
THE UNIVERSITY OF CALGARY

Fragmenting XML Documents in Distributed XML Database Systems

by

Ying Qi Chen

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

NOVEMBER, 2003

© Ying Qi Chen 2003

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Fragmenting XML Documents in

Distributed XML Database Systems" submitted by Ying Qi Chen in partial

fulfillment of the requirements for the degree of Master of Science.

Supervisor, Kenneth Barker, Department of Computer Science

External Examiner, Douglas Demetrick, Faculty of Medicine

Reda Alhajj, Department of Computer Science

'JoJ 2c/o3

Date

Abstract

Although Extensible Markup Language (XML) is becoming a standard for document

processing and interchange on the Internet, it does have several shortcomings. One

challenging problem is how to determine that the design of a XML document is "good".

In addition, since the size of a XML document is usually huge, the inherent redundancy

becomes a prominent problem. Very little work has been proposed for designing a XML

document that minimizes redundancy and has good structure. Therefore, a set of rules for

XML document design is very desirable.

Further, the growing popularity of XML will lead to large repositories of XML data.

Hence, we need more sophisticated ways to manage XML data. XML database systems

are designed for this purpose. Relational database systems have been thoroughly

investigated so they can be distributed. However, limited work has been done on a

distributed XML database system (DXDB). Many mechanisms for conversions between

relational databases and XML have been proposed so it is natural to consider applying

relational techniques to XML document design. The question is "how?" and to what

extent?

A DXDB, similar to a distributed XML database system (DDBS), must distribute data

over different sites. No work has appeared in the literature on fragmenting XML

documents in a distributed XML database environment. Based on our design model for

XML documents, fragmenting a XML document becomes possible in a distributed XML

database environment. Algorithms are proposed to fragment XML documents

horizontally.

Acknowledgements

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Ken Barker

during the construction of this thesis. His brilliant insights, professional editing skills, and

knowledge of the domain enabled me to craft this solid bit of research.

I thank Dr. Reda Alhajj for the discussions on the chapter of background and his

proofreading on other chapters.

I am deeply indebted to my wife, Ying Wang and my daughter, Jia Rui for their

understanding, endless patience and encouragement when it was most required.

I owe thanks to my colleagues in the lab who offered support in various ways during my

research and writing of this thesis. Thanks to:' Wendy, Quang, Jun, Angela, Bo, Steve,

Chun Yan, and Yi Mm.

I am also grateful to Ms. Lorraine Storey for her support during my graduate study.

I wish to thank my best friends in junior high school, Qing Yang, Ya Qin, and Wen Xia

for helping me get through the difficult times, and for all the emotional support,

entertainment, and caring they provided.

Lastly, and most importantly, I must thank my grandparents: Liang Hong and Mu Ying,

my parents: Yao Han and Bai Wei, my wife's parents: Zhe Xing and Mu Yun, and my

aunts: Wan Hua, Wan Pen, and Wan Ru. They raised me, supported me, taught me, and

loved me. To them I dedicate this thesis.

TABLE OF CONTENTS

INTRODUCTION AND PREVIEW 1

1.1 MOTIVATION 1
1.2 DESIGN ISSUES IN XML DOCUMENTS 4
1.3 REQUIREMENTS FOR XML DATABASE SYSTEMS 5

1.3.1 The Data Model 5
1.3.2 Data Definition 6
1.3.3 Data Manipulation 6

1.3 DATA DISTRIBUTION ISSUES IN A DISTRIBUTED COMPUTER SYSTEM 7
1.4 PREVIEW: FUNDAMENTAL RESEARCH ISSUES 8

1.4.1 Thesis Overview 8
1.4.2 Key Issues 9

1.5 CONTRIBUTIONS AND STRUCTURE OF THESIS 13

BACKGROUND AND RELATED WORK 15

2.1 XML (EXTENSIBLE MARKUP LANGUAGE) 15
2. 1.1 What is XML? 15
2.1.2 Different ways to use XML 17
2.1.3XMLSyntax 17

2.1.3.1 Element 17
2.1.3.2 Tag names 18
2.1.3.3 Namespaces and Namespace Declarations 18
2.1.3.4 Scope of namespace declarations 20
2.1.3.5 Attributes 20
2.1.3.6 Text 21
2.1.3.7 Processing instructions 23
2.1.3.8 Version declaration 24

2.1.4 Document Type Definition (DTD) 25
2.1.4.1 Internal DTDs 26
2.1.4.2 External DTD 26

2.1.5 XML Schema 27
2.1.5.1 The Schema element 27
2.1.5.2 Simple types 28
2.1.5.3 Complex elements 30

2.2 DISTRIBUTED DATABASE SYSTEMS 31
2.2.1 Implementation alternatives 32
2.2.2 Horizontal fragmentation in distributed database design 33

2.3 XML DATABASES 36
2.3.1 Types of XML databases 37
2.3.2 XML enabled databases 37
2.3.3 Problems with XML enabled databases 40

1

2.3.4 Native XML Databases 41
2.3.5 Problems with Native XML databases (NXDBs) 43
2.3.6 Distributed XML Databases 44

2.4 RELATED WORK 45
2.4.1 Normal Form for XML Documents 45
2.4.2 Distribution, Fragmentation, and Query of XML Documents 46

2.5 SUMMARY 47

A RELATIONAL FRAMEWORK FOR XML 48

3.1 TABLE ELEMENTS, TUPLE ELEMENTS, FIELD ELEMENTS AND DOMAIN 49
3.2 KEYS AND FOREIGN KEYS 54
3.3 NORMAL FORMS IN XML 57

3.3.1 Definition of functional dependency in XML 57
3.3.2 Definition of First and Second Normal Form (1NF and 2NF) in XML 59
3.3.3 Definition of Third Normal Form (3NF) in XML 59

3.4 DESIGN OF XML DOCUMENTS 60
3.4.1 Design a XML document in 3NFxmi 60
3.4.2 Transform a Relational Database Schema into a XML Schema Document 61

3.5 SUMMARY 62

FRAGMENTATION ALGORITHMS FOR XML 64

4.1 REASONS FOR FRAGMENTATION 64
4.2 DATA MODEL 65
4.3 FRAGMENTATION STRATEGY 66

4.3.1 Horizontal Fragmentation 66
4.3.2 Information Requirements of Horizontal Fragmentation 71

4.3.2.1 The Input Document 71
4.3.2.3 Application Information 76
4.3.2.4 Primary Horizontal Fragmentation in XML (PHFxmi) 78
4.3.2.5 Derived Horizontal Fragmentation in XML (DHFxmi) 85

4.4 SUMMARY 86

EXTENDED FRAGMENTATION STRATEGY FOR XML 87

5.1 DENORMALIZATION OF TBEs 87
5. 1.1 The Algorithm For Creating New TBE Structure 89
5.1.2 The Algorithm For Merging Two Linked TBEs with Data 91
5.1.3 The Algorithm For Fragmenting The Denormalized TBE 92

5.2 NESTED TBEs 93
5.3 HORIZONTAL FRAGMENTATION OF NESTED TBEs 97

5.3.1 The Algorithm for Generating the Structure of a DenormalizedNTBE 97
5.3.2 The Algorithm for Merging Two Linked TBEs with Data 98

5.4 PRIMARY AND DERIVED HORIZONTAL FRAGMENTATION VS. FRAGMENTATION.... 101
ON THE DENORMALIZED TBE AND NTBE 101
5.5 SUMMARY 101

CONCLUSIONS AND FUTURE WORK 102

6.1 SUMMARY OF CONTRIBUTIONS 102

11

6.2 FUTURE DIRECTIONS 104

BIBLIOGRAPHY 106

111

LIST OF FIGURES

Figure 1.1 HTML and XML Containing the Same Data 2

Figure 1.2 Framework of Distribution ([OV99])® 7

Figure 1.3 Fragmentation of a XML Document in a DXDB 9
Figure 2.1 Distributed Database Environment [0V99] 32
Figure 2.2 Client/Server Architecture [0V99] 33
Figure 3.1 Sample XML Documents in the Relational Framework of XML 51
Figure 3.2 Template 1 53
Figure 3.3 Template 2 56
Figure 3.4 Conversion Between Relational Schemas and Table Element Structures 62
Figure 4.1 XML Document Sample-1 65
Figure 4.2 Tree Structure of Sample-1 66
Figure 4.3 Sample XML Document xml 70
Figure 4.4 Sample XML document xmli 71
Figure 4.5 Sample XML Document xml2 71
Figure 4.6 Sample XML Document xml's Schema Document 74
Figure 4.7 Expression of Relationships among Elements of xml 75
Figure 4.8 Primary Horizontal Fragmentation of Sample XML Document xml 80
Figure 4.9 Horizontal Fragmentation of Table Element SUBSIDY 84
Figure 4.10 Horizontal Fragmentation of the Table Element SUBSIDY 86
Figure 5.1 Denormalization of SUBSIDY and STAFF 89
Figure 5.3 An Example of a Nested Table Element 96
Figure 5.4 Denormalizing Two Linked TBEs into a NTBE 98
Figure 5.5 Horizontal Fragmentation of NTBE STAFF 100

iv

Chapter 1

Introduction and Preview

1,1 Motivation

The Internet has expanded remarkably and vibrantly since the last decade of the 20th

century. Undoubtedly the expansion of the Internet will accelerate due to the maturity of

technologies such as the Extensible Markup Language (XML). Database systems are

well known for their consistent database definition, construction, and manipulation of

data used for electronic commerce. However, the heterogeneity of database systems

makes data exchange and integration among different systems very challenging. Previous

hard-coded HTML (Hyper Text Markup Language) approaches do not scale well to meet

the future needs of the web [Bosa0l]. XML helps overcome these problems and is

rapidly emerging as a popular data format on the web.

XML documents are self-describing, which means that the relation between a document's

content and its structure can be found within each XML document (see Figure 1.1).

Similar to HTML, tags are also used in XML. However, tags in XML do not define the

"formatting" of the content. Instead, tags are semantically related to the content enclosed

1

within the open and close tags. Furthermore, XML documents can be validated by

predefined schemas or DTDs (Document Type Definition) to standardize the format and

content of XML documents.

HTML

<html>
<body>

<p>
<h2>John Smith</h2>
<h3>Dept. of IT</h3>

</p>
</body>

</html>

XML

<?xml version="l .0" encoding "UTF-8"?>
<employee>

<name>John Smith</name>
<department>Dept. of IT</department>

</employee>

Figure 1.1 HTML and XML Containing the Same Data

The growing popularity of XML will lead to large repositories of XML data. It is natural

to consider using file systems to store XML documents. Unfortunately, apart from storing

XML files, file systems do not provide any additional functionality to manage XML

documents. Therefore we need more sophisticated ways to manage XML data. Currently,

there are two main directions being investigated to build XML databases: XML enabled

and Native XML databases. These are specified in detail in Chapter 2.

The Internet provides a computing environment that is heavily "networked". Data

distribution and integration have been studied intensively during the past three decades.

The main reasons for having distributed computer systems are:

• Market forces: the use of distributed technologies is a must for almost all large

and middle-size companies.

• Lower cost: A number of PC computers are cheaper and more powerful than

one mainframe systems serving hundreds of terminals [Koss00].

• Increased scalability: adding a new network node becomes easier , when

responding to extensibility needs of the company.

2

• Increased availability: by replicating data over several sites, data is closer to the

end user and more resistant to system failures.

• Improved performance: since each site only handles a portion of the database,

contention for CPU and 110 is not as severe for centralized databases and

localization reduces remote access delays that are usually involved in wide area

networks.

A distributed database system (DDB) is an information system composed of a networked

collection of multiple databases that are logically interrelated. A distributed database

management system (DDBM) is a software facility that permits the management of the

DDB and makes the distribution transparent to the users [OV99]. Data fragmentation is a

challenging problem with which a DDB must contend and it is a part of the DDB design

problem.

Relational database systems have been thoroughly investigated so they can be distributed.

Since XML is more suitable for web data, we need to adopt XML databases for data

storage. However, this does not mean that we are going to replace traditional databases

with XML databases for all applications. We argue that XML databases provide robust

storage and manipulation of XML documents. This thesis investigates one aspect at the

construction of a distributed XLvIL database system (DXDB).

A DXDB, similar to a DDBS, must distribute data over different sites. However, no work

has appeared in the literature on fragmenting XML documents in a distributed XML

database environment. Furthermore, very little work has been proposed for designing a

XML document that minimizes redundancy and has good structure.

In this thesis, an approach is proposed where relational techniques are applied to design a

distributed XML document. An example of a company that has branches across different

cities is used to demonstrate the approach. Clearly a distributed solution is required. Each

site must manage a portion of the whole XML document according to the user's

application needs. Since normalizing relational designs eliminates data redundancy

3

efficiently, producing a normalized XML document should also eliminate redundancy.

Further, to respect the nested structure of the XML document and enhance the

performance when answering queries, denormalization is investigated based on the model

proposed in Chapter 3. This thesis explores a new way to manage XML documents and

benefits from both relational design theories and XML specifications. This is one of the

first items, to the author's knowledge that studies designing and fragmenting XML

documents in a distributed computing environment.

The next section describes the issues in designing a XML document. Section 1.3

discusses the requirements for XML databases. Section 1.4 presents the fundamental

research issues of this thesis. Section 1.5 addresses an overview of the contributions and

describes the organization of the rest of the thesis.

1.2 Design Issues In XML documents

Although XML is becoming a standard for document processing and interchange on the

Internet, it does have several shortcomings. One challenging problem is how to determine

that the design of a XML document is "good". XML is "free-form", i.e. a XML

document is valid as long as it complies with the XML syntax. W3C (World Wide Web

Consortium) set up the "well-formedness" criteria for XML documents, which state the

conditions that need to be adhered to when creating XML documents. These are rules to

define and control how the documents are created. However this recommendation does

not specify the structure for XML document.

A well-defined database system is based on a well-defined data model. The relational

data model is based on the mathematics of set theory. The strength of the relational

approach to data management comes from the formal foundation provided by the theory

of relations. Further, there are many design models available when designing a database,

such as the Entity-Relationship (ER) and Object Models.

In contrast, the data model for XML is simple and flexible. A XML document is no more

than a tree structure. In addition, this "tree" is ill-defined due to the lack of fundamental

4

theory and design rules. The hierarchical data structure of XML cannot model a many to

many relationship well. Further, redundancy is a substantial problem for XML

documents. Unfortunately, we cannot change the nature of XML. Thus, to overcome

these drawbacks of XML, we must constrain them by applying some design rules. Many

mechanisms for conversions between relational databases and XML have been proposed

so it is natural to consider applying relational techniques to XML document design. The

question is "how?" and to what extent?

13 Requirements for XML Database Systems

As more XML data is used by different types of applications, there is a need to

effectively manage the XML documents as a database. Salminen [Sam101] defines aXML

database as "a collection of XML documents and their parts, maintained by a system

having capabilities to manage and control the collection itself and the information

represented by that collection". It is not just a repository of semi-structured data.

Managing persistent XML data requires the ability to deal with data independence,

integration, access rights, versions, views, integrity, redundancy, consistency, recovery,

and the enforcement of standards.

1.3.1 The Data Model

Researchers in the database community have actively investigating XML [VianOl].

However, the need to integrate the management of structured documents with the

management of other types of data makes the underlying data model very challenging.

The XML data model is often represented with a labeled tree [Chan+02] or directed

graph [Kaus+02]. There are four different specifications proposed by W3C: the Jnfoset

model [Cowa+01], the Xpath data model [Clar+99], the DOM model [LeHo+00], and the

XQueryl.0 and XPath 2.0 Data Model [Fern+01]. Among these four models, only the

XQuery 1.0 and Xpath 2.0 Data Model supports inter-document and intra-document

links. An XML database should be built on a model that supports collections of inter-

related documents, document fragments, and other related forms of data.

5

Data in relational database systems is managed through a three-level architecture

separating the conceptual model from an internal model and a set of external models.

Data independence relies on the principle that the conceptual model is isolated from the

physical storage of the data. All applications must access the data through the external

model. By applying these rules to an XML database the conceptual model incorporates

not only all the objects and relationships to be modeled in the enterprise, but also all the

document components available to any XML application.

Another issue for the data model of a XML database is Document equivalence

[Raym+96]. For instance, before inserting a document into the database, we may want to

know if the same document exists already. This issue is important for archiving, version

management, metadata management, and query optimization. The XML 1.0 specification

Infoset, Xpath, and DOM models do not define equality of documents or entities. The

equality of node values is clarified in the Xquery 1.0 and XPath 2.0 model through an

equality operator. However it does not cover all data in a XML document.

1.3.2 Data Definition

The XML specification defines nineteen primitive data types for an attribute and/or an

atomic element. Like a conventional database, a XML database should have its own Data

Definition Language (DDL) and Data Manipulation Language (DML) to define and

manipulate each kind of data. To date, there is no generally accepted DDL or DML.

An XML database system should support collections of different document types (e.g.,

DTDs, XML Schema, XSLT, etc.) as well. Due to the diversity of user's needs and the

continually evolving international and industry-level standards, the emerging XML

database system must cope with this evolution.

1.3.3 Data Manipulation

In a XML database, the DML is used to compose queries upon data in the database,

including entities, URIs, tags, comments, processing instructions, schemas and other

metadata. However, currently available XML query languages, such as Lorel [Gold+99],

6

XML-QL [XML-QL], XQL [Robi99], and XQuery [Cham+Ol] do not support access to

entities, entity references, or notations.

The DDL for a XML database should allow for the definition of views that hide the

physical structure of XML documents. Constructing a new document from the fragments

of a collection of existing documents should also be supported in a XML database.

1.3 Data Distribution Issues in a Distributed Computer System

Ozsu and Valduriez [OV99] argue "the design of a distributed computer system includes

making decisions on the placement of data and programs across the sites of a computer

network". Data distribution is a core issue in designing a DDBM.

There are three orthogonal dimensions along which the organization of distributed

systems can be investigated: the level of sharing, the behavior of access pattern, and the

level of knowledge on access pattern behavior. Figure 1.2 illustrates the alternatives

along these dimensions.

Access
pattern

Dynamic

Data

Data +
program

Sharing

Partial
Information

Level of
knowledge

Complete
information

Figure 1.2 Framework of Distribution ([OV99])®

@ Used with permission 7

The level of sharing has three options. First, there is no sharing when each site executes

and accesses its own applications and data, and there is no communication among

applications or data access to other sites. The data sharing level occurs when all

programs are replicated at all sites but data files are not. Finally, in data-plus-program

sharing, both data and programs may be shared, which means that an application at a

given site can request a service from another program at a second site that may have to

access data located at a third site.

In a distributed database system, a relation may be partitioned horizontally, vertically, or

both into small fragments for distribution across sites. Since a distributed XML database

system is a distributed computer system as well, it is natural and necessary to consider

fragmenting the XML documents. Several algorithms [0V99] [NAVA95] have been

proposed to fragment relations in the distributed database systems. However, to date this

issue has never been considered for a DXDB.

14 Preview: Fundamental Research Issues

The challenges in document fragmentation in DXDBs are associated with the complexity

of the distributed computing environment, the nature of XML, and the immature

architectures for XML databases. These factors raise a number of issues. This section

presents the key thesis elements and provides an overview of the key research issues in

document fragmentation for DXDBs.

