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Abstract


Multiresolution is a modeling technique in computer graphics for representing a 

model at different scales. Many graphical models do not result from a multires

olution process, and so a fundamental problem is to construct a multiresolution 

representation for such models. Subdivision is a method for increasing the resolu

tion of a model and is used in the pipeline of many modeling tools. Thus there is an 

abundance of models that have the structure, or connectivity, created by subdivision. 

In this thesis, we develop a framework for constructing multiresolution represen

tations for models with subdivision connectivity. To have low-resolution representa

tions that require no more storage than the original model, the model is partitioned 

into two independent sets: one that represents the coarse approximation, and one 

which will contain some additional information for reconstructing the original model. 

Then, a wavelet constraint is enforced so that the entire set of reconstruction infor

mation can be determined from the incomplete stored information. This constraint 

results in a set of rules for decomposing the model. To improve the quality of the 

low-resolution model, an optimization step is applied. 

This framework is generic enough to be applied to a wide range of subdivision 

types. To demonstrate this applicability, it is used to develop multiresolution settings 

for several subdivision types: cubic B-spline curves, Loop surfaces, and Catmull-

Clark surfaces. The resulting systems have desirable properties such as biorthog

onality and compact support. Furthermore, the cubic B-splines and Loop systems 

are found to perform as well as existing systems, while the Catmull-Clark system 

represents the first true multiresolution system for that type of surface. 
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Chapter 1 

Introduction 

Multiresolution modeling is an important tool in computer graphics. In the broadest 

sense, multiresolution can refer to any technique that distinguishes between features 

at different scales. By adding or removing features from these scales, the amount of 

perceived detail or quality of the model can be manipulated. Such techniques are 

important because they respect the macro- and microscopic nature of objects in the 

real world. For example, the handle of an ax held by a character in an interactive 

video game need only represent the general shape and can hint at surface properties 

through texturing; the same ax handle in a motion picture will have to stand up to 

much more scrutiny, and should carry more fine-scale geometric features. 

Polygonal meshes, such as the one shown in Fig. 1.1(a), are the most common 

representations of rigid objects in computer graphics. A mesh is made up of vertices, 

faces, and edges ; valence refers to either the number of edges incident to a vertex, 

or the number of vertices in a face. Vertices and faces alone are enough for repre

senting and rendering a mesh, but the concept of edges is necessary when discussing 

subdivision. Subdivision is a linear-time technique for smoothing such object repre

sentations (Fig. 1.1(b)); subdivision increases the smoothness of a mesh by inserting 

new vertices and displacing old vertices. 

Due to the popularity of meshes and subdivision techniques for them, mesh-

centric multiresolution techniques are intensely researched [49, 38, 7, 31, 4, 28]. There 

are three broad classes of meshes: meshes with regularly arranged vertices, those with 
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Figure 1.1: Left: A polygonal mesh represents an object as a set of vertices and a 
set of faces connecting the vertices. Right: Subdivision is a technique for smoothing 
such meshes. 

subdivision connectivity (semi-regular), and those without any connectivity pattern 

(irregular). For subdivision curves and regular meshes (subdivision patches), the 

classical approach for building multiresolution systems is wavelet analysis, which 

casts subdivision into more established signal-processing terms [41]. More recently, 

the linear nature of subdivision has been exploited to apply least squares optimiza

tions for constructing multiresolution systems for curves and patches [35, 3, 38]. 

Both wavelet and local least squares approaches are difficult to extend to mesh 

schemes. For certain subdivision schemes such as Loop [4, 31] and Doo-Sabin [38], 

wavelet systems have been successfully constructed, yet some popular schemes like 

Catmull-Clark still lack a true multiresolution system. 

Multiresolution techniques for irregular meshes are exceedingly complex, partic

ularly when compared with the local, linear multiresolutions that result from semi-

regular or regular meshes. Irregular mesh schemes typically accept an arbitrary mesh 

as input and then attempt to reconstruct a low-error approximation of the surface 
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by repeatedly performing simple operations such as vertex or edge removal. Recent 

approaches [30, 42, 7] tend to decimate the input mesh to a very coarse representa

tion that has the same topology as the input, and then use subdivision techniques 

to build a low-error semi-regular representation. 

This thesis presents a new technique for constructing multiresolution systems 

from existing subdivision schemes. Such systems can be used to reduce the resolution 

of regular and semi-regular meshes in a fast and efficient manner. In conjunction 

with existing remeshing techniques that construct semi-regular meshes from irregular 

ones, multiresolution systems open the door to many possible applications, from mesh 

editing to level-of-detail rendering. The strengths of the technique are that it can 

be naturally applied to a broad range of subdivision types, and that it performs 

quantitatively as well as or better than existing techniques. 

1.1 Motivation 

The key motivation for undertaking this research is to have a more complete set of 

modeling tools. Many modeling packages include subdivision interfaces for increasing 

the resolution of a model, but the lack of robust multiresolution methods for semi-

regular meshes creates a one-way modeling pipeline. 

Consider Z-Brush [34], a commercial modeling tool that offers a very powerful 

painting metaphor, allowing features to be brushed on interactively. Underneath, 

Catmull-Clark subdivision is used to increase the resolution and create features. 

However, once fine-scale features have been created, the lack of a true multiresolution 

filter set makes it difficult to make changes to the lower- resolution features; in 
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Figure 1.2: Multiresolution editing in a commercial modeling application (ZBrush). 
(left to right) features on the high-resolution mesh are represented as offsets from 
a low-resolution base mesh; changes to the base mesh are reflected properly at the 
higher resolution. (Figure taken from ZBrush Quick Reference Guide, available at 
http://www.pixologic.com/zbrush/ education/education-documentation.html.) 

practice, the whole mesh hierarchy must be cached (Fig. 1.2). 

With a true multiresolution system, a semi-regular mesh can be downsampled 

algorithmically on demand, thus enabling more contextual editing. When working 

with fine-scale features, a high-resolution representation can be edited; to make 

broad or macroscopic changes, a coarse representation can be edited. While there 

is no technical barrier to making broad changes at the high resolution, such edits 

would require substantially more effort. 

Figures 1.3 and 1.4 illustrate this concept for editing meshes and curves, respec

tively. In (a), there is a simple mesh with some high-frequency (non-smooth) details. 

Via a multiresolution method described like those presented in this thesis, a lower 

http://www.pixologic.com/zbrush/
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(a) (b)


(c) (d) 

Figure 1.3: Multiresolution mesh editing: (a) the original mesh; (b) a lower resolution 
reached via multiresolution techniques; (c) a simple editing operation is applied at 
the low resolution; (d) the low-resolution edit is reflected when the original resolution 
is restored. 
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(a) (b)	 (c) (d) 

Figure 1.4: Multiresolution editing of a curve: (a) the original curve; (b) a low 
resolution approximation; (c) the low-resolution version is edited; (d) the edit is 
carried forward when the original resolution is restored. 

resolution can be reached easily, producing the mesh shown in (b). When the mesh 

is then altered at the low resolution, as in (c), the changes are reflected intuitively 

at the higher resolution (d). These edits can of course be performed on the full-

resolution model of (a). However, to produce the figure in (d) the user would have 

to move hundreds or thousands of vertices. By editing at a coarser level, only a few 

vertices need to be moved. 

1.2 Goals 

In this thesis, a new framework is introduced for constructing wavelet systems for a 

wide range of curve and surface subdivision schemes. The resulting multiresolution 

systems are designed with the following goals in mind: 

•	 Invertibility When a model is subdivided and then decomposed (lowered in 

resolution) with the multiresolution system, the original model is expected as 

output (Fig. 1.5). 
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•	 Reconstructability When a surface is decomposed, some information is neces

sarily lost. The multiresolution system should capture this detail information 

so that the original surface can be reconstructed. See Fig. 1.6. 

•	 Storage constraint The low-resolution representation of a model plus the extra 

information required for reconstruction should require no more storage than the 

full-resolution representation of the model. This is typically the most difficult 

condition to satisfy. 

•	 Locality & Linearity Subdivision techniques are popular in graphics largely 

because of their linear running time, which is made possible by the fact that 

subdivision is based on linear operations on a local subset of data. An efficient 

multiresolution system should also involve local and linear operations. 

•	 Similitude When a surface that is not the product of subdivision – but that has 

semi-regular connectivity – is decomposed, the multiresolution system should 

produce a model that “looks like” the original object. Without this condi

tion, the multiresolution system would be poorly suited to the most important 

applications: editing and compression. See Fig. 1.7. 

1.3 Methodology 

When discussing subdivision, the terms coarse and fine are used to refer to the rel

ative smoothness before and after subdivision, respectively. Multiresolution systems 

augment subdivision by offering a decrease in resolution, constructing coarse data 

from fine data. To be able to return to the fine data from the coarse, some extra 
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Figure 1.5: The invertibility condition: in a multiresolution system, subdivision 
followed by decomposition should yield the original object. 

Figure 1.6: The reconstructability condition: a multiresolution system should cap
ture the high-frequency information that is lost by decomposition, to allow full re
construction of the original surface. 

Figure 1.7: The similitude condition: a multiresolution system should try to produce 
a low-resolution mesh that resembles the original object. The object in the center is 
decomposed with the Loop filters described in Sec. 5.2 (left) and 5.4 (right). 
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information called the details must also be determined. 

To construct multiresolution systems that satisfy the goals of Sec. 1.2, the storage 

constraint serves as the starting point. That is, the vertices in a fine model that will 

be replaced with coarse approximations are identified, and then a condition requiring 

that the extra information for reconstructing the coarse vertices (the details) can be 

computed from a local neighborhood of other details is enforced. Because the detail 

terms represent coefficients of a wavelet basis (Sec. 2.3.2), this enforced condition is 

called constraining the wavelets. 

Having this constraint immediately satisfies the storage constraint, as well as 

reconstructability (because the entire set of details is either stored or computable). 

Fortunately, the mathematical formulation of the wavelet constraint yields a method 

for computing the positions of coarse vertices and ultimately a biorthogonal system. 

Finally, the similitude condition is addressed by an optimization step. By ana

lyzing the magnitude of the wavelet coefficients surrounding a coarse vertex, each 

vertex can be displaced in a way that pushes the coarse mesh closer to the shape 

and dimensions of the original surface. 

1.4 Contributions 

The main contribution of this work is a framework for constructing multiresolution 

systems for a wide range of subdivision schemes. Traditional wavelet methods de

scribe multiresolution in mathematically elegant and robust terms, but falter when it 

comes to actually constructing multiresolution systems for mesh subdivision schemes. 

The inherently structured geometric nature of subdivision can be exploited for con



10 

structing multiresolution systems that are intuitive to understand and implement, 

yet at the same mathematically sound and indeed able to be cast back into traditional 

wavelet terms. 

Using the framework proposed herein, two key contributions to specific subdivi

sion schemes are made. First, a full multiresolution system for Loop subdivision is 

derived that delivers results in line with earlier methods while offering easier imple

mentation. Second, the framework is used to develop a full multiresolution system 

for Catmull-Clark subdivision, not only addressing an unsolved problem in graphics, 

but addressing it in an elegant fashion. 

1.5 Overview of Thesis 

This thesis is organized as follows. Chapter 2 discusses the related work in the areas 

of subdivision, multiresolution, mesh simplification, and mesh editing. Chapter 3 

gives an overview of the proposed framework for constructing multiresolution sys

tems. Chapter 4 applies the method to B-spline-based curve subdivision schemes, 

cubic B-splines in particular; the simplicity and clean notation of curve schemes 

allows for more in-depth analysis than arbitrary-mesh schemes. Chapters 5 and 6 

extend the method to Loop and Catmull-Clark mesh subdivision schemes, respec

tively. Chapter 7 presents results and analysis for each of these applications. Finally, 

Chapter 8 concludes the thesis and offers some directions for future investigation. 

Appendix A summarizes the notation used herein, while Appendices B and C discuss 

the implementation and interface of the software written for this work. 



