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ABSTRACT 

To improve the quality of Vibroseis data one can 

decrease either the width of the main peak or the energy of 

-the sidelobes of the autocorrelation function of the 

vibrator sweep signal. Sweep parameters and weights can be 

determined so that the weighted sum of resultant 

autocorrelation functions exhibits minimal sidelobe energy, 

without significant loss of resolution. 

The problem of finding an optimal linear combination of 

autocorrelations of realizable vibroseis sweeps is 

formulated as a multidimensional constrained optimization 

problem. A combinatorial search method is combined with a 

generalized inversion to obtain an approximation to the 

optimal solution. - 

Synthetic and real data examples show that for linear 

sweep signals the sidelobe energy of an autocorrelation 

function can be reduced by linear combination with other 

autocorrelation functions. However, the reduction in the 

sidelobe energy may not be significant enough to improve the 

visual quality of field data. 
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CHAPTER I INTRODUCTION 

There is an increasing demand in seismic exploration 

for improved data quality. To a large degree, any 

improvement in data quality, in terms of resolution and 

signal-to-noise ratio, provides a reduction in the ambiguity 

of the subsequnt geological interpretation. In recent 

years, the use of high speed computers and software 

developments have achieved gains in seismic data proessing 

and interpretation. However, in many areas these 

developments demand high quality field data and as a result, 

acquisition methods have placed constraints on the 

amount of information that can be extracted from the data. 

In the Vibroseis method of seismic exploration the 

input signal to the earth is controlled to some extent by 

the user. This gives the method the advantage of flexibility 

in that the signal can be altered until a particular data 

resolution and signal-to-noise ratio is achieved, subject to 

constraints on the bandwidth and constraints imposed by the 

vibrator units, the earth, and the recording system. This 

thesis examines the area of signal design to find vibrator 

signals that, subject to the constraints on bandwidth and 

realizability, have both high resolution and high 

signal-to-noise ratio. 



2 

1.1 The Vibroseis Seismogram Trace  

In seismic prospecting, a signal is introduced into the 

earth from on, or near, the surface. The signal, which is 

reflected from interfaces within the earth, is recorded at 

the surface. Using the convolution model of the seismic 

trace [61], the signal recorded at the geophones may be 

modelled by 

g(t) = { s(t) * e(t) * r(t) } + n(t) 1.1 

where r(t) is the earth impulse response, n(t) is noise, 

s(t) is the seismic source signal, and e(t) represents the 

filtering effects of earth attenuation, source-earth 

coupling and the recording system [11]. This means that g(t) 

appears as a sum of progressively altered and delayed 

replicas of the input signal s(t) at the observed reflection 

times plus additive noise. 

The long duration of a vibrator input signal relative 

to the travel time of the pressure wavefront produces 

returning reflection trains from various depths that overlap 

one another in time, making the identification of individual 

reflections very difficult. In addition, these ref lecticn 

records usually have low signal-tc-noise ratios due to low 

instantaneous power output of the vibrator signal. 
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Consequently, an additional processing step, correlation, is 

required of the recorded data to transform these long 

duration field signals into an impulse- like signal. The 

crosscorrelation of the geophone recorded signal with the 

vibrator input signal compresses the extended wave trains 

and also improves the signal-to-noise ratio [ 42]. 

The correlation of the geophone output, g(t), and the 

vibrator input signal, s(t), yields the vibroseis seismogram 

trace 

v(t) = s(t) 0 g(t) 1.2 

where 0 represents correlation. This can be shown ( see 

Appendix A ) to be equivalent to 

v(t) = •ss (t) * e(t) * r(t) + N(t) 1.3 

where 5(t) is known as the autocorrelation function of the 

signal s(t) defined as 

= s(- t) * s(t) 1.4 

and N(t) is a noise component. 
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1.2 Autocorrelation Function Shape  

An autocorrelation function is symmetrically shaped 

about its main peak, as seen in Fig. 1, and consists of 

three main components. Referring to Fig. 1, the portion of 

the autocorrelation from the centre peak ( at the origin 

to thefirst zero crossings is known as the main peak. The 

rest of the function is referred to as sidelobes with the 

sidelobe between the first zero crossing and the first local 

maximum beyond the first zero crossing known as the primary 

lobe [ 14,37]. 

The main peak represents the signal on the Vibroseis 

seismogram, and the main peak width a measure of the 

resolution of the signal. Since the sidelobes are the result 

of the correlation process, they are referred to as 

correlation noise [ 18]. 

1.3 Aims of the Thesis  

The quality of Vibroseis data, assuming the trace model 

of eqn. 1.3, is determined by the shape of the function 

55 (t), the effect of e(t) on the shape of 455 (t), and 

the magnitude of N(t). In this thesis, the problem of 

controlling the shape of the autocorrelation function4ss(t) 

of a signal s(t) is examined. 



FAR SIDELOBES 

PRIMARY LOBE 

MAIN PEAK 

FIGURE 1 FEATURES OF AN AUTOCORRELATION FUNCTION 
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For high resolution and high signal-to-noise ratio, an 

autocorrelation must have a narrow main peak ( resolution 

and low sidelobe energy ( correlation noise ). Ideally, the 

autocorrelation would be a delta function, with an 

infinitesimally small main peak width and zero sidelobe 

energy. However, a delta function is an infinite bandwidth 

signal and is unrealizable due to the finite bandwidth 

limitations of vibrator units and recording systems. 

Obviously, the next best option is to find the 

autocorrelation function of signals that can be generated 

by a standard vibrator unit and control electronics and 

which has the narrowest main peak width and lowest sidelcbe 

energy. Unfortunately, it is not possible to minimize both 

these features simultaneously ( see chapter II ). The 

problem of reducing the sidelobe energy of autocorrelation 

functions to improve data quality in Vibroseis exploration 

has been considered by several authors [ 6,14,17,18,19,35,701 

see chapter III ). However, two points that have not been 

previously considered are: 

1. Preservation of signal resolution ( main peak width 

when reducing sidelobe energy, and 

2. Optimal selection of signal parameters for minimizing 

sidelobe energy. 
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The aim of this thesis is to find a method of 

minimizing the sidelobe energy of an autocorrelation 

function of a signal which can be realized by a standard 

vibrator unit and electronics such that main peak width is 

not significantly increased. 
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CHAPTER II SIGNAL PARAMETERS & THE AUTOCORRELATION FUNCTION 

2.1 Introduction  

The shape of the autocorrelation function 45 (t) of a 

signal s(t) is determined by the parameters of s(t). In this 

chapter the sweep signal, as used in Vibroseis, and the 

effects of the parameters of the sweep signal on the shape 

of the autocorrelation function are described. 

