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Abstract

This thesis focuses on the continuum mechanical modelling of soft biological tissues seen as

composite material reinforced by collagen fibres. The fibres have a progressive recruitment

mechanism, and the tissue can undergo damage or remodelling. The thesis consists of two

major parts. In the first part of the thesis, the recruitment and damage of soft tissues are

modelled by introducing a rigorous continuum treatment of the fibre seen as a bundle of

fibrils. The fibrils have different initial undulation, and this is represented by the means

of a recruitment probability distribution. By exploiting the recruitment distribution, we

construct a recruitment and damage model, where the fibrils are progressively recruited and

damaged. The model is implemented in a Finite Element package and, as an example,

the damage of a human Achilles tendon is studied. The Finite Element model is capable

of capturing the qualitative behaviour of the tendon under uniaxial tension. The second

part of the thesis focusses on the remodelling of biological tissues in the framework of the

theory of material uniformity. A constitutive evolution model is introduced, including fibre

recruitment and reorientation, and subjected to the entropy inequality, which enforces the

Second Principle of Thermodynamics. The model is applied to a numerical example de-

scribing a pressurised fibre-reinforced cylinder, roughly representing an artery, and is able

to capture the major characteristics of remodelling in arteries, as reported in the literature.

To summarise, this thesis provides a framework for modelling of the interaction of fibril

recruitment and damage and of whole fibre recruitment and remodelling, and constitutes

a promising starting point for a more general model capable of studying the interaction of

damage, remodelling and healing.
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Chapter 1

Introduction

A biological tissue is comprised of a group of cells that have the same functionality and

are embedded in an extracellular matrix, composed of several types of macromolecules and

water (Fung, 1995). The most common protein in fibrous tissues is collagen, which makes up

a large part of the extracellular matrix (Fratzl, 2008) and heavily influences their material

properties. A collagen fibre is a hierarchical structure, comprised of bundles of collagen

fibrils, which resemble spring-shape structures that are bound together (Fratzl, 2008).

Biological tissues are profoundly different from commonplace engineering materials in

that they are highly complex multi-phasic materials, with non-linear, anisotropic, inhomo-

geneous, time-dependent behaviour (Fung, 1995). Their hierarchical structure plays a key

role in their response to external stimuli, such as mechanical forces, electrical signals, and

heat. Moreover, the cells can alter the behaviour of the tissue in which they are embedded,

as they respond to the external stimuli. This response can be in the form of adaptation and

reorganisation (remodelling) of the tissue’s internal structure.

Throughout the past decades, Continuum Mechanics has been employed as a tool to

study the behaviour of biological tissues. The constitutive models for biological tissues can

be divided in two broad categories, namely structural and phenomenological models (Gasser

et al., 2006). Structural models account for information regarding the underlying histology

(Zulliger et al., 2004; Humphrey, 2003; Holzapfel et al., 2000) and have shed light on the

functions of tissues and provided insight into their response to a given mechanical loading.

Moreover, structural models have been enhanced with the capability of capturing the effect

of the dispersion in the orientation of the collagen fibres by adopting probability distribution

functions (Lanir, 1983; Federico et al., 2005; Federico and Herzog, 2008; Gasser et al., 2006).
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The load-bearing properties, damage mechanisms and remodelling mechanisms of a bi-

ological tissue can be described by considering the arrangement of the collagen fibres em-

bedded in the otherwise isotropic matrix material. It is assumed that the collagen fibrils

constituting a particular collagen fibre progressively straighten under stretch before each of

them can carrying a load (Hurschler et al., 1997; Martufi and Gasser, 2011).

The goal of this thesis is to propose a framework for the description of damage and

remodelling, considering the progressive recruitment the structural elements (either of fibrils

in a collagen fibre or of a fibre as a whole).

The failure and damage mechanisms of soft biological tissues arise from the microstruc-

ture of the tissue. Despite increasing experimental and analytical efforts, failure-related

irreversible phenomena of soft biological tissue have not been fully understood, and there

is no consensus on a univocal definition of damage in soft tissues (Gasser, 2011). Common

damage models from engineering materials might not fit biological tissues, whose microstruc-

ture must be taken into account carefully. In order to build our soft tissue damage model,

we take, as a point of departure, some recent works by Gasser (2011) on damage of biological

tissues, by Martufi and Gasser (2011) on progressive recruitment of collagen fibrils, and by

several groups on biological tissues with statistical orientation of collagen fibres (e.g., Lanir,

1983; Hurschler et al., 1997; Gasser et al., 2006; Federico and Herzog, 2008; Federico and

Grillo, 2012).

The collagen fibres are the main actors also when remodelling is considered. In gen-

eral, growth and remodelling are two interconnected aspects (e.g., Epstein and Maugin,

2000). Growth (mass increase) and resorption (mass decrease) correspond to a change in

mass density, whereas remodelling is the rearrangement of the internal structure. When

a fibre-reinforced material, such as a biological tissue, undergoes remodelling, the collagen

fibres reorient driven, by a particular measure of stress called Mandel stress (Epstein and

Elzanowski, 2007). Among the several different approaches for growth and remodelling, in
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this thesis we follow that of material uniformity, introduced by Noll (1967), and further

studied by, e.g.,Epstein and Maugin (1990, 2000). Our goal is to study the remodelling of a

biological tissue in which not only the orientation of the collagen fibres evolves with time,

but also the waviness of the fibres does. This implies a “relaxation”, which has been observed

experimentally (Kamiya and Togawa, 1980).

1.1 Objectives

The objectives of this thesis project are to:

1. Establish a rigorous continuum treatment of fibril recruitment models;

2. To construct damage and unloading models based on the newly proposed re-

cruitment model;

3. To implement the recruitment-damage model in a Finite Element package;

4. To study the continuum treatment of remodelling of fibrous tissues in the

framework of material uniformity theory.

Objectives 1, 2 and 3 were the goal of a paper that has been accepted for publication,

Hamedzadeh, A., Gasser, T.C., Federico, S., 2018, On the constitutive modelling of recruit-

ment and damage of collagen fibres in soft biological tissues, Eur. J. Mech. - A/Solids, in

press, DOI: 10.1016/j.euromechsol.2018.04.007

and, in this thesis, are addressed in Chapters 3, 4 and 5, respectively.

1.2 Synopsis

In the remainder of this chapter, we briefly recall the notation that we employ. In Chapter 2,

we report a literature review on the hierarchical structure of soft tissues, their mechanical

3
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behaviour and testing, continuum damage mechanics, damage of biological tissues, growth

and remodelling of soft biological tissues from the point of view of Continuum Mechanics.

In Chapter 3, we propose a rigorous continuum treatment of fibril recruitment and its

kinematics, and we discuss the notion of recruitment probability density function and its

properties. We correct the model previously proposed by Martufi and Gasser (2011) and we

prove its uniqueness, considering the assumption made on the constitutive stiffness. Finally,

we generalise the newly proposed model and show its equivalence to the model previously

proposed by Hurschler et al. (1997). In Chapter 4, we construct a progressive damage model

based on the recruitment model we proposed in Chapter 3 and we prove its equivalence to

the damage model proposed by Hurschler et al. (1997). Moreover, we construct an unloading

model based on the exclusion of the damaged fibrils. In Chapter 5, we implement the damage

model into a Finite Element package and regularise the model to make it mesh-independent.

As an example of application, we study the damage of Achilles tendons under uniaxial

tension.

In Chapter 6, we discuss the premises of the theory of material evolution in the framework

of theory of uniformity and we introduce an admissible evolution law. In Chapter 7, we

solve the problem of the remodelling of a pressurised fibre-reinforced cylinder (mimicking an

artery), based on the model introduced in Chapter 6. In addition, we study the sensitivity

of the model to the initial mean fibre orientation angle and fibre straightening stretch.

In Chapter 8, we summarise the findings of our thesis and discuss the limitations and the

possible future work.

1.3 Notation and Continuum Mechanics Basics

In this section we introduce basic notation that has been used in this thesis. Generally, we

follow the notion from the text by Marsden and Hughes (1983), in which uppercase symbols

and indices are used for material quantities (in the reference configuration) and lowercase

4



symbols and indices are used for spatial quantities (in physical space).

The physical space is represented by a three-dimensional affine space (Epstein and Mau-

gin, 2010), denoted by S. At each point x ∈ S, we define the tangent space TxS as the

vector space of all vectors emanating from x. The (disjoint) union of all tangent spaces, for

all x ∈ S is called tangent bundle TS. The dual spaces are the cotangent space T ?xS and

the cotangent bundle T ?S. The space S is endowed with a metric tensor g : TS × TS → R,

which is a tensor field valued in the tensor space [TS]02 = T ?S ⊗ T ?S, and has (covariant)

components gab. The inverse metric tensor g−1 : T ?S × T ?S → R is valued in the ten-

sor space [TS]20 = TS ⊗ TS and has (contravariant) components gab. The metric tensor

and its inverse define the scalar products between vectors and covectors, respectively, i.e.,

u.v = g(u,v) = ugv = uagabv
b, ϕ.ψ = g−1(ϕ,ψ) = ϕg−1ψ = ϕag

abψb, and are used to

lower or raise the indices of any tensor. The fully covariant and contravariant counterparts

of an arbitrary tensor are denoted by a flat “[” and a sharp “]”, respectively. For instance,

for a “mixed” second-order tensor a, its “covariant” counterpart a[ has components gababc

and a] has components aab gbc. Moreover, a low dot “.” denotes the single contraction of two

tensors performed by means of the appropriate metric tensor, e.g., for a fully “contravariant”

second order tensor b and a vector y, the contraction b.y has components babgbcyc.

A body is represented by one of its placements in space, elected as the reference config-

uration B, assumed to be an open subset of S. The reference configuration B is equipped

with the metric tensor G with inverse G−1, with properties analogous to the metric g of the

physical space S.

The motion of the body B is an invertible differentiable map, called configuration, which

maps every material points X = (X1, X2, X3) into spatial points x = (x1, x2, x3), at each

given time t:

χ( · , t) : B → S : X 7→ x = χ(X, t). (1.1)

The differential of the configuration is called deformation gradient F : TB → TS, and has

5



components F a
A = χa,A, where comma denotes partial differentiation. As a two-point tensor

field, F maps points X ∈ B into the space TB⊗T ?S. The algebraic transpose of F is valued

in T ?B ⊗ TS, and has components (F T )Aa = F a
A.

The shifter (Eringen, 1980; Marsden and Hughes, 1983) is defined as the tensor 1 :

TB → TS that, at every X, parallel-transports vectors from TXB to TxS. The shifter 1

is orthogonal in the metric sense (Federico, 2012), i.e., 1−1 = G−11Tg. When there is no

deformation, the deformation gradient coincides with the shifter, i.e., F = 1.

We define the right and left Cauchy-Green deformation tensors, denoted by C and b and

their inverses, the Piola deformation tensor B and Finger deformation tensor c as pull-backs

and push-forwards of the appropriate metric tensors:

C = χ∗g = F TgF = F T .F , (1.2a)

b = χ∗G
−1 = FG−1F T = F .F T , (1.2b)

B = χ∗g−1 = F−1g−1F−T = F−1.F−T , (1.2c)

c = χ∗G = F−TGF−1 = F−T .F−1. (1.2d)

The determinant of the two-point deformation gradient tensor F is defined, in terms of

the components of F and of the metric tensors g and G, as (Marsden and Hughes, 1983;

Federico, 2015b)

J = detF =
√

det[[gab]] det[[F a
A]] 1√

det[[GAB]]
. (1.3)

By comparing the pulled-back metric C with the undeformed metric G, we can define the

standard measure of strain, known as Green-Lagrange strain E, as the material tensor

E = 1
2(C −G). (1.4)

The stress tensors, Cauchy σ, first Piola-Kirchhoff T and second Piola-Kirchhoff S are

related to each other by

σ = J−1TF T = J−1FSF T . (1.5)
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In hyperelasticity, the first and second Piola-Kirchhoff stresses can be given as the deriva-

tives of an elastic strain energy or elastic potential Ŵ with respect to the conjugate measure

of deformation (or strain), i.e.,

gT = ∂Ŵ

∂F
(F ), (1.6a)

S = ∂Ŵ

∂E
(E) = 2∂Ŵ

∂C
(C). (1.6b)

Most biological tissues are assumed to be incompressible due to presence of fluid in the

matrix. Therefore, the modified hyperelasticity equations for incompressibility must be

used, i.e.,

gT = −p J F−T + ∂Ŵ

∂F
(F ), (1.7a)

S = −p J C−1 + ∂Ŵ

∂E
(E), (1.7b)

σ = −p g−1 + J−1F

[
∂Ŵ

∂E
(E)

]
F T , (1.7c)

where p is the Lagrange multiplier arising from the kinematical constraint of isochoric

(volume-preserving motion: J = 1).
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Chapter 2

Literature Review

In this chapter we review a collection of studies on the mechanical behaviour of soft biologi-

cal tissues, focusing on the role of collagen fibres. First, we briefly elaborate the hierarchical

structure of tissues and collagen fibres and its significance with respect to the unique char-

acteristics of biological tissues. Second, we outline the approaches used to form constitutive

relations for biological tissues, in the context of Continuum Mechanics.

2.1 Hierarchical Structure of Biological Tissues

The hierarchical structure of biological tissues is of great importance as it ultimately de-

termines their unique mechanical behaviour and their capacity to adapt and remodelling

(Fratzl et al., 1997). Collagenous tissues are mainly built from collagen fibrils as the basic

structural element. The thickness of fibrils is in the range of 50 to 500 nm. The fibrils

provide a biomechanical scaffold for cells and other macromolecules (such as proteogly-

cans, elastin, etc) to attach and maintain the shape of the tissue (Kadler et al., 1996).

Figure 2.1 shows the hierarchical structure of a tendon, as an example. The subcompo-

nents of tendons include fascicles, fibrils and molecules. Collagen molecules are triple-helical

protein chains with a length of around 300 nm and a width of 1.5 nm. They are stag-

gered next to their neighbours, with a repeating banding pattern (also called D-period) of

64 nm to 67 nm (Hulmes, 2002), as shown in Figure 2.1. Each polypeptide chain con-

tains one or more regions identified by the repeating amino acid pattern Gly-X-Y, where

Gly denotes glycine, and X and Y can be any other amino acids. This pattern allows

the chains to produce a right-handed triple-helical structure (Beck and Brodsky, 1998).
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Fascicle
<latexit sha1_base64="uF7bhjOB+omW5a5smd4UHH4NEeY="></latexit><latexit sha1_base64="uF7bhjOB+omW5a5smd4UHH4NEeY="></latexit><latexit sha1_base64="uF7bhjOB+omW5a5smd4UHH4NEeY="></latexit><latexit sha1_base64="uF7bhjOB+omW5a5smd4UHH4NEeY="></latexit>

Tendon fibre
<latexit sha1_base64="NwCWAx2VdFlFSzmoiF4Lk0m9wdE="></latexit><latexit sha1_base64="NwCWAx2VdFlFSzmoiF4Lk0m9wdE="></latexit><latexit sha1_base64="NwCWAx2VdFlFSzmoiF4Lk0m9wdE="></latexit><latexit sha1_base64="NwCWAx2VdFlFSzmoiF4Lk0m9wdE="></latexit>

Collagen Fibril
<latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="ifc+uCwGzNBPm23W7HNaEivwHQ4=">AAACFXicbVC9TsMwGHT4LaWFdmaxqCoxVQkLjEgsjEWiP1IaVY7jtFb9E9lfKlVRXoCVV+Bp2BATb4ObdoCWkyyf7vzZ54szwS34/rd3cHh0fHJaO6ufN+rNi8tWY2h1bigbUC20GcfEMsEVGwAHwcaZYUTGgo3ixePaHy2ZsVyrF1hlLJJkpnjKKQEn9aetjt/zK+B9EmxJB20xbXvNSaJpLpkCKoi1YeBnEBXEAKeClfVJbllG6ILMWOioIpLZqKhylrjrlASn2rilAFfq74mCSGtXMnYnJYG53fXW4n9emEN6HxVcZTkwRTcPpbnAoPH60zjhhlEQK0cINdxlxXRODKHgqql3sZ1rAzSHKtskdpdnRi95wqiWkqikcFoZBpHbtUjWEbUoOkFZuv6C3bb2yfC2F/i94NlHNXSFrtENCtAdekBPqI8GiKIEvaI379378D43PR9428Lb6A+8rx9Ql6EF</latexit><latexit sha1_base64="gmdKt1ybGdoxGNLkV/NpBOE/RAM="></latexit><latexit sha1_base64="gmdKt1ybGdoxGNLkV/NpBOE/RAM="></latexit><latexit sha1_base64="s0kcaUxLbqOpAxonz8pQ2AqSwfw="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit><latexit sha1_base64="2sogM8DZQZDLtQ6HlV7zZwvFxnc="></latexit>

50 � 500 nm
<latexit sha1_base64="c5RoBjR15WGDntv90R6rFQHcbDw="></latexit><latexit sha1_base64="c5RoBjR15WGDntv90R6rFQHcbDw="></latexit><latexit sha1_base64="c5RoBjR15WGDntv90R6rFQHcbDw="></latexit><latexit sha1_base64="c5RoBjR15WGDntv90R6rFQHcbDw="></latexit>

50 � 300 µm
<latexit sha1_base64="ah5Xjrl49n1GCOCwzOCp8I7zT48="></latexit><latexit sha1_base64="ah5Xjrl49n1GCOCwzOCp8I7zT48="></latexit><latexit sha1_base64="ah5Xjrl49n1GCOCwzOCp8I7zT48=">AAACPXicbVDLSgMxFM34tr6qbgQ3wSK40JLxgS4FNy4VbBU6Q8lkUhvMY0juCGUYv8at/oLf4Qe4E7duzbRd+LoQcjjn3puTk2RSOCDkNZiYnJqemZ2bry0sLi2v1FfX2s7klvEWM9LYm4Q6LoXmLRAg+U1mOVWJ5NfJ3VmlX99z64TRVzDIeKzorRY9wSh4qlvfOCJ7B4TgaBdHikLfqiJSOVZlt94gTTIs/BeEY9BA47rorgZLUWpYrrgGJqlznZBkEBfUgmCSl7Uodzyj7I7e8o6Hmiru4mL4hRJveybFPWP90YCH7PeJgirnBirxnZVN91uryP+0Tg69k7gQOsuBazZ6qJdLDAZXeeBUWM5ADjygzArvFbM+tZSBT622jV3fWGA5DL1FiV+eWXMvUs6MUlSnhefKThj728i0smhk0QjLKsDwd1x/QXu/GZJmeHnYOD0cRzmHNtEW2kEhOkan6BxdoBZi6AE9oif0HLwEb8F78DFqnQjGM+voRwWfX+XjrCs=</latexit><latexit sha1_base64="ah5Xjrl49n1GCOCwzOCp8I7zT48="></latexit>

100 � 500 µm
<latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss=">AAACPnicbVBLSzMxFM34tp+PqitxEyzCt9CSiKJLwY1LBatCZyiZTGqDeQzJHaEMg7/Grf4F/4Z/wJ24dWmmduHrQsjhnHtvTk6aK+mBkOdoYnJqemZ2br7xb2Fxabm5snrhbeG46HCrrLtKmRdKGtEBCUpc5U4wnSpxmd4c1/rlrXBeWnMOw1wkml0b2ZecQaB6zXVKyM4+ITjexrFmMHC6jHWBddVrtkibjAr/BnQMWmhcp72VaDHOLC+0MMAV875LSQ5JyRxIrkTViAsvcsZv2LXoBmiYFj4pR3+o8FZgMty3LhwDeMR+nSiZ9n6o09BZ2/Q/tZr8S+sW0D9MSmnyAoThnw/1C4XB4joQnEknOKhhAIw7GbxiPmCOcQixNbawH1gHvICRtzgNy3Nnb2UmuNWamawMXNWlSbitymqLVpUtWtUB0p9x/QYXu21K2vRsr3W0N45yDm2gTfQfUXSAjtAJOkUdxNEdukcP6DF6il6i1+jts3UiGs+soW8VvX8AYCysYw==</latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="ifc+uCwGzNBPm23W7HNaEivwHQ4=">AAACFXicbVC9TsMwGHT4LaWFdmaxqCoxVQkLjEgsjEWiP1IaVY7jtFb9E9lfKlVRXoCVV+Bp2BATb4ObdoCWkyyf7vzZ54szwS34/rd3cHh0fHJaO6ufN+rNi8tWY2h1bigbUC20GcfEMsEVGwAHwcaZYUTGgo3ixePaHy2ZsVyrF1hlLJJkpnjKKQEn9aetjt/zK+B9EmxJB20xbXvNSaJpLpkCKoi1YeBnEBXEAKeClfVJbllG6ILMWOioIpLZqKhylrjrlASn2rilAFfq74mCSGtXMnYnJYG53fXW4n9emEN6HxVcZTkwRTcPpbnAoPH60zjhhlEQK0cINdxlxXRODKHgqql3sZ1rAzSHKtskdpdnRi95wqiWkqikcFoZBpHbtUjWEbUoOkFZuv6C3bb2yfC2F/i94NlHNXSFrtENCtAdekBPqI8GiKIEvaI379378D43PR9428Lb6A+8rx9Ql6EF</latexit><latexit sha1_base64="7RaHlkQB5wVMzlxWA3Yt081F5Kc="></latexit><latexit sha1_base64="7RaHlkQB5wVMzlxWA3Yt081F5Kc=">AAACM3icbVDLThsxFL1DeTU8GrqrurEaIbGAyEZCZYnUTZcgNQEpM4o8HodY+DGy7yBFoxFfw5b+Qn+DH2CH+AU8SRYt9EiWj87xtY9PXmoVkNLHZOXD6tr6xubHztb2zu6n7t72MLjKCzkQTjt/lfMgtbJygAq1vCq95CbX8jK/+dH6l7fSB+XsL5yVMjP82qqJEhyjNO5+YZQenVBK0kOSGo5Tb+rUVMQ0426P9ukc5D1hS9KDJc7He8lOWjhRGWlRaB7CiNESs5p7VELLppNWQZZc3PBrOYrUciNDVs//0JD9qBRk4nxcFslc/Xui5iaEmcnjyTZmeOu14v+8UYWT06xWtqxQWrF4aFJpgo60hZBCeSlQzyLhwquYlYgp91xgrK2zT8LUeRQVzrOleby89O5WFVI4Y7gt6qg1I5bF3emijeh03WNNWyB7W9d7MjzuM9pnFxQ24St8gwNg8B3O4CecwwAE3ME9PMDv5E/ylDwvql5Jlp1/hn+QvLwC/JuqyA==</latexit><latexit sha1_base64="DnYUNMfeBDa+FT5UoyLdccmmFhA="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss="></latexit><latexit sha1_base64="YpVc2rsFPpHvBu06j4iOfYA1yss=">AAACPnicbVBLSzMxFM34tp+PqitxEyzCt9CSiKJLwY1LBatCZyiZTGqDeQzJHaEMg7/Grf4F/4Z/wJ24dWmmduHrQsjhnHtvTk6aK+mBkOdoYnJqemZ2br7xb2Fxabm5snrhbeG46HCrrLtKmRdKGtEBCUpc5U4wnSpxmd4c1/rlrXBeWnMOw1wkml0b2ZecQaB6zXVKyM4+ITjexrFmMHC6jHWBddVrtkibjAr/BnQMWmhcp72VaDHOLC+0MMAV875LSQ5JyRxIrkTViAsvcsZv2LXoBmiYFj4pR3+o8FZgMty3LhwDeMR+nSiZ9n6o09BZ2/Q/tZr8S+sW0D9MSmnyAoThnw/1C4XB4joQnEknOKhhAIw7GbxiPmCOcQixNbawH1gHvICRtzgNy3Nnb2UmuNWamawMXNWlSbitymqLVpUtWtUB0p9x/QYXu21K2vRsr3W0N45yDm2gTfQfUXSAjtAJOkUdxNEdukcP6DF6il6i1+jts3UiGs+soW8VvX8AYCysYw==</latexit>