1.4.1 Thesis Overview

This thesis broadly addresses the document design problem in XML. Specifically, the

document fragmentation problem in Distributed XML Database Systems is discussed.

Issues of applying relational techniques to XML document design are identified. In

particular, attention to horizontal fragmentation of XML documents is studied. Different

architectural models for XML databases are discussed in the thesis. Further, based on our

relational design models for XML documents, the procedure for designing a XML

document is provided. Templates are provided to convert the design result to XML

8

Schema documents. Finally, algorithms to fragment a XML document horizontally are

given.

The thesis uses the example specified in Chapter 4 for their fragmentation in a distributed

database system. It includes four related entities each including data for employees,

projects, subsidy, and assignment, respectively.

1.4.2 Key Issues

Although much research on XML technologies has appeared, none have addressed the

issues of XML document design and fragmentation. This thesis initiates research on these

two questions and addresses the following issues:

• Adapts relational techniques to XML document design.

• Proposes the relational design framework for XML documents.

Identifies document fragmentation issues in distributed XML database systems.

• Provides algorithms to fragment XML documents horizontally.

Figure 1.3 Fragmentation of a XML Document in a DXDB

XML
Database

Fragment 2

Site 3

XML
Database

Fragment 3

9

Architectural Models for XML Databases

Several architectural models have been proposed for XML databases. Most are

commercial products that store and manage XML data. Currently, there are two main

categories: XML-enabled databases and Native XML databases. This section reviews

currently available commercial XML storage systems.

XML-enabled databases hold data in some format other than XML. An interface is

provided so that XML can be presented to an application even though the data is stored in

some other format. An XML-enabled database could be a relational database, object-

relational database, or an object-oriented database. Some object-relational mapping tools

are also designed to work with XML.

Oracle XML SQL Utility (XSU) allows users to store XML by mapping it to an object-

relational model. Mapping rules are embedded in the database model. The relational

result is a collection of nested tables. XPath expressions can be nested within SQL

queries. Oracle 9i supports XML-enabled databases. By providing SQL features

implemented at the engine level, it allows user to view relational data as XML and XML

data as relational data. A new data type: XMLType is added, which is a predefined object

type that can store an XML document. A number of operators have been added to SQL to

enable the conversion between XML and relational data. XMLType data can be stored in

either of two ways: with object-relational storage or as a CLOB (Character Large Object).

CLOB storage can round-trip XML documents exactly, while object-relational storage

round-trips them at the level of the DOM. CLOB storage uses text indexes, while object-

relational storage uses BTree indexes. Further, data stored with the object-relational

mapping is directly available to non-XML applications, while data stored with CLOB

storage can only be accessed by XML-aware applications.

Microsoft's SQL Server [ConrOl] stores XML documents in three steps. First, a

sp_xmlpreparedocument stored procedure is invoked on source XML document to

produce a DOM representation of the XML document stored .in the memory. Second,

mapping between relational tables and XML paths to atomic elements of DOM data is

10

stored in relational tables. Finally, sp_xml_removedocument stored procedure removes

the DOM from memory. Microsoft SQL Server 2000 supports XML in three ways: the

FOR XML clause in SELECT statements, XPath queries that use annotated XML-Data

Reduced schemas, and the OpenXML function in stored procedures. SELECT statements

and XPath queries can be submitted via HTTP, either directly or in a template file. SQL

Server has another tool called "Annotated XML-Data Reduced schemas", also known as

mapping schemas. These schemas contain extra attributes that map elements and

attributes to tables and columns. These specify an object-relational mapping between the

XML document and the database, and are used to query the database using a subset of

XPath. A tool exists to construct mapping schemas graphically.

Additionally there are a number of XML-enabled databases available currently such as

ACCESS 2002 [Rice02], Cache, DB2 [Mala02], eXtremeDB [Mcob], among others.

However, XML and SQL do not match on a number of levels. They use different data

types and the free nested structure of XML documents does not mesh with a relational

database's rigid table structures. Further, when an XML document is stored in a relational

table, information can be lost, such as the element ordering and the distinction between

attributes and elements. Hence, we consider using a native XML database.

Native XML databases allow XML data to be stored directly, which means populating a

new database with the XML data. Native XML databases are likely to perform better than

XML-enabled databases since ideally there is no need to convert the data. The data

conversion in an enabled database is always more significant and time consuming than

with a native database.

Sonicts eXtensible Information Server (XIS) [Sonic] uses XPath as its query language,

which does not allow for joins or sorted query results. XIS uses an XML-based language

for updates. It also offers Java- and COM-based programming APIs, database triggers,

and XSLT transformations. Getting an XML database initially filled with data is

especially easy because XIS can import data from any OLE DB or ODBC data source.

XIS has separate index types for text and numeric data. Unfortunately, XML validation

11

happens only once, when files are imported so later updates cause a mismatch in the DID

but XIS does not complain.

The Ipedo XML Database [Ipedo] is notable for supporting both XPath and XQuery.

XQuery is more computationally complete than XPath, with a full programming language

for writing queries, plus support for sorting, filtering, grouping, and joins. It also accepts

XML Schema and DID files to define database structures.

Adopting native XML database presents challenges too because relational data becomes

hard (or impossible) to access and the software is immature in terms of data-integrity

features, programmability, concurrency, and standardization.

Both XML-enabled and Native XML databases have critical drawbacks that make them

uncompetitive with relational databases on many perspectives. We observe that a major

problem with a XML document is the lack of design rules. To overcome this, this thesis

applies the relational techniques to designing XML documents. A new architectural

model for XML databases is proposed to deal with this type of XML document. A XML

document designed in the relational framework combines good features from both XML

and relational data.

Data Fragmentation in a XML Database

In the case of a distributed XML database system, XML documents must be fragmented

and allocated across different sites to improve system performance and reliability.

Designers may present the same data in different structures in a XML document. Thus,

given an arbitrary XML document, it is impossible to find generic criteria to fragment it

due to the flexibility of the nested structure of a XML document.

This thesis argues that, for a data-centric XML document, we may design it using

techniques found in the relational model. XQueryl .0 and XPath 2.0 Data Model now

supports joins across documents making our relational framework for XML more suitable

to the design of data-centric XML documents. Since the data within a XML document in

12

this design is presented in a relational way, the management system may adopt mature

techniques and algorithms used in relational databases to handle the data.

Furthermore, we modify existing algorithms that partition relational tables to fragment

XML documents in the relational framework. In this thesis, horizontally fragmenting a

XML document is discussed. A treatment of data fragmentation for XML is the topic of

Chapter 4.

1.5 Contributions and Structure of Thesis

In this thesis, the problems posed by the above issues and the solutions to address them

are analyzed. First, we note that a set of rules for XML document design is very

desirable. A good XML system is built based on solid design principles. Document

design is the fundamental part for the design of a XML system. However, except for the

well-formedness specified in [XML 1 .0], there is no criteria to evaluate what constitutes a

good design for a XML document. In addition, since the size of a XML document is

usually huge, the inherent redundancy becomes a prominent problem. This thesis

provides a very generic design for XML documents by applying relational design

techniques. Both bottom-up and top-down designs for XML documents are proposed.

Second, the main drawbacks of current XML database products are identified. These

drawbacks are primarily due to the ill-defined nature of XML documents. Third,

procedures for designing a XML document in the relational framework are proposed.

Normal forms and a relational framework for XML documents are defined. Finally, based

on our design model for XML documents, fragmenting a XML document becomes

possible in a distributed XML database environment. Algorithms are provided to

fragment XML documents horizontally. Further this thesis considers the nested structure

of XML and the feature of XML applications resulting in a combination of relational

techniques and XML technologies. Algorithms for fragmenting XML documents with

nested elements are presented. The fragmentation examples used in this thesis have been

coded using XML, XPath, and VbScript. It must be noted that the implementation of this

thesis provides an abstract framework that can be effectively utilized by any distributed

XML applications.

13

The balance of this dissertation is organized as follows: Chapter 2 provides the necessary

background and related work in the area of XML and distributed design. Chapter 3 gives

the formal model of the relational framework of XML. Based on this model, the

procedure for designing a XML document is provided. Chapter 4 addresses the data

fragmentation issues in XML and presents algorithms to fragment XML documents

conforming to the relational framework. Chapter 5 presents algorithms for fragmenting

XML documents with elements nested to a certain level.

Finally, in Chapter 6, a summary of our work and its contributions is provided. A

discussion about XML document design and data fragmentation issue in XML by

applying relational techniques is addressed. Chapter 6 concludes by providing an outline

of future research directions.

14

Chapter 2

Background and Related Work

This chapter introduces the reader to the necessary background and related research work

in XML technologies. Section 2.1 provides an introduction to XML (extensible Markup

Language). In Section 2.2, we discuss data fragmentation in distributed database systems.

Section 2.3 presents various XML databases. Section 2.4 concludes this chapter with a

summary.

21 XML (eXtensible Markup Language)

2.1.1 What is XML?

EXtensible Markup Language (XML) is a markup language capable of describing data.

However, unlike HTML, its tags are not predefined, which means you must define your

own. XML is "self describing" but can use a DTD (Document Type Definition) or XML

schema to formally specify valid data.

XML is not a replacement for HTML as it has different design goals. XML is designed to

describe data and to flexibly represent it. In contrast, HTML is designed to display data

on a web browser. Thus HTML displays information, while XML describes information.

15

The tags used to markup HTML documents and the structure of HTML documents are

predefined. The authors of HTML documents can only validly use tags that are

predefined. XML allows authors to define their own tags and their own document

structure.

XML documents must be well-formed. This means that they do not have to be created

using predefined structures, but must comply with XML constraints. These constraints

require that elements, which are named content containers, properly nest within each

other and use markup syntax correctly. Well-formed XML elements are defined by their

use, not by a rigid structural definition, allowing authors to create elements in response to

their individual needs. This flexibility offers authors greater control over document

processing and design than in traditional SGML environments, in which structure must

be formally defined in a DTD before any documents can be written.

XML frees Web authors from the predefined tags that characterize the fixed nature of

HTML. HTML cannot be expanded or altered so its description power is constrained. For

example, authors can describe documents in XML using their own names, such as

ESSAY, SECTION, PARAGRAPH, NOTE, and IMPORTANT. After writing the

document, the author can change an instance of the PARAGRAPH element to a different

tag such as TAKENOTICE to signify that that instance differs from and contrasts with

the rest. The flexibility of XML allows authors to describe documents as they see fit.

Authors can publish XML documents with XSL, CSS, or DSSSL style sheets, which

provide Web browsers and conversion tools with styling information for each element so

documents are expressed in desirable ways.

The Web will likely utilize XML to structure and describe web data, while HTML will be

used to format and display the data. In the future XML is likely to be used for data

transmission and manipulation over the web.

XML's potential impact is significant, for Web servers and applications encoding their

data in XML quickly makes their information available in a simple and usable format and

such information providers can interoperate easily.

16

It is also worthwhile to note that XML differentiates between information content and

information rendering (using XSL eXtensible Stylesheet Language), indeed reducing the

effort in extracting usable data, as opposed to HTML, where one would have to follow

laborious and error-prone methods such as screen scrapping to extract useful information.

Further XML is an evolving standard and is actively pursued and promoted by key

industrial players.

2.1.2 Different ways to use XML

Computer and database systems often contain data in incompatible formats. A critical

costly challenge is to exchange data between heterogeneous systems over the Internet.

Converting the data to XML can greatly reduce this complexity and create data that can

be read by different types of applications.

XML can be used to store data in flat files or databases. Applications can then be written

to store and retrieve information from these repositories as needed.

2.1.3 XML Syntax

Before exploring XML deeply, it is essential to understand a basic XML document. This

section briefly introduces the syntax of XML.

2.1.3.1 Element

Elements are used to model structured data and are encoded using start and end tags.

Elements typically make up the majority of the content of an XML document. Elements

can have children, which can themselves be elements or may be processing instructions,

such as comments, CDATA sections, or characters. Elements begin with an open tag and

end with a close tag as follows:

<tagname>content</tagname>

17

The children of an element are enclosed between the open and close tags of their parent.

For example, an element called 'parentelement' with a single child element called 'child'

that contains no children itself is presented as follows:

<parentelement>

<child>Hello ! </child>

</parentelement>

2.1.3.2 Tag names

XML does not have a fixed vocabulary of predefined element names but allows element

vocabularies to be invented. When designing new vocabularies, element names that

convey some semantic meaning to human readers should be used. While the majority of

XML documents will be generated and consumed by machines, having element names

that mean something aids in human readability during the development phase; especially

when debugging.

Element names in XML are case sensitive and must begin with a letter or an underscore

U. The initial character can be followed by any number of letters, digits, periods (.),

hyphens (-), underscores 0 or colons (:). Element names beginning with "xml" are

reserved by the XML specification for future use. The following elements all have invalid

names:

<xmlfoo I>

<XMLfoo I>

<XinlFoo I>

2.1.3.3 Namespaces and Namespace Declarations

To distinguish between element names in different XML vocabularies, the Namespaces

in the XML Recommendation [XML1.O] provides rules for defining and using

namespaces to disambiguate names in XML documents.

The possibility of name collision is quite high because XML was designed to allow the

creation of new vocabularies. This makes it difficult for software (and humans) to know

18

how to unambiguously process a given XML document. Consider an example: Software

developer A decides to model a person in XML and needs to store the name, age, and

height for the person, and to use element names of name, age, and height for those data

items. An example instance of such a person would look like this:

<Person>
<name>Mary</name>
<age>32</age>
<height>64<Iheight>

</Person>
Software developer B decides to model a person in XML and needs to store the same data

items and settles on the same element names. However, when describing the same person

as in the previous example, B's instance looks like this:

<code xml:space='preserve'>
<Person>

<name>Mary<Iname>
<age>20</age>
<height> 162</height>

</Person>
</code>

The element names of A and B's instance are the same, but in the case of age and height

the values contained between the open and close tags are different. The reason is that A

used base 10 for age and gave height in inches, whereas B used base 16 for age and gave

height in centimeters. XML namesp aces provide a way to unambiguously distinguish

between different XML vocabularies.

Using namespaces in XML involves associating element names with a Uniform Resource

Identifier (URI). This URI serves as a unique string and forms the namespace name. The

namespace name acts as a scope for all elements that are associated with the namespace.

An element is associated with a namespace through a combination of a namespace

declaration and a namespace prefix. The namespace declaration defines the prefix that

represents the namespace URI. The prefix is then pre-pended to the element name.

Namespace declarations take the form 'xmlns: prefix="URI" and appear inside the

element start tag. For example, the following XML shows a Person element in the

'http://www.cpsc.ucalgary.ca'namespace.

19

• <r:Person
xmlns:r='http :1/ www.cpsc.ucalgary.ca/yingqi/xml'></r:Person>

The prefix in this example is Y. Note that the closing tag must use the same name,

including the prefix, as the opening tag. Note also that the prefix used is arbitrary. The

name of namespace-qualified elements is made up of two parts: the prefix and the local

name. In this example, the prefix is 'rt and the local name is 'Person'. This (prefix:local

name) construction is known as a Qualified Name (Qname). Each part of a QName is a

non-colonized name. Colons are used to separate the namespace prefix from the local

name so element names containing colons must be avoided.

It is possible to omit the prefix and the colon but still associate an element with a

namespace using a default namespace declaration. This takes the form of 'xmlns="URI'tt.

For example, <Person xmlns=thttp://www.cpsc.ucalgary.cah/>, defines an element that is

semantically equivalent to the previous example.

2.1.3.4 Scope of namespace declarations

Namespace declarations come into scope at the defining element and apply to all

descendants unless overridden by a namespace declaration on a descendant. All

namespace declarations have a scope (that is a set of elements to which they apply). A

namespace declaration is in scope for the element it is declared at and all of that element's

descendants.

2.1.3.5 Attributes

Elements can be annotated with name/value pairs known as attributes. Attributes are

typically used to encode metadata; that is, they provide extra information about the

content of the element on which they appear. The attributes for a given element are

serialized inside the start tag for that element. Attributes appear as name/value pairs

separated by an equal sign (=).

20

Attribute names have the same construction rules as element names. Attribute values are

textual in nature and must appear either in single (') or double quotes ("). Attribute values

may not contain the literals less-than (<) or ampersand (&) characters.

Attributes respect namespaces in the same way as the elements. The only difference

between elements and attributes with respect to namespaces is that the default namespace

declaration does not apply to attributes. This means that attributes without prefixes are

always in 'no namespace' even if a default namespace declaration is in scope.

The following example illustrates namespace-qualified attributes:

<Person xmlns=http://www.ucalgary.ca/—yingqi/xml'
xmlns:b='http :1/ www.ucalgary.ca/-yingqi/xml/base'
xmlns:u='http:/I www.ucalgary.ca/'-'yingqi/xml/units'>
<name>Mary</name>
<age b :base=' 1O'>32</age>
<height u:units='inches'>64</height>

</Person>

The following example illustrates attributes in 'no namespace':

<Person xmlns='http :1/ www.ucalgary.caJ'-yingqi/xml'>
<name>Martin</name>
<age base='l O'>32</age>
<height units='inches'>64</height>

</Person>

2.1.3.6 Text

Certain character literals are illegal inside element and attribute content. XML provides

several standard character entities for encoding these characters along with character

references and CDATA sections.

Five character literals (<,>, &, ', and ") have certain limitations in terms of where they

can legally appear in an XML document.

Certain characters cause problems when used as element content or inside attribute

values. Specifically, the less-than character (<) cannot appear either as a child of an

21

element or inside an attribute value as it is interpreted as the start of an element. The

same restrictions apply to the ampersand character (&) although for different reasons. If

the less-than (<) or ampersand (&) characters must be encoded as an element child or

inside an attribute value then a character entity must be used. Entities begin with the

ampersand character (&) and end with a semicolon (;). The name of the entity appears

between the two. XML defines entities for the less-than character (<) and the ampersand

character (&) as < and &, respectively.

The apostrophe (t) and quote characters (") might also need to be encoded as entities

when used in attribute values. If the delimiter for the attribute value is the apostrophe, the

quote character (") is legal; but the apostrophe character (') is not, as it would signal the

end of the attribute value. If an apostrophe is needed the character entity, ' should be

used. For example,

<sayhello word=t&apos;Hi&apos;' I>

would result in the following being displayed or parsed:

<sayhello word=''Hi'' I>

A fifth character reference (>) is also provided for the greater-than character (>). While

such characters seldom need to be escaped, it provides a nice symmetry with the less-than

character (<).

CDATA sections allow markup characters to appear as literals without being interpreted

as markup. Using entities in place of less-than (<), greater-than (>), ampersand (&),

apostrophe ('), and quote (") characters can become tedious and error-prone if a

significant number of those characters appear in textual data. XML provides a construct

called a CDATA section that allows such characters to appear as literally.

A CDATA section begins with the character sequence (<![CDATAD and ends with the

character sequence (I]>). Between the two character sequences a XML processor ignores

all markup characters such as less-than (<), greater-than (>), and ampersand (&). The

only markup an XML processor recognizes inside a CDATA section is the closing

22

character sequence (I]>). The following XML shows a CDATA section containing literal

less-than (<), greater-than (>), ampersand (&), apostrophe (')'and quote (") characters.

<sometext>

<![CDATA[They're saying "x < y" &

that "z > y " so I guess that means that

z > x]]>

</sometext>

Comments are used to communicate information about the content of an XML document.

