
Reducing Interference in Single Display
Groupware through Transparency
Ana Zanella and Saul Greenberg
University of Calgary, Canada
{azanella, saul}@cpsc.ucalgary.ca

Abstract. Single Display Groupware (SDG) supports face-to-face collaborators working over a
single shared display, where all people have their own input device. Although SDG is simple in
concept, there are surprisingly many problems in how interactions within SDG are managed.
One problem is the potential for interference, where one person can raise an interface
component (such as a menu or dialog box) in a way that hinders what another person is doing
i.e., by obscuring another person’s working area that happens to be underneath the raised
component. We propose transparent interface components as one possible solution to
interference: while one person can raise and interact with the component, others can see
through it and can continue to work underneath it. To test this concept, we first implemented a
simple SDG game using both opaque and transparent SDG menus. Through a controlled
experiment, we then analysed how interference affects peoples’ performance across an opaque
and transparent menu condition: a solo condition (where a person played alone) acts as our
control. Our results show that the transparent menu did lessen the effect of interference, and
that SDG players overwhelmingly preferred it to opaque menus.

Introduction
Single Display Groupware (SDG) is a class of Computer Supported Cooperative Work
(CSCW) applications that supports the work of co-located groups [Stewart, Bederson
and Druin 1999]. The group shares the same display, which can be a large display or a
monitor. Each member has his or her own input device, allowing all to interact
simultaneously with the system. Figure 1 illustrates this, where we see two users, each
with their own mouse, interacting simultaneously over a single monitor.

Zanella, A. and Greenberg, S. (2001) Reducing Interference in Single Display Groupware through Transparency.
Report 2001-683-06, Dept Computer Science, University of Calgary, Alberta, Canada. February.

http://www.cpsc.ucalgary.ca/grouplab/papers/index.html

SDG provides its users with many potential benefits. Of course, SDG users can profit
from the technological powers offered by the actual SDG application, which may be
specialized to fit their task. SDG collaborators also gain the richness of face-to-face
interactions for free because they are co-located: they can easily look at each other, see
each other’s gaze and gestures, have natural conversations, perceive each other’s
behaviour, and so on [Tang 1991; Whittaker and O’Conaill 1997].

Although these SDG benefits are self-evident, there is a surprising dearth of research
in the area. One of the reasons for this deficiency is the difficulty of building SDG
applications on personal workstations. These computers typically assume one user per
workstation. Its top-level graphical user interface (GUI) provides only one text focus for
the single attached keyboard, and one cursor for the single attached mouse. Even when
we physically connect multiple keyboards and mice onto a workstation, the operating
system just merges the device inputs into a single stream that is then passed onto the
GUI. For example, when two users are moving their mice at the same time, the single
cursor provided by the standard operating system will respond to both movements.
Underlying programming languages and their graphical toolkits also provide poor or
non-existent support for developers wishing to program SDG using multiple input
devices. Events raised by keyboard or mice actions do not identify which keyboard or
which mouse they came from. The standard graphical interface components—buttons,
menus, list boxes, tool palettes and so on—are not designed to discriminate and respond
to multiple users. This is disastrous for SDG, for by definition SDG users should be able
to work simultaneously e.g., by raising and selecting from different menus at the same
time. Similarly, SDG user actions must be treated separately e.g., people may be in
different drawing modes as a consequent of selecting different colours from a palette,
and each person’s drawing actions should reflect this mode. The consequence of all this
is that SDG designers and implementers often have to start from scratch. Device drivers
recognizing multiple input devices must be written; programming languages must be

Figure 1. Two people in a Single Display Groupware situation, each with his
own input device.

extended to discriminate input from multiple devices; and interface components must be
totally redesigned if they are to respond efficiently to multiple users.

Even when the technical problems above are solved, there are other SDG usability
issues that must be addressed. One specific interface issue we are investigating, and the
focus of this paper, is interference: one person can raise an interface component (such
as a menu or dialog box) in a way that hinders what another person is doing i.e., by
obscuring another person’s working area which happens to be underneath the raised
component. Interference is a problem because it can distract and impeded SDG users
from their tasks.

After first summarizing related work in SDG, we will describe interference in more
detail. We will then suggest that transparent interface components may be a possible
solution to interference: while one person can raise and interact with the component,
others can see through it and can continue to work underneath it. Next, we will describe
our implementation of a simple SDG game that we will use to test the efficacy of
transparent SDG menus. In the subsequent sections, we will present our controlled
experiment and our analysis of how interference affects peoples’ performance when
playing the SDG game using opaque vs. transparent menus: a solo condition (where a
person plays alone) acts as our control. We close by describing the broader implications
of our results to SDG design.

Related Work
Bier and Freeman [1991] built one of the first SDG systems: a toy rectangle and text
editor. They explored many SDG issues: how input devices are registered in the system;
how multiple users are identified and ‘attached’ to particular devices; how different
users can simultaneously manipulate the same data object; how individual mode
information is captured and displayed; how multiple selections of data can be done; and
so on. While a tour-de-force exposing many SDG issues and suggesting possible
solutions, the authors did not, unfortunately, continue this line of research.

