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a chemical process, involving one or more reactions, and not a
physical process, such as a diffusion process for separation of
compounds. Thus some processes are reactions and do not break down,

whereas other processes are not single reactions and do break down.

Design problem and acceptable solution criteria

The goals were,

(a) A data base structure that can hold every conceivable chemical
process, together with the breakdown, via multiple levels of sub-
processes, to the level of chemical reactions. The breakdown must
be consistent with how constituent subprocesses feed molecules
into, and are fed molecules from, other subprocesses of the break-

down, that is, with connecting upstream and downstream processes.

(b) A data base structure that can be built with a commercially
available data base system and accessed by a non procedural lan-
guage, where little or no programming is required, since it is en-
visaged that the primary use of the data base would be by
scientists and engineers who needed to retrieve, sometimes in the

field in remote locations, data about an individual target process.

In dealing with the second goal, the problem could be
pursued in terms of CODASYL, hierarchical, or relational data base
systems, or in terms of the two main extensions to the relation ap-

proach, namely the object oriented approach and the AI or logic

data base approach.
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Since neither the CODASYL nor hierarchical approaches [5,
8] permit the use of a flexible non procedural manipulation lan-
guage, these can be eliminated. There are major advantages to using
a relational data base manipulated by SQL [5, 3, 14]. Conceptual
files are constrained to be relations so that predicate calculus
can be applied to them. The outstanding advantage is that even with
complex searches of the data base, it is usually unnecessary to
write a program in a procedural language, as with CODASYL and
hierachical approaches [5]. It is necessary only to specify what
kind of data is to be retrieved using the non procedural SQL [5,
14] based on predicate calculus.

In the object oriented approach, objects (such as an indi-
vidual process and its immediate (child) subprocess, or a process
and its immediate (parent) superprocess) are manipulated by the
user via a fixed set of routines. The objects are usually defined
on top of an underlying relational data base. However, the object
oriented approach [8] has more to do with the development of
reusable manipulation modules, for a data base that will be manipu-
lated via defined classes embedded in the routines of some general
software system, and not via a non procedual manipulation language.
Since such a development was not consistent with the goals of the
project, the object oriented approach was rejected.

With the other extension, the artificial intelligence or
logic database approach [8], there is a relational data base (the
extensive data base) and a set of rules or predicates called the
intensive data base. The logic programming approach requires a

relational data base as its foundation, with the use of the in-
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tensive data base containing relevant predicates (functions with
values true or false) as an additional layer of knowledge. An exam-
ple might be the predicates HALOGEN (FLUORINE), HALOGEN (CHLORINE),
and so on, which embodies the knowledge that fluorine, chlorine,
and so on, are halogens. The system could then use these predi-
cates, when asked for information about halogens, to look up
fluorine, chlorine, and so on, in the extensive relational data
base. A very wide variety of intensive data bases could be devised,
depending on the need, to supplement the extensive relational data
base that contains the process breakdown data.

It follows that a fundamental chemical process relational
data base structure that could be used with SQL, could also, with
minor modification, serve as the underlying relational data base in
the object oriented approach, and as the extensive relational data
base in the AI or logic programming approach. Thus the first step
must be the solution to the problem of a relational data base
structure for a comprehensive chemical process data base.

SQL can be used with the data base proposed in this paper,
and examples of its use are included. SQL is the standard data base
manipulation and retrieval language with such common relational
data bases systems as DATABASE2 [10], ORACLE [11], and INGRES [17].

Given that a relational data base design is needed, ad-
dressing the first goal forms the core of this paper. The ma jor
part of problem is the need for a universal data base structure to
handle the subdivision of processes into subproceses, and so on,
when any given level of the breakdown can have a substructure that

can be a process sequence, process cycle (such as the Krebs cycle),



process fan, process funnel, for example, or an arbitrarily complex
structure. The solution presented in this paper is relatively
simple and fundamental, and is guaranteed to handle every conceiv-

able process breakdown.

Conceptual-level versus physical-level data base design

In the design process, it is a conceptual data base
(formerly called a logical data base) that is being designed, as
distinct from a physical data base. By a conceptual data base is
meant a data base containing essential data about the physical
reality being modelled, and not containing physical implementation
data such as pointers and indexes [5, 8]. However, readers need to
distinguish these concepts clearly. In the data base field, the
"physical" level refers to the implemention level, whereas the con-
ceptual level refers to the real world, which, in the sciences
would be called the physical world, and thus easily misunderstood
as the physical level. The conceptual-level data base design param-
eters must be entered at a terminal or workstation and stored, when
using a relational system. Physical-level data base design parame-
ters are entered separately and merely tune the database system for
efficiency of storage and speed of manipulation of the data base.

The physical level is not considered in this paper.
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Step-1 Design: Basic chemical reactions data base

The proposed conceptual level data base structure is best
understood by considering the data base in two steps. The first
step simply involves a data base about reactions and processes,
with no consideration of how a process can subdivide into sub-
processes, and so on. Thus no distinction can be made initially be-
tween a reaction and a process, since the data base has no informa-
tion on any further breakdown. Both have reactants and products,
and physical properties, such a reaction rate data, and so on.

