
UNIVERSITY OF CALGARY 

Equilibrium Concepts in Exhaustible Resource Economics 

by 

Lucia Vojtassak 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF ECONOMICS 

CALGARY, ALBERTA 

APRIL, 2007 

© Lucia Vojtassak 2007 



UNIVERSIRY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Graduate 
Studies for acceptance, a thesis entitles "Equilibrium Concepts in Exhaustible Resource 
Economics" submitted by Lucia Vojtassak in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy. 

Supervisof Dr. John R. Boyce, Department of Economics 

1c, 
R. Church, Department of Economics 

r. B. Curtis 

Dr. 

\ 

aton, Department of Economics 

D'jAidãn Hollis, Department of Economics 

Cottrell, Haskayne School of Business 

External Examiner, Dr. Stephen W. Salant, University of Michigan 

tpri/ J, 2o9-

Date 

11 



ABSTRACT 

This thesis considers the appropriate equilibrium concept in the dynamic games when 

industry faces a natural resource that is exhaustible. 

The first model of this thesis considers the effect that a capacity constraint has on a 

pipeline's ability to extract rents from shippers. When binding, a capacity constraint 

prevents shippers from substituting shipments across time. This raises the profits to the 

pipeline in the subgame perfect equilibrium by reducing rent-dissipation due to the Coase 

Conjecture. We show that this effect is most pronounced when the pipeline has a low 

discount rate, but that it may also happen with a high discount rate. We also show that 

using a capacity constraint alone that the pipeline cannot increase its profits to the full 

commitment level. 

In the second model of this thesis we develop a theory of 'oil 'igopolistic oil exploration 

in which strategic exploration and production are derived jointly in a three period 

subgame perfect equilibrium. We predict that producers with smaller proven reserves will 

do more exploration than producers with larger proven reserves. The rationale for this 

result is that producers gain no commitment power from exploration if their proven 

reserves are sufficiently large. Smaller producers, in contrast, can alter the path of 

production by their rivals by increasing the rate of exploration early in the game. These 

predictions are consistent with country-level production and reserve data in the post- World 

War II era. 
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I 

1. Introduction 

The most common equilibrium concept in industrial organization is the Nash 

equilibrium. In the Nash equilibrium, the agent takes the strategies of other agents as given 

and does not consider the possibility of influencing them (Nash 1950). In dynamic games, 

the agent chooses his actions after observing actions of his opponents and agents confront 

one another repeatedly. In these games, the Nash equilibrium concept must be refined to 

consider strategic behavior of agents. 

The theory of dynamic games generally distinguishes between the open loop Nash 

equilibrium and the subgame perfect Nash equilibrium (Selten 1975). The open loop 

strategy is a function of time and the initial state. Thus this strategy does not account for 

what would happen if some agent were to deviate or if the state is changed by other events 

in the future. The subgame perfect strategy does reflect the observed state in the action and 

hence is a function of state and time. Thus the subgame perfect Nash equilibrium is 

dynamically consistent in the sense that at each point in time agents choose actions that 

maximize their returns in the subgame beginning at that node. 

This thesis discusses and analyzes the appropriate equilibrium concept in dynamic 

games in markets for a natural resource that is exhaustible. This analysis is done for two 

different market scenarios. 

The first model of this thesis considers a dynamic game between two sides of the 

market, in particular, the monopsony provider of transportation services of a nonrenewable 

natural resource, i.e. pipeline, and the competitive sellers of that resource. It is well known 

(e.g., Bulow 1982) that the open loop equilibrium concept yields higher profits for the 
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monopsonist, yet this equilibrium is implausible since it is not dynamically consistent. 

Indeed, pipelines are built to serve for several decades, yet servicing contracts are written 

for much shorter time periods. However short contracts are not favorable to pipelines 

because reserve depletion raises the price the monopsonist has to pay to sellers. Even 

though sellers act non-strategically, sellers anticipate that the monopsonist has an incentive 

to pay a higher price in the later period, and hence they will not sell in the current period. 

Indeed, the Coase conjecture suggests that if the periods are very short or the cost of 

waiting is very small the sellers can force the monopsonist to buy the competitive quantity 

of natural resource today at the competitive price: the monopsony power is destroyed by 

the ability of the sellers to substitute intertemporally. 

We consider the effect that a capacity constraint has on a pipeline's ability to gain 

monopsony power in' the subgame perfect Nash equilibrium. We show that a capacity 

constraint can prevent shippers from substituting their shipments across time, which can 

raise the profits to the pipeline compared with the unconstrained subgame perfect 

equilibrium profits, and reduce Coase Conjecture rent-dissipation. We show that this effect 

is most pronounced when the pipeline has a low discount rate, but that it may even happen 

with a very high discount rate. 

The second model of this thesis discusses how oligopoly firms, which differ in their 

stocks of proven and unproven reserves, compete over production and the level of 

exploration of the nonrenewable resource. The 'oil'igopoly theory of oil production, when 

the game does not consider the exploration phase, yields similar solutions to the open loop 

and the subgame perfect Nash equilibria (Loury 1986, Polasky 1992). However, when 
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exploration is added to this game, producers may strategically invest in exploration to 

increase their production capacity and the open loop Nash equilibrium is no longer an 

appropriate equilibrium concept. Thus this chapter develops a theory of 'oil'igopolistjc oil 

exploration in which strategic exploration and production are derived jointly in a three 

period subgame perfect equilibrium. The 'oil'igopoly theory of oil exploration predicts that 

producers with smaller proven reserves will do more exploration than producers with larger 

proven reserves. The intuition for this result is that producers gain no commitment power 

from exploration if their proven reserves are sufficiently large. Smaller producers, in 

contrast, can alter the path of production by their rivals by increasing the rate of exploration 

early in the game. 

Both models of this thesis analyze problems in exhaustible resource economics. Both 

models are solved in a discrete time framework with a finite number of periods, where 

backwards induction methods of the subgame perfect equilibrium can be utilized. In the 

monopsony pipeline model, only two time periods are necessary to show that the open loop 

and the subgame perfect Nash equilibria differ. In the 'oil'igopoly theory of oil exploration 

three time periods are required to obtain a difference in the equilibrium concepts. The 

correct equilibrium concept in each of these models is the subgame perfect Nash 

equilibrium. However, in both models, the open loop and the subgame perfect equilibrium 

differ only under certain conditions. These conditions ensure that actions taken today 

influence one's rival's future actions and those changes in their future actions affect the 

agent's own profits. 
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Even though both models use the same equilibrium concept (the subgame perfect Nash 

equilibrium), because of different settings of the models, different techniques are used, and 

different questions are asked in the two models. In the 'oil'igopoly theory of oil 

exploration, we solve for the Nash equilibrium among producers within each period, where 

producers have control over extraction and exploration activities. In the monopsony 

pipeline model, we solve for the subgame perfect equilibrium, where the buyer has the 

first-mover advantage and thus chooses prices (knowing the desired quantities that 

maximize his profit), and suppliers are Stackelberg followers with control over production 

quantities within periods. 

In the monopsony pipeline problem, there is only one type of reserves - proven. The 

question is how much of the proven reserves to use and how this quantity affects the 

expectations on the subgame perfect Nash equilibrium. In the 'oil'igopoly theory of oil 

exploration, producers produce from two types of reserves proven and unproven, that are 

all used up by the end of period 3. The question is when to explore the unproved reserves 

to turn them into the proven reserves. 

In the monopsony pipeline problem, strict convexity of production cost is required to 

get the open lop and subgame perfect Nash equilibria that differ in price-production 

contracts. In the 'oil'igopoly theory of oil exploration, strict convexity of exploration cost 

is required to get the open loop and subgame perfect Nash equilibria that differ in 

exploration and extraction activities. 

Finally, we obtained surprising results in both problems. In the monopsony pipeline 

problem, we assume concavity of the buyer's utility function u (q3. We find that this 
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condition is not the same as a capacity constraint (Kahn 1986). In the 'oil'igopoly theory of 

oil exploration we find that the medium-sized firms in terms of proven reserve holdings 

have a strategic incentive to increase exploration activity in subgame perfect comparing 

with the open loop Nash equilibrium. Both large and medium sized firms have incentive to 

decrease equilibrium subgame perfect production comparing with the open loop 

equilibrium. 

This thesis proceeds as follows: Chapter 2 illustrates the motivation and literature 

review for the monopsony pipeline problem. Chapter 3 presents the complete monopoly 

pipeline model. Chapter 4 discusses the motivation and literature review for the theory of 

'oil'igopoly oil exploration, where the theory is derived in chapter 5. 

2. Motivation and Literature Review: the Monopoly Pipeline Problem 

Pipelines are the primary method of transporting oil and gas across land. In the United 

States, there currently are over two hundred natural gas pipelines with over 297,000 miles 

of natural gas transmission lines, of which about 20,000 miles are major trunk lines with 

the balance being gathering lines. An additional 1.8 million miles of pipelines lines 

distribute natural gas to consumers.' There are also over 200,000 miles of oil and refined 

products transmission pipelines, of which almost 55,000 miles are "trunk" lines, 8-24 

inches in diameter.2 Pipelines are not just a North American phenomenon. In Western 

Europe there were over 36,000 kilometers of oil pipelines transporting over 800 million 

"Changes in U.S. Natural Gas Transportation Infrastructure in 2004," Energy Information Agency, U.S. 
Department of Energy, 2005. 

2 of Oil Pipelines, http://www.aopJ.org/go/site/gggi 
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cubic meters of oil in 2003. 

Pipelines in the United States presently account for around 17% of the volume of goods 

transported, but account for only about two percent of the total costs of transportation .4 

Pipelines are perfectly designed to take advantage of economies of scale, since most of the 

costs of providing pipeline services are the fixed costs of putting the pipeline in place. In 

the United States, pipeline ownership is disassociated from the shippers. This has important 

consequences for the distribution of economic rents between the pipeline, which is often a 

monopoly, and the shippers, who are often small price-taking firms. 

The following chapter examines how the dynamics of oil and gas field extraction affect 

the ability of a pipeline to extract rents from shippers. While most of the economics 

literature regarding pipelines has focused on its natural monopoly aspects, we focus on the 

issue of how the choice of capacity size in the pipeline affects the competitive environment 

in which the pipeline operates. In particular, we view pipeline capacity as a means in which 

a pipeline may overcome the problem it faces in its relations to shippers - that of being 

incapable of committing itself to a long-term pricing scheme. 

Formally, the problem faced by a pipeline is similar to two other problems that have 

received much attention in economics. In particular, the problems faced by a durable goods 

monopolist and the problem faced by an importer of an exhaustible resource. 

Coase (1972) noted that a durable goods monopolist faces the problem that his 

customers know that he has an incentive to ignore their capital losses from future sales. 

"Performance of European Cross-Country Oil Pipelines," Report 3/05, CONCAWE, Brussels, 2005, 
Www.concawe.org. 

"Association of Oil Pipelines, http://www.aopJ.org/go/si/g/ 
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With a constant marginal cost, Coase conjectured that since future sales are a perfect 

substitute for current sales, that the monopolist will produce the competitive quantity "in 

the twinkling of an eye". This happens because consumers of the durable good realize that 

while the durable goods monopolist has an incentive to set the price high in the beginning, 

it will later wish to lower that price to attract further customers. This conjecture was found 

to be true by Stokey (1981) and Gui et al (1986). However, in an important extension, 

Kahn (1986) found that if the marginal cost of production is increasing in the output level, 

that the monopolist has an incentive to spread production out over time, and that this 

unravels the Coase conjecture. 

Coase also conjectured that the monopolist might regain his monopoly power through 

leasing, rather than sales, so that his customers know that the monopolist will internalize 

the capital losses from additions to the stock of durable goods. Bulow (1982) formalized 

this part of Coase's conjecture, and found that so long as the durable goods monopolist has 

a credible commitment device that his profits will be larger than if he does not have such a 

commitment device. The question then is what constitutes a credible commitment device? 

The same story as the "Coase conjecture" occurs with an exhaustible resource importer 

who tries to extract economic rents from resource producers by setting an import tariff. 

Bergstrom (1982) showed that when extraction costs are constant, even in the dynamic 

model, all rent can be captured by importer. When the marginal cost of production is stock-

dependent and rises as reserves deplete, producers will realize that the tariff will decline in 

the future, and will shift supply across periods (Karp 1984, Newbery and Maskin 1993, 

HOmer and Kamien 2004). 
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Our contribution to this literature is to show the conditions under which a capacity 

constraint by the pipeline serves as a credible commitment device for the pipeline. The 

model we consider is that of a monopsonistic buyer who faces a number of sellers. 

Following Bulow (1982), we consider only a simple two-period model, which means that 

profits to the monopsonist are not driven to zero even when the monopsonist has no other 

commitment device. Analogous to Kahn (1986), we assume that the buyer's marginal 

utility is decreasing in the output level. This gives the monopsonist an incentive to spread 

production across both periods. Second, he producers who use the pipeline face costs 

which are increasing as the remaining reserves are depleted. This has the effect of ensuring 

that the marginal cost curves of the producers are continuous, so that we avoid the 

"pacman" solution of Bagnoli et al. (1989). 

We find that the discount rate has a huge effect upon whether or not the pipeline is able 

to use pipeline capacity as a commitment device with shippers. This is surprising because 

in the full commitment equilibrium, the quantity the pipeline ships declines over time for 

any discount rate. However, in the no commitment possible equilibrium, the quantity the 

pipeline ships may increase over time. This is most likely to occur when the value of a 

dollar earned in the future is high - which is to say the discount rate is low. 

It is precisely this case, where production is increasing over time in the unconstrained 

subgame perfect equilibrium, in which the capacity constraint is useful to the pipeline. The 

reason is quite intuitive. The strategic effect comes from the fact that the monopsonist can 

affect second period output levels with first period choices. If capacity constrains the 

second period output level, then the strategic effect disappears for th monopsonist. 
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Capacity constraints of various forms have been considered in the literature. Kahn 

(1986) showed that an increasing marginal cost of production - of which a capacity 

constraint is a limiting case - causes the Coase conjecture to partially unravel. Our model 

shows that even with constant marginal profit from production - which is equivalent to 

constant marginal cost of production in Kahn's model - that we obtain the result that a 

capacity constraint can increase profits to the pipeline. Thus capacity effects are separate 

from curvature of the cost function. Denicolo and Garella (1999) show that restricting sales 

to a portion of buyers willing to pay the first period price (given their expectations of the 

second period price) increases the monopolists' profits. In our model, the capacity 

constraint allows the monopolist to raise the price in the first period, which means he 

leaves less surplus on the table relative to the rationing equilibrium. Finally, MacAfee and 

Wiseman (2006) consider a model in which the monopolist can expand capacity at a low 

but positive cost in every period. In contrast, we have capacity as a choice made at the 

beginning of the game which cannot be altered later. Nevertheless, the lesson drawn from 

both papers is quite similar: capacity constraints raise profits to the pipeline. 

The model presented in the next chapter is organized as follows. Section 3.1 identifies 

the assumptions on costs and pipeline profits. Section 3.2 derives the full commitment open 

loop Nash equilibrium. Section 3.3 derives the unconstrained subgame perfect equilibrium. 

Section 3.4 adds the capacity constraint to the subgame perfect equilibrium. Section 3.5 

derives the optimal capacity level. Section 3.6 concludes. 
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3. Capacity Constraints as a Commitment Device in Pipeline Rent Extraction 

3.1. Assumptions 

We assume that pipeline services are essential to bringing the production of non-

renewable resource to market. The suppliers of the resource are assumed to be price taking, 

and hence non-strategic, but they are forward looking rational actors. They face a single 

monopsony pipeline who buys output q, from the competitive producers, paying price p, 

per unit in periods t = 1,2.5 We assume that the pipeline is fully depreciated after two 

periods. Both the suppliers and the buyer discount second period profits at the common 

factor 8, where 0 < 8< 1. The initial stock is R and the stock decreases at production rate 

q1 resulting in stock R - q at the beginning of period t = 2 and in stock R - - q, which 

must be non-negative, at the end of period two. 

The pipeline's net-of-acquisition-costs profits in each period are denoted as u(q), and 

depend only on the quantity produced, q,. Suppliers' extraction costs are denoted as 

C (q1, R - q, 1), and depend both on the quantity produced and the initial reserves. We 

assume that the cost and profit functions obey the following conditions: 

A. 1: C (q,, R - q,1) f c (R - q) dq, where qom 0, c' (.) <0 and c "(.) ≥ 0; 
q_1 

A.2: u'(q,)>o and u"(q)<0t12; 

The problem of the pipeline where monopoly supplier offers processing and transmission services is 
formally equivalent to monopsony buyer of oil or natural gas. Let p, denote the price paid to producers by 
consumers and let 'r, denote the tariff chosen by the pipeline. Then the producer receives price p, = p, - r,. 
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A.3: 

A.4: u'(0)< c(0)—Rc'(0). 

Assumption A. 1 defines the extraction cost for suppliers of the resource such that the unit 

cost of extraction, c (R - q,), rises at an increasing rate as reserves are exhausted.' In the 

pipeline considered here, the marginal factor cost of cumulative production q starting with 

stock Ris 

m(q)=c(R_q)_qcl(R_q), (3.1) 

An implication of A. 1 is that the marginal factor cost is greater than the average factor cost, 

i.e., m (q) > c (R - q) >0, and that the marginal factor cost is increasing in q, i.e., 

m'(q)>.o.7 

Assumption A.2 defines the buyer's profits in each period as an increasing concave 

function of the quantity purchased in that period. 8,9 

6 In the durable goods monopoly problem, the assumption that c'(.) <0 in A. 1 is equivalent to the assumption 
that marginal revenue is less than average revenue to the durable goods monopolist. 

Equation (3.1) is written with the initial stock as R. Thus, in period one there is no problem with the 

interpretation of (3.1) as the marginal factor cost. However, when q1 > 0, the marginal factor cost in period 
two is c(R—q1—q2) —q2c'(R—q,_q2) <m(q1+q2). However, m(q1+q2) = c(R—q1—q2) —(qi+q2)c'(R--q1—q2) is then 
the marginal factor cost of cumulative production. 