2.2 The Sweep Signal  

In its most narrow definition, a sweep is a 

continuously oscillating signal with constant amplitude 

whose instantaneous frequency varies with time. The 

mathematical representation of the sweep given by Goupillaud 

[30] is 

t 
s(t) = A Im { exp [ i2ir f(T) dTo 

= A Im { exp [ i2 0(t) ] } 

= A sin 2'rr 0(t) 

2.1 

where f(t) is the instantaneous frequency at time t, and its 

integral, 0 (t), is the sweep phase [8]. The frequency 

limits of the sweep are the extreme values of instantaneous 
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frequency f(0) and f(T), where T is the sweep duration. 

A linear sweep is a sweep whose instantaneous frequency 

is a linear monotonic function of time. Accordingly, sweeps 

whose instantaneous frequency does not vary linearly with 

time are called nonlinear sweeps ( Fig. 2 ). Nonlinear 

sweeps are not necessarily monctonic. In this thesis, only 

linear sweeps will be considered because: 

1. For a particular start and end frequency there is only 

one linear sweep, whereas there are an infinite number of 

possible nonlinear sweeps. Thus, by considering only linear 

sweeps the number of degrees of freedom in the problem is 

reduced, making the problem manageable. 

2. Vibrator units can generate linear sweeps within a finite 

bandwidth range but cannot necessarily generate a specific 

nonlinear sweep. 

For a linear sweep, with frequencies f(0) and f(T) at 

time t = 0 and time t = T respectively, the instantaneous 

frequency can be defined by 

f(t) = f(0) + ( f(T) - f(0) Ht/T) 2.2 

for which the phase is given by 



I 

LINEAR 

NONLINEAR 

f(o) 
INSTANTANEOUS FREQUENCY 

f(T) 

FIGURE 2 INSTANTANEOUS FREQUENCY AS A FUNCTION OF TIME 

FOR LINEAR & NONLINEAR SWEEPS 
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0 ( t) = f(0)t + ( f(T) - f(0))(t2/2T). 2.3 

In addition, let the frequency limits be defined as 

f(0) f(T) 2.4 

The linear sweep signal defined by eqn. 2.1, with phase 

defined by eqn. 2.3, is a function of start frequency f(0), 

end frequency f(T), and duration T. The autocorrelation 

function of the sweep signal, as defined by eqn. 1.4, is a 

function of the same parameters ( see [ 35,39,59] for 

analytic expressions for the autocorrelation function of a 

linear sweep with phase defined in eqn. 2.3 ). 

2.3 Shape of the Autocorrelation Function of Linear Sweeps 

The shape of an autocorrelation function of a signal is 

determined by the parameters of the signal. As seen in 

section 2.2, a linear sweep signal is a function of the 

start and end frequency, f(0) and f(T), of the sweep and the 

sweep duration T. 

The start and end frequency of a linear sweep determine 

both the width of the main peak and the amplitude of the 

sidelobes. Firstly, define the centre frequency of a linear 
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sweep signal as 

f 1 - ( f(0) + f(T) 
c T 2 

C 

2.5 

where T c is the period of the centre frequency, and the 

ratio of the end frequencies of the sweep as 

- f(0) 
Rf f(T) 2.6 

The width of the main peak, defined as the absolute 

value of the time interval between the first positive and 

negative zero crossings on either side of the main peak, as 

shown in Fig. 1, is given, by T c / 2 [281. For this 

definition of width it can be easily seen that the width of 

the mair peak is determined by the sum of the end 

frequencies of the sweep; 

T 
c 1 1  

ie. -f-- = 
- 2 2f f(0) + f(T) 

C 

Thus, the larger the sum of the end frequencies of the 

2.7 

sweep, the smaller the width of the main peak ( Fig. 3 ). 

The amplitude of the largest sidelobe i.e. the primary 

lobe, relative to the main peak amplitude, is dependent on 

Rf, the ratio of the end frequencies of the sweep [ 28]. 

Decreasing R  reduces the primary sidelobe-main peak 
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amplitude ratio ( Fig. 3 ). 

As can be seen in Fig. 3, it is not possible to 

minimize both main peak width and sidelobe energy 

simultaneously. Consider the example where the frequency of 

the linear sweep is constrained as in eqn. 2.4. Main peak 

width is minimized when the sum of the end frequencies is 

maximized( eqn. 2.7 ). This occurs when f(0) = f(T) = 

The primary lobe-main peak amplitude ratio is minimized 

eqn. 2.6 ) when the ratio f(0)/f(T) is minimized which 

occurs when f(0) = L and f(T) = H  i.e. occurs for the 

linear sweep with the largest bandwidth. Obviously, the two 

features are minimized for different linear sweeps within 

the same bandwidth. 

The sweep duration determines the duration of the 

autocorrelation function. A sweep s(t) defined for 0 t T 

has an autocorrelation defined fcr -T 5 t T [20]. Also, 

increasing the duration of the sweep increases the total 

energy of the autocorrelation [ 35]. 

2.4 Summary  

Summarizing the major points: 

1. A linear sweep signal is a function of start frequency 
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f(0), end frequency f(T) and sweep duration T. 

2. The sum of the start and end frequencies of a linear 

sweep determines the width of the main peak of the 

autocorrelation function and the ratio of the start and end 

frequencies determines the primary sidelobe-main peak 

amplitude ratio. 

3. Both main peak width and primary lobe-main peak 

amplitude ratio cannot be minimized simultaneously. 

4. Sweep duration determines the duraticn and the total 

energy of the autocorrelation function. 

It can be seen that the start and end frequencies of a 

linear sweep signal have a more significant effect on the 

shape of the autocorrelation function of the sweep than the 

sweep duration. Thus, unless otherwise stated, it will be 

assumed that sweep duration T is a constant. 
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CHAPTER III PROBLEM FORMULATION 

3.1 Previous Work  

The aim of the thesis, described in section 1.3, is to 

find a method of minimizing the sidelobe energy of an 

autocorrelation function of a signal that can be generated 

by a standard vibrator and control electronics such that 

main peak width remains constant. The problem has been 

further constrained by only allowing linear sweeps between 

the frequencies EL and f where H see section 2.2 ). 