Because the number of reactants and processes varies from
one reaction to another, a single relation for reaction/process
data is not possible, since a relation, by definition, must have a
fixed number of fields or attributes. In fact, using relational
data base terminology, the dependency between a process (or reac-
tion) and its reactants and products is multivalued [5, 8, 14],
since for one process there is a set of reactants and a set of pro-
ducts (Figure 1). Because of this multivalued dependency there is
only one reasonable way to place the reactant and product data in
relations, as illustrated in Figure 2.

In Figure 2 there are five relations, where primary keys
(unique record identifiers) are underscored. One of these:., PRO-
CESS(PROC-ID, MEDIUM, RATE, EQUILIB, ...) is straight forward. Each
record or tuple describes a process (or reaction) in terms of an
identifier (PROC-ID) and in terms of physical properties (such a
gaseous or aqueous (MEDIUM), reaction rate rate (RATE), equilibrium

constant (EQUILIB), and so on, depending on user needs). A process
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identifier (PROC-ID) is necessary. This would have to be a numeric,
alphabetic or alphanumeric code capable of serving the number of
processes anticipated for the data base. (However, an international
agreement, by which every known chemical process is assigned an
agreed code, is preferable).
In the relation MASTER-CATALYST (CAT-ID, CAT-NAME, STATE,
.), each record holds data about a substance, in a particular
form or state, that serves as a catalyst in one or more reactions.
CAT-ID gives the identifier for the catalyst; for example C237
might identify a hot platinum wire, whereas C238 might identify
particulate platinum. The other fields give descriptive data about
the catalyst, such as CAT-NAME (its name) and STATE (solid, liquid,
powder, hot wire, ...), and so on.

The relation CATALYST (PROC-ID, CAT-ID) has a record for

every process that uses a catalyst. This relation is needed because
some reactions require more than one catalyst, and becauseexactly
the same catalyst may be used with different reactions. This means
that the relationship between PROCESS and MASTER-CATALYST is many-
to-many (n:m), that is, a process can use many catalysts and a
catalyst can be used in many processes.

The other two relations in Figure 2 are

REACTANT (PROC-ID, IN-COMP, IN-QTY) and PRODUCT (PROC-ID, OUT-COMP,

OUT-QTY). A record in REACTANT identifies a process with PROC-ID,

gives an input compound (IN-COMP) or reactant molecule of the pro-
cess, and gives the quantity of the reactant moleculue (IN-QTY) re-
quired to balance the reaction equation for the process. Similarly,

a record in PRODUCT identifies a process (PROC-ID), and gives an
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output compound (OUT-COMP) or product molecule, and gives the
quantity of the product molecule (OUT-QTY) required to balance the
reaction equation. Thus, with the data base in Figure 2, the data

for the reactions:

POO1: 2 + 4B

F + 3G + K

P002: 4P + A = 35 + 4F

would be in the relations REACTANT and PRODUCT as follows:

PROC-ID IN-COMP IN-QTY PROC-ID OUT-COMP OUT-QTY
POO1 A 2 P0OO1 F 1
POO1 B 4 POO1 G 3
P002 P 4 POO1 K 1
P002 A 1 P0O0O2 S 3
P002 F 4
REACTANT PRODUCT

For the purposes of the paper we use upper case letters to identify
chemical compounds. In practice, the identifiers used in a
molecular structure data base, typically IUPAC names, would be
used.

It should be understood that REACTANT essentially lists the
input compounds to processes, with a single record for each input

compound to a specific process. The primary key is a therefore a
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composite of PROC-ID and IN-COMP. Similarly, PRODUCT lists the out-
put compounds from a process, with a single record for each output
compound from a specific process, with PROC-ID OUT-COMP as a com-
posite primary key. This may seem counter-intuitive. A structure
where each record listed all the input compounds, or all the output
compounds, to a process is more appealing. But because such records
would have varying numbers of fields, and are therefore not rela-
tions, they cannot be used.

There is a one-to-many (l:n) relationship [5] between PRO-
CESS and REACTANT, faciliated by the field PROC-ID, since for one
process there can be many reactants. There is also a l:n rela-
tionship between PROCESS and PRODUCT, also based on PROC-ID, since
for on process there can be many products.

Unskilled users who have learned elementary SQL will have

no trouble using this data base, as the following examples show

Example 1. Find the products of each process that involves reac-

tants A and B in aqueous solution, using the data base in Figure 2.

SELECT PROC-ID, OUT-COMP FROM PRODUCT

WHERE PROC-ID IN

(SELECT PROC-ID FROM PROCESS

WHERE MEDIUM = 'AQUEOUS'

AND PROC-ID IN (SELECT PROC-ID FROM REACTANT
WHERE IN-COMP = 'A')

AND PROC-ID IN (SELECT PROC-ID FROM REACTANT
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WHERE IN-COMP = 'B'));

Example 2 Find the reactants of reactions in which the enzyme

hexokinase participates.

SELECT PROC-ID, IN-COMP FROM REACTANT

WHERE PROC-ID IN

(SELECT PROC-ID FROM CATALYST

WHERE CAT-ID IN (SELECT CAT-ID FROM MASTER-CATALYST

WHERE CAT-NAME = 'HEXOKINASE'));

It should therefore be clear that the data base structure in Fig-
ures 2 is quite practical, and could store the essential reac-
tant/product/environment data for every conceivable chemical pro-
cess. However, it will not store how a process breaks down, nor how
the breakdown constituents connect in a flow network of processes.