Several years later, researchers re-discovered SDG. Most of their efforts
concentrated on showing that SDG systems could have a positive impact in educational
settings involving children. Inkpen, McGrenere, Booth and Klawe [1997] studied how
children share a single mouse vs. multiple mice when using a single display containing
only one cursor. For the multiple mice situation, two types of turn-taking were tested to
mediate access to the single cursor: giving (where one passes control to the other) and
taking (where one takes control from another). In either situation, their results suggest
that collaboration increased and that children had more fun when using multiple input
devices to access the single cursor. Inkpen, Ho-Ching, Kuederle, Stacey and Shoemaker
[1999] then explored the effectiveness of a true SDG setting, in this case testing pairs of
children solving a puzzle in three conditions: a paper-based setting, a one-mouse / one-
cursor setting, and a two-mice / two cursor SDG situation. Results indicate the
advantage of the true SDG situation: most children preferred the two-mice / two-cursor
situation since they could play together simultaneously, and they exhibited significantly

less off-task behaviour. Another research group based mostly out of the University of
New Mexico also explored SDG use by children, in this case through an innovative
SDG application called KidPad [Druin, Stewart, Proft, Bederson and Hollan 1997]. In
particular, Stewart, Bederson and Druin [1999] studied how pairs of children
collaborated when creating stories in KidPad. Each pair interacted together in either a
one or a two-mice condition for three sessions, and then used the other condition for a
last session. As before, children preferred the two-mice situation: they were more
engaged in their task and they had more fun. Stewart, Raybourn, Bederson and Druin
[1998] summarized several benefits they saw in true SDG: collaboration and
communication increases, conflicts are reduced, and children offer and solicit help more
often. Research in SDG use by children is continuing. For example, Hourcade,
Bederson and Druin [2000] are now exploring how two children using a special-purpose
SDG browsing tool can navigate to different parts of a shared library. Benford et al
[2000] presents an enhanced version KidPad, where some tool functionalities are
activated only when two children work collaboratively. For example, one child can draw
with a basic colour, while two children can create a new colour by combining their
colour tools.

Another thread of research considers how input devices other than the mouse can be
used in a SDG setting. Myers, Stiel and Gargiulo [1998] explored personal digital
assistance (PDAs) as input devices for SDG in their Pebbles Project. They described
several advantages and disadvantages e.g., that PDAs can display output as well as
input, that there are screen real estate problems associated with PDAs, and that PDAs
can afford much more powerful interaction techniques when compared to a mouse.
They created several applications demonstrating the capabilities of a PDA-based SDG
system, including a shared editor, a scribble application, and a slide show system.
Whereas the Pebbles project mostly used the PDA as an input device, Greenberg, Boyle
and LaBerge [1999] considered how personal information created on the PDA could be
brought into a face-to-face SDG setting, and how that information could then be
manipulated on the PDA, the shared screen, or both. They were mostly concerned with
the movement of personal information to a public space and back again, and concluded
with a listing of problematic design issues that result from the distinctions made
between personal and public information.

Next, researchers in Group Decision Support Systems have a long history of
developing special purpose computer-augmented meeting rooms [Stefik et al 1987;
Nunamaker et al 1992]. The room often has a very large display with its own connected
computer. Participants usually have their own computer as well. A facilitator often
controls the large display, and uses it to collect and show information gathered from
each individual. Alternately, each person can switch his or her computer so that it
appears on the large display. While related, these meeting rooms are a genre of their
own; they are not quite single display groupware.

Finally, many game producers, such as Nintendo and Sony Play Station, have
commercial SDG systems in every day use. Unlike standard commercial workstations,
these specialized hardware boxes and many of the games often recognize up to four
input devices and four players. The standard approach taken in most games is to split

the screen, where each player has their own dedicated portion that is a viewport into the
virtual world. Unfortunately, there is little in the way of research reporting within this
arena.

Interference and Transparency
We now return to our description of interference in SDG. We define interference as the
act of one person hindering, obstructing, or impeding someone else’s view or actions on
a single shared display. Interference arises when one person can raise an interface
component (such as a menu or dialog box) over another person’s working area. Because
interface components are opaque, that other person cannot see beneath it, and are thus
precluded from continuing their work. Any interface component that appears over the
primary working area has potential to cause interference: pull down and popup menus,
floating pallets, secondary windows, dialog boxes, and so on. These components may
appear as a consequence of several activities: they can be raised directly by one user
(e.g., by popping up a menu to make a selection: see Figure 3), or as a side effect of an
action (e.g., a confirmation dialog box), or by the system itself (e.g., a system error or
warning message appearing in a pop-up window).

The obvious solution of dedicating a portion of the screen real estate for displaying
these components does not really work. First, this will lessen the available working area,
which is a serious disadvantage because screen real estate is already very tight in SDG
settings. Second, raised components can be quite complex and thus too large to fit e.g., a
dialog box or palette with many options. Third, when there is one component type per
person (e.g., when it is a component that displays an individual’s mode), the number of
components could increase with the number of collaborators.