1.3 nm
<latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="ifc+uCwGzNBPm23W7HNaEivwHQ4=">AAACFXicbVC9TsMwGHT4LaWFdmaxqCoxVQkLjEgsjEWiP1IaVY7jtFb9E9lfKlVRXoCVV+Bp2BATb4ObdoCWkyyf7vzZ54szwS34/rd3cHh0fHJaO6ufN+rNi8tWY2h1bigbUC20GcfEMsEVGwAHwcaZYUTGgo3ixePaHy2ZsVyrF1hlLJJkpnjKKQEn9aetjt/zK+B9EmxJB20xbXvNSaJpLpkCKoi1YeBnEBXEAKeClfVJbllG6ILMWOioIpLZqKhylrjrlASn2rilAFfq74mCSGtXMnYnJYG53fXW4n9emEN6HxVcZTkwRTcPpbnAoPH60zjhhlEQK0cINdxlxXRODKHgqql3sZ1rAzSHKtskdpdnRi95wqiWkqikcFoZBpHbtUjWEbUoOkFZuv6C3bb2yfC2F/i94NlHNXSFrtENCtAdekBPqI8GiKIEvaI379378D43PR9428Lb6A+8rx9Ql6EF</latexit><latexit sha1_base64="4DMbg8F2TtNcQcUJH2PFABIqobs=">AAACLHicbZDLSgMxGIX/8W69VbdugkVwIWWiC10KblwqWBU6Q8lkUhvMZUj+Ecswr+JWX8FHceVOfAwztQtvP4Qczsnl8GWFkh7j+DWamZ2bX1hcWm6trK6tb7Q3V6+8LR0XPW6VdTcZ80JJI3ooUYmbwgmmMyWus7vTJr++F85Lay5xXIhUs1sjh5IzDNagvUW7hyTZJ4lmOHK6MroetDtxN54M+SvoVHRgOueDzWgtyS0vtTDIFfO+T+MC04o5lFyJupWUXhSM37Fb0Q/SMC18Wk3K12Q3ODkZWheWQTJxv9+omPZ+rLNwsunof2eN+V/WL3F4nFbSFCUKw78+GpaKoCUNCZJLJziqcRCMOxm6Ej5ijnEMvFq7xI+sQ17ipFuShccLZ+9lLrjVmpm8Cl7dp2nYrcqbilZVHVo3AOlvXH/F1UGXxl16EcMSbMMO7AGFIziBMziHHnB4gEd4gufoJXqL3r9Qz0RT5lvwY6KPT/G/qNg=</latexit><latexit sha1_base64="4DMbg8F2TtNcQcUJH2PFABIqobs=">AAACLHicbZDLSgMxGIX/8W69VbdugkVwIWWiC10KblwqWBU6Q8lkUhvMZUj+Ecswr+JWX8FHceVOfAwztQtvP4Qczsnl8GWFkh7j+DWamZ2bX1hcWm6trK6tb7Q3V6+8LR0XPW6VdTcZ80JJI3ooUYmbwgmmMyWus7vTJr++F85Lay5xXIhUs1sjh5IzDNagvUW7hyTZJ4lmOHK6MroetDtxN54M+SvoVHRgOueDzWgtyS0vtTDIFfO+T+MC04o5lFyJupWUXhSM37Fb0Q/SMC18Wk3K12Q3ODkZWheWQTJxv9+omPZ+rLNwsunof2eN+V/WL3F4nFbSFCUKw78+GpaKoCUNCZJLJziqcRCMOxm6Ej5ijnEMvFq7xI+sQ17ipFuShccLZ+9lLrjVmpm8Cl7dp2nYrcqbilZVHVo3AOlvXH/F1UGXxl16EcMSbMMO7AGFIziBMziHHnB4gEd4gufoJXqL3r9Qz0RT5lvwY6KPT/G/qNg=</latexit><latexit sha1_base64="JDD3k5irXEe4w1ZD6SwtxPMQRWk="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U=">AAACN3icbVDLSgMxFM34rPVVdekmWAoupEy0oEvBjcsKVoXOUDKZ1AbzGJI7YhnmV9zqL/gprtyJW//ATO1CrQdCDufcmxxOkknhIAxfg7n5hcWl5dpKfXVtfWOzsbV95UxuGe8xI429SajjUmjeAwGS32SWU5VIfp3cnVX+9T23Thh9CeOMx4reajEUjIKXBo1t0j7C0QGOFIWRVYVW5aDRDNvhBHiWkClpoim6g61gPUoNyxXXwCR1rk/CDOKCWhBM8rIe5Y5nlN3RW973VFPFXVxMwpe45ZUUD431RwOeqD83CqqcG6vET1YZ3V+vEv/z+jkMT+JC6CwHrtn3R8NcYjC4agKnwnIGcuwJZVb4rJiNqKUMfF/1FnYjY4HlMMkWJf7xzJp7kXJmlKI6LbxW9knsbyPTKqKRRZOUVYHkb12z5OqwTcI2ueg0TzvTKmtoF+2hfUTQMTpF56iLeoihB/SIntBz8BK8Be/Bx/foXDDd2UG/EHx+AUD1qmw=</latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit><latexit sha1_base64="AY1ZRERG7GcgNzn+4FHsUpFM99U="></latexit>

67 nm
<latexit sha1_base64="Pu1kwJ3sRCH4gNI0cBR/C2DdoDM="></latexit><latexit sha1_base64="Pu1kwJ3sRCH4gNI0cBR/C2DdoDM="></latexit><latexit sha1_base64="Pu1kwJ3sRCH4gNI0cBR/C2DdoDM=">AAACNnicbVDLSgMxFM3Ud321unQTLIILKTMi1qXgxmUF+4DOUDKZ1AbzGJI7lTLMp7jVX/BX3LgTt36CmbYLXwdCDufcmxxOnApuwfdfvcrS8srq2vpGdXNre2e3Vt/rWp0ZyjpUC236MbFMcMU6wEGwfmoYkbFgvfj+qvR7E2Ys1+oWpimLJLlTfMQpAScNa/XzFg5PcCgJjI3MlSyGtYbf9GfAf0mwIA20QHtY97bDRNNMMgVUEGsHgZ9ClBMDnApWVMPMspTQe3LHBo4qIpmN8ln2Ah85JcEjbdxRgGfq942cSGunMnaTZUb72yvF/7xBBqOLKOcqzYApOv9olAkMGpdF4IQbRkFMHSHUcJcV0zExhIKrq3qE7VgboBnMsoWxezw1esITRrWURCW504pBELlbi6SMqEXeCIqywOB3XX9J97QZ+M3g5qxx6S+qXEcH6BAdowC10CW6Rm3UQRQ9oEf0hJ69F+/Ne/c+5qMVb7Gzj37A+/wC1w6qOQ==</latexit><latexit sha1_base64="Pu1kwJ3sRCH4gNI0cBR/C2DdoDM="></latexit>

Fibrils
<latexit sha1_base64="ZkdXo4ZIBEhNPEPB0F2n37I0T8M="></latexit><latexit sha1_base64="ZkdXo4ZIBEhNPEPB0F2n37I0T8M="></latexit><latexit sha1_base64="ZkdXo4ZIBEhNPEPB0F2n37I0T8M="></latexit><latexit sha1_base64="ZkdXo4ZIBEhNPEPB0F2n37I0T8M="></latexit>

Proteoglycans
<latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="ifc+uCwGzNBPm23W7HNaEivwHQ4=">AAACFXicbVC9TsMwGHT4LaWFdmaxqCoxVQkLjEgsjEWiP1IaVY7jtFb9E9lfKlVRXoCVV+Bp2BATb4ObdoCWkyyf7vzZ54szwS34/rd3cHh0fHJaO6ufN+rNi8tWY2h1bigbUC20GcfEMsEVGwAHwcaZYUTGgo3ixePaHy2ZsVyrF1hlLJJkpnjKKQEn9aetjt/zK+B9EmxJB20xbXvNSaJpLpkCKoi1YeBnEBXEAKeClfVJbllG6ILMWOioIpLZqKhylrjrlASn2rilAFfq74mCSGtXMnYnJYG53fXW4n9emEN6HxVcZTkwRTcPpbnAoPH60zjhhlEQK0cINdxlxXRODKHgqql3sZ1rAzSHKtskdpdnRi95wqiWkqikcFoZBpHbtUjWEbUoOkFZuv6C3bb2yfC2F/i94NlHNXSFrtENCtAdekBPqI8GiKIEvaI379378D43PR9428Lb6A+8rx9Ql6EF</latexit><latexit sha1_base64="xr40PFgDIyGqY3r3S9phCEAG7hA="></latexit><latexit sha1_base64="xr40PFgDIyGqY3r3S9phCEAG7hA="></latexit><latexit sha1_base64="HHRFSaUpZaYFWgiioKYx2LWqP+Y="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus=">AAACOXicbVDLSgMxFM34tr7qY+cmWARXZUYKuhTcuKxgVWiHksnctsE8huSOWIf5F7f6C36JS3fi1h8wU7vwdSDkcM69yeEkmRQOw/AlmJmdm19YXFqurayurW/UN7cunckthw430tjrhDmQQkMHBUq4ziwwlUi4Sm5OK//qFqwTRl/gOINYsaEWA8EZeqlf3+kh3GHRtgbBDOWYM+3Kfr0RNsMJ6F8STUmDTNHubwZrvdTwXIFGLplz3SjMMC6YRcEllLVe7iBj/IYNoeupZgpcXEzil3TfKykdGOuPRjpRv28UTDk3VomfVAxH7rdXif953RwHx3EhdJYjaP710SCXFA2tuqCpsMBRjj1h3AqflfIRs4yjb6y2T93IWOQ5TrL1Ev94Zs2tSIEbpZhOC6+V3Sj2t5FpFdHIohGVVYHR77r+ksvDZhQ2o/NW46Q1rXKJ7JI9ckAickROyBlpkw7h5J48kEfyFDwHr8Fb8P41OhNMd7bJDwQfn/gnrPE=</latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit><latexit sha1_base64="sGb/gGLO1bd5yoFoSWK0QZeYcus="></latexit>
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Figure 2.1: Hierarchical structure of fibres (Fratzl, 2008)

In humans, 28 types of proteins have been identified as collagen so far (Kadler et al.,

2007; Myllyharju and Kivirikko, 2004). Collagen can be grouped into subfamilies based on

their molecular compositions. Type I collagen is the most common collagen found in skin,

tendon, bone and cornea. Type II has a more specific tissue distribution, which is mostly

limited to cartilage. Type III is mostly present in relatively elastic tissues such as embryonic

skin and lung. The other types of collagen are less abundant and they have specific roles

in the structure of tissues, which have been discussed in Born and Richardson (1990) and

Mendler et al. (1989).

2.2 Mechanical Testing of Biological Tissues

In mechanical modelling, we first need to make some assumptions regarding the general

behaviour of the material, which consists in the statement of constitutive relations. The

second step is to obtain the material parameters featuring in the constitutive equations

through appropriate mechanical tests. Mechanical testing of biological tissues is particularly

challenging, given the large variety of parameters needed to be taken into account. The

difficulties in the testing of biological tissues can be attributed to many factors, including the

small size of the specimens, the compositional inhomogeneity, the damage caused by clamping

of the specimen (Sasaki et al., 1999). In addition to these common problems, there are also
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difficulties in identifying the material axes and variability of mechanical characteristics among

specimens, which will make the analysis of the experimental results more complex.

The typical non-linear stress-strain curve for soft tissues has a J-shape with a toe region

(collagen fibres not yet recruited), an elbow region (collagen fibres being recruited) and a

linear region (collagen fibres all recruited) and is obtained from uniaxial testing, as reported

by numerous studies (Roeder et al., 2002; Tower et al., 2002; Fung, 1993; Hansen et al.,

2002). Considering the anisotropic nature of biological tissues, biaxial testing is a better

tool for studying their characteristics. However, in biaxial testing, extreme care needs to be

taken to produce reliable results. For instance, the specimen should be clamped in a such

a way that the edges can expand freely in the lateral direction under the “Poisson effect”

caused by the stretch in the orthogonal direction (this is usually achieved by using multiple

hooks rather than clamps). The region from which the displacement data is collected should

be small compared to the size of the specimen and it should be located away from the outer

edges, in order to minimise border effects. Moreover, the strain should be measured optically

to avoid any mechanical interference (Sasaki et al., 1999).

Lanir (1983) and Fung (1987) were among the first researchers who carried out biaxial

tests on biological tissues. In order to measure the strain without interference, they marked

the specimens by evenly spaced pairs of lines along both axes, and measured the distance

between the strips in both directions, using a video dimensional analyser (VDA). Their

experimental results from their tests showed high non-linearity and anisotropy of the skin

tissue. Later on, Fung and Liu (1989) developed the celebrated constitutive models, known

as Fung-type, which will be discussed in Section 2.3.

Variability in the material parameters is another concern, which requires close attention.

The sources of variability can be associated with inevitable experimental noise, numerical

instability of the fitting algorithms due to the non-linearity and the strain-history-dependent

nature of the tissues (Hoffman and Grigg, 1984). In order to address these issues, Yin et al.
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(1987) introduced a statistical-based approach to examine the sources of variability and to

eventually incorporate their effects in the material parameters. They performed residual

analysis on experimental data obtained by Chew et al. (1986) and concluded that the strain-

history dependent nature of the tissue shadowed other sources of variability, which makes it

difficult to obtain the direction of anisotropy.

Identifying the axes of material symmetry is crucial in biaxial testing. In biological tis-

sues, the axes of material symmetry can be identified by observation of the macroscopic fibre

orientation. However, if the fibres are too small, other approaches need to be followed. Choi

and Vito (1990) developed a practical technique in which a circular specimen is stretched

radially. They performed a constant-tension biaxial stretching, and marked the specimen

along each direction of loading, with a pair points being equally apart from the centre. Then,

they released the specimen from tension and the pairs of points on the tissue formed an el-

lipse, whose major and minor axes are the material symmetry axes. It is noteworthy that,

in this approach, the micro-structure of the material is not of concern and the method can

be applied to any material with an unknown substructure.

Biaxial testing is evidently more insightful than uniaxial testing. However, it has some

limitations. In planar biaxial tests, the thickness of specimen should be small, and therefore

the results from planar biaxial tests are insufficient to produce fully three-dimensional mod-

els, an obvious fact that is overlooked in some studies (Sun and Leong, 2003). To address this

mistake, Holzapfel and Ogden (2007) pointed out that it is theoretically impossible to deter-

mine the material properties of a three-dimensional anisotropic material from biaxial tests,

unless some assumption is made to provide more information regarding the behaviour of

material. The membrane model cannot capture the complex features of a three-dimensional

body such as the variation of radial stress through the thickness and torsional deformation.

Another issue is the location-dependence of the material properties (Novak et al., 1994),

which is pronounced in cardiac tissue and is reported by numerous studies (Novak et al.,
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1994; Sacks and Chuong, 1993; Yin et al., 1987). Anisotropy is observed in all regions of

the heart. However, the orientation of the fibres and the degree of anisotropy within the

cardiac tissue vary significantly (Demer and Yin, 1983). It should be noted that torsion,

shear and radial stress can be studied through different testing methods, such as triaxial

shear test (Dokos et al., 2000) or simultaneous extension, torsion and inflation (Humphrey

et al., 1993).

It is worth to note that, from the experimental point of view, a constitutive model

which requires a smaller number of parameters (such as that by Humphrey and Yin (1987),

with only 4 parameters) might be more practical as it limits errors in experimental testing.

This will be discussed further in Section 2.3. We should note that there are physical and

mathematical constraints associated with each and every model; these should be addressed

accordingly in order to produce a sound constitutive model.

2.3 Anisotropic, Fibre-Reinforced Models

In this section, we outline some of the significant works on modelling of soft biological

tissues. as noted, biological tissues are of great complexity both in ultra structure and

micro structure levels. In past, histology of biological tissues was not known as of today,

hence, the modelling of biological tissues relied towards phenomenological description of

material behaviour. Having said that, the postulated constitutive models were valid only

under specific conditions. In general, even with the presence of considerable knowledge

on histology of biological tissues, the construction of universal model that can predict the

behaviour of tissues, is not viable. Moreover, the existence of water in porous structure of

extra cellular matrix, results in internal flow of water through the pores, which affects the

behaviour of the tissue significantly. Taking into account that our knowledge on material

properties of biological tissues is limited, a constitutive model that requires several material

constants is not desirable. Thus, rather than using a full mixture theory, the models are
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formed within contexts of nonlinear elasticity (Federico and Herzog, 2008), viscoelasticity

(Best et al., 1994; Bischoff et al., 2004) or poroelasticity (Federico and Grillo, 2012).

Perhaps Fung was the first to employ finite elasticity in modelling of soft biological tis-

sues. Fung (1967), introduced a one-dimensional model based on experimental data on axial

tension of thin collagenous membrane in the abdomen. The data admits a linear relationship

between stress and stretch. In addition, despite of exhibiting creep, the behaviour of mem-

brane is not affected by strain rate. Fung (1967, 1968) introduced the first Piola-Kirchhoff

stress as
dT̂
dλ (λ) = c1 + c2 T̂ (λ), (2.1)

in which c1 and c2 are material parameters, and λ is the stretch. The corresponding equation

(2.1) is a simple ordinary differential equation, which suggests an exponential stress-stretch

relationship. Later on, Fung expanded his model for 3D case, using strain energy function:

Ŵ (E) = c1(exp(Q(E))− 1) = c1(exp(1
2E : Q : E)− 1) (2.2a)

S = ∂Ŵ

∂E
(E) = c1 exp(Q(E))Q : E (2.2b)

In which E is Green strain tensor and Q is a quadratic form in E with fourth-order tensor Q.

Later on Fung (1990); Fung et al. (1993) introduced the incompressible version of his model,

imposing the constraint J = 1 describing isochoric (volume-preserving) motion. It should be

noted that other scholars attempted to generalise Fung’s model to three dimensional prob-

lems, such as Goudreau and Taylor (1972); Demiray (1972), using strain energy exponential

functions of strain invariants. It is worth mentioning that a similar approach was taken by

Hayashi et al. (1985), who used a logarithmic strain energy function, and considered the

uniform strain hypothesis, i.e.„ the arterial wall has a constant circumferential strain over

the cross section. These generalised Fung-type potentials are described by Federico et al.

(2008).

As mentioned before, a significant portion of tissue mechanics is dedicated to the study

of cardiovascular tissues. Several constitutive models have been specifically tailored for
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arterial tissue. Since the histology of arterial wall is layer-dependent, structural models are

good candidates for modelling. Contrary to phenomenological models, structural models

consider information from underlying histology. Wuyts et al. (1995) introduced a structural

model of blood vessels, considering mechanically important constituents, including collagen,

elastin and smooth muscle. The model had four material constants, namely, the Young’s

modulus of a collagen fibre, the Young’s modulus of combined smooth muscle and elastin

network, a parameter accounting for strain in the high stiffness region, and an indicator for

the degree of collagen fibre stretching. This model adopted the Lorentz distribution function

to account for variability of engagement stretch of collagen fibres, and was one of the first

approaches to incorporate the collagen crimping. The model assumed that fibres were linearly

elastic. Holzapfel et al. (1996) introduced a decoupled hyperelastic model, which accounted

for isotropic contribution using an isotropic part representing the non-collagenous matrix,

and an anisotropic part

Ŵ (C) = Ŵiso(C) + Ŵaniso(C), (2.3)

representing the contribution of the collagen fibres. As discussed before, the behaviour of

arteries is characterised by the mechanical properties of individual layers. Numerous studies

(e.g. see Demiray and Vito, 1976; von Maltzahn et al., 1981) restricted the study to two

layers, media and adventitia, since the intima is often regarded as structurally irrelevant.

Each layer is characterised as an isotropic, homogeneous material.

In structural models, the fibres are assumed to be embedded in an isotropic matrix, which

is considered to be elastin. These models are transversely isotropic, with the incompressibility

constraint. Holzapfel et al. (2000) extended his previous work to account for different fibre

orientations and postulated the existence of an elastic potential written as a function of the

Green-Lagrange strain E and N structure tensors Aα = Mα ⊗Mα, each describing the

direction of one family of fibres. Then for the numerical part, they considered only two

14



families of fibres, which induces 8 invariants, as reported by Spencer (1984):

I1(C) = Tr(C), (2.4a)

I2(C) = 1
2 [Tr(C)2 − Tr(C2)], (2.4b)

I3(C) = det(C), (2.4c)

I4(C) = C : A1, I5(C) = C2 : A1, (2.4d)

I6(C) = C : A2, I7(C) = C2 : A2, (2.4e)

I8(C) = C : (A1.A2). (2.4f)

The number of required invariants goes down from 8 to 7 for the case of incompressible

materials (det(C) = 1). However, Holzapfel et al. (2000) used only I4 and I6, which measure

the stretch in the direction of the two fibre families, and assumed an anisotropic potential

in the form

Ŵaniso(I4, I6) = c1

2c2

∑
i=4,6

[
exp[c2(Ii − 1)2]− 1

]
. (2.5)

The structural models developed by Holzapfel et al. (2000) and Zulliger et al. (2004)

neglect the effect of dispersion of collagen fibres. Therefore, as argued by Gasser et al.

(2006), in case of deformations orthogonal to the plane containing the directions of the

fibres, there will be no contribution from embedded collagens, which can result in large

errors in numerical models. This can explain the reason behind the poor performance of

the aforementioned models for stiffening of the adventitial strips, while they work well for

uniaxial stretching of the media, based on the fact that media has a small dispersion of

fibres (Canham et al., 1989). This can justify the need for developing models with statistical

distribution, which have the ability to incorporate the dispersion of fibres.

2.4 Soft Tissues with Statistical Fibre Orientation

We can think of a biological tissue as a composite material comprised of two constituents,

namely, matrix and the fibres. The simplest way of studying composite material is to employ
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superposition (Federico and Herzog, 2008; Federico, 2015a). Herein, the value of any arbitrary

quantityW relative to the whole composite is obtained using some weighted-average function

of the values of the same physical quantity for each individual constituent. The weight

function of each constituent is considered as its volumetric fraction. In this framework, all

constituents are assumed to attain the same motion, denoted as χ. In case of fibrous tissues,

the change in the orientation of fibres is characterised by the same deformation gradient F .

The volume fraction of constituent α, denoted by φα is an absolutely positive measure, from

which the portion of current configuration Vα can be obtained from Equation (2.6):∫
χ(B,·)

φα =
∫
B
J φα =

∫
B

Φα = Vα, (2.6)

where Φα = J φα. We can adopt mass density ρ as the measure function as well. In both

material and spatial picture, the volumetric fractions should admit (2.7).
N∑
α=1

φα = 1,
N∑
α=1

Φα = 1. (2.7)

Now similarly to what Holzapfel et al. (2000) did for the case of two families, the elastic

potential for a tissue with several fibre families, each characterised by referential orientation

Mα ∈ S2B and Aα = Mα ⊗Mα can be introduced as (Federico and Herzog (2008))

W = Ŵ (C,A1, . . . ,An) = Φ0Ŵ0(C) +
N∑
α=1

ΦαŴα(C,Aα), (2.8)

where Ŵ0 represents the potential for isotropic matrix and Ŵα represents constitutive func-

tion for the α-th fibre family oriented in direction Mα.

If the fibres have statistical orientation, we can adopt a probability distribution

Ψ : S2B → R+
0 : M 7→ Ψ(M), (2.9)

defined over the material unit sphere S2B = {M ∈ TB : ‖M‖ = 1}, assigning the probability

to find a fibre with orientationM , at a point in the body. It should be noted that Ψ should

be normalised over the sphere and should be invariant with respect to reflection of M , i.e.,∫
S2B

Ψ(M ) = 1, Ψ(−M ) = Ψ(M). (2.10)
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If all fibres have the same properties, so that only one constitutive function Ŵ1 is necessary,

the summation over α in Equation (2.8), changes to an integral over the material unit

sphere and the constitutive equation for statistically oriented fibre can be given as Federico

and Herzog (2008)

W = Ŵ (C) = Φ0Ŵ0(C) + Φ1

∫
S2B

Ψ(M ) Ŵ1(C,A), (2.11)

where

We = Ŵe(C) =
∫
S2B

Ψ(M ) Ŵ1(C,A), (2.12)

is called the ensemble potential of the fibre family.

An alternative method to account for fibre dispersion was proposed by Gasser et al.

(2006), who took the average of the structure tensor A, rather than of the fibre potential

Ŵ1. Therefore, their potential is, in our notation (and employing volumetric fractions),

W = Ŵ (C) = Φ0 Ŵ0(C) + Φ1Ŵ1(C,H), (2.13)

where

H =
∫
S2B

Ψ(M)A (2.14)

is the average of the material structure tensor A. Federico and Herzog (2008) proved that

their method reduces to that by Gasser et al. (2006) when the fibres have a dominant

direction with weak dispersion, or for fibre potentials Ŵ1 that are affine in A.

2.5 Continuum Damage Mechanics

Continuum Damage Mechanics is the branch of general continuum theories that studies

failure and damage of materials. The occurrence of damage in a body can be observed

at different scales. Hence, it can be treated in different manners. In Damage Mechanics,

the focus is placed on the development and progression of damage at the mesoscopic and

macroscopic scales (Murakami, 2012). In this context, the deterioration of the material is
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treated as an internal variable, the damage parameter D ∈ [0, 1]. When D = 0, the body is

intact, whereas, when D = 1, the body is fully ruptured.

