from the centre of 

diffusion, origin 0, it is more convenient to convert to polar co—ordinates. 

Let x = r cos 9, y = r sin 9, then dxdy = rdrd9 and in polar form, 

W(x,y) can be expressed as: 

W(x,y) dxdy = W(r,9) rdrd9 

2 

=  1  re'Tt drd9. 
4irDt 

Therefore 

[2,,  2 

1  
P{R(t) < rr(0) = O} - 4irl)t r1 e dr1d0 

0 0 

2 

j
r _r1 _r2 
e 4Dt rir1 = 1 - e 

0 

Denote P{R(t) < rlr(0) = O} by Gt(r), hence 

_r 2 

G(r) = 1 - e UTt 

and the probability density (Karlin and Taylor (1974) page 370) 

2 

g(r) = & Gt(r) = e 13t 

(5.2.1) 

(5.2.2) 

(5.2.3) 
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Using equation (5.1) in Enns and Ehlers (1988), putting E = G (i.e. b = a), 

and for ii dimension, we have 

a 2 Isin s B d  0 ≤ r ≤ 2a 

=1 0 otherwise 

n/2 

where cos a = and C 2 ir'  
nr[j 

1(r) may also be expressed as 

2 C..1 J (1_u2) du 0 ≤ r ≤ 2a 

Ta-

Hence for n = 2, we have 

(r) = J (1—u du 

and therefore, using 5.1.4, 

the probability density for the ray R, is: 

11 

f(r) = J 14a2—r2 

otherwise. 

0 ≤ r < 2a 

otherwise 

(5.2.4) 

(5.2.5) 

(5.2.6) 
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Iw 

QE(t) = j G(r) • ç(r)-dr 

0 

= I 
2a 

0 

Write I = j2a 

0 

and let 

[I 2a 2a r2 
4a2-r2 dr - J e , 4a2-r2 dr]. (5.2.7) 

0 0 

f2a   

J 
, 4a2-r2 dr and 12 = e 4D  , 4a2-r2 dr. 

0 

r = 2a sin 0, dr = 2a cos 0 dO. Then we have7M2 1 

II = 4a2 J Cos  0 dO = 2a2 

0 

= 

while 

a2sin20 

12 = 4a2 e Dt cos 20d0 

0 

[o + sin 2O['2] 

fit/2 - a2sin20 r1 /2 - a2sin20 

=, 4a2 J e Dt dO - J e Dt sin20d0 

(5.2.8) 
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CO 

= •. [Dij f/2 sin219d0 - (-1)' 1a 21 4a2 [jy 1  1a21 
il tDIJ 

i=O 0 i=0 

then we have Using J 5in2m0d9 = r (m--+) 

0 

OD 

'2 = 4a2 

00 

Ia2li q r(i+) 1 (-ill 
tDtJ i! 

i=0 

00 1 

= 47 a2 1:  (-1)' a21 rçi+  n [j (i+1) 
i=0 

By putting (5.2.9), (5.2.8) into (5.2.7), we have 

I
lt/2 

2(i+i 

j sin )ee 
0 

3 
1a21 ,[ F rçi+i  
L1J  

w 

QE(t) = 1 1 -1 1+147  i. (i+1 ! Dt] 

(5.2.9) 

(5.2.10) 

Numerical integration is required to evaluate QE(t) in eqn. (5.2.7). For a 

given time t, the graph of QB(t) versus radius a is plotted in Figure 5.2. 

For a given radius a, the graph of QB(t) versus time t is plotted in 

Figure 5.3. 

Both graphs indicate that (a) QB(t) decreases with time t and (b) QE(t) 

increases with size of viewing field. 
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Q ) for two dimension with D = 0.5 cm>'s (fixed t) 

0 3 1 2 

a(cm) 

Figure 5.2 

4 

Legend 
flmc0.1 sac  

o t1me0.2 sec 
• t1me0.3 sec 

o t1me0.4sec 
E iime0.5 sec 

X t1me0.6 sec 

V ttme0.7 sac 

± tTme0.8 sec 

O t1me0.9 sea 

0 timel.0 sea 
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Q(t) for two dimension with P = 0.5 crr/s(fixed a) 

a 2 3 4 5 6 

time(sec) 
7 8 

Figure 5.3 

Legend 
• a0.5 cm 

a1.O cm 

• a1.5 cm 

0 a2.O cm 
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• 5.3 A SPHERE WITH E = G 

