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Abstract. Single Display Groupware (SDG) supports face-to-face collaborators working over a 
single shared display, where all people have their own input device. Although SDG is simple in 
concept, there are surprisingly many problems in how interactions within SDG are managed. 
One problem is the potential for interference, where one person can raise an interface 
component (such as a menu or dialog box) in a way that hinders what another person is doing 
i.e., by obscuring another person’s working area that happens to be underneath the raised 
component. We propose transparent interface components as one possible solution to 
interference: while one person can raise and interact with the component, others can see 
through it and can continue to work underneath it. To test this concept, we first implemented a 
simple SDG game using both opaque and transparent SDG menus. Through a controlled 
experiment, we then analysed how interference affects peoples’ performance across an opaque 
and transparent menu condition: a solo condition (where a person played alone) acts as our 
control. Our results show that the transparent menu did lessen the effect of interference, and 
that SDG players overwhelmingly preferred it to opaque menus. 

Introduction 
Single Display Groupware (SDG) is a class of Computer Supported Cooperative Work 
(CSCW) applications that supports the work of co-located groups [Stewart, Bederson 
and Druin 1999]. The group shares the same display, which can be a large display or a 
monitor. Each member has his or her own input device, allowing all to interact 
simultaneously with the system. Figure 1 illustrates this, where we see two users, each 
with their own mouse, interacting simultaneously over a single monitor.  

Zanella, A. and Greenberg, S. (2001) Reducing Interference in Single Display Groupware through Transparency.
Report 2001-683-06, Dept Computer Science, University of Calgary, Alberta, Canada. February. 
 
http://www.cpsc.ucalgary.ca/grouplab/papers/index.html 



SDG provides its users with many potential benefits. Of course, SDG users can profit 
from the technological powers offered by the actual SDG application, which may be 
specialized to fit their task. SDG collaborators also gain the richness of face-to-face 
interactions for free because they are co-located: they can easily look at each other, see 
each other’s gaze and gestures, have natural conversations, perceive each other’s 
behaviour, and so on [Tang 1991; Whittaker and O’Conaill 1997].  

Although these SDG benefits are self-evident, there is a surprising dearth of research 
in the area. One of the reasons for this deficiency is the difficulty of building SDG 
applications on personal workstations. These computers typically assume one user per 
workstation. Its top-level graphical user interface (GUI) provides only one text focus for 
the single attached keyboard, and one cursor for the single attached mouse. Even when 
we physically connect multiple keyboards and mice onto a workstation, the operating 
system just merges the device inputs into a single stream that is then passed onto the 
GUI. For example, when two users are moving their mice at the same time, the single 
cursor provided by the standard operating system will respond to both movements. 
Underlying programming languages and their graphical toolkits also provide poor or 
non-existent support for developers wishing to program SDG using multiple input 
devices. Events raised by keyboard or mice actions do not identify which keyboard or 
which mouse they came from. The standard graphical interface components—buttons, 
menus, list boxes, tool palettes and so on—are not designed to discriminate and respond 
to multiple users. This is disastrous for SDG, for by definition SDG users should be able 
to work simultaneously e.g., by raising and selecting from different menus at the same 
time. Similarly, SDG user actions must be treated separately e.g., people may be in 
different drawing modes as a consequent of selecting different colours from a palette, 
and each person’s drawing actions should reflect this mode. The consequence of all this 
is that SDG designers and implementers often have to start from scratch. Device drivers 
recognizing multiple input devices must be written; programming languages must be 

 

Figure 1.  Two people in a Single Display Groupware situation, each with his 
own input device. 



extended to discriminate input from multiple devices; and interface components must be 
totally redesigned if they are to respond efficiently to multiple users. 

Even when the technical problems above are solved, there are other SDG usability 
issues that must be addressed. One specific interface issue we are investigating, and the 
focus of this paper, is interference: one person can raise an interface component (such 
as a menu or dialog box) in a way that hinders what another person is doing i.e., by 
obscuring another person’s working area which happens to be underneath the raised 
component. Interference is a problem because it can distract and impeded SDG users 
from their tasks. 

After first summarizing related work in SDG, we will describe interference in more 
detail. We will then suggest that transparent interface components may be a possible 
solution to interference: while one person can raise and interact with the component, 
others can see through it and can continue to work underneath it. Next, we will describe 
our implementation of a simple SDG game that we will use to test the efficacy of 
transparent SDG menus. In the subsequent sections, we will present our controlled 
experiment and our analysis of how interference affects peoples’ performance when 
playing the SDG game using opaque vs. transparent menus: a solo condition (where a 
person plays alone) acts as our control. We close by describing the broader implications 
of our results to SDG design. 