8 To get a concave profit function, it must either be that the demand curve, D(q,), for the output q, is 
downwards sloping or that the cost of transporting the resource product, M(q), is rising at an increasing rate 
in q,. Then u(q) = D(q)q, - M(q,), and u'(q,)> 0 for D(q) + D'(q,)q, > M(q) and u"(q) <0 for 2D'(q,) + 
D"(q,)q, <M(q,). 

In the durable goods monopoly case, u'(q)> 0 is equivalent to positive marginal cost of production, and 
V (q) <0 is equivalent to increasing marginal costs. In Bulow (1982), marginal cost was constant. Kahn 
(1986) was the first to examine the durable goods monopoly case where marginal cost was increasing. 
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Assumptions A.3 and A.4 make the game dynamic. Assumption A.3 guarantees that the 

buyer is capable of purchasing the last unit of reserves, so that if positive reserves exist in 

any period, there will be positive level of production. Assumption A.4 ensures that the 

buyer does not wish to consume all of the reserves in a single period. 

We turn now to the characterization of the full-commitment equilibrium. 

3.2. Open Loop Nash Equilibrium 

We begin by deriving the open loop Nash equilibrium. In the Nash equilibrium both 

buyer and sellers have perfect commitment power. While unrealistic, this equilibrium 

serves as a benchmark from which to compare both the unconstrained no-commitment 

equilibrium and the capacity constrained equilibrium below, as it produces the highest 

possible profits for the pipeline.'0 In the open loop equilibrium the buyer commits to the 

price p, in each of the two periods at time t = 0 and the sellers commit to the quantity 

supplied q, in each of the two periods at time t = 0. We assume throughout that the buyer 

acts as a Stackelberg leader and the sellers act as Stackelberg followers, although we will 

refer to the solution where all choices are made at time t = 0 as the Nash equilibrium. 

Taking the prices p, and P2 as given, the sellers choose q, and q2 to maximize 

'° Bulow (1982) provides the simplest example of why perfect commitment power of each side of the market 
in the Nash equilibrium is unrealistic. In his example, a durable goods monopolist faces a linear demand for 
the good and has constant (zero) marginal cost of production - corresponding to u' (q) = 0 in our model. In 
the Nash equilibrium, the durable goods monopolist produces only in period one, and hence behaves exactly 
as a non-durable goods monopolist, producing to the quantity where marginal revenue is equal to zero. In the 
second period, both consumers and the durable goods monopolist benefit from additional production since the 
intercept of the residual demand curve is greater than marginal cost. See also Karp (1984). 
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p1q1 - fc(R - q)dq + 8 pq2 - f c(R - 
0 
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(3.2) 

subject to non-negativity constraints on production and the resource stock constraint that 

q1 +q2 :5 R.  Let 2 denote the Lagrange multiplier associated with the resource stock 

constraint in the sellers' objective function. In equilibrium, 2 will be the scarcity rental 

value of the in situ resource stock. The sellers' first-order necessary conditions are given by 

(3.3)-(3.5):" 

aLs 
= PI_(1_8)c(R_qi)_8c(R_q1_q2)_o, eq, 

8[p2_c(R_q1_q2)]_2≤o, 

(3.3) 

aL 
_(R_qi_q2)≥o,2≥0 and 2{R_ q1 _q2} 0 (3.5) 

We shall refer to the open loop Nash equilibrium values of the choice variables with a 

subscript 'OL'. The inequalities in (3.3) and (3.4) reflect that a corner solution is possible 

in the q,. Equations (3.3) and (3.4) together imply a }{otelling intertemporal price arbitrage 

condition when positive quantities of resource are supplied in both periods, i.e., 

pflL_c(R_qoL) 8[p2L_c(R_qL)] 
(3.6) 

" Throughout the chapter, we shall indicate that the non-negativity constraint on production binds by writing 
the first-order condition in production as a strict inequality. However, we shall explicitly include a multiplier 
(denoted as 0 or 0,) for the non-negativity constraint on the suppliers' scarcity rent, 1 or ,. 



14 

when qi >0 and q2> 0. 

The buyer's discounted stream of net profits is given by: 

B=u(qj )_ p1q1+8[u(q)_pq] (3.7) 

The buyer chooses q1, q2, p1, p2 and 2 to maximize the discounted flow of net profits 

subject to satisfying the sellers' first-order conditions, (3-3)-(3 .5). The Lagrangian for the 

buyer's problem can be stated as: 

Lu(qi)_pjqj+8[u(q2)_p2q2] +[5[p2_c(R_qi_q2  

+ A [PI _(1_8)c(R_qi)_ac(R_q1_q2)_2]+ Ø[R—q1—q2] + 92. 

The multipliers p' and t12 are for the constraints (3.3) and (3.4), and the multipliers 0 and 0 

are for the resource supply constraint and the non-negativity constraint on scarcity rent in 

(3.5), respectively. The buyer is unconstrained in his choice of the prices to be offered. 

Thus the first-order necessary conditions in the prices satisfy 

5LB 
=—q1+ =0, 

op1 

5L8 

OP2 

(3.8) 

= - Sq2 + 8u =0. (3.9) 

From (3.8) and (3.9), we get that u°' = q1°" and p20" = q2OL respectively. Therefore, we 

may write the buyer's first-order necessary conditions in the choice of the quantities 
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produced in each period and in the value of the scarcity rent as 

ÔLB 
u'(q1)—p1+(q1+q2) Sc'(R—q1--q2) aq, 

+q1 (l-8)c'(R—q1)_Ø ≤ 0, (3.10) 

0LB 
= S[u(q2)_p2]+(qI+q2)sc1(R_q1_q2)_ ≤ 0, 

3q2 

OLB 
—q1—q2+9 =0, aA 

(3.11) 

(3.12) 

O≥0, ,t≥0, and &A.=O, 
(3.13) 

q3 ≥ 0, 1?— - q2 ≥ Oland çá[R —q1 - q2] =0, (3.14) 

where the inequalities in (3.10) and (3.11) correspond to the non-negativity constraints in 

production. Note that combining (3.3) and (3.10), and combining (3.4) and (3.11) yields 

[u'(q' m (q0L + q20-' )]:!• 0 + 

u1(q0)_(1_o)m(q101)_5(q1oL +q2°')≤Ø+. 

Thus, if q > 0 and q> 0, then 

u 1(q)sut(q)(1_s) m (q L) 

(3.15) 

(3.16) 

(3.17) 
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Comparing (3.6) and (3.17), we see that while discounted prices rise at rate 

(1-8) c (R - q1), discounted marginal profits to the buyer rise at rate (1-5) m (q1) 

(1-5) c (R - q1). This is because the buyer internalizes the cost increase to infra-marginal 

production whereas producers only require that price rise to cover the difference in cost at 

the margin. 

We may now state the main result of this section, characterizing the open loop 

equilibrium: 

Theorem 3.1: Under assumptions A.1-A.4, the open loop Nash equilibrium satisfies 

q L >  q?L > 

q1OL + qL <R, 

p<c(R—q0' OL) - I 

u '(q) ≤ qjOL  - (qL+qL)cI(R_qoL_qOL ) 

m(q°' +q0" ) 

OL - 5OL (1-5) c (R - qOL) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

u'(q) - 5u'( OL 
q) ≥ (1-5)m(q'). (3.23) 

Condition (3.18) implies that the two-period Nash equilibrium for a monopsonistjc 
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pipeline has higher level of production in period one than in period two. Indeed, period two 

production may be zero. Condition (3.19) implies that in the Nash equilibrium, the 

monoposonistic pipeline leaves some resource stock un-exploited, even though it is 

economically feasible to produce. This drives the scarcity rental value of the resource stock 

to zero for both buyer and sellers. The weak inequalities in equations (3.20)-(3.23) hold 

with equality when q2OL > 0. Thus, when production is positive in period two, the price 

sellers receive equals the marginal cost of extraction and the quantity the pipeline 

transports is where marginal revenue product is equal to the marginal factor cost. Condition 

(3.22) gives the rate at which the price must increase over time in order for suppliers to be 

indifferent between selling in either period (equality) or to be willing to only supply in 

period one (strict inequality), given that sellers' extraction costs rise as reserves are 

depleted. Likewise, (3.23) gives the condition under which the buyer is indifferent between 

purchasing positive quantities in each period (equality) or willing to only purchase a 

positive quantity in period one (strict inequality), taking into account the amount by which 

the price must rise in period two given extraction in period one. 

We prove Theorem 3.1 by the following three lemmas. The first lemma shows that the 

buyer drives the resource rental price to zero, implying that the buyer extracts all of the 

rents. 12 

Lemma 3.1: Under Assumptions A.l-A.4, in the Nash equilibrium if production is positive 

in at least one period, then the scarcity rental value to suppliers is driven to zero. 

12 Because the periods are of fixed length, the monopsonist cannot capture infra-marginal rents due to the 
upwards sloping extraction cost function. Thus, suppliers of the input earn positive rents in equilibrium. 
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Proof Suppose that 20L> 0 when q10' + qL > 0. 20L> 0 implies that 00L = 0. However, 

(3.12) implies that q1OL + q201 = 
00L 0, which is a contradiction. Q. E. D. 

Next we show that the resource is not fully exhausted in the Nash equilibrium. 

Lemma 3.2: Under Assumptions A.1-A.4, in the Nash equilibrium the resource is not fully 

exhausted. 

Proof Suppose that ØOL >0, which implies that q + q2OL R. Thus, for R> 0, production 

must occur in at least one of two periods. There are two cases to consider. 

(1) Suppose that q2OL >0. Then from (3.15) and assumption A.2 we get 

However the expression on the left is negative by assumption A.4, which is a contradiction. 

(ii) Next, suppose that q1OL = R >0, which implies that q2OL 0. Then assum ption A.2 

implies that (3.15) can be written as 

>0 

Again, this contradicts assumption A.4. Q.E.D. 

The final lemma of this section shows that production in period one is always larger 

than production in period two in the Nash equilibrium. 
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Lemma 3.3: Under Assumptions A.1-A.4, in the Nash equilibrium the buyer always offers 

a price contract that results in positive production in both periods with production in period 

one larger than production in period two. 

Proof First, assume that both qOL = qlL = Ø• Then by assumption A. 1, (3.15) or (3.16) can 

be written as 

u'(0)≤c(R) ≤c(0), 

which contradicts assumption A.3. Next, assume that q10'> 0 and q2OL> 0. Then (3.15) and 

(3.16) together with assumption A.1 and Lemma 3. 1, imply that 

ut(q0)_ut(q201)_(1_o)[m(q1oL)_(qoL +q2°')]<o 

Thus, if both periods have positive production, period one production is larger. Next, 

suppose that q101 > q2OL = 0. Then (3.15) and A.! implies 

u'(0) qIOL  <c(0), 

which contradicts assumption A.3. Finally, assume that q101' = 0 and q2°" > 0. The first-

order necessary conditions (3.15) and (3.16), together with assumption A. 1, imply that 

U '(0)  (1 —8) [m(0)_m(o+q)] <o. 

This implies that u 1(0) <u '(q), which contradicts assumption A.2. Q.E.D. 
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Lemmas 3.1 and 3.3 together imply that the first period equilibrium quantity is strictly 

positive, which proves condition (3.18) of Theorem 3.1. Condition (3.19) follows from 

Lemmas 3.2 and 3.3. Conditions (3.20)-(3.23) follow from condition (3.18). 

Next, we turn to the equilibrium in which firms are unable to commit to future actions. 

3.3. Closed Loop Subgame Perfect Nash Equilibrium 

In the closed loop, or subgame perfect Nash equilibrium, no one can commit at t = 0 to 

do something at times t = 1 or t = 2 that is not in their best interest at that time. Within each 

period, we continue to assume that the buyer is the Stackelberg leader and the sellers are 

Stackelberg followers. We solve for this equilibrium by backwards induction and refer to 

the equilibrium as the subgame perfect equilibrium. 

3.3.A. Subgame Perfect Equilibrium in Period Two 

The sellers' problem at the beginning of the second period consists of finding q2 that 

maximizes their profit in the second period, taking as given the price p2 offered by buyer 

and the quantity remaining from the first period, R - q. We assume for now that R - 

0, otherwise there is no period two choice to be made. We shall consider the validity of this 

assumption below. The sellers' (undiscourited) second period profits are 

q, +q2 

2r'=p2q2— f c(R—q)dq. (3.24) 
q1 
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The sellers' choice of q2 must be non-negative, i.e., q2 ≥ 0, and it must satisfy the resource 

stock constraint that q2 ≤ R q1. The corresponding sellers' Lagrangian function is: 

L=p2q2-. J c(R_q)dq+A2[R_q1_q2}. 

The sellers' first-order necessary conditions are thus: 

aL 
P2 -c(R-q1-q2)_ ≤0, 

ÔL3 
≥O,2≥0 and A2[R-q1 -q2]=O. dA 

(3.25) 

(3.26) 

Condition (3.25) says that sellers produce only when the price covers the marginal cost of 

resource extraction, c (R - q1 - q,1)), plus the scarcity rent, A2. The Kuhn-Tucker 

conditions for the second period production constraint are given by (3.26). 

Since the buyer is the Stackelberg leader, the buyer's problem in period two can be 

thought of as choosing p2, q2, and A2 to maximize 

74 u(q2)_p2q2. 
(3.27) 

subject to the constraints (3.25) and (3.26). Thus the buyer's Lagrangian is 

L -u(q2)--p2q2 +/12 [p2 _c(R_qi_q2)_t] +çls2[R._ q _q J+9, 

where 02 is the multiplier on the non-negativity constraint for the scarcity rental value, 02 
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is the multiplier on the resource stock constraint given in (3.26), and ,u2 is the multiplier on 

the price constraint (3.25). The first-order necessary condition for the buyer's choice of the 

price P2 is 

aL 
—0. 

(3.28) 

Thus (3.28) implies qsp . Using (3.28), the first-order necessary conditions for the 

choices of q, 1,, 02 and 02 must satisfy 

aL 
-= u t(q2 )._p2+q2c t(R _q1 _q2)_ 2<Ø 
8q2 

ÔLB 
=0, aA 

02≥0, R—q1—q2≥O, and q$2[R_q1_q2]=o, 

(3.29) 

(3.30) 

(3.31) 

02 ≥0, A2≥0, and 02,12 O 
(3.32) 

There are two differences between the second period subgame perfect equilibrium 

given by (3.25)-(3.26) and (3.28)-(3.32) and the second period Nash equilibrium given by 

(3.4), (3.9) and (3.11). A trivial difference is that )t and 0 in the Nash equilibrium are 

replaced by A2/8 and 02/8 in the subgame perfect equilibrium. The significant difference 

is that only q2 appears as a coefficient on c'(R —q1 —q2) in the subgame perfect 
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equilibrium condition (3.29), while q1 + q2 appears as the coefficient on c - - q2) in 

the Nash equilibrium condition (3.11). This difference prohibits us from making an explicit 

statement about the upper bound on the magnitude of q2. 

We summarize the second period equilibrium as follows: 

Theorem 3.2: The second period equilibrium satisfies 

o <q ≤ R - 
(3.33) 

(3.34) 

u'(q) ≤ c(R_ qi _q 13)_ q 51 c1(R _q1 _q2sr) . (3.35) 

The upper bound on q " in (3.33) is a weak inequality. This is unlike the Nash equilibrium, 

where it was possible to show that q201 <R - qf, and it occurs because only q/) appears 

as a coefficient to c'(R - - q) in (3.29). Condition (3.34) implies that the buyer drives 

the scarcity rental value to zero. The weak inequality in (3.35) reflects the fact that the 

scarcity rental value to the buyer may not be zero, if the entire stock is exhausted. 

We prove the strict inequality in (3.33) and the strict equality in (3.34) in Theorem 3.2 

by the following two lemmas: 

Lemma 3.4: Under assumptions A.1-A.4, in the subgame perfect equilibrium, if there is 

positive stock at the beginning of the second period, then the second period quantity is 

positive. 
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Proof. Suppose that R—q1 >0 and that q = 0. Then A =02sp = 0 by (3.26) and (3.31), 

respectively. Combining (3.25) and (3.29) yields 

u'(0)<c(R_.q1)<c(0), 

where the first inequality is necessary to drive q" = 0 and the second inequality uses A. 1. 

However, this contradicts A.3. Q.E.D. 

Next, we show that the buyer drives the scarcity rental value to sellers to zero. 

Lemma 3.5: Under assumptions A. 1 -A.4, in the subgame perfect equilibrium, the buyer 

drives the scarcity rental value for sellers to zero. 

Proof Suppose that At" > 0. By (3.32), this implies that " 0. However, by (3.30), qSP 
2 

= = 0, which is a contradiction to Lemma 3.4. Q.E.D. 

The weak inequalities occur because we cannot determine whether or not q) reaches 

its upper bound of R—q1. 

Next, we derive the relationship between q and q. This relationship is crucial to 

understanding how the subgame perfect equilibrium differs from the open loop Nash 

equilibrium. 

Proposition 3.1: Under assumptions A. 1-A.3, if R - q1 > 0, then (1) —1 ≤ aq"/aq1 <0, 

(ii) ôp2'"/aq ≥ 0, and (iii) ôq2° lop = Op/Op1 =0. 
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Proof There are two cases to consider, depending upon whether or not q less than or 

equal to R—q1. First, suppose that q2sp <R—q1. Then by Lemma 3.4, (3.26) and (3.31), we 

have that A" = Of = 0. Thus (3.35) implies 

u'(qfl= c(R SP SF sp\ —q1—q2 )—q2 C —q1—q2 ). 

Implicitly differentiating (3.36) yields 

dq SP SF ii F 
- c'(R—q1_q2 ) —q2 c (R—q1_q2S / 

' dq1 tt (qP)+2cI(R_q_qSP 1—q2SF c (R —q1 _qF)• 

(3.36) 

(3.37) 

By A.1 and A.2, each term in the numerator and denominator of (3.37) is negative in sign. 

The denominator contains two additional negative terms relative to the numerator. This 

proves the strict equality parts of (i). To get the effect of q on p, we differentiate (3.34) 

with respect to qi using (3.37) to yield 

SP 
C'(R—qj—q 2 [1+ aj (3.38) 

This proves the strict inequality part of (II). 