The mechanical description of damage is important in the construction of constitutive

damage models. At the mesoscale, damage can be associated with the number of broken

bonds or the plastic enlargement of microcavities. The damage parameter can be defined

with the aid of a representative volume element (RVE) at an arbitrary point x, and a

plane passing by x, with normal (co)vector n Lemaitre and Chaboche (1975) (Figure 2.2).

The intersection of the RVE and the plane is a surface with area δS, which will contain

damaged portions (voids) and undamaged portions. The area of the damaged portions of δS

is denoted δSD. Note that δSD depends on the direction of n. The damage parameter Dn

can be introduced as δSD

δS
for an arbitrary n. Then, the actual damage parameter D can be

introduced as the maximum of Dn for every n. One of the fundamental concepts in damage

Figure 2.2: RVE model (Lemaitre and Chaboche, 1975)

mechanics is the notion of effective stress, denoted by σ̃, and introduced by Kachanov (1986).

With reference to Figure 2.2, the damaged area δSD in the RVE cannot take any load, hence

the effective area in the RVE, denoted by δS̃ is given by

δS̃ = δS − δSD (2.15a)

δS̃ = (1−D)δS (2.15b)
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With the aid of Equation (2.15b), the effective stress is introduced as the field

σ̃ = σ

1−D (2.16)

such that

δF =
∫
δS̃

σ

1−D dS =
∫
δS̃
σ̃ dS (2.17)

in which δF is the force acting on the surface. It is obvious that σ̃ is always greater than σ,

as it is magnified by the factor 1/(1−D).

As stated above, in the early development of damage continuum mechanics, damage was

described as a single variable that was postulated to obtain the effective stress. However, as it

has been discussed in numerous studies (e.g., Ju, 1989; Rabier, 1989; Cauvin and Testa, 1999),

even for isotropic damage, one damage variable is not sufficient to elucidate the microscopic

mechanisms of damage development. Moreover, as it is clear from the notion of damage,

whatever the form of the damage variable D, it should be invariant for reflections of n, i.e.,

D(n) = D(−n). Murakami (1988) studied the anisotropic damage for a three-dimensional

damaged body, considering a symmetric damage tensor, denoted by d and showed that the

effective stress in this case is given (in our notation) by

σ̃ = g−1 (g−1 − d)−1σ. (2.18)

Equation(2.18) shows that the effective stress tensor is not symmetric (except in the very

special case in which g−1 − d and σ are coaxial), which is inconvenient for the formulation

of constitutive equations. Several methods have been proposed to symmetrise σ̃, by Betten

(987b).

One of the fundamental bricks of Continuum Damage Mechanics is the hypothesis of

strain equivalence, postulating that the inelastic constitutive equation of a damaged body

can be replaced by and equivalent constitutive equation for an undamaged body by replacing

the stress tensor by the effective stress tensor. Using this hypothesis, we obtain an equivalent

undamaged body, having the same strain at each point, but different stress. In figure 2.3,
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D = 0D

σ, ε,D,α σ̃, ε,α,D = 0ε = W0(σ,α)
ε = W (σ,D,α) = W0(σ̃,α)

Figure 2.3: Hypothesis of strain equivalence

ε is the infinitesimal strain and α, is the collection of other internal variables (hardening,

etc). The elastic potential Ŵ0 describes the undamaged configuration. If we replace σ by

the effective stress σ̃, then we have the constitutive relation for the damaged body. It should

be noted the damaged constitutive relation is entirely dependent on the choice of damage

parameter D. For instance, if we consider linear elastic deformations, we can obtain the

strain from Equation (2.19), as

ε = S0 : σ̃, (2.19a)

ε = S(D) : σ, (2.19b)

S(D) = S0 : M(D), (2.19c)

where S0 and S(D) are the (fourth-order) elastic compliance tensors for undamaged and

damaged body, respectively, and M(D) is the fourth-order damage tensor.

The notion of strain equivalence can be represented in energetic terms, yielding the

hypothesis of energy equivalence (Cordebois and Sidoroff, 1982). In this approach, there is

no concern for the symmetrisation of the damage-dependent tensors, as all tensors obtained

in the theory are inherently symmetric:

Ŵ0(ε) = 1
2ε : C0 : ε, (2.20a)

Ŵ (ε,D) = 1
2ε : C(D) : ε, (2.20b)

σ = ∂Ŵ0

∂ε
= C0 : ε, (2.20c)

σ̃ = ∂Ŵ

∂ε
= C(D) : ε. (2.20d)
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In Equations (2.20), C0 and C(D) are the elasticity tensors, Ŵ0 and Ŵ are the elastic

potentials.

Damage and plastic deformation of a continuum body is substantially related to thermo-

dynamic evolution of material. Kestin and Rice (1969) introduced the principle of local state

which has been extensively adopted in continuum thermodynamical models. This hypoth-

esis postulates that the thermodynamic state of a material element in a continuum can be

completely characterised by a set a of state variables, regardless of whether the system is in

equilibrium or not. Generally speaking, inelastic deformations are mainly associated with ir-

reversible internal changes which can be represented in terms of change in internal variables.

The rules for the change of internal variable are examined in the context of thermodynamical

potential functions and the Clausius-Duhem inequality. Early studies on classical plastic-

ity and damage are mostly done in the framework of small deformation, in which the total

strain tensor is given as the sum of elastic and plastic strain(Gurson, 1977; Chaboche, 1986;

Murakami et al., 1998), i.e., ε = εe + εp.

The Helmholtz free energy per unit mass is considered as a function of the total strain

(ε), the temperature (θ), the elastic strain (εe) and a set of N internal variables collected in

the “vector” {Vk}Nk=1, i.e.,

ψ = ψ(ε, θ, εe,Vk), {Vk; k = 1, 2, ..., n}. (2.21)

The time derivative of ψ can is

ψ̇ = ∂ψ

∂εe
: ε̇e + ∂ψ

∂θ
θ̇ + ∂ψ

∂Vk
V̇k. (2.22)

The Clausius-Duhem inequality should valid both for elastic and plastic conditions, which

leads to

σ = ρ
∂ψ

∂εe
, s = −ρ∂ψ

∂θ
(2.23a)

σ : ε̇p +AkV̇k + 1
θ
〈h|q〉 ≥ 0, (2.23b)
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where

Ak = −ρ ∂ψ
∂Vk

, h = −grad θ. (2.24)

Now we can represent the Clausius-Duhem inequality (2.23b) in terms of the product of a

generalised force vector X and a generalised flux vector J , i.e.,

X = {σ,Ak,h/θ}, (2.25a)

J = {ε̇p, V̇k, q}, (2.25b)

〈X |J 〉 ≥ 0. (2.25c)

In order to complete the damage model, we need to construct a scalar dissipation function

describing the evolution of J (Rice, 1971; Lemaitre and Chaboche, 1975):

Wd = Ŵd(X ;Vk, θ), (2.26a)

ε̇p = ξ̇
∂Ŵd

∂σ
, V̇k = ξ̇

∂Ŵd

∂Ak
, q = ξ̇

∂Ŵd

∂(h/θ) . (2.26b)

In Equation (2.26), ξ̇ is conceptually similar to the plasticity multiplier (Lubliner, 1986).

We also note that Ŵd is a non-negative convex function of X and that, for X = 0, the

dissipation function equals zero.

It is important to remark that, for large deformation plasticity, the deformation must

be treated in terms of the deformation gradient and its multiplicative decomposition, rather

than in terms of the infinitesimal strain and its additive decomposition. A possible treatment

is in terms of the “physical metric”, intended as the spatial metric g, and its pull-back, the

right Cauchy-Green deformation C (Miehe, 1988; Valanis, 1995; Sim et al., 2007).

Constitutive models of damage in soft biological tissues are in principle similar to the

damage models that have been introduced for engineering materials. However, the pro-

nounced anisotropy and large deformations lead to quite more complex models. In general,

damage models for soft biological tissues are obtained by introducing a choice of damage

parameter which is adjusted to fit the available experimental data.
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2.6 Damage Mechanics of Soft Biological Tissues

Constitutive models of damage in soft biological tissues are in principle similar to the dam-

age models that have been introduced for engineering materials. However, the pronounced

anisotropy and large deformations lead to quite more complex models. In general, damage

models for soft biological tissues are obtained by introducing a choice of damage parameter

which is adjusted to fit the available experimental data.

The damage aspects of soft tissues can be attributed to different phenomena, such as

relaxation (Davis and De Vita, 2012), fatigue (Schwartz et al., 2007), creep (Sasaki et al.,

1999), viscoelasticity (Decraemer et al., 1980; Weiss et al., 2002; Peña et al., 2008), etc.

Hence, the approaches taken by the scholars in modelling the damage vary based on their

initial assumptions. Damage models have been developed for various types of biological

tissues, such as tendons and ligaments (Hurschler et al., 1997; Arnoux et al., 2002; Sverdlik

and Lanir, 2002; Natali et al., 2005a; Peña et al., 2008), arteries (Balzani et al., 2006;

Hokanson and Yazdani, 1997; Alastrué et al., 2007), arteries undergoing arterial clamping

(Gasser and Holzapfel, 2007; Calvo et al., 2007). Similarly to the elastic models, the damage

models can be either phenomenological (e.g., Hokanson and Yazdani, 1997; Peña et al., 2008;

Calvo et al., 2007) or structural (e.g., Hurschler et al., 1997; Rodríguez et al., 2006; Alastrué

et al., 2007; Rodriguez et al., 2008). In both phenomenological and structural models, the

damage can be considered either for both the matrix and the fibres (e.g., Rodríguez et al.,

2006; Alastrué et al., 2007; Peña et al., 2008) or for the fibres only (e.g., Hurschler et al.,

1997; Hokanson and Yazdani, 1997; Balzani et al., 2006; Gasser, 2011).

A well-known approach in structural modelling of the fibre damage is using the statistical

distribution of fibre length to account for various states of crimp among the fibres. This

pioneering idea was first introduced by Lanir (1983) for the recruitment of fibres. Hurschler

et al. (1997) followed an approach similar to that proposed by Lanir (1983) for the description

of fibril recruitment and then based their structural damage model on excluding the fibres

23



that have an effective stretch greater than a certain failure stretch. They adopted a linear

constitutive law for the single fibril and a Wei bull probability density function (PDF) for

the distribution of the straightening stretch of the fibrils in the tissue. They calibrated their

model to the experiments conducted on the healing rat medial collateral ligament. Following

a similar approach, Liao and Belkoff (1999) introduced a failure model for ligaments, using

a Gaussian PDF. Their model had less parameters compared to the model developed by

Hurschler et al. (1997).

This idea has been employed in more recent studies by Natali et al. (2005b,a); Rodríguez

et al. (2006) with appropriate modifications to account for other aspects of the mechanical

behaviour of the tissues in which they were interested. Natali et al. (2005b) introduced

an elasto-damage constitutive model for the response of the periodontal ligament, which

accounted for anisotropy and large strains of the fibres. The model consisted of three parts,

namely the isotropic contribution of the matrix, the anisotropic contribution of the collagen

fibres and the interaction between two constituents, which was described as a function of

four invariants. The interaction part of the model was ignored in the numerical modelling as

it was demanding extra parameters that could not be obtained with simple testing methods.

The damage factor for the fibres was considered as the ratio of the number of damaged fibre

to the total number of fibres. Natali et al. (2005a) adopted a Gaussian distribution to account

for the distribution of fibre waviness and also extended their model to the anisotropic case.

They studied the mechanical behaviour of healthy tendons under physiological loading. In

this model the damage is only considered for the fibres.

Rodríguez et al. (2006), Alastrué et al. (2007) and Rodriguez et al. (2008) employed the

worm-chain model, previously introduced by Kratky and Porod (1949). Rodríguez et al.

(2006) developed a three-dimensional finite strain damage model, assuming the damage is

characterised by the maximum value previously attained by the strain energy of the undam-

aged material. The energy for the bundle of fibres was introduced as the integration over the
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energy of single fibres, and the model was implemented into a Finite Element (FE) package

to study the case of torsion-extension. Alastrué et al. (2007) compared a stochastic damage

model and a phenomenological continuum model, through Finite Element modelling and

concluded that they predict a similar behaviour.

Martufi and Gasser (2011) considered a triangular distribution for the recruitment of

fibrils, and a constitutive model for the single fibril that was linear in the logarithmic strain.

Their integration was based on the stiffness of the fibrils, which we will discuss in detail.

Rausch and Humphrey (2016) used a Weibull distribution energy function similar to that

used by Hurschler et al. (1997) to model early venous thrombus. In their model, the fibres

are neo-Hookean elastic. The scale parameter of the distribution is used to capture the

Mullins-type damage phenomenon. The common ground among all these models is the

representation of the crimped state of the fibrils as a distribution function and the stress

or the energy as an integral that sums up the stress or the energy for the whole fibre. The

models by Hurschler et al. (1997) and Martufi and Gasser (2011) constitute the starting

point for our theory of recruitment and damage developed in Chapters 3, 4 and 5.

2.7 Growth and Remodelling in Biological Tissues

It is well known that biological beings undergo growth and remodelling through the course of

their lives constantly (Cowin and Hegedus, 1976; Rodriguez et al., 1993). The fundamental

problem is to find the driving force for these two interconnected phenomena. This problem

can be tackled from different viewpoints. One could postulate that living organisms try to

optimise their structure to adapt to their environment, which sounds reasonable from the

standpoint of evolutionary biology. Whether we embrace or dismiss this view, we should

acknowledge that this postulate does not automatically provide a mathematical framework

for studying growth and remodelling, that these phenomena are very complicated, both at

microscopic and macroscopic levels, and that the governing laws of growth and remodelling
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vary amongst different species, such as between plants and animals (Huxley et al., 1932).

Constitutive models describing growth and remodelling have been formulated for a variety of

biological tissues and physiological conditions, e.g., heart muscle (Taber, 1998c,b,a), fusiform

aneurysms (Baek et al., 2006), embryonic cells (Brodland, 2002), effect of topology and

physical properties of environment on cell growth (Cavalcanti-Adam et al., 2007; Rumpler

et al., 2008), plants (Cosgrove, 1985, 1986).

One of the earliest attempt to model biological growth has been made by Hsu (1968).

They considered the general mass balance law, including both mass source (volumetric

growth) and mass flux. They considered a case of homogenous growth, in which the strength

and the orientation of the newly added mass are the same at every point. This condition can

be achieved if, and only if, the stresses and body forces are uniform throughout the body.

They pictured growth as a very slow process, meaning that inertia effects of the growth or

resorption were ignored. At the constitutive level, they assumed that the material grows

isotropically with a fading memory (in the sense of Coleman and Noll, 1961) and that its

unconstrained growth properties are independent of the stress history. In this framework,

the rate of mass density can be conjugated with the stress or it can be constant. Generally

speaking, this framework ignores the role of configurational forces in the growth process.

Among the first attempts to approach the problem of growth and remodelling from the

continuum mechanical perspective are the seminal works by Cowin and Hegedus (1976) and

Hegedus and Cowin (1976), which were devised to study the bone remodelling. This theory,

which was called adaptive elasticity, considers bone as a mixture of three basic components:

bone cells, extracellular fluid and solid extracellular material. Cowin and Hegedus (1976)

considered bone remodelling as the change in the porosity of the bone matrix, and postulated

it to be driven by the long-term strain history (i.e., that the rate of these changes is very

small). It should be noted that, in the paper by Cowin and Hegedus (1976), the balance of

mass is postulated for the porous matrix. That being said, the incoming mass is essentially
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filling the voids in the matrix. The other important consideration in the study by Cowin

and Hegedus (1976) is to consider a different entropy parameter for the perfusant and the

chemical reaction between the perfusant and the matrix structure.

Skalak (1981) and Skalak et al. (1982, 1997) studied surface growth in the framework

of Continuum Mechanics. In their studies, two notions of growth are introduced. The first

kind represents the topological changes due to the rearrangement of the existing mass. The

second kind consists in the formation of new tissue that constitutes a new region. Skalak

et al. (1997) offered a general description of surface growth in terms of convected curvilinear

material coordinates. Using this framework, they modelled different cases of growth of horns

in animals. The significance of this group’s seminal studies compared to previous ones is

that the surface growth velocity is not necessarily orthogonal to the current growth surface.

However, they did not address the effective forces associated with the process of growth.

Taber and Humphrey (2001) studied the volumetric growth in the arterial wall based on

the local stress at each point. For the growth law, they assumed that the growth rate is

a linear function of the local stress. They exploited the opening angle of the arterial wall,

which is measured after a transmural radial cut that releases the residual stress. The opening

angle is a measure of the degree of growth in the tissue. Another important aspect of this

study is having enforced incompressibility during the growth process, although, growth is not

isochoric (since the material is incompressible, the new mass occupies additional volume).

Humphrey (1999) studied the remodelling of the collagenous tissue by using the polar

decomposition of the deformation gradient to the so called short-duration, intermittent load-

ing configuration as the intermediate configuration, which is set to interrogate the material

behaviour, in their own words. They used a mixture model with four contributors to the

stress: the hydrostatic stress induced by the fluid-dominated ground substance, an isotropic

contribution from the amorphous solid constituents, including elastin, an anisotropic contri-

bution from the “originally present” collagen fibres and an anisotropic contribution from the
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“newly deposed” collagen fibres. Growth is considered as a dynamic process of degradation

and deposition of collagen fibres. The degradation and the deposition of fibres are described

by exponential functions, which asymptotically reach prescribed values.

Rodriguez et al. (1994) were among the first who studied cardiac remodelling from the

continuum mechanical perspective. They used the Kröner-Bilby decomposition of the defor-

mation gradient into a growth part and an elastic part. In practice, they considered a locally

stress-free state before growth (reference configuration) which grows into an intermediate

(and generally incompatible) configuration, and finally deforms elastically to the current

(and compatible) configuration actually attained by the body. For the constitutive law, they

adopted a Fung-type potential (Fung, 1967, 1973). The growth rate in this model is based

on the variation of the first Piola-Kirchhoff stress with respect to the no-growth equilibrium

stress or, as stated by other scholars, the homeostatic stress.

Watton et al. (2004), Watton and Hill (2009) and Watton et al. (2009) studied abdominal

aortic aneurysms using the principle of virtual work. They considered arteries as two-layered

cylinders under constant systolic pressure and under pre-stretch along the axis of symmetry.

They employed micro-structural recruitment of the collagen fibres as the remodelling process,

which was in turn driven by the enlargement of the aneurysm. The remodelling parameter

changes to maintain the strain in the collagen to some equilibrium value. This assumption

is consistent with the one in the paper by Humphrey (1999). Kroon (2010) introduced a

continuum model of growth and remodelling for collagen fibres, considering three different

intermediate configurations. The evolution of reorientation was postulated to be a function

of the principal stresses, whereas the collagen production was derived from a mass diffusion

equation.

Epstein and Maugin (2000) introduced a theory for growth (creation and resorption of

mass) and remodelling (microstructural rearrangement at constant mass), where the evo-

lution is seen as a local rearrangement and change of material inhomogeneities, devising
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the first or second order uniformity transplants. The balance laws for growing body were

introduced considering both volumetric growth and surface growth. Epstein and Maugin

(2000) proved that, if the constitutive law is only of first grade, diffusion of mass growth

cannot occur. Moreover, volumetric growth is governed by the inhomogeneity deformation

rate, LP = ṖP−1, where P−1 corresponds to the growth tensor of Rodriguez et al. (1994).

Moreover, the driving force of growth and remodelling is Eshelby stress E = −L IT − F .T

(where L = K−W is the Lagrangian function of the system, with K being the kinetic energy

and W the potential energy) or the Mandel stress M = F .T . Nonetheless, the constitutive

law can include the elastic strain and its rate, in principle.

Another seminal work is that by DiCarlo and Quiligotti (2002), who introduced the notion

of two-layer dynamics, with generalised velocities and the conjugated generalised forces. This

approach adopts two parallel configurations. The current configuration describes actually

placement of the body in space, while the relaxed configuration describes how the body

“tends to be placed”. Thus, we have two velocities: one is the actual Lagrangian velocity

of the body, and the other is a set of virtual velocities that are responsible for the growth.

Since the forces are the linear operators that create power over the velocities, we have

two force contributions: a brute force, which it is the dual of the Lagrangian velocity, and

the remodelling force, which is dual to the remodelling velocities. For the balance laws,

they considered the principle of null working, which implies that the total work on the test

velocities is zero, so that the sum of the outer and the inner remodelling working is zero.

In the line of this approach, Ambrosi and Guana (2007) and Ambrosi et al. (2008)

proposed a framework to model growth and remodelling of an aneurysm. They considered the

axisymmetric deformation of a thick-walled tube comprised of a Fung-type elastic material,

and introduced a diagonal growth tensor, representing a non-uniform growth rate in different

directions. In their model, growth is triggered by blood pressure increase and the effect of the

residual stress can be observed. This boundary-value problem revealed that growth mostly
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occurs in the stiffest region. Moreover, the remodelling makes the hoop stress field becomes

more uniform throughout the wall cross-section.

Fusi et al. (2006) studied the evolution of mixture composed by an elastic solid and a fluid

with exchanging mass. The model employed the decomposition of the deformation gradient

for the solid phase combined with the maximisation of the rate of entropy production. Grillo

et al. (2015) proposed a mathematical model for the structural reorientation of the collagen

fibres in a composite material in which the constitutive law includes a probability distribution

of orientation of the fibres. The model is based on the framework proposed by DiCarlo and

Quiligotti (2002), and the remodelling parameter is the mean angle of the Gaussian-like

probability distribution of orientation.

Yavari (2010) introduced a geometric framework for growth and remodelling in which a

body undergoing bulk growth is studied as a material manifold with an evolving metric. The

time dependence of the metric represents the change of stress-free or natural configuration.

The material metric evolves according to the principle of maximum entropy. The governing

growth equations were obtained by employing d’Alembert principle and Rayleigh’s dissipa-

tion functions. Yavari (2010) showed that, even in the case of mass-conserving evolution,

i.e. when growth results in only shape changes, one may still see residual stresses. With

respect to the standard uniformity theory which uses a non-metric connection with non-zero

torsion (Epstein and Maugin, 1990), this approach employs the connection associated with

the evolving metric: since it is a metric connection, it has zero torsion but in general a

non-zero curvature.

Ateshian (2007) studied growth and remodelling in the framework of mixture theory and

provided the balance laws, entropy inequality and the interface jump conditions for reactive

mixtures. Using the interface jump condition on the mass flux of individual constituents, a

surface growth equation is introduced, which can be employed to predict the deposition or

removal of material points from the solid matrix. In this study the configuration map is not
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considered one to one as it is considered too restrictive and inappropriate for the growth and

remodelling. Following the same line of reasoning, Cowin (2010) argued that when growth

is caused by addition of mass without loss, the motion is no longer bijective, as there is no

one to one correspondence between the points anymore. We will briefly address this issue in

the Discussion (Chapter 8).
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Chapter 3

Continuum Theory of Fibril Recruitment

We assume that soft biological tissues are comprised of an isotropic matrix reinforced by

collagen fibres, that both the matrix and the fibres are hyperelastic, and that the fibres are

one-dimensional elements bearing no compression or bending, but only tension. The fibres

may or may not have a statistically distributed orientation: in this context, we analyse an

individual fibre in its referential direction, described by the unit vectorM . The overall effect

of distributed fibres can be obtained via directional averaging methods (e.g., Lanir, 1983;

Hurschler et al., 1997; Gasser et al., 2006; Federico and Herzog, 2008).

We first describe collagen fibres as a bundle of collagen fibrils, then establish the kinemat-

ics of recruitment for a single fibril, then introduce the probability distribution of straight-

ening for the fibrils in a fibre, and finally establish the elastic constitutive equations for a

single fibril.

3.1 Fibres as Bundles of Fibrils

A collagen fibre consists of a bundle of collagen fibrils connected by proteoglycan (PG) cross-

bridges. These bridges transmit the load between fibrils, forming an integrated structure

which can elongate significantly (Orgel et al., 2011). The fibrils in a collagen fibre are

crimped in the reference configuration, and each of them has a different waviness. Therefore,

each fibril bears tensile load only if the stretch ‖FM‖ in the fibre referential direction M

is greater than a certain characteristic stretch λs at which the fibril straightens. Overall,

the fibre is assumed to start bearing tension when the first fibril straightens, at a value of

stretch equal to λmin. We assume that the stretch λs at which a fibril straightens is given by

a probability distribution. As the stretch increases above the stretch of first straightening,
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λmin, there will be a progressive recruitment of the fibrils.

3.2 Kinematics of Fibril Recruitment

Following the notation elucidated in Section 1.3, the reference configuration of our fibre-

reinforced body is denoted B, the physical space is denoted S, the configuration map is

denoted χ : B → S and maps material points X = (X1, X2, X3) into spatial points x =

(x1, x2, x3), and the deformation gradient is the tensor F with components F a
A = χa,A ≡

∂χa/∂XA.