That is accomplished by the extension to the design in step-2.

Step-2 Design: Data base structures for process composition

The way in which a process can break down into sub-
processes, and each subprocess into further subprocesses, can be
infinitely varied, as readers familiar with biochemical processes
can testify [2,19]. For a given process, some common breakdowns

are:
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1. Straight sequence. A processes breaks down into a straight
sequence of subprocesses, in which at least some of the output
molecules from one process serves as input molecules to the

next process in sequence.

2. Cycle. The simplest cycle will have one process feeding
molecules into the cycle and one being fed molecules by the
cycle. Within the processes in the cycle, at least some of the
output molecules from one process will be fed as input
molecules to the next process in the cycle. With more complex
cycles there can be more than one process feeding into the

cycle and more than one being fed by the cycle.

3. Fan-out. A single process feeds output molecules into more

than one sequence of processes.

4. Funnel. More than one process feeds output molecules into a

single process.

The above breakdowns listed are not exhaustive. Many other
breakdown structures, probably uncommon, are possible. Furthermore,
there can be many levels of breakdown. Any of the processes in a
breakdown can be a process that breaks down further, in any of the
ways listed, and other ways besides.

The problem is how to devise a data base structure that

will handle any of the wide variety of possible process breakdowns
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that can occur. There appears to be two general approaches to the

problem. One approach is to devise individual data base structures
(and thus relations) that will match the individual process sub-
structures, such as those listed above. This approach was ex-
tensively reseached and proved futile, mainly because no matter how
many additional structures were used, it was apparently always pos-
sible to show that there was a possible process breakdown that

would not fit any of the proposed structures; thus it was not pos-

sible to prove that any of the structures were universally ap-

plicable.

The alternative is to ignore the structure of the break-
downs and devise a data base structure that directly reflects the
structure of the data, which is the path taken in this paper. The
structure of chemical process data can be seen to involve two basic

recursive relationships:

(a) A many-to-many (n:m) composition recursive relationship

This involves the breakdown or explosion of a process, no matter

which, into its subprocesses, and the implosion of a given process
out of its parent processes. The recursive relationship occurs be-
cause for a given type process, no matter which, the following must

hold:

(1) There can be zero or more parent (or super-) processes, and
for each parent process in turn zero or more parent processes,

and so on. It is not the case that a given type of process or



16

reaction can have only one parent process; it can have many.
For example, a common oxidation reaction could occur within

many quite different processes.

(2) There can be zero or more subprocesses or child process,
and for each child process, in turn, zero or more child pro-

cesses, and so on.

Since a process is related to zero or more parent processes, and so
on, and to zero or more child processes, and so on, it follows that
process entities are many-to-many related to themselves, and are
thus recursively n:m related. Call this (process) composition

recursivity.

(b) A many-to-many (n:m) stream recursive relationship

This involves an implosion of a given process, no matter which, out
of its upstream processes, and the explosion of a given process
into its downstream processes. This recursive relationship occurs

because for any process the following must hold:

(1) Its reactants may be generated as the products of processes
that feed it (immediate upstream processes), with the reactants
of the immediate upstream processes being generated as the pro-

ducts of further upstream processes, and so on.

(2) The products it generates may be the reactants of processes

that it feeds (immediate downstream processes), with the pro-
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ducts of the immediate downstream processes serving as the

reactants of further downstream processes, and so on.

Since a process is related to zero or more upstream processes, and
so on, and to zero or more downstream processes, and so on, it fol-
lows that process entities are many-to-many related to themselves,
and are thus recursively n:m related. Call this the stream recur-
sivity.

The existence of two distinct (composition and stream)
recursive many-to-many relationships in chemical process data is s
basic phemomenon, and its recognition is the key to structuring a
chemical process data base, no matter what data base technology is
employed. (As it happens, current relational data base technology
with SQL is probably the best there is for handling n:m recursive
relationships, although there is room for improvement.) It is also
worth pointing out that the existence of two fundamental recursive
relationships in chemical process data appears never to have been
mentioned in the chemical and chemical engineering literature.

Note that the two distinct recursive relationships, while
independent, involve the same entities, namely processes, so that,
with general chemical process data, when considering the implica-
tions of one relationship, the other must not be forgotten. For ex-
ample, suppose we are considering the upstream and downstream pro-
cesses for process P. Now P might be a process within process X,
that is a child of X, and we can give this particular instance of P
the path name X.P. Furthermore, P might occur as Y.P within process

Y, and as Z.P within process Z. It follows that each of X.P, Y.P
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and Z.P could have a different set of upstream processes feeding
into it, and a different set of downstream processes being fed by
it, even though, in all three cases we are dealing with the same
type of process P. The upstream/downstream implosions/explosions
(that is, the implications of the streanm recursivity) for a process
depend on its parent process (that is, the implications of the com-

position recursivity).