Second, suppose that Ø" >0, so that q" = R - q1. Then, aqsp /aq1 —1. This proves 

the lower-bound equality part of condition (1). Furthermore, if q = R - q1 > 0, then 

so ôp"/3q1 = 0. This proves the equality part of condition (ii). 
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Part (iii) follows by noting that p1 does not appear in (3.33)-(3.35). Q.E.D. 

Note that the comparative statics in Proposition 3.1 depend upon the properties of the 

function c(R - q) in A.1 If c(R - q) were a constant, so that c'(.) = c '(.) 0, then the 

second period equilibrium is unaffected by changes in q1 and p 1 . 

3.3. B. Subgame Perfect Equilibrium in Period One 

We now turn to the period one equilibrium. Let the optimized value of second period 

profits to sellers be denoted as ,4* Then in period one, sellers choose q1 to maximize 

= p1q— fc(R—q)dq+ 84, 
0 

(3.39) 

subject to a non-negativity constraint on qi and the resource stock constraint that q1 ≤ R. 

We let 2 denote the Lagrange multiplier resource stock constraint in period one. Then the 

Lagrangian is 

q1 

= p1q1_fc(R_q)a1q+ 

q1 +q' 

13 JP2 sp— f c(R_q)dq+AflR_qj_qP]+ {R_q]. 
(II 

Because sellers are assumed to be price takers, we set 5p/aq1 0 in the sellers' first 
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order conditions below. 13 Thus by the envelope theorem, the sellers' first-order conditions 

are 

aLf = Pi_(l_5)c(R_qi)_Sc(R_q,_q) - SA2sP - ≤ 0, (3.40) 
aq, 

R—q,≥0, A1≥0, and A1[R_q1]_o. (3.41) 

From (3.33) we see that condition (3.40) imposes a constraint on the difference in 

prices across the two periods that must be satisfied in order for production in period one to 

be positive. Note that the Lagrange multiplier for the resource constraint in period one is 

zero by Theorem 3.2. Conditions (3.41) are the Kuhn-Tucker conditions on the resource 

stock constraint in period one. 

Turning to the buyer, the buyer in period one chooses q1 and p, to maximize 

(3.42) 

subject to the constraints (3.40) and (3.41). Let 01 denote the multiplier on the resource 

stock constraint and 6 denote the multiplier on the non-negativity constraint on A1. Then 

the buyer's Lagrangian can be written as 

1 = u(q,)—p1q, + [P, _(l_6)c(R_q,)_sc(R_q1q28/' )j 

- [+A1] + 01 [R—q,] + 

13 This follows the practice in the literature from Bulow (1982) forward. 
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Using the envelope theorem, the buyer's first-order necessary condition of the price is: 

ÔLB 
=0. 

(3.43) 

Thus, (3.43) implies that pr" = q;P Given this, the remaining first-order conditions are 

-j-= ut(i)_pi+(l_8)qic(R_q1)+5(q1 +qSP )c'(R_q1_q2SP ) 9q1 

+ 8q1c t(R _q1 _qP )PiLL 

eq, 

ag = 6 - A =0, 

8 Sp 02 - q ≤ 0, (3.44) 

(3.45) 

& ≥0, A1 ≥0, and 9A1=0, 
(3.46) 

q≥0, R_qi≥0, and Ø1[Rq1]=o. 
(3.47) 

Condition (3.44) shows that, like (3.40), both Lagrange multipliers for the resource 

stock constraints appear. (3.44) also contains the strategic effect term, ôq /eq1 . Equations 

(3 .45)-(3 .47) are the Kuhn-Tucker conditions on the scarcity rent and resource stock 

constraints. 

Next, we prove that it is optimal for buyer to offer such a contract that yields a positive 

quantity of resource being produced in the first period if the quantity produced is positive 

in the second period. 
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Lemma 3.6: Under assumptions A. l-A.4, in the subgame perfect equilibrium, production 

in period one is positive. 

Proof Suppose that (3.40) and (3.44) hold with strict inequality, so that q1SP = 0. Then by 

Lemma 3.4, q2SP >0 and A1sP = 01sp =0 since R> 0, and A2SP =0 by Lemma 3.5. Then 

(3.40) and (3.44) imply 

(3.48) 

And (3.25) and (3.29) imply 

[u'(qsp) — . (qsp )] = 802SP . 
(3.49) 

Subtracting (3.49) from (3.48) yields 

uI(0)_5ut(q')_(1_5)m(o)≤(5_1)Ø2sP <0. (3.50) 

Thus, because 5 < 1, (3.50) can be rearranged to yield 

U'(0) — m (0) < 8 [u'(q2 — M (0)J< u'(q2 —M(0)-

However, this violates assumption A.2. Q.E.D. 

(3.51) 

Lemma 3.7: Under assumptions A.1-A.4, in the subgame perfect equilibrium, the buyer 

drives the seller's scarcity rental value, 2j, to zero. 

Proof By (3.45) and Lemma 3.6, O' = q;P >0. Hence, by (3.41), = 0. 
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Next, we show that q" <R. This will imply that Øj° = 0 

Lemma 3.8: Under assumptions A.1-A.4, in the subgame perfect equilibrium, some 

reserves remain at the end of period one. 

Proof Suppose that q5" > 0, which implies that q = R. Then (3.40), (3.44), and A.2 

imply that 

u'(0)_m(R)>u'(R)_m(R)>q sP >0, (3.52) 

where the weak inequality is because çz$' could be positive as well. However, the first 

inequality violates assumption A.4. Q.E.D. 

Lemmas 3.6-3.8 imply that the first period subgame perfect equilibrium satisfies the 

following: 

Theorem 3.3: Under assumptions A.l-A.4, the first period subgame perfect equilibrium 

satisfies 

0<q <R, 
(3.53) 

\ _ 
PI'P  c(R_q")_ac(R_q1Si' —q 2p ) - 0, (3.54) 

u'(q")_ (l-5)m(q) - 8m(q+q") 

+ 8qc (R - qP) ôq25" 0. 
5q, (3.55) 
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Notice that there are two differences between the first period subgame perfect equilibrium 

conditions given by (3.53)-(3.55) and the equivalent conditions for the Nash equilibrium. 

Both concern (3.55). First, the last expression contains the effect changes in q" have upon 

q2SP This is the Coasean effect, absent from the Nash equilibrium condition, and which is 

positive in sign by A.1 and Proposition 3.1. The second difference is that (3.55) holds as an 

inequality, since we cannot rule out that in the second period we consume all of the 

resource stock. 

We have one final task in this section, which is to compare the subgame perfect 

equilibrium values of q and q". We do this in two steps. First, we show that we get a 

different relationship between q" and q" at the limiting values of 8. Then we find the 

conditions under which q) and q are monotonic in 8. 

Proposition 3.2: Under assumptions A.1-A.4, in the subgame perfect equilibrium, (i) when 

8=0 then q° >qSP and (ii) when 8=1 then q <qSP 

Proof (1) Assume first that 5 = 1. Then (3.55) and (3.35) can be written as 

sp + q"c' (R SP sp 0q 
— q1 —q2 aq, 

u'(qr)-_c(R_q_q2SI) j+qc1(R_q1q2SP) 

(3.56) 

(3.57) 
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Subtracting (3.57) from (3.56) and rearranging using Proposition 3.1 yields 

ôq" 1 u'(qfl —u'(q")= qlsPcI(R_qisP_qsP)[l+ eq, j <0. 

S) <jj t(q1SP) and q " > q1SP Thus, when 6=1, u 1(q2  

(ii) Assume now that 8=0. Then (3.55) and (3.35) can be written as 

sP SP SP  ut(q)_c(R_q_q)+qcPcv(R_q1 —q2 ) sP 
SL2 

(3.58) 

>0, (3.59) 

u1(q)_c(R_q)+qjsPct(R_qsP) 0. (3.60) 

Now, we subtract (3.60) from (3.59) to get u' (q") - u (q1SP)> - q"c' ( R - q1SP - q P) + 

q1SPcI(R_q1sP) + [c(R—qsP —q2sP)—,(R_qsP )] . For q ;P >qP the left-hand side of this 

expression is negative and right-hand side is positive, which contradicts. Thus, q' > q SP 

E. D. 

An implication of Proposition 3.2 is that there exists a S such that 0 <S <1, for which 
sP_ sp sP 

- q1 = . From Theorem 3.2 cr" solves: 

- 

Then by (3.61) and Theorem 3.3 5 solves: 

(3.61) 
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C(R —4sp)—C(R — 24sp) — 4sp [c'(R — 4sp) —C'(R —24sp )]  - 8= 
(3.62) 

c(R_r)_C(R_2r)sP[Ct(R_sP)_CI(R2SP)1 aqSp 
2+  Oq, Jj 

The question that remains is whether or not S is unique. The next proposition makes clear 

the condition that must hold in order for 5 to be unique: 

Proposition 3.3: Under assumptions A.1-A.4, in the subgame perfect equilibrium, 

aq/as<o if 

oq2 

_ A.5 ) aq, for all a: 

Proof Totally differentiating the first-order condition (3.55) using Proposition 3.1 yields 

{uhI(q)_(1_s)mt(qP)smI(qP+qsP)[1+fl+scI(R sp aq 
q1 —q2 )- 

ôq1 ) aq, 

_5q;PcII(R - qsp  _ q P) dq 
lsp 

aq, ( aq, ) 

m( q' + q) + SP qc (R - q 1 SF —q2 Sp) 5q2SP )d8 
(3.63) 

The coefficient on dq is negative by second-order conditions, and the coefficient on dS is 

the expression in A.5. Q.E.D. 

So long as condition A.5 holds, 5q/a5 < 0, and Proposition 3.1 ensures that 
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SP 

,3q2 IM > 0. This condition, taken together with the results of Proposition 3.2, are 

sufficient to ensure that a unique value of S exists such that for 6 < 5, q " > qSP and for 

S ≥ S then q) ≤ qP Notice that this condition simply says that the strategic effect in the 

last term of A.5 does not dominate the differences between the marginal factor cost of 

producing quantity qsp and the marginal factor cost of producing quantity q + q2sp all in 

one period. 

3.4. The Effect of a Capacity Constraint when Capacity is Costless 

A capacity constraint restricts how much can be bought or sold in each period. If it 

restricts how much can be sold in the second period, it also eliminates the strategic effect of 

changes in the period one quantity. The question is whether the buyer can gain monopsony 

power by limiting his ability to purchase in the second period, i.e. by restricting his 

capacity. If so, then capacity serves as a credible commitment device for the buyer. In 

section 3.4.A, we highlight the effect a capacity constraint has on the buyer's subgame 

perfect profit for the case where 8> 5. This is the case in which a capacity constraint is 

most likely to have a positive effect, because of the presence of the strategic term in (3.55). 

Section 3.4.13 shows the local effects on profits for the case where 05 :5S.  Section 3.4.0 

shows that profits are unambiguously lowered by a capacity constraint in the open loop 

equilibrium. We leave to section 3.5 the case where capacity is costly. 
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3.4. A. The Effect of a Capacity Constraint on Subgame Perfect Profits when 8> 8 

We shall denote the pipeline capacity as Q. The capacity constraint implies that q1 ≤ Q 

and q2 ≤ Q. To illustrate the effect of the capacity constraint, we consider the case where 

the constraint binds in period two, but not in period one. This occurs when 8> 8. Let Q4 

= q2SP denote the value of Q, such that the constraint just binds. 

Let us consider the case where Q < Q 4, so that in equilibrium q " = Q, but q < Q 

The sellers' second period Lagrangian in this case is 

42 =p2q2 _72 
c(_q)q2[Q_q2J, 

where 772 is the multiplier on the capacity constraint. The sellers' period two first-order 

necessary conditions are: 

aL 

72 

= P2 c(R—q1—q2)_ 772 = 

= Q- q2 ≥ 0, 72 ≥ 0, and 772[Q—q2J = 0-

(3.64) 

(3.65) 

Thus (3.64) and (3.65) form constraints to the buyer's second period problem. The 

second period Lagrangian for the buyer can be written as 

= u(q2) - p2q2 + p2[p2—c(R_q1_q2)_2] + X2112 + K{Q-q], 
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where x2 is the multiplier on the capacity constraint, Z2 is the multiplier on 77, ≥ 0; and, as 

before, u2 is the multiplier on (3.64). Given that the capacity constraint binds, it follows 

that ," qCSP Q> 0, so that 772CSP 0 and the first-order condition for the buyer 

in second period quantity choice can be written as 

OLB 

= u'(Q) _PCSP + Qc'(R—q1—Q) - K2Cs', —0. (3.66) 

Given that i '" = 0, the second period solutions for p2csp and K 5 are given jointly by 

(3.64) and (3.66). From (3.64), we see that an increase in q1 raises paPfsp 1,94, : 

= —c'(R —q1 -Q) > 0. (3.67) 

Moving to the first period, the sellers' first period Lagrangian is 

= Pi1 —JC(R_q)dq+ 

5JIpSPqCSP - f c(R_q)dq+[Q_qSP]+ 1[Q-q1J. 
"I 

We assume again that sellers ignore the price effect of changes in period one quantity, 

since they are price takers. Thus by the envelope theorem, the sellers' first-order conditions 

when q1 > 0 are 
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5L 
\ 

-= p1—(1---8) c(R_qi)_oc(R_q1q2csp) - 17,  = 0, 
aq, (3.68) 

Q- q ≥0, 771 ≥O and i71 [Q—q1] =0. (3.69) 

The buyer treats (3.68) and (3.69) as constraints. Given the second period equilibrium, 

the buyer's first period Lagrangian can be written as: 

21 = u(q1)—p1q1 + 5[u(Q)—Qc(R_q1_Q)] + Kj[Q_q] + 

+ A [PI _(l_a)c(R_qi)_sc(R_q1_Q)_ 1]. 

Again, it follows that 1u1Cs? csp - = - qcsp , so that when 0 < q1CSP <Q, the buyer's first-

order condition in first period quantity is 

ag = u'(i)_pi+(l_5)qict(R_qi)+5(q1 +Q)c'(R—q1_ = 0. t9q1 (3.70) 

We may now write the equilibrium values of q1, p1 and p2 satisfying (3.64), (3.68) 

and (3.70) as q1 (Q), A (Q) p2 (Q) respectively. Writing the solution as an indirect 

profit function for the buyer in the capacity choice Q, after cancelling out the terms 

involving the prices, yields 

B(QJQB <Q<QA) = u(q1(Q)) + 5U (Q) - q1(Q)c(R_q1(Q)) (1-5) 

- (i(Q)+Q)c(R_q1(Q)_Q)s . (3.71) 
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Differentiating 7rB (Q QB <Q < Q4) with respect to Q using the envelope theorem 

yields the effect of the capacity constraint: 

a,ZB(QIQB <Q<QA) 

  =8 [K 1'+qic1(Rq1 Q)]. 
aQ (3.72) 

Equation (3.72) contains two effects. The term is the typical Lagrange multiplier 

effect of a constraint. This effect reduces profits as the constraint is tightened, since K 3 > 

0. The second effect, however, is negative. Intuitively, the second effect occurs because the 

constraint eliminates the strategic effect term, q1c '(R - - Q) 8, from the subgame perfect 

equilibrium condition (3.55), since qcsp = Q implies that .3q/aq1 = 0. The elimination of 

the strategic effect means that a tightening of the capacity constraint increases profits, since 

q1c'(R—q1—Q)5 <0. 

Next, we find the lower bound of the interval where profits are defined by (3.71). 

Implicitly differentiating (3.70) yields the effect of the capacity constraint on the first 

period equilibrium quantity: 

aq CSP 
=  Sm'(q1+Q) 

3Q u"(qi)_(l_s)ml(qj)_sml(q1+Q) c(—1,0). (3.73) 

Thus, tightening the capacity constraint raises q". This implies that as Q reduces in size, 

both constraints must eventually bind, so that q/) = q2CS/3 = QB for a Q' such that 0 <Q8 

<Q' that solves: 
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ut(QB)_(l_5)m(Q9)_8m(2QB) =0. (3.74) 

For now, note only that by A. 1 and A.2, QB is decreasing in & We next show that in the 

interval (QB, QAJ the buyer's profits are decreasing in Q. 

Proposition 3.4: Under assumptions A.1-A.4, when 5 > 5, profits are decreasing in Q 

over the interval (QB, QA]. 

Proof Suppose that QB < Q:5 Q4 and that 5 > S, so that qSP Q> qSP Then the rate 

of change in profits is given by (3.72). Suppose that the right-hand-side of (3.72) is positive 

in sign, so that decreases in Q decrease profits. Then, by (3.66), we may write (3.72) as 

a(QQ  = [u'(Q)_m(q +Q)]> 0. (3.75) 

Thus, the term in square brackets must be positive. If we subtract (3.70) from (3.75) we get 

u'(Q) - u'(q) - (i_a) (qcsp  >0. (3.76) 

However, U" () <0 by A.2 and m' (.) > 0 by A. 1, so that the inequality in (3.76) cannot 

hold for q1CSP <Q Q.E.D. 

Proposition 3.4 shows that the buyer's profits are increasing as capacity is constrained 

throughout the region (QBQ) We now show that the buyer's profits jump at Q4. At Q, 

q2SP = q2CSP = Q4, and the first period quantity satisfies (3.70) in the capacity constrained 

case and (3.55) in the case where the capacity is not constrained. As the strategic effect 
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from (3.55) disappears in (3.70), q1 discontinuously drops at Q4.'4 (See Fig. 3.1.) This 

drop in the constrained first period quantity at Q4 lowers the price the buyer must pay in 

each period. Since the second period quantity can not adjust because of the constraint, the 

buyer's profits discontinuously jump up at Q4 (see Fig. 3.2): 

OicB (QA)/5qSP = —5q"c'(R qSP - QA)5SP/aql  <0. 

Therefore, in region (QBQ4] the buyer's constrained profits are strictly larger than the 

profits he could earn in the unconstrained subgame perfect equilibrium. 