An easily implemented, simple method of reducing 

sidelobe energy is tapering the amplitude of the sweep 

signal at each end [ 17,35]. However, amplitude tapering 

increases main peak width [ 5] i.e. tapering reduces 

resolution, which is an undesirable effect. A method of 

linearly combining individual autocorrelation functions, 

called Combisweep, was shown to reduce primary lobe 

amplitude and far sidelobe energy of autocorrelations 

[19,70]. However, these observations were noted for 

arbitrarily chosen linear sweep signals, the sweep parameter 

selection not being optimal in any sense. 

In radar research there has been considerable interest 

in optimal autocorrelation function synthesis [ 16,20,63,69]. 
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Many of the treatments of the problem worked directly with 

the autocorrelation function shape of a signal, subject to 

constraints on the spectrum of the function, and then found 

the signal by factorization [ 16,631. Using this approach 

constraints on the signals were not applied and the solution 

signals were unrealizable. A more successful method 

considered the signals directly, with constraints on 

sidelobe energy and bandwidth [20]. The method aimed to 

find signals s from the set of all real numbers IR , that 

minimized 

H •ssD H 3.1 

where fD is an autocorrelation with a desired shape. I I ' I I 

denotes the norm. 

The optimal approach of Evans et al. [ 20] and the 

combination of autocorrelations suggested by Werner and Krey 

[70] suggest a method to solve the thesis problem. 

3.2 Formulation of a Method  

If a linear sweep signal s is a function of start 

frequency f(0), end frequency f(T) and time t ( see chapter 

II ), then the autocorrelation function of s, as defined by 

eqn. 1.4, is a function of the same variables. Consider a 
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weighted linear combination of N normalized 

autocorrelations: 

N 

E a K çb ss,K K0' fK (T) , t ) a  c 1R 3.2 
K=1  

where a is the weighting factor applied to the jth 

autocorrelation function j , itself a function of f(0) and 

f(T) and ]R is the set of all real numbers. The functions 

are normalized such that the main peak amplitude A = 1. 

This is essentially a formulation of the autocorrelation 

combination cbnsidered by Werner and Krey, where they 

assumed that a  = 1 for all k. Allowing a  c ]R is a simple 

generalization of the autocorrelation combination that they 

considered. 

Let a normalized autocorrelation that has a desired 

shape,e.q. narrow main peak and zero sidelobe energy, be D• 

Then, similarly to eqn 3.1, the thesis problem can be posed: 

to find s K 6 V and a  E ]R that minimize 

N 

II Z a  Oss,K ' fK(T) , t - OD 
K1 

where V is the set of signals defined by 

3.3 

t2 
s(t) = A sin 2ir { f(0)t + ( f(T) - f(0) ) } 3.4 
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and f(0) f(T) 

This formulation of the thesis problem is not a unique 

method for achieving the aims of the thesis but it has the 

important feature of being based on the combination of two 

techniques that, individually, have been demonstrated to 

improve autocorrelation function shape. 

3.3 Application of the Method  

The application of egn. 3.3 to achieving the aims of 

the thesis is dependent of the choice of 4D and the 

autocorrelation function for which the sidelobe energy is to 

be reduced. As shown in section 2.3, within the 

frequency constraint of eqn. 2.4, the autocorrelation 

function that has the lowest sidelobe energy is generated by 

the linear sweep with the largest bandwidth f1 - L 

seems reasonable to select this autocorrelation function as 

the autocorrelation for which the sidelobe energy is to be 

minimized. Let this autocorrelation be 4A' and then let 

= 

To reduce the sidelobe energy of 1A by minimizing the 

norm of the difference between a linear combination of 4A 

and other autocorrelations, D must have the same main peak 

as 4A and zero sidelobe energy. By selecting such a D the 
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method should not alter the main peak shape of and thus 

the main peak width is preserved whilst sidelobe energy is 

reduced. If D did not have the same main peak as A then 

the method would attempt to change both the main peak and 

the sidelobe energy of A to that of c1D. In doing this, the 

change in sidelobe energy may not be as significant as when 

the method is attempting to only minimize sidelobe energy. 

The dependence of the method on the choice of fD is 

discussed in chapter V ). 

Summarizing, the autocorrelation whose sidelobe energy 

is to be reduced is the autocorrelation function of the 

linear sweep with the largest bandwidth A . Thus f1(0) = 

and f1(T) = To reduce the sidelobe energy of 4A' D is 

chosen with zero sidelobe energy and the same main peak as 
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CHAPTER IV PROBLEM SOLUTION 

4.1 Introduction 

The thesis problem has been formulated as a 

multidimensional constrained optimization problem to find 

sweeps 5K V and aK E ]R. such that 

N 

IIZ a  Oss,K LK(T) t - D H 
K=1 

4.1 

is minimized. As discussed in secticn 3.3, f(0) = L and 

=H since = A . Thus solving eqn 4.1 requires 

N - 1 values for bcth and fk(T) and N values for ak. 

In practice, geophysical data is discretely sampled and 

it is appropriate to consider the problem in a discrete 

form. For a sweep s, M samples in length, the ith sample of 

its autocorrelation is given by 

M 
= ; S. . S. 

j=1 3+1  J 
4.2 

where the length of the autocorrelation function is 2M - 1 

samples with the main peak at i = 0. The pth norm for a 

function g, L samples in length, can be defined by 
L 
z g.P } '1P 4.3 
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and thus eqn 4.1 can be rewritten 

N N 

({ Z a  
1=-N K=1 

N 
E S. . S. 

j=1 
- D,i ) P ]h/P 4.4 

N 

where iD,i s the ith sample of , and ( S S ) is the 
D j=1 j+1 j K 

ith sample of the kth autocorrelation function i.e. 

which is a function of and fk(T). 

The problem is now to minimize the function expressed 

by eqn. 4.4. This represents a discrete ( 3N - 2) -dimensional 

constrained optimization prcblem, with constraints on the 

allowable signal set s V ) and the weights ( a  E ). 

The minimum cf eqn. 4.4 could be found using a variety of 

methods [50]. Gradient methods, in particular gradient 

search methods [ 22,23,55], are commonly used but 

difficulties can arise with local minima and the initial 

'guess' of solutions. 