The probability density W(x,y,z) of a Brownian particle reaching (x,y,z) 

at time t when it is at the origin 0 at time t = 0 can be expressed as: 

1  
W(x)y,z) = (4irDt)3/2 

x2+y 2+z2 
e 4T —t 

Let x = r cos 0 sin go, y = r sin 0 sin go, z = r cos go 

(see diagram) 

z 

V 

f•. 

r 

y 

where 0 < 9 < 2ir, 0 < go < ir, r > 0 and the Jacobian I J I r2 sin V. 

In spherical co—ordinates, we have 

r2 

W(x,y,z) dxdydz =  3/2 e UTt r2 sin go drd0dgo. 
(4irDt) 

Integrating over 0 and go, we obtain (Karlin and Taylor ( 1974) page 368) 

2 

UTt  
g(r)dr = 4ir r 2 e  dr 

(4irDt) 312 

Therefore 

(5.3.1) 
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Gt(r) = P{R(t) < rl R(0) = O} 

2 
rr 

- 4 7  2 UTt 
(4irDt)3/2 J r1 e dr1 

0 

2 
_r 1 _r2 

el dr1— r 

0 

Putting n = 3 in (5.2.4) we have 

JcL 
sin30d9 0 ≤ r ≤ 2a 

0 

11 (r) = 

0 otherwise 

where cos o = Ta  

can also be expressed as: 

1[.+23+] . 0r≤2a 

l(r) 

0 otherwise dr 

QE(t) = IOD g(r) (r) 

(5.3.2) 

(5.3.3) 

j2a  _r 2 2a _r2 2a _r2 

_ e dr+ =  3  r5  edr_J r3 r2 e dr ___ Dt j (5.3.4) 
4_D ( 24a3 Ta-

 0 0 
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r2a _r2 
I 

Let I = j r5 24a3 e dr 

0 

W k k+3 2k+6 
a  

= 24a3 2(k+3) 4k(Dt)kk, 

Let 12 

Let 13 

= jco a 
( •)k 2k+6 

k=O (k+3) (Dt)C k! 

1 12a r3e 4Dtdr 

0 

EU k 2k+4 
=- (-1) a  

k=O (k+2) (Dt)' k! 

2 
2a _r2 

J 
0 

Go k 2k+3 2k+3 
2 (-1) 2 a  

k=O k! 41C (Dt)k (2k+3) 

- co 16 'c'  ( 1)k a 2k+3 
- r k! (Dt)' (2k+3) 

k=O 

(5.3.5) 

(5.3.6) 

(5.3.7) 
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Putting (5.3.5), (5.3.6) and (5.3.7) into (5.3.4), we have 

CO k 2k 

QB(t) =  3a 3  ' (-1) a  
DtfiD (2k+3)(k+2)(k+3)(Dt)C k! 

(5.3.8) 

Numerical integration is required to evaluate QB(t) in eqn.(5.3.4). For a given 

time, the graph of QE(t) versus radius a is plotted in Figure 5.4. 

For a given radius a, the graph of QE(t) versus time t is plotted in 

Figure 5.5. 

Both graphs (Figure 5.4 and Figure 5.5) indicate that (a) QB(t) decreases 

with time t (b) QB(t) increases with the size of viewing field. 

Comparison of QE(t) between two dimensions and three dimensions is 

plotted in Figure 5.6 for time fixed at 1.0 second with radius a varying. 

Comparison of QE(t) between two dimensions and three dimensions is plotted 

in Figure 5.7 for radius a fixed at 1.0 cm with time t varying. 