We look at a fibril passing by a point X and oriented parallel to the unit vectorM . The

deformation causes the fibre to attain the stretch ‖FM‖ = λM ≡ λ. For each of the fibrils

constituting the fibre, we follow the kinematical assumption made by Martufi and Gasser

(2011), and express the deformation gradient F in Kröner’s multiplicative decomposition

F = FeFs, (3.1)

in which Fs is the deformation that the fibril must undergo to pass from its referential crimped

configuration C ⊂ B to a straightened configuration Cs, and Fe is the subsequent elastic

deformation by which the fibril attains its current stretched configuration χ(C) ⊂ χ(B). If,

with no loss of generality, we assume thatM ≡ E1 (where E1 is the basis vector of direction

1), the matrix representation of the straightening deformation Fs is

[[Fs]] =


λs 0 0
0 1 0
0 0 1

 , (3.2)

i.e., Fs represents a pure stretch in the directionM ≡ E1, with no rotation and no change in

cross-sectional area, which is justified by the fact that, under Fs the fibril simply unfolds to

become straight (see Figure 3.1). More rigorously, with the polar decomposition theorem, we

write Fs = RsUs, and say that the rotational part Rs is represented by an identity matrix,

so that the representing matrix [Fs] of Fs coincides with the representing matrix [Us] of the
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stretching part Us, of which λs is an eigenvalue. In directionM , the stretch λM ≡ λ admits

the one-dimensional multiplicative decomposition

λ = λeλs, (3.3)

in which, analogously to Equation (3.1), λs is the straightening stretch of Equation (3.2),

and λe is the elastic stretch.
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Figure 3.1: Multiplicative decomposition of the deformation of a fibril into F = FeFs, where the
matrix representation of Fs is [[Fs]] = diag[λs, 1, 1], if one assumes, for simplicity, M ≡ E1.

3.3 Recruitment Probability

As discussed in Section 3.1, each fibre can be seen as a bundle of fibrils aligned in the same

direction. However, the fibrils can have different “waviness” in the reference configuration,

and thus attain a straightened configuration at different values of the straightening stretch

λs.

Since each fibril has a characteristic straightening stretch λs, we need to have two pieces

of information, which can both be captured by a straightening probability distribution: i) at

what straightening stretch each fibril is recruited, and ii) which fraction of fibrils has been

recruited. The general idea can be traced back to the worm-like chain model (Flory, 1969).

We also note that numerous studies have been conducted on the experimental determination

of the waviness of fibrils (see, e.g., Diamant et al., 1972). We start by recalling the notion
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of support of a function f . Given a set D and a function f : D → R, the support of f is the

subset of the domain D on which f is non-zero, i.e.,

supp(f) = {x ∈ D : f(x) 6= 0}. (3.4)

The probability distribution could be such that the fibrils are recruited over a bounded or

unbounded interval contained in [1,+∞[, i.e., the probability distribution could have bounded

or unbounded support. The lower extremum of the support of the probability distribution

may be 1 or a larger value of stretch λmin.

Physically, the fibrils of a fibre are all recruited at a certain finite stretch λmax , so it would

seem more sound to use a probability defined piecewise, and equal to zero for values of the

stretch greater than λmax , in order for the support to be bounded. This, however, has the

disadvantage of requiring piecewise integration and numerical implementation. Examples

of probability distributions with bounded support are that of the “triangular” distribution

(Martufi and Gasser, 2011) or the beta distribution (Balakrishnan and Nevzorov, 2004). On

the other hand, a probability distribution with unbounded support can be made realistic by

adjusting the parameters so that the asymptotic behaviour is reached suitably fast. This has

the advantage of having a single, continuous function. Examples of recruitment probabilities

with unbounded support are those of the Gaussian distribution (Liao and Belkoff, 1999) or

the Weibull distribution (Hurschler et al., 1997).

If ns denotes the probability distribution of straightening, the cumulative probability

distribution Ns is given by

Ns(λs) =
∫ λs

λmin
ns(t) dt, (3.5)

and provides the fraction of recruited fibrils at the value λs of the stretch. Figure 3.2 provides

a comparison of three probability functions (triangular, beta and Weibull), along with the

respective cumulatives.
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Figure 3.2: Plots of three probability densities, i.e., triangular (blue, solid), beta (red, solid),
Weibull (black, solid), and of the corresponding cumulative densities (same colours, dashed). The
maximum value λmax is required for the beta and triangular distributions, which have bounded
support. The value 2/(λmax − λmin) is the peak of the triangular distribution.

3.4 General Form of the Constitutive Equation for a Fibril

We continue to follow standard Continuum Mechanics notation, with uppercase symbols

and indices in the reference configuration and lowercase symbols and indices in the current

configuration. Moreover, we use uppercase Greek symbols and lowercase Greek indices for

quantities referred to the intermediate configuration. Thus, the deformation gradient F has

components F a
B, the straightening deformation Fs has components (Fs)βB, and the elastic

deformation Fe has components (Fe)aβ. Moreover, the Cauchy stress, which is completely

spatial, is denoted σ (in components, σab), whereas the first and second Piola-Kirchhoff

stresses are denoted by the usual symbols T and S (in components, T aB and SAB) in the

reference configuration and by Π and Σ (in components, Πaβ and Σαβ) in the intermediate

configuration. A “hat” over a symbol denotes the associated constitutive function, e.g., in

the expression T = T̂ (F ), T is the physical quantity (first Piola-Kirchhoff stress) and T̂ is

the associated constitutive function.

The constitutive equation for a fibril should be formulated in its intermediate configura-

tion Cs, in which the fibril is straightened and from which it stretches elastically of λe to the
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current configuration χ(C). Thus, the constitutive equation for a fibril should be cast as

Πfibril = Π̂fibril(λe), (3.6)

where Πfibril is the one-dimensional first Piola-Kirchhoff stress in the intermediate configu-

ration and Π̂fibril is the constitutive function associated with Πfibril. The constitutive state-

ment (3.6) is the most natural for two reasons: i) both the intermediate first Piola-Kirchhoff

stress and the elastic stretch map from the intermediate to the current configuration (which

is perfectly analogous to the regular first Piola-Kirchhoff stress and deformation gradient,

mapping from reference to current configuration), and ii) the first Piola-Kirchhoff stress is

often the only that it is actually possible to measure experimentally, particularly for the case

of an object like a collagen fibril, for which it would be practically impossible to measure the

change in cross-section.

In order to obtain the correct transformation rules of Πfibril, let us work in tensorial terms,

omitting the subscript “fibril” for brevity. The tensorial counterpart of (3.6) is

Π = Π̂(Fe), (3.7)

and the stress Π is the backward Piola transform of the Cauchy stress (which naturally is

defined in the current configuration) with respect to the elastic deformation Fe, i.e.,

Π = Je σF
−T
e , Πaβ = Je σ

ab(F−Te )bβ. (3.8)

With respect to the straightening deformation Fs, Π can be backward Piola-transformed to

the reference configuration into the ordinary first Piola-Kirchhoff stress T , i.e.,

T = Js ΠF−Ts , T aB = Js Πaα(F−Ts )αB, (3.9)

so that the regular overall backward Piola transformation,

T = J σF−T , T aB = J σab(F−T )bB, (3.10)
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is recovered by combining Equations (3.1), (3.8) and (3.9). It should be noted that, because of

the assumed representation of Fs shown in Equation (3.2), if the fibre direction isM ≡ E1,

we have that (Fs)1
1 = λs, (F−1

s )1
1 = λ−1

s and Js = λs. Therefore, the one-dimensional

first Piola-Kirchhoff stress for a fibril is identical in the reference and in the intermediate

configuration, i.e., reinstating the subscript “fibril”,

Tfibril = λs Πfibril λ
−1
s = Πfibril. (3.11)

In general, it is convenient to express the constitutive relation in terms of the first Piola-

Kirchhoff stress (current force over undeformed area) because it is the quantity normally

measured in fibre/fibril tension tests (e.g., Miyazaki and Hayashi, 1999, Figure 8). From

Equations (3.3) and (3.6), the constitutive relation for a single fibril should be of the form

Tfibril = T̂fibril(λ/λs) = T̂fibril ≡ Π̂fibril(λe), (3.12)

where λ/λs = λe is the elastic stretch of the one-dimensional multiplicative decomposition

of Equation (3.3).

We also intend to show that a constitutive equation in terms of the second Piola-Kirchhoff

stress is not a convenient choice. Indeed, contrary to what seen in the case of the first Piola-

Kirchhoff stress (Equation (3.11)), the referential and intermediate second Piola-Kirchhoff

stress do not coincide:

Sfibril 6= Σfibril. (3.13)

In order to prove this relation, let us start from the Cauchy stress, as done above for the

case of the first Piola-Kirchhoff stress. First, with respect to the elastic deformation Fe, the

Cauchy stress σ can be backward Piola-transformed on the second leg and pulled-back on

the first leg to the intermediate configuration, into the intermediate second Piola-Kirchhoff

stress Σ, i.e.,

Σ = Je F
−1
e σF−Te , Σαβ = Je (F−1

e )αaσab(F−Te )bβ. (3.14)
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Then, with respect to the straightening deformation Fs, the intermediate second Piola-

Kirchhoff stress Σ can be backward Piola-transformed on the second leg and pulled-back on

the first leg to the reference configuration, into the ordinary second Piola-Kirchhoff stress S,

i.e.,

S = Js F
−1
s ΣF−Ts , SAB = Js (F−1

s )AαΣαβ(F−Ts )βB. (3.15)

Note that substitution of (3.14) into (3.15) yields the familiar transformation

SAB = Je (F−1)Aaσab(F−T )bB. (3.16)

Now, the one-dimensional inequality (3.13) is obtained by using the representation of Fs in

Equation (3.2). Indeed, as seen for the case of the first Piola-Kirchhoff stress, if the fibre

direction is M ≡ E1, then (Fs)1
1 = λs, (F−1

s )1
1 = λ−1

s and Js = λs, and we obtain

Sfibril = λs λ
−1
s Σfibrilλ

−1
s = λ−1

s Σfibril 6= Σfibril, (3.17)

which, in terms of constitutive functions, reads

Ŝfibril(λe, λs) = λ−1
s Σ̂fibril(λe) 6= Σ̂fibril(λe). (3.18)

We conclude that the second Piola-Kirchhoff stress is not preserved from the intermediate

to the reference configuration (Equation (3.18)) and, more importantly, the referential second

Piola-Kirchhoff stress Ŝfibril is an explicit function not only of λe, but also of λs. These two

facts constitute another reason to favour a treatment in terms of the first Piola-Kirchhoff

stress.

3.5 Critical Review of Published Fibre Constitutive Models

Here, we review the constitutive relations arising from the recruitment models by Hurschler

et al. (1997) and Martufi and Gasser (2011), who used different initial assumptions and

integration methods to obtain the stress of a fibre from the contributions of the fibrils. The
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stress in a fibre is here denoted by the subscript n, which stands for non-damaged fibre, as

opposed to that in a damaged fibre, which we shall consider in Section 4. We discuss the

advantages and disadvantages of each of the two formulations, in preparation for Section 3.6,

in which we shall show that, with the appropriate corrections, the two formulations are in

fact equivalent, which establishes our model for recruitment.

Hurschler et al. (1997) did not explicitly consider the multiplicative decomposition of the

deformation and worked in terms of the Cauchy stress. They defined the Cauchy stress of

a fibre as the integral over the interval [λmin, λ] of the constitutive function of the Cauchy

stress for a single fibril times the straightening probability distribution function ns, i.e., in

our notation,

σn = σ̂n(λ) =
∫ λ

λmin
σ̂fibril(λ/t) ns(t) dt, (3.19)

where the integration variable t has the physical meaning of straightening stretch λs, and

σ̂fibril is expressed similarly as in Equation (3.12), as a function of λe = λ/λs. The constitutive

equation for the fibril stress σ̂fibril was assumed to be linear in the elastic stretch, i.e.,

σfibril = σ̂fibril(λe) = σ̂fibril(λ/λs) = Efibril (λ/λs − 1), (3.20)

where Efibril is the elastic modulus of a fibril and εe = λ/λs−1 = λe−1 is the elastic nominal

strain. Hurschler et al. (1997) relied on their experimental measurements to support the

choice of a linear constitutive equation. We also mention single-fibril experiments performed

by Miyazaki and Hayashi (1999).

This approach is simple and elegant in terms of integration. However, the choice of the

use of the Cauchy stress has not been justified physically and it contrasts with the natural

hypothesis that the intermediate first Piola-Kirchhoff stress Πfibril of the fibril be solely a

function of the elastic stretch of the fibril λe, as in Equation (3.6). In order to show this, let

us consider the component Π11 (the only non-vanishing one) of the stress Π in Equation (3.8),

i.e.,

Π11 = Je σ
11 (F−Te )1

1 = Je σ
11 λ−1

e , (3.21)
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and substitute the expression σfibril = σ̂fibril(λe) proposed by Hurschler et al. (1997) and

reported above in Equation (3.20). We obtain that the intermediate first Piola-Kirchhoff

stress must also depend on Je, i.e.,

Πfibril ≡ Π11 = Je σ̂fibril(λe) λ−1
e = Π̂fibril(λe, Je), (3.22)

where we remark that, in general, Fe is such that Je 6= λe, unlike the case of Fs, which

is constructed such that Js = λs (see Equation (3.2)). This result is in contrast with the

natural assumption in Equation (3.6).

Martufi and Gasser (2011) considered a specific constitutive relation for a single fibril in

terms of the second Piola-Kirchhoff stress Σfibril in the (intermediate) straightened configu-

ration:

Σfibril = Σ̂fibril(λe) = k log λe = k log(λ/λs). (3.23)

From this point on, there are two assumptions in the model by Martufi and Gasser (2011)

that need to be rectified. The first incorrect assumption was that, given the form of the

straightening deformation Fs with the matrix representation in Equation (3.2), the second

Piola-Kirchhoff stress Σfibril in the intermediate configuration and the second Piola-Kirchhoff

stress Sfibril in the reference configuration were identical, i.e.,

Sfibril = Σfibril, (3.24)

which is incorrect, as it contradicts the relation that we showed in Equation (3.17). Then,

Martufi and Gasser (2011) found the stiffness of the relation between the second Piola-

Kirchhoff stress of the fibril and the stretch λ. In our notation, we introduce the function

h(λ, λs) = λ/λs = λe (3.25)

so that, using the formalism of composite functions, the stress reads

Ŝfibril(λe) = Ŝfibril(h(λ, λs)) = (Ŝfibril ◦ h)(λ, λs), (3.26)
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and the stiffness reads
∂(Ŝfibril ◦ h)

∂λ
(λ, λs) = k

λ
. (3.27)

The second incorrect assumption was made with the standard relation T = FS in mind, from

which Martufi and Gasser (2011) assumed that the derivatives of the first Piola-Kirchhoff

stress and of the second Piola-Kirchhoff stress with respect to the stretch λ were related by

∂(T̂fibril ◦ h)
∂λ

(λ, λs) = λ
∂(Ŝfibril ◦ h)

∂λ
(λ, λs), (3.28)

which, in their incremental notation, reads dP = λ dS. Based on Equations (3.27) and (3.28),

Martufi and Gasser (2011) obtained the constant stiffness

∂(T̂fibril ◦ h)
∂λ

(λ, λs) = k. (3.29)

We show that the assumption (3.28) is incorrect by analysing the corresponding fourth-order

elasticity tensors. If the fibre direction is M ≡ E1, the derivative on the right-hand side

of Equation (3.28) corresponds to the component A11
1

1 of the fourth-order tensor A called

first elasticity tensor by Marsden and Hughes (1983) (see also Truesdell and Noll, 1965), i.e.

(omitting again the subscript “fibril”),

A = Â(F ) = ∂T̂

∂F
(F ), AaB

c
D = ÂaB

c
D(F ) = ∂T̂ aB

∂F c
D

(F ), (3.30)

where T̂ and Â are the constitutive functions associated with T and A, respectively. The

derivative on the right-hand side of Equation (3.28) corresponds instead to the component

B11
1

1 of the fourth-order tensor B defined by

B = B̂(F ) = ∂Ŝ

∂F
(F ), BAB

c
D = B̂AB

c
D(F ) = ∂ŜAB

∂F c
D

(F ). (3.31)

Tensors A and B are not related by a push-forward of the type T = FS, i.e.,

A 6= FB, AaB
c
D 6= F a

A BAB
c
D. (3.32)
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Indeed,

ÂaB
c
D = ∂T̂ aB

∂F c
D

= ∂(F a
AŜ

AB)
∂F c

D

= δac δA
D ŜAB + F a

A
∂ŜAB

∂F c
D

= δac Ŝ
DB + F a

A B̂AB
c
D 6= F a

A B̂AB
c
D. (3.33)

Thus, the correct incremental expression in the paper by Martufi and Gasser (2011) should

have read dP = S dλ + λ dS, which does not yield a constant stiffness. We are going to

correct both issues in Section 3.6.

Finally, since the stiffness in Equation (3.29) was assumed to be constant, Martufi and

Gasser (2011) obtained the stress for a fibre as the integral of the stiffness times the cumu-

lative straightening distribution Ns, i.e., we have that

Tn = T̂n(λ) =
∫ λ

λmin
k Ns(t) dt, (3.34)

where the integration variable t has here the meaning of overall stretch λ.

The rationale behind the choice that Martufi and Gasser (2011) made for the constitutive

equation (3.23) was that they sought for a stiffness that was independent of the straightening

stretch λs, so that, once straightened, all fibrils would have the same stiffness with respect to

the overall stretch λ. Note that, similarly to Hurschler et al. (1997), also Martufi and Gasser

(2011) chose a fibril linear constitutive equation (although this time in the logarithmic strain

log λe). A linear fibril constitutive equation is the clearly the simplest possible choice, and

this is why it has been adopted in both models.

3.6 Fibre Recruitment Constitutive Model

Our proposed fibre constitutive model is, like that by Martufi and Gasser (2011), based on

an integration of the stiffness. We shall show that, once we correct the model by Martufi

and Gasser (2011), we can show that a linear T̂fibril-log λe constitutive equation is the unique

solution of the differential equation obtained by imposing that the independence of the
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stiffness on the straightening stretch λs. Once this is achieved, we have two possible choices

of integration: one in the first Piola-Kirchhoff stress, which is general, and one in the Cauchy

stress, which is limited to the case of incompressibility.

We shall also show that it is possible to relax the hypothesis of a linear T̂fibril-log λe

constitutive equation, and to obtain a completely general stiffness-based model. Finally,

we shall show that this generalised stiffness-based model is in fact equivalent to a slightly

adjusted version of the stress-based model by Hurschler et al. (1997).

3.7 Uniqueness

As shown in Section 3.4, the most convenient choice for a fibril constitutive equation is in

the first Piola-Kirchhoff stress Πfibril in the intermediate, straightened configuration. If we

assume linearity with respect to the elastic logarithmic strain, Equations (3.6) and (3.11)

yield the fibril constitutive equation

Tfibril = T̂fibril(λe) = Π̂fibril(λe) = k log λe = k log(λ/λs), (3.35)

in terms of the referential first Piola-Kirchhoff stress Tfibril.

It is possible to prove that the logarithmic constitutive equation (3.35), analogous to that

postulated by Martufi and Gasser (2011) in terms of the second Piola-Kirchhoff stress (see

Equation (3.23)), is actually the unique solution of the differential equation imposing that

the stiffness of the relation between T̂fibril and λ does not depend on λs.

For brevity, let us use f(λe) = f(λ/λs) ≡ T̂fibril(λe), in this proof. We have

Â(λ, λs) = ∂(f ◦ h)
∂λ

(λ, λs) =
[
(f ′ ◦ h) ∂h

∂λ

]
(λ, λs) (3.36)

where A = Â(λ, λs) is the stiffness of the relation between f ≡ T̂fibril and λ and, again, h

is defined by h(λ, λs) = λ/λs = λe, as in Equation (3.25). We also recall that the stiffness

A = Â(λ, λs) corresponds to the first elasticity tensor reported in Equation (3.30). We
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impose that the stiffness Â does not depend on λs, i.e., that its partial derivative with

respect to λs must vanish, which reads

∂Â
∂λs

(λ, λs) = ∂

∂λs

[
(f ′ ◦ h) ∂h

∂λ

]
(λ, λs)

=
[
(f ′′ ◦ h) ∂h

∂λ

∂h

∂λs
+ (f ′ ◦ h) ∂2h

∂λ∂λs

]
(λ, λs) = 0. (3.37)

Using h(λ, λs) = λ/λs = λe, we obtain the differential equation

− f ′′(λe)
1
λs

λ

λ2
s

− f ′(λ) 1
λ2
s

= 0, (3.38)

which can be simplified further, by multiplying by λ2
s, into

f ′′(λe)λe + f ′(λe) = 0. (3.39)

Equation (3.39) is a second order linear ordinary differential equation, which admits the

general solution

f(λe) = C1 + C2 log λe. (3.40)

Considering the initial condition λe = 1 (zero stress when the elastic stretch λe is equal to

one), C1 must be zero. With C1 being zero, setting C2 = k yields the constitutive law (3.35)

as the only possible choice satisfying the requirement that Â be independent from λs. Note

that the three-dimensional counterpart of log λe would be the logarithmic strain logUe, where

Ue is the right stretch tensor of the polar decomposition Fe = Re.Ue (see, e.g., Ogden, 1997;

Bonet and Wood, 2008).

Another advantage of working in terms of the first Piola-Kirchhoff stress is that the

constitutive equation (3.35) gives two possible choices: i) keeping working in terms of the

first Piola-Kirchhoff stress, which allows for a general formulation for compressible materials

(Section 3.8); ii) directly obtaining the Cauchy stress, at the cost of limiting the model to

the incompressible case, but with the advantage of a very simple analytical expression for

the stress (Section 3.9).
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3.8 Stress Evaluated from the Tfibril-λ Stiffness

With the constitutive equation (3.35), the stiffness of the relation between T̂fibril and λ, which

corresponds to the first elasticity tensor (3.30), is given by

Â(λ, λs) = ∂(T̂fibril ◦ h)
∂λ

(λ, λs) = k
1
λe

∂h

∂λ
(λ, λs) = k

1
λe

1
λs

= k
1
λ
, (3.41)

and, as shown in Section 3.7, is independent of the straightening stretch λs and can be

redefined as a function of λ alone, i.e.,

Â(λ) = ∂(T̂fibril ◦ h)
∂λ

(λ, λs) = k
1
λ
, ∀λs. (3.42)

Using the stiffness in Equation (3.42), we can obtain the first Piola-Kirchhoff stress as

T̂n(λ) =
∫ λ

λmin
Ns(t) Â(t) dt =

∫ λ

λmin

k

t
Ns(t) dt, (3.43)

where the integration variable t stands for the overall stretch λ. It is important to note

that the stiffness in Equation (3.42) and the stress in Equation (3.43) are valid for a general

deformation F : in particular, we are not imposing incompressibility.

3.9 Stress Evaluated from the σfibril-λ Stiffness

From Equation (3.42) for the first Piola-Kirchhoff stress, it is possible to obtain an ex-

pression for the Cauchy stress for the case of incompressibility. We want to prove that,

considering that F 1
1 = λ and assuming incompressible behaviour (J = 1), multiplying our

Equation (3.42) by λ gives

∂(σ̂fibril ◦ h)
∂λ

(λ, λs) = λ
∂(T̂fibril ◦ h)

∂λ
(λ, λs) = k, ∀λs. (3.44)

The tensor corresponding to ∂(σ̂fibril ◦ h)/∂λ is the elasticity tensor of the relation between

the Cauchy stress σ̂ and the deformation gradient F , i.e.,

D̂ = ∂σ̂

∂F
, D̂ab

c
D = ∂σ̂ab

∂F c
D

, (3.45)
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Since σ = J−1TF T , tensors A and D are related via

D̂ab
c
D = ∂σ̂ab

∂F c
D

= ∂(J−1T̂ aBF b
B)

∂F c
D

= −J−2 J (F−T )cD T̂ aBF b
B + J−1 ∂T̂

aB

∂F c
D

F b
B + J−1T̂ aBδbc δB

D

= −J−1 (F−T )cD T̂ aBF b
B + J−1ÂaB

c
D F b

B + J−1T̂ aDδbc. (3.46)

We now need to verify whether our Equation (3.44) satisfies the relation between D and A

in Equation (3.46). Since a fibril can only bear a first Piola-Kirchhoff stress in its direction,

only Pfibril ≡ P 11 is different from zero. Therefore, the components ∂(σ̂fibril ◦ h)/∂λ ≡ D̂11
1

1

and ∂(T̂fibril ◦ h)/∂λ ≡ Â11
1

1 are related by

D̂(λ) = ∂(σ̂fibril ◦ h)
∂λ

(λ, λs) = −J−1λ−1(T̂fibril ◦ h)(λ, λs)λ

+ J−1∂(T̂fibril ◦ h)
∂λ

(λ, λs)λ+ J−1(T̂fibril ◦ h)(λ, λs)

= J−1λ
∂(T̂fibril ◦ h)

∂λ
(λ, λs) = J−1k, ∀λs. (3.47)

Therefore, if the material is incompressible (J = 1), we recover our Equation (3.44), provided

that incompressibility is properly enforced by means of a pressure term −p g−1 (which, in

components, reads −p gab, where the inverse metric tensor g−1 stands for the “contravariant”

identity tensor) in the full three-dimensional problem. We now have another stiffness that

is independent of the straightening stretch λs, i.e.,

D̂(λ) = ∂(σ̂fibril ◦ h)
∂λ

(λ, λs) = λ
∂(T̂fibril ◦ h)

∂λ
(λ, λs) = k, ∀λs, ∀λ. (3.48)

The corresponding Cauchy stress is obtained as

σ̂n(λ) =
∫ λ

λmin
Ns(t) D̂(t) dt =

∫ λ

λmin
k Ns(t) dt. (3.49)

We emphasise again that the expressions of the stiffness (3.48) and the stress (3.49) only

hold for incompressible materials.