Related Work 
Bier and Freeman [1991] built one of the first SDG systems: a toy rectangle and text 
editor. They explored many SDG issues: how input devices are registered in the system; 
how multiple users are identified and ‘attached’ to particular devices; how different 
users can simultaneously manipulate the same data object; how individual mode 
information is captured and displayed; how multiple selections of data can be done; and 
so on. While a tour-de-force exposing many SDG issues and suggesting possible 
solutions, the authors did not, unfortunately, continue this line of research.  

Several years later, researchers re-discovered SDG. Most of their efforts 
concentrated on showing that SDG systems could have a positive impact in educational 
settings involving children. Inkpen, McGrenere, Booth and Klawe [1997] studied how 
children share a single mouse vs. multiple mice when using a single display containing 
only one cursor. For the multiple mice situation, two types of turn-taking were tested to 
mediate access to the single cursor: giving (where one passes control to the other) and 
taking (where one takes control from another). In either situation, their results suggest 
that collaboration increased and that children had more fun when using multiple input 
devices to access the single cursor. Inkpen, Ho-Ching, Kuederle, Stacey and Shoemaker 
[1999] then explored the effectiveness of a true SDG setting, in this case testing pairs of 
children solving a puzzle in three conditions: a paper-based setting, a one-mouse / one-
cursor setting, and a two-mice / two cursor SDG situation. Results indicate the 
advantage of the true SDG situation: most children preferred the two-mice / two-cursor 
situation since they could play together simultaneously, and they exhibited significantly 



less off-task behaviour. Another research group based mostly out of the University of 
New Mexico also explored SDG use by children, in this case through an innovative 
SDG application called KidPad  [Druin, Stewart, Proft, Bederson and Hollan 1997]. In 
particular, Stewart, Bederson and Druin [1999] studied how pairs of children 
collaborated when creating stories in KidPad. Each pair interacted together in either a 
one or a two-mice condition for three sessions, and then used the other condition for a 
last session. As before, children preferred the two-mice situation: they were more 
engaged in their task and they had more fun. Stewart, Raybourn, Bederson and Druin 
[1998] summarized several benefits they saw in true SDG: collaboration and 
communication increases, conflicts are reduced, and children offer and solicit help more 
often. Research in SDG use by children is continuing. For example, Hourcade, 
Bederson and Druin [2000] are now exploring how two children using a special-purpose 
SDG browsing tool can navigate to different parts of a shared library. Benford et al 
[2000] presents an enhanced version KidPad, where some tool functionalities are 
activated only when two children work collaboratively. For example, one child can draw 
with a basic colour, while two children can create a new colour by combining their 
colour tools. 

Another thread of research considers how input devices other than the mouse can be 
used in a SDG setting. Myers, Stiel and Gargiulo [1998] explored personal digital 
assistance (PDAs) as input devices for SDG in their Pebbles Project. They described 
several advantages and disadvantages e.g., that PDAs can display output as well as 
input, that there are screen real estate problems associated with PDAs, and that PDAs 
can afford much more powerful interaction techniques when compared to a mouse. 
They created several applications demonstrating the capabilities of a PDA-based SDG 
system, including a shared editor, a scribble application, and a slide show system. 
Whereas the Pebbles project mostly used the PDA as an input device, Greenberg, Boyle 
and LaBerge [1999] considered how personal information created on the PDA could be 
brought into a face-to-face SDG setting, and how that information could then be 
manipulated on the PDA, the shared screen, or both. They were mostly concerned with 
the movement of personal information to a public space and back again, and concluded 
with a listing of problematic design issues that result from the distinctions made 
between personal and public information.  

Next, researchers in Group Decision Support Systems have a long history of 
developing special purpose computer-augmented meeting rooms [Stefik et al 1987; 
Nunamaker et al 1992].  The room often has a very large display with its own connected 
computer. Participants usually have their own computer as well. A facilitator often 
controls the large display, and uses it to collect and show information gathered from 
each individual. Alternately, each person can switch his or her computer so that it 
appears on the large display. While related, these meeting rooms are a genre of their 
own; they are not quite single display groupware. 

Finally, many game producers, such as Nintendo and Sony Play Station, have 
commercial SDG systems in every day use. Unlike standard commercial workstations, 
these specialized hardware boxes and many of the games often recognize up to four 
input devices and four players. The standard approach taken in most games is to split 



the screen, where each player has their own dedicated portion that is a viewport into the 
virtual world. Unfortunately, there is little in the way of research reporting within this 
arena.  