Recursive many-to-many relationships

Because recursive n:m relationships are basic to a chemical
process data base, a brief review is relevant. Consider two rela-
tions RA and RB, each related in a 1:n relationship with a third
relation RR, as shown in Figure 3a. Each RA tuple or record de-
scribes a unique A-type entity identified by the primary key A (un-
derscored) value, and each RB tuple describes a B-type entity iden-
tified by the primary key B. RA and RB have attributes that de-
scribe the A and B entities, but these are not relevant and are not
shown. A tuple or record in RA shows an A entity paired or related
to a B entity (Figure 3b). The other attributes in the record, such
as Q, describe the relationship. For example A could be an engineer
and B a project, so that Q could denote the time spent by an

engineer on a project.
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A ... B . A B Q
al ... bl ... al bl 6
a3 ... b3 ... alk b1 8
ab ... b4 ... a3 b3 9
a7 ... b6 ... a7 b3 3
RA RB al b4 2
al b6 6
a3 b6 8
al b6 5
RR
Figure 3b
bl b3 b4 b6
F
al j 6 2 6
a3 9 8
atj 8 5
a7 3

Figure 3¢

The attributes A and B from RA and RB do not occur in RR as
primary keys, and thus do not have to have unique values, which is
the case in RA and RB. Accordingly, RA is 1l:n related to RR and RB
is also 1:n related to RR, since there must necessarily be a 1:n

relationship between two relations with a common field, where the
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common field is a primary key in one relation and not in the other.
However, since for an RA tuple there are many related RR tuples,
but for one of these RR tuples only one related RB tuple, it fol-
lows that for one RA tuple there are many related RB tuples.
Similarly, for one RB tuple there are many related RA tuples. Hence
there is a many-to-many (n:m) relationship between RA and RB, which
can be displayed as a matrix (Figure 3c). For example, from the
matrix, and from RR, we can see that b3 is related to a3 and a7,
and that a3 is related to b3 and b6.

The n:m relationship between RA and RB becomes recursive
when RA and RB are the same, that is, RA = RB, as shown in Figure
4a. The relation RR shows how an entity from RA (identified by an
Al value) is related to an entity from RA (identifed by an A2
value). The Al and A2 columns in in RR thus contain A values from
RA (Figure 4c). If A entities '~ are parts used in manufacturing as-
sembly process, then, going in the direction from Al values to A2
values, an RR tuple <al al0 7> could indicate that part type al
contained part type al0 at location 7, which, from the relationship
matrix in Figure 4d, also means that in turn part type al0 con-
tained part types a5 and a8, and so on recursively, giving us a
parts explosion; going in the direction from A2 to Al the RR tuple
{al al0 7> means that part type al0 is contained within part type
al, and that in turn (see relationship matrix) part type al is con-
tained with part type a4, and so on, recursively, giving an implo-
sion. For the sake of brevity an n:m recursive relationship is

often depicted as in Figure 4b.
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Separate relations for composition and stream recursivity

If we are concerned only with the breakdown composition of
processes, and not with how one process feeds another, then the
data base in Figure 5 containing the two relations PROCESS and COM-
POSITION is necessary and sufficient for a comprehensive chemical
process data base, since PROCESS and COMPOSITION embody the neces-
sary composition recursivity. [Thé relations CATALYST AND MASTER-
CATALYST have to be added, exactly as in Figure 2, however.]

The relation COMPOSITION requires a minimum a three fields.
To see why, consider a data base for processes P3 and P8, which
breakdown as in Figure 6a. A tuple of COMPOSITION gives a process
SUPER-PROC-ID along with one of its subprocesses SUB-PROC-ID. Thus,
since P3 breaks down into P4, P6 and P14, there must be tuples <P3,
P4, 1>, <P3, P6, 1>, <P3, P4, 2> and <P3, P4, 1>. The final field
OCCUR gives an occurrence number, to inform when a subprocess is
occurring more than once at the same level in a breakdown, as in
the case of P3 having two distinct occurrences of P4 (Figure 6a).
The contents of COMPOSITION for the breakdowns is shown in Figure 6b.

Note that COMPOSITION will generate a number of distinct
breakdown (or explosion) trees or hierarchies equal to the number
of processes that are not subprocesses of any higher level process.
It will also generate a number of implosions equal to the number of
lowest level processes (reactions), showing what processes a given
reaction occurs in. The implosion for process Pl is shown in Figure

6c.
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If, however, we are merely concerned with hgy one process

feeds another, that is, with the network of processes, and are not
concerned with how a process might break down further, or with how
a group of processes might be taken as a superprocess, then the
data base in Figure 7 with relations PROCESS and STREAM is neces-
sary and sufficient. [CATALYST and MASTER-CATALYST, not shown, must
be added, as in Figure 2, however.]

A tuple of STREAM requires a minimum of four fields. To see
why, consider the network of proceses shown in Figure 8a, and cor-
responding STREAM relation in Figure 8b. Process P4 feeds process
P12, and there is a corresponding tuple <(P4, 1, P12, 1>. The first
field UP-PROC-ID gives the upstream process of the pair, followed
by its occurrence field U-OCCUR, and the third field DOWN-PROG-ID
gives the downstream process of the pair, followed by its occur-
rence number D-OCCUR. Occurrence number fields are needed since the
same type of process can occur more than once in the network, as
for example, P4, which occurs three times. If there is no matching

upstream or downstream process there is a null field value. From
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COMPOSITION, explosions and implosions can be generated. For exam-
ple, the downstream explosion for P12 and the upstream implosion

for P4 occurrence 3 are shown in Figures 8c and 8d respectively.