Chapter 2 

Background 

Multiresolution is a broad term, applied to all types of graphical models from polygo

nal meshes to implicit surfaces and involved in both modeling and rendering applica

tions. The primary interest of this work is multiresolution as it relates to subdivision 

surfaces and wavelets. Parametric curves are an important precursor to subdivision 

curves and surfaces, so they are presented briefly in Sec. 2.1. Subdivision schemes 

for curves, regular surfaces, and arbitrary meshes are discussed in Sec. 2.2. Finally, 

Sec. 2.3 covers multiresolution techniques, in particular as they relate to subdivision 

methods. 

2.1 Parametric Curves 

Computer modeling as we know it today is a vastly complex domain. Creation 

of the models used in motion pictures and even interactive video games requires 

highly trained artists and technical staff. A crucial aspect of modeling software is 

intuitiveness: users are generally more comfortable manipulating an object directly 

than they are manipulating an underlying mathematical representation. 

Parametric curves are an early exemplification of this concept. As illustrated in 

Fig. 2.1, a parametric curve is defined by a set of control vertices. To manipulate 

the entire continuous curve, a user need only move the control vertices. 

Formally, a parametric curve Q(u) is defined by a set of control vertices, V = 
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Figure 2.1: A parametric curve is defined by a small set of control vertices: (left) a 
curve defined by five vertices; moving a control vertex (center) creates an intuitive 
change in the resulting curve (right). 

{P0, . . . , Pm}; the curve itself is constructed by evaluating linear combinations of the 

control vertices over the range of the parameter u. A set of basis functions Bi(u) 

define how the control vertices of a curve are combined to produce a point on the 

curve: Q(u) = i Bi(u)Pi. 

B-spline curves [19, 1] are an important type of parametric curve, especially as 

they relate to subdivision. The B-spline basis functions – usually denoted Ni,k(u) 

for an order-k curve – are defined recursively; the base case is k = 1. An interesting 

property of the B-spline basis functions – one that makes them suitable for subdi

vision – is that Ni,k(u) is only non-zero for a subset of the range of u values; this is 

typically referred to as local control, because it means that moving a control vertex 

will only impact the curve in a local area. B-splines are a popular modeling tool 

for both curves and surfaces; many popular subdivision schemes, including those 

discussed in this thesis, are extensions of B-spline curves. 

The formulation of a parametric curve can be naturally extended to higher-

dimensional objects such as 2D surfaces, 3D volumes, and so on. Consider a surface 

patch defined by a regular 2D grid of control vertices (Fig. 2.2 (left)). The regularity 

of the vertices allows the patch to be split into two dimensions, usually denoted as 
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Figure 2.2: A cubic B-spline tensor product surface is defined by a regular grid of 
control vertices: (left) a control mesh; (right) the resulting surface. 

the u and v directions. A tensor-product surface can be defined over these vertices 

as a bivariate function Q(u, v) = i Bi(u) j Bj (v)Pi,j . 

2.2 Subdivision 

Subdivision techniques in graphics can be broken into three basic categories. Sub

division curves are the elemental type (Section 2.2.1); these include extensions of 

Beziér [5] and B-spline curves. Subdivision curves, like parametric curves, can be 

naturally extended to higher dimensions, such as surfaces (2D) and volumes (3D); 

Section 2.2.2 briefly covers these cases, primarily the surface case that is most rel

evant to my research. In Section 2.2.3 subdivision schemes that operate on meshes 

with arbitrary (or very loosely constrained) connectivity to produce semi-regular 

meshes are discussed. 

2.2.1 Curves 

Even with optimization techniques, the rendering of parametric curves and surfaces 

is expensive because they must be evaluated at thousands of parameter values. Sub
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Figure 2.3: Chaikin subdivision (left to right): the original control polygon; after 
one subdivision; after two subdivisions; the limit surface. 

Figure 2.4: Cubic B-spline subdivision (left to right): the original control polygon; 
after one subdivision; after two subdivisions; the limit surface. 

division curves avoid evaluating the curve across the parameter range and instead 

represent a curve or surface as simply a piecewise-linear connection of the control 

vertices. Obviously such a rendering would be of poor quality if the original control 

vertices were used. Subdivision is a process that refines an initial set of control ver

tices V into a new set V� such that the object defined by V� is equivalent to that 

defined by V, yet the piecewise-linear object defined by V� is “closer” to the limit 

curve than V. 

This is best illustrated with an example. The first curve subdivision scheme is 

credited to Chaikin [10], dating back to 1974. When a curve is subdivided with this 

scheme, every line segment is contracted about its center by a factor of one-half, 

and the endpoints of these contracted segments are joined to form the new curve. 
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Equivalently, point Pi is replaced by two points on the line segment between Pi and 

Pi+1: one at 
4
1 Pi + 

4
3 Pi+1 and another at 

4
3 Pi + 

4
1 Pi+1. The values 

4
1 , 

4
3 , 

4
3 , 

4
1 are 

known as filter values. Figure 2.3 illustrates Chaikin’s subdivision process being 

applied to a simple control polygon. 

In 1975, that Lane and Riesenfeld [27] showed that Chaikin’s “corner-cutting” 

scheme actually generates quadratic (degree-2) B-spline curves in the limit. They 

further showed that the filter values for any kth-order B-spline curve can be derived 

from Pascal’s triangle. 

Cubic (3rd-degree or 4th-order) B-spline curves are an important entity in com

puter graphics. The filter values for cubic B-spline subdivision are 
8
1 , 

2
1 , 

4
3 , 

2
1 , 

8
1 . 

These filter values mean that point Pi is replaced by two points: 1
8 Pi−1 + 3

4 Pi + 1
8 Pi+1 

and 1
2 Pi + 

2
1 Pi+1. Fig. 2.4 shows this scheme applied to a simple control polygon. 

Subdivision curves (as well as parametric curves) can be either open or closed, 

as illustrated in Fig. 2.5. Closed curves are the easier setting, as the control vertices 

simply need to be indexed periodically; that is, if a curve is defined by vertices 

P1, . . . , Pm, then periodic indexing will wrap the vertices around by setting P1−j ≡ 

Pm+1−j and Pm+j ≡ Pj . An open curve, in contrast, requires a special set of filters 

to provide a smooth limit curve while also interpolating the first and last vertices. 

Matrix Form of Subdivision 

Subdivision is characterized by two important properties: locality and linear

ity. That is, a vertex produced by subdivision is a linear combination of a local 

neighborhood of vertices from the original object. Because the operations are linear, 

subdivision can be expressed in terms of matrices (although the locality of subdivi
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Figure 2.5: Open versus closed curves: for a closed curve (left), periodic indexing is 
used to “wrap” the control vertices around; for an open curve (right), the curve has 
definite start and end points, and the subdivision filters must be altered to provide 
endpoint interpolation. 

sion means that such a representation is inefficient). 

Consider the previous example of cubic B-spline subdivision, with the filter val

ues of 
8
1 , 

2
1 , 

4
3 , 

2
1 , 

8
1 . These filters values represent a regular, repeating column of the 

subdivision matrix, usually denoted P. If the control polygon of Fig. 2.4 is repre

sented by four control vertices Ck = {c0 
k, c1

k, c2
k, c3 

k}, then the subdivision operation 

will produce 8 control vertices Ck+1 = {c0 
k+1 , . . . , c 7 

k+1}. The entire operation can be 

encapsulated in matrix form as Ck+1 = PCk, or ⎤⎡ 
3 1 10
4 8 8 

1 1 0 0
2 2 

=


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 
k+1 

⎤⎡ 
1 3 1 k0
c
 c
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

0 08 4 8 

k+1 1 1 k0
 0
c
 c
1 12 2 
.
 (2.1)


.
.
.
 1 3 1 k0
 c
28 4 8 

k+1 1 1 k0 0
c
 c
7 32 2 

1 1 30
8 8 4 

1 10 0
2 2 
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The subdivision matrix P is also referred to as a filter. 

The matrix form of subdivision is important to the analysis of subdivision, espe

cially for schemes that are not based on B-spline curves. For instance, the eigenvalues 

of the subdivision matrix (more specifically, eigenvalues of a square submatrix of P 

such as S from Eqn. 2.9) indicate whether the scheme converges and with what 

level of continuity. Matrix notation is also beneficial for constructing and analyzing 

multiresolution systems, as exemplified by Chapter 4. 

In the previous section, subdivision curves were said to be either open or closed. 

For a closed curve, the subdivision matrix will appear as in Eqn. 2.1: the columns 

and rows wrap around. For open curves, special filters must be used at the boundary 

vertices. Following the notation of Samavati & Bartels [36], let Ps and Pe represent 

special subdivision matrices for the start and end of the curve respectively. For 

interior points, the subdivision filter is applied as usual; denote the subdivision 

matrix for this regular portion of the curve as Pr. Together, Ps, Pe, and Pe define 

the subdivision matrix for an open curve, and the entire matrix can be written in 

block-matrix form as
 ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

Ps 

Pr 

⎥⎥⎥⎥⎥⎥⎦ 

P =
 .


Pe 

2.2.2 Patches 

As with parametric curves, the curve subdivision schemes discussed in Sec. 2.2.1 can 

be easily extended to multidimensional objects, provided the control vertices have 

some implied connectivity, i.e. regularity. 
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Figure 2.6: A subdivision patch is, like a tensor product surface, defined by a regular 
grid of control vertices. The same control mesh of Fig. 2.2 (left) is subdivided first 
along the rows (middle) and then along the columns (right). 

The most common extension is to 2D surfaces (commonly referred to as patches) 

or 3D volumes. For instance, a 2D surface can be defined by a regular grid of 

control vertices, V = {P0,0, . . . , P0,m, . . . , Pm�,0, . . . , Pm�,m}. To subdivide the surface, 

a curve subdivision scheme is applied first to the rows of vertices, and then to the 

columns. (Note that this row-column sequence is analogous to the u-v distinction in 

the parametric form.) Figure 2.6 shows an example of a subdivision patch. 

Note that a “regular” mesh is equivalent to a mesh with only quadrilateral faces 

(or a volume with cubic voxels, and so on), and in which all vertices have a valence 

of 4 (Fig. 2.7 (left)). For these kinds of meshes, there is a clear delineation of two 

independent directions – call them u and v – and subdivision techniques can be 

applied independently along each direction. 

Another possible regular arrangement of faces and vertices is a triangle mesh 

(Fig. 2.7 (right)). In such a mesh there are three directions: the same u and v direc

tions, and a third direction w that is not independent. Because they are dependent, 

it does not make sense to apply a curve subdivision technique along each one inde

pendently. So although a triangle mesh also has a regular arrangement, it is not as 

straightforward as a regular quad mesh. Samavati & Bartels [37] recently considered 
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Figure 2.7: The regular arrangement in a quadrilateral mesh (left) yields two in
dependent axes along which curve subdivision techniques can be used. A regular 
triangle mesh (right) has three dependent axes. 

multiresolution settings for regular triangle meshes. 

2.2.3 Arbitrary-Connectivity Meshes 

Subdivision patches with regular connectivity can be used to model quite complex 

objects, everything from teapots to vehicles. However, many separate patches must 

be used to create complex models, and aligning these patches to ensure smoothness 

at the boundary is a difficult task. Thus regular subdivision patches are perhaps not 

an ideal model representation. 

While subdivision patches or volumes have implicit connectivity – in a curve 

{p0, . . . , pm}, there is an edge between pi and pi+1 – the connections between vertices 

in a polygonal mesh have to be explicitly represented by a face structure. Because 

of the more complex connectivity, subdivision schemes for meshes are typically rep

resented by masks rather than filters; a mask dictates how to compute a fine vertex 

position based on a local neighborhood of coarse vertices. 