Interference and Transparency 
We now return to our description of interference in SDG. We define interference as the 
act of one person hindering, obstructing, or impeding someone else’s view or actions on 
a single shared display. Interference arises when one person can raise an interface 
component (such as a menu or dialog box) over another person’s working area. Because 
interface components are opaque, that other person cannot see beneath it, and are thus 
precluded from continuing their work. Any interface component that appears over the 
primary working area has potential to cause interference: pull down and popup menus, 
floating pallets, secondary windows, dialog boxes, and so on. These components may 
appear as a consequence of several activities: they can be raised directly by one user 
(e.g., by popping up a menu to make a selection: see Figure 3), or as a side effect of an 
action (e.g., a confirmation dialog box), or by the system itself (e.g., a system error or 
warning message appearing in a pop-up window).   

The obvious solution of dedicating a portion of the screen real estate for displaying 
these components does not really work. First, this will lessen the available working area, 
which is a serious disadvantage because screen real estate is already very tight in SDG 
settings. Second, raised components can be quite complex and thus too large to fit e.g., a 
dialog box or palette with many options. Third, when there is one component type per 
person (e.g., when it is a component that displays an individual’s mode), the number of 
components could increase with the number of collaborators. 

Another solution is to do away with these floating and transient components 
altogether. For example, Druin et al [1997] proposed the idea of local tools, where large 
simple tools sitting directly on the work surface would replace traditional floating tool 
palettes. That is, local tools are guaranteed to appear within the space rather than above 
it. While reasonable for certain applications (Druin applied these to interfaces for 
children), we believe it cannot be generalized to all applications. For example, 
functionally rich applications may have so many tools and options that it would be 
unreasonable to map each to a simple tool; they would consume too much screen space. 

Yet another solution is to display individual actions on the input device, as possible 
with PDAs. While promising, the problem here is that an individual’s actions are now 
hidden from view. Thus other participants may no longer be aware of the actions that a 
person is taking because they cannot see them [Gutwin and Greenberg 1988]. 

Our own solution maintains the notion of floating and transient interface components 
while introducing the idea of making them semi-transparent. Transparency makes it not 
only possible to see the component itself but also what is underneath it. The effect is 
that when a semi-transparent component appears on top of a person’s working area, that 
person is able to see through it and can continue his or her work. To allow the person to 
work underneath, each component responds only to its owner’s inputs and passes all 



other inputs to the underlying working area. For example, a semi-transparent menu 
raised by one person will let only that person select from it; intercepted actions of other 
people working underneath the menu will be passed on, thus allowing those people to 
continue their interactions with the underlying working surface.  

Our own transparent interface components extend Harrison’s previous work on 
applying semi-transparent interface components to single user applications [Harrison, 
Ishii, Vicente and Buxton, 1995; Harrison and Vicente 1996]. She was mostly interested 
in how a single person could use these components while still being able to see 
underneath them. She gave people menus with different degrees of transparency over 
various background textures, and then explored how well people could differentiate 
between these foreground and background layers: she found a reasonable compromise 
using objects that were 70% transparent. At the University of Calgary, researchers also 
used transparency, but this time as a way for a collaborating group to stay aware of one-
another’s actions in a distributed groupware setting [Greenberg, Gutwin and Cockburn 
1996; Cox, Chugh, Gutwin and Greenberg 1998].  They used transparent overviews, 
where one user would see his or her detailed working area in one layer, with a 
transparent overview showing the entire workspace layered on the top of it. Their results 
also indicate that transparency is promising, particularly if used at the 70% level.  

Because our SDG transparent components are quite different than these other uses of 
transparent components, we were uncertain as to whether they would help or hinder 
SDG collaboration. To help us judge whether transparent interface components are an 
effective way to mitigate interference effects, we built and tested an SDG version of a 
two-person game. In this game, one person would try to complete a task as quickly as 
possible, while the other person would intentionally try to interfere with the first one by 
raising a menu in their way. The next section will describe this system and its 
implementation, with subsequent sections detailing the study and our results. 

The Game 
The SDG game used in the study is based on a “connect the dots” task. One player 
would try to draw a line connecting a series of numbered dots as quickly as possible, 
while the other player would try to slow down the first one by raising a menu in their 
way. The menu could be either semi-transparent or opaque.  