Both graphs (Figure 5.6, and Figure 5.7) indicate that a particle is more 

likely to leave the viewing field in three dimensions than in two dimensions 

due to one extra degree of freedom. 
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Q(t) for three dimension with D = 0.5 cm's(fixed t) 
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Figure 5.4 

Legend 
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time0.5 sec 

X t1me0.6 sec 

V timeO.7 sec 

+ tlme=0.8 sec 

O t1me0.9 sec 

o tfmel.0 sec 
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Q ) for three dimension with D = 0.5 cms (fixed a) 
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Q(t) for 2 & 3 dimension with D = 05 c /s and t=1.0 sec 
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Qt) for 2 & 3 dimension with D = 0.5 cms and a=1.0 cm 
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5.4 A SPHERE WITH E c G 

From Enns and Ehlers (1988), if E is an n—ball of radius a centered 

within G, an n—ball of radius of radius b > a, then 

ifO≤1<b—a 

E,G (1) = 
b Cfl ..1 If sinnlgd9 + " 1 [] sin"0d9 I if b—a ≤ £ ≤ b+a 

0 if £> b+a 

11+0—b2 COS £2+b2—a2  
where cos a = 2a , - 2b and 

2 

cfl_2nr;Ilflj 

For n = 3, we have 

ifO≤t≤b—a 

3 = 4 [[ sin39d9 + sin  ifE5GM  if b—a I £ I b+a. 

if £≥ b+a 

From (5.1.3) and (5.3.1), 
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I 

QE,G(t) = J g(r) (r) dr 

JJb 

-r2JA 1. 

e i  dr 

CE 

r2 er211t dr J 
r2 e 214)t dr 

-a 

r2+a2-b2 - r2 +b2-a2  
where cos a = 2ar ,COS/3 2br 

sin3 Od9 

[I3 

sin3 Odo 

Denote the first integral on right hand side of (5.4.1) by I. Then 

b-a 

Ii  4 7r (4D t) 3/2 J r2 e 214Dt dr 
0 

k 2k+ 

=  1  2 Dt (b-a) + 2 Dt Yw  (-1) (b-a)  
2Dtf 7-rITt K=O K! (4Dt)k (2K+1) 

2 where W (b—a.)  
I = 411t (5.4.2) 

Denote the second double integral on right hand side of (5.4.1) by 2' then 

'2 = La r2 er21t dr jo, sin3 9d9. 
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12 can be expressed as: 

'2 - r2 e 21hh1t Ir2+a2_b1 3 [ 2ar j dr r2 e2/411t [r2+a2_b21 
2ar j th•+ a 

I-a 
b+a 

+ I r2 en/t dr. 
-a 

(5.4.3) 

Denote the third double integral on right hand side of (5.4.1) by 13. Then 

13 = 

b+a 

r2 e2/t dr J 
'b -a 0 

sin3 OdO. 

Using the same argument as in 12, we have 

b+a b+a 

13 I 2 -r2/411t I r2+b2_a2 dr + 1 2 -r2/4]t rr2+b2_a71 3= - r e  2br j r e [ 2br J dr 
-a 'b-a 

b+a 

+ . f r2 en/t dr. 
-a 

From definition of I, '2' 13, QE,G(t) can be expressed as: 

(5.4.4) 

QE,G(t) = i +   112 ± [] 13].(5.4.5) 
8DtirDt  

For the following calculations we write 111 = b—a, 112 = b+a, WI =   and 
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2 

W2 =   Evaluating the first integral in (5.4.3), we have 

b+a 

-a 

r2 e214)t rr2+a2_b1 
2ar j dr 

Dt = {e12 (u2 + 4Dt - u1u2) - e 1 (u2 1 + 4Dt - u1u2)} . (5.4.6) 

Similarly, the first integral in (5.4.4) can be expressed as: 

,b*la 

-a 

r2 e 2/4Dt Ir2+b2—a21 j 
2br dr 

= Dt fe -W2 (u2 + 4Dt + u1u2) - e 1 
2 

(u2 + 4Dt + u1u2)} . (5.4.7) 

Evaluating the second integral in (5.4.3), we have 

1 r2 e2/h1)t (r2-+.a2-b2)3 dr 
8a3r3 

Dt 112 + 8Dt u2 + 32D2t2 - 3u U3 - 12uuDt + 3u2u21 12a3 1e [U4 
2 2 1 2 1 2 ' 1 2J 

- e11 '[u4 + 8Dt u2 + 32D2t2 - 3u3u - 12uuDt + 3u2u2]} 

.. en/t dr. (5.4.8) 
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Similarly the second integral in (5.4.4) can be expressed as: 

b+a 

r2 e_r2/41)t (r2+b2-a2)3 dr : I 8b 3r3 

-a 

Dt I i + 8Dt u2 + 32D2t2 + 3u U3 + 12u U Dt + 3u2u21 
12b3 1 e L 2 2 1 2 1 2 1 2j 

- + 8Dt u2 + 32D2t2 + 3u3u + 12u u Dt + 3u2u2 
(.1 1 12 12 211 

ju 2 
. e 21 dr. 