They often contain documentation about the structure or content of the XML in which

they are found. XML also supports comments that are used to provide information to

humans about the actual XML content. They are not used to encode actual data.

Comments can appear as children of elements or of the document. They begin with <!

and are terminated with -->. Textual data is serialized between the two constructs. For

compatibility with SGML the character sequence -- cannot appear inside a comment.

Other markup characters such as less-than (<), greater-than (>) and ampersand (&) can

appear inside comments, but are not treated as markup. If the textual content of the

comment ends with the hyphen (-) character, there must be some whitespace between the
hyphen and the close comment character sequence (>).

2.1.3.7 Processing instructions

Processing Instructions (PT) are information for the application. PIs allow documents to

contain instructions for applications. They are ignored by the XML parser. Instead, the

instructions are passed to the application using the parser because the purpose of

processing instructions is to represent special instructions for the application.

Processing instructions are composed of two parts: the target or name of the processing

instruction and the data or information. The target is preceded by the character sequence

(<?). The target is followed by a whitespace and then the data portion of the processing

23

instruction. The data portion is textual and can contain whitespace. The processing

instruction is terminated with the character sequence (?>).

Apart from the termination character sequence (?>) all markup is ignored, in processing

instruction content. Processing instructions defined by organizations other than the W3C

should not have targets that begin with the character sequence (xml). The following are

all valid processing instructions:

<?display table-view?>

<?xml version--" 1.0" encoding="UTF-8"?>

Processing instructions can appear as children of elements or as top-level constructs

(children of the document) either before or after the document element.

Processing instructions are not specified by the Namespaces in the XML

recommendation and the target portion of a processing instruction is not part of any in-

scope namespace. This raises the possibility of collision among processing instruction

targets between applications. However, namespace qualified elements can be used instead

of processing instructions.

2.1.3.8 Version declaration

Version declaration, as a type of Processing Instruction, is information for the

application. XML documents start with an XML version declaration (XML

declaration), which specifies the version of XML being used. Although the XML

version declaration is optional, it is recommended by the W3C specification. The XML

declaration is a processing instruction that notifies the processing agent that the following

document has been marked up as an XML document. It appears as follows:

<?xml version="l.O"?>

24

The version declaration can also contain other information such as an encoding or stand

alone declaration.

Encoding declarations inform the processor of the kind of code the document uses (e.g.

UFT8, which is the ASCII character set). All XML parsers support 8-bit and 16-bit

Unicode encoding corresponding to ASCII. However, XML parsers may support a larger

set. A list of encoding types is available [XML1.0].

<?xml version=" 1.0"? encoding="UTF-8"?>

Standalone declarations tell the processor whether the document can be read as a

standalone document, or if it needs to look outside the document for the rules. Thus, if

standalone is set to "yes", there will be no markup declarations in external DTDs. Setting

it to "no" leaves the issue open. The document may or may not access external DTDs.

<?xml version=" 1.0" encoding="UTF-8" standalone="yes"?>

2.1.4 Document Type Definition (DTD)

A DTD is a set of rules that defines what tags appear in a XML document; what attributes

the tags may have; and what relationship the tags have with each other. When an XML

document is processed, it is compared to the DTD specialization to ensure it conforms to

the correct structure and all tags are used properly. This comparison process is called

validation and is performed using a parser. Example for a DTD:

<!DOCTYPE course [
<!ENTITY COM "Computer Science">
<!ENTITY SOF "Software Engineering">

<!ELEMENT course (name+, department+, year+)>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name

xml:lang NMTOKEN "EN"
id ID #IMPLIBD>

<!ELEMENT depai linent (#PCDATA)>
<!ELEMENT year (#PCDATA)>

]>

Recall that a DTD is only needed to validate a XML document.

25

2.1.4.1 Internal DTDs

Internal DTD (markup declaration) are inserted within the doctype declaration. DTDs

inserted in this way are used for the specific document in which it is found. This might be

a suitable approach when a small number of tags in a single document occur:

<!DOCTYPE course [
<!ENTITY COM "Computer Science">
<!ENTITY SOF "Software Engineering">

<!ELEMENT course (name+, department+, year+)>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name

xml:lang NMTOKEN "EN"
id ID #IMPLIED>

<!ELEMBNT department (#PCDATA)>
<!BLEMENT year (#PCDATA)>

:1>
<course>

<name id="47 1 ">Database Design</title>
<department>&COM;</department>
<year>200 1</year>

<name id"695 ">Web Application Design</title>
<department>&SOF;</department>
<year>200 1</year>

</course>

2.1.4.2 External DTD

DTDs can be very complex so creating a DTD may require substantial expertise. DTDs

are stored as ASCII text files with the extension '.dtd'. In the following example we

assume, that the previous internal DTD is saved as a separate file (under the name

course.dtd), and is therefore referred as an external definition (external DTD):

<?xml version="l.O"?>

<!DOCTYPE course SYSTEM "course.dtd">

<course>

<name id="471 ">Database Design</title>

<department>&COM;</department>

<year>200 1</year>

26

<name id="695 ">Web Application Design</title>

<department>&SOF;</depai tiiient>

<year>200 1</year>

</course>

2.1.5 XML Schema

Schemas, like Data Type Definitions (DTD), define the elements that can appear in an

XML document and the attributes that can be associated with those elements. The XML

Schema language is also known as the XML Schema Definition (XSD).

Schemas define the documents structure - which elements are children of others, the

order the child elements can appear, and the number of child elements. Schemas specify

if an element is empty or if it must include text. They can also specify default values for

attributes. Schemas are more powerful and flexible than DTDs and use XML syntax.

Independent developers can use a common schema to exchange XML data. A new

application can use this agreed upon schema to verify the data it receives. Verifying an

XML document against the schema is known as validating the document.

Schema standards are defined by the World Wide Web Consortium [W3C]. The W3C

provides a comprehensive reference for XML schemas. An overview of XML Schemas is

presented here.

2.1.5.1 The Schema element

The <schema> element is the root element of every XML schema. It may contain

attributes as shown in Example person.xsd. The fragment on line 3 indicates that the

elements and data types used in this schema (schema, element, complexType, sequence,

string, boolean, etc.) come from the "http://www.w3.org/2OO1/XMLSchema" namespace.

It also specifies that the elements and data types that come from the

"httpi/www.w3.org/2001/XMLSchema" namespace should be prefixed with "xs:"

27

Example person.xsd

1 <?xml version--" 1.0"9 encoding = "UTF-8">
2 <xs:schema
3 xmlns:xs="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.cpsc.ucalgary.cal-'yingqi/xml"
5 xmlns="http:// www.cpsc.ucalgary.cal--'yingqi/xml"
6 elementFormDefault="qualifled">

</xs:schema>

Line 4 indicates that the elements defined by this schema come from the "http://

www.cpsc.ucalgary.cal—'yingqi/xml" namespace. The default namespace "http :1/

www.cpsc.uca1gary.caJ'yingqi/xm1" is specified on line 5. Line 6 indicates that any

elements used by the XML instance document that were declared in this schema must be

namespace qualified.

The following example shows how a XML document refers to a XML Schema.

1 <?xml version="l.O"?>
2 <person xmlns" http://www.cpsc.ucalgary.ca/—yingqi/Xml
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation" http://www.cpsc.uca1gary.caJyingqi/xml sample.xsdtt>
5 <name>Mary<!name>
6 <age>20</age>
7 <sex>female</sex>
8 </person>

From line 2 we know that the default namespace is

"http://www.cpsc.ucalgary.ca/—yingqi/xml". This declaration tells the schema-validator

that all the elements used in this XML document are declared in the

"http://www.cpsc.ucalgary.ca/-'yingqi/xml't namespace. Line 3 indicates the XML

Schema Instance namespace so that you can use the attribute schemaLocation on line 4.

2.1.5.2 Simple types

A simple XML element can only contain text so it cannot have other elements or

attributes. However, the text can be of many different types. It can be any of the types

28

included in the XML Schema definition (boolean, string, date, etc.), or it can be a custom

type.

To limit element content, restrictions (facets) can be applied to a data type, to ensure the

data matches a defined pattern. XML Schema has a several built-in data types:

• string

• decimal

• integer

• boolean

• date

• time

Simple elements can have a default value or a fixed value set. In the following example

the fixed value is "circle":

<element name="shape" type="string" fixed=" circle "I>

All attributes are declared as simple types that can have a default or fixed value.

Restrictions (facets) are used to control acceptable values for XML elements or attributes.

The constraints include:

• enumeration: Defines a set of acceptable values.

• fractionDigits: Specifies the maximum number of decimal places allowed

must be equal to or greater than zero.

• length: Specifies the exact number of characters or list items allowed but

must be equal to or greater than zero.

• maxExciusive: Specifies the upper bounds for numeric values (the value

must be less than this value).

• maxlnclusive: Specifies the upper bounds for numeric values (the value

must be less than or equal to this value).

• maxLength: Specifies the maximum number of characters or list items

allowed, which must be equal to or greater than zero.

29

• minExciusive: Specifies the lower bounds for numeric values (the value

must be greater than this value).

• minlnclusive: Specifies the lower bounds for numeric values (the value

must be greater than or equal to this value).

• pattern: Defines the exact sequence of characters that are acceptable.

• totalDigits: Specifies the exact number of digits allowed and must be

greater than zero.

• whiteSpace: Specifies how white space (line feeds, tabs, spaces, and

carriage returns) are handled.

2.1.5.3 Complex elements

Complex types permit element definitions with attributes or subelements in XML

Schema. The four kinds of complex elements are:

a) empty elements

b) elements that contain only other elements

c) elements that contain only text

d) elements that contain both other elements and text

There are different ways to define complex elements in an XML Schema. A complex

element can be declared directly by naming the element as follows:

<element name ttemployeet>
<complexType>

<sequence>
<element name="firstname" type='tstring"/>
<element name"lastname" type="string"I>

</sequence>
</complexType>

</element>

This example defines a complex element employee with two subelements "firstname"

and "lastname", which must appear in the order declared.

Another option is an element can have a type attribute that references the name of the

complex type to use:

30

<element name--"employee" type="person"/>
<complexType name="person">

<sequence>
<element name="firstname" type="string"/>
<element name="lastname" type="string"/>

</sequence>
</complexType>

We can also base a complex type element on an existing complex type and add additional

elements.

2.2 Distributed Database Systems

Distributed database systems have been intensively studied. Since we adapt algorithms

for fragmenting relations in a distributed database system to a distributed XML database

system, this section briefly introduces distributed database systems and relevant

fragmentation algorithms.

A distributed database (DDB) is defined as a collection of multiple, logically interrelated

databases distributed over a computer network [OV99]. Ozsu and Valduriez define a

distributed database management system (DDBMS) as a software system that manages

distributed databases and makes the distribution transparent to the users.

In a distributed database system, data is physically stored across several sites and each

site is typically managed by DDBMS that is capable of running independent of the other

sites. The computer network connecting these sites in a DDB is not a multiprocessor

system having either the shared memory (tightly coupled) architecture or the shared disk

(loosely coupled) architecture [EN]. A distributed database is a database rather than a file

system managing files stored at each node of the network. In a DDB, distributed data

should be logically related in terms of the relationship defined according to some

structural formalism and the data access should be via a common interface. A distributed

DBMS provides other functions including integration of heterogeneous data, query

optimization and processing, concurrency control, and recovery [OV99]. Figure 2.1

depicts a distributed database environment.

31

Figure 2.1 Distributed Database Environment [OV99]

2.2.1 Implementation alternatives

There are three typical architectural mechanisms for distributed DBMSs: client/server

systems, peer-to-peer systems, and multi-database systems.

In the client/server systems [OH+96], the query sites correspond to clients while the data

sites correspond to servers. For the client/server DBMSs, the server focuses on the data

management. This means that all of query processing and optimization, transaction

management and storage management are done at the server. At the client side, besides

the application and the user interface, there is a DBMS client module responsible for

managing the data that is cached to the client and (sometimes) managing the transaction

locks that may have been cached as well [OV99]. A typical client/server functional

distribution is given in Figure 2.2.

In contrast to the client/server system, a peer-to-peer system makes no distinction among

the client machines and the server machines. Each site in the system performs the same

functionality. In executing queries (transactions), the global query optimizer (global

execution monitor) communicates directly with the local query processors (local recovery

managers) where parts of the query (transaction) are executed [OV99]. Thus, the

communication mechanism is more involved, leading to more complicated software

structures.

32

E

User
Interlace

Application
Program

ClientDBMS
C#]

Comm unicathn Software

SQL
quer es

Result
relation

0
p

r
a
t

n
g

Communication Software

Semantic Data Controller

Query Optimizer

Transaction Manager

Recovery Manager

Runlime Support Processor

Database

System

Figure 2.2 Client/Server Architecture [OV99]

In this thesis, among different distributed mechanisms, only peer-to-peer systems are

considered.

2.2.2 Horizontal fragmentation in distributed database design

Many factors contribute to the optimum design of distributed systems such as logical data

organization, the application location, characteristics with which applications access data,

the network properties, and the computation systems available in each site of the

network. These factors make the distribution design formulation complex. The

information needed to carry out this distribution design can be split into four categories:

data, application, network communication and the computing system information. The

last two categories are entirely quantitative in nature and they are used in the allocation

problem.

In many distributed systems there is no need for data fragmentation, since the minimal

distribution unit is a file. However in distributed databases defining a suitable design

33

granularity is necessary. The locality of accesses of applications drives re-defining the

distribution unit to portions, instead of the relation as a whole. This process is known as

fragmentation.

In distributed database design, the fragmentation of a relation consists of decomposing

the relation into logical portions called fragments or partitions. Typically, fragmentation

increases the concurrence level of the queries and enables the placement of data in close

proximity to its place of use. There are two fundamental fragmentation strategies:

horizontal and vertical [OV99]:

• Vertical Fragmentation divides a relation in a set of fragments by projecting it

over its attributes.

• Horizontal Fragmentation partitions a relation along its tuples. It places each

tuple of the relation in a different partition by using the predicates defined on

the relation. There are two stages to horizontal partitioning: primary and

derived. Primary horizontal fragmentation of a relation is performed by using

predicates that are defined on that relation. Derived horizontal fragmentation

partitions the relation that results from the predicates being defined on another

relation.

In most cases it is not sufficient for only a horizontal or vertical fragmentation of a

database schema to meet all of the requirements of user applications. At this point a

horizontal fragmentation may be followed by a vertical one, or vice versa, producing a

hybrid fragmentation. Although we do not consider hybrid fragmentation as a primitive

type of fragmentation strategy, it is quite obvious that many real-life partitions may be

hybrid.

For the primary and derived horizontal fragmentation, the objective is to determine the

set of minterm predicates to be applied on the relation to generate a set of fragments.

Each one of these fragments will contain a subset of tuples that satisfies a given minterm.

The primary horizontal fragmentation of R (a relation) on the set of minterm predicates M

is defined as:

34

F(R,M) ={Fj Fi = cmu(R)VmjE M} 1 i IMI (1)

Given a set P ={ P1, P2,..., P,,}of simple predicates for relation R, the set of minterm

predicate M = (ml, m2,. ..,mj is defined as:

= [mj I mj = A 1 1 k:5 m, 1 j z (2)

Pk6 P

where p*k = p, or = Pk. Each simple predicate can occur in minterm predicate either

in its natural or its negated form.

Given a relation R(Aj,. . .,A,3 c DI X ... X D. A simple predicate is defined as

p=A1O Value 1<i<n (3)

where A1 is an attribute of R defined on D1, Value E D1, 0 <,, >, ≥} and is a

simple predicate.

The horizontal fragmentation problem of R can be stated as finding a set of fragments for

all the applications defined on R. Additionally, any possible horizontal fragmentation of

R must guarantee that it does not modify its original semantics. For this reason, the

following conditions should be satisfied:

Completeness: Each tuple t of the original relation is found in some of the

generated fragments

Completeness (R, M): Vt2F(t (=- R A Fi E F(R,M) AtE F)

Disjointness: Each tuple t of the original relation is found at most in one of the

generated fragments

Disjoinness (R, M):

Vt2F—,aFJ(tE RAFIE F(R,M)AtE FIAFJE F(R,M)AFi#FJAtE FfAt 0 F)

35

. Reconstruction: an operator must be defined in such a way that it obtains the

original relation when it is applied over the generated fragments.

R=U n F

Once we have defined the horizontal fragmentation problem, it is necessary to specify the

information required for its solution:

• Database information. The database information concerns the global

conceptual schema. It is important to note how the database relations are

connected to one another, especially with joins. In the relational model, these

relationships are also depicted as relations.

• Application information. The fundamental information consists of the

predicates used in user queries and their access frequencies in a specific

period of time.

In addition to this information, it is also necessary to define a set of implications

according to the semantics of the database. This is because the construction of predicates

according to (2) can generate minterms contradictory to a set of implications. A full

treatment of the design problem in distributed relational databases is provided by Ozsu

and Valduriez [OV99].

23 XML databases

Both industry and academic researchers have enthusiastically promoted XML as a data

storage and retrieval medium. However, XML databases may not replace traditional

databases, but they do present some very different possibilities. In any business

application one has to exchange data between a database and other systems (other

applications, another database, etc.). As the same data model is not used by everyone, it is

necessary to find one that allows wider audience usage and yet manages to capture all the

semantics entailed.

36

2.3.1 Types of XML databases

Database systems are built on the data model, DDL (Data Definition Language), and

DML (Data Manipulation Language). However, XML databases were not initially built

from these bases.

First efforts were aimed at exposing data in a relational database as XML. These systems

are known as the XLvIL Enabled Databases. Such databases should have a middleware

that would enable publishing of relational data as XML documents, storing XML within

relational databases, and querying stored data.

Alternatively, Native XIvIL Databases are built on XML databases from scratch so they

outperform XML Enabled Databases by fine-tuning the storage and indexing mechanisms

to suite XML needs. Identifying the best approach depends on the types of applications

(i.e. data-centric or document-centric applications).

2.3.2 XML enabled databases

Some mechanisms have been proposed for XML enabled databases. To handle XML

data, these systems must address the following problems:

a Storing XML data in a relational database.

• Generating XML documents from data stored in a relational database.

a Executing XML queries over relational data.

The SilkRoute [FernOO, FernOl] system is a typical representative of XML Enabled

Databases. SilkRoute uses its own Relational to XVIL transformation language (RXL) to

define how the data in relational tables will be published as XML according to the XML

Schema or DTD. The core components of SilkRoute are composed of Query Composer,

Translator, and XML Generator.

The Translator uses RXL expression to:

37

• Generate a set of SQL queries that will extract the necessary data from the

relational database. The task of RDBMS is to execute those queries and

produce the answer in the form of the set of tuples, and to

• Extract the XML template that will be used to structure the relational data in

the final XML output.

XML Generator fills the XML template with the received data to produce the final XML

answer. Data is exported to XML in two steps. First, an XML view of the relational

database is defined using RXL, a declarative query language. The resulting XML view is

virtual. Secondly, some other applications formulate a query (e.g., an XML-QL query)

over the virtual view. The RXL view query and the XML-QL query are then passed to

the query composer. The composer computes the composition generates a new executable

RXL query. The translator translates the executable query into one or more SQL queries,

which is executed on the database server. The result is returned to the XML generator to

produces XML documents, which are then returned to the application. The benefit is that

only the result of that XML-QL query is materialized. Unfortunately, translating RXL

queries into efficient SQL queries is still an open problem. Fernandez [FrenOO] focuses

on how to translate a user's XML-QL to RXL query and translating RXL query to SQL.