A screen snapshot of a game session is illustrated in Figure 2.  The player connecting 
the dots (using the pencil cursor) has connected dots 1-6, and has almost reached dot 
number 7. The other player (the arrow cursor) has raised a transparent menu over the 
first player. 

We had three main implementation challenges when developing this SDG 
application. Although implementation of SDG is not the focus of this paper, we list 
these difficulties and how we solved them so that others wishing to replicate this (or 
similar) study can do so with less effort. These were: 

• recognizing and treating multiple input devices,  



• designing interface components that respond appropriately to multiple input 
devices, and  

• implementing semi-transparent interface components. 

Multiple Input Devices 

As previously mentioned, conventional window and operating systems are not 
particularly adept at managing multiple input devices, particularly if they are mice. In 
many cases, it is up to the programmer to write device drivers that can interpret data 
generated by an input device attached to (say) a serial port e.g., as was done in MMM 
[Bier and Freeman, 1991].  

Fortunately for us, Hourcade and Bederson [1999] developed MID—a dynamic link 
library and Java package running on Windows 981—which implements an architecture 
that handles multiple Universal Serial Bus (USB) mice. MID extends the Java event 
mechanisms. In order to have access to multiple mice the standard Java events have to 
be replaced with the extended MID events. Programming with MID is very similar to 
programming with the Java events model.  The main difference is that MID provides a 
unique mouse ID for each mouse seen by the system that can be retrieved when a mouse 

                                                           
1 As far as we know, it is not possible to get separate input streams for multiple mice in Windows 2000, which insists 
on merging all mice input streams into a single one. This is a serious problem, and presents major technical obstacles 
for easy development of SDG systems. We have circumvented this problem somewhat by changing the USB chip on 
the mouse so that it presents itself to the system under a different name (we call it a Marmot). Because it is no longer 
recognized as a mouse, each Marmot input stream is available separately. Unfortunately, this also means that a 
separate Marmot driver must be installed and that program code must be tailored to recognize this special input 
stream.   

 
Figure 2 – A snapshot of the SDG connect the dots game. One player has raised a 
semi-transparent menu over the other player, who is working underneath it. 



event occurs. In this sense, it is possible to know which mouse triggered the event, and 
to treat it accordingly. Consequently, our game was written in Java and used MID.  

Interface Components that Recognize Multiple Mice 

Each player can interact with the connect-the-dots game both simultaneously and 
independently of the other. Each player (and thus each mouse) is represented by its own 
cursor: a pencil for the first player who is connecting the dots, and an arrow for the 
second player who is raising the menu (Figure 2). Each player’s actions are interpreted 
differently: a mouse press and drag by the first player draws a line, while for the second 
player it raises a menu and positions the cursor over an item.  

To do this, we had to redesign and implement the interface components—the menu 
and the canvas—so they would recognize multiple mice. First, we assigned the drawing 
functionalities to mouse0 and the menu functionalities to mouse1. Second, we had to 
make these interface components respond only to their owner’s input. A player using 
mouse0 should not be able to select from the other player’s menu, and should be able to 
continue to draw underneath that menu. Conversely the other player using mouse1 

should be able to raise a menu and make a selection from it while not affecting the 
drawing surface. Yet other shared interface components, such as the pull down menu 
and the buttons seen on the top and bottom of Figure 2, should respond to both players 
and consequently both mice. 

While simple in concept, the problem is that no conventional widget set exists that 
recognizes multiple mice in this way2. This required us to completely re-implement the 
interface components to take mouse identification into consideration. For example, the 
SDG popup menu in Figure 2 is our own implementation, using a Java panel containing 
sub-panels, which in turn contains a label (the menu items). This meant that we were 
responsible for coding all visible effects corresponding to menu interactions, such as the 
raising of the menu and the highlighting of selected items. The component code also 
had to make a decision concerning each mouse event it saw. For example, when the 
menu received an event from mouse0, we had to dispatch it to the drawing surface.  

The necessity of redesigning interface components to handle situations such as these 
is one of the main obstacles to rapid SDG development. Quite simply, existing 
programming languages do not provide interface components that know how to deal 
with multiple inputs. This requires them to be redesigned from scratch, adding 
considerably to the burden of programming SDG systems. 