U1 

Evaluating the third integral in (5.4.3) and (5.4.4), we have 

b+a 

r2 e 2/4Dt = - Dt [u2 e 2 -  Ul 

-a 
e._JU2 e21t dr] 

li i 

Combining similar terms and upon simplification we have 

12 + E] 3 8 D2t2 - 13 = a3 e 2 {(a2-i-b2) - ab - 2 Dt} 

8Dt w1 
- -aT e {a4 - alb + (a2+b2+ab) Dt - 2 D2t2} 

CO  k 2k+1 2k+1 
4 a3-i-b3 Dt (-1) [( a-i-b) - (b-a) 1  

+ a3 k! ( k+1) (413t)k 
k=O 

Putting (5.4.2), (5.4.11) into (5.4.5), 

(5.4.9) 

(5.4.10) 

(5.4.11) 
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k 2k+11 

QE)G(t) = 1 (b—a) +  (b-a•41)t)k I 2k+1)  
k=O 

j FD 

+ 4 [(a2+b2)—ab-2 Dt] e 2 - aT [a4—a3b+(a2•b2+ab) Dt-2 D2t1e 1 

1 a3+b3 -  i ( •( a+b 
2k+1 

) g-a) 21+ a3 ! ( k+1) (4)k J 
k=O 

1 fDt 2 2 2 eWl 2 2+ 
= - e [(a+b)_ab_2 Dt] - -- [(a+bab) Dt-2 D2t2] 

4irDt ta 

Go k 2k+1 I  (b+a  
!  k=O 2k+1) t4Dt)' 

k 2k+1 

+ [i - V (-'t (b-a)  
aT k! 2k+1) (4Dt)k (5.4.12) 

k=O } 

When E G, i.e. b = a, we have 

QE,G(t) = 1 f—Da7t 2 Dt) e21)t - (3a2 Dt - 2D2t2) 
, irD (a2-  

•k+ •2k+i 

+ 
k=O •2a) 

(5.4.13) 

Expand and combine similar terms in (5.4.13), upon simplification, we have 

a, 
k a21c 

QE,G(t) = 3a  V  (2k+3)(Ic+23(k+3)(Dt)k k! 
DtD k=O 

which is identical to eqn. (5.3.8). 



APPENDIX I 

DISTRIBUTION OF RELATIVE DISPLACEMENT 

Let D1, D be the diffusion coefficient of i—fold and i—fold disk 

respectively, both disks execute free Brownian motion in two dimensions. 

Under the assumption of independence of movements of each disk group, the 

distribution of relative displacement will be derived as follow. 

At time 0, i—fold and i—fold disks are both at origin 0. After time t the 

position vector i = (x1,y) for i—fold i = (x,y) for i—fold is normally 

distributed with the same vector 5 and covariance matrix Ej and Ej 

respectivedly. 

That is, for i—fold disk, 74i = (x1)y1) N N(5, E) 

where 
2D1t 0 

E1= 
0 2D1t 

or the probability density function P() of ij is 

For i-fold disk, 

where 

= (2ir) 'J S exp [- 1 (x1,y1) ;'(x±,y)'] 

= (4irD1t) ' exp[_ 

ri = (x,y) N  N(0, E) 

2Dt 0 

0 2Dt 

84 
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and the probability density function .L t(-.' •'r) of r is 

. 
P(r4 ) = (2ir) 'IE1I exp[_I (x,y) E'(xj,yj)'] 

1 
= (4D t)' ex[_ 371 

Since , ij are independent, using well known property is multivariate 

normal distribution (see Srivastava and Kharti (1979) page 46), 

we have 

i.e. 
- r2) 

-3 -9 
r1— r = N(5, Ej + 

= [4ir(D1+D)tJ ' ex[_ 1 (x.x)2 + ( jy)2l 
J• 

On comparing this distribution of the relative displacements with the 

corresponding result for the individual displacements, we conclude that the 

relative displacements do follow the laws of Brownian motion with the 

diffusion coefficient D + D. In fact, it is also true for n dimensions. 
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APPENDIX II 