The details of the XML generator are not specified.

Shanmugasundaram focuses on problems related to XML Enabled databases. In the

middleware system XPERANTO [Shan+OO, ShanOl, ShanOl', Shan99], the project

generates an XML query interface for different object-relational database structure. This

tool uses XML-QL. The user is only aware of the XML schema so only needs to write

efficient XML queries. XPERANTO contains 4 major components. The XML Schema

Generator is responsible for the automatic transformation process of the source schema

into an XML schema based on the database catalog. The user still has to pre—define the

XML views. Query Translation is the main component of the system and is in charge of

translating the XML queries into queries according to the structure of the source. The

XML Query Graph Model is used to create efficient queries. The XML Tagger's main

goal is to convert the results of the SQL queries into something readable by the XML

38

Parser. The last component is the XML View Services, which is responsible for storing

the XML-QL view definitions.

The advantages of XPERANTO are the automatic mapping and construction of the XML

schema based on the object-relational source structure while preserving the names of the

correspondent objects. The disadvantages of XPBRANTO are that it defines more XML

types than needed and it does not preserve relationships between tables/objects.

Shanmugasundaram [ShanOl'] thoroughly analyzes the techniques for the XML

publishing of relational data. Special attention is paid to ways to do a computational

pushdown, which makes existing relational engines do as much work as possible to attain

better performance. Relational engine extensions are proposed to support XML

publishing.

The XML publishing task is separated into the three subtasks:

• Data extraction

• Data structuring

• Data tagging

These tasks can be performed in different ways. In transforming Relational to XML data,

both hierarchical structure and tags have to be added to relational data. If done early in

the process they are called early structuring/tagging and if done later in the process they

are called late structuring/tagging. Structuring/tagging can be done inside or outside the

relational engine.

Techniques for publishing and querying XML views over relational data are general

enough to deal with any given relational schema. Nevertheless, the way data is stored in

relational database greatly influences the performance of XML publishing. Therefore,

when it comes to storing XML documents in relational database, offered solutions

primarily differ in the performance of XML publishing of that data.

39

A method for storing XML documents in a set of binary tables is available [SchinOO]. A

binary table is created for every possible parent-child relation existing in the XML

document.

Deutch [Deut99] presents the STORED that uses data mining techniques to discover

common structure in semistructured XML documents. The discovered structure is used to

develop the relational schema for storing structured parts of XML document.

2.3.3 Problems with XML enabled databases

There are many chanilenges facing XML enabled databases. First, if a relational database

is used to store the XML data, transforming XML queries to efficient SQL queries is an

open issue. Second, since the hierarchical XML data is distributed to different tables in

the relational back end, complex joins are needed for some XML queries, which result in

poor system performance. Third, updating may be very costly. Furthermore, there is the

bi-directional format and structure conversion overhead.

Theoretically, XML enabled databases are supposed to handle entity usage, CDATA

sections, comments, and Processing Instructions, etc. However, this is generally not done

in practice.

When XML documents are stored in a database and then recreated through XML

publishing is called XIvIL round tripping. The ideal round trip is the case when the

original and recreated XML documents are identical. This is not the case in many XML

enabled systems due to the loss of some information such as order or white spaces. Even

the basic representations of the original and recreated XML document often differ

[BourO2]. Generally, storing XML data in XML enabled relational databases is

appropriate for data-centric applications that do not care about exact round tripping.

40

2.3.4 Native XML Databases

Native XML databases are often considered a database being built "from scratch". As

defined by the members of the XML:DB initiative [XML:DB], a native XML database is

one that:

• Defines a (logical) model for an XML document -- as opposed to the data in

that document -- and stores and retrieves documents according to that model.

At a minimum, the model must include elements, attributes, PCDATA, and

document order. Examples of such models are the XPath data model, the

XML Infoset, and the models implied by the DOM and events in SAX 1.0.

• Must have XML documents as its fundamental unit of (logical) storage, just as

a relational database has a row in a table as its fundamental unit of (logical)

storage.

• No required specific underlying physical storage model is assumed. For

example, it can be built on a relational, hierarchical, or object-oriented

database, or use a proprietary storage format such as indexed, compressed

files.

Native XML databases differ from XML-enabled databases in three main ways:

• Native XML databases can preserve physical structure (entity usage, CDATA

sections, etc.) as well as comments, PIs, DTDs, etc. while XML-enabled

databases do not generally do this in practice.

• Native XML databases can store XML documents without knowing their

schema or DTD, assuming one even exists. Although XML-enabled databases

could generate schemas on the fly, this is impractical in practice, especially

when dealing with schema-less documents.

• The only interface to the data in native XML databases is XML and related

technologies, such as XPath, the DOM, or an XML-specific API, such as the

XML:DB API [XMLAPI]. XML-enabled databases, on the other hand, offer

direct access to the data, such as through ODBC.

41

Native XML databases are defined through the data model they support while XML

enabled databases are identified by their implementation..

Native XML Database Management System (NXDBMS) should have the following

properties:

• Designed from the bottom up exclusively to store and manage XML

documents.

• The fundamental unit of logical storage is the XML document.

• The XML documents are logically stored (at the conceptual level) as XML.

• The XML hierarchical graph structure is preserved.

• The whole document is physically stored in its entirety in a "single" location.

In summary, a Native XML database system is a software system using XML DDL and

XML DML to handle XML data.

There are two storage approaches for native XML databases [BourO2]:

• Text-Based storage of XML data and

• Model-Based storage

Text-Based storage stores XML documents "as-is"; that is, in a form of single textual

unit. Text can be stored as a file in a file system, as a CLOB within a relational database,

or using some other mechanism to store text.

Model-Based storage does not store XML document as text. Prior to storing any data on

permanent media, XML documents are modeled i.e. transformed into an internal object

model representing the source XML document. This model is then saved. The selected

XML model must be rich enough to model all the elements of XML documents. DOM

[W3CDOM] is one of the possible choices for modeling XML.

Tamino Version 3.1 [Tamino] adds new, more usable administration and schema-editing

tools, a WebDAV server for easier XML file import and export, and a new Java API. It

still supports its earlier Java API but now you can use JavaScript, Java Server Pages, and

COM APIs. Tamino has both normal and full-text indexing features. It can be configured

42

to either enforce schema structures or to permit the database to accept extra elements

without complaint.

There is a built-in relational database (in addition to its native XML database engine),

and it can create live mappings from XML databases to third-party relational databases.

This means that relational data can be left where it is but be accessed through Tamino's

XML APIs. This flexibility is key when integrating XML into an existing IT

infrastructure and makes ODBC-type drivers unnecessary.

Tamino has some shortcomings. Its query language supports XPath with a few additions,

so it suffers from XPath's limited syntax. To overcome this, an extension is added to

XPath that allows for sorted results and an extension to Tamino's schema language to

allow joins. These joins are static (you need to define them at database design time) and

cannot be created on the fly in query code as with XQuery.

Tamino's storage engine is document-oriented so concurrency locking is done at the

document level instead of the node level. In update-intensive situations, this design

requires data be placed in many small XML documents to avoid a huge performance

slowdown. Further, Tamino uses a non-XML—based update API that has too many

separate but overlapping tools and lacks query-building helpers.

2.3.5 Problems with Native XML databases (NXDBs)

Chaudliri et al. [Chau+O3] compare the performance of a XML-enabled database with the

that of a native XML database. The result shows that the native XML database performs

better than the XML-enabled database when handling XML documents with larger data

sizes. This is because the native XML database engine uses the index key to access the

XML data directly. However, the native XML database has some disadvantages. Both

data and index size consumed by the native XML database is much larger than in the

XML-enabled database.

43

The larger index in the native XML database is because more comprehensive indexing

support is provided, such as full-text searching. Update is another weakness of the native

XML database because that index files have to be updated as well. Further most products

require a document be retrieved and changed using your favorite XML API, and then

returned to the database. A few products have proprietary update languages that allow

updates within the server, and a couple of open source NXDBs support XML: DB

Xupdate for the same purpose. This is likely to be a problem until XQuery adds an update

language. In the meantime DOM manipulation will remain the most common update

method used with NXDB products. Furthermore, tag names have to be stored in the

native XML database because as the XML document becomes larger, more disk space is

required to store tag names.

In addition, indexing a XML document efficiently is an open problem. This is because of

the complexity of XML documents' hierarchical structure

2.3.6 Distributed XML Databases

So far there is no formal definition for the distributed XML database (DXDB). However,

based on the definition of distributed database system, A DXDB can be defined as a

collection of multiple, logically interrelated XML databases distributed over a computer

network. Although both XML-enabled databases and native XML databases are still not

mature enough compared with relational databases, it is just a matter of time.

Much work has been done in the distribution and integration of relational database

systems. Some concepts and mechanisms can also be introduced into DXDBs. The

challenge is selecting that which should be chosen.

The semi-structured XML data is also too flexible, which increases the complexity of the

XML database systems. To reduce the complexity, some constraints must be added to the

XML documents.

44

2.4 Related Work

Some efforts have attempted to find criteria for good XML document design [Aren+03].

There are some recent projects related to normalizing XML design, querying fragmented

XML documents, and distributing XML repositories [Aren+02] [DeHa+03] [Bose+03]

[Brem+O3] [Abit+03].

2.4.1 Normal Form for XML Documents

Arenas [Aren+02] uses tree tuples (paths) to determine functional dependencies (FD).

Based on FD, XNF (XML Normal Form) is defined. An algorithm is given to decompose

DTD. The goal of the algorithm is to find redundant elements first. It then decomposes

those redundant elements and puts them under new created elements. Given the following

example:

Company

Staffs

Staff Staff

@ID Name Projects @ID Name Projects
"001" 'Peter "002" "John

Lee" Smith"

Project

@ID Name Duration
'A1" "Finance" "5" "A2" "Software" "3" "Al" "Finance" "6" "A3" "Hardware" "2"

Proect

@ID Name Duration

Project Pr&ect

@ID Name Duration @ID Name Duration

by running the decomposing algorithm, the result should be:

45

Company

Staffs

@ID Name
"001" "Peter

Lee"

Staff

Project

Projects

Project

Staff info info info

@ID Name
"002" "John

Smith"

Projects ©ID Name @ID Name @ID Name
"Al" "Finance" "A2" "Software" "A3" "Hardware"

Project Project

@ID Duration ©JD Duration @ID Duration @ID Duration
"5" "i.2" "3" "6" "A3" "2"

New elements - info are generated to hold Name of projects to eliminate redundancy.

However, there are some restrictions of their approach. First, the algorithm only deals

with DTDs. It is well know that there are many limitations of DTDs, such as very limited

capability for specifying data types, no support for namespaces, and no explicit

relationship. XML Schema is invented to overcome these limitations and believed to be

the replacement of DTDs. Second, only the intrinsic properties of the data model are

considered where query and update language are not taken into account. Finally, many-

to-many relationship is not treated in the algorithm. In the above example, assuming that

there is another element Projects under Company, which includes Project element

where many staffs work on, the algorithm will not work well.

2.4.2 Distribution, Fragmentation, and Query of XML Documents

Issues raised by the distribution and replication of dynamic XML data are studied by

Abiteboul et al. [Abit+03]. Dynamic XML documents consist of parts with explicit data

and other parts that are given by embedded calls to web service. However, no horizontal

and vertical fragmentation for XML documents are considered in their work.

46

Bremer and Gertz [Brem+03] use a rooted, node-labeled tree to model XML documents.

They generally specify that what fragments of a XML document should be like.

However, the fragmentation of XML documents is not presented.

Among many query languages for XML, XQuery [XQO1] has been widely recognized

and adopted as the standard. Based on this standard, DeHaan et al. [DeHa+03] propose

an approach to map a XQuery expression to a an equivalent SQL query using dynamic

interval encoding of a collection of XML documents as relations. The approach tries to

evaluate and generate XML queries using relational technology.

25 Summary

This chapter began with the discussion on the definition and syntax of XML. Section 2.2

discussed the various mechanisms of the distributed database systems. Further the

discussion covered the data fragmentation in the DDB. Section 2.3 presented the different

approaches to build the XML database. In addition, the problems of the existed XML

databases are analyzed. Projects and issues related to XML document design,

fragmentation and distribution are discussed in Section 2.4.

We observe that less research efforts and accomplishment have been made for the design

and fragmentation problems of XML documents. This is the major motivation of this

thesis. Chapter 3 presents a relational framework of XML as the platform for our work.

47

Chapter 3

A Relational Framework for XML

To date, there is very limited work on how to design a good XML document. In this

chapter, we adapt relational concepts to describe a XML document and apply this

framework to design a XML document in subsequent chapters. Since the use of attributes

in XML is ambiguous and an attribute can always be replaced by an element, we will not

consider using attributes in our XML document design. Further we assume that all XML

documents come with a schema document where the XML schema is specified.

The relational framework of XML is a platform for designing XML documents rather

than another specification of XML. The goal of this research is to explore the design rules

of XML documents.

Section 3.1 defines the basic components of a XML document in the relational

framework of XML. Keys and foreign keys are discussed in Section 3.2. Normal forms in

XML are introduced in Section 3.3. In Section 3.4, design mechanisms for placing a

XML document in 3NFxmi is discussed. This chapter concludes with a summary in

Section 3.5

48

3.1 Table elements, Tuple elements, Field elements and Domain

The relational framework of XML represents the XML document as a collection of table

elements. Informally, each table element resembles a table in the relational model. For

example, the XML document in Figure 3.1 is considered to be in the relational

framework of XML.

<?xml version=" 1.0" encoding="UTF-8"?>
<company xmlns="http://www.cpsc.ucalgary.cal--yingqi/xml"

xmlns:xsi--"http://www.w3.org/2001/M\4LSchema-instance"
xsi:noNamespaceschemaLocation="Sample3-1 .xsd">

</company>

<SUBSDY>
<role>

<DEGREE>Ph.D</DEGREE>
<STJB>4000</STJB>

</role>
<role>

<DEGREE >MBA</DEGREE>
<STJB>3500</STJB>

</role>
<role>
<DEGREE >MSc</DEGREE>
₂₉₀₀

</role>
<role>

<DEGREE>BE</DEGREE>
₂₃₀₀

</role>
</STJBSIDY>
<STAFF>

<employee>
<SJD>ID 1</SID>
<SNAME>K. Barker <ISNAME>
<DEGREE>Ph.D</DEGREE>

</employee>

<employee>
<SID>ID2</SID>
<SNAME>J. Wong</SNAME>
<DEGREE>MBA<IDEGREE>

</employee>
<employee>

<S1D>ID3</SID>

49

<SNAME>D. Parker</SNAME>
<DEGR13E>MSc</DEGREE>

</employee>
<employee>

<SID>ID4</SID>
<SNAME>B. Unger</SNAME>
<DBGREB>BE</DEGREE>

</employee>
<employee>

<SID>ID5<ISJD>
<SNAME>M. Shaw</SNAME>
<DEGREE>MBA</DBGREE>

</employee>
<employee>

<SJD>ID6</SID>
<SNAME>A. Sands</SNAME>
<DEOR13E>Ph.D</DEGRBB>

</employee>
<employee>

<SID>ID7</SJD>
<SNAME>C. Day</SNAME>
<DEGREE>MSc</DEGREE>

</employee>
<employee>

<SrD>ID8</SID>
<SNAME>P. Ada</SNAME>
<DEGREE>MBA</DEGREE>

</employee>
</STAFF>

</company>

Samp1e3-1.xml

1. <?xml version="l.O" encoding="UTF-8"?>
2. <schema targetNamespace="http://www.cpsc.ucalgary.ca/—Yingqi/xml"
3. xmlns="http://www.w3.org/2001/XMLSchema"
4. xmlns:r--"http://www.cpsc.ucalgary.ca/—yingqi/xml"
5. elementFormDefault="qualified">
6. <complexType name="SUBSIDYType">
7. <sequence>
8. <element name="role" type"r:roleType" maxoccurs="unboundedl>
9. </sequence>
10. </complexType>

11. <complexType name="roleType">
12. <sequence>
13. <element name="DEGREE" type="string"I>
14. <element name="SUB" type"positivelnteger"/>

50

15. </sequence>
16. </complexType>

17. <complexType name="STAFFType">
18. <sequence>
19. <element name="employee" type="r:employeeType" axoccurs="unboundedl>
20. </sequence>
21. </complexType>

22. <complexType name="employeeType">
23. <sequence>
24. <element name="SID" type="string"/>
25. <element name="SNAME" type="string"/>
26. <element name="DEGREE" type="string"/>
27. </sequence>
28. </complexType>

29 <element name="company">
30. <complexType>
31. <sequence>
32. <element name="SUBSIDY" type="r: SUB SIDYType" minOccurs="O"/>
33. <element name="STAFF" type="r:STAFFType" minOccurs="O"/>
34. </sequence>
35. </complexType>
36. <key name="subsidyKeyP">
37. <selector xpath="r: SUBSIDY/r:role">
38. <field xpath="DEGREE">
39. </key>
40. <key name="staffKeyP">
41. <selector xpath="r: STAFF/r:employee">
42. <field xpath="SID">
43. </key>
44. <keyref refer="subsidyKeyP" name="staff2pay">
45. <selector xpath="r:STAFF/r:employee"/>
46. <field xpath="DEGREE"/>
47. </keyref>
48. </element>
49. </schema>

Sample3-1.xsd

Figure 3.1 Sample XML Documents in the Relational Framework of XML

In Figure 3.1, element SUBSIDY and element STAFF are table elements. A table

element (TBB) consists of tuple elements. Any tuple element within a table element has

51

the same opening and closing tag name. A tuple element is made up of field elements. A

field element must be a simple element whose domain is integer, string etc. according to

[XS]. Field elements must occur in any tuple element within a table element in the same

order and number. This rule is analogous to the relational model where each row in a

table has the same number of attributes.

A domain D is a set of atomic values. Atomic means that each value in the domain is

indivisible as far as the relational framework of XML is concerned. Since a field element

consists of an atomic value, there is always a domain defined for it. The domain of a field

element f is denoted as dom(f).

A table element structure S, denoted by S : T(F1,F2,..,,Fn), is made up of a table

element name S and a list of field element F1, F2,..., F,2 in its tuple elements having the

tag name T. A table element structure is used to describe a table element. The degree of

a table element is the number of field elements occurring in its table element structure.

An example of a table element structure for a table element of degree 2 (see Figure 3.1),

which describes the salary of an employee, is as follows:

SUBSIDY: role(DEGREE, SUB)

For this table element structure, SUBSIDY is the name of the table element, which has

tuple elements with tag role and field elements: DEGREE and SUB.

A table element e having the table element structure S : T (FI,F2,...,Fn) , also denoted

by e(S), is a set of m tuple elements e = { tl,t2,...,t,,, }, where Tis the tag name of tuple

elements and F,2 is the tag name of field elements. Each tuple element t is an ordered list

of n field elements t = < f 1, f2,..., fn>, where each fi, 1 ≤ i ≤ n, is a field element

with an atomic value or is a special null value (empty value between its opening and

closing tags).