Transparency 

The third implementation issue was implementing transparency on the popup menu. 
Fortunately, Java implements an alpha level for every colour; this can be adjusted to 
control the transparency level of the drawn object. Because we had already re-
implemented the pop-up menus, it was fairly straightforward to specify the alpha level 
                                                           
2 Widget development for SDG is now on-going in several research labs: our own at the University of Calgary; at 
Simon Fraser University [Shoemaker 2000]; and at the University of Maryland [Hourcade, Bederson, Druin 2000]. 



of its constituent components. For example, our semi-transparent popup menu uses an 
alpha level of 70 selected from a range from 0-255 to draw the panel and its sub-panels: 
this makes it slightly more than 70% transparent. However, we leave the text labels 
opaque for better readability3.  

While reasonable in our case, we recognize that other languages and graphical 
widget sets may not provide this ability to do alpha-blending. This could lead to 
significant implementation difficulties and/or performance penalties.  

User Study 
We ran a controlled user study4 in order to analyse the efficacy of semi-transparent 
popup menus when compared to opaque popup menus, using our SDG version of the 
“connecting the dots game”. As we will describe below, we measured the level of 
interference that both types of menus create when users are doing their tasks as well as 
their levels of satisfaction. We focused the game towards the worst case of interference, 
i.e. where one user wanted to interfere with the other.  

Null Hypothesis 

There is no difference in the time for a player to complete a connect-the-dots task or in 
their menu preferences (as measured by a questionnaire) when playing in a solo 
condition (i.e., by oneself) or in the opaque and semi-transparent blocking condition 
(i.e., when an opponent tries to slow down the player by raising a menu of a given type 
in their way).   

Subjects 

We recruited and ran 30 pairs (60 subjects) in our study. Subjects were solicited from 
undergraduate and graduate programs at the University of Calgary. Subjects were asked 
to sign up in pairs, and as a result all but one pair were friends who knew each other. All 
appeared comfortable playing a competitive game with each other. All subjects were 
well-versed with computers, mice, and popup menus. When asked about familiarity 
with SDG systems, most answered that they had played multi-user videogames before. 
Each person was paid CDN$10. 

Materials 

Our study situation used the SDG game and MID software as described previously 
running on Windows ’98. Hardware included two USB mice, and a standard 1280x1024 
19” display, and a modern PC. System performance was not an issue. The physical set 
                                                           
3 Special fonts customized for transparent situations can be used instead [Harrison et al, 1995, 1996], but these were 
not necessary in our particular situation. 
4 A brief description and preliminary analysis of the study was reported in Zanella and Greenberg [2001]. 



up was similar to that seen in Figure 1, except that an observer was also seated behind 
both participants.  

The Task 

One subject, who we called player, was asked to connect 15 dots in numeric order as 
fast as possible. The player did this by drawing a line from one numbered dot to its 
successor using a left mouse button press and drag, and then marking each dot with an 
‘X’ after it was connected by clicking on it with the right mouse button. A pencil 
distinguishes the player’s mouse cursor (see Figures 2 and 3). 

The other subject, the interferer, was asked to interfere or slow down the player as 
much as possible by popping up a menu in a location that would obscure the player’s 
view of where to go or what to do. The interferer could raise the menu in a given part of 
the display by right clicking over the desired position. The interferer was also instructed 
to quickly select the menu item labelled “Click here”. This item was randomly 
positioned in the menu each time the menu was raised, as shown by the differences 
between Figures 2 and 3. These figures also show that the interferer’s cursor is an 
arrow.  

This was a competitive task. The player’s goal was to connect all the dots as fast as 
possible, while the interferer’s goal was to slow the player down as much as possible. 
To keep the game ‘fair’ for the interferer, we slowed down the player by requiring them 
to right-click each dot as it was connected. This mitigates those cases where the player 
is otherwise much faster than the interferer (which we saw in some of our pre-tests). 

 
Figure 3 – The opaque menu version of the game. Notice that the player is 

‘blocked’ by the interferer. While the player can still see the pencil cursor, she 
cannot see the next dot to connect, as it is located on the drawing surface 

underneath the menu.



Similarly, we instructed interferers to select the ‘Click here’ menu option as fast as 
possible; this mitigates against them indefinitely blocking the player.  

Conditions 

There were three different types of trial conditions in the test, where a trial consisted of 
a single connect-the-dots game. 

Solo: the player connected the dots alone, without any interference. This is our 
control: we expect players will have their best performance in this condition, and 
we do not expect that they could better this time on average. 

Semi-transparent menus: both player and interferer play, and the menus are semi-
transparent (see Figure 2). 

Opaque menus: both player and interferer play, and the menus are opaque (see 
Figure 3). 