Since profits are strictly increasing as Q decreases in the region (QB,QA], to find the 

capacity, Q*, that maximizes the buyer's profits we must consider the equilibrium in which 

the constraint binds in both periods. If the capacity constraint holds in both periods, then 

the second period equilibrium is given by (3.64)-(3.66), and again it follows that it" = 0 

and that the strategic effect vanishes, since q" = Q. Since the strategic effect is absent on 

both sides of QB, it follows that the buyer's profits are continuous at Q. As the constraint 

also binds in period one, we may write the seller's necessary conditions as (3.68) and 

(3.69), but the buyer's first-order-condition (3.70) is now written as 

aLB 

1 = U, (Q) —p1 + (1-5) Qc'(R_Q) + 52Qc'(R-2Q) - ic Cs') = 0. Oq (3.77) 

Thus, by (3.64)-(3.69) and (3.77), equilibrium profits to the buyer can be written as 

'' The term u'(qi) —(1 - 5)m(q1) - ân(qi + Q4) is a decreasing function of q1. In (3.70), this is set equal to 
zero. In (3.55), it is set equal to —6qic'(R - - Q4)5q2/aqj <0. Thus, Jim q1CSP (Q) <q;P. 

Q--)C).' 
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,i.B (Q Q < QB) U (Q) (1+8) - Qc (R - Q) (1 8) - 2Qc (R - 2Q) ,5. (3.78) 

Differentiating the buyer's profits with respect to Q using (3.64)-(3.69) and (3.77) 

yields 

t92CB(QjQ < QB) - 

csp IC1 + êIC + 8Qc'(R - 2Q). (3.79) 

Note that (3.79) like (3.72), has both a negative term and a positive term. 

We now show that a unique value of Q* that maximizes B (Q I Q <QB) exists in the 

interval [0,Q). 

Proposition 3.5: Under assumptions A.1-A.4, when S > 8, a unique capacity level, Q*, 

that maximizes the buyer's subgame perfect equilibrium profits, exists in the interval 0 < 

Q * Q B 

Proof Existence. When Q <Q, we may use (3.64)-(3.69) and (3.77) to show that (3.79) 

may be written as 

a2.8(QIQ<QB) - 

aQ   UV) (1+8) - (i—s) m(Q) - 2,5m (2Q). (3.80) 

Taking the limit of (3.80) as Q—*0 yields 

aJCB (QIQ<QB) 

lim   
Q-O = [u'(0)—m(0)](l+) > 0. (3.81) 
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The inequality follows from A.3. Next, taking the limit as Q->Q'3 using (3.68) and (3.77) 

yields 

urn aB(QQ<QB) 
Q .- Q LJ [u 1(QB)_ m (2QB)]S = 

(l_(,)8[m(Q 9)_m(2QB)] <0. (3.82) 

The second inequality in (3.82) follows from subtracting (3.77), which is zero at QB, from 

the expression on the right-hand side of the first equality in (3.82). The inequality follows 

from assumption A. 1. This proves that there exists a value of Q* such that (3.80) vanishes 

in the interval (0,Q8). 

Uniqueness: To prove uniqueness, differentiate (3.80) with respect to Q: 

a2 (Q I Q < QB) = 
ÔQ2 11(Q) (1+8) - (1-8) m  '(Q) - 25m'(2Q) <0. (3.83) 

This is negative by A. 1 and A.2. Therefore, a unique value of Q* occurs where the right-

hand-side of (3.80) vanishes. Q.E.D. 

Propositions 3.4 and 3.5 together imply that when S > 8 , the buyer's subgame perfect 

equilibrium profits are maximized at Q*, where Q* <Q8 Figs. 3.1 and 3.2 illustrate this 

result. Fig. 3.1 shows that at Q", both qi and Y,2 discontinuously jump. This translates into a 

jump in profits, as shown in Fig. 3.2. However, there are no jumps at QB-
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Figure 3.1: Equilibrium Production with a Capacity Constraint, 5> S 
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3.4.B. The Effect of a Capacity Constraint on Subgame Perfect Profits when 8< 8 

Next, we turn to the case where 8 ≤ 8. In this case, the unconstrained subgame perfect 

equilibrium is characterized by q > qSP Thus, a capacity constraint affects the period one 

quantity, rather than the period two quantity, which means that if there is a strategic effect, 

it shall remain in the constrained first order conditions. Let QC denote the value of Q such 

that q = QC justbinds. Then the case we consider has Q < QC', so that qSP = Q, but q) 

<Q. 

Given that qSP <Q, the period two equilibrium is identical to that analyzed in Section 

3.3. Again, we shall ignore the case where the stock is fully exhausted. It follows that there 

exists a strategic effect from Proposition 3.1. The first period sellers' Lagrangian can be 

written as 

li 

= p1q1--fc(R_q)dq+ 

q1+q 

JP2 1'SPq CSP J C (R - q) dq + 2csP [Q - qSP ] + [R - q1 
q1 

Thus by the envelope theorem and the assumption that sellers act as price takers, the 

sellers' first-order conditions when q° = Q binds are 

aL 
— =pi—(l-8)c(R_Q) 8c(R_Q_q2cs° ) - 171 =0, aq, (3.84) 
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Q-  q1 ≥ 0, ii ≥ 0 and 7i [Q - q1] = 0. (3.85) 

Thus (3.84) and (3.85) form the constraints for the buyer's problem. Using the notation 

developed above, the buyer's Lagrangian is 

41 = -1 
U(q1) - p1q1 + a (q SP) - P2csP q2csP j + Xi7i + ,ç {Q _ q1] 

+ A IPi —(I -8)c(R—Q)-5c(R—Q—q2csP ) _,7j 

It follows that if ic1 " > 0, then q1CSP = Q. This in turn implies that xcsp > 0 and rj1 " = 0. 

Therefore, the buyer's quantity first-order condition can be written as 

ag = u'(Q) - p1 + Qc'(R_Q) (i—a) + (Q+qr) c'(R_Q_q)5 
5q1 

-' csP 

(R_Q_q + Qc') csp 52 

aq, 
- KCSP 0. (3,86) 

When the capacity constraint binds in period one but not in period two, the system 

given by (3.34), (3.35) (which holds as an equality) and (3.84) implicitly define q(Q), 

P2(Q), and p1(Q). 

Given (3.34) and (3.35) implicitly define the second period equilibrium as a function of 

we may again use Proposition 3.1 show that aqcsp /3Q c (-1,0]. This means that as Q is 

reduced, q" increases, which means that there exists some value Q), where 0 <QD < QC, 

such that for Q D csP CSP 
≤ Q , q1 = q2 = Q. Note that QD solves: 



46 

ul(QD)_c(R_2QD)+QDcI(R_2QD) =0 (3.87) 

Thus, unlike the points Q4, Q, and Q", the point Q) is independent of the discount 

factor.'5 To find the effect of the constraint on the buyer's profits in the interval (QD,QCJ, 

define the present value stream of profits as 

.B (QIQD <Q<QC) = U(Q) + 8u(q2(Q)) - Qc(R—Q) (1_a) 

- [Q + q2 (Q)] c (R - Q - q2 (Q)) 8. (3.88) 

Then it follows from (3.35) and (3.86) that the effect of a change in Q on the buyer's 

profits is 

5,i.B(QJ_OD <Q≤QC) 

3Q 
K1c SP . 

Hence, we may state the following result: 

(3.89) 

Proposition 3.6: When assumptions A.l-A,4 hold and 8< 8, then in the interval (QO,QC'j, 

tightening the capacity constraint reduces the buyer's profits. 

The reason for this result is that the capacity constraint does not eliminate the strategic 

term - compare (3.44) with (3.86). All that the capacity constraint does is prohibit the 

buyer from choosing the unconstrained first period quantity, q/J, so this reduces his 

15 In the appendix A, we use this to show that Q) is the limiting value of Q4, 0, and QC as 8 approaches 
critical values. 
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profits. The profit function is continuous at QC• 

However, it is possible that there exists a local maxima in the interval (o,Q"J. In the 

appendix A, we show the conditions under which a local maxima exists. In general, it is not 

possible to say whether this local maxima yields profits that exceed those of the 

unconstrained subgame perfect equilibrium, as occurred when 8> 8, as in section 3.4.A.'6 

However, in a linear example, we have found that profits are improved for a much larger 

range of t5 than we could prove generally. 17 

3.4. C. The Effect of a Capacity Constraint on Open Loop Profits 

We have seen that a capacity constraint can increase the buyer's profits when the buyer 

cannot commit to future policies without the constraint for the case where 8> S. We now 

ask if the same can be said of a buyer who already possesses commitment power through 

some other means. The answer, of course, is no - the monopsonist does not need the 

commitment device of the capacity constraint when he already poses a credible 

commitment device. Nevertheless, it is instructive to see why this is the case. 

Recall that in Theorem 3. 1, we found that q1OL > q2OL ≥ 0. Thus, in the constrained open 

loop equilibrium, we shall either have that q °' = Q> q2COL or q°' = 
q2COL = Q. If the first 

16 The comparison is between 7c "(!2*) u(Q)(l+b) - (l5)Q*c(R - Q) - b2Q*c(R - 2Q) and ltiJ(QC,q2SI') = 
u(QC) + 5u(qSP) - (1 - 5)QCC(R - QC) - 5(QC + q2Sl)c(R - QC - q2 SP). It follows that Q <q2SP < QC From 

this, we may deduce that u(Q)(l+ 5) < u(QC) + 511(q2SP) but that (15)Q*c(R - Q*) + 52Qc(R - 2Q) < (1 
- s)QCC(R QC) - QC + q2S)c(R QC - q2SP) Thus, it is not possible to tell whether the capacity 
constrained profits are greater or less than the unconstrained profits. 

17 The linear example assumes that c(R - q) = cy -  y(R - q) and that u(q) = wq. In this case, = 2/3. 
However, profits are improved by restricting capacity down to the value of 5 = 1/2. 
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case occurs, it is possible to have qOL = 0, although as the constraint continues to tighten, 

it will happen that the quantity in period two increases. Also, as we also showed in 

Theorem 3.1 that the resource constraint q1 + q2 ≤ R does not bind in the unconstrained 

open loop equilibrium, we shall ignore that constraint. When both period quantities are 

positive, under assumptions A.1-A.4, the open loop constrained equilibrium can be shown 

to satisfy: 

COL 
p2 c(R_q0L_q2COL ), 

pOL=(l_8)C(R_qOL)+8c(R_qCOL —q2C OL) 

8 [U'(q2coL) - m (q 0L + qOL)] - K2COL - 0, 

u' (qCOL) - (1-8) m(q0L) - 5m (q COL + q2COL) - COL - A K1 -v, 

qCOL Q, ≥ 0, JCCOL (Q - qCOL) =0 q:OL Q, IC 0 ≥ 0, 

and K0L(Q_q0)O 

(3,90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

Equations (3.90) and (3.91) represent the intertemporal pricing conditions that make the 

sellers indifferent between selling in each period. These are identical to the conditions (3.3) 

and (3.4) in the unconstrained problem, given that the buyer always drives to zero the 

scarcity rental value for sellers. Equations (3.92) and (3.93) are the conditions that make 

the buyer indifferent between purchasing in each period. These differ from the 
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unconstrained case only when the capacity constraint binds. 

When the capacity constraint binds in period one (i.e., when iCOL > 0) but not in period 

two (qOL <Q), the buyer's open loop equilibrium indirect profits in terms of the capacity 

constraint are given by 

B(QIQG<Q<QF)_ u (Q) + au (q 0L)_ Qc(RQ)(_) 

- (Q+q0) C(R_Q_qOL) s 

Differentiating these profits with respect to Q using (3.90)-(3.94) yields 

  KCOL>O 

aQ 

(3.95) 

(3.96) 

Note that when the first period constraint binds but the second period constraint does 

not, (3.92) shows that how q°' changes with Q: 

\ 
3qOL - m'(Q+q2COL ) 

- u h1( q 01)_ m t(Q+qcoL)  (3.97) 

Thus there exists some value Q', where 0 <QG <Q", such that for Q ≤ QG, the capacity 

constraint binds in both periods. 

When both constraints bind (ic °' > 0 and K2COL > 0), then the buyer's constrained open 

loop profits are given by 
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21.B(QIQ<QG) = u(Q) (1+8) - Qc(R_Q) (1-8) + 2Qc(R-2Q)8, (3.98) 

which is identical to (3.78) except for the domain over which it holds. Differentiating 

the profits in (3.98) with respect to Q using (3.90)-(3.94) yields 

0 Z B COL COL 
aQ K1 +K o'>0. 

Thus, we have proved the following: 

(3.99) 

Proposition 3.7: When assumptions A.1A.4 hold, the open loop equilibrium profits of the 

buyer are never improved by restricting the capacity below Q'. 

Next, we compare the constrained open loop with the constrained subgame perfect 

Nash equilibrium profits. At point Q = 0, profits under both the constrained open loop and 

constrained subgame perfect equilibrium are zero. Following (3.99), with increases in Q 

open loop profit increases at the rate of ic °" + ic °" . Using (3.92)-(3.93) when Q < QG, 

(3.99) may be written as u'(Q)(1+8) - (1-8) m(Q) - 28m (2Q) that is identical with 

(3.80). Proposition 3.5 implies that (3.78) increases up to the point Q* and then it decreases. 

Proposition 3.7 implies that profits given by (3.98) strictly increase in domain (O,QG)• Thus 

it must be true that Q*> QG . Thus the constrained open loop profits given by (3.98) and the 

constrained subgame perfect profits given by (3.78) are identical when Q < QG. 

For Q in the domain (QG Q) q' = q'= Q and q°' < = Q. Then, the rate at 

which the constrained open loop profit increases given by (3.96) and the rate at which the 
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constrained subgame perfect profit changes given by (3.80). To see that the constrained 

open loop profit increases at the greater rate than the constrained subgame perfect profit, 

we subtract (3.80) from (3.96) and get: 

[U(qcOL ) U'(Q)]  5 [M (Q + q2coL) — m (2Q)] >0. 

Both expressions on the left-hand side of inequality are zero when Q = QG. For QG < Q < 

QB the open loop profits are higher than the subgame perfect profits. Since QG < <QB 

and Proposition 3.5 indicates Q* to be a unique capacity level that maximizes the buyer's 

subgame perfect profits, we have proved the following general result: 

Figure 3.3: Comparison of the Buyer's Equilibrium Profits: Constrained Open Loop 
and Constrained Subgame Perfect when 8> S. 

Profit0' 

Profit SP 

Q 
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Proposition 3.8: When assumptions A.l-A.4 hold, despite the outcome of Proposition 3.5, 

the open loop equilibrium profits of the buyer are always greater than the subgame perfect 

equilibrium profits when Q> QG 

3.5. Endogenous Capacity 

In this section, we assume that capacity is costly and we solve for optimal the capacity, 

Q** that maximizes the buyer's subgame perfect equilibrium profits. Let the cost of 

capacity be denoted as v(Q), where v'(Q) ≥ 0 and a2,r (Q)/aQ2 - v"(Q) <0. Thus the 

monopsonist chooses the size of pipeline that maximizes his discounted present value of 

profit, B (Q) TB (Q) - v (Q). The first-order necessary condition is: 

  V P Q 
aQ (3.100) 

where partial derivative is defined by whichever is appropriate from (3.72) or (3.79). 

Equation (3.100) gives the solution for optimal capacity of pipeline. Equation (3.100) 

indicates two things. First, if the marginal cost of pipeline is zero, W(Q) = 0, then 

1.B (Q**)/aQ must equal zero as well. In this case, Q** - Q* As Proposition 3.5 

indicates, if Q exists, then Q* maximizes the constrained subgame perfect Nash 

equilibrium profit. Thus, Q would be the best monopsonist's choice when the cost of 

pipeline is zero. Second, if the marginal cost of pipeline is nonzero, i.e., if v, (Q**) 
> 0, 
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then derivative of profits in (3.100) must be positive as well, which puts Q** < Q'. Thus 

the monopsonist's optimal choice of pipeline size will be always lower than Q*• This 

occurs because when the monopsonist faces positive costs of capacity, he gains two things 

from restricting capacity: lower capacity costs and the elimination of his incentive to defect 

from the Nash equilibrium in future periods. 

3.6. Conclusions 

This chapter shows that a pipeline has an incentive to restrict the size of the pipeline in 

order to prevent the Coase Conjecture result that its profits be dissipated by producers 

shifting production across time. 

An empirical implication of our model is that pipeline capacity should be smaller when 

discount factors are relatively large. Thus, we hypothesize that pipelines in countries with 

high levels of political unrest will tend to be larger, as the strategic effect of constraining 

the pipeline size is more likely to be offset by the incentive to rapidly extract the resource. 

4. Motivation and Literature Review: an 'OII'igopoly Theory of Exploration 

The theory of 'oil'igopoly, developed by Salant (1976) and extended by Loury 

(1986) and Polasky (1992), 18 has the simple yet elegant prediction that producers holding 

is Salant (1981, 1982), Lewis and Schmalensee (1979) and Ulph and Folie (1980) have also used a Nash 
strategies to model the world oil market. See Mason and Polasky (2005) and Benchakround, Gaudet, and van 
Long (2004) for recent extensions to the Nash model. See Gilbert (1978), Newbery (1981), Ulph (1982), 
Groot, Withagen and de Zeeuw (1992, 2003) for Stackelberg cartel-fringe models. Karp (1984), Maskin and 
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larger reserves of oil tend to produce larger quantities of oil but a smaller proportion of 

their reserves in each period. Polasky found support for this prediction using a cross-

section of oil producing nations. However, a key limitation of the theory of 'oil'igopoly is 

that they solved only for the Nash equilibrium. It is well known that the Nash equilibrium 

to dynamic games is not dynamically consistent. However, Eswaran and Lewis (1986) 

showed that when producers possess well defined property rights, the Nash Equilibrium 

differs only slightly from the dynamically consistent subgame perfect equilibrium. 19 

When exploration is added to the game, it is no longer clear that the Nash equilibrium 

will yield results that are qualitatively similar to the dynamically consistent subgame 

perfect equilibrium. 20 This paper shows that the Nash equilibrium produces a much 

different result than the dynamically consistent subgame perfect equilibrium. The reason 

for this difference can be seen as follows. If one views exploration as the costly process of 

moving reserves from the "unproven" to the "proven" state, then it becomes clear that 

exploration may have strategic implications. 21 This occurs because once the exploration has 

occurred, the exploration costs become sunk. As exploration costs are on the order of 

hundreds of thousands of dollars for a well drilled on land to tens of millions of dollars for 

a well drilled at sea, sinking the discovery cost results in a substantial lowering of the 

Newbery (1990), Karp and Newbery (1993) consider Stackelberg models in which governments extract rents 
from exhaustible resource industries over time. These models also focus on the difference between open loop 
(Nash) and dynamically consistent (subgame perfect) equilbria. 
'° This result differs from those in Levhari and Mirman (1980) and Reignanum and Stokey (1985), who found 
substantial economic differences between the equilibrium concepts when the resource stocks are commonly 
owned. 