UP-PROC-ID U-0CCUR DOWN-PROC-ID D-OCCUR
- - P4 1
P4 1 P12 1
P12 1 P6 1
P12 1 P4 2
P6 1 P7 1
P7 1 P4 3
P4 2 P9 1
P9 1 P4 3
P4 3 - -
STREAM

Figure 8b
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P6 P4 (2) P12 P12
| |
P7 P9 P6 P4 (2)
|
PL (3) P4 (3) P9

N/

P4 (3)
Figure 8c Figure 8d

(A graphics system would be required to display the processes as
the boxed network as in Figure 8a; the data retrieved by the data
base system would simply feed the graphics system.)

But suppose now that we are not just interested in the pro-
cess breakdowns and integration for the network in Figure 8a. Sup-
pose that the breakdown hierarchies in Figure 6a apply to the
network in Figure 8a. Thus at a higher level (of abstraction), Fig-
ure 8a is integrated to involve just two processes (Figure 9a), and
can be broken down further to give the detailed network in Figure
9b (and, in consequence, adding more tuples to STREAM in Figure
8b).

The problem is how to combine the data base structures in
Figures 5 and 7, that is, combine the relations COMPOSITION and
STREAM, so that composition explosions and implosions, upstream im-

plosions and downstream explosions, and the shape of the network of
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SUPER-PROC-ID lSUB—PROC—IDIOCCUR

COMPOSITION
1:n 1:n
PROC-ID | MEDIUM | RATE
——!-’”______] PROCESS
1l:n 1:n

PROC-ID "'IN-COMP JIN-QTY

PROC-IDlOUT—COMP OUT-QTY

REACTANT PRODUCT

1:n l:n

A

UP—PROC—IDlU—OCCURlDOWN—PROC—IDID—OCCUR

STREAM

Figure 10
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processes at any level of composition breakdown, may be extracted
correctly. As things stand with the separate COMPOSITION and STREAM
relations, the occurrence numbers do not (and can not) match. In
COMPOSITION (Figure 6b), P4 has two occurrences, but in STREAM
(Figure 8b); at a lower level (Figure 9b), P2 has three distinct
occurrences in STREAM, but only 1 in COMPOSITION.

One solution is to combine the relations COMPOSITION and
STREAM in a single data base, as in Figure 10. Since removal of
STREAM from this data base gives us the original data base in Fig-
ure 5, and the removal of COMPOSITION gives us the original data
abse in Figure 7, it is clear that everything that can be retrieved
from the original data bases in Figures 5 and 7 can be retrieved
from this composite data base. Unfortunately, that is all it can
do, and it cannot tell us where a particular process in the network
flow of processes occurs in the composition breakdowns, for exam-
ple, referring to process P2 in Figure 9b, we could not tell from
the data base if it was descended from process P3 or P8 (Figure

6a). A more powerful solution is thus needed.

A single relation for composition and stream recursivity

The solution is the relation COMPOSTREAM in the data base
in Figure 1la, as a replacement for both COMPOSITION and STREAM
from Figure 10. In the general case of a composition breakdown,
with multiple composition levels, COMPOSITION consists of tuples,
each of which has two full process path names, the first for an up-
stream process and the second for the downstream process that is

fed by the first.
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<full path>.UPSTREAM-PROC-ID

<full path>.DOWNSTREAM-PROC-ID

COMPOSTREAM
l:n ["7 1:n

PROC-ID |MEDIUM ,RATE e CAT-ID { CAT-NAME | STATE

____,____—J L\\\‘\\\\\\\\\\\EiécESS MASTER-CATALYST
1:n l:n
1:n l:n

PROC-IDIIN—COMP IN-QTY PROC—IDIOUT—COMP OUT-QTY PROC—IDICAT—ID

REACTANT PRODUCT CATALYST

Figure 11a
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An explanation of full process path names is called for be-
fore proceeding further. Process identifiers, as in the PROCESS re-
lation are necessary in COMPOSTREAM to identify the upstream and
downstream processes, but are insufficient. For example, suppose an
upstream process P100. There could three occurrences of P100 in the
super or parent process Pl1000 and 4 in another parent process
P2000. [Remember composition is based on a recursive many-to-many

relationship.] We need to identify (say) occurrence 2 of P100

within P1000, written as P1000.P100.2, and hot occurence 3 of P100
within P2000, written as P200.P100.3. But, in turn, there could be
three occurrences of P1000 within grandparent process P10,000, and
in addition, there could be more than one P10,000 grandparent pro-
cess. If follows that to fully identify which P100 we are referring
to we need to include the occurrence number of the parent within
the grandparent and the occurence number of the grandparent within
the greatgrandparent, and so on. Thus, if there are four levels
within the composition breakdown, four level process path names are
needed to identify both the upstream and downstream processes in
COMPOSTREAM, for example P100000.3.P10000.2.P1000.3.P100.2.