A method that guarantees finding the discrete global 

minimum of eqn. 4.4, within the constraints, is to calculate 

the norm values for all possible combinations of the sweep 

parameters. Let this approach be called a combinatorial 

search method. 
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4.2 Solution of and  fk(T) by Combinatorial Search  

The combinatorial search method used to solve for 

and fk(T) ( k = 2,..,N ) examines all possible 

combinations of f(0) and f(T) allowed by the frequency 

constraint defined in eqn. 2.4. The major advantage of a 

combinatorial search method for solving for and fk(T) 

is that the discrete global minimum within the constraints 

on the parameters is always located i.e. the method is 

stable. Also, the method is ideally suited for computer 

implementation. Unfortunately, the amount of computation 

time involved in a combinatorial search is very high. It is 

therefore important to reduce the number of calculations 

required. 

The total number of combinations of the frequency 

parameters that have to be examined determines the 

computation time to reach a solution to eqn. 4.1. The number 

of combinations involved is determined by the size of f and 

and how closely the frequencies are sampled, and upon 

how the combinatorial method is applied to solve eqn. 4.1. 

The combinatorial method can be applied to solving 

eqn. 4.1 in two different ways, with a major, difference in 

.the number of parameter combinations that have to be 

considered. Assume that the frequency constraints allow P 
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different combinations of f(0) and f(T) i.e. P frequency 

parameter pairs. If the problem is considered for one 

additional autocorrelation function at a time i.e. if one 

solves for f2 (0) and f2 (T) in 

a 10 + a 20 ( f2 (0), f2 (T) 

and then, having solved for f2 (0) and f2 (T), one solves for 

f3 (0) and f3 (T) in 

a 10 + a212 + a33 ( f3 (0), f3 (T) 

up to N-i autocorreiations combined with OA, then 

P( N - 1 ) - N ( N - 1 )/2 4.5. 

frequency parameter pairs have to be considered ( see 

Appendix B ). If N-i additional autocorrelations are 

considered together i.e. if one solves for 

and f2(T) , ... ,fN(T) in 

al4A + a22 ( f2 (0), f2 (T) ) + ••• + aNcN N0' fN(T) ), 

then the number of frequency parameter pairs that are 

considered ( see Appendix B ) is 
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(P-l)!/(P-N)!(N-l)! 4.6 

For P >> N the number of parameter pairs considered for the 

two methods is approximately P(N-1) and 

respectively. Obviously, the relative number of parameter 

pairs to be considered by each method is dependent on the 

size of P and N. 

The magnitude of P is determined by f L and fH and the 

frequency interval used to sample the frequencies. For this 

project the frequencies were sampled at 1 Hz intervals as it 

was felt that the difference in autocorrelation shape for a 

change in bandwidth of less than 1 Hz was negligible, but 

for a change greater than 1 Hz, it may not be negligible. 

Then, for example, if f = 10 Hz and fH = 100 Hz, the total 

number of combinations of frequency parameters satisfying 

eqn. 2.4 is 4186. 

For P = 4186 and, for example, N = 3, the method of 

considering all autocorrelation functions simultaneously 

requires approximately 1050 times more frequency parameter 

combinations to be considered. Even for small N the 

differencebetween the number of frequency parameter pairs 

that are examined in each method is considerable. The much 

larger number of parameter pairs that have to be considered 

when all N autocorrelation functions are considered 



26 

simultaneously dictated that this method of applying the 

combinatorial search was not used even though it may 

provide a more optimal solution to eqn. 4.1 than the method 

of considering one additional autocorrelation function at a 

time. 

4.3 Solvinq For Weighting Factors  

The thesis problem of eqn 4.1 can be written in matrix 

form: to find the vector a = ( a1 , a2,.., a  ) that solves 

min H D aD H 4.7 

where, for autocorrelation functions ( 2M- l) samples in 

length, and using the method of solving for only one 

additional autocorrelation at a time, is a ( 2M-1) x k 

matrix defined by 

A(M) 2(-M) (-M) 

(R) 
2( 0) (0) 

A(M) 2 (M) (R) (M) 

where: A' 2' -- K_lae fixed, and is the 

kth autocorrelation in the linear combination of N 

4.8 

autocorrelation functions for which fk( 0 ) and fk(T) 
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are the Rth frequency parameter pair to be selected 

combinatorially, 1 R P - k + 1 ( see Appendix B ), and 

OD is a ( 2W-i) dimensional vector defined by 

ID D = ' , ••• ' ... 4.9 

If the norm in eqn 4.7 is the case p = 2, or the 

norm, then there is a unique solution to eqn 4.7 given by 

the vector 

a' = ( a1 , a2, ..., aR = 

where Ol is the generalized inverse of [ 41,54]. 

4.10 

It can be shown [ 54] that the generalized inverse 01 of 

a matrix c) is given by 

)I * 

or 

4.11 

4.12 

where is the transpose of . When calculating 1 , a choice 

is made between eqn. 4.11 and eqn 4.12 according to whether 'I 

or * has smaller order. As shown in eqn. 4.8, 0 is a 

(2M- l) X k matrix. M is of the order of 1000 and k 20 

see chapter 5 ) and thus eqn. 4.11 was used to calculate 
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Details of how to calculate ( cI ) can be found in 

[31]. 

4.4 Description of the Solution Alqorithm 

Now that all the different parts of the solution method 

have been discussed, a step-by-step description of the 

algorithm for finding autocorrelation functions that 

minimize the sidelobe energy of the autocorrelation function 

of the largest bandwidth linear sweep can be given. 

1. A normalized autocorrelation function cbD with a desired 

shape is chosen. 

2. k = 1. The frequency parameters f1 (0) and f1 (T) are known 

and give the autocorrelation function 4A' which is 

normalized. For this case the solution for a1 is trivial, 

with a1 = 1. 

3. k = 2 and R = 1. Select a frequency parameter pair, 

f2 1 (0) and f2 1 (T), and calculate the corresponding 

normalized autocorrelation function 

4. Calculate cZ using the definition of eqn. 4.8, and its 

generalized inverse ID I , and solve for a1 and a2 for 2(1) 
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5. Calculate the L2 norm of 

alGA + a22 ( f2(l) (0), f2(l) (T) ) - 

6. Repeat steps 3to5 for R=2uptoR=p-k+lLe. 

for each frequency parameter pair that satisfies the 

frequency constraint given by eqn. 2.4. 

7. When the L2 norm values for all possible 2' generated 

from all possible different frequency parameter pairs, have 

been calculated, find the minimum L., norm value. The 

frequency parameter pair and the weighting factors that 

correspond to the minimum L2 norm value , are selected as the 

optimal parameter pair and optimal weights for 

8. Steps 3 to 7 are repeated for k = 3, up to k = N. When 

the optimal fN(o) and fN(T) have been found, then a solution 

for the linear combination of N autocorrelation functions 

has been reached. 