Another solution is to do away with these floating and transient components
altogether. For example, Druin et al [1997] proposed the idea of local tools, where large
simple tools sitting directly on the work surface would replace traditional floating tool
palettes. That is, local tools are guaranteed to appear within the space rather than above
it. While reasonable for certain applications (Druin applied these to interfaces for
children), we believe it cannot be generalized to all applications. For example,
functionally rich applications may have so many tools and options that it would be
unreasonable to map each to a simple tool; they would consume too much screen space.

Yet another solution is to display individual actions on the input device, as possible
with PDAs. While promising, the problem here is that an individual’s actions are now
hidden from view. Thus other participants may no longer be aware of the actions that a
person is taking because they cannot see them [Gutwin and Greenberg 1988].

Our own solution maintains the notion of floating and transient interface components
while introducing the idea of making them semi-transparent. Transparency makes it not
only possible to see the component itself but also what is underneath it. The effect is
that when a semi-transparent component appears on top of a person’s working area, that
person is able to see through it and can continue his or her work. To allow the person to
work underneath, each component responds only to its owner’s inputs and passes all

other inputs to the underlying working area. For example, a semi-transparent menu
raised by one person will let only that person select from it; intercepted actions of other
people working underneath the menu will be passed on, thus allowing those people to
continue their interactions with the underlying working surface.

Our own transparent interface components extend Harrison’s previous work on
applying semi-transparent interface components to single user applications [Harrison,
Ishii, Vicente and Buxton, 1995; Harrison and Vicente 1996]. She was mostly interested
in how a single person could use these components while still being able to see
underneath them. She gave people menus with different degrees of transparency over
various background textures, and then explored how well people could differentiate
between these foreground and background layers: she found a reasonable compromise
using objects that were 70% transparent. At the University of Calgary, researchers also
used transparency, but this time as a way for a collaborating group to stay aware of one-
another’s actions in a distributed groupware setting [Greenberg, Gutwin and Cockburn
1996; Cox, Chugh, Gutwin and Greenberg 1998]. They used transparent overviews,
where one user would see his or her detailed working area in one layer, with a
transparent overview showing the entire workspace layered on the top of it. Their results
also indicate that transparency is promising, particularly if used at the 70% level.

Because our SDG transparent components are quite different than these other uses of
transparent components, we were uncertain as to whether they would help or hinder
SDG collaboration. To help us judge whether transparent interface components are an
effective way to mitigate interference effects, we built and tested an SDG version of a
two-person game. In this game, one person would try to complete a task as quickly as
possible, while the other person would intentionally try to interfere with the first one by
raising a menu in their way. The next section will describe this system and its
implementation, with subsequent sections detailing the study and our results.

The Game
The SDG game used in the study is based on a “connect the dots” task. One player
would try to draw a line connecting a series of numbered dots as quickly as possible,
while the other player would try to slow down the first one by raising a menu in their
way. The menu could be either semi-transparent or opaque.

A screen snapshot of a game session is illustrated in Figure 2. The player connecting
the dots (using the pencil cursor) has connected dots 1-6, and has almost reached dot
number 7. The other player (the arrow cursor) has raised a transparent menu over the
first player.

We had three main implementation challenges when developing this SDG
application. Although implementation of SDG is not the focus of this paper, we list
these difficulties and how we solved them so that others wishing to replicate this (or
similar) study can do so with less effort. These were:

• recognizing and treating multiple input devices,

• designing interface components that respond appropriately to multiple input
devices, and

• implementing semi-transparent interface components.

Multiple Input Devices

As previously mentioned, conventional window and operating systems are not
particularly adept at managing multiple input devices, particularly if they are mice. In
many cases, it is up to the programmer to write device drivers that can interpret data
generated by an input device attached to (say) a serial port e.g., as was done in MMM
[Bier and Freeman, 1991].

Fortunately for us, Hourcade and Bederson [1999] developed MID—a dynamic link
library and Java package running on Windows 981—which implements an architecture
that handles multiple Universal Serial Bus (USB) mice. MID extends the Java event
mechanisms. In order to have access to multiple mice the standard Java events have to
be replaced with the extended MID events. Programming with MID is very similar to
programming with the Java events model. The main difference is that MID provides a
unique mouse ID for each mouse seen by the system that can be retrieved when a mouse

1 As far as we know, it is not possible to get separate input streams for multiple mice in Windows 2000, which insists
on merging all mice input streams into a single one. This is a serious problem, and presents major technical obstacles
for easy development of SDG systems. We have circumvented this problem somewhat by changing the USB chip on
the mouse so that it presents itself to the system under a different name (we call it a Marmot). Because it is no longer
recognized as a mouse, each Marmot input stream is available separately. Unfortunately, this also means that a
separate Marmot driver must be installed and that program code must be tailored to recognize this special input
stream.

Figure 2 – A snapshot of the SDG connect the dots game. One player has raised a
semi-transparent menu over the other player, who is working underneath it.

event occurs. In this sense, it is possible to know which mouse triggered the event, and
to treat it accordingly. Consequently, our game was written in Java and used MID.