In 1978, Catmull & Clark [8] and Doo & Sabin [14, 15] published subdivision 

methods that could operate on meshes with non-regular connectivity. Figure 2.8 

shows a polygonal model representing a chess piece; after only three applications of 

subdivision, a smooth, visually appealing surface is reached. The ability to subdi
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Figure 2.8: Mesh subdivision schemes allow any arbitrary polygonal object to be 
refined to a smooth surface. (Loop subdivision is used here.) 

vide any polygonal mesh to a smooth surface represented a major breakthrough in 

modeling for computer graphics. Because each subdivision scheme has a structured 

way of creating vertices and faces, meshes that result from subdivision are said to be 

semi-regular. In fact, any mesh that has the vertex connectivity, but not necessarily 

the geometry, produced by subdivision is said to be semi-regular. Semi-regularity 

of an arbitrary mesh is typically determined by a graph-traversal-like process; see 

Appendix C. 

Doo & Sabin’s method is a generalization of 2nd-degree (Chaikin) B-spline patches; 

like the Chaikin curve subdivision scheme, Doo-Sabin subdivision has a “corner

cutting” effect (see Fig. 2.9). Catmull & Clark’s subdivision method, meanwhile, is 

an extension of 3rd-degree (cubic) B-splines. The result of applying Catmull-Clark 

subdivision to a cube is shown in Fig. 2.10. 
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Figure 2.9: Doo-Sabin subdivision of a cube.


Figure 2.10: Catmull-Clark subdivision of a cube.


Figure 2.11: Loop subdivision of a cube.
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Doo-Sabin subdivision contracts (shrinks) each face in the original mesh, while 

Catmull-Clark subdivision splits each face into several new faces. Face- (or edge-) 

splitting subdivision schemes are referred to as primal schemes, while face-contracting 

schemes are known as dual, or vertex-split, schemes [47]. 

In 1987, Loop [33] published a subdivision scheme that, like Catmull-Clark, is 

based on cubic B-splines. His scheme operates only on meshes with triangular faces; 

this is not much of a limitation though, because any arbitrary mesh can easily be 

converted to a triangular mesh (see Sec. 2.3.1). Loop’s scheme is based on quartic box 

splines [19]. An iteration of Loop subdivision splits each triangle into four triangles 

by creating new vertices at each edge and displacing old vertices. Figure 2.11 shows 

the application of Loop subdivision to a cube mesh. 

There are several other subdivision methods for arbitrary meshes [16, 48, 32], 

but they are not integral to this research. It suffices to say that the underlying 

mathematics of each scheme is very similar, but that each scheme has certain prop

erties (continuity, interpolation, etc.) that suit it to particular modeling domains. 

The combination of C2 continuity and the popularity of triangle- and quadrilateral-

based meshes make Loop and Catmull-Clark subdivision the most popular schemes 

in practice. 

Subdivision surfaces are used extensively in both commercial and in-house mod-

celing packages. For instance, Pixar Animation Studios � popularized the use of 

Catmull-Clark surfaces in computer animation [13]. ZBrush [34] is a commercial 

modeling package that provides a sculpting paradigm for modeling, and subdivi

sion is used to increase the resolution of a model when finer-scale features are being 

sculpted. Other modeling applications such as Maya, 3DSMax, and the open-source 
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Blender also provide subdivision surfaces as a basic tool. 

2.3 Multiresolution (MR) 

Subdivision is a powerful tool for increasing the resolution of a model, but unfortu

nately it is a one-way process: resolution is only increased, not decreased. In cases 

such as Fig. 2.8, where a mesh is simply subdivided a number of times for rendering 

purposes, this is a minor problem. The original mesh can be cached at the beginning 

to avoid having to store the high-resolution version. Or, because most subdivision 

rules can be reversed directly, the original mesh could be returned to algorithmically. 

Thus, undoing subdivision is not the goal of multiresolution. 

The purpose of multiresolution (MR) is to take a high-resolution object that is 

not the product of subdivision and reduce the resolution in a way that satisfies the 

goals of invertibility, reconstructability, minimal error, and the storage constraint. 

That is, an MR process should: a) produce a mesh that “looks like” the original 

mesh; b) compute and store additional information for reconstruction of the original 

mesh; and c) require no more storage for the approximation and detail information 

than the original mesh required. 

In general, it is easy to invert a subdivision scheme, i.e. construct MR filters that 

satisfy invertibility. For instance, consider cubic B-spline subdivision as illustrated 

by Eqn. 2.1. Specifically, consider c
k+1 =
 1 
80 c
k 

4 +
3 
4
c
k 
0 +
1 

8
c
k 
1.
 To construct an invertible


MR system, an expression for c
k 
0 (representative of all coarse vertices) is needed. An


easy way to determine this is to express c
k+1 
0

k 
0 and other fine vertices.
in terms of c


k+1 k+11 c
k 
4 +
 1 

2
c
k 
0 and c
 1 1 c
k 

0 +
 k 
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=
 =
 c
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rewritten as c0 
k+1 = 

4
1 c7 

k+1 + 
2
1 c0 

k + 
4
1 c k+1 . From this form, level k can be returned to 1 

from k + 1 by isolating ck 
0 as ck 

0 = 2c k0
+1 1

2 c 
k
7
+1 1

2 c 
k
1
+1 .− − 

This “trick” of rewriting the subdivision mask to use fine vertices from level 

k + 1 rather than coarse vertices from level k works for a wide range of subdivision 

schemes, including complex ones like Catmull-Clark. But unfortunately, having an 

invertible MR system does not automatically satisfy all other goals. In practice, this 

straightforward reversal of the subdivision rule produces high-error approximations. 

And equally problematic, such a construction gives no indication as to how to satisfy 

the storage constraint. 

Building MR systems that satisfy all of the stated goals is a challenging problem. 

In the following sections, some existing approaches will be looked at. In Sec. 2.3.1, 

mesh simplification approaches that do not require a subdivision surface as a starting 

point are considered. In Sec. 2.3.2, some theory and applications of wavelet systems 

are presented. Finally, Sec. 2.3.3 discusses some practical applications of MR to 

modeling and rendering. 

2.3.1 Mesh Simplification & Remeshing 

A problem that is closely related to MR is mesh simplification. Given an input 

polygonal mesh, the goal of mesh simplification is to produce a new mesh “of the 

same topological type as [the input mesh], that fits the data well and has a small 

number of vertices” [22]. 

Schroeder et al. [39] approach the remeshing problem by considering a vertex 

removal and retriangulation process. On each iteration, vertices that satisfy some 

local geometric criteria, such as low local curvature, are removed and the resulting 
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Figure 2.12: Hoppe et al.’s approach to mesh simplification (left) is to minimize an 
energy function on the mesh by simple edge-based operations (right). (Figures taken 
from [22].) 

hole is retriangulated. After several iterations, a very coarse mesh can be reached. 

The amount of simplification that results is controlled by setting thresholds on the 

vertex removal criterion. 

Hoppe et al. [22] also consider the problem of mesh simplification, with the goal 

of reducing the number of vertices in a dense or poorly sampled triangle mesh. Their 

approach is to define an energy function on the mesh, with terms representing the 

competing goals of accuracy and conciseness. They define a simple set of edge-based 

operations for simplifying a mesh (Fig. 2.12), which are iteratively applied in a way 

that satisfies the energy function. 

The idea of mesh simplification was taken a step further by Eck et al. [17]. 

Rather than just decimating a dense mesh, they create a coarse base mesh and then 

use subdivision to create a semi-regular approximation of the original mesh. Their 

approach is based on computing a Voronoi tiling of the original mesh via harmonic 

maps; the computation of these maps is a bottleneck of the algorithm, however. 
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Figure 2.13: The remeshing approach of Eck et al.: starting with an arbitrary mesh 
(top left) a base mesh (bottom center) is constructed and then subdivided to an 
approximation of the original mesh (bottom right). (Figures taken from [17].) 

Their algorithm yields a hierarchy of mesh resolutions and allows them to leverage 

the benefits of MR on arbitrary meshes: compression, powerful editing, and level-of

detail. This approach is known as remeshing. 

Lee et al. [30] also explore remeshing for subdivision connectivity. They use 

atomic mesh simplification steps including the edge-based operations of Hoppe et 

al. and also adding vertex-based operations. Their simplification and remeshing 

approach attempts to address the inefficiency of Eck et al.’s harmonic map approach. 

By returning to the atomic simplification steps of Hoppe et al., they can quickly reach 

a base domain; because the base mesh is only necessary to build the approximation 

mesh, its quality is relatively unimportant. 

Hoppe [20] later presented the concept of progressive meshes as an alternative to 
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MR meshes. This work is an extension of the earlier mesh optimization work [22] 

to an approach more akin to remeshing, i.e. the original mesh is the reached in the 

limit. The progressive mesh approach is well suited as a preprocess applied to a mesh 

before rendering, as the intermediate meshes are good representations of the input 

mesh. However, as the progressive moniker implies, a progressive mesh provides 

many intermediate resolutions between a coarse and fine mesh, but without a local, 

linear set of operations for moving between them; this makes them well suited to 

level-of-detail applications, because the transition between resolutions is not jarring. 

The discretized resolutions provided by MR systems for semi-regular meshes are 

more suitable for editing applications. 

There are other remeshing approaches that operate under different criteria than 

subdivision connectivity, such as maximizing the number of regular vertices (valence

6 for triangle meshes) [42] or equalizing the area of triangles [7]. However, our 

approach is to build MR systems for meshes with subdivision connectivity. 

2.3.2 Wavelets for MR 

Wavelets, “a mathematical tool for hierarchically decomposing functions” [40], have 

a history spanning many scientific domains, primarily engineering and signal process

ing [45]. Whereas the Fourier transform decomposes a function into frequency com

ponents, wavelets decompose a function into a coarse approximation of the function 

plus some detail coefficients. Thus wavelets are well-suited to computer graphics 

because the decomposed function is an approximation of the input function, and the 

correspondence can be evaluated visually. 

The following section describes wavelet systems formally according to the nota
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tion and style of Stollnitz et al. [41], and then wavelet classifications are discussed. 

Wavelet Theory 

In multiresolution theory, a signal that exists within a linear function space V k 

is represented as a vector Ck = c0 
k c1 

k , where ci
k is a coefficient of basis function · · · 

i of V k . For instance, in a B-spline curve the control points are coefficients of the B-

spline basis functions Ni,k(u), and the “signal” is the curve defined by those control 

points. In wavelet literature, the basis functions of V k are referred to as scaling 

functions, denoted φk
i (u). The set of all scaling functions for a given V k is denoted 

by Φk(u) = φ0
k(u) φ1 

k(u) ; a v(k)-dimensional space will have v(k) basis functions. · · · 

In Sec. 2.2.1, subdivision was defined as an operation that takes a set of control 

points Ck−1 and produces a new set Ck such that both sets of control points define 

the same limit curve. In terms of scaling functions, this means 

Φk−1(u)Ck−1 = Φk(u)Ck . (2.2) 

Because Ck is defined by a subdivision operation, it can be replaced with PkCk−1 

in Eqn. 2.2 yields 

Φk−1(u)Ck−1 = Φk(u)PkCk−1 

Φk−1(u) = Φk(u)Pk . (2.3) 

Equation 2.3 captures the relationship between the scaling functions at level k − 1 

and k; subdivision really represents a change of representation, embedding an object 

in a higher-dimensional function space. 

Multiresolution analysis requires additional function spaces called wavelet spaces, 

denoted W k . A w(k)-dimensional wavelet space W k is the complement of V k in V k+1 , 
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meaning that any function in V k+1 can be written as the sum of a unique function 

from each of V k and W k . For example, in the Haar wavelets of Figs. 2.14 and 2.15, 

φ2
0 = φ1

0 + ψ0
1 . 

Though the term “wavelets” is often used to describe wavelet systems in general, 

the term specifically refers to the basis functions Ψk(u) = ψ0 
k(u) ψ1 

k(u) of the · · · 

wavelet space W k . When an object is reduced in resolution, from level k to k − 1, 

some high-frequency information may be lost; if this information can be represented 

as coefficients of the wavelets, then the original object can be recovered. 