20 Hotelling (193 1) was the first model of competitive industry extraction. Competitive models of exploration 
appear in Pindyk (1978), Arrow and Chang (1982), and Swierzbinski and Mendelsohn (1989). 

21 Proven reserves are those reserves for which exploration has already demonstrated the existence of an 
economically viable deposit. Unproven reserves are those reserves that the geologic indicators suggest exist, 
but which have not yet been discovered, or transformed into proven reserves, through exploration. 
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marginal cost of production.22 Having lowered its marginal costs of future production, a 

producer has a credible threat to its rivals that it will produce a larger quantity in the next 

period. Hence, this threat induces one's rivals to tilt their production profile towards the 

present, which raises the present value of future production to the producer. 

The strategic advantage conveyed by exploration is similar to that obtained from an 

increase in plant capacity, or R&D research to lower production costs in the industrial 

organization literature (e.g., Dixit 1980, 1986, Fudenberg and Tirole 1994, Bulow, 

Geanakopolis and Klemperer 1985).23 This strategic aspect of exploration leads us to 

model the game using subgame perfection as the equilibrium concept. Thus, the game is 

solved by backwards induction. Given that an exhaustible resource market exhausts the 

resource in the final period of the game, there can be no strategic effects in a two period 

game. This means that the game must be at least three periods long in order to see the 

strategic effects. Hence, we solve for the dynamically consistent equilibrium in a three 

period game in which producers compete not only in the output market, but also in the 

process of exploration. 

Like the theory of 'oil'igopoly, we find that producers holding larger proven reserves 

extract a larger quantity but a smaller proportion of their reserves in each period prior to 

exhaustion. We find that this relationship also holds as well for unproven reserves. The 

reason for these results is similar to the logic in the theory of 'oil'igopoly. Larger producers 

produce a smaller proportion of their reserves because an increase in the output, which 

22 Average drilling costs in the United States were approximately seven hundred thousand dollars for an 
onshore well and over twelve million dollars for an offshore well in 2002. Source: Basic Petroleum 
Databoolc, American Petroleum Institute 2006. 

23 The literature on strategic investments is surveyed in Tirole (1990, pp. 314-336). 



56 

depresses the price, has a greater effect on their revenues than for a smaller producer. Here, 

this effect is amplified by the strategic advantages of holding larger reserves. 

The second result, which is novel to this paper, is that producers with smaller proven 

reserves will do more exploration than producers holding larger reserves, all else constant. 

This occurs because producers holding small levels of proven reserves are more likely to 

run out of those reserves in the next period. Therefore, for these producers, the benefit of 

additional proven reserves is very high. In contrast, producers holding proven reserves in 

sufficient quantity to produce from these reserves in the next period already have a credible 

commitment device to signal to rivals that they will produce a larger quantity in subsequent 

periods, so for them the benefit from holding larger quantities of proven reserves is small. 

For example, Saudi Arabia's Aramco, holds proven reserves that will last between seventy 

and eighty years at its current production levels-24 Thus, exploration is the primary 

instrument for gaining a strategic advantage for small producers, while constraints on 

production are the primary instrument for gaining a strategic advantage for larger 

producers. This is unlike other models of strategic investment, where firms with an initial 

cost advantage tend to exploit that advantage by investing at higher levels than their 

25 
rivals. This occurs because exhaustible resource producers face an intertemporal 

constraint that production in any period must be less than the sum of proven reserves and 

reserve additions in that period. 

24 There have been only about 2000 wells drilled in the Gulf region, compared to over a million drilled in the 
United States (see "Really Big Oil," The Economist, August 10, 2006). 
25 In an asymmetric strategic investment model, such as in Dixit (1980), a firm with an initial cost advantage 
makes higher levels of investment, all else constant. An example is provided in the conclusions section, 
where this issue is discussed more filly. 
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An important limitation of the theory of 'oil'igopoly, and to the model that we present, 

is that producers face no uncertainty over their reserve holdings. We also follow the theory 

of 'oil'igopoly assumption that producers do not face competition over their own reserves, 

whether proven or unproven.26 An important implication of these assumptions is that we 

can abstract from informational issues associated with exploration.27 

This paper is closest in spirit to earlier papers by Bulow and Geanakopolis (1983) and 

Hartwick and Sadorsky (1990). These papers were also interested in the strategic effects 

from exploration from higher-cost stocks due to exploration's role as a commitment device. 

However, these papers make an important assumption that limits the generality of their 

results. In both papers, producers produce in only two periods. If producers were to exhaust 

their entire reserves in the second period, then there can be no strategic effect from 

exploration, as we show below. To circumvent this problem, both sets of authors make 

assumptions which effectively leave some reserves unexploited. In Hartwick and Sadorsky, 

producers in the first period choose both the level of exploration and production, but in the 

second period producers only produce from their remaining proven reserves - they do no 

further exploration. In Bulow and Geanakopolis, producers in each period extract from 

lower cost reserves and from a higher cost backstop technology. Depletion of reserves 

raises the future marginal costs of extraction from those reserves. However, the lower cost 

26 This assumption follows from evidence that most of the significant players in the world oil market are 
state-owned producers, which face little or no competition for access to the resource stocks within their own 
countries. Sixteen of the top twenty oil producers by reserve holdings are state owned producers. See "Really 
Big Oil," The Economist, August 10, 2006). 

27 See Mason (1986), Isaac (1987), Polasky (1996), and Hendricks and Porter (1996) for models of 
information transmission in exploration. These models implicitly assume that mineral rights are not secure. 
These models have focused on whether there is too little or too much exploration from an information 
gathering perspective and whether the timing of exploration has strategic information effects. 
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reserves were not exhausted in their model. In each of these models, current production 

affects subsequent profits, but it cannot affect subsequent behaviour. Thus in each of these 

models there exists a subgame in which the excess reserves are exploited, but the effect of 

this subgame on the remainder of the game is ignored. 

In contrast, we solve for the entire production and exploration path, including the 

endgame in which reserves are completely exhausted. Thus, we offer a complete 

characterization of the dynamics of the game. Like Hartwick and Sadorsky and Bulow and 

Geanakopolis, we find that producers behave strategically by over- exploring relative to an 

open loop benchmark. However, unlike these authors, we also find that producers postpone 

some exploration to the final period in which they are active, as the proven reserves have 

lower marginal costs of extraction (e.g., Hartwick 1977). 

The next chapter is organized as follows..jn,Sectjon 5. 1, we present the basic 

equilibrium results of the model, beginning with what happens when there is only one 

period left before oil is exhausted, and then working back to two periods before exhaustion. 

Section 5.2 derives the main results regarding strategic exploration by moving back one 

more period and asking how producers behave at that point, given the effects on rivals' 

subsequent behaviour. It is in this section that we show why smaller producers are the ones 

most likely to be doing the most exploration. Section 5.3 includes a simple empirical test of 

the hypothesis that smaller producers do more exploration using country-level data over the 

post World War II era. Section 5.4 concludes by discussing the results of this paper in 

relation to other strategic investment models. 
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5. An 'Oil'igopoly Theory of Exploration 

5.1. 'Oil'igopoly Exploration and Production 

The game we consider is restricted to thee periods. In this section, we describe the 

behaviour of producers in the last two periods in the game. In section 5.2, we show how 

these results affect strategic exploration. 

5. 1.,4. Notation and Assumptions 

At the beginning of each period t, let n producers hold reserves of one type or the 

other. Proven reserves held by the 1th producer at the beginning of period t are denoted as 

R,; unproven reserves are denoted as S1. Thus initial reserves held by producer i are 

denoted as R1 and S11, respectively. We let R = {R1 ,,R21,. . . ,R,,j and S1 = {S1 ,,S21,. . . ,S 11} 

denote the vectors of stocks held at the beginning of period t by all n1 producers active in 

that period; R, = E'iR11 and S = Z'iS11 denote the stocks held at the beginning of period t by 

all n1 producers; and R11 = Fjn,',Rjt and S..11 = E7 JSJ, denote the sum of reserves held by all 

producers other than producer i at the beginning of period t. We assume that the stocks of 

proven and unproven reserves for all producers are common knowledge. 

We let n, denote the number of producers holding one stock or the other and m1 denote 

the number of producers who exhaust their total reserves in period t. Thus, the number of 

producers evolves according to n1•1 = nt - m1, t = 1, 2, 3. Since the game ends in three 

periods, all producers exhaust their reserves by period three (i.e., n4 = 0). Therefore, E 1m1 

= n1. For a given allocation of reserves of each type, the number of producers exhausting 
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each type is endogenous. However, rather than deriving the equilibrium number of 

producers that exhaust in each period, without loss of generality, we shall fix the number of 

producers exhausting in each period, i.e., the {m,} 123, and derive the conditions on the 

reserve holdings that have to be satisfied in equilibrium in order for this number of 

producers to rationally exhaust in each period. 

In each period, producer i chooses a level of output, q1, and a level of reserve additions, 

w, t = 1,2,3, 1 = 1,.. .,n1. The model is deterministic, so each unit of exploration yields a 

fixed quantity of reserve additions. Given the production and reserve additions choices 

made by producers in period t, the stocks of proven and unproven reserves held by the i 

producer evolve according to 

= R,, + w,1 - q,,, 

s,t+1 = S1, w,1, 

1= l,...,n,,t= 1,2,3, (5.1) 

1=1,...,n1,t1,2,3. (5.2) 

The price at time t is denoted by Pt = P(Q1), where Qt = EJ1 q1, and where the demand 

function P(Q,) is positive valued and decreasing in aggregate output. The extraction and 

discovery costs are denoted by c.(q'11) and d1(w,), respectively. These are assumed to be 

positive-valued, homogeneous of degree r ≥ 2 for discovery cost function and r ≥ 1 for 

extraction cost function, increasing convex functions in the level of production and the 

level of exploration, respectively. 28 Homogeneity of degree r implies g(/x) =j''g(x). Thus 

for all j> 0 and r ≥ 2, when x = 0 it must be true that g(0) = 0. Thus by homogeneity we 

28 It will become clear below that strict convexity of the function di(wit) is required to obtain effects. See 
Proposition 5.6. 
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set d(0) to be zero. For simplicity, we assume that the cost of extraction and discovery are 

independent of reserves. 29 

As we wish to restrict the model to three periods so that we can use backwards 

induction, we assume that the demand and cost functions satisfy: 

Assumption A. 1: c(0) + d(0) <P(0) <cc. 

The first inequality ensures that producers wish to ultimately exhaust their reserves, as the 

marginal revenue exceeds the cost of extraction for the last unit of reserves. The second 

inequality implies that the resource is not essential to production in the economy. This 

assumption ensures that exhaustion occurs in finite time. 

In addition, we make two regularity assumptions which, when taken together, ensure 

that the best-response functions are stable. This is necessary in order for strategic effects to 

take place. These assumptions are: 

Assumption A.2: P'(Q,) + q,1P"(Q,) <0. 

Assumption A.3: c'!(qj) - P'(Q1)> 0. 

Assumption A.2 implies that producer i's marginal profit is lowered by an increase in the 

output of any other producer. This implies that the goods are strategic substitutes and 

occurs because the choice variable is the output (Bulow, Geanakopolis, and Klemperer 

1985). Assumption A.3 implies that the demand function intersects the marginal cost 

29 Thus the only grade differential in the stocks is the difference between proven and unproven reserves. See 
Swierzbinskin and Mendelsohn (1989), inter a/ia, for a model of grade differentials under competitive 
extraction and exploration. 
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function from above. Taken together, assumptions A.2 and A.3 imply that second order 

conditions are satisfied for each producer, and these assumptions together are also 

sufficient conditions to yield the existence of a unique and stable equilibrium (Vives 1999, 

Theorem 2.7). 

We also assume that producer i's total profits, not just marginal profits, are decreasing 

in the output level of other producers (cf Tirole 1990, p. 326). In a single period game, this 

automatically holds, since the effect on producer i's profits of an increase in the output of 

other producers, Qit, is simply P'(Q)q, < 0. However, when we move to the second period 

in a game in which all producers exhaust their stock by the third period, so that q3 = R + 

S12 - q,2 for all producers that produce in period three, then the assumption that profits are 

decreasing in the second period output of other producers can be written as 

Assumption 4: qj2F'(Q2) - fq,3P'(Q3) < 0, i= l,2,...,n2. 

Finally, one dollar earned or spent one period in the future is discounted at the common 

rate P E (0, 1). 

Now, we turn to the analysis of the game, which we begin in period three, the final 

period in which any producers produce. 

5. 1.B. The Period Three Equilibrium. 

In the final period of the game, there are n3 producers with R3 and Si3 reserve holdings. 

Then the problem faced by producer i at the beginning of period three is to choose qj3 and 

w,3, taking the actions of the other producers fixed, to maximize 
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V,3 P(Q3)q,3 - c1(q,3) - d1(w,3), 

subject to the constraints that 

R3+w,3—q,3 ≥ 0, 

S3—w13 ≥ 0, 

i=1,...,n3. P3 

(5.3) 

(5.4) 

Given that all producers are assumed to exhaust in period three, the constraints (5.3) and 

(5.4) are each binding, so that in equilibrium, w,3 = S,3 and q,3 = R,3 + S,3. Let X, and p 

denote the Kuhn-Tucker multipliers for the constraints (5.3) and (5.4), respectively. Then 

the first-order necessary conditions for each producer can be written as 

a V13 = P(R3+S3)+(R!3+s,3)P'(R3+s3)_c(R,3+s,3)_, = 0, i=l,...,n, 43 

a V13 

8w,3 = —d(S,3)+ ?Ii —j., = 0, 

(5.5) 

i-1,...,n3. (5.6) 

Condition (5.5) says that each producer equates marginal revenue with marginal 

extraction costs plus scarcity rent. Condition (5.6) implies that marginal discovery costs are 

equated with the net scarcity rent. Note that assumption A.2 implies that Xi is decreasing in 

the aggregate reserves held by all other producers at the beginning of period three. 

Next, we turn to the condition which is both necessary and sufficient for all producers 

to exhaust in period three. Suppose that producer i enters period three with positive values 

of both stocks. In order for producer i to exhaust in period three, the marginal profits from 
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period three must exceed those from waiting another period, taking the actions of all other 

producers as fixed. The discounted marginal profits to such producer who waits until 

period four are 13{P(0) - c(0) - d(o)}, since all other producers are assumed to have 

exhausted in period three. Combing (5.5) and (5.6) by eliminating 2, and comparing the 

marginal profits in period three and four yields the condition that must hold if producer i is 

to exhaust in period three, given that he holds both types of reserves: 

P(R3 + S3) + (R,3 + s13)F'(R3 + s3) - c;(R,3 + s,3) - d(S13) 

= p., > 13[F(o) - c(0)], if Sit > 0, 1 = 1,.. .,n3- (5.7) 

For a producer that holds only unproven reserves the condition (5.7) is unchanged, except 

that R,3 = 0. But the condition for a producer that holds only proven reserves would not 

contain the —d(S,3) term, and p., would be replaced by X, (see (5.5)): 

P(R3 + 53) + R•3P'(R3 + s3) - c;(R,3) 

= ?, > 3[P(0)—c(0)J, ifS,30,i=i,...,n3. (5.8) 

These conditions say that in order to be satisfied by exhausting in period three, the rents 

earned by producer I in period three must be greater than the present value of the rents 

earned by waiting one period, taking as given the actions of the other producers. The Nash 

equilibrium is that all producers exhaust if, and only if, the inequalities in (5.7) and (5.8) 

holds for all n3 producers. The equilibrium condition for a particular producer is illustrated 

graphically in Fig. 5.1. 
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Under assumptions A.2 and A.3, the marginal profits to the producer in each period are 

downward sloping functions. The solid lines in Fig. 5.1 are the marginal profits for a 

producer holding only proven reserves, while the dashed lines in Fig. 5.1 are the marginal 

profits for a producer who holds unproven reserves .30 The marginal profits for a producer 

holding unproven reserves are lower than the marginal profits for a producer holding only 

proven reserves because of the marginal discovery costs. 

The quantities ;Ys and R are the maximum total reserves that can be held by a producer 

holding both proven and unproven reserves or just proven reserves, respectively, given the 

holdings of all other producers, such that producer i will rationally exhaust in period three. 

Thus if producer i holds reserves R,3 + S,3 <?js, then producer i maximizes his profits by 

exhausting both types of reserves in period three, and if producer i holds only proven 

reserves R,3 <R, then producer i maximizes his profits by exhausting his proven reserves 

in period three. If this condition holds for all producers, then period three is the equilibrium 

time of exhaustion. 

Note that ;Ys < qR in Fig. 5.1. This occurs because unproven reserves face the additional 

cost of discovery, d(S13), relative to proven reserves. We can see that a producer carrying 

only proven reserves into period three has a credible threat to produce a larger quantity in 

period three. Nevertheless, this threat does not affect the behaviour of the other producers, 

30 For brevity, we shall use time subscripts for the prices and costs when the functional arguments are 
suppressed. Thus, c,, c(qj,), c1 c(qj), and c c7(q,,); and similarly for di(w1) and P(Q,). 
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so long as the other producers exhaust in period three .3' Rather, this threat only affects the 

other producers' profits, but it does not affect q3.32 Thus, we may state: 

Figure. 5.1: Rational Exhaustion in Period Three by Producer i. 

Lemma 5.1: Under assumptions A.1-A.4, if all producers exhaust no later than period 

three, then a producer who carries a larger stock into period three affects the profits of 

other producers, but not the behaviour of other producers. Therefore, the subgame perfect 

equilibrium and the Nash equilibrium for the subgame beginning at period two are 

identical. 