CUBIC SPLINE INTERPOLATION METHOD 

Given the data g(t), ..., g(t) with a = x1 <, ..., < x = b, a 

piecewise cubic interpolant f to g can be constructed as follows. On each 

interval [x1, xDJ, we have f agree with some polynomial P1 of order 4, 

f(t) = P1(t) for x t ≤ x 1 for some P E 1P4 

n—i 

where U4 is the linear space of all poiynomial of order 4. The i—th polynomial 

piece P1 is made to satisfy the conditions 

P1(x1) = g(x1), P1(x11) = g(x11) 

P1(x1) = S, PI(x1+1) S1.1.1 and 

for i = 1,2, ..., n—i. 

Here s, ..., s are free parameters. The resulting piecewise function f 

agrees with g at x1, ..., xn and f E C'[a,b]. 

By Newton form and divided difference (see de Boor (1978), page 4) P, 

P can be expressed as 

P1(t) = C(i3O) + C(i,1)(t—x1) + C(i,2)(t—x1)2 + C(i,3)(t—x1)3 

where t E [x1, x1.1.J 

with C(i3O) = P1(x1) = g(x1) 
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C(i,1) = P1(x1) = Si 

'I 

C(i,2) = Nxi)  

U' 

and C(i,3) = 

C(i,1), C(i,2) and C(i,3) can be obtained by using ICSCCU in IMSL. The 

algorithm and details are discussed in Chapter IV of de Boor's book 

(page 49-59). 



BIBLIOGRAPHY 

1. Abramowitz, M. and Stegun, I. (1970): "Handbook of Mathematical 
Functions". Dover Publications Inc. 

2. Adam, G. & Deibruck, M. (1968): "Structural Chemistry in Molecular 
Biology" Freeman, San Francisco. 

3. Brown Robert (1829): "Additional Remarks on Active Molecules". 
Philosophical Magazine N.S. 6(1829), 161-166. 

4. Chandrasekhar, S. (1943): "Stochastic Problems in Physics and 
Astronomy". Reviews of Modern Physics vol. 15 1-91. 

5. Collins, F.C. & Kimble, G.E. (1949). "Diffusion—controlled reaction 
rates". J. of Colloid Science 4, 425. 

6. Dahlquist, G. and Bjorck, A. (1974): "Numerical Methods". Prentice 
Hall, Inc. 

7. de Boor, Carl (1978): "A Practical Guide to Spline". Springer—Verlag. 

8. Eldridge, C.A. (1980): "A Theory of Brownian Coagulation in a 
Bounded Planar Region". Journal of Theor. Biology vol. 87, 
385-400. 

9. Enns, E.G. and Ehlers, P.F. (1978): "Random Paths through a Convex 
Region". J. Appl. Prob. 15, 144-152. 

10. Enns, E.G. and Elders, P.F. (1980): "Random Paths originating within 
a convex region and terminating on its surface". Aust. J. 
Statistics. 22(1), 60-68. 

11. Enns, E.G. and Elders, P.F. (1981): "Random Secants of a convex body 
generated by surface randomness". J. Appl. Prob. 18, 157-166. 

12. Enns, E.G., Fung, T.S., Rowlands, S. and Sewchand, L.S. (1983): 
"Planar Brownian Motion in the Presence of an Attractive Force". 
Cell Biophysics 5, 189-195. 

13. Enns, E.G., Smith, B.R.. and Ehlers, P.F. (1984): "Hitting spheres with 
straight—line motion or Brownian motion." J. Appl. Prob. 21, 
70-79. 

14. Enns, E.G. and Ehlers, P.F. (1988): "Chords through a convex body 
generated from within an embedded body". J. Appl. Prob. 25, 
700-707. 

15. Feller, W. (1970): "An Introduction to Probability Theory and Its 
Applications". Vols. I and II. Wiley, New York. 

88 



89 

16. Gradshteyn, I. and Ryzik, I. (1965): "Table of Integrals, Series and 
Products". Academic Press, New York. 

17. Grobner and Hofreiter (1961): "Integraltafel" 2 Teil, Springer—verlag. 

18. Groom, A.C. & Anderson, J.C. (1972): "Measurement of the size 
distribution of human erythrocytes by a sedimentation method". J. 
Cell Physiol. 79, 127. 