As a further example, referring to Figure 6a, there are
three distinct occurrences of process P2, each of which is distinct
and plays a different part in the network flow of processes in Fig-
ure 9b. To uniquely identify these three distinct P2 processes for
use in COMPOSTREAM, their full path names would be used, as fol-

lows:

P3.1.P4.1.P2.1
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P3.1.P4.2.P2.1

P8.1.P4.1.P2.1

The contents of COMPOSTREAM are shown in Figure 11b, assuming a
composition breakdown as shown in Figure 6a and process networks as

in Figure 8a, 9a and 9b.

UGP UGP-0 UP UP-0 UPRO UPRO-0 DGP DGP-0 DP DP-0 DPRO DPRO-0

= _ - - - - P3 1 P4 1 P1 1
P3 1 P4 1 Pl 1 P3 1 P4 1 P2 1
P3 1 P4 1 P2 1 P3 1 P12 1 - -
P3 1 P12 1 - - P3 1 P6 1 - -
P3 1 P12 1 - - P3 1 P4 2 P2 1
- - - - - - P3 1 P4 2 P1 1
P3 1 P4 2 P1 1 P3 1 P4 2 P2 1
P3 1 P6 1 - - P8 1 P7 1 P10 1
P3 1 P4 2 P2 1 P8 1 P9 1 - -
P8 1 P7 1 P10 1 P8 1 P7 1 P13 1
P8 1 P7 1 P13 1 P8 1 P4 1 P2 1
P8 1 P9 1 - - P8 1 P4 1 P1 1
P8 1 P4 1 P1 1 P8 1 P4 1 P2 1
P8 1 P4 1 P2 1 - - - - - -

COMPOSTREAM

Figure 11D
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The field names making up the full path process names are in this

instance:

UGP upstream grandparent process

UGP-0 upstream grandparent process occurrence number
Up upstream parent process

UP-0 upstream parent process occurrence number

UPRO upstream process

UPRO-0 upstream process occurrence number

DGP downstream grandparent process

DGP-0 downstream grandparent process occurrence number
DP downstream parent process

DP-0 downstream parent process occurrence number
DPRO downstream process

DPRO-0 downstream process occurrence number

Where there is no upstream or downstream process, null values are
used for the full path name. Where there is no lower level composi-
tion breakdown, for example, with P6, null values are used for the
lowest level fields.

COMPOSTREAM, as is, gives directly the lowest level break-
down of the flow network in the data base, that is, using the exam-
ple, the level-3 flow network in Figure 9b. The flow network at the
next level up (level 2, as in Figure 8a) can be easily retrieved
with a simple SQL expression, and, if desired, made available to

users as a view:
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CREATE VIEW VIEW-LEVEL-2
AS SELECT (UGP, UGP-O, UP, UP-0, DGP, DGP-0, DP, DP-0)

FROM COMPOSTREAM;

which is equivalent to a relational algebra projection on the
grandparent and parent columns of COMPOSTREAM. Readers are invited
to check that the result, in Figure 1lc, does indeed correspond ex-

actly to the level-2 network in Figure 8a.

UGP UGP-0 UP UP-0 DGP DGP-0 DP DP-0
- - - - P3 1 P4 1
P3 1 P4 1 P3 1 P4 1
P3 1 P4 1 P3 1 P12 1
P3 1 P12 1 P3 1 P6 1
P3 1 P12 1 P3 1 P4 2
- - - - P3 1 P4 2
P3 1 P4 2 P3 1 P4 2
P3 1 P6 1 P8 1 P7 1
P8 1 P7 1 P8 1 P7 1
P8 1 P7 1 P8 1 P4 1
P3 1 P4 2 P8 1 P9 1
P8 1 P9 1 P8 1 P4 1
P8 1 P4 1 P8 1 P4 1
P8 1 P4 1 - - - -

VIEW-LEVEL-2

Figure 1llc
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Similarly, the relation that pives the level 1 view of the network

can be retrieved and used as a view with:

CREATE VIEW VIEW-LEVEL-1

AS SELECT (UGP, UGP-0, DGP, DGP-0)

FROM COMPOSTREAM;

with the obviously correct result in Figure 11d.

UGP UGP-0 DGP DGP-0
- - P3 1

P3 1 P8 1

P8 1 - -

VIEW-LEVEL-1

Figure 11d

In an object oriented approach, these basic views could be useful

objects.

Redundancy elimination in reactant and product relations versus

ease of use

The REACTANT and PRODUCT relations in the final solution in
Figure lla could each contain a set of input reactant tuple or out-

put product tuples for each process listed in the relation PROCESS.
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Thus, for example, if P3 has reactants A, B, C and products W Z,

then REACTANT and PRODUCT could be expected to contain the tuples:

P3 A ... P3 W ...
P3 B ... P3 Z
P3 C
REACTANT PRODUCT

However, this data would be redundant, and so can, at least in
theory , be dispensed with, although this may not be wise in prac-
tice. To see this, consider that P3 is breaks down ultimately (Fig-
ure 6a) into processes Pl, P2, P6, Pl, P2, P12 which are arranged
in a part of the network shown in Figure 9b. This information is
obtainable directly from COMPOSTREAM (Figure 11b). Accordingly, the
inputs and outputs of this group of processes must be the inputs
and outputs of P3. The inputs and outputs of the group can be
deduced from the inputs and outputs of each of the individual pro-
cesses of the group. Thus it is strictly necessary to store only
the reactants and products for the lowest level processes in each
breakdown hierarchy, from which data the reactant and products of
higher level processes can be deduced. In the case of P3, its up-
stream and down stream interactions are described by the tuples

from COMPOSTREAM retrieved by:
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SELECT * FROM COMPUSTREAM

WHERE UGP = 'P3' OR DGP = 'P3';

giving us the tuples shown in Figure 12.