Similar to Eqn. 2.3, the wavelets at level k − 1 are related to the scaling functions 

at level k by a matrix Qk: 

Ψk−1(u) = Φk(u)Qk , (2.4) 

where Qk is a v(k) × w(k − 1) matrix. Equations 2.3 and 2.4 can be combined as 

Φk−1|Ψk−1 = Φk Pk|Qk . (2.5) 

For 1D wavelet systems with no boundaries (such as closed curves), the ma

trices Pk and Qk can be entirely described by sequences (. . . , p−1, p0, p1, . . .) and 

(. . . , q−1, q0, q1, . . .), which represent regular columns of the respective matrices; these 

sequences are called filter values. For instance, the subdivision filter values of regular 

cubic B-spline curves are 
8
1 , 

2
1 , 

4
3 , 

2
1 , 

8
1 . 

The matrices Pk and Qk perform a transition from level k−1 to level k by refining 

the scaling functions and wavelets at level k − 1. For multiresolution systems, we 

also want to transition from level k to level k − 1, i.e. lower the resolution. This 

transition requires Φk to be decomposed into its complementary basis functions Φk−1 
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and Ψk−1, which can be represented by two matrices Ak and Bk as ⎤⎡ 

Ak⎢⎢⎣ 
⎥⎥⎦Φk−1 Ψk−1 = Φk . (2.6) |


Bk 

These matrices are referred to as decomposition filters. 

The decomposition filter Ak downsamples an object Ck by Ck−1 = AkCk . In 

certain cases, the detail lost by downsampling can be captured as another vector 

Dk−1 by Dk−1 = BkCk . Together, these operations are called decomposition. 

The inverse of decomposition is called reconstruction, and is accomplished by Pk 

and Qk as Ck = PkCk−1 + QkDk−1 . Reconstruction thus involves subdivision of the 

downsampled data, followed by some interpretation of the detail information. 

Together, the four matrices – Ak , Bk , Pk, and Qk – form a multiresolution or 

wavelet system. By Eqns. 2.5 and 2.6, the four matrices must be related as ⎤⎡ 

Ak ⎥⎥⎦ = Pk|Qk −1⎢⎢⎣ ,

Bk 

or equivalently ⎤⎡⎤⎡ 

Ak I 0
⎢⎢⎣ 
⎥⎥⎦ =


⎢⎢⎣ 
⎥⎥⎦Pk Qk = I . (2.7)
|


Bk 0 I


This implies that each block matrix must be invertible, which in turn implies that 

decomposition is the inverse of reconstruction and vice versa. 

Example: Haar Wavelets 

These concepts are best illustrated with a simple example, Haar wavelets, fol

lowing the structure used by Stollnitz et al. [41]. The scaling functions in the Haar 
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Figure 2.14: The Haar scaling functions for the function space V 2 . 

φ
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Figure 2.15: The Haar scaling functions and wavelets for the function space V 1 . 

wavelet system are piecewise-constant box functions of height 1 (Fig. 2.14). For 

instance, consider a “signal” Ck that represents a row of pixels in an image: 

C2 = 12 10 13 19 . 

The 2 superscript indicates that this is the third level of resolution for the func

tion, the first level being one pixel and the second level two pixels. Because the 

Haar scaling functions are box functions, the pixel values are the scaling function 

coefficients. 

Haar decomposition represents each pair of coefficients by their average, and the 

difference between the average and original values is stored as a detail term. Thus 

for the 4-pixel signal example, the decomposition filters are 

A2 =
 .
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The decomposition of C2 is 

� �T 

C1 = A2C2 = 11 16 , � �T 

D1 = B2C2 = 1 .−3 

The function can again be decomposed to 

� �T 

C0 = A1C1 = 13.5 , � �T 

D0 = B1C1 = −2.5 . 

The sequence [C0 D0 D1] represents the original function C2 in the Haar basis: 

[13.5 − 2.5 1 − 2]. 

To reconstruct the original function, a P and Q are required for each level. 

Since decomposition is based on an averaging and differencing, reconstruction can 

be performed by first duplicating the coefficients and then adding in the difference 

or its negation. For instance, to return to C1 from C0, the pixel is first duplicated, 

13.5 13.5 13.5→ , 

and then the difference (plus or minus) is added, 

13.5 13.5 + −2.5 −(−2.5) = 11 16 . 

As mentioned above, the wavelets at level k are related to the scaling functions 

at level k + 1 by a matrix Qk . During reconstruction, Qk also encapsulates the 

conversion of the detail terms from the wavelet space W k to the function space 

V k+1 . Each detail term contributes to two samples at the higher resolution level, 

with weights of 1 and −1; this operation is represented by a step function that has 
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height 1 for half of its active domain and −1 for the other half. The Haar wavelets 

at level 1 are depicted, along with the scaling functions, in Fig. 2.15. 

In matrix form, the transition from level 1 to 2 is given by ⎤⎡⎤⎡ 

P2 =


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0


1 0


0 1


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

and Q2 =


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0


−1 0


0 1


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

.


0 1 0 −1 

Then, the reconstruction of level 2 is performed by 

C2 = P2C1 + Q2D1 

=
 11 11 16 16 + 1
 −1 −3 −(−3)


= 12 10 13 19 . 

Wavelet Classifications 

Wavelet systems are classified according to the relationship between the wavelets 

and the scaling functions. There are three classifications: orthogonal, semi-orthogonal, 

and biorthogonal. For clarity, the superscript k will be omitted from matrix nota

tion; all reconstruction and decomposition filters are assumed to be of the proper 

size to operate on their data. 

Orthogonal wavelets require that “the scaling functions are orthogonal to one 

another, the wavelets are orthogonal to one another, and each of the wavelets is 

orthogonal to every coarser scaling function” [41]; two functions f(u) and g(u) are 

orthogonal if u f(u) × g(u) = 0. In such a setting, the determination of the MR 

filters is quite easy, because [P|Q]−1 = [P|Q]T . Therefore, A = PT and B = QT . 

Due to this easy determination of all MR filters, orthogonality is a nice condition to 
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have. Unfortunately, orthogonality is difficult to satisfy for all but the most trivial 

bases (such as Haar). Furthermore, Haar wavelets are the only system that are at 

once orthogonal, compact, and symmetric [41]. 

Haar wavelets are not the only orthogonal wavelet system used in graphics. 

Daubechies wavelets [11] are an orthonormal and compactly supported system for 

signals on the infinite real line. The scaling functions and wavelets of Daubechies 

are asymmetric and nowhere differentiable. However, Daubechies wavelets offer few 

benefits over Haar and are interesting mainly from a theoretical standpoint. 

Semiorthogonal wavelets relax the orthogonality conditions greatly, only requir

ing that each wavelet is orthogonal to all coarser scaling functions. Relaxing the 

orthogonality constraints on the wavelets allows for MR systems to be constructed 

with more desirable properties, such as compactness and symmetry. The drawback 

of semiorthogonal wavelets is that while P and Q will be sparse and banded matri

ces (meaning that reconstruction can be done in linear time), it often turns out that 

the decomposition filters are full matrices, meaning that decomposition would take 

quadratic instead of linear time. 

There are many more practical instances of semi-orthogonal wavelet systems for 

graphics than orthogonal wavelets. Finkelstein and Salesin [18] follow a traditional 

wavelet approach to construct a Qk that lies in the nullspace of a particular matrix 

Mk, where Mk is derived from the subdivision filter Pk and the scaling functions 

Φk . The decomposition filters are then found by solving a sparse linear system. 

Finally, there are biorthogonal wavelets that have many of the properties of semi-

orthogonal wavelets but enforce no orthogonality conditions. The only condition in 

a biorthogonal setting is that [P|Q] is invertible, which by Equation 2.7 implies that 
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the decomposition filters A and B exist. Clearly this is the minimum condition to 

satisfy. Biorthogonal wavelets allow a lot of freedom in the selection of MR filters, 

so it is usually possible to have a full set of sparse filters and therefore linear-time 

reconstruction and decomposition. 

A general approach to constructing biorthogonal wavelets is the lifting scheme 

of Sweldens [43, 44]. In a lifting approach, simple and often poor-quality (in terms 

of similitude) MR filters P, Q, A, and B are constructed. Then, a lifting matrix L 

modifies the original scheme as: 

Qlift = A + LB 
(2.8) 

Alift = Q − PL 

The remaining matrices – P and B – are unaltered by lifting. If the original set of 

filters is biorthogonal, then the lifted set of filters is also biorthogonal for any choice 

of L. As will be shown in Sec. 4.6, our method can be viewed as a lifting-like process. 

Most MR systems begin from an existing subdivision scheme, meaning that the 

P matrix is pre-determined, and the remaining three matrices need to be defined 

to complete the system. In the literature on MR, there are two basic approaches 

to finding A, B, and Q given some subdivision matrix P. In wavelet methods, Q 

is defined by the relationship between the wavelets and the scaling functions in the 

same manner as P; the decomposition filters A and B are then constructed to satisfy 

Eqn. 2.7. Thus the filters are derived in the sequence 

P Q A, B .⇒ ⇒ 

The local least squares approach of Samavati & Bartels [35, 3] first derives A from 

P, and Q and B follow from linear algebra techniques. The filter derivation sequence 
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in this approach is


P A Q, B .⇒ ⇒ 

Note that in our framework, described in Chapter 3, the filters are derived in the 

sequence 

P A , B Q .⇒ ⇒ 

The order that the filters are derived is important because it is easier to design filters 

with particular properties earlier in the sequence. For instance, if A is chosen first, 

it can be designed with similitude in mind. 

Samavati & Bartels [35, 3] approach MR from a linear algebra perspective. The 

idea of their method is to derive A by minimizing the local error in the coarse 

approximation. In particular, they choose A to minimize the least-squares error 

Ck+1 − PACk+1 
�2�� . Of course this would be minimized by A = P−1, but P is not 

invertible (it is not square). To have a tractable approach, they instead consider the 

local least squares error. That is, rather than dealing with a full subdivision matrix 

Pk of size v(k) × v(k − 1), they consider a local subdivision matrix S that represents 

all possible interactions of Pk . For example, the local subdivision matrix for cubic 

B-spline subdivision would be ⎤⎡ 

S =


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 3 1 0 0
8 4 8 

0 1 1 0 0
2 2 

1 3 10

8 4 8 

1 1 

0


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

.
 (2.9)


0 0

2 2 0


0 0 1 3 1 
8 4 8 

The decomposition filter A is chosen so that its local interaction with S will satisfy 
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AP = I:
 ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

a−3 

a−2 

a−1 

a0 

a1 

a2 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

=


⎤⎡ ⎤⎡ 
1 1 0 0 0 0 0 0


0


1


0


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

2 8 

1 3 1 1 0 0 0
2 4 2 8 

1 1 3 1 1 .
 (2.10)
0
 0

8 2 4 2 8 

0 0 0 1 1 3 1 
8 2 4 2 

1 10 0 0 0 0
 0

8 2 

a3 

For instance, one possible solution to this system is (a−3, . . . , a3) = (0, 0, −
2
1 , 2, −

2
1 , 0, 0), 

which can be compactly expressed as 

a

2 
0 a±

1
1 
. (2.11) 

2
−

Solutions with wider support, or more non-zero entries in the A filter, often provide 

better results; some of the wider filters from Samavati and Bartels are considered 

in Chapter 7. The remaining filters – B and Q – are chosen by more elaborate 

methods to satisfy AQ = 0, BP = 0, and BQ = I. Bartels & Samavati [3] were 

able to apply this approach to B-spline subdivision curves; the resulting wavelet 

systems are semi-orthogonal systems under a non-standard inner product definition. 

Samavati et al. [38] later applied a similar local least squares method to Doo-Sabin 

subdivision surfaces. The derived MR filters are sparse (and therefore efficient) and 

produce a locally optimal coarse approximation of the fine data as quantified by the 

least squares error. 