52

In the schema document, table element e with the table element structure

S : T(F1,F2,...,Fn) is defined with the following template:

I <complexType name"S">

2 <sequence>

3 <element name="T" type"r: T" maxoccurs="unbounded/>

4 </sequence>

5. </complexType>

6 <complexType name="T">

7 <sequence>

8 <element name="F1" type="DataType1"/>

9 <element name="F2" type="DataType2"/>

10

II <element name" F" type=" DataType"/>

12 </sequence>

13 </complexType>

Figure 3.2 Template 1

DataType1, 1 ≤ I ≤ n, is the corresponding data type for F: , which is either of a built-in

simple type [XS] in XML Schema or of a extended built-in simple type on facets. In

general, we append "Type" to "S" and "T ". Hence, in the above template line 1 and line

3, "S" and "T" become "S Type" and "T Type" respectively. This naming convention

is used through the balance of this thesis.

We also ensure that in one schema document, a complexType's name is unique. The "r:"

is a prefix that specifies a name space. In this paper, we define "xmlns:

r="http://www.cpsc.ucalgary.ca/'-yingqi/xml" at the beginning of each XML schema

document.

53

3.2 Keys and Foreign keys

A table element is defined as a set of tuple elements. All elements of a set are distinct;

hence, all tuple elements in a table element must be distinct. This means that no two tuple

elements can have the same combination of values for all their field elements. The

combination of field elements that makes a tuple element distinct from other tuple

elements within a table element is called the superkey SK of that table element. A

superkey can have redundant field elements. Therefore a more useful concept is that of a

key, which has no redundancy. A Primary key K of a table element structure S is a

superkey of S with the additional property that removing any field element F from K

leaves a set of field elements K' that is not a superkey of S. Hence, a key is a minimal

superkey from which we cannot remove any field elements and still have the uniqueness

constraint hold. In Figure 3.1, field element DEGREE is defined as the key of table

element SUBSIDY in Sample3-1.xsd at line 36. We note that once an element is defined

as a key or part of the key in the schema document, then that element cannot be empty;

otherwise the XML schema validator gives an error message.

Generally, a table element structure may have more than one key. In this case, each of the

keys is called a candidate key. If a field element is a member of some candidate key in a

table element structure, it is called prime field element; otherwise it is called nonprime

field element. Typically we assign one of candidate keys to be the primary key of the

table element. We use the convention of underlining the field elements that form the

primary key of a table element structure as follows:

SUBSIDY: role (DEGREE, SUB)

STAFF: employee (SID, SNAME, DEGREE)

Note that when a table element structure has several candidate keys, choosing one of

them to be the primary key is arbitrary. However, it is better to choose a primary key with

a single field element or a group of field elements with small storage size.

Key constraints are specified on individual table elements. The foreign key constraint is

specified between two table elements. Informally, the foreign key constraint states that a

54

tuple element in one table element that refers to another table element must refer to an

existing tuple element in the referred table element. For example, in Figure 3.1 line 44 of

Sample3-1.xsd, field element DEGREE of tuple element employee in the table element

STAFF is defined to refer to DEGREE, which is the key of tuple element role in table

element SUBSIDY; hence, its value in every tuple element employee must match the

DEGREE value of some tuple elements in the table element SUBSIDY. Table element

STAFF is called referencing table element and table element SUBSIDY is the

referenced table element. The primary key and foreign keys are defined and

implemented in the XML schema using key and keyref.

Now we can present a template to describe two related table element structures in the

schema document. The two given table element structures are:

S: T(Fi,F2, ...,F)

S': T' (F1', F2', ..., Fm')

Key: F1

Key: F1'

There is a relationship between S and S', i.e. F2' in S' refer to F1 in S. The template is

shown in Figure 3.3.

I <corn plexlype name="Slype">
2 <sequence>
3 <element name="T" type"r: Tlype" maxoccurs="unbounded/>
4 </sequence>
5. </complexlype>
6 <complexType name="llype">
7 <sequence>
8 <element name"Fi" type"DataType1"/>
9 <element name="F2" type="DataType2"/>
10
11 <element narne="F" type="DataType"/>
12 </sequence>
13 </complexType>
14 <complexlype name="S'Type">
15 <sequence>
16 <element name="T" type="r: T'Type" maxoccurs="unbounded/>

55

17 </sequence>
18 </complexlype>
19 <corn plexlype name"T'Type">
20 <sequence>
21 <element name="F1" type="DataType1"/>
22 <element name="F2" type="Datalype2"/>
23
24 <element name"F" type="DataType"/>
25 </sequence>
26 </complexlype>
27 <element name="root">
28 <complexType>
29 <sequence>
30 <element name"S" type="r:SType" minOccurs="O"/>
31 <element name="S'" type="r:S'Type" minOccurs="O"/>
32 </sequence>
33 </complexlype>
34 <key name="SKeyP">
35 <selector xpath="r:S/r:T">
36 <field xpath="Fi">
37 </key>
38 <key name="S'KeyP">
39 <selector xpath "r: S'Ir:T">
40 <field xpath="Fi">
41 </key>
42 <keyref refer"S KeyP" name="S'2S">
43 <selector xpath"r:S'/r:T"/>
44 <field xpath="F2'"/>
45 </keyref>
46 </element>

Figure 3.3 Template 2

On line 27 in Figure 3.3, "root" should be replaced with the XML document's name. For

key and keyref, we adopt the naming convention as well, which makes name more

meaningful. We append "KeyP" to the table element structure's name S (Line 34), which

means "SkeyP" is the key's name for the table element S. Once we know the table

element structure and foreign key relationship between table element structures, to define

the corresponding XML schema document, we just use the template shown in Figure 3.3.

Templates shown in Figure 3.2 and Figure 3.3 can be applied generally. We can apply

Template 1 to describe any individual table element structures and Template 2 to describe

56

any two related table element structures. Hence, by using Template 1 and Template 2, we

can describe table element structures within the same organization in XML Schema.

33 Normal Forms in XML

Compared with relational database technology, the main drawback of XML documents is

redundancy. In the relational database design, redundancy is eliminated by normalizing

tables. However, there is no normalization in producing an XML document, which

considers all elements. If an XML document is very large and many elements contain one

or many identical elements, the redundancy problem becomes obvious and affects the

efficiency of queries as a result.

In the relational model, data redundancy is reduced or eliminated by designing the

relational schema so it conforms to a normal form. However, data redundancy is a

challenge problem for XML documents. There are few approaches to address how to

design a XML document with minimal or no redundancy. In this section, we introduce

two approaches to eliminate redundancy in XML documents by adapting the concept of

normal forms from the relational model.

3.3.1 Definition of functional dependency in XML

A functional dependency is a constraint between two sets of field elements within a XML

document in the relational framework. Suppose that table element structure has n

elements F1,F2,...,F; let us think of the whole XML document as being described by a

single universal table element structure S : T(Fi, Fz,..., F) and CF = {Fi, F2,..., F}. We

do not indicate that we actually store the XML document as a single universal table

element; we use this concept only in developing the formal theory of data dependencies.

A functional dependency in XML, denoted by A -p B, between two sets of field element

A and B that are subsets of 3" specifies a constraint on the possible tuple elements that

can form a table element state e of S. The constraint is that, for any two tuple elements

tiand t2 in e that have i[A] = t2[A], we must also have ti[B] = t2[B]. This means that the

57

values of the B component of a tuple element in e depend on, or are determined by, the

values of the A component; or alternatively, the values of the A component of a tuple

element uniquely (or functionally) determine the values of the B component. We also

say that there is a functional dependency from A to B or that B is functionally dependent

on A. The abbreviation for functional dependency in XML is FDxmi or f.dxmi. The set of

field element A is called the left-hand side of the FD,,.,, and B is called the right-hand

side.

Thus A functionally determines B in a table element structure S if and only if, whenever

two tuple elements of e(S) agree on their A-value, they must necessarily agree on their B-

value. Notice the following:

• If A is a candidate key of S—this implies that A --> B for any subset of field

element B of S (because the key constraint implies that no two tuple element

in any legal state e(S) will have the same value of A).

• If A -* B in S. this does not necessarily mean that B -> A in S.

A functional dependency is a property of the semantics or meaning of the field element.

The XML document designers will use their understanding of the semantics of the field

elements of S—that is, how they relate to one another—to specify the functional

dependencies that should hold on all table element states e of S. Whenever the semantics

of two sets of field elements in S indicate that a functional dependency should hold, we

specify the dependency as a constraint. The table element states e(S) that satisfy the

functional dependency constraints are called legal extensions (or legal table element

states) of S. because they obey the functional dependency constraints. Hence, the main

use of functional dependencies is to describe further a table element structure S by

specifying constraints on its field elements that must hold at all times. Certain FDxmi5 can

be specified without referring to a specific table element, but as a property of those field

elements. For example, {operation—licence—number} -> SIN should hold for any adult in

Canada. It is also possible that certain functional dependencies may cease to exist in the

real world if the relationship changes.

58

A functional dependency is a property of the table element structure 5, not of a particular

legal table element state (extension) e of S. Hence, an FD,,,,,, cannot be inferred

automatically from a given table element extension e but must be defined explicitly by

someone who knows the semantics of the field elements of S.

The inference rules for functional dependencies in XML are identical to those in the

relational model (Chapter 14, [EN]). So these are not reiterated here.

3.3.2 Definition of First and Second Normal Form (1NF and 2NF) in XML

According to the definition, the tuple element can only have field elements with atomic

or null values. Thus a XML document in the relational framework for XML is in First

normal form (1NF) automatically, denoted as lNFxmi.

Second normal form (2NF) in XML, denoted by 2NFxmj, is based on the concept offull

functional dependency. A functional dependency A -+ B is a full functional dependency

if removing any field element F from A indicates that the dependency does not hold any

longer. In other words, for any field elements F E A, (A - {F}) does not functionally

determine B.

A TBE structure TS is in 2NFxmi if each nonprime field element in TS is full functional

dependent on the primary key of TS. If the primary key of a table element structure

contains only one field element, this table element is in 2NFxmi undoubtly. The TBE

STAFF is in 2NF., because only "SID" is the primary key.

3.3.3 Definition of Third Normal Form (3N1) in XML

Third normal form (3NF) in XML, denoted by 3NFxmi, is based on the concept of

transitive dependency. A functional dependency A -* B in a table element structure S is a

transitive dependency if there is a set of field element Z that is neither a candidate key

nor a subset of any key of 5, and both A - > Z and Z -+ B hold. Suppose we have the

following example of a table element structure:

59

EMP: employee(ENAME, SIN, ADDRESS, DNO, DNAME)

SIN -* {ENAME, ADDRESS, DNO, DNAME}

DNO -* DNAME

The dependency SIN -+ DNAME is transitive through DNO in the above example

because both the dependencies SIN -+ DNO and DNO —DNAME hold and DNO is

neither a key itself nor a subset of the key of EMP. Intuitively, we can see that the

dependency of DNAME on DNO is undesirable in EMP since DNO is not a key of EMP.

To test if a table element is in 3NFxmi, we have to find out if any nonkey field element is

functionally determined by another nonkey field element (or by a set of nonkey field

elements). Thus, there should be no transitive dependency of a nonkey field element on

the primary key field element. We modify Example 3.1.3.2 into 3NFxmi as follows:

EMP: employee (ENAME, SIN, ADDRESS, DNO)

DEPT: depaitnient (DNO, DNAME)

SIN - {ENAME, ADDRESS, DNO}

DNO - DNAME

3.4 Design of XML Documents

3.4.1 Design a XML document in 3NFxmi

To design a 3NFxmi XML document, there are two design patterns: bottom-up and top-

down. For the bottom-up design, the design procedure is shown as the following steps:

1. System analysis.

60

2. Draw the ER diagram.

3. Map the ER diagram to the table element structures.

4. Check to guarantee that the table element structures are in 3NFxmi.

5. Transform the table element structures into the XML schema using Template 1

and Template 2 (See Figure 3.3).

In contrast, a top-down design methodology would start with existing XML documents.

Dealing with existing XML documents, we follow the steps shown below:

1. Treat simple elements in the XML documents as field elements in the relational

framework of XML and group all these field elements into a universe table

element structure.

2. Get the functional dependencies according to the schema document of the XML

document or the designer of the original XML documents.

3. Break the universe table element structure into table element structures in 3NF, 1.

4. Transform the table element structures into the XML schema using Template 1

and Template 2.

5. Re-generate the XML document according to the XML schema using the data in

the original XML document.

Since there is almost no redundancy in 3NF, the resulting XML document has very little

data repetition.

3.4.2 Transform a Relational Database Schema into a XML Schema Document

In the real world, we sometimes have to convert a database to a XML document. The

challenge is how to convert the relational schemas to XML schemas. We introduce a

novel and practical approach in this section.

Elmasri and Navathe [EN] describe a relational schema R, denoted by R (A1, A2, ..., An),

as composed of a relation name R and a list of attributes A1, A2, ..., A. The only

difference between the notation of a relational schema R (A1, A2, ..., As), and a table

61

element structure S: T (F1, F2, ..., F) is that there is a tuple element named T in S.

Naming the tuple element is arbitrary. We give an example to convert a relation schema

to a table element structure in Figure 3.4.

Relational Schema: STAFF (SID, SNREE)

SUBSIDY (DEGREE, SUB)

Resulting Table Element Structure: STAFF: employee SNAME, DEGREE)

SUBSIDY: role (DEGREE, SUB)

Figure 3.4 Conversion Between Relational Schemas and Table Element Structures

The next step is to find the referential constraints between tables. We then use Template 1

and Template 2 to convert the table structures to XML schema. The whole procedure is:

1. Convert relational schemas to table element structures.

2. Find referential constraints between the table element structures.

3. Using Template 1 and Template 2 converting the table element structure to XML

schema.

Given the example in Figure 3.4, the resulting schema document is shown in Figure 3.1

Sample3-1.xsd.

33 Summary

This chapter introduces the relational framework of XML. The fundamental components

in this framework are presented and defined in Section 3.1. It is worth noting that all

documents in this framework are legitimate XML documents. The goal of this model is to

constrain the XML documents into a good structure from which the applications benefit.

The concept of keys and foreign keys are specifically defined in Section 3.2. Normal

62

forms in XML are discussed in Section 3.3. Section 3.4 provides the procedures to design

XML documents in the relational framework of XML.

63

Chapter 4

Fragmentation Algorithms for XML

41 Reasons for Fragmentation

In a distributed computing environment, both programs and data are placed across the

sites of a computer network. Ozsu and Valduriez [OV99] present some strategies for

distributed database design. There are two fundamental fragmentation strategies:

horizontal and vertical. Horizontal fragmentation partitions a relation into tuples. Each

fragment possesses a subset of the whole relation. There are two ways to do horizontal

partitioning: primary and derived. Primary horizontal fragmentation of a relation is

achieved using predicates defined on that relation. Derived horizontal fragmentation is

the fragmentation of a relation that results from the predicates being defined on another

relation.

This thesis discusses the design strategies of distributed XML documents and the

proposed algorithms in this design. We will adapt the algorithms proposed by Ozsu and

Valduriez [0V99] and apply them to partition XML documents.

64

4.2 Data Model

A XML document can be represented as a tree structure. Given a XML document

Sample-1 (see Figure 4. 1), its tree structure is shown in Figure 4.2.

<company>
<project id = 0123>
<title>Database Design</title>
<employee id= 697231>

<name> John Peterson</name>
<j obTitle>Developer</jobTitle>

</employee>

<employee id= 697245>
<name> Ricky Bradley</name>
<jobTitle>Programmer</jobTitle>

</employee>
</project>
<project id = 0124>
<title>Web Design</title>
<employee id= 697231>

<name> John Peterson</name>
<j obTitle>Developer</jobTitle>

</employee>
<employee id= 697265>

<name> Bill Smith</name>
<jobTitle>Senior Programmer</jobTitle>

</employee>
</project>

</company>

Figure 4.1 XML Document Sample-i

Definition 1 (Notation for XML documents)

Let xml be an XML document. Tree(xml) is the tree structure of the elements defined by

xml. Subtrees(xml) represents the set of sub-trees in xml. Subtree(element) denotes a sub-

tree of Tree (xml) with the root node element and has at least one child node.

Node(element) is a node of an element in Tree(xml). Value(element) is the value of an

element. Root (xml) represents the root element of xml. Parent (element) is the parent of an

65

element. Children (element) denotes all direct elements under an element. Leaf(node) is a

node without any children nodes.

company

Project id= 0123 Project id=0124

0
Database Design

tittle

d

employee
id=697245 id697231

employee ,/' \ employee
id=697265

name/ jobTitle name /jobittle name / jobittle name I \jobTittle

009

John Developer Ricky Programmer John
Peters Bradley Peters

0

Developer Bill Smith

Figure 4.2 Tree Structure of Sample-i

tittle

Senior
Programmer

Definition 2(Fragment of a XML document)

Let xml be a XML document, then fSubtrees(xml) is a fragment of xml.

Web Design

Definition 3(Fragmentation of a XML document)

Let xml be a XML document. A fragmentation F = {ñ. ..., f} of xml is a partitioning of
Tree (xml) into fragmentsfi tofu, such that their union equals Tree(xml).

4.3 Fragmentation Strategy

4.3.1 Horizontal Fragmentation

I

I

66

In the partitioning of a XML document, horizontal fragmentation partitions a XML

document in 3NFxmi along one or more of its table elements. Thus each fragment has a

subset of the table elements of the document. The horizontal fragmentation of a XML

document is performed using predicates that are defined on one field element of that

XML document. There are two versions of horizontal fragmentation: primary and

derived. Primary horizontal fragmentation of an element of a XML document is

performed using predicates that are defined on that element. Derived horizontal

fragmentation, on the other hand, is the partitioning of an element of a XML document

that results from predicates being defined on another field element in the same XML

document.