The expression of the Cauchy stress in Equation (3.49) is analogous to the expression

of the first Piola-Kirchhoff stress found by Martufi and Gasser (2011) (see Equation (4)
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in their paper). However, while the expression found by Martufi and Gasser (2011) must

be considered as an approximation, based on the two incorrect assumptions discussed in

Section 3.5, Equation (3.49) is exact, for incompressible materials.

3.10 Generalised Stiffness-Based Model

In their model, Martufi and Gasser (2011) calculate the stress of a single fibre by integration

of the stiffness calculated with respect to λ times the cumulative of the distribution function

(Section 3.5). Because of this integration approach, Martufi and Gasser (2011) are forced to

require that the stiffness be independent of λs in order to have a constitutive equation for

the fibre that is independent of λs. Actually, this requirement can be bypassed, and here

we propose a generalised model that includes, as a particular case, the corrected version of

the model by Martufi and Gasser (2011) that we presented in Sections 3.7, 3.8 and 3.9, and

in which any (physically admissible, e.g., strongly elliptical) fibril constitutive law can be

employed.

In order to do so we, introduce the constitutive equation for a single fibre as

T̂n(λ) =
∫ λ

λmin
−∂(T̂fibril ◦ h)

∂λs
(λ, λs)Ns(λs) dλs, (3.50)

where, similarly to Hurschler et al. (1997), we integrate over λs. It should be noted that the

stiffness in (3.50) is calculated as a derivative with respect to λs, rather than with respect

to λ, as in the case of Martufi and Gasser (2011). Note also the minus sign, which could

seem counterintuitive at first, but is turns out to be actually quite natural. Indeed, using

the chain rule (recall that h(λ, λs) = λ/λs = λe, Equation (3.25)), we have
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−∂(T̂fibril ◦ h)
∂λs

(λ, λs) = −∂T̂fibril

∂λe
(h(λ, λs))

∂h

∂λs
(λ, λs)

= −∂T̂fibril

∂λe
(λe)

(
− λ

λ2
s

)

= ∂T̂fibril

∂λe
(λe)

λ

λ2
s

. (3.51)

If the stiffness ∂T̂fibril/∂λe of the relation between the first Piola-Kirchhoff stress and

the elastic stretch λe is assumed to be positive, as it should be in order to have a strongly

elliptic model (Truesdell and Noll, 1965; Marsden and Hughes, 1983; Antman, 1983; Ogden,

1997), then also the stiffness in the definition (3.50), which is calculated with respect to λs

and includes a negative sign, will result in a positive stress Pn(λ), as desired. In order for

the stress in Equation (3.50) to be a generalisation of that in our corrected version of the

model by Martufi and Gasser (2011), it must coincide with that in Equation (3.43), for the

particular choice (3.35) of constitutive equation for the fibril. Using again the chain rule, we

have

−∂(T̂fibril ◦ h)
∂λs

(λ, λs) = −∂T̂fibril

∂λe
(h(λ, λs))

∂h

∂λs
(λ, λs)

= − k

λe

(
− λ

λ2
s

)
= −λs

λ
k

(
− λ

λ2
s

)
= k

λs
. (3.52)

Now, if we integrate (3.52) according to (3.50), we obtain

T̂n(λ) =
∫ λ

λmin
−∂(T̂fibril ◦ h)

∂λs
(λ, λs)Ns(λs) dλs =

∫ λ

λmin

k

λs
Ns(λs) dλs, (3.53)

which is equivalent to (3.43), since λs is just the integration variable and could be assigned

any symbol.

3.11 Equivalence of Generalised Model and Adjusted Hurschler Model

Here we show that the generalised model presented in Section 3.10 is in fact equivalent to a

slightly adjusted version of the model by Hurschler et al. (1997).
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We recall that Hurschler et al. (1997) simply integrate the stress of each fibril times the

distribution function, which represents the number of fibrils that have identical straightening

stretch, and we emphasise that the integration is over λs. In contrast, Martufi and Gasser

(2011) evaluate the stress of a single fibre by integrating the stiffness of a single fibril cal-

culated with respect to λ times the cumulative of the distribution function. As mentioned

in Section 3.10, this forced Martufi and Gasser (2011) to seek for a stiffness that is inde-

pendent of λs. The fact that in the latter model required a specific constitutive function

was arguably the reason why the equivalence between the two models has been missed so

far. The generalised model that we presented in Section 3.10 is free of any restriction on the

constitutive model, and this allows us to show its equivalence with the model by Hurschler

et al. (1997).

As mentioned in Section 3.5, the model by Hurschler et al. (1997) has one small in-

consistency with respect to the framework that we proposed in Section 3: it is based on

a fibril constitutive equation for the Cauchy stress. This can easily be adjusted to fit our

framework, by simply replacing the Cauchy stress by the first Piola-Kirchhoff stress. Using

Equation (3.12), we can rewrite Equation (3.19) as

Tn = T̂n(λ) =
∫ λ

λmin
T̂fibril(λ/t) ns(t) dt. (3.54)

The proof of the equivalence between our generalised model and that by Hurschler et al.

(1997) is quite straightforward. If we use function h of Equation (3.25) and integrate Equa-

tion (3.54) by parts, we obtain

T̂n(λ) =
∫ λ

λmin
(T̂fibril ◦ h)(λ, λs) ns(λs) dλs

=
[
(T̂fibril ◦ h)(λ, λs) N (λs)

]λs=λ

λs=λmin

−
∫ λ

λmin

∂(T̂fibril ◦ h)
∂λs

(λ, λs) Ns(λs) dλs. (3.55)

For λs = λmin, the cumulative function vanishes, i.e., Ns(λmin) = 0 and, for λs = λ, the
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stress is zero because λe = 1, i.e., Tfibril(λ/λ) = 0. Therefore, Equation (3.55) reduces to

T̂n(λ) =
∫ λ

λmin
(T̂fibril ◦ h)(λ, λs) ns(λs) dλs

= −
∫ λ

λmin

∂(T̂fibril ◦ h)
∂λs

(λ, λs) Ns(λs) dλs, (3.56)

which shows that the model by Hurschler et al. (1997) is equivalent to our generalisation

proposed in (3.50) of the model by Martufi and Gasser (2011).
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Chapter 4

Fibre Damage Constitutive Model

In this chapter, we intend to construct a damage model from the constitutive relation pro-

posed in Section 3.10, Equation (3.50), and to prove that this damage model is equivalent to

that by Hurschler et al. (1997). The damage model that we propose follows the assumption

made on the progressive recruitment of the fibrils when the fibre is stretched, and describes

the failure of the collagen fibre via the progressive failure of the fibrils. Although we follow a

different approach to construct our damage model, the underlying assumptions are identical

to those made by Hurschler et al. (1997) in their model. With an approach similar to that

followed for the case of recruitment, we proceed in steps and study the failure kinematics,

probability distribution and evaluation of the stress.

4.1 Constitutive Assumptions and Consequences on the Kinematics

Since all fibrils are assumed to have the same mechanical properties, it is reasonable to

also assume that each fibril fails at the same elastic failure stretch, called λf , evaluated with

respect to the straightened configuration Cs. So, for a fibril that gets completely straight at a

certain straightening stretch λs, the failure stretch evaluated from the reference configuration

C is λfλs, as depicted in Figure 4.1.

�s

CfC Cc

�f

Figure 4.1: Recruitment and failure of a typical fibril; Cf and λf are the configuration and stretch,
respectively, at which the fibril fails.

In order to look at fibril failure in the three-dimensional picture, let us recall that the
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straightening deformation Fs consists of a pure stretch ‖FsM‖ = λs in the referential

direction M of the fibril, and let us consider the “intermediate” direction

µ = 1
λs
FsM , (4.1)

which is parallel to M by construction, according to the matrix representation in Equa-

tion (3.2) (provided that the bases {EA}3
A=1 in the reference configuration and {εα}3

α=1 in

the intermediate configuration are chosen to be coaxial). Failure is attained at all those

elastic deformations Fe such that

‖Feµ‖ = λf . (4.2)

4.2 Failure Probability

The failure of fibrils can be described similarly as their recruitment, which is based on the

probability density function ns. Since the fibrils straighten orderly following the probability

density function ns, they also fail in the same order. The failure process begins at λfλmin,

as the fibril that stretched first (at λmin) reaches its failure stretch. The fibrils will fail

progressively until all of them have failed, which corresponds to λfλmax . At this point, the

stress must equal zero, since there no fibril is capable of bearing any load.

The probability density function nf describing the failure of fibrils is constructed similarly

to the straightening probability ns, and is in fact related to it by

nf (λs) = ns(λfλs). (4.3)

Basically, we obtain the failure probability nf by transforming (to be precise, by uniformly

stretching, by a factor λf ) the domain of the straightening probability ns from [λmin, λmax ] to

[λminf , λmaxf ]. In order to calculate the stress at a given λ > λminf = λfλmin, we need a way

to exclude the failed fibrils from the fraction of recruited fibres. At a given stretch λ, the

fraction of failed fibres is given by the area subtended by nf in the interval ]λminf , λ]. These

failed fibrils have been recruited in the interval ]λmin, λ/λf ], and must be “deducted” from
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the area subtended by ns in the interval ]λmin, λ], as shown in Figure 4.2. This is equivalent

to defining the “transformed” distribution

nsf (λ, λs) =



0, ∀λ ∈]0, λminf ], (4.4a)

0, ∀λ ∈]λminf ,+∞[ and ∀λs ∈]λ/λf ,+∞], (4.4b)

ns(λs), ∀λ ∈]λminf ,+∞[ and ∀λs ∈]0, λ/λf ], (4.4c)

depending on λ and λs. The stretch λ is the stretch actually attained by the fibre and, in the

definition of nsf , serves solely as the parameter determining the stretch λ/λf below which

the fibrils have failed, whereas λs is the straightening stretch, which is again used as the

integration variable. Figure 4.2 illustrates nsf for an arbitrary λ. The cumulative function

of nsf is obtained by integration in λs, as

Nsf (λ, λs) =
∫ λs

λmin
nsf (λ, t) dt. (4.5)

It is worth mentioning that the cumulative function Nsf represents the area subtended by

λminλ/λf λmax λminf λ λmaxf

nf

ns

λs

Pr
ob

ab
ili
ty

Fu
nc
tio

n

Figure 4.2: The portion of the graph of ns subtending the red triangular area is the non-zero
portion of the graph of nsf .

the graph of nsf for a given value of the actually attained stretch λ. The cumulative function

Nsf is needed to derive the “loss” of stress due to the failed fibres in a way analogous to how

the recruitment cumulative function Ns is used to evaluate the stress Pf of the recruited
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fibres, i.e.,

T̂f (λ) =
∫ λ

λmin
−Nsf (λ, λs)

∂(T̂fibril ◦ h)
∂λs

(λ, λs) dλs. (4.6)

Thus, the actual stress in the damaged fibre can be expressed as

T̂ (λ) = T̂n(λ)− T̂f (λ). (4.7)

The cumulative function is

Nsf (λ, λs) =



0, ∀λ ∈]0, λminf ], (4.8a)

Ns(λs), ∀λ ∈]λminf ,+∞[ and ∀λs ∈]0, λ/λf ], (4.8b)

Ns(λ/λf ), ∀λ ∈]λminf ,+∞[ and ∀λs ∈ [λ/λf ,+∞[. (4.8c)

Therefore we can split the integration interval of T̂f of Equation (4.6) into two intervals,

[λmin, λ/λf ] and ]λ/λf , λ], and obtain:

T̂f (λ) =
∫ λ/λf

λmin
−Ns(λs)

∂(T̂fibril ◦ h)
∂λs

(λ, λs) dλs +

+
∫ λ

λ/λf

−Ns(λ/λf )
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs. (4.9)

Thus T̂ (λ) can be written as:

T̂ (λ) =
∫ λ

λmin
−Ns(λs)

∂(T̂fibril ◦ h)
∂λs

(λ, λs) dλs −

−
∫ λ/λf

λmin
−Ns(λs)

∂(T̂fibril ◦ h)
∂λs

(λ, λs) dλs −

−
∫ λ

λ/λf

−Ns(λ/λf )
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs. (4.10)

We notice that the difference of the first two integrals in Equation (4.10) can be expressed

as the integral from λ/λf to λ , i.e.,

T̂ (λ) =
∫ λ

λ/λf

−Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs −

−
∫ λ

λ/λf

−Ns(λ/λf )
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs (4.11)
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Furthermore, we can solve directly the last integral and obtain

T̂ (λ) =
∫ λ

λ/λf

−Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs +

+
[
Ns(λ/λf )(T̂fibril ◦ h)(λ, λs)

]λs=λ

λs=λ/λf

=
∫ λ

λ/λf

−Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs +

+Ns(λ/λf )
[
(T̂fibril ◦ h)(λ, λ)− (T̂fibril ◦ h)(λ, λ/λf )

]
. (4.12)

Therefore, since (T̂fibril ◦ h)(λ, λ) = T̂fibril(1) = 0 and (T̂fibril ◦ h)(λ, λ/λf ) = T̂fibril(λf ), we

finally obtain the first Piola-Kirchhoff stress in the damage model as

T = T̂ (λ) =
∫ λ

λ/λf

−Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs −Ns(λ/λf )T̂fibril(λf ). (4.13)

4.3 Equivalence with the Damage Model by Hurschler et al. (1997)

Now we show that the expression obtained in (4.13) is in fact identical to that proposed by

Hurschler et al. (1997). Using integration by parts, we have

T̂ (λ) =
∫ λ

λ/λf

ns(λs)(T̂fibril ◦ h)(λ, λs) dλs

=
[
Ns(λs)(T̂fibril ◦ h)(λ, λs)

]λs=λ

λs=λ/λf

−
∫ λ

λ/λf

Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs

=
∫ λ

λ/λf

−Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs −Ns(λ/λf )T̂fibril(λf ), (4.14)

and thus Equation (4.14) and Equation (4.13) are identical.

It is noteworthy that we constructed the damage model for generalisation of the model

by Martufi and Gasser (2011) independently from Hurschler et al. (1997). However, since

both the damage model by Hurschler et al. (1997) and ours are based on the assumption

that all fibrils fail at the same stretch λf calculated from the straightened configuration,

they yield identical results. There is, however, a conceptual difference.

The damage model by Hurschler et al. (1997) is in fact quite straightforward to imple-

ment, as it simply requires the modification of the lower limit of integral (compare Equa-
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tions (3.54) and (4.14)), which intuitively is a likely physical description of the damage

mechanism. In contrast, the approach that we introduce in Section 4.2 is, in a way, more

mathematical, in that it explicitly defines a failure probability distribution, which is ob-

tained by uniformly stretching the support [λmin, λmax ] of the recruitment distribution into

the support [λminf , λmaxf ] of the failure probability distribution. The equivalence of the two

approaches is clear when the failure stretch λf is constant. Our approach, however, sug-

gests a greater flexibility in the definition of the damage mechanism. Indeed, a different

mechanism would be represented by a non-uniform stretch of the support of the straight-

ening probability, performed by a smooth monotonic function ϕ. In the approach used by

Hurschler et al. (1997), this would be obtained by replacing the lower extremum λ/λf of the

integral in Equation (4.14) by ϕ(λ), but this would be less intuitive.

4.4 Unloading Following Damage

Following the same line of thought, we can construct a constitutive equation for the stress

in unloading. In order to describe unloading, we must account for the fact that, when

unloading from a stretch λu > λminf = λfλmin the fibrils that have already failed must

be disregarded and that no further fibrils fail during unloading. This can be achieved by

defining the unloading probability density (see Figure 4.3)

nu(λs, λu) =


0, ∀λ ∈ [λmin, λu/λf [, (4.15a)

ns(λs), ∀λ ∈ [λu/λf , λu], (4.15b)

which gives the cumulative probability

Nu(λs, λu) =



0, ∀λ ∈]0, λu/λf ], (4.16a)

Ns(λs)−Ns(λu/λf ), ∀λ ∈]λu/λf , λu], (4.16b)

Ns(λs), ∀λ ∈]λu,+∞[. (4.16c)

Now we can introduce the stress in the unloading stage as

T̂ (λ, λu) =
∫ λ

λmin
−Nu(λs, λu)

∂(T̂fibril ◦ h)
∂λs

(λ, λs) dλs. (4.17)
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Considering (4.16a), we can replace the lower limit of the integral in (4.17) by λu/λf . More-

over, since we only consider the unloading case, we assume that λs ∈]λu/λf , λu]. Thus we

replace Nu(λs, λu) in (4.17) with the expression of (4.16b) and obtain

T̂ (λ, λu) =
∫ λ

λu/λf

−
[
Ns(λs)−Ns(λu/λf )

]
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs, (4.18)

which, by virtue of the linearity of the integral operator, becomes

T̂ (λ, λu) =
∫ λ

λu/λf

−Ns(λs)
∂(T̂fibril ◦ h)

∂λs
(λ, λs) dλs

+Ns(λu/λf )
[
T̂fibril(λ/λs)

]λs=λ

λs=λu/λf

=
[
T̂n(λ)− T̂n(λu/λf )

]
−Ns(λu/λf ) T̂fibril(λλf/λu). (4.19)

We note that, if we replace λu by λ in Equation (4.19), we recover the case of monotonic

loading described by Equation (4.13).

λminλu/λf λmax λminf λu λmaxf

nf

nu

λ
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Figure 4.3: The probability density nu is defined as the complementary portion of the area
subtended by ns representing the failed fibrils (from λmin to λu/λf ).

4.5 Sensitivity to the Recruitment and Damage Parameters

Here, we discuss the sensitivity of the proposed model to the anelastic parameters λf and

λu by means of a numerical example. The choice of the parameter λf can affect the model
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significantly, not only in terms of the values taken by the stress, but also of the overall damage

behaviour, since it affects how recruitment and failure of fibrils, which are the two bases of

this constitutive model, interact. As stated before, the progression of damage initiates at

λminf = λfλmin. Depending on the values of λmin, λmax and λf , the failure of fibrils can

initiate either while not all fibrils have been recruited yet (λfλmin = λminf < λmax), or after

all fibrils have been recruited (λfλmin = λminf > λmax). The first scenario corresponds to an

overlap between the supports of the recruitment and the failure probabilities (Figure 4.4a),

and the second scenario corresponds to non-overlapping supports (Figure 4.4b).
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(b) non overlapping

Figure 4.4: Different cases of damage distribution function.

Let us demonstrate the change in the stress-stretch curve depending on the value of λf ,

for fixed λmin and λmax , by means of an example. The values for k, λmin and λmax are taken

from the work by Martufi and Gasser (2011). For the scenario with overlap of the supports

(Figure 4.4a), three values were selected for λf , whereas for the scenario with no overlap
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of the supports (Figure 4.4b), one value has been chosen. All parameters are reported in

Table 4.1.

Parameter value
λmin 1.045
λmax 1.117
k [MPa] 63
λf (overlapping, as in Fig. 4.4a) 1.03
λf (overlapping, as in Fig. 4.4a) 1.04
λf (overlapping, as in Fig. 4.4a) 1.06
λf (non overlapping, as in Fig. 4.4b) 1.10

Table 4.1: Values of the parameters in our numerical example.

Figure 4.5 demonstrates the change in the stress-stretch curve, for varying λf . The stress

changes significantly as the value of λf increases. The other notable point is that, for lower

values of λf , the curve is more symmetric. For λf = 1.10, which corresponds to the scenario

with non-overlapping supports as depicted in Figure 4.4b, the curve is fairly linear before the

maximum, as all the fibrils are engaged for a certain interval of stretch, before the damage

process initiates.
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Figure 4.5: Stress-stretch curve for different values of the failure stretch λf .

Figure 4.6 shows the stress-stretch curve for unloading, in the scenario with no-overlap

in supports depicted in Figure 4.4b, for various values of λu. When the fibre is unloaded
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after having reached the stretch λu, the stress returns to zero at λu/λf , because the fibrils

with λs ≤ λu/λf have all failed. When the fibre is being reloaded, the stress-stretch curve

coincides with the unloading curve T̂u(λ) for λ < λu and with the curve of T̂ (λ) for λ ≥ λu,

as the damage initiates again at λu, in precisely the same way as the simple loading case.

Although no properly called plastic mechanism has been prescribed at the fibril level, the

curves show a “plastic” effect, in the sense that the reference stretch is not recovered.
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Figure 4.6: Stress-stretch curve for at different values of the stretch λu at which unloading begins.
The black curve has no unloading, as λu coincides with the ultimate failure stretch λmaxf .
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Chapter 5

Finite Element Implementation

The fibre model has been implemented in the Finite Element package FEAP (Taylor, 2007),

using our previously reported framework (Federico and Gasser, 2010), which is capable to

also account for statistical fibre orientation. To this end, a quasi-incompressible formula-

tion, based on the mixed Q1P0 finite element (Simo and Taylor, 1991), was followed. We

considered a composite comprised of a (soft) matrix phase, denoted by the subscript 0, and

a statistically oriented fibre phase, denoted by the superscript 1, and incorporated follow-

ing the general theory of fibrous tissue (e.g., Lanir, 1983). The matrix is mainly required

to regularise the otherwise possibly ill-conditioned fibrous tissue model. The orientation of

the collagen fibres is assumed to be described by a probability distribution function Ψ, nor-

malised to unity over the material unit sphere (i.e., the set of all possible directions passing

by a given material point). The overall second Piola-Kirchhoff stress is assumed to be given

by the integral

S = S0 +
∫
A

Ψ(M) S1 dS, (5.1)

whose complexity requires a numerical evaluation. In Equation (5.1), the volumetric fractions

of matrix and fibres are thought to be lumped into the stresses as multiplicative coefficients,

and the integral is performed over A, i.e., the subset of the material unit sphere of all direc-

tionsM such that a collagen fibre parallel toM is under extension at a given deformation,

i.e., C : (M ⊗M) ≥ 1.

5.1 Matrix and Fibre Constitutive Equations

The strain energy of the matrix is assumed to be neo-Hookean, i.e.,

W0 = Ŵ0(C̄) = 1
2 µ0 (I1(C̄)− 3), (5.2)
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with I1(C̄) = Tr(C̄) = GAB C̄AB denoting the first invariant of the isochoric right Cauchy-

Green deformation C̄ = F̄ T gF̄ ≡ F̄ T .F̄ (which is the isochoric pull-back of the metric

tensor g), where the trace Tr is taken with respect to the regular (inverse) material metric

tensor G−1 (Federico, 2012), and the isochoric deformation gradient is F̄ = J−1/3F (Flory,

1961).

Using the first Piola-Kirchhoff stress T̂1 ≡ T̂ for a fibre given in Equation (4.13), the

corresponding second Piola-Kirchhoff stress is

S1 = F−1T1 = λ−1T1M ⊗M = ‖FM‖−1T̂1(‖FM‖)M ⊗M , (5.3)

where, as usual, λ = ‖FM‖. Consequently, the deviatoric second Piola-Kirchhoff stress

Dev∗(S) of the collagen fibre reinforced tissue reads

Dev∗(S) = J−2/3µ0 Dev∗(G−1)

+ J−2/3
∫
A

Ψ(M) ‖FM‖−1T̂1(‖FM‖) Dev∗(M ⊗M) dS. (5.4)

In Equation (5.4), Dev∗( · ) = ( · ) − 1
3 Tr∗( · )C−1 denotes the pulled-back material deviator

operator, with the pulled-back trace Tr∗( · ) calculated with respect to C, i.e., Tr∗(S) = C :

S = CAB S
AB (Federico, 2012), which is the pull-back of the spatial metric tensor g (i.e.,

C = χ∗g = F Tg F ≡ F T .F ), and M is the unit direction vector of the generic collagen

fibre in the reference configuration.