Methods for constructing semi-orthogonal wavelets are generally difficult to ex

tend to mesh subdivision schemes, because the interactions between vertices are 
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much more complex and thus matrix forms are unwieldy. As such, mesh MR sys

tems are often only biorthogonal. Recently, Bertram [4] and Li et al. [31] constructed 

fairly stable biorthogonal wavelets for Loop subdivision. Their approach is based on 

rewriting the subdivision rules with some additional free parameters, such that regu

lar subdivision is unchanged but an inversion of the rules produces a multiresolution 

system. Each researcher pursues a different method to determine the free parame

ters, but each results in a large and unwieldy set of constants to handle different 

vertex valences. In Chapter 5, an MR system is constructed by our method that 

provides competitive performance and satisfies all goals of MR, but our system has 

far fewer parameters and offers a more streamlined implementation. 

Lanquetin and Neveu [28] recently published a reversal method for Catmull-Clark 

subdivision. They derive a decomposition A filter by setting up a linear system of 

equations based on the subdivision masks. Their approach is lacking in several ways. 

First, their method for deriving the A filter is unnecessarily complex; by the filter 

rewriting trick discussed at the beginning of Sec. 2.3, the decomposition mask follows 

immediately without the need to solve any system. More critically, their approach 

does not define an MR system; there are no filters for the wavelet coefficients, nor 

is the storage constraint considered. Finally, as will be shown in Chapter 6, their 

simplistic decomposition mask often does not satisfy the similitude condition. 

2.3.3 Applications 

A true MR system is biorthogonal (at least) and computes and stores detail informa

tion for reconstruction. These detail coefficients can be employed in many interesting 

ways. 
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Figure 2.16: Finkelstein and Salesin introduced feature transfer for MR curves. The 
characteristics of the curve in (a) are extracted and then applied to a different base 
curve (c), producing a new curve with the same characteristics (d). (Figure taken 
from [18].) 

One powerful use of MR is feature transfer. When a signal is decomposed, the 

detail coefficients represent the “characteristics” of the original signal at varying 

resolutions or frequencies. These characteristics can be applied to other objects by 

using them in the subdivision/reconstruction process of a different base signal. 

Finkelstein and Salesin [18] developed an early implementation of this idea for 

MR curves. By decomposing an input curve to a coarse representation and some 

characteristic details, the details can then be applied to a new base curve. Figure 2.16 

demonstrates the feature transfer allowed by their system. 

By a similar technique, Biermann et al. [6] developed a feature transfer algorithm 

for meshes. Mesh techniques are necessarily more complex, but the spirit is the same 

and their results are impressive (Fig. 2.17). Their method could benefit from a true 

MR system for Catmull-Clark surfaces, though: they represent a high-resolution 

mesh as a base mesh plus a complete set of details for all levels of the subdivision 

hierarchy. With a true MR system for Catmull-Clark surfaces, the storage require

ment of such a mesh could be greatly reduced, and the transitions between levels 

would be more efficient as well. 
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Figure 2.17: The cut-and-paste feature transfer system of Biermann et al. is a 
powerful application of MR to mesh editing. (Figure taken from [6].) 

Feature transfer also has applications in non-graphical fields such as biometrics. 

Wecker et al. [46] use B-spline curve wavelets to extract the characteristics from iris 

images. These characteristics are then combined with those of other irises to create 

synthetic iris images. The problem of data synthesis is a very important one in 

biometrics, so extracting and transferring characteristics via MR is a great boon to 

synthesizing unique but plausible synthetic data. 

Feature transfer is one way to edit a curve or mesh, by imbuing it with certain 

characteristics from another object. Other possibilities include creating details on an 

object interactively, or retaining high-resolution features of an object while making 

macroscopic changes at a low resolution. MR systems naturally facilitate these sorts 

of operations. 

The power of MR editing was demonstrated early by Zorin et al. [49]. They 
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Figure 2.18: Zorin et al. developed a MR mesh editing system to facilitate both 
large-scale (the shrinking of the belly) and small-scale (the removal of the bellybut
ton). (Figure taken from [49].) 

recognized that moving vertices at a coarse level creates macroscopic changes to a 

mesh, while moving vertices at a fine level creates microscopic changes. Together, 

these operations can provide a powerful editing system, as illustrated by Fig. 2.18. 

However, their method is not based on the reversing of subdivision rules, so the 

magnitudes of the details can often become large. 

Kobbelt et al. [26] describe a system for similar editing operations, while losing 

the restriction of subdivision connectivity in the high-resolution mesh. The draw

back of each of these methods is that the transitions between levels of the mesh 

hierarchy require complex computations; by a reverse subdivision/MR approach, 

the transitions between levels are much more efficient and easy to implement. 

An important application of MR is compression. Decomposition produces a 

coarse model plus a set of detail coefficients; these details have a pure geometric 

interpretation, in that they quantify the difference between a subdivided (and there
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fore smooth) object and the detailed (non-smooth) object. However, a mesh may 

have regions that are approximately smooth and therefore have very small detail coef

ficients. By decomposing an object and discarding details below a certain threshold, 

the storage requirement of the object is reduced. 

Khodakovsky et al. [25] describe a compression algorithm for irregular meshes. 

Their method is based on the observation that of the geometry, parameter, and 

connectivity information represented by a mesh, only the geometry information is 

important in terms of error reduction. By remeshing to a mesh with subdivision 

connectivity, the parameter and connectivity information is implied and can be elim

inated except at the base level. 

MR also has applications in rendering. Certain et al. [9] describe a dynamic sur

face viewer that uses MR techniques to balance between geometric detail, texture 

detail, and rendering efficiency. However, their method does not use low-error de

composition and therefore the low-resolution geometries produced by their system 

are of poor quality. 

The remeshing approach of Lee et al. [30] was extended to the problem of morph

ing between two topologically equivalent meshes [29]. The remeshing stage is used 

to construct equivalent based domains for each input mesh (Fig. 2.19). Once a single 

base domain is established, intermediate meshes can be computed by combining the 

details from each source mesh. 

An MR mesh representation allows for efficient level-of-detail control – both 

global changes as an object moves around a scene, and local changes as the vis

ible part of an object changes over time. For instance, Hoppe [21] extended his 

progressive mesh technique to view-dependent rendering; see Fig. 2.20. The precom
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Figure 2.19: Lee et al. constructing equivalent base domains for each input mesh 
(left) to morph between them (right). (Figures taken from [29].) 

puted progressive mesh data structure is well-suited to level-of-detail control, as the 

cost of increasing the resolution of a mesh is quite low. 

In a similar vein, Azuma et al. [2] present a view-dependent rendering approach 

for meshes with Loop subdivision connectivity. From such a mesh, a wavelet decom

position is performed to reach a coarse mesh and wavelet coefficients. The wavelet 

coefficients are then added back in per-frame according to a screen space error metric 

that respects both geometry and texture quality. Their method is more efficient than 

Hoppe’s, but has the additional semi-regular mesh requirement. 

2.4 Conclusion 

Multiresolution is a broad domain in computer graphics. It has applications in many 

different forms of modeling and rendering. As MR specifically relates to subdivision, 

many interesting and important uses have been demonstrated: feature transfer, hier
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Figure 2.20: View-dependent rendering of a progressive mesh: the original mesh 
(left) is rendered at full resolution only within a viewing frustum (center and right). 
(Figure taken from [21].) 

archical editing, compression, level-of-detail, and morphing. However, many of these 

applications rely on computationally expensive algorithms for remeshing or build

ing a mesh hierarchy. If robust, low-error wavelet approaches were available for a 

broader range of semi-regular meshes, the power of these applications would increase 

substantially. 

In this thesis, a method for building MR systems for many subdivision schemes 

is presented. The work of Bartels and Samavati [3], Bertram [4], Li et al. [31], and 

Lanquetin and Neveu [28] are most related to the method and results presented in 

this work, and thus serve as valuable touchstones for evaluation and contextualizing 

our results. 



Chapter 3 

Method Overview 

An intransigent property of subdivision and multiresolution is that subdivision in

creases the number of vertices in an object while decomposition reduces the number. 

To satisfy the storage constraint – which states that a coarsened mesh plus the detail 

terms requires no more storage space than the associated fine mesh – for semi-regular 

meshes, the inherent structure of the problem dictates the size of the detail “budget.” 

For example, Catmull-Clark subdivision of a cube (8 vertices) produces an object 

with 26 vertices. When the subdivided object is decomposed, exactly 8 of the 26 

vertices must be replaced with coarse approximations. Thus there is a budget of 18 

detail terms to spend. But how should these vertices and details be allocated? 

The failing of many multiresolution approaches is that the storage constraint is 

ignored or left unsatisfied. Yet there is an inherent structure in subdivision schemes 

that can be exploited. In primal schemes, subdivision displaces existing (even) ver

tices and creates new (odd) vertices for each edge and possibly each face (Fig. 3.1). 

When such a mesh is then decomposed, the most obvious approach is to replace each 

even vertex with a coarse approximation. Then, the storage constraint indicates that 

the odd vertices should be replaced with detail terms. 

For dual schemes such as Chaikin curves or Doo-Sabin surfaces, the distinction 

between even and odd vertices is less clear because each vertex of valence n is split 

into n new vertices during subdivision. However, if one of the split vertices is arbi

trarily labeled as even (say, the left vertex in a Chaikin curve) and the remaining 

45




46 

Even Odd 

Figure 3.1: Subdivision creates a natural vertex partitioning for MR: (left) an arbi
trary mesh contains only “even” vertices; (center) after subdivision, even vertices are 
moved and “odd” vertices are created; (right) when the object is later decomposed, 
it is natural to replace even vertices with a coarse approximation, and odd vertices 
with a detail term. 

vertices as odd, a decomposition strategy of replacing even vertices with a coarse 

vertex and odd vertices with a detail term can again be employed. 

The method proposed herein is based on this observation: for semi-regular meshes, 

the MR system will replace vertices labeled as “even” with a coarse approximation, 

and vertices labeled as “odd” with a detail term. With this strategy, the often-

elusive storage constraint is satisfied immediately, but simultaneously a new question 

is raised: how can the original surface be reconstructed when only a partial set of 

details is being stored? More specifically, how can the detail term at an even vertex 

be determined from the stored details? 

The answer to this question is the crux of the method: by constraining the 

wavelets (detail terms) so that the missing (even) wavelet coefficients are computable 

from stored (odd) coefficients. Furthermore, in the linear and local spirit of subdi

vision, the wavelet coefficient at an even vertex should be computable by a linear 

combination of a local neighborhood of the stored wavelets coefficients (Fig. 3.2). 
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Figure 3.2: The wavelet constraint: when an object (top) is decomposed, details are 
stored only at the odd vertices (bottom). To ensure reconstructability, a constraint 
is enforced such that the missing detail dk

0
−1 can be computed from stored details 

dk−1 and dk−1 .−1 1 

At this time, the goals stated in Sec. 1.2 should be revisited and framed in more 

precise terms. The original goals were: invertibility, reconstructability, the storage 

constraint, similitude, and locality/linearity. However, the concept of biorthogonality 

introduced in Sec. 2.3.2 can take the place of several of these goals. Recall that 

biorthogonality simply implies that [P|Q] is invertible; equivalently, there exists an 

A and B such that Eqn. 2.7 is satisfied. So, a biorthgonal wavelet system must satisfy 

AP = I, AQ = 0, BP = 0, and BQ = I. Together, these four equations imply that 

a biorthogonal system satisfies invertibility (because AP = I), reconstructability (a 

full set of matrices exists), and the storage constraint, and linearity. Therefore, the 

goals to keep in mind when constructing an MR system are: 

1. biorthogonality, 

2. locality, and 

3. similitude. 
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As will be evident in the following chapters, the outcome of the wavelet constraint 

is a biorthogonal and local set of trial filters. The final goal of similitude is not 

satisfied by the trial filters, however. To address this goal, the geometric nature of 

the detail terms is exploited. In broad terms, the details represent the difference 

between a fine mesh and the subdivision of a coarse approximating mesh, i.e. D = 

Ck − PCk−1 . Thus the magnitude and direction of a detail vector indicates how 

“far” the subdivision of a coarse approximation is from the original surface. 

To reduce the error in the coarse approximation produced by the trial filters, 

the local neighborhood of details about a given coarse vertex is used to displace the 

vertex. The result of displacement is that the subdivision of the coarse vertices is 

closer than the original trial approximation. 