31 If, by carrying additional reserves into period three, producer) were to cause producer ito alter in which 
period producer i exhausted, there would be a change in the behavior of producer I. In Fig. 5.2, this 

corresponds to lowering the marginal profit function sufficiently in period three so that R13 + S13 > q. We do 
not consider this strategic effect in this paper. 

32 The effect on marginal profits is a7 1/aQ,3 = êi.t1/aQ,3 = P'(R3 + s3) + (R,3 + S13)P"(R3 + S3) <0 by A.2. The 

effect on profits is also negative: a V13/DQ 13 = (R,3 + s,3)' (R3 + s3) <0. 



67 

Therefore, in period two, without loss of generality, we may solve for the equilibrium 

by using an open loop solution, since the open loop and subgame perfect solutions are 

identical. 

5.1. C. Period Two Subgame Perfect Equilibrium 

We turn now to the problem faced by producer i in period two, given that it holds 

reserves R,2 and S12, where R12 + Sa> 0, but either Rn or S could be zero, and given that at 

least m3 > 0 producers rationally exhaust in period three, and no producers exhaust beyond 

period three. 

By Lemma 5.1, producer i's problem in period two is to choose exploration and 

production {q,2, q,3, w,2, w.3}, taking the choices of all other producers as fixed, to 

maximize 33 

P(Q2)q,2 - c.(q,2) - dj(wa) + f3[P(Q3)q, - c'(qj3) - d1(w,3)], P2 

subject to the following constraints (the Kuhn-Tucker multipliers associated with each 

constraint are written in parentheses): 34 

R12+w,2+w13 — q12 — q,-3 ≥ 0, (X,) 1= l,...,n, (5.9) 

33 
Since producer i's reserves are exhausted in period three, we could write this as a backwards induction: 

P2' V,2 = P(Q2)q,2 - c,2(q,2) - a2(w,2) + j3 Vj(R3,S3), 

where T1(R3,S3) is the solution to problem P3. However, since producerj cannot affect producer i's period 
three production, problems P2' and P2 are equivalent. 

" The multipliers 2, and p., are now written as the present value of the resource stocks R, and Si, in period 
two. The values of X, and p., in section 5.1.B, which are the present value in period three, equal 2/f3 and p.,/f3 
in period two, respectively. 



S12-Wa--wi3 ≥ 0, 

R12 +w 2—q12 ≥ 0, 

Constraint (5.9) is a feasibility constraint on production due to the exhaustible nature of the 

resource. Constraint (5.10) is a feasibility constraint on exploration. Constraint (5.11) 

ensures that extraction in period two is feasible given the beginning proven reserves and 

the reserve additions in period two. 

The first-order necessary conditions for maximization of P2 include (5.9)-(5.11) and 

= P(Q2) + P'(Q2)q,2 - c(q,2) - ?, - 4' ≤ 0, 1= 

IL 

13[(Q3) + (Q3)q,3 - cc(qj3)] - 2I ≤ 0, 

8V 
= -d(w,2)+?,-p.,+4, ≤0, 

= -I3d(w,3)+X,-p., ≤ 0, 

1= 1,...,n, 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

Each of these holds as an equality when the choice variable is non-negative. The marginal 

value of the proven reserves, R2, to producer i at the beginning of period two is Xi + 4, and 

the marginal value of unproven reserves to producer i at the beginning of period two is p.,. 

The conditions (5.12) and (5.13) have the usual interpretation that the marginal profit from 

extraction in each period is equal to the marginal value of the remaining resource stock. 

Equations (5.14) and (5.15) reveal that a similar dynamic is at work with unproven 
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reserves. 

Given that a producer with positive stocks will produce at least in period two, we may 

use (5.13) to eliminate the shadow value of proven reserves, ?, from (5.12) to yield an 

intertemporal arbitrage rule in terms of marginal profits from production: 

it'i2(q, Q-12) - 1itS3(R,2 + S,2 - q, Q..13) - ≥ 0 1= 1,.. .,n2, (5.16) 

where icc'(q, Q..,,) P(Q1) + - 61(qt) is the equilibrium marginal profit from 

extraction in period t, given that discovery costs are sunk and holding the output of all 

other producers, Q, constant.35 When production is positive in both periods and the 

constraint (5.11) does not bind, so that is zero, then (5.16) holds as a strict equality. This 

means that the marginal profits from production are equal in present value, which is 

Hotelling's rule for an oligopolist (e.g., Salant 1976, Loury 1986, or Polasky 1992). 

When 0 and production is positive in both periods, then the Flotelling condition 

(5.16) reflects the increase in extraction costs due to having to extract only from unproven 

reserves in period three, so that ?(q, Q..,2)> Piif(Ra + S,2 - q, Q..i3). This means that 

the value of the marginal reserves declines in present value when (5.11) is binding. 

Similarly, when the producer chooses not to produce in period three, (5.16) implies 

that ic?(R,2 + S,2, Q-i2)> 13ir?(0, Q..,), which is the condition under which the producer does 

better by exhausting in period two than by taking some reserves into period three. 

A similar expression can be obtained for marginal discovery costs, substituting in from 

35 
Subscripts denote partial derivati.res: ir ' "/5q11, ir ' aië'/aQ 11, i ' 32it"/Oq, and ic 

12— 
it. 
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(5.11) we can write (5.14) and (5.15) in terms of period two exploration to provide an 

intertemporal optimization condition for reserve additions: 

d(w,) - 13d(S,2 - w) 4j, I = ',••,fl2. (5.17) 

However, this inequality can go in either direction, depending upon which period(s) 

exploration occurs. Our first result is that exploration is positive in any period in which 

production occurs, which implies that (5.17) holds with equality: 

Proposition 5.1: Under assumptions A.1-A.4, if producer I has a positive quantity of 

unproven reserves at the beginning of period two (i.e., S12 > 0) and rationally exhausts in 

period two or three, then producer i explores in each period in which he produces. 

Proof This proposition is proven by the following lemmas. 

Lemma 5.2: With positive quantities of the unproven reserves and production in both 

periods two and three, if there is zero exploration in some period, it will be in period two, 

not period three. 

Proof Suppose not. Suppose that W I2> 0 and that 2 - <j3d(0). Then, d(S) - = 

-  gi  and w,3 =0. Then we obtain that 

- I-ti < I3d(0). (5.18) 

Since the producer is assumed to extract in the third period, it is not possible that w12 = Si2> 

0 and 4,> 0 both occur. Thus, let j = 0. Then this equation implies that dc(s12) <pd;(o) = 
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0, which is a contradiction, since d ≥ 0. 

Lemma 5.3: If producer i extracts all of his proven reserves by period two, so that the 

constraint (5.11) binds, then he also explores in period two. 

Proof Suppose not. Suppose that 4),> 0, that qj2 = R,2, and that d(0) - 4),> 2, - p. Then d 

(0) - 4),> ?, - t, implies that w,2 = 0, which means that w3 = S,2, so that d(0) - 13d(S,2)> 

4),. Since d(0) = 0, we get that - Pd(S12) > 4),> 0 that contradicts. 

Lemma 5.4: If producer i produces in both periods and the constraint (5.11) does not bind, 

then producer I will have positive level of exploration level in period two. 

Proof Suppose not. Suppose that qt2 <R,2, that production occurs in both periods, and that 

WO = 0. Then q, <R,2 implies that 4), =0 and dc(0) > X, - J2j implies that wj2 =0. Since w,2 = 

0, w,3 = S> 0. Therefore, d(0)> 13d(S,2). Since d(0) = 0, f3d(S,2)< 0 contradicts. 

The only other possibility is that producer i exhausts in period two but does not explore 

in period two. Assumption A. 1 implies that each producer exhausts all stocks, so it cannot 

be equilibrium behaviour for producer i to shut down before exhausting his unproven 

reserves. 

This completes the proof of Proposition 5.1. 

Proposition 5.1 shows that because unproven reserves have higher marginal costs to 

extract than proven reserves, each producer will produce from the high cost reserves in the 

final period in which it operates, even given the strategic advantages of early 
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transformation into proven reserves. This was assumed not to occur in Hartwick and 

Sadorsky (1990), but Proposition 5.1 shows that if the producer is given the choice of 

exploring in the last period, he will do so. The reason for this result is that producers still 

have an incentive to produce from the lowest cost reserves first as in Hartwick (1977). 

Given that there are no strategic effects between periods two and three by Lemma 5. 1, this 

effect dominates in the final two periods of the game. 

Proposition 5.1 implies that (5.17) can be written as 

d(w,) - f3d(S12 - w) = 1= L... n2, (5.19) 

Thus, marginal exploration costs are constant in present value when the constraint (5.11) is 

not binding, and fall in present value when the constraint (5.11) is binding. In what follows, 

we use the fact that when the constraint (5.11) is not binding, (5.19) implies that there 

exists a value of wj = w,2(S12) such that 

d;(w,2(s12)) 13d(S12 - W'2(S12)), for S,2>0. (5.20) 

It follows from (5.20) that 0 <w 2(S12) < l."  Note that w.2(0) = 0, since the quantity of 

unproven reserves is known with certainty. 

While proposition 5.1 eliminates all equilibria with zero exploration in either period in 

which production is positive, there remain three possible outcomes for a producer that 

produces in one or both the two remaining periods, depending upon whether or not the 

constraint (5.11) binds when production occurs in period three, and on whether or not the 

36 For example, if d'j is a positive constant, then w2(S,2) = J3/(1+ f3). 
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producer produces in period three: 

Case A: producer i explores and extracts in periods two and three and the constraint 

(5.11) does not bind, i.e., {wl = w,2(S,2) and qf <R,2 + w,2(Sa)}. 

Case B: producer i explores and extracts in periods two and three but the constraint 

(5.11) binds, i.e., {5 12 > Wil > wa(S,2) and qf = R12 + w}. 

Case C: producer i exhausts in period two, i.e., f wI = S2 and qj = R, + 512). 

To characterize the equilibrium choices made by producer i when taking as given the 

actions of all other producers, we define the following terms:37 

wi(q12 I Q-,2 - d(q,2 - RQ) 

- 13[rt'i3(R12 + S,2 - q,, Q) - d(R,2 + Sr2 - q,2)], (5.21) 

where w,2 = q, - R,2, and q3 = w13 = R,2 + S,2 - q,2 from (5.11) and (5.13). Thus, from (5.12) 

-(5.15), iji,(q Q) = 0 when (5.11) is binding. Similarly, let: 

Q-12) 7r?(q, Q-12) - d(w,2(S,2)) 

- f3[it'i3(R12 + S,2 - q,, Q) - d(Sa - w,2(S,2))], (5.22) 

where w,2 = w,2(S,2) is given by (5.20), and q,3 = R,2 + S12 - q,2 from (5.11). Thus, 

37 Given that all producers exhaust in three periods, Q = R., + &j3 - Q., so implicit in (5.21) and (5.22) 
are the stocks held by other producers. 
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11 i(qj I Q..i) = 0 when (5.11) is not binding. The difference between (5.21) and (5.22) is the 

value of w2. When 4j = 0, ml = w2(512), but when the constraint (5.11) is binding, 4> 0 

implies that w> W12(512), since (5.19) implies that wj is increasing in ,. When qj = R,2 + 

w.2(S,2), w(q I Q-) is identical to rì,(qi I 

We proceed by first deriving and interpreting the conditions that hold for a particular 

producer that produces in periods two and three to have a unique best response to what the 

remaining industry is doing. Then we find a set of conditions on the demand and cost 

function that ensures that the best-reply mappings of all producers contract to a unique 

equilibrium. 

Proposition 5.2: Under assumptions A.1-A.4, holding constant the actions of all other 

producers, if producer i produces in period two or in periods two and three, then producer 

i's unique choice of extraction and exploration exists satisfying (q) = 0 and (5.19) when 

(5.11) binds, if and only if, 

Vi(R12 + S12 I Q-I2) <0 and w(Rj2 + w12(512) I Q)> 0; (5.23) 

and satisfying 1j(q) = 0 and (5.20) when (5.11) does not bind, if and only if, 

+ w,2(S12) I Q-i2) <0 and i'(O I Q-i2)> 0. (5.24) 

Proof (i) Uniqueness: Since uniqueness is easiest to prove, we begin with it. When (5.11) 

binds, so that (5.21) and (5.19) define the equilibrium, we see from (5.21) that 

w(q,) = tf(q,2, Q-12) - d(q12 - R,2) 
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+ P [irf31 (R 2 + S,2 - q,, Q.j) - d(R12 + S,2 - i2)} <0, (5.25) 

where rt I'll (q11, Q) 2P + q11P' - c < 0 in order for second order conditions to hold. 

Similarly, we see that the left-hand-side of (5.19) is strictly increasing in q,2: 

- R,2) + j3d(R12 + S,2 - q,) > 0. (5.26) 

Thus, if j(q) = 0 for some feasible qj and (5.19) holds, then qj is unique. 

The proof for (5.22) proceeds similarly. Differentiating (5.22) with respect to q!2 yields 

= irf(q, Q) + Pi(Ra + S,•2 - q,, Q) <0. (5.27) 

Thus, if r(q) = 0 for some feasible qj and (5.20) holds, then qj is unique. 

(ii) Existence (sufficiency): In the case where (5.11) is binding, (5.21) and (5.19) describe 

the equilibrium. Feasibility requires that 

R,2 + S12 > qj = R2 + wj > R,2 + w,2(S,2). (5.28) 

Combining (5.28) with the monotonicity assumption A.2, we see that assumptions A.2 and 

A.3 are sufficient to prove the existence of an equilibrium when (5.11) binds. 

When (5.11) does not bind, the corresponding feasibility condition is 

0 < qjj <R12 + w,2(S,2). (5.29) 

Thus, by the monotonicity assumption A.2, we obtain (5.24) as the sufficient conditions to 

ensure a unique equilibrium. 
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(iii) Existence (necessity: To prove that the conditions in (5.23) are necessary to obtain an 

equilibrium when the constraint (5.11) binds, suppose one of the conditions is not binding. 

Suppose that 1(R + S,2)> V(R12 + w,2(S,2))> 0. Then by (5.25), no feasible value of q 

exists that satisfies ji.(q) = 0. Similarly, when (5.11) does not bind, if 71i(0) > 

+ wj2(S))> 0, no feasible value of qj exists such that (q) = 0. This completes the proof. 

The economic interpretation of the conditions (5.23) and (5.24) are straightforward. Let 

us consider (5.23) first. The condition Ve(R,2 + 512 I Q-12) <0 can be written as 

+ Si2, Q-12) - d(S12) < t3[irc3(o, Q-i) - d(0)]. (5.30) 

This means that it is profitable for producer i to carry some of its production forward to 

period three. Since this condition forms the boundary between the cases where production 

ends in period two and continues to period three, we summarize it as follows: 

Proposition 5.3: Under assumptions A. 1-A.4, and taking the actions of all other producers 

as fixed, producer i will produce in period three, rather than ending production in period 

two if, and only if, 1(Re2 + S,21 Q-,2) <0. 

Proof (i) Sufficiency: If the inequality in (5.30) holds, then producer i will hold some of its 

reserves for production in period three. 

(ii) Necessity: If the inequality in (5.30) is reversed, then producer i prefers to exhaust in 

period two, rather than holding some reserves to period three. This completes the proof. 
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Note that the boundary created by iji(R,2 + S,2 J Q-i2) = 0 intersects the boundary created 

by W,(R12 + w,2(S12) I Q-a) = 0 at S12 = 0. This occurs because when S,2 = 0, w,2(o) = 0. 

The condition wj(R12 + w,2(S2) I Q..i)> 0 in (5.23) can be written as 

+ w.2(512), Q-12) > 3it3(S,2 - w12(512), Qj). (5.31) 

The interpretation of (5.31) is that marginal profits in period two exceed those in period 

three in present value when second period production equals qj = R2 + w12(312). It is this 

condition that causes the producer to increase its production from unproven reserves. 

When the constraint (5.11) is not binding (4, = 0), the relevant conditions is (5.24) . The 

condition iie(R12 + w,2(512) I Q-1) <0 is the reverse of the inequality in (5.31). If the present 

value of marginal profits when period two production equals qJ1 = R•2 + w,2(S,2) is less than 

the present value of marginal profits in period three given remaining reserves of S12 - 

w,2(512), the producer wishes to keep some of these reserve additions for use in period 

three. 

Finally, the condition i'(0)> 0 can be written as 

7C 1 ,2(O Q-12) > 13i 3(R,2 + 5 ,2, (5.32) 

This condition says that the producer wishes to have some production in period two, rather 

than holding all production until period three. 

The condition WI(R12 + w,2(S12) I Q-i2) = + w,2(512) I Q..a) = 0 serves to form a 
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boundary separating the cases where (5.11) is and is not binding in R,2 and S,2 space. 

Totally differentiating this condition and solving for the slope of this locus yields 

aR,2 
as2 

W27t 12 - (1 - w2)f3itf  
=0 - it il 

where rtfç < 0 by assumptions A.2 and A.3. In general, this expression is ambiguous in 

sign. However, in the special case of linear demand, constant marginal extraction cost, and 

quadratic exploration costs, the slope of the Wj(R,2 + w,2(512) I Q) = 0 locus is zero. This 

locus is shown in Figure 5.2 as the boundary where q ≤ Ra + w,2(S,2). Since 

+ w,2(S,2) I Q,2)/5R,2 = 1t( <0, an increase in R,2 causes the constraint (5.11) not to 

bind. 

The next result derives the boundaries for where q < 0. 

Proposition 5.4: Under assumptions A.1-A.4, and taking the actions of all other producers 

fixed, producer i exhausts in period three for {R,2, 512} satisfying (5.23) and (5.7) if (5.11) 

binds or by (5.24) and (5.7), if(5.l 1) does not bind. 

Proof See appendix B. 

Propositions 5.1-5.4 establish the conditions under producer i has a unique equilibrium 

response in which production and exploration are non-negative in periods 2 and possibly 

period three, given the stocks R2 and S2, and the equilibrium actions of other producers. 