19. Hardy, C.D. & Beck, J.S. (1986): "Coagulation in Cell Suspensions: 
Extensions of the von Smoluchowski Model". J. theor. Biol. 120, 
181-189. 

20. Ito, K., McKean, H.P. (1974): "Diffusion Processes and their Sample 
Paths". Springer—Verlag. 

21. Jaeger, J.C. (1943): "Heat Flow in a region bounded internally by a 
circular cylinder". Proceedings Royal Society Edinburgh A61, 
223-230. 

22. Karlin, S. and Taylor, H. (1974): "A First Course in Stochastic 
Processes". Second Edition, Academic Press. 

23. Karlin, S. and Taylor, H. (1981): "A Second Course in Stochastic 
Processes". Academic Press. 

24. Kakutani, S. (1944): "On Brownian Motion in ii—Space". Proc. Acad. 
Japan Vol. 20 648-652. 

25. Kent, John (1978): "Some probabilistic properties of Bessel functions". 
The Annals of Probability 1978, vol. 6, No. 5, 760-770. 

26. Lamb, C.E. (1932). Hydrodynamics, 6th Edition. Cambridge; Cambridge 
University Press. 

27. Marshall, A.G. (1978): "Biophysical Chemistry : Principles, Techniques 
and Applications". John Wiley and Sons Inc. 

28. Naqvi, K.R. (1974): "Diffusion—controlled reactions in two—dimensional 
fluids: discussion of lipids in biological membranes". Chemical 
Physics Letters 28, 280-284. 

29. Nelson, Edward (1967): "Dynamical Theories of Brownian Motion". 
Princeton University Press. 

30. Noyes, R.M. (1961): "Effect of diffusion rates on chemical kinetics". 
Progress in Reaction Kinetics 1, 129. 

31. Okubo, A. ç1980): "Diffusion and Ecological Problems : Mathematical 
Models". Springer—Verlag. 



90 

32. Owens, S.C. (1974): "Two dimensional diffusion theory: Cylindrical 
diffusion model applied to fluorescence quenching". J. Chem. Phys. 
62, 3204. 

33. Port, S. and Stone, C. (1978): "Brownian Motion and Classical 
Potential Theory't. Academic Press. 55-57. 

34. Rowlands, S., Sewchand, L.S. and Enns, E.G. (1982): "A quantumn 
mechanical interaction of human erythrocytes". Canadian Journal 
of Physiology and Pharmacology Vol. 60, No. 1, 52-59. 

35. Rowlands, S., Sewchand, L.S., Lovlin, R.E., Beck, J.S. and Enns, E.G. 
(1981): "A Frohlich Interaction of Human Erythrocytes". Physics 
Letters Vol. 82 A, No. 8, 436-438. 

36. Skalak, R., Zarda, P.R., Jan, K.M. & Chien, S. (1981): "Mechanics of 
rouleaux formation". Biophysics J. 35, 771. 

37. Smoluchowski, M.V. (1917): "Investigation into a mathematical theory of 
the. kinetics of coagulation of colloidal solutions". Zeitschrift fur 
physikalische Chemie 92, 129-168. 

38. Spitzer, F. (1956): "Some Theorems Concerning 2—dimensional Brownian 
Motion". Trans. Amer. Math. Soc. 87, 187-197. 

39. Srivastava, M.S. and Kharti, C.G. (1979): "An Introduction to 
Multivariate Statistics". Elsevier North Holland, Inc. 

40. Swift, D.L. and Friedlander S.K. (1964): "The Coagulation of Hydrosols 
by Brownian Motion and Laminar Shear Flow". Journal of Collid 
Science 19, 621-647. 

41. Watson, G.N. (1948): "A Treatise on the Theory of Bessel Functions". 
Second Edition, Cambridge University Press. 

42. Waite, T.R. (1957): "Theoretical Treatment of the kinetics of diffusion— 
limited reactions". Physical Review 107, 463. 

43. Wendel, J.G. (1980): "Hitting Spheres with Brownian motion". Ann. 
Probability, 8, 164-169. 