Interface Components that Recognize Multiple Mice

Each player can interact with the connect-the-dots game both simultaneously and
independently of the other. Each player (and thus each mouse) is represented by its own
cursor: a pencil for the first player who is connecting the dots, and an arrow for the
second player who is raising the menu (Figure 2). Each player’s actions are interpreted
differently: a mouse press and drag by the first player draws a line, while for the second
player it raises a menu and positions the cursor over an item.

To do this, we had to redesign and implement the interface components—the menu
and the canvas—so they would recognize multiple mice. First, we assigned the drawing
functionalities to mouse0 and the menu functionalities to mouse1. Second, we had to
make these interface components respond only to their owner’s input. A player using
mouse0 should not be able to select from the other player’s menu, and should be able to
continue to draw underneath that menu. Conversely the other player using mouse1

should be able to raise a menu and make a selection from it while not affecting the
drawing surface. Yet other shared interface components, such as the pull down menu
and the buttons seen on the top and bottom of Figure 2, should respond to both players
and consequently both mice.

While simple in concept, the problem is that no conventional widget set exists that
recognizes multiple mice in this way2. This required us to completely re-implement the
interface components to take mouse identification into consideration. For example, the
SDG popup menu in Figure 2 is our own implementation, using a Java panel containing
sub-panels, which in turn contains a label (the menu items). This meant that we were
responsible for coding all visible effects corresponding to menu interactions, such as the
raising of the menu and the highlighting of selected items. The component code also
had to make a decision concerning each mouse event it saw. For example, when the
menu received an event from mouse0, we had to dispatch it to the drawing surface.

The necessity of redesigning interface components to handle situations such as these
is one of the main obstacles to rapid SDG development. Quite simply, existing
programming languages do not provide interface components that know how to deal
with multiple inputs. This requires them to be redesigned from scratch, adding
considerably to the burden of programming SDG systems.

Transparency

The third implementation issue was implementing transparency on the popup menu.
Fortunately, Java implements an alpha level for every colour; this can be adjusted to
control the transparency level of the drawn object. Because we had already re-
implemented the pop-up menus, it was fairly straightforward to specify the alpha level

2 Widget development for SDG is now on-going in several research labs: our own at the University of Calgary; at
Simon Fraser University [Shoemaker 2000]; and at the University of Maryland [Hourcade, Bederson, Druin 2000].

of its constituent components. For example, our semi-transparent popup menu uses an
alpha level of 70 selected from a range from 0-255 to draw the panel and its sub-panels:
this makes it slightly more than 70% transparent. However, we leave the text labels
opaque for better readability3.

While reasonable in our case, we recognize that other languages and graphical
widget sets may not provide this ability to do alpha-blending. This could lead to
significant implementation difficulties and/or performance penalties.

User Study
We ran a controlled user study4 in order to analyse the efficacy of semi-transparent
popup menus when compared to opaque popup menus, using our SDG version of the
“connecting the dots game”. As we will describe below, we measured the level of
interference that both types of menus create when users are doing their tasks as well as
their levels of satisfaction. We focused the game towards the worst case of interference,
i.e. where one user wanted to interfere with the other.

Null Hypothesis

There is no difference in the time for a player to complete a connect-the-dots task or in
their menu preferences (as measured by a questionnaire) when playing in a solo
condition (i.e., by oneself) or in the opaque and semi-transparent blocking condition
(i.e., when an opponent tries to slow down the player by raising a menu of a given type
in their way).

Subjects

We recruited and ran 30 pairs (60 subjects) in our study. Subjects were solicited from
undergraduate and graduate programs at the University of Calgary. Subjects were asked
to sign up in pairs, and as a result all but one pair were friends who knew each other. All
appeared comfortable playing a competitive game with each other. All subjects were
well-versed with computers, mice, and popup menus. When asked about familiarity
with SDG systems, most answered that they had played multi-user videogames before.
Each person was paid CDN$10.

Materials

Our study situation used the SDG game and MID software as described previously
running on Windows ’98. Hardware included two USB mice, and a standard 1280x1024
19” display, and a modern PC. System performance was not an issue. The physical set

3 Special fonts customized for transparent situations can be used instead [Harrison et al, 1995, 1996], but these were
not necessary in our particular situation.
4 A brief description and preliminary analysis of the study was reported in Zanella and Greenberg [2001].

up was similar to that seen in Figure 1, except that an observer was also seated behind
both participants.

The Task

One subject, who we called player, was asked to connect 15 dots in numeric order as
fast as possible. The player did this by drawing a line from one numbered dot to its
successor using a left mouse button press and drag, and then marking each dot with an
‘X’ after it was connected by clicking on it with the right mouse button. A pencil
distinguishes the player’s mouse cursor (see Figures 2 and 3).

The other subject, the interferer, was asked to interfere or slow down the player as
much as possible by popping up a menu in a location that would obscure the player’s
view of where to go or what to do. The interferer could raise the menu in a given part of
the display by right clicking over the desired position. The interferer was also instructed
to quickly select the menu item labelled “Click here”. This item was randomly
positioned in the menu each time the menu was raised, as shown by the differences
between Figures 2 and 3. These figures also show that the interferer’s cursor is an
arrow.