4.5 Extending the Solution Method  

The combinatorial method of solving for the start 

frequency and end frequency variables can easily be extended 

to solve for more variables or to allow different 

constraints on the sweep signal set. The sweep signal as 
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defined in section 2.2 is at most a function of three 

variables: start frequency f(0), end frequency f(T) and 

duration T. Amplitude is not considered as it is 

incorporated in the weightingfactors. If, for example, it 

is desirable to solve for all three variables using the 

combinatorial search method, the only change to the two-

variable case is an increase in the number of parameter 

combinations that have to be considered. If there are P 

frequency parameter pairs and Q different values of signal 

duration, then the total number of combinations of f(0), 

f(T), and T is PQ. Thus, for the method where only one 

additional autocorrelation function is considered at a time 

then the total number of parameter combinations that have to 

be examined is approximately PQ( N - 1 ). 

One major advantage of the solution method described is 

that it is independent of the constraint ranges of the 

parameters or thedefinition of the input sweep signal. 

Allowing the constraint range of the variables to increase 

or decrease can be achieved with, respectively, only an 

increase or decrease in the number of parameter combinations 

considered. Since the method of solution is independent of 

the input signal definition, other sweep definitions can be 

considered without having to alter the solution method. 

Obviously, the major restriction to increasing the size 
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of the problem when using a combinatorial search method to 

find a solution is the total computation time required. 

However, it is seen that the method can be extended with 

ease to include more variables and different constraint 

ranges for the parameters but at the expense of computation 

time. 

4.6 Summary 

1. A combinatorial search method is used to find solutions 

to eqn. 4.1. The advantages of this type of solution are: a) 

it locates the discrete global minimum of the norm, or 

error, surface ( eqn. 4.4 ) within the constraint ranges of 

the variables; b) it can be easily implemented by computer, 

and c) it can be easily extended to include more variables. 

2. The number of calculations involved, and thus the 

computation time, to reach ,a solution to eqn. 4.1 is 

dependent on the total number of combinations of the 

variables under consideration. By considering only one 

additional autocorrelation function at a time, the number of 

combinations of the variables considered, and consequently 

calculations, is significantly reduced. The solutions given 

by this method may be sub-optimal but the computation size 

of the problem restricts the application of the 

combinatorial search to only considering one additional 



32 

autocorrelation at a time. 

3. Solving for the weighting factors using a generalized 

inverse method gives a unique minimum norm value for a 

particular definition of 
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CHAPTER V RESULTS  

5.1 Introduction  

In this chapter, results of several experiments on the 

thesis method are discussed. These experiments were designed 

to answer several questions about the method: 

1. Does the method reduce sidelobe energy ? 

2. Is main peak resolution preserved ? 

3. To what extent are the changes in the shape of 

dependent on the choice of D ? 

4. What is the maximum number of autocorrelation functions 

that need to be considered ? 

5. Does the calculation of weighting factors i.e. a  c 1R, 

give better results than when weights are not calculated 

aK _i? 

6. Does the method work in the field ? 

Results of both computer tests and field tests are 

presented. 
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5.2 Input Parameters and Measurements for Computer Tests  

The algorithm described in section 4.4 was implemented 

on a CDC 205 supercomputer. The program was designed to 

allow input of user specified parameter values and ranges. 

The output included norm values calculated for each 

parameter combination, and the solutions to eqn. 4.1. 

5.2.1 Input Parameters  

For the computer tests, input parameters for the sweeps 

were dictated by- the parameters to be used in the associated 

field work. All the sweeps were linear sweep signals, as 

defined in eqn. 3.4, of 6 seconds duration, sampled at 2 

msec/sample. A 250 msec cosine taper [ 38] was applied to 

each end for practical reasons. The frequency parameters 

were constrained as follows: 

8 Hz f(0) f(T) 85 Hz. 5.1 

This implied that the bandwidth constraint was 

0Hz f(T) - f(0) 77 Hz. 5.2 
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A' the first sweep in the linear combination, was an 8 - 85 

Hz sweep, the sweep with the largest bandwidth within the 

constraints described above. The total number of 

autocorrelation functions considered in the experiments was 

set to the largest number that available computer time would 

allow. As a result N varied between 3 and 20. 

5.2.2 Choices for cD 

As discussed in section 3.3, to reduce the sidelobe 

energy of A' D was chosen with the main peak of and 

zero sidelobe energy. Let this symmetrical function be cIM 

Fig. 4b ). 'To investigate how the shape of A' in 

particular the sidelobe energy, is affected by the choice of 

two other symmetrical functions were chosen. 

A delta function, which has an infinitesimally small 

main peak width and zero sidelobe energy ( Fig. 4a ) was 

selected to examine the extent to whiàh the method reduces 

both sidelobe energy and main peak width of 4A A 

symmetrical function with the same main peak and primary 

lobe as was selected to examine the ability of the 

method to reduce only far sidelobe energy. Let this function 

be 4MP ( Fig. 4c ). 



I 
FIGURE 4a 
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5.2. 3 Measurements  

To monitor the changes in the shape of as a result 

of linear combination with other, optimally selected, 

autocorrelation functions, the differences in various 

measurements and their initial values after the addition of 

each successive autocorrelation function were examined. The 

change of a particular measurement, x, from the initial 

value for cI A was taken to be: - 

XdB = 20 log10 r  
- X- J 

where x dB is known as the decibel-value of x relative to 

[1]. Measurements were made of: 

1. Total sidelobe energy. 

2. Far sidelobe energy. 

3. Primary sidelobe-Main peak amplitude ratio i. e. Ap/Am 

see Fig. 1 ). 

To calculate the sidelobe energy E, the definition: 

M N 2 
5.3 

N 

where K=1 aKK1 represents the ith sample of the linear 

combination of N autocorrelation functions, each 2M-1 
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samples in length, and w = z1 or z2 are the sample numbers 

of the first zero crossing and the first local maximum from 

the main peak respectively. These give the total sidelobe 

energy ( w = z1 ) and far sidelobe energy ( w = z2 ). It 

shculd be noted that, for normalized autocorrelation 

functions, Am = 1 and therefore A/A = A. 