Procedure 

After they signed a consent form, we administered a pre-test questionnaire to each pair 
to collect information about their abilities with computer, mouse, popup menus and 
SDG systems. Each person in the pair was then randomly assigned to be either the 
player or the interferer. They kept these roles across all trials. 

Each pair played 24 games divided into 8 sets. Each set contains the three different 
game conditions—solo, semi-transparent, and opaque—presented in randomized order. 
Each game displayed the 15 dots to be connected. As the dots were randomly 
repositioned for every game, no two games were identical for each pair. All pairs played 
the same games in the same order but in different conditions. 

We considered the first set of three games as training trials, where players and 
interferers could explore the system and ask questions. We did not include these trials in 
the analysis.  

For the remaining seven sets, we recorded the total time the player took to connect 
all the dots in a game. We also recorded the number of interferences as the number of 
time a popup menu was opened on the top of the player’s immediate working area. 
While not part of the study hypothesis, this later data is used to check for situations 
where gross performance differences exist between the player and the interferer. We 
also observed the reactions, behaviours, expectations, comments and strategies of 
participants. 

After playing all the games, the participants answered a post-session questionnaire 
that asked them about their menu preferences and how the menu types affected their 
tasks. 



Results 
We watched all the pairs as they played. We wanted to observe their reactions, 
behaviours, expectations, comments and strategies.  

All pairs engaged with the task. They appeared comfortable playing a competitive 
game. Interferers delighted in blocking the player’s view, and both tried to trick each 
other by developing game strategies. All played in an appropriate manner, i.e. the player 
connected a dot before going to the next, all the dots were connected before starting a 
new game, the interferer was selecting the right option from the menu and did not leave 
the menu opened for a long period of time, etc.  

Performance 

We analysed how long the player took to connect the dots across the different trial 
conditions. As mentioned previously, this gives an indication of the efficacy of each 
menu type as contrasted to each other and to the solo control. We collapsed the data 
within each pair into an average time / condition type. To get a sense of this data, we 
first compared how each pair faired over these conditions. In almost all cases, the 
average within-subject time relationships when performing these conditions are: solo < 
transparent < opaque. A single factor ANOVA shows that these differences are 
statistically significant (F= 16.36, p<0.05). A post-hoc t-test shows statistically 
significant differences between every condition, as summarized Table 1. Thus the null 
hypothesis is rejected. Figure 4 illustrates these differences by displaying the average 
performance time and standard deviation to complete a game for all subjects in each 
condition.  
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Figure 4 – Average performance time to complete a game for all subjects by each 
condition. Standard deviation is shown in each bar. 



Condition P(T<=t) two-tail
Transparent vs. Opaque 0.0017

Solo vs. Opaque 0.0000
Solo vs. Transparent 0.0108

Table 1. Post-hoc t-test analysis 

We performed a few other analyses to look for any hidden effects that could have 
influenced our results. First, it is entirely possible that people’s performance changed 
over time, perhaps due to learning or fatigue. We analyse each trial type separately, 
where we calculated the average time for completing a particular game in a particular 
trial. Results are graphed in Figure 5. 

In this graph, we do see a small increase in performance time over the first few 
games. This is likely a learning effect, where people are getting used to the mechanics 
of playing i.e., which mouse button to click, how to search for the next number and so 
on. However, what is immediately obvious by visual inspection is that the average time 
to complete a particular game is still solo < transparent < opaque. That is, it is unlikely 
that the statistical differences seen in our analysis are confounded due to some relative 
performance change in the game over time.  

We calculated the average number of interferences per game in each condition, to 
analyse the relation between interference and performance. While the graphic suggests 
that there are differences between interference levels in the opaque and transparent 
conditions, a single factor Anova shows that these differences are not statistical 
significant (F=4.6069, p=0.53). We do see a minor increase in the number of 
interferences on the first half of the games, likely a learning effect. The decrease in the 
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Figure 5 – Average time for players to complete a particular game in a particular 
trial.



end is probably a result of minor user fatigue.  
Although we see no statistical significant difference on interference levels between 

opaque and transparent menus (i.e., the number of interference was similar in both 
situations) there are differences in performance in both situations. These results lead us 
to conclude that the opaque menus create more interference than the semi-transparent 
menus. However, semi-transparent menus do exhibit interference effects as performance 
is not quite as fast as in the solo control condition. 

Preferences 

Through our post-session questionnaire, both the player and the interferer stated their 
opinions and preferences in terms of how the menus affected their task. 