This was a competitive task. The player’s goal was to connect all the dots as fast as
possible, while the interferer’s goal was to slow the player down as much as possible.
To keep the game ‘fair’ for the interferer, we slowed down the player by requiring them
to right-click each dot as it was connected. This mitigates those cases where the player
is otherwise much faster than the interferer (which we saw in some of our pre-tests).

Figure 3 – The opaque menu version of the game. Notice that the player is

‘blocked’ by the interferer. While the player can still see the pencil cursor, she
cannot see the next dot to connect, as it is located on the drawing surface

underneath the menu.

Similarly, we instructed interferers to select the ‘Click here’ menu option as fast as
possible; this mitigates against them indefinitely blocking the player.

Conditions

There were three different types of trial conditions in the test, where a trial consisted of
a single connect-the-dots game.

Solo: the player connected the dots alone, without any interference. This is our
control: we expect players will have their best performance in this condition, and
we do not expect that they could better this time on average.

Semi-transparent menus: both player and interferer play, and the menus are semi-
transparent (see Figure 2).

Opaque menus: both player and interferer play, and the menus are opaque (see
Figure 3).

Procedure

After they signed a consent form, we administered a pre-test questionnaire to each pair
to collect information about their abilities with computer, mouse, popup menus and
SDG systems. Each person in the pair was then randomly assigned to be either the
player or the interferer. They kept these roles across all trials.

Each pair played 24 games divided into 8 sets. Each set contains the three different
game conditions—solo, semi-transparent, and opaque—presented in randomized order.
Each game displayed the 15 dots to be connected. As the dots were randomly
repositioned for every game, no two games were identical for each pair. All pairs played
the same games in the same order but in different conditions.

We considered the first set of three games as training trials, where players and
interferers could explore the system and ask questions. We did not include these trials in
the analysis.

For the remaining seven sets, we recorded the total time the player took to connect
all the dots in a game. We also recorded the number of interferences as the number of
time a popup menu was opened on the top of the player’s immediate working area.
While not part of the study hypothesis, this later data is used to check for situations
where gross performance differences exist between the player and the interferer. We
also observed the reactions, behaviours, expectations, comments and strategies of
participants.

After playing all the games, the participants answered a post-session questionnaire
that asked them about their menu preferences and how the menu types affected their
tasks.

Results
We watched all the pairs as they played. We wanted to observe their reactions,
behaviours, expectations, comments and strategies.

All pairs engaged with the task. They appeared comfortable playing a competitive
game. Interferers delighted in blocking the player’s view, and both tried to trick each
other by developing game strategies. All played in an appropriate manner, i.e. the player
connected a dot before going to the next, all the dots were connected before starting a
new game, the interferer was selecting the right option from the menu and did not leave
the menu opened for a long period of time, etc.

Performance

We analysed how long the player took to connect the dots across the different trial
conditions. As mentioned previously, this gives an indication of the efficacy of each
menu type as contrasted to each other and to the solo control. We collapsed the data
within each pair into an average time / condition type. To get a sense of this data, we
first compared how each pair faired over these conditions. In almost all cases, the
average within-subject time relationships when performing these conditions are: solo <
transparent < opaque. A single factor ANOVA shows that these differences are
statistically significant (F= 16.36, p<0.05). A post-hoc t-test shows statistically
significant differences between every condition, as summarized Table 1. Thus the null
hypothesis is rejected. Figure 4 illustrates these differences by displaying the average
performance time and standard deviation to complete a game for all subjects in each
condition.

Average Times Across all Games by
Condition

0

10

20

30

40

50

60

solo transparent opaque

Figure 4 – Average performance time to complete a game for all subjects by each
condition. Standard deviation is shown in each bar.

Condition P(T<=t) two-tail
Transparent vs. Opaque 0.0017

Solo vs. Opaque 0.0000
Solo vs. Transparent 0.0108

Table 1. Post-hoc t-test analysis

We performed a few other analyses to look for any hidden effects that could have
influenced our results. First, it is entirely possible that people’s performance changed
over time, perhaps due to learning or fatigue. We analyse each trial type separately,
where we calculated the average time for completing a particular game in a particular
trial. Results are graphed in Figure 5.

In this graph, we do see a small increase in performance time over the first few
games. This is likely a learning effect, where people are getting used to the mechanics
of playing i.e., which mouse button to click, how to search for the next number and so
on. However, what is immediately obvious by visual inspection is that the average time
to complete a particular game is still solo < transparent < opaque. That is, it is unlikely
that the statistical differences seen in our analysis are confounded due to some relative
performance change in the game over time.

We calculated the average number of interferences per game in each condition, to
analyse the relation between interference and performance. While the graphic suggests
that there are differences between interference levels in the opaque and transparent
conditions, a single factor Anova shows that these differences are not statistical
significant (F=4.6069, p=0.53). We do see a minor increase in the number of
interferences on the first half of the games, likely a learning effect. The decrease in the

Average Times per Game by Condition

0

10

20

30

40

50

60

1 2 3 4 5 6 7
Game

Ti
m

e Solo
Transparent
Opaque

Figure 5 – Average time for players to complete a particular game in a particular
trial.

end is probably a result of minor user fatigue.
Although we see no statistical significant difference on interference levels between

opaque and transparent menus (i.e., the number of interference was similar in both
situations) there are differences in performance in both situations. These results lead us
to conclude that the opaque menus create more interference than the semi-transparent
menus. However, semi-transparent menus do exhibit interference effects as performance
is not quite as fast as in the solo control condition.