For an efficient FE implementation, Equation (5.4) is pushed-forward, defining the iso-

choric Kirchhoff stress

dev(τ ) = F [Dev∗(S)]F T

= J−2/3µ0 dev(b)

+ J−2/3
∫
A

Ψ(M) ‖FM‖−1T̂1(‖FM‖) dev(FM ⊗ FM) dS. (5.5)

where dev( · ) = ( · )− 1
3 tr( · ) g−1 is the regular spatial deviator operator (where the inverse

metric g−1, with components gab, serves as the “contravariant unit tensor”) and b denotes the
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left Cauchy-Green deformation tensor. The corresponding elasticity tensor can be obtained

as outlined in previous works (Gasser et al., 2006; Federico and Gasser, 2010; Federico, 2012).

In order to track the state of damage of an individual collagen fibre, the highest stretch

λ previously experienced by the fibre is stored as a history variable at the corresponding

integration point.

5.2 Regularisation

In order to ensure FE mesh-independent results, it is usual for smeared fracture models (see

Oliver, 1996; Oliver et al., 1999; Comellas et al., 2016) to relate the fracture energy Gfr to

a characteristic length scale, through a relation of the type G?fr = Gfr/ξ, where ξ is a non-

dimensional parameter related to the characteristic length scale. We used ξ = Lmesh/Lloc for

such a length-scale parameter. Here, Lmesh = V
1/3

GP represents the FE mesh-related length

scale with VGP denoting the partial volume of the finite element that is allocated to the

Gauss point (integration point) at which the constitutive model is evaluated. In addition,

Lloc is thought to be a material property and represents the length within which the collagen

fibre exhibits localisation during failure. Since our constitutive description does not directly

give the fracture energy Gfr to prescribe the stress-strain properties of the collagen fibre, we

used an alternative implementation of this regularisation concept. Specifically, at a given

stretch λ, we used

P ? = T̂ ?(λ) = T̂ (λ)
ξ

, K? = K̂?(λ) = K̂(λ)
ξ

, ∀K(λ) < 0, (5.6)

to relate the first Piola-Kirchhoff stress T̂ (λ) and the related stiffness K = K̂(λ) = (dT̂/dλ)(λ)

of the collagen fibre to the length-scale parameter ξ.

Using the change of variable λ = s+ λ0, the fracture energy reads

Gfr =
∫ +∞

λ0
T̂ (λ) dλ =

∫ +∞

0
T̂ (s+ λ0) ds. (5.7)
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Introducing the stretch λ0 at the point of localisation (i.e., the point at which K̂(λ0) =

(dT̂/dλ)(λ0) = 0 holds), using integration by parts and noting that
[
T̂ (s+λ0) s

]+∞
0

= 0, we

obtain

Gfr = −
∫ +∞

0
K̂(s+ λ0) s ds < 0. (5.8)

Due to the linearity of the integral operator, it is equivalent to use the condition K? = K/ξ

in place of G?fr = Gfr/ξ, which is widely employed (Oliver, 1996; Oliver et al., 2002; Comellas

et al., 2016) to ensure FE mesh-independent results.

5.3 Example: Human Achilles Tendon

In order to explore the basic mechanisms of the proposed constitutive model and to demon-

strate its Finite Element implementation, we considered a uniaxial tension test on a segment

of an Achilles tendon.

The orientation of the collagen fibres within the tendon is assumed to be described by

the transversely isotropic von Mises distribution

Ψ(M) = Ψ(M (Θ,Φ)) = ρ(Θ) = 1
π

√
b

2π
exp[b(cos(2Θ) + 1)]

erfi(
√

2b)
, (5.9)

where Θ is the angle with respect to the axis of symmetry of the distribution (Gasser et al.,

2006; Federico and Gasser, 2010), b is the concentration parameter specifying the distribution,

and erfi(x) = −i erf(i x) denotes the imaginary error function at x. For our example, we

chose a value of the concentration parameter b = 2.0, reflecting a fairly coherent alignment of

the fibres along the tendon’s axis observed in tendons (Thomopoulos et al., 2003). Although

this reflects the qualitative collagen fibre distribution in tendons, detailed quantitative data

was not considered in the present computation.

The tendon tissue was treated as a residual stress-free pure solid (i.e., the fluid phase was

neglected). The neo-Hookean parameter µ0 = 1.0 MPa represents the matrix within which

the collagen fibres are embedded. The fibres have been modelled with the fibril constitutive
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equation (3.35), with a fibril stiffness of k = 33.6 MPa, and the Tfibril-λ fibre constitutive

equation (3.43), which is suitable for the general compressible case, although the overall

incompressibility of the model was enforced. The recruitment probability distribution was

triangular, with lower and upper extrema λmin = 1.02 and λmax = 1.12, respectively. The

collagen fibrils were assumed to have a failure stretch λf = 1.1. Finally, localisation was

assumed to occur over a length Lloc = 2.0 mm around the theoretical point of failure on the

collagen fibre. Again, these constitutive properties are plausible estimates rather than data

from particular experimental studies. The integral in Equation (5.5) was solved by means

of a spherical t-design, with t = 21, involving 240 integration points (Hardin and Sloane,

1996).

Parametrised computational grids of an Achilles tendon segment were generated with

dimensions as in Figure 5.1. The segment showed a clear neck, to control the onset of tissue

failure. The segment’s bottom face was fixed, and at its top face the axial displacement u

was prescribed such that it increased linearly to the value of 4.5 mm. Then, the stress state

was computed at increments of ∆u of the prescribed displacement. In order to overcome

unstable failure propagation when exceeding the localisation limit, a small degree of viscous

behaviour has been introduced at each finite element node. The arising first order transient

problem is then solved with the (implicit) Newmark method, and the linearised system of

equations is then solved. Simultaneously, tissue incompressibility was enforced by a penalty

energy potential, and the associated penalty parameter (bulk modulus) has been updated

by a nested loop at each displacement increment ∆u (Uzawa scheme, see Simo and Taylor,

1991).

The computed load-elongation curves for different computational grids are shown in Fig-

ure 5.1, illustrating how mesh convergence is obtained already with the 480-element mesh.

In particular, the coefficient of variation (ratio of standard deviation over average) in the

peak stress for the 480-, 1120- and 6400-element meshes is below 1.3%. The curves shown
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in Figure 5.1 were computed with the general compressible Tfibril-λ fibre constitutive equa-

tion (3.43), but since the computation enforces incompressibility, the curves are very close

also for the incompressible σfibril-λ fibre constitutive equation (3.49) shown in 3.9. Figure 5.2

shows the deformed configuration post-localisation for the 6400-element mesh. As shown in

Figure 5.1, when exceeding localisation, the stress does not drop completely, but recovers

at about two thirds of the maximum. This can be explained by the rotation of still intact

collagen fibres in the localised elements towards the loading direction: these intact fibres

contribute to supporting the tissue.

The behaviour illustrated in Figure 5.1 is consistent with published experimental data.

Eliasson et al. (2013) tested rat Achilles tendons and reported a representative load-displacement

curve (which, up to multiplicative constants, is equivalent to a plot of the first Piola-Kirchhoff

stress versus the stretch) in their Figure 2. Given the difference in tendon size (rat versus

human), we did not attempt to fit our model to their curve. Nonetheless, the behaviour

of the curve is remarkably similar. Eliasson et al. (2013) applied a small preload to their

sample, as it can be seen from the non-zero load at zero displacement, and thus they have a

shorter toe region. However, the J-shape of the curve, the peak, the subsequent drop due to

damage and the residual load bearing found by Eliasson et al. (2013) are represented faith-

fully by our model (Figure 5.1). The failure values of the first Piola-Kirchhoff stresses and

stretches that we obtained are quite close to those obtained experimentally by Wren et al.

(2001) in their tests on human Achilles tendons, although we have only roughly attempted

to fit their results, by calibrating the stiffness k of the collagen fibrils in the constitutive

equation (3.35).
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Figure 5.1: Effect of the mesh refinement on the diagram of the first Piola-Kirchhoff stress
(evaluated at the narrowest cross-section) versus stretch for the simulated tensile test on an Achilles
tendon. The plot shows the average first Piola-Kirchhoff stress, evaluated as total force over
undeformed minimal cross-sectional area.

Figure 5.2: Formation of the localisation when exceeding the peak load for the 6400-element
mesh. The material parameter Lloc determines the width of the localisation zone, in order to
ensure mesh-independent results.
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Chapter 6

Uniformity Theory and Growth-Remodelling

In this chapter we discuss the material evolution theory from the perspective of the theory

of material uniformity, as introduced by Noll (1967) and extensively studied by Epstein and

Elzanowski (2007). We introduce the balance laws for a uniform simple material, within the

framework of Epstein and Maugin (2000), and then we build a constitutive structural model

for the remodelling of a fibre-reinforced composite material, which can be used to represent

the arterial wall tissue.

Given the extreme complexity of living matter and of the mathematics that is necessary to

model it, it is not surprising that the physical and continuum mechanical treatment of growth

and remodelling is still in the development stage. Broadly speaking, growth and remodelling

can be studied as anelastic phenomena. Anelastic processes, the most “classical” example

of which is probably plasticity, are accompanied by a change in microstructure, resulting

in configurational forces and residual stresses (e.g., Hoger, 1997; Gurtin, 2000). Phenomena

such as plasticity occur at constant mass, while biological tissues not only experience a

change in microstructure, but also an increase (growth) or decrease (resorption) of mass. In

addition, living matter can adapt to its environment, which is in many cases in contrast with

the classical postulation of the second law of thermodynamics (Cowin and Hegedus, 1976;

Epstein and Maugin, 2000).

This study is mainly based on the theoretical framework of Epstein and Maugin (1990),

Epstein and Maugin (2000) and Epstein and Elzanowski (2007) and the numerical example

presented in Grillo et al. (2015). In the next sections, we discuss the theoretical framework

that our study lies upon.
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6.1 Balance Laws for Growing Bodies

In this section we briefly discuss the balance laws for a growing body, in the framework

introduced by Epstein and Maugin (2000) and Epstein and Elzanowski (2007) and in our

notation.

The integral form of the equation of balance of mass reads

∂t

∫
R
ρR =

∫
R

Π +
∫
∂R
MN , (6.1)

where ρR represents referential mass density, Π is the mass source density per unit referential

volume andM is the mass flux density per unit referential area and R is an arbitrary closed

region in the reference. The local form of the balance of mass is expressed as

ρ̇R = Π + DivM (6.2)

Rigorously speaking, the balance of linear momentum should deal with covector quan-

tities. However, since we have adopted the convention according to which the Cauchy

stress and the first Piola-Kirchhoff stress are “contravariant”, i.e., have components σab

and T aB = J σab (F−1)Bb, we have to also treat forces as vectors, and we shall actually write

the balance of what, in Newton’s words, is called quantitas motus, i.e., the product of the

mass by the velocity, whose spatial density is ρv and whose material density is ρR χ̇ (where

χ̇ is the Lagrangian velocity, such that v(x, t) = χ̇(X, t)). We allow ourselves an abuse of

terminology, and we continue to speak of linear momentum. Thus, we write

∂t

∫
R
ρR χ̇ =

∫
R

[f + Π χ̇+ z] +
∫
∂R

[T + χ̇⊗M +K]N , (6.3)

where f is body force per unit referential volume, Π χ̇ is the rate of momentum brought

about by the volumetric growth, z represents irreverisble momentum rate, χ̇ ⊗M is the

momentum flux associated with the mass flux and K is the irreverisble momentum flux. It

should be noted that the ireversible momentum rate z(X, t) and momentum flux K(X, t)

represent the momentum of growing mass that enter region R at point X with a velocity
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different from the velocity χ̇(X, t) of the continuum at X (for more details, see Epstein and

Elzanowski, 2007). The localised balance of momentum is

∂t(ρR χ̇) = f + Π χ̇+ z + Div(T + χ̇⊗M +K). (6.4)

Denoting the Lagrangian position vector by r(X, t) ≡ χ(X, t) − XO, where XO is the

point with respect to which moments are evaluated, the balance of angular momentum reads

∂t

∫
R
r × (ρR χ̇) =

∫
R
r × [f + Π χ̇+ z] +

∫
∂R
r ×

[
[T + χ̇⊗M +K]N

]
, (6.5)

Localising, and using the balance of mass and the balance of linear momentum, we obtain

the symmetry of the modified stress T̃ = T + χ̇⊗M +K, i.e.,

T̃ F T = F T̃ T . (6.6)

The integral form of the balance of energy is

∂t

∫
R

(1
2 ρR χ̇ . χ̇+ ρR E) =

∫
R

(1
2 Π χ̇ . χ̇+ Π E + f . χ̇+H + U + z .χ̇)

+
∫
∂R

[χ̇ . (T +K) + (E + 1
2 χ̇ . χ̇)M +Q]N , (6.7)

where the internal energy per unit mass is denoted by E , the rate of non-mechanical energy

supply per unit mass is denoted by H, the non-compliant rate of volumetric internal energy

is denoted by U and Q = J q ◦ (χ, τ)F−T denotes the material heat flux. The local form of

Equation (6.7) takes the form

∂t
(

1
2ρR χ̇ . χ̇+ ρR E

)
= 1

2 Π χ̇ . χ̇+ Π E + f . χ̇+H + U + z.χ̇+

+ Div
[
χ̇ . (T +K) + (E + 1

2 χ̇ . χ̇)M +Q
]
. (6.8)

Finally, we need to consider, as a unilateral constraint, the Clausius-Duhem inequality,

stating the integral form of the Second Principle of Thermodynamics, i.e.,

∂t

∫
R
ρR S ≥

∫
R

[
ΠS + (H + U + Z)

Θ

]
+
∫
∂R

[
Q

Θ + SM
]
N , (6.9)
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where S represents the entropy per unit referential mass, Θ is the absolute temperature

and Z is the volumetric source of non-compliant entropy. Its localised counterpart can be

expressed as:

Θ ∂t(ρR S) ≥ Π ΘS +H + U + Z −
( 1

ΘGrad Θ
)
Q+ DivQ+ Θ (GradS)M + ΘS DivM .

(6.10)

Now, by using the mass balance (6.2) and the energy balance (6.8), we obtain

ρRΘ Ṡ ≥ ρR Ė − [g (T +K)] : Ḟ + Z −
( 1

ΘGrad Θ
)
Q− (Grad E −Θ GradS)M . (6.11)

It is customary to write the entropy inequality in terms of the Helmholtz free energy per

unit mass, defined by

A = E −ΘS. (6.12)

Noting that its time derivative of which is

Ȧ = Ė − Θ̇S −Θ Ṡ, (6.13)

and substituting into Equation (6.11) the entropy inequality the form

−ρRȦ− ρRS Θ̇−Z + [g (T +K)] : Ḟ +
( 1

ΘGrad Θ
)
Q+ (Grad E −ΘGradS)M ≥ 0.

(6.14)

For simplicity, we shall assume to have zero mass flux, i.e., M = 0, and zero non-

compliant terms, i.e., z = 0, K = 0, U = 0 and Z = 0. Thus, the balance equations and

the entropy inequality reduce to

ρ̇R = Π, (6.15a)

ρR g φ̈ = f + DivT , (6.15b)

T F T = F T T , (6.15c)

ρR Ė = (g T ) : Ḟ +H + DivQ, (6.15d)

0 ≤ −ρRȦ− ρRS Θ̇ + (g T ) : Ḟ +
( 1

ΘGrad Θ
)
Q. (6.15e)
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These are identical to the standard equations in the absence of growth, except for the volu-

metric source of mass Π in the right-hand side of the balance of mass. Note that the balance

of angular momentum reduces to the standard one (with the symmetry of the standard

Kirchhoff stress τ = TF T , with components τab = T aB F b
B), since the Piola-like stress T̃

reduces to the standard first Piola-Kirchhoff stress T .

6.2 Uniformity Theory for First Grade Materials

As mentioned above, growth and remodelling can be studies as anelastic phenomena, which

in turn can be tackled by means of a variety of approaches. The approach that we follow here

is based on the theory of uniformity, originally introduced by Noll (1967), in the formulation

of Epstein and Maugin (1990). Below, we briefly discuss the history of this mathematical

framework of material uniformity and then provide the basic definitions.

The notion of simple material is introduced by Noll (1958), using the principles of material

objectivity and determinism of stress. Later, Noll (1967) introduced the concept of mate-

rial uniformity, defined as an isomorphism between the tangent spaces of material points.

Noll (1967) distinguished the material uniformity from the material homogeneity explicitly.

The postulated notion of uniformity enables us to construct uniform materials with inhomo-

geneities which leads to the theory of continuous distribution of dislocations in continuum

bodies. The theory of continuous dislocations is studied in the pioneering work of Wang

(1967) and Wang and Bloom (1974), even though the idea had been introduced before by

other scholars (Bilby et al., 1955; Kondo, 1958). Wang (1967) postulated the theory without

admitting a global parallelism, as previously assumed by Noll (1967).

The theory of material uniformity concerns with one simple, yet not so trivial question.

Considering, two points X1 and X2 in the body B, we want to know if they are made of the

same material. If we look at the microscopic structures, surrounding two materially uniform

points, we might not see similar pictures, as one might have been distorted or rotated,
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in a different manner, thus we need to distort the pictures accordingly to achieve identical

pictures. In other words, the notion of uniformity in this context is somehow indifferent with

respect to the affine transformation of two arbitrary material points. From the mathematical

point of view, one can establish amaterial isomorphism as follows. Suppose to have an elastic

material with elastic potential W (X, t) = Ŵ (F (X, t), X) depending explicitly on the point

and let two material points, X1 and X2, be materially isomorphic. Then there exists a non-

singular linear map P12(t) : TX1B → TX2B such that, for any admissible deformation F , we

have:

Ŵ (F (X1, t)P12(t), X1, t) = Ŵ (F (X2, t), X2, t). (6.16)

It is of fundamental importance to note that the material isomorphism is an equivalence

relation, since it is symmetric, reflexive and transitive (Epstein and Elzanowski, 2007). Thus,

one can can define an archetypical vector space A ≡ R3, called precisely the archetype, and a

tensor field P ( · , t) such that P (X, t) : A → TXB is an isomorphism. The tensor field P ( · , t)

is called the uniformity field, and the isomorphism P12(t) of Equation (6.16) is obtained as

P12(t) = P (X2, t)P−1(X1, t), (6.17)

and the elastic potential can be written

W (X, t) = Ŵ (F (X, t), X, t) = J−1
P W̌ (F (X, t)P (X, t)), (6.18)

where W̌ is the elastic potential in the archetype, and J−1
P comes from the theorem of the

change of variables (Epstein and Maugin, 1990). The concept is illustrated in Figure 6.1.

For later use, we find the relation between the uniformity field P and the mass source Π

featuring in the simplified balance of mass (6.15a), for the case of a growing uniform body.

Because of the uniformity, there is a value ρA of the mass density, called archetypal mass

density, such that

ρA = JP ρR. (6.19)
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Figure 6.1: The uniformity field and its relation to the material isomorphism between two points
X1 and X2.

Since ρA is a constant and the simplified balance of mass (6.15a) gives ρ̇R = Π, if we

differentiate Equation (6.19) with respect to time, we obtain

0 = J̇P ρR + JP ρ̇R = JP P
−T : Ṗ + JP Π, (6.20)

from which

ρ̇R = Π = −P−T : Ṗ , (6.21)

If we define, by analogy with the velocity gradient l = Ḟ F−1, the inhomogeneity deformation

rate as

LP = ṖP−1, (6.22)

we have that P−T : Ṗ = Tr(ṖP−1) = Tr(LP ) and, therefore

ρ̇R = Π = −Tr(LP ), (6.23)

We can also define the P -pull-back of LP as

ΛP = P−1LP P = P−1Ṗ , (6.24)

and, by virtue of the properties of the trace, Equation (6.23) has the alternative form

ρ̇R = Π = −Tr(ΛP ). (6.25)
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6.3 The General Recruitment Model

In the first part of this thesis (Chapters 3, 4 and 5), we proposed a framework for recruitment

and damage of collagen fibrils within a collagen fibre. Here, we are interested in exploring

the recruitment of a whole fibre from the point of view of the theory of uniformity.

Before getting to fibre recruitment, let us start by writing the elastic potential for a

general fibril recruitment model as

Ŵ (F (X), X) =
∫
R+

∫
S2

XB
Ŵfib(F (X), λs(M(X)),M (X)) R(λs(M (X)),M(X)), (6.26)

where the function R(λs(M ),M ) is the density orientation function that basically gives the

population of the fibril with straightening stretch of λs along M direction. This function

has the two important properties
∫
R+

∫
S2

XB
R(λs(M),M) = 1, (6.27)

R(λs(M ),M ) = R(λs(−M ),−M). (6.28)

If we assume that the waviness of the fibrils does not depend on the direction, we can

multiplicatively decompose R(λs(M),M) as

R(λs(M ),M ) = ns(λs) Ψ(M ), (6.29)

where ns(λs) and Ψ(M) have the properties
∫
S2B

Ψ(M ) dS = 1, Ψ(M ) = Ψ(−M ), (6.30)∫
R+

ns(λs) dλs = 1. (6.31)

In this case, the elastic potential becomes

Ŵ (F (X), X) =
∫
R+

∫
S2

XB
Ŵfib(F (X), λs(X),M(X)) Ψ(M (X)) ns(λs(X)) dλs. (6.32)

Since in this part of the thesis we focus on remodelling and material evolution, we assume,

for simplicity, that the recruitment density ns converges to a Dirac delta in the sense of
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distributions (Kolmogorov and Fomin, 1999). In other words, all fibrils in a fibre are recruited

at the same straightening stretch λs: therefore, we are dealing with a model of recruitment

for whole fibres rather than for single fibrils.

6.4 Material Implant for a Single Fibre

The constitutive law for a single fibre is postulated with respect to the elastic deformation,

Fe, which arises from the decomposition of the overall deformation gradient F :

F = FeFs, F i
I = (Fe)i α (Fs)α I . (6.33)

In this framework, we can consider the inverse F−1
s of the stretching deformation as the

material implant acting on F , and construct the elastic deformation Fe as

Fe = F (Fs)−1 , (Fe)iα = F i
I(F−1

s )Iα. (6.34)

As we can see from (6.34), F−1
s plays in fact the same role of the material implant P , without

the need to postulate an “intermediate configuration”. Hence, from this point forward, we

follow Epstein and Elzanowski (2007) and we identify F−1
s with the material implant P , i.e.,

F−1
s ≡ P , (F−1

s )Iα = P I
α. (6.35)

It is noteworthy to examine the physical meaning of this particular material implant.

The generic fibre is straight with no undulation in the archetype, and the implant P (X, t)

rotates the fibre, crimps it and maps it into the tangent space at X. The implant map can

be decomposed into a pure rotation and a pure stretch via the polar decomposition theorem,

as

P̂ (M , λs) = R̂(M ) Û (λs), PA
α = RA

β U
β
α. (6.36)

First, we define the straightened archetypical fibre in A ≡ R3 as

µ = µαaα. (6.37)
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Figure 6.2: Top: Customary view in terms of an intermediate configuration, as seen in Chapters 3,
4 and 5. Bottom: View in terms of the theory of uniformity, with the straightened fibre in the
archetype (note that time dependence is considered in this case).

Then, we introduce the pure-stretch part Uβ
α of the implant PA

α, which in this case is the

crimping, as

Uβ
α(X) = (λ−1

s − 1)µβµα + δβα, (6.38)

where µα = gαγ µ
γ are the components of the covector µ[ associated with µ. To rigorously

present the rotation part, we need a little more work.