Our method for constructing local multiresolution filters from a given subdivision 

scheme can be summarized as follows. 

1. Enforce a wavelet constraint of the form 

deven = α di, for i ∈ odd neighbors . (3.1) 
i 

The wavelet constraint is designed to be symmetric so that the resulting filters 

are symmetric. 

2. Solve the wavelet constraint for α. This yields a form for computing even details 

from neighboring odd details, thus facilitating reconstruction and satisfying the 

storage constraint. This also defines the trial decomposition B� filter. 

3. Rearrange the wavelet constraint to express an even coarse vertex in terms of 

fine vertices, which defines a trial decomposition filter � BA, Together with the �
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filter from the previous step, �Q can then be determined in such a way as to 

define a biorthogonal wavelet system. 

4. Perform an optimization step to increase the similitude of the trial filters.	 If 

the trial filter produces a set of coarse points C� , then the optimization step 

produces a set of displacement vectors Δ, such that 

Ck−1 = C� k−1 + Δ .	 (3.2) 

This process is referred to as a refinement of the coarse data. 

To elucidate this method, it will be applied it to several subdivision schemes over 

the following chapters. In Chapter 4, a set of MR filters is constructed for cubic 

B-spline curve subdivision. In Chapter 5 the method is applied to Loop subdivision 

surfaces. Finally, Chapter 6 shows how to construct an MR system for semi-regular 

Catmull-Clark meshes. 

Evaluating MR 

Qualitatively, an MR system can be evaluated by looking at whether or not it satis

fies the goals stated in Sec. 1.2. The goals of invertibility (really, biorthogonality), 

reconstructability, and the storage constraint can be evaluated qualitatively: the goal 

is either satisfied, or it isn’t. 

The similitude goal, however, can be satisfied to varying degrees. Because MR 

systems operate on graphical entities, their quality can be assessed subjectively by 

asking, does the coarse object “look like” the original object? (Or more precisely, 

does the subdivision of the coarse object look like the original object?) Such an 
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evaluation can distinguish a decent filter from a very poor one, but a more objective 

criteria is necessary when comparing filters of similar quality. 

To objectively evaluate the quality of an MR system, the least-squares error 

metric is used to measure the error introduced by decomposition. More precisely, 

if a fine mesh Ck is decomposed j times to a coarse mesh Ck−j , then the error in 

Ck−j is quantified by the difference between Ck and Pj Ck−j (Ck−j subdivided – not 

reconstructed – j times). Formally, the least-squares error E(Ck−j ) is defined as 

E(Ck−j ) = �Ck − Pj Ck−j�2 . (3.3) 

If Pj Ck−1 = Ck, then E(Ck−j ) = 0. 
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Chapter 4 

Cubic B-spline Curves 

The framework of Chapter 3 is best illustrated with subdivision curves. Many surface 

subdivisions schemes, such as Loop and Catmull-Clark, are extensions of subdivision 

curves, so the structure of the problems are similar. But curve schemes are easier 

to illustrate, have clean matrix representations, and have a large body of previous 

work to compare against. 

Cubic B-spline subdivision curves, introduced in Sec. 2.2.1, are defined by the 

filter values 
8
1 , 

2
1 , 

4
3 , 

2
1 , 

8
1 . It is a primal (edge-split) scheme, with even vertices 

displaced and odd vertices created at the midpoint of each edge; see Fig. 2.4 for an 

illustration of this scheme. 

To build an MR system for these curves, the strategy laid out in Chapter 3 is 

followed. After briefly revisiting the cubic B-spline subdivision filter in Sec. 4.1, in 

Sec. 4.2 the trial filters are built by setting up and solving the wavelet constraint. 

Section 4.3 deals with the extraordinary boundary cases. The error-reducing refine

ment step is discussed in Sec. 4.4 and 4.5. Finally, Sec. 4.6 collects the trial filters 

and refinements into single filters, and Sec. 4.7 summarizes the key points of the 

chapter. 

For clarity of notation, the fine data will be denoted by F = {f0, f1, . . .} (rather 

than Ck), and tilde notation will be used to denoted the trial decomposition C� = 

{c�0, c�1, . . .} of F, as well as the subdivision F� = PC� = {f� 
0, f� 

1, . . .} of C� . 

51 
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Figure 4.1: Local notation for cubic B-spline subdivision curves is centered about 
representative coarse vertex c�0 and fine vertex f0. During decomposition, even ver
tices (f−2, f0, and f2) are replaced with coarse vertices, while odd vertices f−1 and 
f1 are replaced with details d−1 and d1. The wavelet constraint allows d0 to be 
computed from d−1 and d1. 

4.1 Subdivision Filter 

For implementation purposes, it is best to have the subdivision mask expressed 

strictly in terms of the coarse vertices. For cubic B-spline, the coarse mask is 

3 1 
f2i = ci + (ci−1 + ci+1) , (4.1) 

4 8
1 

f2i+1 = (ci + ci+1) . (4.2) 
2

It is useful to rewrite Eqn. 4.1 in a form that uses only ci from the coarse level, 

eliminating ci±1. This is easily done by replacing ci−1 and ci+1 via Eqn. 4.2: 

1 
f2i−1 = (ci−1 + ci) ci−1 = 2f2i−1 − ci

2
→ 

1 
f2i+1 = 

2
(ci + ci+1) → ci+1 = 2f2i+1 − ci 

These expressions for ci−1 and ci+1 can be used in Eqn. 4.1, yielding 

3 1 1 
f2i = ci + (2f2i−1 − ci) + (2f2i+1 − ci)

4 8 8
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1 1 
f2i = ci + (f2i−1 + f2i+1) . (4.3) 

2 4

4.2 Trial Filters 

The first step of constructing an MR system is to set up the wavelet constraint, as per 

Eqn. 3.1. In this case, the representative detail vector d0, should be computable from 

the immediate odd neighbors, d−1 and d1 (Fig. 4.1). Thus the wavelet constraint is 

expressed as 

d0 = α(d−1 + d1) . (4.4) 

Finding α will simultaneously satisfy the storage constraint and produce a trial filter. 

A detail di is defined as the difference fi − f� 
i between the original fine data fi 

and the subdivided coarse data, f� = Pc�i. Using the mask of Eqn. 4.3, the details 

are 

d0 = f0 − 
1 
f�−1 +

1 
c�0 +

1 
f� 

1
4 2 4 

d−1 = f−1 − f�−1 

d1 = f1 − f�1 . 

Substituting these expressions into the wavelet constraint of Eqn. 4.4 yields 

f0 − 
4

1 
f� 
−1 − 

2

1 
c�0 − 

4

1 
f� 

1 = α(f−1 − f�−1 + f1 − f� 
1) . (4.5) 

A decomposition filter computes a coarse vertex position from a local neighbor

hood of fine vertices. In Eqn. 4.5, there are some terms that represent reconstructed 

data, the f� terms. So choosing α to eliminate these terms will leave a form suitable 
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for a decomposition filter, while simultaneously satisfying the wavelet constraint. 

Both f�−1 and f�1 appear in Eqn. 4.5 with coefficients of α on the left side and 
4
1 on 

the right; so, by inspection, setting 

1 
α = (4.6) 

4 

will cancel these terms, leaving 

1 1 
f0 − 

2 
c�0 = 

4
(f−1 + f1) , 

which simplifies to 

1 
c�0 = 2f0 − (f−1 + f1) . (4.7) 

2

Equation 4.7 expresses coarse point c�0 in terms of fine points f−1, f0, and f1. In 

other words, it represents a regular row of the trial �A filter. Treating f0 as a represen

tative fine vertex, Eqn. 4.7 can be compactly expressed as a vector {. . . , a−1, a0, a1, . . .} 

of decomposition coefficients forming a regular row of the trial filter �A: 

a0 a±
1
1 

(4.8) 
2 

2
−

This 3-element filter is the same one as arrived at, via different means, by Bartels 

and Samavati [3]. 

Knowing α, Eqn. 4.4 determines � the contribution of the details D to fine Q, 

data F. For even points, the two neighboring odd details determine the even detail 

based, so the row in �
4
1 , 

4
1 For odd points the detail is stored, i.e. Q will contain . 

the corresponding element in �Q should be 1. Thus a regular column of �Q will be 

1 1 , 1, .
4 4 
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Since � B is straightforward. For a representative detail A is specified, determining �
vector d1, Eqn. 4.7 can be employed to express the detail in terms of fine vertices fi. 

d1 = f1 − f� 
1 

1 1 
= c�0 + c�1f1 − 

2 2 
1 1 1 1 1 1 

= f1 − 
2

2f0 − 
2 
f−1 − 

2 
f1 − 

2
2f2 − 

2 
f1 − 

2 
f3 

1 3 1 
d1 = f−1 − f0 + f1 − f2 + f3 . 

4 2 4 

This forms a regular row of B� . Since only the details at odd points need to be 

computed, B� is fully determined. 

In the next section the matrix forms of Q�, A, and B� will be summarized, including 

a treatment of the boundary cases for open curves. 

4.3 Boundary Filters 

To have a complete set of multiresolution filters applicable to either open or closed 

curves, a set of special-case filters for boundaries should be developed. The block 

matrix notation introduced in Sec. 2.2.1 is be used here to differentiate between 

regular and boundary filters. 
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For open cubic B-spline curves, the P filter is ⎤⎡ 

1 0	 0 0 0 0 · · · 
1 1 0 0	 0 0
2 2 · · · 

0 3	 1 0 0 0
4 4 · · · 

0 3	 11 1 0 0
16 16	 8 · · · 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 

0 0 1 1 0 0
2 2

Ps 

Pr 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

· · ·

1 3 10 0
 0
=
 · · ·

8 4 8 

. .Pe .


· · · 0 0 1 
8 

11 
16 

3 
16 0 

· · · 0 0 0 1 
4 

3 
4 0 

· · · 0 0 0 0 1 
2 

1 
2 

· · · 0 0 0 0 0 1 

To build boundary filters, the wavelet constraint can again be used. Let f0, f1, 

f2, and f3 represent the four fine vertices created by the boundary subdivision mask, 

f0 =	 c0 , 

1 1 
f1 = c0 + c1 ,

2 2 
3 1 

f2 = c1 + c2 ,
4 4 
3 11 1 

f3 = c1 + c2 + c3 . 
16 16 8 

Unfortunately these vertices have no clear distinction between even and odd vertices. 

For this discussion f0, f1, and f3 will be considered as even and f2 as odd. Figure 4.2 

illustrates this notation. 

Each of these boundary vertices is considered in order. Because f0 = c0, the best 
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Figure 4.2: The boundary setting for cubic B-splines. Coarse vertices c0, . . . , c3 con
tribute to special boundary vertices f0, . . . , f4 during subdivision, which is different 
than the even-odd rhythm in the regular case. During decomposition, f0, f1, and f3 

are considered even, and f2 is considered odd. 

coarse approximation is c�0 = f0. After subdivision, f�0 = c�0 = f0; therefore there is 

no need to store or compute a detail for this vertex, as d0 = f� 
0 − f0 = 0. 

The best coarse approximation c�1 for f1 also has a simple form due to f0 not 

moving during decomposition or reconstruction. If we want to satisfy d1 = 0, then it 

should be the case that 
2
1 (c�0 + c�1) = f1. This can be rearranged to a decomposition 

mask: 

1 
(c�0 + c�1) = f1

2

c�1 = 2f1 − c�0 

= 2f1 − f0 . 

Again there is no need to store or compute a detail, because 

d1 = f1 − f�1 

1 1 
= � c�1f1 − 

2 
c0 − 

2 
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1 1 
= f1 − 

2 
f0 − 

2
(2f1 − f0) 

= 0 . 