<company>
<PROJ>

<project>
<PCODE>PO01</PCODE>
<PNAME>Consulting</PNAME>
<BUDGET>l 60000</BUDGET>
<CITY>Edmonton</CITY>

</project>
<project>
<PCODE>P002</PCODE>
<PNAME> Tech. Support </PNAME>
<BUDGET>175000</BUDGET>
<CITY>Calgary</CITY>

</project>
<project>
<PCODE>P003</PCODE>
<PNAME> Tele-Marketing</PNAME>
<BUDGET>260000</BUDGET>
<CITY>Calgary</CITY>

</project>
<project>

<PCODE>P004</PCODE>
<PNAME> Promotion </PNAME>
<BUDGET>320000</BUDGET>
<CITY>Red Deer</CITY>

</project>
</ PROJ>
<SUBSIDY>

<role>
<DEGREE>Ph.D</DEGREE>

67

₄₀₀₀
</role>
<role>
<DEGREE >MBA</DEGREB>
₃₅₀₀

<Irole>
<role>
<DEGREE >MSc</DEGREE>
₂₉₀₀

</role>
<role>

<DEGREE>BE</DEGREE>
_{23 00}

</role>
</SUBSIDY>
<STAFF>

<employee>
<SID>ID 1<IS ID>
<SNAME>K. Barker <ISNAME>
<DEGREE>Ph.D</DEGRBE>

</employee>

<employee>
<SID>ID2</SID>
<SNAME>J. Wong</SNAME>
<DEGREE>MBA</DEGREE>

</employee>
<employee>

<SID>ID3</SID>
<SNAME>D. Parker</SNAME>
<DEGREE>MSc</DEGREE>

</employee>
<employee>

<SID>ID4</SID>
<SNAME>B. Unger</SNAME>
<DEGREE>BE</DEGREE>

</employee>
<employee>

<S ID>ID5 <IS ID>
<SNAME>M. Shaw</SNAME>
<DEGREE>MBA</DEGREE>

</employee>
<employee>

<SID>ID6</SID>
<SNAME>A. Sands</SNAME>
<DEGREE>Ph.D</DEGREE>

68

</employee>
<employee>

<SID>ID7</SID>
<SNAME>C. Day</SNAME>
<DBGREE>MSc</DEGREE>

</employee>
<employee>

<SID>ID8</SID>
<SNAME>F. Ada</SNAME>
<DEGREE>MBA</DEGREE>

</employee>
</STAFF>
<WORK_ON>

<asgn>
<SID>ID 1</S ID>
<PCODE>POO 1<!PCODE>
<DAYS>1 1</DAYS>

</asgn>
<asgn>

<SID>ID2</SID>
<PCODE>POO 1</PCODE>
<DAYS>20</DAYS>

</asgn>
<asgn>

<SID>ID2</SID>
<PCODE>P002</PCODE>
<DAYS>5</DAYS>

</asgn>
<asgn>

<SID>ID3</SID>
<PCODE>P003</PCODE>
<DAYS>10</DAYS>

</asgn>
<asgn>

<SID>ID3</SID>
<PCODE>P004</PCODE>
<DAYS>3 5</DAYS>

</asgn>
<asgn>

<SID>ID4</SID>
<PCODB>P002</PCODE>
<DAYS>17</DAYS>

</asgn>
<asgn>

<SID>ID5</SID>
<PCODE>P002</PCODE>

69

<DAYS>24</DAYS>
</asgn>
<asgn>

<SID>ID6</SID>
<PCODE>P004</PCODE>
<DAYS>35</DAYS>

</asgn>
<asgn>

<SID>ID7</SID>
<PCODE>P003</PCODE>
<DAYS>30</DAYS>

</asgn>
<asgn>

<SID>ID8</SID>
<PCODE>P003</PCODE>
<DAYS>39</DAYS>

</asgn>
<IWORK_ON>

</company>

Figure 4.3 Sample XML Document xml

In Figure 4.4 and Figure 4.5 xmll and xm12 are two fragmentations of xml in Figure 4.3.

xmll has the projects whose budgets are greater than or equal to 200000 and xm12 has the

projects whose budgets are less than 200000.

<company>
<PROJ>

<project>
<PCODE>P003</PCODE>
<PNAMB>CAD/CAM</PNAME>
<BUDGET>260000</BUDGET>
<CITY>Calgary</CITY>

<Iproject>
<project>
<PCODE>P004</PCODE>
<PNAME>Promotion</PNAME>
<BUDGBT>320000</BUDGET>
<CITY>Red Deer</CITY>

</project>
<I PROJ>
<SUBSIDY>

70

</SUBSIDY>
<STAFF>

</STAFF>
<company>

Figure 4.4 Sample XML document xmll

<company>
<PROJ>

<project>
<PCODE>POO l</PCODE>
<PNAME>Consulting</PNAME>
<UDGBT>160000</BUDGET>
<CITY>Edmonton</CITY>

</project>
<project>
<PCODE>P002</PCODE>
<PNAME>Tech. Support</PNAME>
BUDGET>175000</BUDGET>

<CITY>Calgary</CITY>
</proj ect>

</ PROJ>
<SUBSIDY>

</SUBSIDY>
<STAFF>

</STAFF>
<company>

Figure 4.5 Sample XML Document xm12

4.3.2 Information Requirements of Horizontal Fragmentation

4.3.2.1 The Input Document

Currently, there are no recommended design rules for XML documents. As long as a

XML document is "well formed" [XMLl .0] and complies with the XML syntax, it is

valid. However, a good design for XML documents is critical to the whole system as it

will influence the performance of the system substantially in a distributed system.

71

Before presenting the algorithms for Horizontal Fragmentation, we first define the

requirement for the input document of the algorithms presented in this chapter. Thus, the

input XML document for Horizontal Fragmentation must be in 3NFxmi with the abstract

structure as follows:

Root level

 Table element level

 10 Tuple element level

 10 Field element level

The algorithms fragment a XML document at the tuple element level. The result

fragments are sets that are composed of some Subtree(tuple element i), 1 ≤i ≤n.

4.3.2.2 XML Schema Information

The schema information of a XML document describes the structure and constrains the

contents of the XML documents. In this context it is important to note how the elements

in a XML document are connected to one another. For example, from the schema

document of a XML document, we know which is the key that identifies an element, the

data type of an element, and the relationship between two elements. In Figure 4.7,

directed links are drawn between elements that are related to each other by key and keyref

defined in the schema document.

<?xml version"l .0" encoding"UTF-8"?>
<schema targetNamespace"http://www.cpsc.ucalqarv.cal'-vinqqi/xml"

xmlns"http://www.w3.orql200l/XMLSchema"
xmlns:r="http:I/www.cpsc.ucalqarv.ca/-vinqcii/xml"
elementFormDefau It="qualified">

<complexType name="PROJType">
<sequence>
<element name="project" type="r:projectType" maxoccurs="unbounded"/>

</sequence>
</complexlype>

<complexType name="projectType">

72

<sequence>
<element name"PCODE" type"string"/>
<element name"PNAME" type"string"/>
<element name="BU DG ET" type="positivel nteger"/>
<element name="ClTY" type="string"/>

</sequence>
</complexlype>

<complexType name="SUBSIDYType">
<sequence>
<element name="role" type"r: rolelype" maxoccurs="unbounded"/>

</sequence>
</complexlype>

<complexType name="roleType">
<sequence>
<element name="DEGREE" type="string"I>
<element name"SUB" type"positivelnteger"/>

</sequence>
</complexlype>

<complexType narne="STAFFType">
<sequence>
<element name="employee" type"r:employeeType"

maxoccurs="unbounded"/>
</sequence>

</complexlype>

<complexType name"employeeType">
<sequence>
<element name"SlD" type="string"/>
<element name="SNAME" type"string"I>
<element name="DEG REE" type="string"/>

</sequence>
</cornplexlype>
<complexType name="WORK_ONType">
<sequence>
<element name="asgn" type="r:asgnType" rnaxoccurs="unbounded/>

</sequence>
</complexType>
<complexType name="asgnlype">
<sequence>
<element name="SID" type="string"/>
<element name="PCODE" type="string"/>
<element name"DAYS" type" positive l nteger"/>

</sequence>

73

</complexlype>

<element name="company">
<complexlype>

<sequence>
<element name="PROJ" type="r: PROJType" minOccurs="O"/>
<element name="SU BSI DY" type="r:SU BS I DYlype" minOccurs="O"/>
<element name="STAFF" type="r:STAFFType" minOccurs="O"/>
<element name"WORK_ON" type"r:WORK_ONType" minOccurs="O"/>

</sequence>
<!complexlype>
<key name="projectKeyP">

<selector xpath="r: P ROJ/r: project"!>
<field xpath="PCODE"!>

<!key>
<key name="subsidyKeyP">

<selector xpath"r:SUBSIDY/r:role">
<field xpath="DEGREE">

</key>
<key name="employeeKeyP">

<selector xpath"r:STAFF!r:employee">
<field xpath="SID">

</key>
<key name"work_onKeyP">

<selector xpath="r:WO RK_ON/r:asg n">
<field xpath="SlD">
<field xpath"PCODE">

.e/key >
<keyref refer"subsidyKeyP" name="employee2subsidy">

<selector xpath ="r: STAFF/r:em ployee"/>
<field xpath="DEGREE"/>

</keyref>
<keyref refer="em ployeeKeyP" name="work_on2employee">

<selector xpath="r:WO RK_O N/r:asg n"I>
<field xpath="SlD"/>

</keyref>
<keyref refer="projectKeyP" name"work_on2project">

<selector xpath="r:WO RK_O N!r:asgn"!>
<field xpath"PCODE"/>

</keyref>
</element>

</schema>

Figure 4.6 Sample XML Document xml's Schema Document

74

Figure 4.7 shows the links among the XML document xml given in Figure 4.6. Note that

the link direction shows a one-to-many relationship. For example, for each title there are

multiple employees with that title; thus there is a link between SUBSIDY and STAFF

elements. Similarly, there is another link between PROJ and WORK—ON.

The table element at the tail of a link is called the owner of the link and the table element

at the head is called the member [CP83]. We define two functions: owner and member.

Given a link, they return the owner or member elements of the link, respectively.

For example, given link L1 of Figure 4.7, the owner and member functions have the

following values:

owner(Li) = SUBSIDY

member(Li) = STAFF

SUBSIDY PROJ

role(DEGREE, SUB)

L1

STAFF

employee(SID, SNAME, DEGREE)

project(PCODE, PNAME, BUDGET,
CITY)

WORK—ON

asgn(SID, PCODE, DAYS)

Figure 4.7 Expression of Relationships among Elements of xml

75

4.3.2.3 Application Information

To partition an XML document, we must know the predicates used in user queries. One

should investigate at least the most active 20% of user queries, which account for 80% of

the total data accesses [W82]. This "80/20 rule" may be used as a guideline in performing

this analysis.

We are interested in determining simple predicates. Given a table element structure

S : T(fi, f 2,..., fi), where j .c7i, f2, . . .,f,} is a field element of an tuple element T in S

defined over domain D1, a simple predicate Pj defined on T has the form

Pj :1 0 Value

where 0 € { , <, 0, < >, 4 and Value is chosen from the domain off! (Value € D1). Pr1

is used to denote the set of all simple predicates defined on S. The members of Pr1 are

denoted byp.

Example 1

Given the XML document instance xml of Figure 4.3,

PNAME = "Consulting"

is a simple predicate, as is

BUDGET ≤200000.

Simple predicates are combined into predicates that describe user queries in real

applications, which are Boolean combinations of simple predicates. Minterm predicates

[0V99] are the conjunction of simple predicates. Using minterm predicates in the design

algorithms is sufficient as it is possible to transform a Boolean expression into

conjunctive normal form.

Given a set Pr1 = (Pi , pi2, . . .,p) of simple predicates for table element Siin a XML

document, the set of minterm predicates M1 = {m11, m12, . . . , m} is defined as

Mj={mJm A Pk}l≤lC≤lfll≤j≤Z

76

pkEPrI

where p *Ik = P1k or P *1k = p. Each simple predicate can occur in minterm predicate

either in its natural or its negated form.

For equality predicates, the reference to the negation of a predicate is meaningful

Value(element) = Value.

For inequality predicates, the negation should be treated as the complement. For example,

the negation of the simple predicate

Value (element) ≤Value

is

Value(element) > Value

Unfortunately, there is the practical problem that the complement may be difficult to

define so only simple equality predicates are considered here.

Example 2

Consider element SUBSIDY of Figure 4.3. The following are some of the possible

simple predicates that can be defined on SUBSIDY.

p1: DEGREE = "Ph.D"

P2: DEGREE = "MBA"

P3: DEGREE = "MSc"

P4: DEGREE = "BE"

p5: SUB ≤3000

P6: SUB > 3000

The following are some of the minterm predicates that can be defined based on these

simple predicates.

DEGREE = "Ph.D" A SUB ≤3000

77

m2 DEGREE = "Ph D" A SUB > 3000

m3 (DEGREE = "Ph D") A SUB ≤3000

m4 -i (DEGREE = "Ph D") A SUB > 3000

m5 DEGREE = "BE" A SUB ≤3000

DEGREE = "BE" A SUB ≤3000

The above predicates are not all the minterm predicates that can be defined. Furthermore,

some of these may be meaningless given the semantics of element SUBSIDY. Further m3

can be written as

M3: DEGREE "Ph.D" A SUB ≤30000

In addition to analyzing the minterm predicate, we need to know the access frequency of

user applications.

Access frequency: frequency with which user applications access data. If Q = {qi,

q2,. . . ,qq} is a set of user queries, acc(q1) indicates the access frequency of query qj in

a given period.

Minterm access frequencies can be determined from the query frequencies. The access

frequency of a minterm is represented as acc(mj)

4.3.2.4 Primary Horizontal Fragmentation in XML (PHFxmi)

A primary horizontal fragmentation is defined by a selection operation on the owner table

elements of a XML document. Therefore, given a table element E = { tl, t2,..., t }, where

t1, 1 ≤i ≤n, is a tuple element under E, its horizontal fragments are given by

<—i —<Z

where F1 is the selection formula used to obtain fragment E1. Note that if F1 is in

conjunctive normal form, it is a minterm predicate (mi). The algorithm presented here

demands that F1 be a minterm predicate.

78

Example 3

The decomposition of element PROJ into horizontal fragments PROJ1 in Figure 4.4 and

PROJ2 in Figure 4.5 is defined as follows:

PROJ1= BUDGET ≤200000(PROJ)

PROJ2 BUDGET 200000(PROJ)

Since it is difficult to define the set of formulas if the domain of the elements

participating in the selection formulas is continuous and infinite, we will consider the

domain of the element(s) as limited according to the requirements of the application.

Example 4

Consider table element PROJ in xml of Figure 4.3. We can define the following

horizontal fragments based on the project location. The resulting fragments are shown in

Figure 4.8.

PROJ1 CITY"Edmonton"(PROJ)

PROJ2 c crry="calgary" (PROJ)

PROJ3= 0 CITY"Red Deer" (PROJ)

PROJ1

<company>

<PROJ>
<project>
<PCODE>POO 1 </PCODE>
<PNAME>Consulting</PNAME>
<BUDGET>l 60000</BUDGET>
<CITY>Edmonton</CITY>

</project>
<I PROJ>

<company>

PROJ2

<company>

79

<PROJ>
<project>
<PCODE>P002</PCODE>
<PNAME>Tech. Support</PNAME>
<BUDGET> 175 000</BUDGET>
<CITY>Calgary</CITY>

</project>
<project>
<PCODE>P003</PCODE>
<PNAME>Tele-Marketing</PNAME>
<BUDGBT>260000</BUDGET>
<CITY>Calgary</CITY>

</project>
</ PROJ>

<company>

PROJ3

<company>

<PROJ>
<project>

<PCODE>P004</PCODE>
<PNAME>Promotion</PNAME>
<BUDGET>320000</BUDGET>
<CITY>Red Deer</CITY>

</project>
</ PROJ>

<company>

Figure 4.8 Primary Horizontal Fragmentation of Sample XML Document xml

A horizontal fragment X1 of a XML document xmldoc consists of all the tuple elements,

which satisfy a minterm predicate m1 defined on the table element being partitioned, and

other table elements are not partitioned. Hence, given a set of minterm predicates M,

there are as many horizontal fragments of XML document xml as there are minterm

predicates. This set of horizontal fragments is also referred to as the set of minterm

fragments. Therefore, the first step of any fragmentation algorithm is to determine a set of

simple predicates that will form the minterm predicates.

80

There are two important aspects of simple predicates: completeness and minimality. A

set of simple predicates Pr is said to be complete if and only if there is an equal

probability of access by every application to any tuple element belonging to any minterm

fragment that is defined according to Pr.

Example 5

Consider the fragmentation of element PROJ given in Example 4. If the only application

that accesses PROJ accesses the tuple elements according to the location, the set is

complete since each tuple element of each fragment PROJ1 (Example 4) has the same

probability of being accessed. If there is a second application that accesses only those

project elements where the budget is less than $200,000, then Pr is not complete. Some of

the elements within each PROJ1 have a higher probability of being accessed due to this

second application. To make the set of predicates complete, the predicates (BUDGET ≤

200000, BUDGET > 200000) must be added to Pr:

Pr = {CITY"Montreal", CITY ="New York", CITY="Paris", BUDGET ≤200000,

BUDGET > 200000}

The second desirable property of the set of predicates is minimality. It simple states that

if a predicte influences how fragmentation is performed (i.e., causes a fragment f to be

further fragmented into, say, j and j), there should be at least one application that.

accesses Jj and J} differently. In other words, the simple predicate should be relevant in
determining a fragmentation. If all the predicates of a set Pr are relevant, Pr is minimal.

Ozsu and Valduriez [OV99] describe the COM_MIN algorithm to generate a complete

and minimal set of predicates Pr' given a set of simple predicates Pr. We modify this

algorithm and apply it to fragment an element in a XML document. The algorithm is

called COM MINXML, which is given in Algorithm 1. To simplify the presentation, we

adopt the notation as follows:

81

Basic Rule: fundamental rule of completeness and minimality, which states that a table

element or fragment is partitioned "into at least two parts which are accessed differently

by at least one application."

J of Pr': fragmentfi defined according to a minterm predicate defined over the predicates

of Pr'.

Algorithm I COM_MINXML
input: E: a table element in a XML document; Pr set of simple predicates

defined on E
output: Pr': set of simple predicates
declare

F: set of minterm fragments
begin

find a p' Pr such that partitions E according to the Basic Rule

Pr' - P1
Pr— Pr—p1
F +- fj f, is the minterm fragment according to p'}
do
begin

find a pj c Pr such that Pj partitions some fk of Pr' according to
the Basic Rule

Pr'4—PuPry
Pr— Pr—p1

F— fuF

if 3Pk F- Pr' which is nonrelevant then
begin
Pry +__ Pry —pk

F — F — fk
end-if

end-begin
until Pr' is complete

end. { COM_MINXML}

The algorithm starts by finding a predicate that is relevant and that partition the input

table element into a XML document. The do-until loop iteratively adds predicates to this

set, ensuring minimality at each step. Hence, the set Pr' is both complete and minimal

when the algorithm terminates.

82

Step 2 in the primary horizontal fragmentation is to derive the set of minterm predicates

that can be defined on the predicates in set Pr'. These minterm predicates determine the

fragments that are used as candidates in the allocation step. Since the set of minterm

predicates may be quite large (exponential in the number of simple predicates), we must

reduce the number of minterm predicates that need to be considered in the fragmentation,

which is shown in the next step.

Step 3 in the design process is to eliminate some of the minterm fragments that may be

meaningless. This elimination is performed by identifying those minterms that might be

contradictory to a set of implications I.

The algorithm for primary horizontal fragmentation is given in Algorithm 2. The input to

the algorithm PHORIZXJvIL is a table element E that is subject to primary horizontal

fragmentation, and Pr, which is the set of simple predicates that have been determined

according to the applications defined on the table element E.

Algorithm 2 PHORIZXML

input: E: a table element in a XML document; Pr set of simple predicates
defined on E

output: M: set of minterm fragments
begin

Pr' 4-- COM_MINXML (E, Pr)

determine the set M of minterm predicates
determine the set I of implications among p1 c Pr'
for each miE M do

if m1, is contradictory according to I then
M— M—m,

end-if
end-for

end. { PHORIZXML }

Example 6

83

Consider the design of the table element structures given in Figure 4.7. There are two

possible table elements on which primary horizontal fragmentation can be performed,

namely SUBSIDY and PROJ table elements.

Suppose there is only one application that accesses SUBSIDY. This application checks

the salary information and determines a raise accordingly. Assume that employee records

are managed in two sites, one handling the records with salaries less than or equal to

$3,000. Therefore, the query is issued at two sites.