Let g be a metric tensor in the archetype A ≡ R3 and {aα}3
α=1 an orthonormal basis in

A. Since the body B is a trivial manifold, embedded in the affine space S ≡ E3, we have

the luxury of having Cartesian coordinates {Zα}, with associated basis {Iα}3
α=1 ≡ {aα}3

α=1

at every tangent space TXB. In other words, we choose the Cartesian basis in B such that

it coincides with the basis of the archetype A. We also choose a system of curvilinear

coordinates {XA} in the body B, with associated basis {EA}3
A=1. Note that we are following

almost exactly the same notation for Cartesian and curvilinear coordinates used in the

book by Marsden and Hughes (1983), except that we use Greek indices for the Cartesian

coordinates, since we are making the Cartesian basis vectors coincide with the basis vectors
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of the archetype. The change of basis and the transformation rule for vectors are

EA = ∂Zα

∂XA
Iα, WA = ∂XA

∂Zα
Wα. (6.39)

Now we are ready can introduce the pure-rotation part RA
β of the implant PA

α. The

role of the rotation here is simply to rotate the archetypal fibre direction µ to the direction

M of the fibre embedded in the body at point X. We first seek for the rotation matrix Qγ
β

that performs the rotation in Cartesian coordinates. In general, the rotation between two

arbitrary unit vectors µ andM can be uniquely determined by rotation about a unit vector

ω, which obtained from the normalisation of the cross-product of the two unit vectors. The

angle of rotation θ can be obtained from the scalar product of the two unit vectors. Thus,

in Cartesian coordinates

ω = µ×M
||µ×M ||

, ωγ = εγαβµ
αMβ/||µ×M ||, (6.40a)

θ = arccosµ.M , θ = arccos(µαgαβMβ). (6.40b)

Then the rotation matrix [Q] can be obtained by exponentiating the skew-symmetric matrix

[Ω] associated with the vector ω, i.e.,

[Q] = e[Ω]θ, Ωα
γ = εαβγω

β, (6.41)

which can be convenient expressed by Rodriguez’ formula (Koks, 2006), as

[Q] = [I] + (sin θ) [Ω] + (1− cos θ) [Ω]2, (6.42a)

Qα
γ = δαγ + (sin θ) Ωα

γ + (1− cos θ) Ωα
β Ωβ

γ. (6.42b)

The last step to construct the matrix [R] of the rotation tensor R is to transform the first

leg of [Q] to the coordinates {XA}, using Equation (6.39), which yields

RA
α = ∂XA

∂Zγ
Qγ

α (6.43)

Now that we have both tensors R and U , we can express our material implant P as

PA
α = ∂XA

∂Zγ
Qγ

β

[
(λ−1

s − 1)µβµα + δβα
]
. (6.44)
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Since Qγ
β µ

β = Mγ and (∂XA/∂Zγ)Mγ = MA, Equation (6.44) can be simplified into

PA
α = MAµα(λ−1

s − 1) + ∂XA

∂Zγ
Qγ

α. (6.45)

For an isochoric implant P , the strecth U must be changed into

Uβ
α = (λ−1

s − λ1/2
s )µβµα + λ1/2

s δβα, (6.46)

so that we have

PA
α = MAµα(λ−1

s − λ1/2
s ) + λ1/2

s

∂XA

∂Zγ
Qγ

α. (6.47)

6.5 Material Implant for a Distribution of Fibres

We assume that the fibres in our biological tissue have a statistical distribution of orientation.

Thus, rather than implanting fibres individually, we can implant a family of statistically

oriented fibres as a whole into a material point X. We also assume that the distribution of

collagen fibres that is treated as the archetype is stress free. As mentioned in Section (2.4),

the ensemble elastic potential of the fibres (Federico and Herzog, 2008) is

Ŵe(C(X, t), X, t) =
∫
S2

XB
Ŵf (C(X, t) : N ⊗N , X, t) Ψ(N ;X, t), (6.48)

where C(X, t) : N ⊗N = I4(C(X, t),N ) is the fourth invariant of the right Cauchy-Green

deformation in direction N , and the probability distribution Ψ depends explicitly on the

point and on time. Following the definition (6.18) of material uniformity, the fibre elastic

potential W̌ in the archetype is given by

Ŵf (C(X, t) : N ⊗N , X, t) = J−1
P (X, t) W̌f (P T (X, t)C(X, t)P (X, t) : ν ⊗ ν), (6.49)

where

P T (X, t)C(X, t)P (X, t) = (FP )T (X, t).(FP )(X, t), (6.50)
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i.e., we have replaced F with FP and multiplied by J−1
P to obtain the elastic potential Ŵf

from the archetypal one W̌f . Note also that we replaced the unit vector N in the body with

the unit vector ν in the archetype.

Now, we can write the ensemble potential as

Ŵe(C(X, t), X, t) = J−1
P (X, t)

∫
S2
W̌f (Ǐ4(X, t)) Ψ̌(ν), (6.51)

where the simple notation S2 denotes the unit sphere in the archetype, Ψ̌ is the archetypal

probability distribution and, with a small abuse of notation, we define

Ǐ4(X, t) = P T (X, t)C(X, t)P (X, t) : ν ⊗ ν. (6.52)

Now the second Piola-Kirchhoff stress can be obtained as (we drop the arguments (X, t) for

the sake of a lighter notation)

Se = J−1
P

∫
S2

2 ∂W̌f

∂Ǐ4

∂Ǐ4

∂C
Ψ̌(ν) dS. (6.53)

Following (Federico, 2012) we obtain the deviatoric part of the stress as

Sed = J−1
P

∫
S2

2 ∂W̌f

∂Ǐ4

[
J−2/3M∗ : ∂Ǐ4

∂C

]
Ψ̌(ν) dS, (6.54)

in which, for an arbitrary second-order contravariant tensor A, we have

J−2/3M∗ : A = A− 1
3Tr

∗(A)B = A− 1
3(C : A)B. (6.55)

6.6 Admissible Evolution Laws

The most significant application of implant can be found in the theory of evolution, while the

implant P (X, t) changes with time. This perspective of evolution is intuitive in a sense that

the material is made of archetype the is deformed and patched to every material point X, so

its evolution must occur in the implant. It should be noted that in this context evolution is

seen as a differential equation which should be solved real time simultaneously with all the
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other field and constitutive equations. The evolution differential equation simply provides

us with the implant P at each material point X, at any time t. It is noteworthy that the

postulation of evolution in the form differential equation, goes back to classical Newtonian

mechanics, where time derivative of momentum is given in the form of differential equation.

That being said, we can postulate the evolution of material implant as

Ṗ (X, t) = F(P (X, t),A(X, t), X), (6.56)

where F is a tensorial function and A is the collection of all other arguments such as Eshelby

stress E = W IT − F .T or Mandel stress M = F .T . It is noteworthy that the tensorial

function F does not depend on time explicitly and F is in a certain sense autonomous.

Although this framework is very general, there are some restrictions that are essential for

the appropriate choice of evolution law. The first rule regarding the evolution law is, the law

of evolution should be invariant with respect to the change of reference configuration, which

is called reduced to the archetype, in this study Epstein and Elzanowski (2007). Let us define

a change of reference configuration ζ : B → B̃, with tangent map Tζ = D, with components

DA
B = ζA,B. The change of reference configuration for the postulated evolution law reads

˙̃P = F̃(P̃ , Ã, ζ) (6.57)

P̃ = DP , (6.58)

˙̃P = DṖ , (6.59)

where, for the case of a “mixed” tensor, such as the Eshelby or Mandel stress, the backward

Piola transform Ã is given by

Ã = ζ∗A = J−1
D D

−T ADT . (6.60)

Using Equation (6.57) and (6.60), we have:

Ṗ = D−1 F̃(DP , J−1
D D

−T ADT , ζ) (6.61)
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Now, since the choice of reference is arbitrary, we consider

DP = P̃ ≡ Υ̃, (6.62)

where Υ̃ : A → B̃ is the shifter from the archetype the reference configuration B̃ (similarly,

Υ : A → B is the shifter from the archetype to the reference configuration B). The situation

is illustrated in Figure 6.3.
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Figure 6.3: A change of reference configuration and the corresponding transformation of the
uniformity field.

Considering Equation (6.62), we have,

Ṗ = P Υ̃−1 F̃(Υ̃, JP Υ̃−TP T AP−T Υ̃T , ζ) (6.63)

this shows that

Ṗ = P F̌(JP P T AP−T ). (6.64)

We seek for an evolution law for the inhomogeneity deformation rate LP defined in Equa-

tion (6.22) but, initially, it is easier find one for its P -pull-back ΛP = P−1LP P (see

Equation (6.24)). Indeed, if we right-multiply Equation (6.64) by P−1, we obtain

ΛP = F̌(JP P T AP−T ). (6.65)

The other condition that the evolution law must satisfy is the objectivity with respect to

the change of the archetype, i.e., with respect to arbitrary linear transformations (and not

just rotations, in which case we should speak of frame indifference) of the archetype. Since
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the evolution is the matter of comparison between the constitutive response of a body point

at two different instants of time, the archetype is not involved in this process. Thus, we

consider a change of archetype

P ′ = PA, (6.66)

where A is a linear map, and observe that

Ṗ ′ = ṖA, (6.67)

and thus

Λ′P = A−1P−1ṖA = A−1ΛPA. (6.68)

The evolution equation corresponding to Λ′P , i.e.,

Λ′P = F̌(JP ′ P ′T AP ′−T ), (6.69)

reads

A−1ΛPA = F̌
(
JAA

T (JP P T AP−T )A−T
)
. (6.70)

Comparing with Equation (6.65), we finally obtain

A−1F̌(JP P T AP−T )A = F̌
(
JAA

T (JP P T AP−T )A−T
)
. (6.71)

It is noteworthy that the change of archetype is a symmetry of the evolution law, if the

functions F̌ and F̌ ′ in Equation (6.71) are identical. An important consequence of this ob-

servation is the concept of material symmetry consistency, which demands that the material

symmetry group should be a subgroup of evolution symmetry group (for details, see Epstein

and Elzanowski, 2007).

In conclusion, using Equations (6.24) and (6.65), we deduce that an admissible evolution

law for LP has the form

LP = P F̌(JP P T AP−T ) P−1. (6.72)
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6.7 Dissipation Inequality and Thermodynamical Admissibility

Here we show that, in order to satisfy the dissipation inequality (6.15e), a good candidate for

the still “unspecified” tensor quantity A of Equation (6.72), is the Mandel stress M = F .T .

Let us consider the dissipation inequality (6.15e) in the isothermal case, i.e., when the

temperature field Θ is constant, for every X and t:

0 ≤ −ρRȦ+ (g T ) : Ḟ . (6.73)

Since the elastic potential is related to the Helmholtz free energy by by W = ρRA (i.e., the

elastic potential is nothing but the Helmholtz free energy per unit volume) we have

ρR Ȧ = ρR ∂t

(
W

ρR

)
= Ẇ − ρR

W

ρ2
R

ρ̇R = Ẇ +W Tr(LP ), (6.74)

where we used Equation (6.23). Also, using the uniformity condition (6.18) on the elastic

potential, we have

Ẇ = −J−1
P (P−T : Ṗ ) W̌ (FP ) + J−1

P

(
∂W̌

∂FP
(FP )

)
: (ḞP + F Ṗ ). (6.75)

At this point, we need the relation (which we derive with some small of notation)

g T = ∂Ŵ

∂F
(F , X, t) = J−1

P

(
∂W̌

∂FP
(FP )

)(
∂FP

∂F

)
= J−1

P

(
∂W̌

∂FP
(FP )

)
P T , (6.76)

from which

JP g T P
−T = ∂W̌

∂FP
(FP ). (6.77)

Substituting Equation (6.77) together with the identity P−T : Ṗ = Tr(ṖP−1) = Tr(LP )

(already seen in the derivation of LP ) andW = J−1
P W̌ (FP ) into Equation (6.75), we obtain

Ẇ = −W Tr(LP ) + (g T P−T ) : (ḞP + F Ṗ ), (6.78)

and, using the properties of the double contraction,

Ẇ = −W Tr(LP ) + (g T ) : (ḞPP−1 + F ṖP−1). (6.79)
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which, using the definition (6.22) of LP , becomes

Ẇ = −W Tr(LP ) + (g T ) : (Ḟ + FLP ). (6.80)

The final passage is to use once again the properties of the double contraction, which yields

Ẇ = −W Tr(LP ) + (g T ) : Ḟ + M : LP , (6.81)

where

M = F g T = F .T (6.82)

is the Mandel stress. Now we substitute Equation (6.82) into Equation (6.74) and, with

some minimal manipulation, we obtain

−M : LP = −ρR Ȧ+ (g T ) : Ḟ . (6.83)

Therefore, the entropy inequality (6.73) reads

M : LP ≤ 0, (6.84)

Stating that the inhomogeneity power, i.e., the power exerted by the Mandel stress M on

its conjugated “generalised velocity” LP must be negative.

6.8 Postulated Evolution Law

We postulate an evolution law i the form reported in Equation (6.72), such that A coincides

with the deviatoric Mandel stress

Md = M− 1
3 Tr(M)IT , (6.85)

and

F̌(JP P T MdP
−T ) = −k JP g−1[P TMdP

−T ]g (6.86)
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so that the evolution law reads

LP = −k JP P g−1P TMdP
−TgP−1, (6.87)

where k is a positive constant. Note that the inverse metric tensor g−1 is necessary to

properly contract P TMdP
−T with P on the left and P−1 on the right, as one can verify

in components. We intend to show that the evolution law described by Equation (6.87) is

thermodynamically admissible, i.e., it satisfies the dissipation inequality (6.15e) in the form

reported in Equation (6.84) for uniform materials in the isothermal case. Therefore, we

would like to show that

M : LP = −k JP M :
[
P g−1P TMdP

−TgP−1
]
≤ 0, (6.88)

which, since JP must be positive and k is assumed positive, amounts to proving that

M :
[
P g−1P TMdP

−TgP−1
]
≥ 0. (6.89)

First of all, let us show that the admissibility condition can be further reduced to

Md :
[
P g−1P TMdP

−TgP−1
]
≥ 0. (6.90)

Indeed, if we use the definition (6.85) of deviatoric Mandel stress to write the Mandel stress

as M = 1
3 Tr(M)IT + Md, and the property Tr(B−1AB) = Tr(A) of the trace, we have

1
3 Tr(M)IT :

[
P g−1P TMdP

−TgP−1
]

= 1
3 Tr(M)IT :

[
(P−TgP−1)−1Md(P−TgP−1)

]
= 1

3 Tr(M) Tr
(
(P−TgP−1)−1Md(P−TgP−1)

)
= 1

3 Tr(M) Tr(Md) = 0, (6.91)

which implies the reduced condition (6.90). In order to prove (6.90), we employ the property

A : B = ATB of the double contraction and the property Tr(AB) = Tr(BA) of the trace
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and, by setting H = P TMdP
−T , we obtain

Md :
[
P g−1P TMdP

−TgP−1
]

= Tr
(
MT

d P g−1P TMdP
−TgP−1

)
= Tr

(
P−1 MT

d P g−1P TMdP
−Tg

)
= Tr

(
HT g−1Hg

)
= H : (g−1Hg) ≥ 0, (6.92)

since the double contraction of a tensor with itself (rigorously, with its counterpart with

covariant and contravariant indices inverted: this is precisely the job of the trace of the

metric tensor g and its inverse) is positive semi-definite. This finally shows that the evolution

law (6.87) is thermodynamically admissible.
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Chapter 7

Numerical Example: Application to Arterial Walls

In this chapter, we study a benchmark problem previously investigated in the paper by Grillo

et al. (2015). We study the remodelling of a fibre-reinforced cylinder under plane strain in the

plane orthogonal do the direction X3 ≡ Z of the axis of the cylinder. The cylinder is under

uniform internal pressure, whereas the external pressure is set to be zero. At each material

point, we consider two families of statistically oriented fibres, whose distribution evolves with

time. We implant two copies of the distribution archetype as shown in Figure 7.1, into each

material point, with equal and opposite angles, γ and −γ, measured from the Z-direction

in the Θ-Z-plane. This amounts to defining an implant tensor P and then adapting its

expression to the two angles γ and −γ, which will give two tensors P+ and P−, respectively.

We employ a thermodynamically admissible evolution law, based on the arguments made in

Section 6.8, Equation (6.87).

P +

���
P�A

ER

E⇥

EZµ

M� M+

Figure 7.1: The two implanted fibre distributions. The implant tensors corresponding to the
angles γ and −γ are denoted P+ and P−, respectively. The expressions of the two tensors P+ and
P− are identical, except for the angle.
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7.1 Elastic Energy

In this section we introduce the elastic energy for the evolution of a pressurised fibre-

reinforced cylinder. The elastic energy is assumed to be given by the sum of an isotropic con-

tribution due to the matrix, and isotropic contribution due to the fibres, and an anisotropic

contribution due to the fibres, i.e., with some abuse of notation,

Ŵ (C̄, X) = (1− Φf )Ŵm(C̄) + ΦfŴfi(C̄) + ΦfŴfa(C̄, X). (7.1)

where

Ŵm(C̄) = 1
2km

[
I1(C̄)− 3

]
, (7.2)

Ŵfi(C̄) = 1
2kfi

[
I1(C̄)− 3

]
, (7.3)

Ŵfa(C̄, X) = J−1
P

∫
S2B

W̌fib( ˇ̄I4(X)) Ψ(ν), (7.4)

and

W̌fib( ˇ̄I4(X)) = 1
4 kfa H( ˇ̄I4(X)− 1)

( ˇ̄I4(X)− 1
)2
. (7.5)

In Equation (7.5), H(x), is the step function, equal to 1 for x > 0 and equal to 0 for

x ≥ 0. The role of the step function is to remove the contribution of the fibres which are

not extended, as it is postulated for recruitment models. Also, ˇ̄I4 = P T C̄P : ν ⊗ ν is the

isochoric fourth invariant.

The deviatoric stress is derived using Equation (6.54), as

Sd(m) = 1
2km[G] − 1

3I1(C̄)C̄−1], (7.6a)

Sd(fi) = 1
2kfi[G

] − 1
3I1(C̄)C̄−1], (7.6b)

Sd(fa) = J−1
P

∫
S2B

kfaH( ˇ̄I4 − 1)
( ˇ̄I4 − 1

) ∂ ˇ̄I4

∂C̄
− 1

3

∂ ˇ̄I4

∂C̄
: C̄

 C̄−1

 Ψ(ν), (7.6c)

where

∂ ˇ̄I4

∂C̄
= ∂(P T C̄P : ν ⊗ ν)

∂C̄
= P T ⊗ P T : ν ⊗ ν = PA

αP
B
β ν

ανβ. (7.7)
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7.2 Material Implant Formulation

Following the framework of Section 6.5, we obtain the inhomogeneity deformation rate LP

and the deviatoric Mandel stress Md, which we need to express in cylindrical coordinates.

Here, we prescribe the angle γ as the preferred angle direction for the implanted archetype

measured from the Z-axis. It should be noted that rotation is about the R-axis in cylindrical

coordinates, meaning that the rotation matrix [Q] of Equation (6.42a) is only function of γ,

measured from the Z-axis. We also assume that the archetypal direction of symmetry of the

fibre distribution is along the archetypal a3-axis, which gives µ = 0a1 + 0a2 + 1a3 in the

archetype A. Therefore, the polar decomposition of the implant P can be expressed as

[[U ]] =



√
λs 0 0

0
√
λs 0

0 0 λ−1
s

 , [[R]] =


1 0 0

0 cos γ sin γ

0 − sin γ cos γ

 , (7.8)

so that the implant has the matrix representation

[[P ]] = [[RU ]] =



√
λs 0 0

0 cos γ
√
λs

sin γ
λs

0 − sin γ
√
λs

cos γ
λs
.

 (7.9)

Having P in matrix form, we can obtain Ṗ as a function of λs and γ as:

[[Ṗ ]] =


λ̇s

2
√
λs

0 0

0 cos γ λ̇s−2λsγ̇ sin γ
2
√
λs

λs γ̇ cos γ−sin γ λ̇s

λ2
s

0 2λsγ̇ cos γ+sin γ λ̇s

2
√
λs

−λsγ̇ sin γ+cos γ λ̇s

λ2
s

 . (7.10)

7.3 Geometry and Governing Equations

Following Olsson and Klarbring (2008) and Grillo et al. (2015), we study the remodelling

of thick-walled cylinder which is made of hyperelastic material, the ground matrix and the

fibre. The cylinder goes under pure inflation. We also assume that the cylinder is axially
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symmetric, subjected to an isochoric deformation. The fibres are oriented according to the

modified von Mises distribution (Holzapfel et al., 2015; Gizzi et al., 2018),

Ψ(a, b) =
√

2b
π

exp(a cos 2β) exp(b(cos 2α + 1))
2πI0(a) erfi

(√
2b
) , (7.11)

where erfi is the imaginary error function and I0 is the Bessel function of zero kind (see

Abramowitz and Stegun, 1964). In this study, we used a = −1 and b = 5, which give rise to

the orientation distribution illustrated in Figure 7.1. This particular choice of parameters

are chosen to have distributed fibres mostly aligned along the Θ-axis and in the Θ-Z-plane.

We also assume that the cylinder undergoes pure remodelling with no growth: in the

sense of the material implant theory, this means that JP = 1 and Tr(LP ) = 0, as it can be

deduced from Equation (6.23). We also assume that system is closed and thus the balance

equations are as in (6.15). The tensorial differential equations are

Div(T ) = 0, inB (7.12a)

T .N = f , on ∂B (7.12b)

J = 1 inB (7.12c)

Ṗ = −kr JP P g−1P TMdP
−Tg, (7.12d)

where the evolution law (7.12d) is obtained via the definition (6.22) and by right-multiplying

Equation (6.87) by P .

7.4 Plane Strain Incompressible Deformation

We cover the body manifold with a polar chart, denoted by (R,Θ, Z), in which, R ∈

[Ri, Ro],Θ ∈ [0, 2π], Z ∈ [0, L]. Ri and Ro, are the inner and outer radii respectively, Θ

is the referential polar angle and L is the length of the cylinder. The current configuration

is obtained under the assumption of pure inflation as:

(R,Θ, Z) 7→ (r, θ, z) = (χr(R, t),Θ, Z). (7.13)
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For convenience, from this point forward, we refer to ξ ≡ χr. Since ξ is a function solely of

the radial coordinate R, we denote its derivative imply by ξ′ ≡ ∂χr/∂R. The orthonormal

bases for the tangent spaces of the referential and the current configurations are denoted by

{ER,EΘ,EZ} and {er, eθ, ez}, respectively. Thus, the deformation gradient F reads

F (R, t) = ξ′(R, t) er ⊗ER + ξ(R, t)
R

eθ ⊗EΘ + ez ⊗EZ . (7.14)

Since we imposed incompressibility, we should have detF = 1, which implies

ξ′(X, t)ξ(X, t) = R. (7.15)

Equation (7.15) is a separable ordinary differential equation which admits the solution

ξ(R, t) =
√
R2 + υ(t), (7.16)

in which υ is a function, independent of R, which should be determined from the boundary

conditions. Also, we have

ξ′(R, t) = R√
R2 + υ(t)

= R

ξ(R, t) , (7.17)

Therefore, we can express the deformation gradient as

[[F (R, t)]] =


R

ξ(R,t) 0 0

0 ξ(R,t)
R

0

0 0 1

 =


R√

R2+υ(t)
0 0

0
√
R2+υ(t)
R

0

0 0 1

 . (7.18)

7.5 Boundary Conditions and Integration

Here we follow the same procedure as in the example reported by Grillo et al. (2015). The

inner and outer circumferences constitute the boundary of the pressurised cylinder. We

prescribe Neumann boundary conditions as

τ = σ.n = −℘on, onχ(∂Bo), (7.19a)

τ = σ.n = −℘in, onχ(∂Bi), (7.19b)
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where τ represents the distribution of contact forces for the inner and the outer radius, n

denotes the normal vector to the boundary and ℘o and ℘i are the imposed pressures. Note

that the normal vectors to both portions of the boundary are parallel to er by virtue of

the axial symmetry of the problem. Using Nanson’s formula f = J
√
N .C−1.N τ , which

accounts for the change of area from the current boundary χ(∂B) to the reference boundary

∂B (Bonet and Wood, 2008), and imposing the incompressibility condition J = 1, we have

f = T .N= −℘o g] F−T .N , on ∂Bo, (7.20a)

f = T .N= −℘i g] F−T .N , on ∂Bi, (7.20b)

where, again, the normal vector N are parallel to ER for both portions of the boundary.