The next proposition shows the conditions under which a Nash equilibrium among the set 

of active producers exists and is unique. 
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Figure 5.2: Equilibrium Exploration and Exhaustion for Producer 1. 

vi(Ri2 + S12 J Q-;2 

Notes—The areas A and B correspond to the areas where the constraint (5.11) is not 
binding and is binding, respectively, and where producer i produces in both periods two 
and three. Producers with reserves in area C rationally exhaust in period two (or earlier). A 
producer holding reserves in area D would prefer to exhaust in period four (or later). 

Proposition 5.5: Under assumptions A.1-A.4, there exists a unique Nash equilibrium 

beginning in period two which is characterized by (5.23) and (5.24) holding for all m3 

producer that exhaust in period three and characterized by (5.31) for all m2 producers that 

exhaust in period two. 

Proof See appendix B. 
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5. 1.D. Properties of the Second Period Value Function 

Let Vt(R2,S2) denote the maximized value of problem P2 for producer i. To obtain 

strategic effects in exploration, it is necessary for the equilibrium values q, q, w, and w 

to depend upon the initial reserves of the other producers. That is, if q7 q(R, S12) and 

Alt = Si2) only (i.e., the solutions to the maximization problem P2 depend only own 

reserves), then there is no strategic effect from production and exploration in period one, 

since q7, and w are not affected by the resource stocks of the other producer (Eswaran and 

Lewis 1986). 

We begin by showing the effect on producer i's stream of future profits beginning in 

period two of an increase in R12 and S,2 when that producer produces in both periods two 

and three. The stream of profits for a producer producing in both periods two and three can 

be written as 

T'(R2,S2) = P(Q2)q - c(q) - d(w) + P[P(Q3)qt - c(q) - d(wi)], (5.33) 

where qj = R,2 + S,2 - qj for all producers who produce in period three. For producers for 

whom (5.11) does not bind, wj = w,2(S,2), while for producers for whom (5.11) binds, w = 

q - R2> w,2(S,2). 

Using the envelope theorem, differentiating second period profits with respect to R,2 

when (5.11) does not bind yields 

(case A) 
av2 

= I3(P3 + Pq - C3) + (Pq - J3Pq) a  (5.34) 



81 

And when (5.11) does bind, differentiating second period profits with respect to Rj2 yields 

(case B) I aq,  
= d,2 + f3(P3 + Pq - - d3) + (Pq - ôR2 (5.35) 

j#i 

Differentiating the second period profit function with respect to S,2 yields 

(cases A & B) Si2 - 13(P3 + Pq - C3 - d3) + (Pq - Pq)>   (5.36) 

for both the case where (5.11) binds and where it does not bind. 

The first set of terms on the right-hand-side of (5.34)-(5.36) are the direct effects to the 

producer of having more of that type of stock in period two. By the definitions of the Nash 

equilibrium given by (5.23) and (5.24), these terms are each positive in sign in equilibrium. 

The term (Pq - 3Pq) is negative in sign by A.4, since this term corresponds to the 

derivative of producer i's profits with respect to output by producer. We shall turn to the 

terms involving aqjlaRa and aq/5S,2 after we write down the conditions for a producer 

who exhausts in period two. 

The value function for a producer who ends production in period two is simply 

V!(R2,S2) = P(Q2)(R,2 + S12) - c(R,2 + 8 ,2) d1(S,2). 

Differentiating (5.37) with respect to R12 and 8,2 yields: 

(case C) 
dv; 
T=P2 

(5.37) 

(5.38) 
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(case C) aqIJ 
as2 = 2 + Pq - c12 - d/2 + Pq as12 (5.39) 

j#1 

Now we turn to the terms involving the summations of aqj/aR12 and aqj/aS,-2. 

Following Tirole (1990, P. 326), we may use the chain rule to write these sums as 

- 

joi :2 \.aR 
i2) :2 

and - 

)7 aqIJ 

j.-Ai :2 I2), q,2 
(5.40) 

The sign of these expressions depend on the slopes of the best-response functions of all 

other producers to producer i's output level. Given assumptions A.2 - A.4, the goods are 

strategic substitutes, so that the slopes of the best-response functions are negative. 

However, we need these summations to be negative in net given the interactions among the 

set of all other producers. 38 Lemma 5.2 shows that this is so. 

Lemma 5.5 (Dixit 1986): Under assumptions A.1-A.4, the sum of the aq /aq,2 in (5.40) are 

negative for all producers who produce in period two and three, and zero for producers who 

end production in period two. 

Proof See appendix B. 

Next, we show the effect of own proven and unproven reserve holdings on the second 

38 The best response functions qj = P(Q.:2) describe how producer i responds to changes in the output of all 
other producers. To see how all other producers simultaneously respond to a change in producer i's output, 
we need to solve the system of equations H.1dq = bdq,2 to obtain dq = IL,' bdq12, where dq-i2 = {dq 12,. . 

.,dq,} is the vector of dq2 for j:;ti, FL, is the Jacobian matrix for the first-order conditions for all 
producers other than producer i with diagonal elements aj equal to the second order conditions on qj2 and off 
diagonal elements b in rowj (where these are defined in the text below), and b = {b1,. . .,bb . .,b,} is the 
vector of the cross-effects on marginal profits. 
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period output of each type of producer. 

Proposition 5.6: Under assumptions A.1-A.4, (i) aq/aR12 > 0 and ôq,/t3S12 > 0, and (II) 

aq/oR12 = 5qf/OS12 when d(w11) = 0 or constraint (5.11) does not bind, and (iii) aq/aR12 > 

aq/aS12 when dZ(w1)> 0 and when constraint (5.11) binds. 

Proof (i) Write the total differential of a producer that produces in both periods two and 

three first-order condition in its own output qj as 

a1dq + b,•1 dqj = —e1dR,2 —fd5,2, (5.41) 

where a, and b, are defined as above, and where e• = fi  —!3(2P + P'q - c) > 0 for 

producers for whom (5.11) is not binding, and for a producer for whom (5.11) binds e, = d 

- 13(2P + P'q - c - d)> 0 andj = -j3(2P + P'q - c - d)> 0. For the case where 

R,2 changes, (5.41) implies 

( I+E _ bl __ 

—e1  ( e aj — bj 

aR,2 L—(a,—b,))  a1  + jE,  

j;61= (ai + biE ôi2) - aj —bj 

e1F,>0, (5.42) 

where F, is —(a, - b,)' times the second expression in brackets in the second equality. F• is 

positive since a - bi <0 and both a,I(a, - b,)> 0 and b,/(a, - b)> 0 for all 1. Thus, aq/aR,2 

= e,F,> 0 and by an equivalent process, it can be shown that 8q,/8S,2 fF,> 0. For 

producers that produce in only period two, qj = R,2 + S,2, so that Oq/8R,2 = ôqJ3S,2 = 1. 
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(ii) When the constraint (5.11) does not bind or d = 0, ej =J, so that ôq/5R - 

=0. 

(ill) When d> 0, aq/5R2 - 5q!I3S12 = dF,> 0. This completes the proof. 

Note that when (5.11) is not binding, that aq/aR12 = oq/aS12, and when (5.11) is 

binding, aqIaR12 - aq/as12 = dF> 0 for dJ> 0, where iT> 0 is defined in (5.42). These 

results affect whether or not exploration gives the producer a strategic advantage, since an 

increase in first period exploration, W,i, increases R,2 and decreases S,2 at the same rate. It 

should be clear, therefore, that when (5.11) is not binding, we shall find no strategic effect 

from exploration. This foreshadows the main result in the next section, which is that 

producers with large quantities of proven reserves do not have a strategic incentive to 

explore. Furthermore, note that the expression aqJaR12 - aq/oS,2 = dI',> 0 shows that 

strict convexity of the di(wit) functions is necessary to obtain strategic effects from 

exploration. 

Next, we state a sufficient condition for the 'oil'igopoly theory of production result that 

a/aR,2 < 1, which also extends to unproven stocks: ôq/5S12 < 1. This condition works for 

producers who produce in both periods two and three: 

Corollary to Proposition 5.6: Under assumptions A. 1 -A.4, for producers that produce in 

both periods two and three, a sufficient condition for aq,/aR,2 < 1 is that 

dJ + I3d! - - f3(P + qP) J#1 . P - cJ! + 3(P 31 - cj) (5.43) 
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Proof See appendix B. 

While the condition (5.43) is not very intuitive, when P',' = cZ = dit = 0, this condition 

collapses to 2/(N - 1) < 1 + 0, which holds for all N ≥ 3. Thus, like the theory of 

'oil'igopoly, this model also has the property that output is increasing at a decreasing rate 

in proven reserves. 39 

5.2. Strategic Exploration and Extraction 

Now we are prepared to ask the central question of this paper. In this section we derive 

the strategic effects from exploration and from production, and show which types of 

producers will alter their behaviour relative to the open loop Nash equilibrium based on 

those incentives. 

5.2.A. Exploration and Production in Period One. 

The problem faced by producer i in period one is to choose output qn and exploration 

wi to maximize 

max V11 =P(Q1)q11 - cj(qji) - d1(w,i) + (3V&R2,S2), I = l,...,n1, P1 
{ qn w,} 

where the value function VJ(R2,S2) is given by (5.33) or (5.37), depending on whether or 

39A similar condition can be obtained for the effect of an increase in unproven reserves. Indeed, when (11) is 
not binding, we know that the effects are identical, and when (11) is binding, we need only substitutef, = ej 
+ a% for e1 in the condition (B. 13). 
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not the producer produces in period three. Producer i's choices are subject to the 

constraints 

Wi1 ≤ S11, (5.44) 

qj, ≤ Ri + Wi1, (5.45) 

which are analogous to the constraints (5.10) and (5.11), respectively. 

Let yj and ic, denote the value of Lagrange multiplier on the constraints (5.44) and 

(5.45), respectively. By the envelope theorem, the solution to P1 for a producer that 

produces in periods two and three when (5.11) is not binding must satisfy (5.44), (5.45), 

and the following: 

(case A) I(LL a VII 
P(Q1) + P'(Q1)q - cc(q) - ici - 

= P(Qi) + P'(Q1)q - cc(q) - ic - + Fq - c;3] 

- - f3qJP3'](?g—M-,,  8q,  < 
aR2)•1 aq12 - I = 1,.. 

av, (-•"ri av,(case A) —d(W,O + ici - 'y + P&ii - 

a, ) 

= —d(w) + K - 7 + d(w) 

(5.46) 

5q,2 aq ôq  < 
+ - qzPJ( - aq2 - 11,...,n1. (5.47) 
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5.2. B. Strategic Exploration and Production 

The strategic effects appear in the terms of the third lines in both (5.46) and (5.47), 

which have been written using (5.34)-(5.36). These are strategic effects because producer i 

chooses the stocks it takes into period two, knowing the effect this has upon the exploration 

and output choices that they will make in the next period, the oq/aR 2 and aqIaR12 -  aqj 

LoS,2 terms in (5.46) and (5.47), respectively, and how this affects the choices made by the 

other producers, through the FjjaqjVOqj2 terms. By assumptions A.4 and Proposition 5.6, 

these effects are non-negative on exploration and non-positive on production, relative to 

the open loop (Nash) equilibrium. Absent these effects, the equilibrium is identical to the 

Nash equilibrium, in which only the expressions on the second lines of (5.46) and (5.47) 

appear in the first-order conditions. 

An immediate result, which follows from Proposition 5.6, is the following: 

Proposition 5.7: Under assumptions A.1-A.4, producers that hold proven reserves in 

sufficient quantities that they will produce in both periods two and three and for whom the 

constraint (5.11) is not binding (i.e., case A producers) have a strategic incentive to restrict 

output, but do not have a strategic incentive to increase exploration. 

Proof When (5.11) is not binding, (5.42) implies that 3q/OR 2 = OqIOS12, so the strategic 

effect vanishes Thus, there is no strategic effect from exploration. To see that the strategic 

effect decreases first period production, rewrite (5.46) as 

P(Q1) + P'(Q1)q - ci(q) - Ki = I3{P(Q2) + P(Q2)q - c;2(q)] 
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(5.48) 

The expression on the left-hand-side is the marginal profit from period one production. The 

expression on the right hand side is the marginal profit from second period production plus 

(the term on the second line) the strategic effect of holding higher reserves in period three. 

As the strategic effect is in net positive in sign, the producer has a greater incentive to 

withhold production in the first period relative to the open loop equilibrium. This 

completes the proof. 

The result that producers for whom (5.11) is not binding do not have a strategic 

incentive for exploration follows from the fact that when (5.11) is not binding, Proposition 

5.6 implies that aq/aR,2 = aqJaS,2 and that first period exploration increases R,2 and 

decreases S at the same rate. There does exist a strategic effect from production, even 

though aq,I8R,2 = 5qY as12, since R,2 is affected by first period production, but 812 is not 

affected by first period production. 

Proposition 5.7 is counter-intuitive, because it suggests that having more market power 

does not necessarily give one an incentive to act strategically. As we mentioned in the 

introduction, the reason for this is that a producer with reserves lasting well beyond the 

next period gains nothing from having converted more reserves to the proven state. This 

occurs because when (5.11) is not binding, that producer already has a credible 

commitment to produce a large quantity in both periods two and three. 

Next, consider the equivalent conditions for a producer for whom the constraint (5.11) 
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is binding along the equilibrium path. By definition, this is a producer for who proven 

reserves are insufficient for period two production. The equivalent first-order conditions to 

(5.46) and (5.47) are 

(case B) P(Qi) + P'(Qi)q - 61 - Kj ≤ 13d 3 + + Pq - - 40] 

(case B) 

+ -. P 
aR,2)j#i aq,2' 

di(w) - K1 + 7 ≤ Pdi2 + '- - 0,21E 

The next proposition summarizes the strategic effects for this type of producer: 

(5.49) 

(5.50) 

Proposition 5.8: Under assumptions A.1-A.4, producers that hold proven and unproven 

reserves in sufficient quantities that they will produce in both periods two and three, but for 

whom the proven reserve holdings are insufficient to produce in period three, so that the 

constraint (5.11) is binding (case B producers), have both a strategic reason to restrict 

output and a strategic reason to increase exploration. 

Proof The strategic interaction terms appear on the second lines of (5.49) and (5.50). Both 

are positive in sign by Proposition 5.6. This completes the proof. 

Thus, producers whose holdings of reserves are sufficient to get to period three but 

whose proven reserves are insufficient to last until period three are able to exert strategic 
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pressure on those producers with large enough reserves that they still have proven reserves 

at the end of period three. This occurs because when (5.11) is binding for a producer, then 

Oq/OR12 - Oq/aS> 0, so that exploration gives the producer a credible commitment to 

produce a larger quantity in period two. Thus exploration gives these producers a strategic 

incentive for exploration that does not occur when (5.11) is not binding, since in that case 

an increase in first period exploration, w1, increases R2 and decreases S,2 at the same rate. 

These producers also have a strategic incentive to restrict production for the same reason as 

the type A producers. 

Finally, consider a producer who rationally exhausts his stocks in period two. For this 

type of producer, the equivalent conditions for maximizing P1 are 

(case C) P(Q1) + .P'(Qi)qfl - c(q) - K' ≤ J3[P2 + - c2I 

+ 3P'(Q2)qf•aa) , 

(case C) di(w) - ij + 'y, ≤ 13d2 + P'(Q2)qf - 

OR,2 OS,2 

(5.51) 

(5.52) 

The next proposition shows that these producers do not have a strategic reason to 

explore in period one: 

Proposition 5.9: Under assumptions A.1-A.4, a producer with sufficient reserves to 

produce in period two, but insufficient reserves to produce in period three, gains a strategic 
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advantage from withholding production, but does not gain a strategic advantage from 

increasing exploration. 

Proof Recall that aqWaR12 = ôqWôS,2 = 1 for producer that exhausts in period two, since 

q = R,2 + S12. Thus, the strategic effect vanishes in the exploration equation, but remains in 

the production equation. This completes the proof. 

The reason these producers do not gain from exploration is because second period 

output for these producers equals q,! = R,2 + 512, so that the term in brackets in (5.52) equals 

zero, since an increase in exploration increases R, at the same rate as it decreases 512. 

Propositions 5.7-5.9 suggest that only producers that exhaust their proven reserves in 

period two, but have sufficient unproven reserves to continue production in period three, 

have a strategic incentive to explore for oil. Producers with sufficient reserves to have 

proven reserves at the beginning of period three already have sufficient reserves to have a 

credible commitment that they will produce a large quantity in period three. Thus, they do 

not gain anything by exploring beyond the level that would occur in the open loop 

equilibrium, although they do gain from restricting production. Producers with aggregate 

reserves sufficient only to exhaust in period two also do not gain a strategic advantage from 

exploration in period one, although they too gain a strategic advantage from restricting 

output in period one. This suggests that the strategic incentive to explore is highly non-

linear in the size of proven reserves. Those with very small and those with very large 

proven reserves have no strategic incentive to over explore relative to the open loop 

equilibrium, but those with intermediate level reserves have an incentive to over explore 



92 

relative to the open loop equilibrium. 

5.2. C. Characterization ofPeriod One Exploration 

Now that we have seen the strategic effects, there remains but one task. That is to 

characterize the equilibrium in period one. We begin our analysis of the equilibrium in 

period one by ignoring the strategic effects and assuming that neither of the constraints 

(5.44) or (5.45) binds. Then the choice of production given by (5.46), (5.49) or (5.51), and 

says that marginal profits from extraction in period one are equated with the discounted 

value of additional proven reserves in period three. Thus, this is again a simple Hotelling 

result which implies that discounted marginal profits are equated across periods. Equations 

(5.47), (5.50) and (5,≤2) give a similar Hotelling result that discounted marginal costs of 

exploration are equal across periods. Obviously, the strategic effects alter the interpretation 

of these results in the same way as in Proposition 5.2, as will having either (5.44) or (5.45) 

bind. 

Next, we show that if the constraint (5.45) is binding, so that producer i's proven 

reserves in period two are zero, then producer i will not have positive proven reserves at 

the end of any subsequent period. 

Proposition 5.10: Under assumptions A.1-A.4, if a producer extracts all of its proven 

reserves in period one, he will not subsequently hold positive quantities of proven reserves. 

Proof See appendix B. 