UGP UGP-0 UP UP-0 TUPRO UPRO-0 DGP DGP-0 DP DP-0O DPRO DPRO-0

- - - - - - P3 1 P4 1 P1 1
P3 1 P4 1 P1 1 P3 1 P4 1 P2 1
P3 1 P4 1 P2 1 P3 1 P12 1 - -
P3 1 P12 1 - - P3 1 P6 1 - -
P3 1 P12 1 - - P3 1 P4 2 P2 1
- - - - - - P3 1 P4 2 P1 1
P3 1 P4 2 P1 1 P3 1 P4 2 P2 1
P3 1 P6 1 - - P8 1 P7 1 P10 1
P3 1 P4 2 P2 1 P8 1 P9 1 - -

Figure 12

The lowest level processes, within this set of tuples, that do in-
teract with non P3 processes or with no process at all, either up-
stream or downstream, are the processes at the interface of the P3
group of lowest level processes; the reactants of this subset of
processes must be the reactants of P3 and the products of this set
of processes must be products of P3. These tuples could be

retrieved by:
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SELECT * FROM COMPUSTREAM

WHERE UGP = 'P3' OR DGP = 'P3'
AND ((UGP IS NULL OR DGP IS NULL)

OR (UGP NOT = 'P3' OR DGP NOT = 'P3'));

giving the tuples in Figure 13.

UGP UGP-0 UP UP-0 UPRO UPRO-0 DGP DGP-0O DP DP-0 DPRO DPRO-O

- - - - - - P3 1 P4 1 P1 1
- - - - - - P3 1 P4 2 P1 1
P3 1 P6 1 - - P8 1 P7 1 P10 1
P3 1 P4 2 P2 1 P8 1 P9 1 - -

Figure 13

From these tuples it can be seen that that reactants of P3 are
those of P1, Pl, whereas the products are those of P6, P2. The
reactants and products for these processes can then be easily ob-
tained from REACTANT and PRODUCT. The complete SQL expression for

the products of P3 would be:

SELECT OUT-COMP FROM PRODUCT
WHERE PROC-ID IN
( SELECT UPRO FROM COMPOSTREAM
WHERE DGP NOT = 'P3'
AND ((UGP = 'P3' OR DGP = 'P3'

AND ((UGP IS NULL OR DGP IS NULL)
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OR (UGP NOT = 'P3' OR DGP NOT = 'P3'))));

OR PROC-ID IN
( SELECT UP FROM COMPOSTREAM
WHERE UPRO IS NUL AND DGP NOT = 'P3'
AND ((UGP = 'P3' OR DGP = 'P3'
AND ((UGP IS NULL OR DGP IS NULL)

OR (UGP NOT = 'P3' OR DGP NOT = 'P3')));

The conditions could be written more simply, but for ease of under-~
standing have been kept consistent with the step-by-step buildup in
the earlier SQL expressions for retrieving the subsets of COM-
POSTREAM in Figures 12 and 13. A similar expression would be needed
to retrieve the reactants of P3.

This must appear somewhat complex, but the complexity ap-
pears only because we are squeezing every last bit of redundancy
out of the data base, by listing only lowest level processes in
REACTANT and PRODUCT. Complexity of retrieval expressions is not
the only disadvantage however. Notice that the molecular quantities
to balance the process were not retrieved by the SQL expression
above. The information is in the data base, but cannot be retrieved
by SQL alone. To compute the overall products from a group of pro-
cesses requires balancing the reactants and products of all the
process in the group, and would have to be carried out by a proce-
dural routine, written in a higher level language, containing the
necessary SQL expressions, or by equivalent routines attached to a
class in an object oriented approach.

A far simpler alternative is to live with the redundancy

caused by having all processes, regardless of level, listed in
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processes in CATALYST. However, in this case, the level of

redundancy is quite high, since a single high level process that
breaks down ultimately in perhaps 20 reactions, each of which needs
one or two catalysts, will generate as many as 40 redundant tuples
in CATALYST. On the other hand, it can be argued that it is unlike-
ly that anyone will ever want just the catalysts needed with a high
level process; only the catalysts used with the ultimate breakdown
reactions will be needed, so that listing only lowest level pro-
cesses, or reactions, in CATALYST will be acceptable. Which avenue
is chosen probably will reflect the detail design criteria for the
data base. All we can say here is that storing only catalysts for
lowest level processes will always be sufficient - catalysts for

higher level processes can always be deduced.

Manipulation of the comprehensive chemical process data base

The final data base in Figure 1lla contains a single recur-
sive many-to-many relationship - for upstream and downstream explo-
sions. Instead of being handled by a recursive relationship, as in
the original relation COMPOSITION, the composition breakdown of a
process is fully spelled out by the full path names in COMPOSTREAM,
although essentially, it is still present.