The optimal frequency parameter pair and optimal 

weights for the kth autocorrelation function in eqn. 4.4, 

when solving for only one autocorrelation function at a 

time, yield an L norm value that is the minimum L2 norm 

value for the combination of k autocorrelation functions 

see section 4.4 ). The change in the minimum norm value 

after the addition of each successive autocorrelation 

function was examined as it provides a measure of the 

convergence to the minimum of eqn. 4.4. 

5.3 Observations and Discussion of Computer Tests  

Observations from the computer tests on the method for 

each of.the three choices of D' namely and MP' and 

the effects of the different constraints on the weighting 

factors are described. A discussion of the observations is 

then given. 
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5.3.1 Observations for  = 

The minimum norm values when = decrease for N 3 

but then remain relatively constant up to N = 17, as shown 

in Fig. 5. The decrease in the minimum norm values 

corresponds to a decrease in the primary lobe amplitude for 

N 4 which, except for a small increase at N = 5, becomes 

relatively constant for all other values of N examined 

Fig. 6 ). 

The primary lobe amplitude energy, of 4A is reduced by 

as much as 30%. This implies that the primary lobe energy is 

reduced. Accompanying this reduction in primary lobe 

energy, the far sidelobe energy ( Fig. 7 ) of is 

increased by 10% for N = 2, and except for a small decrease 

at N = 5 that coincides with the small increase in primary 

lobe amplitude, remains relatively constant for all 

additional autocorrelations examined. 

Total sidelobe energy of 4A is reduced by only 10% for 

N 5 5, but then suddenly is reduced to approximately 48% for 

N = 6 ( Fig. 8 ). This sudden decrease is explained by an 

increase in main peak width of 1 sample i.e. 2 msec, that 

occurs at N = 6. Since total sidelobe energy and primary 

lobe amplitude are relatively constant for 6 N 5 17, it is 

reasonable to suggest that the main peak width only 
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increases for N 6. 

Fig. 9 shows the resultant half -autocorrelation 

combination for N = 3 when D = M• It is immediately 

apparent that the overall change in the shape of is not 

very significant but the reduction in the primary lobe 

amplitude and the small increase in the main peak width 

are noticeable. A change in the character of the first few 

sidelobes is seen, with the second zero crossing for N = 3 

not occurring until the 30th sample from the centre of the 

main peak. 

5.3.2 Observations for  = MP 

When D MP there is a more significant decrease in 

the minimum norm value from its initial value for 4A than 

occurred when = As seen in Fig. 5, the minimum norm 

decreases rapidly for N 3, continues to drop until N = 6, 

and then becomes relatively constant up to N = 20. This 

decrease in the norm value coincides with a decrease in the 

far sidelobe energy ( Fig. 7 ), which decreases rapidly for 

N 3, continues to decrease until N = 6, and then only 

decreases slightly up toN = 20. 

Examination of Fig. 7 shows a reduction in the far 

sidelobe energy of A greater then 50% for 2 N 20 i.e. 
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for all additional autocorrelation functions. The primary 

lobe amplitude is increased by 17% for N = 2 and, after 

decreasing slightly for 3 N 5 6, returns to 17 % greater 

than the initial value for A . However, the total sidelobe 

energy is increased for 2 N 20 ( Fig. 8 ) indicating 

that the increase in primary lobe energy is greater than the 

decrease in far sidelobe energy. 

Fig. 10 shows the resultant autocorrelation combination 

for N = 3 when = MP The decrease in the far sidelobes 

and the increase in the primary lobe amplitude are the 

noticeable features of the three-autocorrelation 

combination. Also, it should be noticed that there is no 

change in the main peak width. However, the overall change 

in is again not particularly significant. 

5.3.3 Observations for cj D   

Fig. 11 compares observations of minimum norm values, 

far sidelobe energy, primary lobe amplitude and total 

sidelobe energy for D = 6 when N 3 to the observations 

for D M and for N 3. There is a small decrease in 

the minimum norm values ( Fig. ila ) that, by examination 

of Figs. lib & llc, can be explained by a small decrease in 

the amplitude of the primary lobe. Since the far sidelobe 

energy remains almost unchanged ( Fig. llc ), the total 
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sidelobe energy is reduced as a result of the decrease in 

primary lobe energy ( Fig. lid ). 

Fig. 12 demonstrates the small change in primary lobe 

amplitude for a three-autocorrelation combination but the 

oveail shape of A has not been changed. 

5.3.4 Observations for Different Constraints on Weighting  

Factors  

When considering a linear combination of 

autocorrelation functions, Werner and Krey [ 70] did not 

consider weighting factors and essentially their method 

assumed a  = 1 for all k. The formulation used in this 

thesis allowed the more general case aKE ]R. However, the 

calculation of weights ( see section 4.2.2 ) increases the 

computation time required to reach a solution to eqn. 4.4. 

Thus, it is important to examine whether calculating weights 

yields a more significant change in the shape of than 

assuming that a  = 1. 

Fig. 13 shows a comparison of observations for the 

two different constraints on the weighting factors. The 

minimum norm values ( Fig. 13a ) for fD = M and 

MP demonstrate a more significant change in when 

a  C JR than when a  = 1. By examination of the change in 



N
O
R
M
A
L
I
S
E
D
 
A
M
P
L
I
T
U
D
E
 

N=1 8-85Hz 

N=2 8- 11Hz 

N=3 82- 85Hz 

0.0 .0 .0 4.0 5.0 SLO 70 80.0 

SAMPLE NUMBER ( 2msec/sample ) 

FIGURE 12 RESULTANT AUTOCORRELATION FUNCTION COMBINATIONS 

(N≤3)FOR QD 



0 

-A 

x 

C) 
0 

0 
C" 

1.0 2.0 3.0 LO 2.0 3.0 

NUMBER OF SWEEPS 

FIGURE 13a MINIMUM NORM VALUES FIGURE 13b TOTAL SIDELOBE ENERGY 

NUMBER OF SWEEPS 

2
0
 
lo

g 
(
 X/
X
A
)
 

NUMBER OF SWEEPS 

FIGURE 13c Ap /Am 

3.0 
1.0 2.0 3.0 

NUMBER OF SWEEPS 

FIGURE 13d FAR SIDELOBE ENERGY 

FIGURE 13 

COMPARISON OF OBSERVATIONS FOR 

a=l AND akE FR FOR = (OM & MP 

LEGEND 

  a 

  ak. = 1 



49 

total sidelobe energy, primary lobe amplitude and far 

sidelobe energy it is immediately apparent that, in all 

aspects, the constraint a  = 1 inhibits the ability of 

the method to change the shape of more so than the more 

general constraint a  c ER. 