Preferences

Through our post-session questionnaire, both the player and the interferer stated their
opinions and preferences in terms of how the menus affected their task.

Using a five-point scale, with opaque on one side and transparent on the other, we
asked subjects which type of menu they preferred in the SDG situation (i.e., without
regard to their player or interferer role). Their responses strongly indicate a preference
for transparent menus over opaque ones, as illustrated in Table 2. 34 of the 60 subjects
strongly preferred transparent menus, and 9 more had a weak preference. Only 10 of the
60 liked the opaque menus.

Using a three-point scale, we then asked subjects how the different menus affected
their particular task when acting as player or interferer. In these responses, tabulated in
Table 3, almost all players thought that transparent menus made it easier for them to
continue their work in spite of interference (28 of the 30 players). On the flip side,
almost all interferers thought that transparent menus made it harder for them to interfere
with the player (25 of the 30 interferers). While these results are not analyzed
statistically, they obviously enforce our rejection of the null hypothesis.

Average Interference per Game
by Condition

0

4

8

12

16

1 2 3 4 5 6 7

Game

In
te

rf
er

en
ce Opaque

Transparen

Figure 6 - Average number of interferences per game in a particular trial type.

Qualitative Observations

We watched all pairs as they played in all conditions, and interviewed them afterwards.
We saw that the pairs quickly engaged with the game, and became very competitive
over time.

It was obvious that players greatly preferred the transparent to the opaque menus
because it was easier and faster for them to connect the dots. As one player commented:

“… After a while I did not even see the transparent menus anymore, it was like I
learnt how to ignore them…”

Players become frustrated when they were blocked with an opaque menu. As one

player exclaimed to an interferer who was taking their time selecting the item from the
opaque menu: “Can you make your selection faster?”

As one would expect, the interferers preferred playing in the opaque over the
transparent menu condition because it helped them block the player. This exchange,
occurring at the beginning of an opaque menu game, highlights how a one pair’s
reaction:

Interferer: “I am going to bug you now!”
Player: “I hate these opaque menus!”

One specific pair (a boyfriend who was a computer scientist and girlfriend who was

not) was very competitive. As a player, she celebrated every time a dot was connected
under the transparent menu. As the interferer, he was noticeably excited when the
opaque menus came up, and kept making fun of her when the popup menu blocked her
view. In the end of the game, she playfully asked him to give her all the money he had
earned; because she had done very well in spite of his merciless teasing, she felt she
deserved it.

In informal post-test interviews, one subject said he really liked the semi-transparent
menus in SDG, and that he would also want them even in a single user application. He
explained:

Players Interferers
Easier Same Harder Easier Same Harder

28 2 0 0 5 25

Table 3: How do transparent menus help your task?

Opaque Transparent
Strong Weak NeutralWeakStrong

7 3 7 9 34

Table 2: Which type of menu do you prefer (all subjects)?

“Sometimes when you are making a search on [Microsoft] Word the result is
positioned near the find window, so you have to move the window if you want to see
the text related to the search. [Similarly,] the window to format text, to change a
colour or font type, usually covers the text you are modifying … sometimes you
open the window and you forget if you selected the right text.”

We also observed that most players moved very quickly when playing in the opaque

menus situation, for they wanted to minimize the actual times that the interferer raised
the menu over their position. Although we told them to connect the dots as fast as they
could, the players appeared more relaxed in the solo situation since they knew no
interference would happen. We saw a similar relaxed attitude in the semi-transparent
situation after players played a few games, probably because they knew they could still
continue their job in spite of the interferer’s best efforts. While this apparent speed-up in
the opaque menus could have confounded our results, we still see that, on average, it
took longer for players to complete games with the opaque menus (Figure 4). That is,
the differences between conditions still exist in spite of the player’s best effort to
overcome the interferer.

We also saw that most of the pairs developed strategies of play after a few games. At
first, interferers moved their cursors by the next point to be connected, and then popped
up the menu when the player arrived at that spot. After some time they realized they
were sometimes helping the player, as it showed the player where the next point was.
To offset this, the interferer moved their cursors around while waiting, or just following
the players’ cursors before ‘pouncing’ on them. Some of the players tried to counteract
this by first moving their cursors away from the correct dot (in order to ‘trick’ the
interferer). An instance of this situation is illustrated in Figure 7: The player has just
finished connecting and marking dots 1 through 5 (marking is shown by the ‘X’ on
these dots), and then initially moved his pencil cursor away from dot 6 before quickly
moving it back to dot number 6. When this strategy worked, the interferer was unable to

Figure 7 – In this game, the player successfully ‘fakes out’ the interferer by first moving
away from the desired point and than rapidly switching directions.

respond as quickly as normal. However, the relatively flat performance curve over all
games (displayed in Figure 5) suggests that these opposing strategies counterbalanced
each other over time, and they likely did not confound our results.