The simple predicates that would be used to partition table element SUBSIDY are:

P1: SUB ≤3000

P2: SUB >3000

giving the initial set of simple predicates Pr = { P1, P2 }. After applying the

COM_MINXML algorithm with i = 1 as initial value, we get Pr' = {pj}. Pr' now is

complete and minimal since p2 would not partitionfi (the minterm fragment formed with

respect to pi) according to Basic Rule. Then the minterm predicates as members of M
are:

ml: SUB ≤30000

M2: (SUB ≤30000) = SUB >30000

According to M, we have two fragmentsXj = {F1, F21 (see Figure 4.9).

F1

<SUBSIDY>
<role>
<DEGREE >MSc</DEGREE>
₂₉₀₀

</role>
<role>
<DEGREE>BE</DEGREE>
₂₃₀₀

</role>
</SUBSIDY>

F2

<SUBSIDY>
<role>
<DEGREE >Ph.D</DEGREE>
₄₀₀₀

</role>
<role>
<DEGREE>MBA</DEGREE>
<SUB>3500<!SUB>

</role>
</SUBSIDY>

Figure 4.9 Horizontal Fragmentation of Table Element SUBSIDY

84

4.3.2.5 Derived Horizontal Fragmentation in XML (DHFxmi)

A derived horizontal fragmentation is defined on a member table element of a link (see

Figure 4.7) according to a selection operation carried out on its owner. We want to

partition a member table element according to the fragmentation of its owner. This can be

implemented by means of semi-join [XML-QL] that is similar to that of relational

databases. The resulting fragments are defined only on the field elements of the member

table elements. We use "K" to denote the semi-join operator.

Given a link L where owner(L) = 0 and member(L) = M, the derived horizontal

fragments of Mare defined as

M=MK 0,1 ≤i ≤z

where z is the maximum number of fragments that will be defined on M, and 0, = o Fi

(0), where F, is the formula according to which the primary horizontal fragments 0• is

defined and K is a semi-join operation.

Example 7

Consider L1 in Figure 4.7, where owner(Li) = SUBSIDY and member(Lj) = STAFF.

STAFF can be arranged into two groups according to their subsidy: those having subsidy

less than or equal to $3,000, and those having more than $3,000. The two fragments

STAFF, and STAFF2 are defined as follows:

STAFF, = STAFF K SUBSIDY,

STAFF2 = STAFF i'< SUBSIDY2

where

SUBSIDY1 = U SUB :9000 (SUBSIDY)

SUBSIDY2 = 0 SUB>3000 (SUBSIDY)

The result of this fragmentation is shown in Figure 4.10

85

STAFF,

<STAFF>
<employee>

<SID>1D3</SID>
<SNAME>D. Parker</SNAME>
<DEGREE>MSc</DEGREE>

</employee>
<employee>

<SID>ID4</SID>
<SNAME>B. Unger</SNAME>
<DEGREE>BE</DEGREE>

</employee>
<employee>

<SID>ID7</SJD>
<SNAME>R. Davis</SNAME>
<DEGREE>MSc</DEGREE>

</employee>
</STAFF>

STAFF2

<STAFF>
<employee>

<SD>ID 1</SD>
<SNAME>K. Barker</SNAME>
<DEGREE>Ph.D</DEGREE>

</employee>
<employee>

<SID>ID2</SID>
<SNAME>J. Wong</SNAME>
<DEGREE>MBA</DEGREE>

</employee>
<employee>

<SID>1D5</SJD>
<SNAME>M. Shaw</SNAME>
<DEGREE>MBA</DEGREE>

</employee>
<employee>

<SID>ID6</SID>
<SNAME>A. Sand</SNAME>
<DEGREE>Ph.D</DEGREE>

</employee>
<employee>

<SID>1D8</SID>
<SNAME>F. Ada</SNAMB>
<DEGREE>MBA</DEGREE>

</employee>
</STAFF>

Figure 4.10 Horizontal Fragmentation of the Table Element SUBSIDY

4.4 Summary

This chapter presented the data fragmentation problem in distributed XML database

systems. The formal data model to describe a XML document is provided in Section 4.2.

The fragmentation of a XML document is defined. Section 4.3 discusses the fragment

strategy for a XML document. Horizontal fragmentation for a XML document is

introduced. Algorithms for primary and derived horizontal fragmentation in XML are

presented. The goal of this chapter is to show how to adapt the algorithms for horizontal

fragmentation in the distributed relational databases to XML.

86

Chapter 5

Extended Fragmentation Strategy for XML

The last chapter introduced XML document design in the relational framework for XML.

No nested elements are allowed to occur under a tuple element. However, nested

structure is one main feature of the XML documents. To respect this feature and enhance

query performance, this chapter extends that model to potentially accommodate nested

elements. Section 5.1 discusses the denormalization of table elements. Nested table

elements are presented in Section 5.2. Horizontal fragmentation for nested table elements

is provided in Section 5.3. Section 5.4 compares this chapter's fragmentation mechanism

with the one in last chapter. Section 5.5 summarizes this chapter.

51 Denormalization of TBEs

In relational databases, normalization optimizes updates at the expense of retrievals when

retrieving related records requires accessing different tables. This is why denormalizing a

relational design from higher normal forms can enhance performance by reducing join

operations between related tables. This is the primary motivation for denormalizing

relations in a datawarehouse.

87

Normalization for XML documents is described in Chapter 3. However, denormalizing a

XML document from third normal form may have advantages so we consider how this

could occur. The first reason is that join operations between XML elements is under

investigation but is not fully understood at this time. Second, update functions for XML

documents are still a problematic part of XML. Most applications may only retrieve data

stored in a XML document. Therefore, retrieval performance should be given priority.

Third, typically a XML element is "fact-oriented", which means that XML designers

intend to put all related information as different elements under a certain element

representing an object in the real world. In this section, the denormalization of table

elements is discussed. The fragmentation algorithms for denormalized TBEs and nested

TBEs are provided.

The denormalization of TBEs is the inverse procedure of normalizing a table element

resulting in a lower normal form. There are many ways to denormalize table elements.

However, only merging two table elements in 3NFxmi having one-to-many relationship is

considered in this thesis. The denormalization process is required when there is a need to

perform primary or derived horizontal fragmentation on a table element.

In Figure 4.7, the link shows the relationship among the table elements in 3NFxmi. The

link L1 indicates that there is a one-to-many relationship between SUBSIDY and STAFF.

For each degree in SUBSIDY there are multiple staff members with that degree in

STAFF. SUBSIDY can be placed into STAFF leading to a new structure for the table

element New—STAFF shown in Figure 5.1.

After the denormalization process shown in Figure 5.1, the field element "SUB" of

SUBSIDY becomes a field element under STAFF. The new table element STAFF is in

2NFxmi. In Example 7, SUBSIDY is fragmented into two fragments according to the

predicates: "SUB ≤3000" and "SUB > 3000". Derived fragmentation is then performed

on STAFF by semi-joining the two fragments of SUBSIDY and STAFF. Since the field

element "SUB" is under STAFF now, no semi-join is required. Predicates: "SUB ≤

88

3000" and "SUB > 3000" can be directly applied to fragmenting STAFF. The result is

shown in Figure 5.2.

SIJBIDY

role(DEGREE, SUB

L1 STAFF

employee(SID, SNAME, DEGREE)

Denormalized to a 2NFxmi TBE

New—STAFF

employee(SID, SNAME, DEGREE, SUB)

Figure 5.1 Denormalization of SUBSIDY and STAFF

There are two processes to denormalize two TBEs connected by a link. First, a new table

element structure is created by merging two table element structures of the linked TBEs.

Second, a new table element with data is generated by taking the two linked TBEs as

input.

5.1.1 The Algorithm For Creating New TBE Structure

The template to convert table element structures to a XML schema document is presented

in Chapter 3. Thus, once the table element structure(s) is provided, to get the XML

schema is a trivial procedure. Given two linked TBEs, a new table element structure can

be generated using the following algorithm:

Algorithm 3a DenormTBESTR

input: ES1: the owner table element structure of a link L1;
ES2: the member table element structure of link L1;

output: R: a table element structure
begin

R<—ES2

89

for each ic ES1 do { f is the tag name of afield element in ES1}
if f is not the primary key then

ES2 — tu ES2
ESl4—ESl—f

end-if
end-for

end. { DenormTBESTR }

STAFF1

<STAFF>
<employee>

<SID>1D3<ISD>
<SNAME>D. Parker<ISNAME>
<DEGREE>MSc</DEGREE>
₂₉₀₀

</employee>
<employee>

<SID>1D4</SID>
<SNAME>B. Unger</SNAME>
<DEGREE>BE</DEGREE>
<StJB>2300</STJB>

</employee>
<employee>

<SID>1D7</SID>
<SNAME>R. Davis</SNAME>
<DEGREE>MSc</DEGREE>
<STJB>2900</STJB>

</employee>
</STAFF>

STAFF2

<STAFF>
<employee>

<SID>ID 1</SD>
<SNAME>K. Barker</SNAME>
<DEGREE>Ph.D</D13GR2E>
₄₀₀₀

</employee>
<employee>

<SID>1D2</SJD>
<SNAME>J. Wong</SNAME>
<DEGREE>MBA</DEGREE>
<STJB>3500</STJB>

</employee>
<employee>

<SrD>Ds</SID>
<SNAME>M. Shaw</SNAME>
<DEGREE>MBA</DEGREE>
₃₅₀₀

</employee>
<employee>

<SID>ID6</SID>
<SNAME>A. Sand</SNAME>
<DEGREE>Ph.D</DEGREE>
₄₀₀₀

</employee>
<employee>

<SID>ID8</SID>
<SNAME>F. Ada</SNAME>
<DEGREE>MBA</DEGREE>
₃₅₀₀

</employee>
<STAFF>

Figure 5.2 Horizontal Fragmentation of TBE STAFF after denormalization

90

Figure 5.1 shows the process of denormalization for STAFF and SUBSIDY. STAFF is

member of the link L1 and SUBSIDY is the owner of the link L1. Applying the

DenormTBESTR algorithm by assigning the value "STAFF: employee(SID, SNAME,

DEGREE)" to R. There are two field element names "DEGREE" and "SUB" in the TBE

structure of SUBSIDY. Since "DEGREE" is the primary key, only "SUB" is appended to

R resulting in the new table element structure as "STAFF:employee(j, SNAME,

DEGREE, SUB)".

5.1.2 The Algorithm For Merging Two Linked TBEs with Data

Another process of denormalizing two linked TBEs is to merge the two TBEs. A generic

algorithm for this process is as follows:

Algorithm 3 DenormTBE

input: E1: the owner table element of a link L1;
E2: the member table element of link L1;
k: the primary key of E1;
fk: the foreign key of E2 referencing k of E1

output: E2' : a table element in 2NFxmj

begin
'

E2 - E

for each tjE E2' do { t1 is a tuple element of E2' }
for each i E1 do { t1 is a tuple element of E1}

if fk = k then
for each f, F_ tdo {f8 is afield element of t1}

if f is not primary key or part of primary key then

t,<—f8 ut,
t1<—t1—f

end-if
end-for

end-if
end-for

end-for
end.{DenormTBE}

91

5.1.3 The Algorithm For Fragmenting The Denormalized TBE

The algorithm for fragmenting a TBE in 2NFxmi, which is denormalized by merging two

table elements having one-to-many relationship, is as follows:

Algorithm 4 HorizDenormTBE

input: E1: the owner table element of a link L1;
E2: the member table element of link L1;
M: a set of minterm predicates defined on E1

output: N: a set of fragments
declare

E. a table element
begin

E - DenormTBE(Ei, E2)
Determine N by applying M on E

end. { HorizDenormTBE }

Example 8

Let us consider merging two TBEs STAFF and SUBSIDY in the document xi,zl given in

Figure 4.3 using DenorrnTBE. E1 and E2 will be SUBSIDY and STAFF, respectively.

By applying the DenormTBE algorithm, E2' is assigned all elements in STAFF. The

algorithm runs the outer loop with the first tuple element of £2' , whose degree is

"Ph.D". Next, go through the tuple elements in SUBSIDY to find the tuple element with

the degree value of "Ph.D" and copy this tupie's field element "SUB" to the first tuple

element of £2' . Do the same to all tuple elements of £2' * The result is:

New—STAFF

<STAFF>
<employee>

<SID>1Dl</SID>
<SNAME>K. Barker</SNAME>
<DEGREE>Ph.D</DEGREE>
₄₀₀₀

</employee>
<employee>

<SID>ID2</SID>
<SNAME>J. Wong</SNAMF>
<DEGREE>MBA</DEGREE>
₃₅₀₀

</employee>

92

<employee>
<SID>ID3</SID>
<SNAMB>D. Parker</SNAME>
<DEGREE>MSc</DEGREE>
<SUB>2900</STJB>

</employee>
<employee>

<SJD>ID4<ISID>
<SNAME>B. Unger</SNAME>
<DBGREE>BE</DEGREE>
₂₃₀₀

</employee>
<employee>

<SID>ID5</SID>
<SNAME>M. Shaw</SNAME>
<DEGREE>MBA</DEGRBE>
₃₅₀₀

</employee>
<employee>

<SID>]D6</SJD>
<SNAME>A. Sand</SNAME>
<DEGREE>Ph.D</DEGREE>
<STJB>4000</SUB>

</employee>
<employee>

<SID>ID7</SID>
<SNAME>R. Davis</SNAME>
<DEGREE>MSc</D]3GREE>
<STJB>2900</SUB>

</employee>
<employee>

<SID>]D8</SJD>
<SNAME>F. Ada</SNAME>
<DEGREE>MBA</DEGREE>
<SUB>3500<ISTJB>

</employee>
</STAFF>

After getting New—STAFF, the fragmentation can be performed on it according to the set

of minterm predicates: "SUB ≤3000" and "SUB > 3000" based on the HorizDenormTBE

algorithm. The result is shown in Figure 5.2.

5.2 Nested TBEs

In Chapter 3, the formal model and table element (TBE) definition were given. Under a

tuple element of a TBE, only field elements are allowed to occur. In other words, no

93

nested structure is permitted under a tuple element. However, a significant feature of

XML is its nested structure. A XML document with a nested structure is easy to read for

designers and reflects the hierarchical structure well. However, the XML documents are

designed to be read by applications(programs) other than human beings. Hence, while

designing a XML document, there is a trade-off between nesting and flat structures. The

challenge is to make a XML document nest properly. In this section, the TBE model is

extended to form a new data structure-nested TBE.

A nested tuple element (NTPB) is a tuple element having tuple elements under it. A

nested TBE (NTBE) is a table element having nested tuple elements. A nested table

element structure NS, denoted by NS: NT(FI,F2,...,Tm(fl,f2,...,fk),...,Fn), is

composed of a nested table element name NS, a list of field element F1,F2,...,Fn, and

some tuple element Tm consisting of field element fl, f2,..., fi in its nested tuple elements

having the tag name NT. The abstract structure for a XML document having NTBEs is:

Root level

or Table element level

 10 Nested Tuple element level

 Tuple element level

 10 Field element level

 10 Field element level

Figure 5.3 shows an example of a nested table element. In the NTBB STAFF, a tuple

element "SUBSIDY" occurs under the tuple element "employee". Its structure is

represented as STAFF: employee (SID, SNA ME, S UBSIDY(DEGREE, SUB)).

<STAFF>
<employee>

<SID>ID 1</SID>
<SNAME>K. Barker</SNAMB>
<SUBSIDY>

<DEGREE>Ph.D</DEGREE>

94

₄₀₀₀
</SUBSIDY>

</employee>
<employee>

<SID>ID2</S1D>
<SNAME>J. Wong</SNAME>
<SUBSIDY>

<DEGRBE>MBA</DEGREE>
_{3 500}

</SUBSIDY>
</employee>
<employee>

<SID>ID3</SJD>
<SNAME>D. Parker</SNAME>
<SUBSIDY>

<DEGRBE>MSc</DEGRBE>
<SUB>2900</ST.JB>

</SUBSIDY>
</employee>
<employee>

<SID>ID4</SJD>
<SNAME>B. Unger</SNAME>
<SUBSIDY>

<DEGREE>BE</DEGREE>
₂₃₀₀

</SUBSIDY>
</employee>
<employee>

<STD>1D5</SID>
<SNAMI3>M. Shaw</SNAME>
<SUBSIDY>

<DEGREE>MBA</DBGREB>
₃₅₀₀

</SUBSIDY>
</employee>
<employee>

<SID>ID6</SID>
<SNAME>A. Sand</SNAMB>
<SUBSIDY>

<DEGREE>Ph.D</DEGREE>
₄₀₀₀

</SUBSIDY>
</employee>
<employee>

<S]D>ID7</SJD>
<SNAME>R. Davis</SNAME>
<SUBSIDY>

<DEGREE>MSc</DEGREE>
₂₉₀₀

</SUBSIDY>
</employee>

95

<employee>
<SID>ID8</SID>
<SNAME>F. Ada</SNAME>
<SUBSIDY>
<DEGREE>MBA</DEGREE>
₃₅₀₀

</SUBSIDY>
</employee>

</STAFF>

Figure 5.3 An Example of a Nested Table Element

Given a NTBE having the structure NS : NT(F1,F2,...,Trn(fl,f2,...,fi),...,Fn) , converting

this structure to the XML schema is accomplished with the following template:

Template 3

I <complexType name"S">

2 <sequence>

3 <element name"T" type="r: T" maxoccurs="unbounded/>

4 </sequence>

5. <!complexType>

6 <complexType name"T">

7 <sequence>

8 <element name"F1" type"Datalypei "I>

9 <element name="F2" type"Datalype2"/>

10 <element name="Tm" type="r: NT"!>

11

12 <element name"F" type="DataType"!>

13 </sequence>

14 <!complexlype>

15 <complexType name="NT">

16 <sequence>

17 <element name"f1" type="DataType1"/>

96

18 <element name="f2" type="DataType2"/>

19

20 <element name="f" type="DataType"/>

21 </sequence>

22 </complexlype>

53 Horizontal Fragmentation of Nested TEES

Given the link L1 in Figure 4.7, there are two options to denormalize the table elements

SUBSIDY and STAFF. One option is discussed in Section 4.4.1. Another choice is to

replace the field element "DEGREE" in SUBSIDY with the related tuple element in

STAFF resulting in a new STAFF, which is a nested TBIE as shown in Figure 5.3. To

make it more meaningful, the tuple element's tag "role" in SUBSIDY is changed to its

TBE's tag name "SUBSIDY" in the resulting New—STAFF.

5.3.1 The Algorithm for Generating the Structure of a Denormalized NTBE

As in the process of denormalizing two linked TBEs into a TBB in 2NFxmi, merging two

linked TBEs into a NTBE consists of two processes as well. One is to get the structure of

the NTBE and the other is to merge the TBEs with their data. The algorithm to get the

structure of a NTBE is as follows:

Algorithm 5a DenormNTBESTR

input: ES1: T1 (k, F2, ..., Fe), the owner table element structure of a link L,;
ES2: T2 (F1, fk, ..., Fe), the member table element structure of a link

L1;
k: the primary key of ES,;
fk: the foreign key of ES2 referencing k of ES,

output: R: the structure of a NTBE
begin

fk +- String ("ES, (k, F2, ..., Fe)") (String() is a string function)
R - String("ES2: T2 (F1, fk, ...,

end. { DenormNTBESTR }

Figure 5.4 shows the process of denormalizing STAFF and SUBSIDY into a NTBE.