The design clearly complies with the original design aims.
It covers the breakdown of processes to the reaction level, and
covers the arrangement of processes as a flow network at any level
of composition breakdown, and it will do this faithfully for any

network and any composition breakdown, no matter how complex.
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Some SQL retrieval expression illustrate the use of the
data base. Three levels of breakdown, and COMPOSTREAM fields names

as in Figure 11b, are assumed.

Example 1. Retrieve a full description of each level-1 process that

has at least two levels of breakdown?

SELECT * FROM PROCESS
WHERE PROC-ID IN (SELECT UGP

FROM COMPOSTREAM WHERE UP IS NOT NULL)

Example 2. For each subprocess of level-1 process P30, determine
the subprocess identifier and the catalysts needed with that sub-

process.

SELECT PROC-ID, CAT-1ID,
FROM CATALYST
WHERE PROC-ID IN (SELECT UP FROM COMPOSTREAM

WHERE UGP = 'P30');

Example 3. How many processes feed into level 3-process P25, oc-

curence 2.

SELECT COUNT (*) FROM COMPOSTREAM
WHERE DPRO = 'P25'

AND UGP IS NOT NULL.
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Example 4 If unique level-2 process P20 has a cyclic level-3 sub-
structure, get this substructure, complete with reactants and pro-

ducts for each subprocess of P20.

SELECT IN-COMP, UPRO, UPRO-0, OUT-COMP

FROM REACTANT, COMPOSTREAM, PRODUCT

WHERE REACTANT.PROC-ID = UPRO AND PRODUCT.PROC-ID = UPRO
AND UP = 'P20'
AND UP IN (SELECT INPROC-ID FROM PROCESS

WHERE TYPE = 'CYCLE')

An additional optional field TYPE is assumed in the relation PRO-
CESS here. It could have values 'CYCLE', 'FUNNEL', '"FAN', 'OTHER",

and so on, as an aid to retrievals

Lack of a recursive version of SQL

A disadvantage of current releases of SQL is that the language

does not have a facility for handling recursion to an unknown num-
ber of levels. For example, referring to the data base in Figure
lla again, suppose one wants the furtherest downstream subprocesses
of a given process, where it is not known in advance how many
recursion levels down the furtherest downstream process lies. There
is no SQL expression that can express the retrieval request. This

is not a drawback of the data base design, but of SQL. Eventually,
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a recursive version of SQL will likely become commercially avail-
able, enabling retrievals involving unknown numbers of recursion
levels to be expressed. Currently there are two possible ways of
dealing with this SQL defect in the case of the chemical process
data base in Figure 11a.

One approach is to use a distinct SQL expression for each
recursion level, and work upwards in to the implosion, or downwards
into explosions, using an SQL expression, usually the same one, at
each level.

The alternative is to guess how many levels there are, and
then construct an SQL expression to retrieve the subprocesses at
the guessed level. If no processes are retrieved, then the number
of levels guessed was too large. The number of levels in the ex-
pression can then be reduced by one and the expression tried again.
If this fails reduce by one and try again, repeating until some
processes are retrieved. These are the lowest level processes. If
the first expression did not fail, then increase the number of
levels in the expression by one, and repeat until a failure occurs.

Using techniques of this nature the lack of a recursive
feature in SQL is no great handicap, and the user can quickly

determine the nature of the breakdown of any process.

Graphics display of process and molecular structures

A data base with the structure in Figure 1la could be used to gen-

erate data on process substructure that could be displayed by a

graphics display system. Displays could be similar to those shown
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in Figure 9b. At the same time, if a comprehensive molecular struc-
ture data base [6] were available, the chemical structure of the
reactants and products for each process could also be displayed.
This would be especially valuable when the process (and breakdown
subprocesses) involved changes to a giant molecule, such as an en-
zyme, protein or DNA molecule [7, 12]. If the giant molecule were
involved in a complex series of changes, the processes for which
were in the process data base, then the sequence of molecular

structure changes could easily be displayed.

Summary

A fundamental relational data base structure for comprehen-
sive data about chemical processes is proposed. The data base can
hold data about the physical attributes of chemical processes and
about their reactants, products and catalysts. It includes a rela-
tion about subprocesses, embodying a recursive many-to-many rela-
tionship. This recursive relationship holds data about the break-
down of any process into its subprocesses, and the breakdown of
these subprocesses into their subprocesses and so on, to any
desired breakdown level. In addition, it holds the data about how
the processes and subprocesses feed molecules to other processes,
thus giving the process flow networks at each level of breakdown,
regardless of the complexity of the flow network structure (se-
quence, cycle, funnel, fan or other arbitrary structure).

The relational data base language SQL, commonly available

commercially, can be used with the data base. Data about processes,
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in terms of physical properties, reactants and products, and break-
down into subprocesses, can be retrieved easily, normally by means
of one or two SQL expressions.
The chemical process data base structure presented in this
contains no facilities for data about the structure (and substruc-
ture) of the molecules involved in the processes. However, in an

earlier paper a relational data base structure was presented for

structure and substructure, down to the atomic level, of chemical
compounds [6]. Where molecular substructure data is needed in addi-
tion to chemical process data, then both the chemical process data
base and the molecular structure data base could be used. These
data bases together would be especially useful with a graphics sys-
tem, for displaying the effect of a sequence of chemical processes
on molecular structure, particularly when giant molecules are in-

volved.
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