Discussion
Our results suggest that semi-transparent interface components can mitigate interference
in Single Display Groupware. This is promising indeed, for it means that the existing
genre of popup components (e.g., menus, windows, dialogue boxes, floating palettes)
can be adapted to SDG, and that people can use these well-known techniques to interact
with SDG systems. The only real difference is that users can see through them, and that
they have to understand what component is their own and which belongs to others.
From our observations, we saw that people quickly adapted to transparent components,
and had no problem manipulating them or working underneath them. While ‘standard’
interface components would have to be redeveloped in order to work within SDG and to
display themselves semi-transparently, the basic interaction technique remains the same.
Ideally, transparency in SDG is only a programming issue rather than an interface issue.

However, we recognize that the situation we tested was simple, and that there is a
danger of over-generalizing our results to all SDG situations.

First, we used only two users in a very controlled situation, and we are uncertain
about what would happen if three or more collaborators were interacting
simultaneously. For example, it may be possible for several semi-transparent
components to be raised atop each other.

Second, we tested the worst case of interference, where one user intentionally tried to
interfere with the other. Actual interferences in every-day SDG situations are probably
far less numerous. If good feedback were provided to collaborators about what others
intended to do, social protocols would likely lessen the number of actual interferences.
People are, in fact, quite adept at informing others about possible conflicts and at
mediating turn-taking when contention is unavoidable. Still there are times that
collaborators in SDG cannot avoid interference. For example, one person may popup up
a menu or dialog box without realizing that others would be affected. Or the system may
have to raise a large error window, but there may be no place to position it that would
not cause interference. Even if people do mediate their actions by resorting to turn-
taking, we suspect that this sequential rather than simultaneous access to the space will
lessen the amount of collaborations and people’s feeling of satisfaction [Inkpen, Ho-
Ching, Kuederle, Scott and Shoemaker 1999].

Third, we used a 1280x1024 resolution standard monitor as our shared display. Yet
the probability of interference may decrease for larger, higher resolution screens
(because people have more space to do their work), and increase for smaller ones
(because people will likely contend for the same area).

Fourth, the interface component we tested—the menu—is fairly small and usually
does not stay long on the screen. Larger and longer-lasting interface components, such
as a dialog box, could create more interference problems to users. For example, a ‘save

as’ dialog box is quite large, and it often takes considerable time for a person to find the
right folder and type the name of a file. In these cases, transparency could be even more
helpful.

Fifth, our game used a foreground and background conducive to transparency.
Excepting the drawing marks and the numbered dots, the background was fairly sparse.
Thus it was easy to separate visually the text of the menu from the background objects.
As Harrison et al [1995, 1996] noticed, backgrounds rich in visual information—
pictures, contrasting colours, dense text—may make the visual separation of the layers
difficult. Similarly, complex foreground objects may be difficult to separate from the
background e.g. the many fields of a complex dialog box. While there are a few design
techniques within transparency that help make certain items stand out, these are still in
their infancy [Harrison et al 1995, 1996].

In summary, our transparency approach is successful in our test conditions, and we
believe they are promising as a way to minimize interference in SDG applications.
Users reacted positively to the semi-transparent popup menus, mentioning that the idea
could also be applied to other widgets and even non-SDG settings. Still, we recognize
that real-world factors can that both increase or decrease the benefits of this technique.
To truly understand these factors and their effects, we need to develop serious SDG
applications, deploy them into real situations, and study what happens.

Conclusions
There are many issues involved in SDG development. Some are technical, for example,
how multiple input devices are seen by the operating system and how programming
languages support them. Other problems are related to the design of interface
components that are adequate for several users sharing the same screen, such as
recognizing multiple users’ input and responding accordingly to each input.

In our study we investigated interference as one particular interface problem in SDG.
We offered semi-transparent interface components as a way to mitigate interference
effects. We then created a ‘worst case’ of interference, where one person intentionally
tries to interfere and slow down another person by blocking them with pop-up menus.
As our test results show, our approach of using transparency is appropriate for dealing
with interference in our SDG situation. Although our setting was somewhat simplistic,
we believe the idea of transparency could be generalized to a certain extent to other
SDG applications.

Acknowledgments

Thanks for Ben Bederson and Juan-Pablo Hourcade from the University of Maryland for graciously
allowing us to use their MID software. We also thank our research participants for participating in the
study, as well as all Grouplab researchers for their input. We are grateful to Microsoft Research, the
Alberta Software and Engineering Research Consortium (ASERC), the National Sciences and
Engineering Research Council of Canada (NSERC) and Smart Technologies who provided funding, some
equipment, and encouragement.

References
Benford, S., Bederson, B., Akesson., K., Bayon, V., Druin, D., Hansson, P., Hourcade,

J., Ingram, R., Neale, H., O'Malley, C., Simsarian, K., Stanton, D., Sundblad, Y.,
and Taxen, G. (2000) Designing storytelling technologies to encourage
collaboration between young children. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI'00), Pages 556-563, ACM Press.

Bier, E. and Freeman, S. (1991) MMM: A user interface architecture for shared editors
on a single screen. In Proceedings of the 4th annual ACM Symposium on User
Interface Software and Technology, Pages 79-86, ACM Press

Cox, D., Chugh, J., Gutwin, C. and Greenberg, S. (1998) The usability of transparent
overview layers. In Summary Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI'98), Pages 301-302, ACM Press.