5.3.5 Discussion  

When D = M the primary lobe energy is decreased and 

the far sidelobe energy is increased. Is the decrease in 

primary lobe energy greater than the increase in far 

sidelobe energy? It would at first seem that it would be 

easy to answer this question from the curve of the total 

sidelobe energy ( Fig. 9 ). However, there is an increase 

in the main peak width that, because of the expression used 

to calculate sidelobe energy ( eqn. 5.3 ), would show a 

decrease in sidelobe energy even for no change in the energy 

of the primary lobe and far sidelobes. 

The apparent sudden decrease in total sidelobe energy 

Fig. 8 ) is the result of 

of 'l sample i.e. 2 msec. If 

been used then the decrease 

an increase in main peak width 

a smaller sample interval had 

in total sidelobe energy would 

not have been so dramatic and would have decreased along a 

curve similar to the dashed line proposed in Fig. 8. This is 

supported by the increase in main peak width that is evident 
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in Fig. 9 for N 3. However, because of the 2 msec sample 

interval that was used, Fig. 9 gives, for N 5, the total 

sidelobe energy assuming no increase in main peak width. 

This allows the conclusion that total sidelobe energy is 

reduced for = and thus the decrease in primary lobe 

energy is greater than the increase in far sidelobe energy. 

When = MP there is no change in the main peak width 

of and Fig. 9 shows an increase in total sidelobe 

energy. Thus the increase in the primary lobe energy, 

shown in Fig. 6, is greater than the significant 

reduction in far sidelobe energy. The behavior of the total 

sidelobe energy when 6 was not examined because the 

changes in the shape of for N 3 were insignificant, 

as can be seen in Fig. 12. 

Thus, as anticipated, M is the only choice of D for 

which there is a decrease in the total sidelobe energy. It 

is also the case for which the most significant change in 

occurred, namely the 30% decrease in the primary lobe 

amplitude. However, the decrease in total sidelcbe energy is 

accompanied by a small increase in the main peak width of 

For N 3, the increase is only a small percentage of 

the main peak width and is tolerable. 

The overall change in the shape of A' regardless of 
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the choice of D' is not very significant as can be seen in 

Figs. 9, 10, and 12. The largest change occurred for = 

when there was a 30% decrease in the primary lobe amplitude. 

This represents a significant change in one feature of the 

autocorrelation but it remains to be seen whether the 

changes in the shape of A will be noticeable on field data 

section 5.4 ). 

The choice of fD determines the nature of the change in 

the shape of If = '5 the method attempts to reduce the 

main peak width, primary lobe energy, and far sidelobe 

energy of A• However, little change in the shape of 

occurs as can be deduced from the small change in the 

minimum norm values for each additional autocorrelation 

combined with A' shown in Fig. 11. For = the change 

in the minimum norm values is more significant than for 

= '5, and for = MP the change is even more significant 

Figs. 5 & 11 ). This indicates that when is chosen such 

that the method is attempting to alter several features of 

the overall change in the shape of is smaller than if 

D is chosen to alter fewer features e.g. reducing only far 

sidelobe energy. 

The significant changes in the minimum norm values, 

regardless of the choice of 4D' occur forN 6 ( Fig. 5 ), 

with the norm values remaining relatively constant for 
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7 N 5 20. This implies the most significant changes in the 

shape of occur for N 6, with very little further change 

when more additional autoccrrelations are considered. This 

is an important observation because it implies that when 

attempting to improve the shape of 4A by combination with 

autocorrelation functions of linear sweeps, it is only 

necessary to consider a maximum number of six 

autocorrelations. For the thesis problem of reducing the 

total sidelobe energy of A' which has been demonstrated to 

only occur when = M' the significant change in minimum 

norm value occurs for N 3. Thus, if the method were to be 

applied in the field to reduce sidelobe energy, it would not 

be impractical to implement because only three different 

linear sweeps would have to be used. 

5.3.6 Summary 

The method succeeded in reducing the sidelobe energy of 

when = M' a symmetrical function with the same main 

peak as and zero sidelobe energy. However, accompanying 

the reduction in sidelobe energy was a very small increase 

in the main peak width. The overall change in the shape of 

cIA was not significant, although the primary lobe amplitude 

was decreased by as much as 30%, and it remains to be seen 

whether the changes will be noticeable in field data. 
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The ability of the method to change the shape of was 

found to be dependent on the choice of 4D• If D was chosen 

to induce changes in more than one feature of ctA e.g. D = 

to attempt to decrease far sidelobe energy, primary lobe 

energy and main peak width, then the change in shape of 

was less than if D was chosen to induce a change in only 

one feature of A e.g. D = to reduce only far sidelobe 

energy. 

When attempting to reduce total sidelobe energy of 

the most significant changes in the shape of A occur for 

N 6 3. This implies that the thesis method would not be 

impractical to apply in the field as only three different 

linear sweeps would have to be considered. 

The constraint a  = 1 for all values of k inhibits the 

ability of the method to change the shape of In all 

aspects, allowing a  6 ]R induced more significant changes in 

5.4 Field Test Results  

5.4.1 Aim of the Field Test  

The computer tests demonstrated that the total sidelobe 

energy of A could be reduced by linear combination with 
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other autocorrelation functions. However, of particular 

interest, is whether the resultant change in the shape of A 

is sufficient to be noticeable on field data ? 

In an attempt to answer this question, the three linear 

sweeps that formed the solution for D = M for N = 3 were 

used in a field program. The aim of the field test was to 

examine whether the combination of the autocorrelation 

functions of the three linear sweeps would give data of 

higher quality than data generated by the largest bandwidth 

linear sweep. 

5.4.2 Field Implementation  

The linear sweeps that formed the solution of the 

thesis problem when = and N = 3 were 8-li Hz and 52 

-83 Hz. The largest bandwidth sweep was 8-85 Hz. Each of 

the sweeps was of 6 seconds duration with a 250 msec cosine 

amplitude taper applied to each end ( see section 5.2.1 ). 

A standard field arrangement for the Vibroseis 

technique was used, with four vibrators shooting at 21 shot 

points, each 50 m apart, with 6 sweeps/vibrator/shot point. 

The station interval was 25 m. The line was shot three 

separate times, once for each sweep, with the data being 

recorded at 2 msec/sample. 
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After the data had been correlated, the different 

weights ( a1, a2, a3 ) were applied to the individual 

records, which were then stacked before any gain was 

applied. Both sections were processed in the same manner, 

using the same parameters so that any differences in the 

final sections would not be a result of differences in 

processing. The single- sweep section, for the largest 

bandwidth sweep, is shown in Fig. 14 and the three-sweep 

combination section is in Fig. 15. 