Using a five-point scale, with opaque on one side and transparent on the other, we 
asked subjects which type of menu they preferred in the SDG situation (i.e., without 
regard to their player or interferer role). Their responses strongly indicate a preference 
for transparent menus over opaque ones, as illustrated in Table 2. 34 of the 60 subjects 
strongly preferred transparent menus, and 9 more had a weak preference. Only 10 of the 
60 liked the opaque menus.  

Using a three-point scale, we then asked subjects how the different menus affected 
their particular task when acting as player or interferer. In these responses, tabulated in 
Table 3, almost all players thought that transparent menus made it easier for them to 
continue their work in spite of interference (28 of the 30 players). On the flip side, 
almost all interferers thought that transparent menus made it harder for them to interfere 
with the player (25 of the 30 interferers). While these results are not analyzed 
statistically, they obviously enforce our rejection of the null hypothesis.  
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Figure 6 - Average number of interferences per game in a particular trial type.  



Qualitative Observations 

We watched all pairs as they played in all conditions, and interviewed them afterwards. 
We saw that the pairs quickly engaged with the game, and became very competitive 
over time.  

It was obvious that players greatly preferred the transparent to the opaque menus 
because it was easier and faster for them to connect the dots. As one player commented:  

 
“… After a while I did not even see the transparent menus anymore, it was like I 
learnt how to ignore them…” 
 
Players become frustrated when they were blocked with an opaque menu. As one 

player exclaimed to an interferer who was taking their time selecting the item from the 
opaque menu: “Can you make your selection faster?” 

As one would expect, the interferers preferred playing in the opaque over the 
transparent menu condition because it helped them block the player. This exchange, 
occurring at the beginning of an opaque menu game, highlights how a one pair’s 
reaction:  

 
Interferer:  “I am going to bug you now!” 
Player:  “I hate these opaque menus!” 
 
One specific pair (a boyfriend who was a computer scientist and girlfriend who was 

not) was very competitive. As a player, she celebrated every time a dot was connected 
under the transparent menu. As the interferer, he was noticeably excited when the 
opaque menus came up, and kept making fun of her when the popup menu blocked her 
view. In the end of the game, she playfully asked him to give her all the money he had 
earned; because she had done very well in spite of his merciless teasing, she felt she 
deserved it. 

In informal post-test interviews, one subject said he really liked the semi-transparent 
menus in SDG, and that he would also want them even in a single user application. He 
explained: 

Players  Interferers 
Easier Same Harder  Easier Same Harder 

28 2 0  0 5 25 

Table 3: How do transparent menus help your task? 

Opaque  Transparent
Strong Weak NeutralWeakStrong

7 3 7 9 34 

Table 2: Which type of menu do you prefer (all subjects)?  



“Sometimes when you are making a search on [Microsoft] Word the result is 
positioned near the find window, so you have to move the window if you want to see 
the text related to the search. [Similarly,] the window to format text, to change a 
colour or font type, usually covers the text you are modifying … sometimes you 
open the window and you forget if you selected the right text.” 
 
We also observed that most players moved very quickly when playing in the opaque 

menus situation, for they wanted to minimize the actual times that the interferer raised 
the menu over their position. Although we told them to connect the dots as fast as they 
could, the players appeared more relaxed in the solo situation since they knew no 
interference would happen. We saw a similar relaxed attitude in the semi-transparent 
situation after players played a few games, probably because they knew they could still 
continue their job in spite of the interferer’s best efforts. While this apparent speed-up in 
the opaque menus could have confounded our results, we still see that, on average, it 
took longer for players to complete games with the opaque menus (Figure 4). That is, 
the differences between conditions still exist in spite of the player’s best effort to 
overcome the interferer. 

We also saw that most of the pairs developed strategies of play after a few games. At 
first, interferers moved their cursors by the next point to be connected, and then popped 
up the menu when the player arrived at that spot. After some time they realized they 
were sometimes helping the player, as it showed the player where the next point was. 
To offset this, the interferer moved their cursors around while waiting, or just following 
the players’ cursors before ‘pouncing’ on them. Some of the players tried to counteract 
this by first moving their cursors away from the correct dot (in order to ‘trick’ the 
interferer). An instance of this situation is illustrated in Figure 7:  The player has just 
finished connecting and marking dots 1 through 5 (marking is shown by the ‘X’ on 
these dots), and then initially moved his pencil cursor away from dot 6 before quickly 
moving it back to dot number 6. When this strategy worked, the interferer was unable to 

 

Figure 7 – In this game, the player successfully ‘fakes out’ the interferer by first moving 
away from the desired point and than rapidly switching directions. 



respond as quickly as normal. However, the relatively flat performance curve over all 
games (displayed in Figure 5) suggests that these opposing strategies counterbalanced 
each other over time, and they likely did not confound our results.  