The third boundary vertex, f2, is designated as an odd vertex, so it will be 

replaced with a detail vector d2 = f2 − f�2. 
The final boundary case for decomposition is f3. Unlike f0 and f1, this is a non

trivial case. To find a decomposition filter, a new instance of the wavelet constraint is 

required. Using the notation of Fig. 4.2, f3 will be replaced by coarse vertex c�2, and 

its associated detail vector is d3. During decomposition, the left and right neighbors 

f2 and f4 are replaced by details d2 and d4 respectively. Thus the wavelet constraint 

for this case is 

d3 = α�(d2 + d4) , (4.9) 

where 

3 1 
d2 = f2 − c�1 + c�2 ,

4 4 
3 11 1 

d3 = f3 − c�1 + c�2 + c�3 ,
16 16 8 
1 1 

d4 = c�2 + c�3 .f4 − 
2 2 

Using these expressions, Eqn. 4.9 becomes 

3 11 1 3 1 1 1 
f3 − c�1 − c�2 − c�3 = α�(f2 − c�1 − c�2) + α�(f4 − c�2 − c�3)

16 16 8 4 4 2 2 
3 3 1 

= α�(f2 + f4) − α� c�1 − α� c�2 − α� c�3 . (4.10) 
4 4 8 

The goal is an expression for c�2 in terms of fis, so α� is chosen to eliminate c�1 and 

c�3. For c�1, Eqn. 4.10 indicates 

3 3 1 
16 
− α� 

4 
= 0 → α� =

4 
, 
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while cancellation of c�3 dictates that 

1 1 1 
8 
− α� 

2
= 0 → α� =

4 
. 

Fortunately, both yield the same value for α�. Using this value in Eqn. 4.10 cancels 

�c1 and c�2, leaving 

11 1 1 3 

�c 
�c2f3 − c2 

2f3 − (f2 + f4)	 (4.11) 
2

(f2 + f4) −=

4 
·


16 
11 3 

4
 4

1 

f3 − 
4
(f2 + f4)

16 
−
 =


16

1
�c2 

Interestingly, the boundary wavelet constraint yields the same results as the regular 

case, for both α and the decomposition filter. 

As a final step, d2 can be expressed in terms of fine vertices fi. 

=


3 1

d2 = f2 − c2 

3 1 
4 
c1 − 

4 
1 1


=	 f2 − 
4 

(2f1 − f0) − 
4 2 

f2 + 2f3 − 
2 
f4 

3 3 9 1 1 
= f0 − f1 + f2 − f3 + f4

4 2 8 2 8 

The result of this analysis is summarized in the block matrices below. ⎤⎡ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

1 0 0 0 0 0 · · · 

−1 2 0 0 0 0 · · · 

=


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤⎡ �A⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

s 
0	 −

2
1 2 −

2
1 0 0 · · · �A (4.12)
r . . . �Ae 

0	 0 0 0 2 −1· · · 

0	 0 0 0 0 1· · · 
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⎤⎡ 

Bs 

Br 

Be 

⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

3 −3 9 −1 1 0 ...
4 2 8 2 8 

... 
4
1 −1 

2
3 −1 

4
1 ... 

. . . 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

(4.13)
=


... 0 
8
1 −

2
1 

8
9 −

2
3 

4
3 ⎤⎡ 

0 0 0 0 · · · 

0 0 0 0 · · · 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

.


⎤ �Qs 

�Qr 

�Qe 

⎡ 

1 0 0 0 · · · 
1 1 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

(4.14)
0 0
=
 · · ·

4 4 

. . .


0 0 0 0 · · · 

0 0 0 0 · · · 

4.4 Refinement 

The trial filter of Eqn. 4.7 is biorthogonal, i.e. Eqn. 2.7 is satisfied. However, when 

an object F that is not the product of subdivision is decomposed with the trial filter 

�A, the coarse approximation often bears little resemblance to the original object; 

see Fig. 4.3. More formally, the least-squares error E(C) becomes large, especially 

under repeated application of the decomposition filter. While there is no choice of 

A for which E = 0 (except for trivial cases where F = PC for some C), there are 

some choices that are better than others. 

To improve the trial filter, a local refinement of the coarse vertices is considered, 

such that after refinement the local error is reduced. That is, a set of refinement vec

tors Δ = {δ0, . . . , δn} representing the per-vertex displacements of C = {c�0, . . . , c�n} 
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Ck PCk−1 P2Ck−2 P3Ck−3 

Figure 4.3: While the trial decomposition filter satisfies biorthogonality, successive 
applications of the filter causes high error in the coarse approximations. A vase object 
(left) is decomposed with the trial filter (left to right) once, twice, and three times, 
and then subdivided to the original’s resolution. After three levels of decomposition, 
the error has spiraled out of control. 

needs to be determined. Figure 4.4 illustrates the refinement procedure. Δ should 

be chosen such that 

E(C� + Δ) < E(C� ) . 

This expresses the global error in the coarse points. However, enforcing a global re

duction in error is both difficult and incongruous with the local nature of subdivision 

methods. 

Instead, the impact of refinement is considered only on a local neighborhood 

about c�0. For cubic B-splines, this means that δ0, the refinement applied to c�0, 
influences a 5-element (denoted by 5n) neighborhood of the fine points, due to the 

length of the subdivision filter. To simplify the problem, analysis is first limited to 

a 3-element neighborhood (denoted 3n). 
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4.4.1 Width-3 Neighborhood 

When c�0 is refined to c0 = c�0 + δ0, there is a corresponding change at the finer level. 

�f0 
3 1Consider
 (c�−1 + c�1). After refinement, this becomes c0 +4 8 =


3 1
��f0 = (c�0 + δ0) + (c�−1 + c�1)

4 8

f0 + 
3

δ0 =
 .


4


Similarly, the left and right fine vertices are impacted by δ0 according to the subdi

vision weights. 

1

f��−1
 f−1 + 

2 
1


f1 + 

δ0 =


f�1� δ0 =
 .

2


The goal of refining c�0 is to reduce the local least squares error. This error metric 

fi, so it should be the case that 

fi, then the local error E(δ0) after 

��fi

is determined by the differences fi − – locally –


f�i. By reducing the local error of each coarse vertex, a global reduction
fi − < fi − 

in error is expected. Recalling that di = fi −

refinement is expressed as


1
 2
 1
2 23

−1 − (f� 

−1 +E(δ0) f
 δ0)=

2


+
 f0 − (f� 
0 + f1 − (f� 

1 + 
2

δ0)δ0) +


4

3
2 2
 1
 21


d−1 − δ0 +
=
 d0 − 
4 
δ0
 +
 d1 − 

2 
δ0 (4.15)
.


2


Equation 4.15 can be simplified by recalling that �v�2 = vT v. Therefore 

�di − yδ0� 2 = �di� 2 − 2y(di)
T δ0 + y 2 �δ0� 2 . (4.16) 

By Eqn. 4.16, Eqn. 4.15 simplifies to �T 

E(δ0) = 
16
�δ0�

17
 2
 3

2

−
 2 2 2d−1 + d0 + d1 δ0 + �d + �d0� + �d1�−1�

= a�δ0�2 − v T δ0 + b , (4.17) 
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where


17 
a = ,

16 
3 

v = d−1 + d0 + d1 ,
2 

b = �d−1�2 + �d0�2 + �d1�2 . 

Because Eqn. 4.17 is a simple quadratic function of δ0, the optimization can be 

solved analytically. At a minimum of the function, the first derivative is zero, or 

E �(δ0) = 2aδ0 − v = 0 

Therefore 

2aδ0 − v = 0 

v 
δ0 = . (4.18) 

2a 

Note that this is a minimum, because E ��(δ0) = 2a > 0. In fact, it is a unique global 

minimum, which follows from the fact that the Hessian �2E is positive-definite [12]. 

Substituting the proper values of v and a yields a closed-form expression for δ0. 

v 
δ0 = 

2a 
1 16 3 

= d d0 + d1
2 
· 
17 −1 +

2 
8 3 

= d−1 + d0 + d1
17 2 
11 

δ3n = δ0 = (d−1 + d1) , (4.19) 0 17 

The final simplification step, which allows δ0 to be computed from the stored detail 

information, follows from Eqn. 4.4. 
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(a) (b)


(c) (d) 

Figure 4.4: Refinement of the trial vertices: (a) fine data F; (b) decomposition of F 
produces C� and D; (c) a refinement vector δ0 is computed from a local set of details; 
(d) after refinement, the local error about c�0 is reduced. 
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Trial Filter Trial + δ0
3n Trial + δ0

5n 

P2Ck−2 

P3Ck−3 

Figure 4.5: Refining the trial filter (left) by Eqn. 4.19 (center) or Eqn. 4.21 (right) 
reduces the error introduced by decomposition. 

Note that δ0 points in the direction of d−1 +d1. Because the detail terms, roughly 

speaking, point in the direction of the reconstructed object relative to the subdivision 

of the coarse object, this result fits with intuition. Figure 4.4 illustrates the geometric 

intuition behind refinement. 

4.4.2 Width-5 Neighborhood 

If the impact of δ0 is considered in a wider, 5-element neighborhood, then the local 

error function becomes 

E(δ0) = 
2 

+

2 

+

3


d0 − 
4 
δ0 

2 

+

1


d1 − 
2 
δ0 

2 1

d2 − 

8 
δ0 

1
 1
 2 

d−2 − δ0 d−1 − δ0 .(4.20) 
8
 2
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Again this can be simplified to the form E(δ0) = a�δ0�2 − vT δ0 + b, where 

35 
a = ,

32 
3 1 

v = d0 + (d−1 + d1) + (d−2 + d2) ,
2 4

b = �d−2�2 + �d−1�2 + �d0�2 + �d1�2 + �d2�2 . 

As before, the solution is δ0 = 
2
v 
a , or 

1 32 3 1 
δ0 =

2 
· 
35 2 

d0 + (d−1 + d1) + 
4
(d−2 + d2) 

16 3 1 
= d0 + (d−1 + d1) + (d−2 + d2)

35 2 4
1 

δ5n = δ0 = (d−3 + 23d−1 + 23d1 + d3) . (4.21) 0 35 

The final step replaces the even details d0, d−2, and d2 with their odd neighbors, 

according to Eqn. 4.4. 

As shown in Fig. 4.5, both refinement steps – δ0
3n and δ0

5n – dramatically improve 

the similitude of the trial filter. 

4.5 Partial Refinement 

In developing the refinement vectors, one important aspect has been neglected: the 

refinements are not independent. The computation of an optimal displacement for 

each coarse vertex assumes that all other coarse vertices will remain unchanged, i.e. 

will not be displaced. This assumption is not true though: every coarse point will 

be displaced by its own refinement vector. 

For an illustration of why this is problematic, consider Fig. 4.6. In (a), a small 

section of a fine curve F is shown, and the corresponding trial vertices in C� ; when 
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(a) (b)


(c) (d)


Figure 4.6: Local vs. global effects of refinement (the dashed line represents the 
original fine data): if only the central vertex c�0 is displaced by δ0 (a), then after 
refinement, the local error E(PC�) is minimized (b); but, if all coarse vertices are re
fined (c), the non-independence of the refinements yields a non-minimal error E(PC) 
(d). 
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these coarse vertices are subdivided without detail information, the error in PC� is 

quite large. Now consider how the refinement step would impact this curve. In (b), 

the effect of a single refinement step on c�0 ∈ C� is shown. If the neighbors c�−1 and 

c�1 are indeed stationary, then the subdivision of the vertices in (b) will result in a 

truly minimized error, as shown in (c). However, in reality c�−1 and c�1 will be refined 

along with c�0, as shown in (d), resulting in C. When C is subdivided, the error is no 

longer minimized because the neighbors of each coarse vertex have been displaced, 

as in (e). 

Intuitively, the interdependence of the refinements will cause a net “overshooting” 

effect, i.e. too much displacement. This is visible in Fig. 4.6: the subdivision of the 

trial points, shown in (a), lies on one side of the fine data, while the subdivision 

of the refined points, shown in (e), lies on the opposite side. Therefore, a partial 

refinement strategy is considered; instead of c0 = c�0 + δ0, each refinement should be 

softened by setting c0 = c�0 + µδ0, where 0 ≤ µ ≤ 1 is some scalar to be determined. 