5.4.3 Discussion  

Examination of Figs. 14 and 15 show no visual 

difference in the section for the 8-85 Hz single linear 

sweep section and the section for the weighted combination 

of the 8-85 Hz, 8-11 Hz, 52-83 Hz linear sweeps. Thus the 

changes in the shape of the 8-85 Hz linear sweep 

autocorrelation ) that were demonstrated in the 

computer tests were not sufficient to give any noticeable 

improvement in the quality of field data. 

The most likely reasons that the improvements in are 

not apparent are noise and the various filtering effects, 

represented by e(t) in eqn. 1.5, that were not accounted for 

in the development of the method. The improvements in the 
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shape of A were not significant enough to overcome the 

effects of noise and the various filters ( see chapter I ). 

How can these effects be overcome ? If noise and the 

filter effects were to be accounted for in the method it 

would be necessary to find a set, or sets of nonlinear 

sweeps for which the method would select autocorrelation 

combinations that change the shape of 4A significantly 

enough so that they are not overcome by the effects of noise 

and the various filters. 
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CHAPTER VI CONCLUSIONS  

The computer tests discussed in chapter V show that, 

for linear sweeps in a particular bandwidth, the sidelobe 

energy of the autocorrelation function 4A' of the largest 

bandwidth sweep, can be reduced by linear combination with 

other optimally selected autocorrelation functions. However, 

at best, the method only reduced the total sidelcbe energy 

by 10%, the result of a 30% decrease in the primary lobe 

amplitude, but the main peak resolution was essentially 

preserved. 

Field tests demonstrate that improvements in 

autocorrelation shape, that were seen in the computer tests, 

were not significant enough to yield an observable 

improvement in data quality. It is suggested that this is 

due to noise and various filtering effects, for example 

vibrator- earth coupling and frequency absorption, that 

overcome the improvements that were noticeable in the 

computer tests. 

To account for noise and the filter effects, using the 

method described, it will be necessary to find a set, or 

sets, of nonlinear sweeps for which the reduction in 

sidelobe energy of a particular autocorrelation function 

would be significant enough not to be overcome by noise and 
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the filter effects. 

The algorithm described in the thesis has the advantage 

of generality, allowing for expansion to include different 

sweep definitions and constraints. The combinatorial search 

method that was used to solve for the frequency parameters 

had the major advantage of being stable. However, it 

involved large amounts of computation which restricted the 

size of the problem that could be solved. 

In conclusion, the aim of the thesis, which was to 

minimize the sidelobe energy of a particular autocorrelation 

function using linear sweeps, was achieved. However, the 

reduction was not significant enough to improve the visual 

quality of. field data. It is suggested that future work 

should consider the effects of noise and various filter 

effects, particularly vibrator-earth coupling and 

frequency absorption, by examining optimal combinations of 

the autocorrelation functions of suitably selected nonlinear 

sweeps. 
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APPENDIX A 

The Vibroseis Seismogram Trace  

Using the convolution model [ 47] of the seismic trace, 

the signal recorded at the geophones is 

g(t) = { s(t) * e(t() * r(t) } + n(t) Al 

where r(t) is the earth impulse response, n(t) is noise, 

5(t) is the seismic source signal, and e(t) represents the 

filtering effects of earth attenuation, vibrator plate - 

earth coupling and the recording system [9]. The correlation 

of the geophone output, g(t) and the vibrator input signal, 

s(t) yields the vibroseis seismogram trace 

V(t) = s(t) 0 g(t) A2 

where 0 represents correlation. Substituting egn. Al into 

eqn. A2 gives 

v(t) = s(t) X { [ s(t) * e(t) * r(t) ] + n(t) 

= { s(-t) * s(t) * e(t) * r(t) } + s(-t)* n(t) A3 

The autocorrelation function of the signal s(t) is defined 
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as 

(t) = s(-t) * s(t) A4 

and eqn A3 can be written 

v(t) = 55(t) * e(t) * r(t) + N(t) 

where N(t) = s(- t) * n(t). 

A5 
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APPENDIX B  

Calculation of The Number of Parameter Pairs Examined  

There are two possible methods for implementing the 

combinatorial search method for solving for the frequency 

parameters in eqn. 4.4: considering only one additional 

autocorrelation at a time or considering all autocorrelation 

functions together. The total number of frequency 

parameters to be considered for each method ( eqns. 4.5 and 

4.6 ) are derived as follows. 

Let there be P possible frequency parameter pairs 

allowed by the frequency constraint of eqn. 2.4. The 

frequency parameter pair for k = 1 is known. Also, it is 

assumed that a particular frequency parameter pair need only 

to be chosen once e.g. the case 

alcA + a242 ( f2 ( 0) , f2 ( T) ) + a343 3 (R) ( 0) ' f 3 (R) (T) 

where f2(0) = f(R)(0) and f2 (T) = f3 (T) does not need to 

be examined, since 42 and are then the same 

autocorrelation function and if this combination was a 

solution to eqn. 4.4 ( section 4.2 ), the weighting factor 

a2 would have been calculated appropriately when k = 2. 
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B.l Solving for One Autocorrelation Function at a Time  

The parameter pair for k = 1 is known. Since the same 

pair cannot be chosen more than once, this leaves ( P - 1 

pairs to be considered for k = 2, which leaves C P - 2 

pairs, to be considered for k = 3. Similarly, for k = N, 

P - ( N - 1 )) pairs are considered. 

The total number of parameter pairs to be considered is 

then 

(P-l)+(P-2)+ ... +( P-( N- l)) 

=P( N- 1 ) - ( 1+2+3+... + ( N- 1 

PC N - 1 ) - 'N( N - 1 )/2 Bi 

B.2 Solving for All Autocorrelation Functions Simultaneously  

Given that the frequency parameter pair for k = 1 is 

known, this leaves ( P - 1 ) frequency parameter pairs from 

which ( N -1 ) pairs have to be chosen. It is well known 

from elementary mathematics that the total number of 

combinations of n things taken r at a time is given by 
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ni 

rl ( n - r ) I 

Thus, the total number of ( P - 1 ) things taken ( N - 1 

at a time is given by 

(.P 

((P - 1) - (N - 1))! ( N - 1 ) I 

(P - N)I ( N-i)! B2 