These propositions eliminate all but three possible combinations of exploration 
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activities for the m3 producers that produce in all three periods.40 We can conclude that so 

long as initial unproven reserves are positive, the producer explores in every subsequent 

period. Furthermore, for each period in which producer i takes some proven reserves into 

the next period, it extracts only from the lower cost proven reserves. Lastly, if proven 

reserves are exhausted prior to unproven reserves, then the producer will not rebuild these 

proven reserves in any subsequent period. 

5.3. Empirical Evidence of Strategic Exploration 

In this section, we present a simple test of the hypothesis that strategic incentives 

matter in exploration. When the proven reserve holdings of a cross-section of oil producing 

countries is examined (see Figure 5.3), it becomes clear that producers with smaller 

reserves at the beginning of the 1950s tended to have higher rates of growth of their proven 

reserves. As we observe no countries that have exhausted their reserves, we interpret this 

evidence as support for the hypothesis that producers with smaller proven reserves are 

likely to engage in strategic exploration, while producers holding larger proven reserves are 

not likely to engage in strategic exploration. 

We present a test of whether countries with smaller reserves do more exploration by 

regressing the rate of reserves growth on initial reserves using data from the 99 countries 

40 There are also in2 producers which only hold sufficient reserves to produce in period two (those who take 
reserves equivalent to the area C in Figure 5.2), and there are m1 producers whose reserve holdings are 
insufficient to even produce in period two. These producers' choices cannot be influenced by the actions of 
the remaining producers, but those who take reserves into period two can affect the behavior of producers 
who continue to produce into period three. 
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holding oil reserves in the post World War II era that is depicted in Fig. 5.3. The regression 

result is: 

ln(RT,,,Ro) = 4.09 - 1.11 ln(Ro,1), adjusted R2 = 0.18, N = 99. 
Ti (0.51) (0.24) 

(Standard errors are in parentheses.) Ti is the number of years each country is observed in 

the data, and ln(Rr,,) and ln(Ro,) are the natural log of ending and beginning reserves, 

respectively. 

Figure 5.3: Reserves Growth and Initial Reserves, 1952-2002 
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Notes:—Reserves data is by country and is in log scale. The number of years between 
initial reserves and ending reserves differs across countries. Countries above the 45° line 
exhibit reserve growth. Source: Oil & Gas Journal. 

Fig. 5.3, and the regression results show that countries with smaller initial reserves 

tended to have higher rates of growth in their proven reserves over the period 1952-2002. 

While there is greater variation in the countries with smaller reserves, the percentage 
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changes in reserves is highest for countries that initially had smaller reserves. This 

regression supports the hypothesis that smaller countries do indeed explore more relative to 

the larger countries: a one percent increase in initial reserves results in a 1.11 percent 

reduction in reserves growth. 

These results are not a perfect test of the hypothesis, as some producing countries have 

multiple firms doing the production. In addition, the largest oil producers tend to be 

dominated by state-owned-firms.While it is possible that state owned firms may respond to 

economic incentives differently than privately owned firms, it would be an interesting 

coincidence if these firms tended to behave as we suggest forward looking strategic firms 

would behave. Finally, there may be other reasons - political unrest, higher levels of risk, 

etc. (e.g., Bohn and Deacon 2001) - that would cause producers in parts of the world with 

larger reserve bases to behave differently. We have not conditioned for this in our 

regressions. Nevertheless, our results, simple as they are, provide tantalizing evidence that 

the world oil market behaves as suggested by the 'oil'igopoly theory of exploration. 

5.4. Conclusions 

This chapter has developed a three-period model of 'oil'igopolistic exploration and 

production. We have solved for the dynamically consistent (subgame perfect) equilibrium 

in a model in which producers compete both by production in the output market and by 

converting unproven reserves into proven reserves. 

The most interesting conclusion from this study is that smaller producers - or at least 



96 

those with smaller proven reserves - are most likely to engage in strategic exploration, all 

else equal. As we argued above; the intuition behind this result is that producers with large 

proven reserves already have a credible commitment to produce large quantities in the 

future periods. 

This result, however, appears to be unique to an exhaustible resource model. In the 

strategic investment model of Dixit (1980), both large and small firms have an incentive to 

invest strategically. However, in that model, the firm with an initial cost advantage - which 

translates into higher production levels - tends to make higher levels of strategic 

investment. This can be seen in a simple example, where the profits to two duopolists are 

given by 

ir,=(a—qi —q2—c,+kIqI—'/2d1c12, /=1,2. (5,53) 

Where q is output, price is given by p = a - - q2, c1 is initial marginal cost of 

production, and k1 is the reduction in marginal costs attained by investing at cost 1/2dk,2. We 

let a = 12, d= 4, c1 = 4, and c2 = 2. Then it follows that the equilibrium values of Ic, and c - 

ki are as in Table 5.1. 

From Table 5. 1, it is clear that both firms over invest in the subgame perfect 

equilibrium relative to the Nash equilibrium. The percentage change in costs is higher in 

the subgame perfect equilibrium for both firms. However, the most interesting thing to note 

form Table 5.1 is that Firm 2, which has an initial cost advantage of 100%, makes much 

higher levels of investment both in absolute terms and in percentage reduction terms. This 

suggests that the reason smaller producers strategically explore has more to do with the 
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constraint (5.11) binding. 

Table 5.1: Dixit's (1980) Strategic Investment in R&D with Asymmetric Firms 

k1 k2 c1 - k1 c2 - k2 %c1 %Ac2  
SGPE 0.625 1.625 3.375 0.375 -.156 -.812 
NE 0.485 1.15 3.51 0.848 -.122 -.576  

Producers for whom proven reserves shall be exhausted in the next period, however, do 

gain a strategic advantage from having lowered their costs of production by sinking the 

cost of exploration. 

Also, because these producers are large producers they gain less from a reduction in 

costs because a large producer faces a larger reduction in price when it expands its output 

(e.g., Nordhaus 1969). Thus, smaller producers are those who do the most exploration. 

Furthermore, a producer with large proven reserves already has sufficient low cost reserves 

on hand to credibly increase its output. 
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Mathematical Appendix 

Appendix A: The constrained subgame perfect equilibrium when 6 8. 

In section 3.4.A, we derived the constrained subgame perfect equilibrium profits for the 

case where 8> 8. In section 3.4.13, we showed that the constrained subgame perfect 

equilibrium profits are decreasing with tightening the capacity constraint in the interval 

(QDQC) where 8< c5 . Next, we show what happens when Q:5 Q' where S S. 

Results of Propositions 3.1 and 3.2 ensure that there exists a unique value of 8 such 

that q) = q2SP = r where is given by (3.61) and is a unique value since (3.61) is 

strictly decreasing in q. Thus, a capacity constraint will affect both period quantities where 

8 = 6. This implies that Q" = QC = SP• Comparing (3.61) with (3.87) we see that 

QD Thus the limiting value for both Q4 and QC is Q". To see if Q1 is also limiting value 

for QB given by (3.74), we find next the discount factor for which Q) = QB and q"= 

q2CSP = SP Notice that QD is discount factor invariant and QB decreases with discount 

factor. Thus, there exists a unique value 8 such that for 8<8, Q> QD, and for 8 > 

then QB Q° and 8 solves: 

8 c (R — 4"p) — c (R — 24sp) — 4sp [C'(R — 4sp) — c - (R — 24 sp) 

- c (R — 4sp) — c (R — 24sp) — 4SP [C'(R — 4sp) — 2c'(R — 24 SP)l  
(A.1) 

Expressing by means of 4sp = Q" enables us directly to compare magnitudes of discount 
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factor and state: 0 < 8 <S. 

This disparity in the discount factor bears further complication into the constrained 

problem. We have to divide our analysis when Q over two intervals: (0,5] and 

A. 1. The Effect of a Capacity Constraint on Subgame Perfect Profits when 8< 

First, we consider the case when 8< 8 and thus QD < QB- If Q < Q°, then the capacity 

constraint binds in both periods. We saw in (3.79) the effect that a change in the capacity 

constraint has upon the subgame equilibrium profits of the buyer. It is clear from 

Proposition 3.5 that by assumption A.3, marginal profits are decreasing in Q in the domain 

(0 QB) and that a value of unique Q* exits. Since Q° < QB, the existence of Q* is 

questionable. 

The local maximum exists if Q* <Q'. Since Q'' is discount factor invariant and Q* 

decreases with discount factor41, there exists a unique value S such that for 8< , Q*> 

QDand for 8≥8 then Q*Ql)and Y solves: 

c (R — 4s") — c (R — 24SP) — 4sp 1c'(R — 4sp) — c'(R — 248p )] 
b. 

c (R — 4sp) — c (R — 24sp) — 4sp 1c'(R-4sP)-3c'(R-24 SIT (A.2) 

Expressing S by means of c' = QD enables us directly to compare magnitudes of discount 

41 19Q/a9= _[u'(Q)_m(2Q*)]._[rn(Q)_m(2Q)]/[(1+5)uu(Q*)_(J...5)mI(Q*)4ömt(Q.)] <0. 
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factor and state: 0 < 8 < S < 8. This allows us to state the following proposition: 

Proposition A.1: When assumptions A. 1-A.4 hold and Y< 8< 8, then in the interval 

(0QD} there exists a local maxima, Q*, for the buyer's profits. 

Proof. The rate at which the buyer's profits change as Q increases is given by (3.79). As 

Q-->O, 3B(QJQ<QD)/aQ >0 and 327j.B(Q J Q < Q'')/ôQ <0. Then since 5<8, Q* < 

QD Thus Q* exists in the domain (O,Q)] and is a local maximum. 

Figure A.!: Equilibrium Production with a Capacity Constraint, 8< S < 
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Two examples of the local maxima when 8< 8 and one example when the local 

maximum does not exist within interval (0, Q°J are illustrated in Figure A.2. Figure A.1 

illustrate that there are no jumps in production in Q1 and QC and thus profits are 
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continuous. In general it is not possible to say whether the local maxima profits are greater 

or less than the unconstrained profits when S < 6 .42 What Proposition A. 1 shows is that 

there might exist local maxima in the domain (0,QDJ• It does not necessarily imply that the 

buyer profits from restricting capacity, although this is possible. 

Figure A.2: Equilibrium Profits with a Capacity Constraint, 8< 8 <c 
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A.2. The Effect of a Capacity Constraint on Subgame Perfect Profits when 8< 6< 8 

42 As stated in footnote 15, in the linear example S= 2/3, 5= '/2, and 5=1/3. Constrained profits are 

improved by restricting capacity for 3> '/. Thus, in Figure 5, Q2 and n8(Q2) are not applicable. 

Q 
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We now consider the case when 8< 8< 5 and QB < Q) Thus to find constrained 

subgame perfect equilibrium profits over the domain (0,Q'), we spread analysis over two 

intervals: (0, QB] and (QB Q DJ 

At QD q1CSP = q2CSP = Q and strategic effect from the subgame perfect equilibrium 

vanishes. Since QB < QI), and QB refers to the capacity size which clears for vanished 

strategic term, then it must be true that at QD there is the effect of missing strategic term. 

Thus qf'5° discontinuously jumps that translates in the positive jump in the profit at Q' as 

shown in Figs A.3 and A.4. 

Figure A.3: Equilibrium Production with a Capacity Constraint, S < 5< c 
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If QB <QD then from section 3.4.A. profits are described by (3.71), q" < q2CSP = Q 
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and the rate of change is determined by (3.80). Proposition 3.4 states that profits increase 

with shrinking size of capacity. 

If Q < QB then the capacity constraint binds in both periods and we apply the outcomes 

of Proposition 3.5. Thus there exists the local maximum Q* in the domain (0, Q'1-

Again, in general it is not possible to say whether the local maxima profits are greater 

or less than the unconstrained profits43. We can say with certainty that for critical value of 

S = à, constrained profits are grater than the unconstrained. 

Figure A.4: Equilibrium Profits with a Capacity Constraint, j < ,5< c 
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43 See footnote 17. Thus, where j < 8< S , constrained equilibrium profits are always improved. 
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Appendix B: Proofs of Propositions and Theorems in the Chapter 5 

Proof of Proposition 5.4 

Producer i rationally ends' production in period three only if 

t1(R12, S12) = it3(q, Q4 - d3(w) - 7t(0, 0) ≥ 0. (B.1) 

(1) Suppose that qj <R + w. Then qj = R,2 + S12 - q, and wj = 52 - w. Thus, let 

'r11 (R,2, S,2) 7t 3(R12 + S12 - q,Q 12) - d3(S12 - w) - i3n 4(0, 0). (B.2) 

When S,2 = 0, the value of R2 = R such that t,i(R, 0) = 0 must satisfy ic?(R - q;, Q-) = 13it' 

(0, 0). It can be shown (cf (5.42)) that 0 < aq, /5R12 < 1. Thus, R - qj lies between zero and 

R. Let i solve 7u'2 Q_'2) Q12) E t3it?(0,Q 13), which is the boundary given in Proposition 5.3 for 

ending production in period two. Since R - qj is strictly positive, it follows that R > R. 

Thus, in the region where 5,2 = 0, there exists a set of values of R2 such that producer i 

wishes to exhaust in period three and follow the strategy outlined in Proposition 5.2. It can 

also be shown that along the locus of points where 'r,i(R,2, SQ) = 0, that 

dR12 
dS,2 

(1 - aq]aS,2)? - (1 -  

'r11 (R12 S12) = 0 = - (1 - aqf/aR12)rrç3 <0, 

Since 0 <äw/ôS,2 < 1, and 0 < aq, rnS1 aq/aR12 < 1. 

(B.3) 

(II) Next, consider the case where qj = R,2 + w. Then wj = = R,2 + S,2 - q. In this 

case, let 
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'r,2(R12, SO) 7t'13(Rj2 + S,2— q, Q) - d3(R12 + S,2— q) - t'i4(0, 0), (B.4) 

where qf solves ji,(q) = 0. In this case, the t,2(R,2, Si2) loci is again downward sloping: 

dR,2 
dS,2 

1 -  

t2(R,2,S,2) = 0= - 1 - ôq,!JÔR,2 < 0, 

since 0 < aqJaS,2 < 3q1 /R,2 < 1. 

(B.5) 

This implies that there exist values {R,2, 5,2) such that producer i wishes to produce in 

period three but not in period four. When Ra = 0, the corresponding value of 5/2 = S such 

A 

that 'r,2(0, 5) = 0 must satisfy 

7C,, (S- q, Q) - d3(S - q) = 3itç4(0, 0). (B,6) 

Let S solve ic?(S, Q-:2) f3ir'13(0,Q), which is the boundary given in Proposition 5.3 for 

A 

ending production in period two, Since 0 < aq/aS,2 < 1, S - qj is strictly positive. This 

implies that in the region where R,2 = 0, that 5>8, which completes the proof. 

Proof of Proposition 5.5 

(i) Existence (Vives 1999, theorem 2.7). To prove existence, it is necessary to prove that 

the best-reply functions are strongly decreasing in the output of the other producers. 

Assumptions A.2, A.3 and A.4 ensure that the slope of the best-reply functions p/2(Q,2) are 

strongly decreasing: 

P2(Q 2) - P + q,2P' + 13(P3 + q,3P4')  
-. - - P + q,2P' + (P + q,3P') - (c - P) - - ')) - 

(B.7) 
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Both the numerator and the denominator of the term in brackets are negative, so the whole 

expression is negative. Therefore, under assumptions A.2 and A.3, the best-response 

functions are strictly decreasing. Given this, Vives (1999, theorem 2.7) implies that an 

equilibrium exists. 

(ii) Uniqueness. To prove uniqueness, it is necessary to also show that the best-response 

map p() {p12(Q-1),.. .,Pn22(Q-n2)} is a contraction. Vives (1999, theorem 2.8) proves that 

if the slopes of the best-reply functions are strongly decreasing in the output of the other 

producers and greater than —1 in value, then a unique equilibrium exists. Note that 

assumptions A.2 and A.3 imply that 

0 > P + q,2FY + f3(P + q'3P') 

> P + qaP' + + q,P') - (c - P) - I3(c - P) (B.8) 

Dividing through by —1 times the right-hand-side reveals that p2(Q..,2) > —1. Thus, the 

condition on the best-response functions is met. This completes the proof. 

Proof of Lemma 5.5 

This proof follows Dixit (1986). Write the total differential of thejth producer's first order 

condition on the choice of q.1 as 

ajdqJ + bj;ql dqh = —bjdq,2, j# 1, (B.9) 

where, by A.2 and A.3, a1 2P + -  cjII  + (2F + P'qj - c) <0 for a producer for 
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whom (5.11) is not binding and a1 2P + - c - d + I3(2P + P'qj - c - d) < 0 

for a producer for whom (5.11) is binding, and b3 = P + PYqj + (P + P31  <0 for all 

producers that continue to produce in period three. We can rewrite (B.9) as 

dq + (q7 bi :bj) dQ,2  = a1 - b )dq12. (B. 10) 

Summing over all j#i and solving for how the aggregate output by other producers changes 

as qi2 increases yields 

Thus 

= 1+bJbj. 

+ E bk "i' < 0, 
8q,2 La—bj) k•iak — bkJ 

(B.11) 

(B.12) 

since bj/(aj - bj)> 0 for allj. This completes the proof for those producers that produce into 

period three. For producers that end production in period two, qjl = Rp + Sf2. Thus, these 

producers do not respond at all to changes in q,. This completes the proof. 

Proof of Corollary to Proposition 5.6 

The necessary condition for (5.42) to be less than one can be written as 



bi e,—a1 _____ 

e1—a1+b1 j., aj — b 

This expression can be rearranged to yield (5.43). This completes the proof. 

Proof of Proposition 5.10 

By assumption, R,2 = 0. Now, suppose that the conclusion does not follow. Then it must be 

that qf <wa, if the producer continues to produce to period three. (If the producer does not 

continue to produce in period three, then all reserves are exhausted in period two, which 

proves the proposition.) Thus 4, = 0, since (5.11) is not binding. Since the feasibility 

constraint (5.11) must bind, it requires that qj > w. However, , = 0 implies that w 

solves (5.20), so that w, > w. Therefore qj < wj < wj <q. However 4, = 0 also implies 

that q? solves (5.22), so that q> q. This is a contradiction, which completes the proof. 