STAFF is the member of the link L1 and SUBSIDY is the owner of the link L1. Apply the

97

DenormNTBESTR algorithm with replacing the foreign key "DEGREE" of STAFF with

the value "SUBSIDY(DEGREE, SUB)". Next, assign the value "STAFF: employee(,

SNAME, SUBSIDY(DEGREE, SUB))" to R. R is a new NTBE structure generated by

merging STAFF and SUBSIDY.

SIJBSID

role(DEGREE, SUB)

L1 STAFF

employee(SID, SNAME, DEGREE)

I Denormalized to a NTBE

New—STAFF

employee(, SNAME, SUBSIDY(DEGREE, SUB))

Figure 5.4 Denormalizing Two Linked TBEs into a NTBE

5.3.2 The Algorithm for Merging Two Linked TBEs with Data

The other process of denormalizing two linked TBEs into a NTBE is to merge the data of

the two TBEs. A generic algorithm for this process is as follows:

Algorithm 5 DenormNTBE

input: E1: the owner table element of a link L1;
E2: the member table element of link L1;
k: the primary key of E1;
fk: the foreign key of E2 referencing k of E1

output: E2' : a nested table element

begin

E2 I - E2

for each tE E2' do { t1 is a tuple element of E2' }
for each tE E1 do { t1 is a tuple element of E1}

if fk = k then
replace fk with tj
change t11s tag name to the tag name of E1

98

end-if
end-for

end-for
end. { DenormNTBE }

Example 9

The new nested table element New—STAFF (Figure 5.3) is generated after applying

DenormNTBE on SUBSIDY and STAFF. First, E2' is assigned with all elements in

STAFF. The algorithm then runs the outer loop with the first tuple element of E2'

whose degree is "Ph.D"; next, go through the tuple elements in SUBSIDY to find the

tuple element with the degree value of "Ph.D"; replace the field element "DEGREE"

under the first tuple element of E2' with the found tuple element in SUBSIDY and

change its tag name "role" to "SUBSIDY". Repeat this procedure for the other tuple

elements of E2' . The result is shown in Figure 5.3,

The generic algorithm for fragmenting a NTBE denormalized using DenormNTBE is

presented as follows:

Algorithm 6 HorizDenormNTBE
input: E1: the owner table element of a link Li;

E2: the member table element of link L1; M: a set of minterm
predicates defined on E1

output: N: a set of fragments
declare

E. a nested table element
begin

E - DenormNTBE(Ei, E2)
Determine N by applying M on E

end. { HorizDenormNTBE }

In Example 7 (see Chapter 4), first, SUBSIDY is fragmented into two fragments

according to the predicates: "SUB ≤3000" and "SUB > 3000". By then semi-joining

STAFF with SUBSIDY, we get two staff groups according to their subsidy: those having

subsidy less than or equal to $3,000, and those having more than $3,000. Now SUBSIDY

becomes an element nested in STAFF. Thus predicates: "SUB ≤ 3000" and "SUB >

99

3000" can be directly applied to fragmenting NEW—STAFF by applying the

HorizDenormNTBE algorithm. The result is shown in Figure 5.5.

STAFF,

<STAFF>
<employee>

<SID>ID3</SID>
<SNAME>D. Parker</SNAME>
<SIJBS1DY>
<DEGREE>MSc</DEGREE>
<SUB>2900</STJB>

</STJBSIDY>
</employee>
<employee>

<SID>ID4</SID>
<SNAME>B. Unger</SNAME>
<SUBSIDY>
<DEGREE>B13</DEGREE>
<STJB>2300</SUB>

</SUBSJDY>
</employee>
<employee>

<SID>ID7</SID>
<SNAIV[E>R. Davis</SNAME>
<SUBSIDY>
<DEGREE>MSc</DEGREI3>
₂₉₀₀

<ISUBSIDY>
</employee>

</STAFF>

STAFF2

<STAFF>
<employee>

<SID>ID 1</SID>
<SNAMB>K. Barker</SNAME>
<SUBSIDY>
<DEGREE>Ph.D</DEGREE>
₄₀₀₀

</SUBSDY>
</employee>
<employee>

<SID>1D2</SID>
<SNAME>J. Wong</SNAME>
<SUBSIDY>
<DEGREE>MBA</DJ3GREE>
_{3 500}

</SUBSIDY>
</employee>
<employee>

<SID>ID5</SJD>
<SNAME>M. Shaw</SNAME>
<SUBSIDY>
<DEGREE>MBA</DEGREE>
<STJB>3 500</SUB>

</SUBStDY>
</employee>
<employee>

<SID>ID6</SID>
<SNAME>A. Sand</SNAME>
<SUBSIDY>
<DBGREE>Ph.D</DEGREE>
₄₀₀₀

</SUBSIDY>
</employee>
<employee>

<SID>ID8</SID>
<SNAME>F. Ada</SNAME>
<SUBSIDY>
<DEGREE>MBA<IDEGREE>
₃₅₀₀

</SUBSIDY>
</employee>

</STAFF>

Figure 5.5 Horizontal Fragmentation of NTBE STAFF

100

5.4 Primary and Derived Horizontal Fragmentation vs. Fragmentation
on the Denormalized TBE and NTBE

In Section 4.3.2.4 and Section 4.3.2.5, primary and derived horizontal fragmentation are

discussed with the assumption that all TBEs are in 3NFxmi. In this case, primary

horizontal fragmentation is performed on the owner of a link where derived horizontal

fragmentation is performed on the member of the link. The result of PHFxmi determines

the output of DHFxmi.

In terms of fragmentation on denormalized TBE and NTBE, there is no primary and

derived horizontal fragmentation needed. Since the two linked TBEs are merged to either

one TBE in 2NFxmi or a NTBE, fragmenting the denormalized TBE or NTBE is the same

as performing primary and derived horizontal fragmentation at the same time,

5,5 Summary

In this chapter, both denormalization and the extended model for table elements - NTBE

are considered. The denormalization procedure and the algorithm to create a new TBE

structure are given in Section 5.1. The algorithm to merge two linked TBEs is presented.

Section 5.1.3 gives the algorithm for fragmenting a denormalized TBE. NTBE is defined

in Section 5.2. Algorithms for generating the structure of a NTBE and the NTBE with

data are provided in Section 5.3. Finally, the fragmentation algorithm for a NTBE is

discussed. The next chapter presents the conclusion and the summary of various concepts

discussed in this dissertation and sets some future research directions.

101

Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions of this dissertation and presents directions for

future work.

6.1 Summary of Contributions

This thesis identifies the following problems in designing and fragmenting XML

documents in XML database systems. A mechanism to adapt relational techniques to

XML document design is presented.

. Absence of a mechanism to evaluate and design XML documents.

The current available XML specifications lack a mechanism to evaluate what

constitutes a good design for XML documents. No rules to follow when designing

XML documents results in numerous ill-designed documents with severe redundancy.

This will inevitable affect the performance of queries executed on those XML

documents. A mechanism to present design rules for XML documents can reduce

redundancy and enhance query performance.

102

. Absence of a mechanism to adapt relational techniques to XML.

Though there have been numerous proposals and mechanisms for conversions

between relational databases and XML, limited work has been done to adapt

relational techniques to XML. This is due to the heterogeneity of the data models

(relational databases and XML). A mechanism to adapt relational techniques to XML

is very imperative when addressing data and transaction management problems in

XML databases.

. Absence of a mechanism to fragment XML data in a distributed environment.

Limited attention has been paid to fragment XML data in the past. XML is invented

for data exchange and applications on the web. The Internet is the largest distributed

system in the world. Therefore a mechanism to fragment XML data is desirable when

considering the distributed environment for XML, especially for a distributed XML

database.

This research analyzed the above problems and/or challenges and addressed them by

adapting relational design techniques to construct XML documents. Further through the

proposed design models, data fragmentation for XML documents becomes possible. The

implementation provides a framework that can be utilized to solve data fragmentation

problems in a DXDB.

• Establish Design Rules for XML: Driving force is initiated to set up design rules

for XML documents. This thesis identifies some design issues for XML documents,

especially for XML databases. The redundancy and query execution problems are

discussed. Design rules for a relational model are used to evaluate and design XML

documents. The design issues for XML documents are discussed in Chapter 2.

103

r Relational Framework for XML: Considering a XML database as the underlying

system, table, tuple, and field elements are defined and used to construct a XML

document. Constraints for the document are specified in the XML Schema

documents. Since this mechanism makes XML data relational, some mature

relational techniques can be applied to handle these data, such as data and

transaction management. Design procedures are provided for XML documents.

Normal forms are defined for XML, which then can be used to reduce redundancy

of XML documents. Further, within this relational framework, fragmentation of

XML documents can be realized. It is worth to note that our implementation treats

native XML documents directly with no conversions between relational tables and

XML.

• Fragmentation of XML documents: No work has been done with data

fragmentation problems in a distributed XML database. A XML document in the

relational framework can be fragmented by the relevant algorithms proposed in this

dissertation. Horizontal fragmentation for XML documents is considered. Beyond

the relational framework, a table element with nested'tuple elements is discussed.

This is desirable when derived horizontal fragmentation is required.

6.2 Future Directions

There are several interesting directions in which the work presented in this dissertation

can proceed. The future work suggested here is based on this work coupled with

directions to address the general problem of XML document design with respect to

distributed XML database systems.

Attributes, PIs, and Comments: This thesis focuses on data-centric XML documents

and some other features of XML, such as attributes, PIs, and comments are not

considered. Although these entities will not substantially change the design model, we

may facilitate the design by adding them to the XML document.

104

Nesting Levels for TBE: For the nested table element, only one level nesting is allowed

under a nested tuple element. If there are too many nesting levels, redundancy becomes a

prominent problem. Since the architecture model for XML databases and XML are all

under investigation, it is hard to decide nesting levels for XML documents.

Vertical Fragmentation: This thesis considers horizontal fragmentation for XML

documents. However, vertical fragmentation is also valid for XML documents. The

challenge would be if we need that and how it will influence the performance when

executing queries.

105

Bibliography

[Abit+03]

[Abit+03]

[Abit+03]

[Bert+99]

[BosaOl]

[BourO2]

[Boyeol]

{Brem+03J

[Chau+03]

[Clar+99]

[ConrOl]

[Cowa+01]

S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T. Milo, "Dynamic
XML Documents with Distribution and Replication", SIGMOD 2003.

M. Arenas and L. Libkin, "A Normal Form for XML Documents",
PODS'02, pp.85-96.

M. Arenas and L. Libkin, "An Information-Theoretic Approach to Normal
Forms for Relational and XML Data", PODS'03.

B. Bertino, S. Castano, E. Ferrari, M. Mesiti, "Controlled Access and
dissemination of XML documents", Proc. 2 International Workshop on
Web Information and Data Management, 1999, pp.22-27

Jon Bosak, "The birth of XML: A personal Recollection", 2001,
http://java.sun.com/xml/birth—of xml.html.

Ronald Bourret, "XML and Databases".
http://www.rpbourret.com/xml /XMLAndDatabases.htm

J. Boyer, "Canonical XML Version 1.0", W3C Recommendation, March
15, 2001, http://www.w3.org/TRJ2001/REC-xml-cl4n-20010315.

J. Bremer and M. Gertz, "On Distributing XML Repositories",
International Workshop on the Web and Databases, June, 2003, pp.73-78.

Akmal B. Chaudhri, Awais Rashid, Roberto Zicari, "XML Data
Management: Native XML and XML-Enabled Database Systems".
Pearson Education, Inc.

J. Clark, S. DeRose, "XML Path Language (Xpath) version 1.0", W3C
Recommendation, November 16, 1999.
http://www.w3.org/TRJ1999/REC-xpath-19991116.

Andrew Conrad, "A Survey of Microsoft SQL Server 2000 XML
Features".
http://msdn.microsoft.comlliberary/en-us/dnexxml/html/xm107 162001 .asp.

R. Cowan, J. Tobin, "XML Information Set", W3C Proposed
Recommendation, August 10, 2001.
http://www.w3.org/TR/2001/PR-xml-infoset-20010810

106

[Cham+01] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon, M. Stefanescu,
"XQuery 1.0: An XML Query Language", W3C Working Draft, June 07
2001. http://www.w3.org/TR/2001/WD-xquery-20010607.

[Chan+02] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi. "Tree
Pattern Aggregation for Scalable XML Data Dissemination". In
Proceedings of the 28th International Conference on Very Large Data
Bases (VLDB), 2002.

[CP83] S. Ceri and G. Pelagatti. "Correctness of Query Execution Strategies in
Distributed Databases". ACM Trans. Database Syst. (December 1983),
8(4):577-607.

[Deut99] Alin Deutch, Mary Fernandez, Dan Suciu, "Storing Semistructured Data
with STORED," Proc. ACM-SIGMOD Conf., 1999, pp. 431-442.

[EN] Ramez Elmasri and Shamkant B. Navathe, "Foundamentals of Database
Systems (3'' edition)". Addison-Wesley, 2000.

[Fem00] Mary F. Fernandez, Wang Chiew Tan, Dan Suciu, "SilkRoute: trading
between relations and XML," WWW9 / Computer Networks, vol. 33, no 1-
6, June 2000, pp. 723-745.

[FernOl] Mary F. Fernandez et al. "Publishing Relational Data in XML: the
SilkRoute Approach," IEEE Data Engineering Bulletin, vol. 24, no. 2,
June 2001, pp. 12-19.

[Fern+01] M. Fernandez, J. March, "Xquery 1.0 and Xpath 2.0 Data Model", W3C
Working Draft, June 7, 2001.
http://www.w3.org/TRJ20OI/WD-query-datamodel-20010607.

[Gold+99] R. Goldman, J. McHugh, J. Widow, "Form semistructured data to XML:
Migrating the Lore model and query Language", Proc. International
Workshop on the Web and Databases, 1999, pp.25-30

[Ipedo] Ipedo XML Database 3.0.
http://www.ipedo.com/htrnl/Products—xmi—dat.html

[Kaus+02] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, Ehud Gudes,
"Exploiting Local Similarity for Indexing Paths in Graph-Structured
Data", l 8th International Conference on Data Engineering, 2002

[Koss0O] Donald Kossmann, "The State of the Art in Distributed Query
Processing", ACM Computing Surveys, vol.32, no.4, 2000, pp. 422-469.

107

[Kudo+00] M. Kudo, S. Hada, "XML Document Security based on Provisional
Authorization", Proc. 7 4 ,4 CM Conference on Computer and
Communications Security, Nov. 2000, pp.87-96.

[LeHo+00] A. Le Hors, P. Hegaret, L. Wood, G. Nicol, J. Robie, M. Champion, S.
Byrne, "Document Object Model (DOM) Level 2 Core Specification
Version 1.0", W3C Recommendation, November 13, 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113.

[Mcob] McObject LLC. http://www.mcobject.com/extremedb.htm#xml.

[NAVA9S] Shamkant B. Navathe, "A Mixed Fragmentation Methodology For Initial
Distributed Database Design", Journal of Computer and Software
Engineering, Volume 3, Number 4, pages 3 95-426, 1995.

[OH+96] R. Orfali, D. Harkey, and J. Edwards, "Essential Client/Server Survival
Guide, 2/e", Wiley, 1996.

[0V99] M.T. Ozsu, P. Valduriez, "Principles of Distributed Database Systems,
2/e", Prentice Hall, 1999.

[Rice02] Frank C. Rice, "Exploring XML and Access 2002", MSDN library, July
2001. http ://msdn.microsoftcomllibrary/default.asp?url=/library/en-
us/dnacc2k2/html/odc_acxmllnk.asp.

[Mala02] Susan M alaika, "Meet the experts: Susan Malaika on XML capabilities in
DB2", IBM Silicon Valley Lab, December 2002.
http://www7b.software.ibm.com/dmdd/library/techarticle/02 l2malaikalO2
l2malaika.html.

[Raym+96] D.R. Raymond, F.W. Tompa, D. Wood, "From data representation to data
model: meta-semantic issues in the evolution of SGML", Computer
Standard & Interfaces 18, 1996, pp. 25-36

[Robi99] J. Robie, "XQL(XML Query Language)", August 1999.
http://www.ibiblio.org/xql/xql-proposal.html.

[SalmOl] Airi Salminen, Frank Wm. Tompa, "Requirements for XML Document
Database Systems", ACMPress, 2001, pp. 85-94.

[Schm0O] Albrecht Schmidt et al, "Efficient Relational Storage and Retrieval of
XML Documents," Procs. Int. Workshop on the Web and Databases
(WebDB), 2000.

108

[Shan+OO]

[Shan0O]

[ShanOl]

[ShanO 1']

[Shan99]

[Sonic]

[Tamio]

[VianOl]

[XML1.0]

[XML:DB]

[XMLAPI]

[XML-QL]

M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasundaram, E. J.
Shekita and S. N. Subramanian. "XPERANTO: Publishing Object-
Relational Data as XML". Proc. of the mt. Workshop on Web and
Databases (WebDB), pages 105-110, 2000.

Jayavel Shanmugasundaram et al, "Architecting a network query engine
for producing partial results," In WebDB (Informal Proceedings) 2000,
pages 17-22, 2000.

Jayavel Shanmugasundaram et al, "Querying XML Views of Relational
Data," Proceedings of the27th VLDB, 2001, pp. 261-270.

Jayavel Shanmugasundaram et al, "Efficiently Publishing Relational Data
as XML Documents," The VLDB Journal vol. 10, no. 2-3, 2001, pp 133-
154.

J. Shanmugasundaram et al., "Relational Databases for Querying XML
Documents: Limitations and Opportunities," Proc. of 25th Intl Conf Very
Large Data Bases (VLDB'99, Edinburgh, Scotland, UK), Morgan
Kaufmann, 1999, pp. 302-314.

eXtensible Information Server 3.1, Sonic Software Corp.
http ://www.sonicsoftware.comlproducts/additional_software/extensible_in
formation_server/index.ssp.

Tamino XML Server, http://www.softwareag.com/tamino/.

V.A. Vian, "Web odyssey: from Codd to XML" Proc. 20th Symp. On
Principles ofDatabase Systems, 2001, pp 1-15.

Extensible Markup Language (XML) 1.0 (Second Edition),
http://www.w3.org/TR/REC-xml

XML:DB Initiative, "What is an XML database?", http://www.xmldb.org
/faqs.html - faq-i

XML:DB Initiative, "Application Programming Interface for XML
Databases", http://www.xmldb.org/xapi/index.html.

A. Deutsch, M. Fernandez, D. Florescu, A.Y. Levy, D. Suciu, "XML-QL:
a query language for XML", Submission to W3C, NOTE-xml-ql-
19980819. http://www.w3.org/TR/NOTE-xml-ql.

[XQOi] S. Boag, D. Chamberlin, et al. "XQuery 1.0: An XML Query Language",
Technical Report, W3C, 2001.

109

[XS] XML Schema Part 1: Structures. WK note,

http://www.w3.org/TR/xmlschema-1.

[W3C} World Wide Web Consortium (W3C), October 23, 2003.
http://www.w3.org.

[W3CDOM] World Wide Web Consortium (W3C), Document Object Model (DOM),
http:// www.w3c.org/DOM.

[W82] G. Wiederhold, "Database Design (2'' edition)", New York: McGrawHill,
1982.

110