Since we consider an axisymmetric problem, the first Piola-Kirchhoff stress is independent

of Θ and Z. Also, the boundary conditions ensure that the first Piola-Kirchhoff stress is

diagonal, i.e.,

[[T (R, t)]] =


T rR 0 0

0 T θΘ 0

0 0 T zZ

 . (7.21)

The first Piola-Kirchhoff stress can be expressed as the sum of its hydrostatic and deviatoric

components, and in terms of the deviatoric second Piola-Kirchhoff stress, as

T = Th + Td = −J p g]F−T + F Sd. (7.22)

Since both the deformation gradient (7.18) and the first Piola-Kirchhoff stress (7.21) are

diagonal, also the second Piola-Kirchhoff stresses is diagonal, and the radial component of

the first Piola-Kirchhoff stress is expressed by

T rR(R, t) = −ξ(R, t)
R

p(R, t) + R

ξ(R, t)S
RR
d (R, t), (7.23)

where we considered that J = 1.
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Comparing Equations (7.23) and (7.20), and recalling that the axial symmetry of the

problem ensures that N ≡ ER, we can reformulate the boundary conditions as

T rR(Ro, t) = −ξ(Ro, t)
Ro

p(Ro, t) + Ro

ξ(Ro, t)
SRRd (Ro, t) = − ℘o(t)

ξ(Ro, t)
Ro

, (7.24a)

T rR(Ri, t) = −ξ(Ri, t)
Ri

p(Ri, t) + Ri

ξ(Ri, t)
SRRd (Ri, t) = − ℘i(t)

ξ(Ri, t)
Ri

. (7.24b)

or, in terms of the pressure term p, and using R/ξ(R, t) = R/
√
R2 + υ(t) (Equation (7.17)),

as

p(Ro, t) = ℘o(t) + R2
o

R2
o + υ(t) S

RR
d (Ro, t), (7.25a)

p(Ri, t) = ℘i(t) + R2
i

R2
i + υ(t) S

RR
d (Ri, t). (7.25b)

The balance of linear momentum (7.12a) must be expressed in cylindrical coordinates,

∂T rR

∂R
+ T rR − T θΘ

R
= 0, (7.26)

and can then be integrated with the boundary conditions (7.24), which yields the pressure

term as

p(R, t) =
[

R

ξ(R, t)

]2

SRRd (R, t) + ℘i(t)−
∫ R

Ri

η(H, t)
ξ(H, t)dH, (7.27)

where H ∈ [Ri, R] is the integration variable, and

η(H, t) = ξ(H, t)
H

SΘΘ
d (H, t)−

[
H

ξ(H, t)

]3

SRRd (H, t). (7.28)

In order to determine the function υ featuring in the expression of the radial deformation

ξ(R, t) =
√
R2 + υ(t) of Equation (7.16), we calculate p at Ro and use the first of the (7.25).

Finally, imposing the simplifying condition ℘o(t) = 0, for every t, the consistency condition

℘i(t) =
∫ Ro

Ri

η(R, t)
ξ(R, t)dR (7.29)

is obtained.
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7.6 Evolution Differential Equation and Numerical Algorithm

Using Equations (7.9), (7.10) and (7.12d), the final form of the evolution equation is

λ̇s
λs

= kr (M̂d)RR, (7.30a)
1
2λ

2
s(3 cos(2γ)− 1)λ̇s − (λ6

s − 1) γ̇ sin(2γ)
λ3
s

= kr (M̂d)Θ
Θ. (7.30b)

To study the numerical example discussed in the previous sections the beginning of Chapter 7,

a code is developed in Wolfram Mathematica. The main focus of the numerical algorithm in

this study is to have high accuracy and precision as we are studying a model with a simple

geometry (isochoric inflation of a hollow cylinder). Although the geometry is simple, the

evolution equation (7.30) makes the model computationally heavy. In this numerical study,

we have two types of integrals: the surface integral over the unit sphere S2, which describe

the fibre distribution, and the integral over the interval bounded by the inner and the outer

radii [Ri, Ro].

For the surface integral, we use the Lebedev quadrature (Lebedev, 1977), in which the grid

points and the corresponding weights are obtained from the exact integration of spherical

harmonics up to an arbitrary order. In this sense, the Lebedev scheme can be given expressed

as ∫
S2B

f(M) ≈ Ĩ[f ] = 4π
N∑
i=1

wif(M̂ (αi, βi)). (7.31)

in which αi and βi are the polar and the azimuthal angles corresponding to the grid points

and wi is the weight of the i-th grid point. The Lebedev scheme is analogous to the Gauss-

Legendre scheme in one dimension. For the integral over the interval [Ri, Ro], we used the

well-known Gauss-Legendre scheme, by solving the Legendre polynomials to find the grid

points and the corresponding weights. For details, see Abramowitz and Stegun (1964).

It is obvious that having more grid points results in higher accuracy. We used 20 grid

points for the Gauss points and 86 points for the spherical integrals. The number of grid

points are chosen to keep the margin of error below one percent for each integral point.
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7.7 Numerical Results

In this section, we present the results from the numerical analysis of the benchmark problem

described in the previous sections. The required parameters for the problem is given in

Table 7.1.

Parameter Value Symbol
inner radius 1 mm Ri

outer radius 2 mm Ro

internal pressure 0.02 MPa ℘i
initial angle 45◦ γ0
initial λs 1.014 λs0
matrix stiffness 0.0375 MPa km
fibre isotropic stiffness 0.0375 MPa kfi
fibre anisotropic stiffness 0.0375 MPa kfa
remodelling stiffness 5× 10−8 [t]/Pa ∗ kr
fibre volume fraction 0.2 Φf

Table 7.1: Parameters for Numerical Analysis

Since we did not impose any condition to stop the remodelling, we carried out the analysis

for 800 time steps for all the following cases. Figure 7.2 represents the evolution of the

straightening stretch λs.

1.00 1.20 1.40 1.60 1.80 2.001.0

1.1

1.2

1.3

Undeformed Radius R (mm)

λs

0-St. 200-St. 400-St. 600-St. 800-St.

Figure 7.2: Evolution of the straightening stretch (λs) with time
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As we can see, the largest value of λs is at the inner radius Ri, i.e., λs(Ri) = 1.28, whereas

λs(Ro) = 1.06). The difference λs(Ri, t) − λs(Ro, t) between the value of λs for the inner

and out radius becomes more pronounced with time. The behaviour of λs is monotonically

decreasing in the radius R throughout the evolution.

Figure 7.3 shows the evolution of the behaviour of the angle γ describing the direction

of symmetry of the fibre family with time. After remodelling, the maximum and minimum

angles occur at the inner and outer angle, respectively. The difference γ(Ri, t) − γ(Ro, t)

between the angle at the inner radius and that at the outer radius is more pronounced for

the early cycles.

1.00 1.20 1.40 1.60 1.80 2.00
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0-St. 200-St. 400-St. 600-St. 800-St.

Figure 7.3: Evolution of the fibre angle γ with time

Figure 7.4 shows the evolution of the radial first Piola-Kirchhoff stress T rR (dashed lines)

and circumferential first Piola-Kirchhoff stress T θΘ (solid lines) for the deformed radius. The

results are shown for 1-cycle, 400-cycle and 800-cycle. The behaviour of the circumferential

stress tends to become more homogeneous throughout the thickness of the tube. The dif-

ference T θΘ(Ri, t) − T θΘ(Ro, t) between the circumferential stresses of the inner and outer

radii before remodelling is around 23 kPa at time equal to zero, whereas for the 400-cycle

the difference reduced to 16 kPa and for the 800-cycle is 14 kPa. It is noteworthy that the
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variation of T θΘ(Ri, t)−T θΘ(Ro, t) from t = 0 cycles and t = 400 cycles is significantly higher

(7 kPa) than the variation from t = 400 cycles and t = 800 cycles (2 kPa). The absolute

values of the radial stress at the inner and outer radii remain constant (T rR(Ri, t) = 20 kPa

and T rR(R0, t) = 0 kPa) according to the imposed boundary conditions (℘i = 20 kPa and

℘o = 0 kPa).
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Figure 7.4: First Piola-Kirchhoff stresses T rR and T θΘ.

One of the most prominent and well-known mechanical aspect of biological tissues, partic-

ularly the arterial wall, is the presence of residual stresses. There are numerous explanations

and hypotheses on what the role of residual stress is and how it affects the structural in-

tegrity of the tissue. Choung and Fung (1986) argued that the residual stresses reduce the

magnitude of the stress of the artery under internal pressure. In the same line of reasoning,

Fung (1983) pointed out that residual stresses cannot be uniformly distributed across the

arterial wall and the profile of the residual circumferential stress (along Θ-axis) is compres-

sive for the inner wall and tensile for the outer wall. The profile of the residual stresses for

our benchmark problem is shown in Figure 7.5. All three principal residual stresses increase

monotonically. It is noteworthy that the residual circumferential stress (red curve), similarly
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to what Fung (1983) stated, is compressive in the inner wall and tensile in the outer wall.

Moreover, the circumferential stress is more uniform (smaller gradient in direction R) in the

outer wall.
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Figure 7.5: Residual Stresses.

7.8 Sensitivity Analysis

Here we study the sensitivity of the model to the initial conditions of straightening stretch

and angle.

First, we fix the initial straightening stretch λs0 and change the initial angle γ0 in the

range from 35◦ to 55◦. Figure 7.6 shows the evolution of λs after 800 steps for different

values of the initial angle. The evolution of the angle after 800 steps is shown in Figure 7.7.

The behaviour of λs is very weakly affected by a change in the initial angle. In contrast, the

larger the initial angle, the smaller the difference between the initial angle at the inner and

outer radii.
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Figure 7.6: Behaviour of λs at 800 steps for different initial angles γ0.
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Figure 7.7: Behaviour of γ at 800 steps for different initial angles γ0
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Second, we fix the initial angle γ0 at 45◦ for all the cases, whereas λs varies from 1.02 to

1.18. Figure 7.8 shows the behaviour of λs after 800 steps for different initial values λs0, and

Figure 7.9 illustrates the behaviour of the angle γ after 800 steps for different initial values

λs0. Figure 7.8 shows that the difference in initial condition for the straightening stretch

is carried almost identically through the radius. Figure 7.9 shows a similar situation for

the angle gamma: the difference between the angle at the inner and outer radius is almost

unchanged with varying initial condition for the straightening stretch. This is in contrast

with the case described by Figure 7.9, when the variation of the difference between the angle

at the inner and outer radius with the initial angle was pronounced. We also note that we do

not observe any evolution for the region close to outer circumference for the cases λs0 = 1.22

and λs0 = 1.18. This is due to fact that, since the fibres are not stretching with respect

to the archetypal (straightened) configuration ( ˇ̄I4 < 1, which means that the stretch in the

fibre is still greater than one, but smaller than λs), the Heaviside step function in the fibre

potential (7.5) implies a corresponding zero deviatoric Mandel stress for the fibres.
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Figure 7.8: Behaviour of λs at 800 cycles for different values of λs0
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Figure 7.9: Behaviour of γ at 800 cycles for different values of λs0.
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Chapter 8

Discussion

This study consists of two major parts, conceptually. The first part (Chapter 3–5) concerns

with damage in soft tissue models with progressive fibril recruitment, whereas the second

part (Chapter 6–7) constructs a framework for the remodelling of biological tissues described

by models with fibre recruitment, based on the theory of material evolution (Epstein and

Elzanowski, 2007).

8.1 Damage

This part of the thesis is based on a paper accepted for publication (Hamedzadeh et al.,

2018). The focus of the damage part of this thesis was on the modelling of the progressive

recruitment and damage of individual fibrils in a collagen fibre. We describe the progressive

recruitment of the collagen fibrils in a fibre by means of a suitable probability distribution,

which is a function of the straightening stretch λs. The probability distribution can be defined

on bounded or superiorly unbounded intervals of stretches. The probability distribution for

damage can be obtained directly from that of straightening if one assumes that all fibrils fail

at the same value of stretch λf , evaluated from when their straightened configuration.

The aims were essentially three, and coincide with Objectives 1, 2 and 3, which are

addressed in Chapters 3, 4 and 5, respectively:

1. To describe recruitment rigorously in a continuum mechanical framework, to

conduct a critical review of the models proposed by Hurschler et al. (1997)

and Martufi and Gasser (2011), to propose a novel recruitment model, based

on correcting that by Martufi and Gasser (2011) and on generalising it to any

general fibril constitutive law, and to demonstrate that this generalisation is
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in fact equivalent to the model previously proposed by Hurschler et al. (1997);

2. To employ the proposed generalised recruitment model to also construct a

damage model, which was eventually shown to be equivalent to that by Hurschler

et al. (1997) under specific assumptions;

3. To propose a robust Finite Element implementation of the recruitment-damage

model, including the regularisation procedure necessary to address the issue

of damage localisation.

The proposed generalised recruitment model (Equation (3.50)) may or may not retain

the fibril constitutive equation originally proposed by Martufi and Gasser (2011), which was

linear in the logarithmic strain. If this constitutive law holds, the generalised model allows

for a formulation in terms of the first Piola-Kirchhoff stress, which can be compressible as

well, and for a formulation in terms of the Cauchy stress, which is valid in the incompressible

case only.

The proof of the equivalence of the model by Hurschler et al. (1997) and of our gener-

alised model is based upon the application of the Theorem of Integration by Parts (Equa-

tion (3.56)), and on the fact that the cumulative probability is zero when the straightening

stretch λs is precisely that of first recruitment λmin and that the stress goes to zero when

the overall stretch λ equals the straightening stretch λs.

Based on the equivalence of the two recruitment models, it is possible to show that a

damage model stemming from the proposed recruitment model is equivalent to the damage

model proposed in the same paper by Hurschler et al. (1997). Furthermore, a procedure

for obtaining the stress-strain relationship in the case of unloading following partial damage

was obtained. We also studied the sensitivity of the model to the failure stretch λf and the

bounds λmin and λmax of the recruitment probability through a numerical example.

We implemented the proposed model into Finite Elements, with a proper regularisation

procedure to solve the problem of damage localisation. We simulated, as an example of
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application, the uniaxial tension of a human Achilles tendon. Mesh sensitivity has been

performed to check the convergence of the model. It is noteworthy that, although the Finite

Element implementation has been performed solely to demonstrate the capability of the

proposed model, it has been able to capture the essential characteristics of an experimental

test on a rat Achilles tendon performed by Eliasson et al. (2013), as well as the numerical

values of the first Piola-Kirchhoff stress at failure and stretch at failure obtained by Wren

et al. (2001) in their tests on human Achilles tendons.

It is noteworthy to remark that our model is able to predict the residual deformation after

unloading from a damaged state. This sheds new light on the interpretation of experimental

data, which always shows such residual deformations. Specifically, it is interesting that this

effect can be predicted by our fibre-based damage mechanism, without the introduction of

any type of plastic sliding mechanism at the fibril level. To our knowledge, this conclusion has

never been drawn before, and constitutes one of the most important non-intuitive findings

of our work.

We would like to note that our model covers the stress-strain properties including strain

localisation. The representation of strain localisation within continuous FE descriptions re-

quires displacement interpolations that are flexible enough to avoid stress locking. Despite

the mixed FE formulation (FEAP’s Q1P0 element) used in this work effectively avoids vol-

ume locking, it may not be ideal for the problem of strain localisation; other approaches such

as FE methods based on assumed enhance strain fields might be advantageous. Nonetheless,

our model allows for computing the stresses well beyond the purely elastic domain and for

predicting the progression of tissue damage associated with the rupture of collagen fibril.

Clinically, this region is very important to estimate the degree of injury that a soft tissue

attains during mechanical trauma (Frank et al., 1999; Comellas et al., 2016). Such tissue

damage (injury) triggers well known healing processes (Williamson and Harding, 2004; Enoch

and Leaper, 2008) and, as such, links mechanics to biology.
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In summary, we provide a consistent framework to formulate damage models for collagen

fibres in fibrous tissues. The compressible Tfibril-λ model (Section 3.8) and the incompressible

σfibril-λ model (Section 3.9) that we present are only two specific particularisations, and

indeed we presented a completely general stiffness-based model in Section 3.10 (recruitment)

and Section 4 (damage), which is equivalent to the stress-based model by Hurschler et al.

(1997). The formulation can be facilitated with any type of fibril properties and allows for

incorporating rate effects.

8.2 Remodelling

In this part of the thesis, which fulfils Objective 4 and is contained in Chapters 6 and 7,

we approached the anelastic phenomenon of remodelling in the light of the material implant

theory (Epstein and Elzanowski, 2007) based on the notion of first grade uniformity as

proposed in the classical work by Noll (1967).

We expressed the balance laws for a body undergoing growth-remodelling, including

balance of mass, balance of momentum, balance of angular momentum, balance of energy

and dissipation inequality, in the general case first, and then in the simplified case of non-zero

mass source term but zero mass flux and non-compliant terms. We discussed the premises

leading to the recruitment implant P by using the polar decomposition of the implant into

a purerotation and a pure stretch. The rotational part of the implant is responsible for

rotating the fibre and parallel-transporting it from the archetype to the tangent space of

the material point. The stretching part is responsible for mapping a fibre from its natural,

straightened, stress-free state, into a crimped state in a material point in the reference

configuration. In the subsequent step, we introduced the notion of distribution implant,

which considers a collection of statistically oriented fibres, represented by an archetypical

probability distribution of orientation, which then is implanted into each material point. In

addition, we discussed the admissibility of evolution laws and the notion of reduction to the
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archetype. We proposed a simple evolution law, in which the inhomogeneity deformation

rate is linearly dependent on the deviatoric Mandel stress, and showed that it satisfied the

dissipation inequality.

Using the prescribed evolution law, we solved a benchmark numerical problem describing

a pressurised thick-walled cylinder under plane strain conditions, with uniform internal pres-

sure, as in the work by Grillo et al. (2015). We considered two families of fibres, represented

by a modified von Mises distribution (Holzapfel et al., 2015). The two families are such that

the vectors describing the direction of symmetry of their distributions are oriented with op-

posite angles in the Θ-Z plane. With some abuse of terminology, we can call these angles the

mean angles, although, rigorously speaking, the parameters in a modified von-Mises distri-

bution could be such that the direction of symmetry is not the most probable direction. We

used the same constitutive laws as in the work by Grillo et al. (2015). However, in the paper

by Grillo et al. (2015), the distribution of fibre orientation is Gaussian-like, with the fibres

being evenly distributed with a variable mean angle about the Z-axis and a fixed dispersion,

and the only evolution parameter is the mean angle of the distribution, as opposed to our

two remodelling parameters (straightening stretch λs and mean angles ±γ).

Nonetheless, qualitatively speaking, the results for the remodelling angle are similar to

those by Grillo et al. (2015). Both models predict that the angle increases, with the mean

angle at the inner radius Ri being the largest. Moreover, the dependence on radius and time

of the radial and circumferential stresses in our model (Figure 7.4) is similar to those in the

paper by Grillo et al. (2015). However, while in Grillo et al. (2015) the cylinder deflates as

it becomes stiffer circumferentially, in our study the cylinder inflates. This is not surprising,

as we have two evolving mechanisms that work simultaneously, namely the relaxation of the

fibres (increasing λs) and the change in fibre angle (increasing γ). Indeed when λs increases,

it causes a relaxation of the fibres, and the cylinder needs to inflate so that the fibres reach

their straightening stretch and are able to bear load.
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Clearly, since Grillo et al. (2015) do not accommodate for the change in recruitment

stretch λs, we cannot compare our results for the remodelling of λs. Nonetheless, other

studies (e.g., Humphrey, 1999; Taber and Humphrey, 2001; Watton and Hill, 2009; Watton

et al., 2009) considered a change of undulation of the fibres (Humphrey, 1999) or fibrils

(Watton and Hill, 2009; Watton et al., 2009), and they agree with our findings, despite being

fundamentally different in the basic assumptions: Humphrey (1999) considers resorption and

generation of fibres, and Watton and Hill (2009) and Watton et al. (2009) consider pre-stretch

in Z-direction. The relaxation effect that our model predicts has been observed by Kamiya

and Togawa (1980). In addition, the overall profile of the residual stress for circumferential

stress agrees with that described by Fung (1983): the residual stress is compressive in the

inner layer and tensile in the outer layer.

It should be noted that, in this model, we did not prescribe our evolution law in accor-

dance to experimental observations. Rather, we postulated an evolution law solely based on

the reduction to the archetype and the thermodynamical admissibility. The evolution law is

purposely of the simplest possible form, yet it could qualitatively reproduce the remodelling

behaviour seen in other studies. This indicates that the framework of evolving material

uniformity can be a viable and promising paradigm to explore growth and remodelling of

biological tissues.

We recall that, in Section 2.7, we discussed the two different points of views on growth

and remodelling offered by Epstein and Maugin (2000) and DiCarlo and Quiligotti (2002).

Broadly speaking, Epstein and Maugin (2000) employ the theory of uniformity with a time-

dependent implant P , whereas DiCarlo and Quiligotti (2002) construct their evolution law

follow the framework of Analytical mechanics, with generalised forces as linear operators

on generalised velocities and a two-layer dynamics that distinguishes standard forces and

velocities from the remodelling ones. We believe that these two points of view, although

seemingly different in nature, are complementary. In both approaches, we have a modified
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version of the thermodynamics inequality to accommodate for the non compliant entropy

term and we see the arising of Eshelby-type stresses, as the driving forces of evolution. It is

noteworthy that, although the study by Grillo et al. (2015) was based on that by DiCarlo and

Quiligotti (2002) and ours on that by Epstein and Maugin (2000) and Epstein and Elzanowski

(2007), the qualitative outcomes are rather similar. We believe that these similarities are

the consequence of imposing the system to obey the dissipation inequality, a universal law

that can be postulated and interpreted in different ways as the imago Dei, yet brings to the

same results.

It is noteworthy to mention some controversial points with regards growth and remod-

elling, as arising from assumptions related to the configuration map. Some authors (Ateshian,

2007; Cowin, 2010) argue that, since we have addition or resorption of mass in a growing

living matter, the deformation map cannot be bijective in principle. In this point of view,

the material points are considered as particles bearing a mass and, therefore, one needs to

track the source and the destination of each point to understand growth and remodelling

appropriately. Indeed, this view is in-line with the atomistic point of view, which describes

a material as a collection of a finite number of particles with mass. However, we should

note that Continuum Mechanics, as any Field Theory, treats a body as being fundamentally

different from a cluster of particles. In a continuum body, adding or subtracting no matter

how many particles would not change the total number of particles, since the cardinality

of a continuum body is ℵ1 (See Munkres, 2000): roughly speaking, the number of particles

is already infinite, so adding more particles does not make it “more infinite”. Moreover, in

Continuum Mechanics, the mass contained in a region of space is defined as the integral of

the density over the region and, therefore, a single point has no mass according to measure

theory. We should also point out that some of the fundamental theorems in Continuum

Mechanics are founded upon the bijectivity of the configuration map, relaxing which might

be detrimental to our framework. Indeed, we do not dismiss the idea of considering alterna-
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tive theories and assumptions to accommodate the alternative point of view, which can be

insightful and valuable. Nonetheless, we believe the assumption of bijective map can be still

useful even in the realm of growth and remodelling.

8.3 Limitations and Future Work

We employed the framework of the material implant theory to develop a model applicable to

the growth and remodelling of the arterial wall. We emphasise that the example we presented

here is by no means a viable model for arterial walls, unless we consider the physiological

conditions under which the remodelling occurs. There are fundamental differences between

different types of anelastic phenomena in arterial walls. Moreover, the parameters that

we introduced in this study are mostly selected in order to obtain a reasonable evolution.

Indeed, we know from the histology of arterial walls that there are three distinct layers in the

arterial walls (Holzapfel et al., 2000, intima, media and adventitia), whereas, in our study,

we started the evolution from a homogenous initial condition. For a proper model of the

arterial wall, we need to take into account the differences between these layers by means of

a three-layer model, at the very minimum. Moreover, when solving a simple boundary-value

problem, we can address more complex cases by implementing the model in a Finite Element

(FE) package.

From the theoretical perspective, we can postulate proper conditions to stop the remod-

elling or to enhance our model by considering a rate dependent evolution law to capture

asymptotic behaviour of remodelling. Moreover, we can easily extend the model to consider

the case of growth, just by changing our implant from isochoric to non-isochoric. In this

study, we ignored the presence of the non-complaint entropy. By incorporating the non-

complaint entropy, we can couple the diagonal components (R, Θ and Z) of Mandel stress in

different manners and explore the consequences. The stability of the prescribed differential

equations is of great interest from the mathematical point of view, since there is no straight-
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forward well-honed theorem, to the best of our knowledge, to obtain the stability domain of

the evolution differential equation.

Another avenue to pursue in the realm of growth-remodelling constitutive modelling is

to consider the damage of fibres as explored in the first part of this study. With some

minor modifications to the constitutive law of the fibres, we can incorporate damage and

explore new applications for our model such as the phenomenon of healing. The concept

of recruitment that has been employed in this study can also be considered as a case of

wrinkling. It would be of interest to conjoin the theory of wrinkling (Steigmann, 1990;

Epstein and Forcinito, 2001; Epstein, 2002), which can produce a more sophisticated model,

in comparison to our current model.

As a final remark, we would like to emphasise that the fields of physics and mechanics, as

desired by scientists throughout the history from Newton to Einstein, represents the strive to

find the universal laws of Nature, which can be simple yet powerful. Although in our limited

and beginner’s view, we tried to align with this endeavour in this thesis. We are certainly

aware that modelling living matter, which puzzled and is puzzling the greatest minds of our

generation, can by no means be achieved by a simple model like ours. Nonetheless, this is a

small step towards a better understating of biological tissues.

When it comes to reproducing any experimental data, we can employ sophisticated re-

gression analysis techniques and produce multivariable complex models. However, these ap-

proaches are more similar to curve-fitting, as humorously put by von Neumann (see Dyson,

2004):

“With four parameters I can fit an elephant, and with five I can

make him wiggle his trunk”.
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