Druin, A., Stewart, J., Proft, D., Bederson, B. and Hollan, J. (1997) KidPad: a design
collaboration between children, technologists, and educators. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI’97), Pages 463-
470, ACM Press.

Greenberg, S., Boyle, M. and LaBerge, J. (1999). PDAs and shared public displays:
making personal information public, and public information personal. Personal
Technologies, Vol.3, No.1, March, Pages 54-64.

Greenberg, S., Gutwin, C. and Cockburn, A. (1996) Using distortion-oriented displays
to support workspace awareness. In Sasse, A., Cunningham, R. and Winder, R. (ed)
People and Computers XI, Pages 299-314, Springer-Verlag.

Gutwin, C. and Greenberg, S. (1998) Design for individuals, design for groups:
tradeoffs between power and workspace awareness. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW’98), Pages 207-
216, ACM Press.

Harrison, B. and Vicente, K. (1996) An experimental evaluation of transparent menu
usage. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’96), Pages 391-398, ACM Press.

Harrison, B., Ishii, H., Vicente, K. and Buxton, W. (1995) Transparent layered user
interfaces: an evaluation of a display design to enhance focused and divided
attention. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’95), Pages 317-324, ACM Press.

Hourcade, J. and Bederson, B. (1999). Architecture and implementation of a Java
package for multiple input devices (MID). Report HCIL-99-08, Computer Science
Dept, University of Maryland, MD USA.

Hourcade, J., Bederson, B. and Druin, A. (2000) QueryKids: a collaborative digital
library application for children. Workshop on Shared Environments to Support
Face-to-Face Collaboration at the ACM CSCW'00, Dec. 2.
 http://www.edgelab.sfu.ca/CSCW/shared_environments.html

Inkpen, K., Ho-Ching, W., Kuederle, O., Scott, S and Shoemaker, G. (1999) This is fun!
We’re all best friends and we’re playing: Supporting children’s synchronous
collaboration. In Proceedings of the ACM Conference on Computer Supported
Collaborative Learning (CSCL’99), Pages 252-259, ACM Press.

Inkpen, K., McGrenere, J., Booth, K., and Klawe, M. (1997). The effect of turn-taking
protocols on children's learning in mouse-driven collaborative environments. In
Proceedings of Graphics Interface (GI'97), Pages 138-145, Morgan Kaufmann
Publishers.

Myers, B., Stiel, H. and Gargiulo, R. (1998) Collaboration using multiple PDAs
connected to a PC, In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW'98), Pages 285-294, ACM Press.

Nunamaker, J., Dennis, A., Valacich, J., Vogel, D. and George, J. (1992) Electronic
meeting systems to support group work. In Baecker, R. (ed) Readings in computer
supported cooperative work. Pages 718-739, Morgan Kaufmann Publishers.

Scott, S., Shoemaker, G. and Inkpen, K. (2000) Towards seamless support of natural
collaborative interactions. In Proceedings of Graphics Interface (GI’00). Pages
103-110, Morgan Kaufmann Publishers.

Shoemaker, G. (2000) Supporting private information on public displays. In Extended
Abstracts of the ACM Conference on Human Factors and Computing Systems
(CHI’00), Pages 349-350, ACM Press.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S. and Suchman, L. (1987)
Beyond the Chalkboard: computer support for collaboration and problem solving
meetings. Communications of the ACM, 30(1), Pages 32-47, ACM Press.

Stewart, J., Bederson, B. and Druin, A. (1999) Single display groupware: a model for
co-present collaboration. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI'99), Pages 286-293, ACM Press.

Stewart, J., Raybourn, E., Bederson, B. and Druin, A. (1998) When two hands are better
than one: enhancing collaboration using single display groupware. In Extended
Abstracts of the ACM Conference on Human Factors in Computing Systems
(CHI'98), Pages 287-288, ACM Press.

Tang, J. (1991) Findings from observational studies of collaborative work. In
Greenberg, S. (ed) Computer support cooperative work and groupware. Pages 11-
26, Academic Press.

Whittaker, S. and O'Conaill, B. (1997) The role of vision in face-to-face and mediated
communication. In K. Finn, A. Sellen and S. Wilbur (ed) Video-Mediated
Communications. LEA Press.

Zanella, A and Greenberg, S (2001) Avoiding interference through translucent interface
components in single display groupware. In Extended Abstracts of the ACM
Conference on Human Factors in Computing Systems (CHI'01), Short Paper, ACM
Press.

Author’s address

Ana Zanella
University of Calgary
Department of Computer Science
2500 University Drive NW
Calgary – T2N 1N4
Canada
Phone: +1 403 220-7686
Fax: +1 403 284-4707
azanella@cpsc.ucalgary.ca

Saul Greenberg
University of Calgary
Department of Computer Science
2500 University Drive NW
Calgary – T2N 1N4
Canada
Phone: +1 403 220-6087
Fax: +1 403 284-4707
saul@cpsc.ucalgary.ca