Discussion 
Our results suggest that semi-transparent interface components can mitigate interference 
in Single Display Groupware. This is promising indeed, for it means that the existing 
genre of popup components (e.g., menus, windows, dialogue boxes, floating palettes) 
can be adapted to SDG, and that people can use these well-known techniques to interact 
with SDG systems. The only real difference is that users can see through them, and that 
they have to understand what component is their own and which belongs to others. 
From our observations, we saw that people quickly adapted to transparent components, 
and had no problem manipulating them or working underneath them. While ‘standard’ 
interface components would have to be redeveloped in order to work within SDG and to 
display themselves semi-transparently, the basic interaction technique remains the same. 
Ideally, transparency in SDG is only a programming issue rather than an interface issue. 

However, we recognize that the situation we tested was simple, and that there is a 
danger of over-generalizing our results to all SDG situations. 

First, we used only two users in a very controlled situation, and we are uncertain 
about what would happen if three or more collaborators were interacting 
simultaneously. For example, it may be possible for several semi-transparent 
components to be raised atop each other. 

Second, we tested the worst case of interference, where one user intentionally tried to 
interfere with the other. Actual interferences in every-day SDG situations are probably 
far less numerous. If good feedback were provided to collaborators about what others 
intended to do, social protocols would likely lessen the number of actual interferences. 
People are, in fact, quite adept at informing others about possible conflicts and at 
mediating turn-taking when contention is unavoidable. Still there are times that 
collaborators in SDG cannot avoid interference. For example, one person may popup up 
a menu or dialog box without realizing that others would be affected. Or the system may 
have to raise a large error window, but there may be no place to position it that would 
not cause interference. Even if people do mediate their actions by resorting to turn-
taking, we suspect that this sequential rather than simultaneous access to the space will 
lessen the amount of collaborations and people’s feeling of satisfaction [Inkpen, Ho-
Ching, Kuederle, Scott and Shoemaker 1999].  

Third, we used a 1280x1024 resolution standard monitor as our shared display. Yet 
the probability of interference may decrease for larger, higher resolution screens 
(because people have more space to do their work), and increase for smaller ones 
(because people will likely contend for the same area).  

Fourth, the interface component we tested—the menu—is fairly small and usually 
does not stay long on the screen. Larger and longer-lasting interface components, such 
as a dialog box, could create more interference problems to users. For example, a ‘save 



as’ dialog box is quite large, and it often takes considerable time for a person to find the 
right folder and type the name of a file. In these cases, transparency could be even more 
helpful.   

Fifth, our game used a foreground and background conducive to transparency. 
Excepting the drawing marks and the numbered dots, the background was fairly sparse. 
Thus it was easy to separate visually the text of the menu from the background objects. 
As Harrison et al [1995, 1996] noticed, backgrounds rich in visual information—
pictures, contrasting colours, dense text—may make the visual separation of the layers 
difficult. Similarly, complex foreground objects may be difficult to separate from the 
background e.g. the many fields of a complex dialog box. While there are a few design 
techniques within transparency that help make certain items stand out, these are still in 
their infancy [Harrison et al 1995, 1996]. 

In summary, our transparency approach is successful in our test conditions, and we 
believe they are promising as a way to minimize interference in SDG applications. 
Users reacted positively to the semi-transparent popup menus, mentioning that the idea 
could also be applied to other widgets and even non-SDG settings. Still, we recognize 
that real-world factors can that both increase or decrease the benefits of this technique. 
To truly understand these factors and their effects, we need to develop serious SDG 
applications, deploy them into real situations, and study what happens. 

Conclusions 
There are many issues involved in SDG development. Some are technical, for example, 
how multiple input devices are seen by the operating system and how programming 
languages support them. Other problems are related to the design of interface 
components that are adequate for several users sharing the same screen, such as 
recognizing multiple users’ input and responding accordingly to each input. 

In our study we investigated interference as one particular interface problem in SDG. 
We offered semi-transparent interface components as a way to mitigate interference 
effects. We then created a ‘worst case’ of interference, where one person intentionally 
tries to interfere and slow down another person by blocking them with pop-up menus. 
As our test results show, our approach of using transparency is appropriate for dealing 
with interference in our SDG situation. Although our setting was somewhat simplistic, 
we believe the idea of transparency could be generalized to a certain extent to other 
SDG applications.  
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