It is not clear how µ might be chosen, outside of trial-and-error. In general, 

a perfect optimization would involve a different value of µ for each coarse vertex, 

allowing for sensitivity to the local feature scale. However, this would lead to a 

decomposition mask that changes from vertex to vertex, which does not lead to a 

very efficient algorithm. Thus a single value for µ is a necessary simplification. An 

analytic approach to the selection of µ might be considered, but any local approach 

would still suffer from interdependence problems. Most importantly, however, it is 

necessary to have a method that can be extended to mesh schemes. 

Here a voting strategy is considered, based on the observation that c�0 wants to 

take the full refinement step, while neighbors c�−1 and c�1 want c�0 to not move at all so 
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δ3n µδ3n δ5n µδ5n 
0 0 0 0 

P2Ck−2 

P3Ck−3 

Figure 4.7: Partial refinement softens each local refinement to account for the inter
dependence of each refinement. 

that they can take their own full refinement step. In other words, the central vertex 

would vote for µ = 1, while its neighbors would vote for µ = 0. However, their votes 

should not carry equal weight, because the position of c0 is much more important to 

c�0 than to its neighbors. In fact, based on the subdivision filter P, c�0 contributes 3
4 

to f0, and only 1
8 to c�−1 and c�1. If these weights are adopted in the voting scheme, 

then 

3 1 3 
µ = 1 + 2 0 = . 

4 8 4 

Note that µ is equal to the central weight of the subdivision filter. 

This value of µ is supported by empirical data. For a sample of around ten curves 

Fi of varying complexity, a global least squares solution for Ci was found by casting 
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the refinement process as an iterative method [23]. The globally optimal solutions 

were then interpreted as refinements Δi of the trial decompositions C� i, and over 

the samples it was found that the global solution implied a partial refinement with 

µ ≈ 0.724. 

Using µ = 3
4 , c0 becomes c0 = c�0 + 3

4 δ0. For the 3-element neighborhood, Eqn. 4.19 

defines the full refinement step, and the partial refinement is 

3 33 
δ3n ← 

4 
δ3n = 

68
(d−1 + d1) . (4.22) 0 0 

For the wider neighborhood, where δ0 is given by Eqn. 4.21, the same partial refine

ment weight can be used, yielding 

3 3 
δ5n ← 

4 
δ5n = 

140
(d−3 + d−1 + d1 + d3) . (4.23) 0 0 

Figure 4.7 shows the improvement realized by partial refinement. And, as shown 

in Sec. 7.1, the partially refined filters perform as well as the near-minimum norm 

filters of Bartels and Samavati [3]. So although the voting scheme is not particularly 

rigorous, the results give credence to the method. 

4.6 Closed-Form Filters 

There is a question of where the refinement process fits into the usual multiresolution 

framework of decomposing with A and B and reconstructing with P and Q. One 

possibility is to treat the refinement process as a separate step in decomposition, 

which is later undone before the normal reconstruction process. 

Recall, however, that throughout development of the trial filters and refinement 

vectors, local and linear formulations have been sought. The linearity of the trial 
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filter allows it to be encapsulated by �A. 

In the refinement stage, the displacements δ0 are computed from a linear com

bination of a local set of details. The wavelet constraint allows δ0 to be computed 

directly from the odd details stored in D. Thus there is some matrix L such that 

the set of refinement vectors is defined by Δ = LD. 

This fact allows us to encapsulate decomposition by �A and refinement by Δ in a 

single operation: 

C =	 C� + Δ 

= AF + LD 

= AF + L �� BF 

= (� B)FA + L �
= AF , 

where 

A + L �A = � B	 (4.24) 

is a closed-form decomposition filter. 

The undoing of refinement and subsequent reconstruction by P and Q can simi

larly be combined into a single operation. 

PC� + �
= P(C − Δ) + �

F = QD 

QD 

= P(C − LD) + �QD 

= PC + (�Q − PL)D 

= PC + QD , 
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where 

Q − PL


is the closed-form reconstruction filter. Q incorporates the undoing of the refinement,


Q =
 (4.25)


C = C − Δ. Note that it is unnecessary to alter B� filter to reflect the refinement, i.e. 

the details do not need to be recomputed as D = F − PC. Instead Q is responsible 

for correctly interpreting the unaltered details. 

The matrix L lifts the trial filters, just as in Sweldens’ lifting scheme (Eqn. 2.8). 

Thus the refinement procedure can be viewed as a way to determine the lifting 

matrix. Furthermore, because the trial filters are biorthogonal, the refined filters 

must also be biorthogonal [44]. 

4.6.1 Width-7 Filter 

For the 3-element neighborhood, the matrix L is defined by Eqn. 4.22 ⎤⎡ 

0 0 0 0 ... 

0 0 0 0 ... 

33 33 

=


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

.


⎤⎡ 

Ls 

Lr 

0 0 ...
⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

68 68 

0 33 33 0 

... 0 0 0 0 

... 0 0 0 0 

...

68 68 

. .Le .


Note that it is unnecessary to lift the boundary points, because their details are 

always zero. 
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By the forms of
 A to 

Note that the regular filter has widened width-3 trial filter to a width-7 filter, which 

can be compactly expressed by a filter vector. 

a0 a a a±1 ±2 ±3 
. (4.26) 35 95 33 33 

34 272 −68 272 

⎤ 

A and B given in Eqn. 4.12 and 4.13 respectively, L lifts�
⎡ 

A + LB� :A =


1 0 0 0 0 0 0 0 0 ... 

−1 2 0 0 0 0 0 0 0 ... 

99 −99 91 173 157 −33 33 0 0 ...
272 136 544 136 544 68 272 

⎤⎡ 

As⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

0 0 33 −33 95 35 95 −33 33 ...
272 68 272 34 272 68 272 

Ar =

. . . 

Ae 
... 0 0 33 −33 157 173 91 −99 99 

272 68 544 136 544 136 272 

... 0 0 0 0 0 0 0 2 −1 

... 0 0 0 0 0 0 0 0 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
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Similarly, L lifts
Q (Eqn. 4.14) to Q =

⎤⎡ 

Q − PL: 

0 0 0 0 ... 

0 0 0 0 ... 

239 −33 0 0 ...
272 272 

−91 −157 −33 0 ...
1088 1088 544 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

−33 35 −33 0 ...
136 136

Qs 

Qr 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

=


68 

−33 −95 −95 −33 
544 544 544 544 ...
 .


. . .


... 

... 

... 

0 

0 

0 

−33 
544 

0 

0 

−157 
1088 

−33 
272 

0 

−91 
1088 

239 
272 

0 

... 0 0 0 0 

Qe 

4.6.2 Width-11 Filter


For the 5-element neighborhood, L is defined by Eqn. 4.21.
 ⎤⎡ 

0 0 0 0 0 0 · · · 

0 0 0 0 0 0 · · · 
69 69 3 0 0 0
140 140 140 · · · 

=


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤⎡ 
3 69 69 3 0 0Ls 

Lr 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

· · ·

140 140 140 140 

3 3 
140 140 140 140 

. . 

69 690
 0
 .
· · ·


Le .


· · · 0 0 0 3 
140 

69 
140 

69 
140 

· · · 0 0 0 0 0 0 

· · · 0 0 0 0 0 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
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Using L to lift
 ⎤ 

A produces ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0 0 0 0 0 0 0 0 0 0 0 0 ... 

−1 

207 
560 

9 
560 

0 

2 

−207 
280 

−9 
280 

0 

0 

199 
1120 

33 
224 

3 
560 

0 

353 
280 

−141 
280 

−3 
140 

0 

49 
160 

409 
1120 

87 
560 

0 

−18 
35 

71 
70 

−18 
35 

0 

87 
560 

103 
280 

103 
280 

0 

−3 
140 

−18 
35 

71 
70 

0 

3 
560 

87 
560 

103 
280 

0 

0 

−3 
140 

−18 
35 

0 

0 

3 
560 

87 
560 

0 

0 

0 

−3 
140 

0 

0 

0 

3 
560 

... 

... 

... 

... 
. . . 

... 0 0 3 
560 

−3 
140 

87 
560 

−18 
35 

103 
280 

71 
70 

409 
1120 

−141 
280 

33 
224 

−9 
280 

9 
560 

... 0 0 0 0 3 
560 

−3 
140 

87 
560 

−18 
35 

49 
160 

353 
280 

199 
1120 

−207 
280 

207 
560 

... 0 0 0 0 0 0 0 0 0 0 0 2 −1 

... 0 0 0 0 0 0 0 0 0 0 0 0 1 

⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

As 

Ar 

⎥⎥⎥⎥⎥⎥⎦ 

=


Ae 

Here the larger support of L has widened the width-3 trial filter to a width-11 filter.


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
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Similarly,
Q is lifted to 

⎤ 

�

⎡ 

0 0 

0 0 

491 −69 
560 560 

−41 −337 
448 2240 

−87 −103 
1120 560 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

Qs 

Qr 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

=


Qe 

⎤⎡ 

0 0 0 0 · · · 

0 0 0 0 · · · 
−3 
560 

−171 
2240 

−103 
560 

0 

−3 
1120 

−87 
1120 

0 

0 

−3 
1120 

0 

· · · 

0 

· · · 

· · · 
−3 −9 71 −9 −3 0
280 35 140 35 280 · · · 
−3 −87 −103 −103 −87 −3 

1120 1120 560 560 1120 1120 · · ·

. . .


· · · 

· · · 

· · · 

0 

0 

0 

−3 
1120 

0 

0 

−87 
1120 

−3 
1120 

0 

−103 
560 

−171 
2240 

3 
560 

−103 
560 

−337 
2240 

−69 
560 

−87 
1120 

−41 
448 

491 
560 

· · · 0 0 0 0 0 0 

· · · 0 0 0 0 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

.


The associated filter vector for A in the 5-element neighborhood is 

a0 a a a a a±1 ±2 ±3 ±4 ±5 
. (4.27) 71 103 18 87 3 3 

70 280 −35 560 −140 560 

4.7 Conclusion 

Following the procedure outlined in Chapter 3, three multiresolution systems were 

developed for regular cubic B-spline curves and surfaces. The trial filter, character

ized by its width-three decomposition filter (Eqn. 4.8), satisfies most of the goals of 

multiresolution: biorthgonality, reconstructability, and the storage constraint. How

ever, the very important goal of producing a low error coarse approximation is not 



77 

satisfied, especially under repeated applications of the filter. 

To reduce the error produced by the trial filter, a refinement procedure was in

vestigated whereby each coarse vertex was displaced according to the magnitude and 

direction of neighboring detail vectors. To have a tractable approach, the error before 

and after refinement is considered on a local scale. The width of the subdivision filter 

dictates that refinement impacts a local neighborhood of 5 vertices. In this case, δ0 

depends on four stored details (Eqn. 4.21) and a width-11 closed-form decomposition 

filter results in the regular case (Eqn. 4.27). When a smaller 3-element neighborhood 

is used, δ0 depends on only two details (Eqn. 4.19) and has an associated width-7 

decomposition filter (Eqn. 4.26). 

After the coarse vertices are refined, an MR system that produces satisfactorily 

low-error coarse approximations is reached. And as proved by Sweldens [44], the 

linear nature of refinement and the biorthogonal nature of trial filter implies that 

the closed-form refined filters are also orthogonal. Thus the final, refined construction 

satisfies each of the goals stated in Chapter 3. 
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Chapter 5 

Loop Surfaces 

Now that the framework of Chapter 3 has been demonstrated with a simple curve 

subdivision scheme, it can be extended to a more complex surface subdivision scheme. 

Loop subdivision is a scheme that operates strictly on triangle meshes and has C2 

continuity at regular (valence 6) vertices. Loop subdivision is quite popular for 

triangle meshes because of its smoothness and also its relative ease of implementation. 

To build an MR system for Loop subdivision, trial filters are constructed by 

setting up and solving the wavelet constraint (Sec. 5.2). In Sec. 5.3 and 5.4, the 

error of the trial filters is reduced by refining the coarse vertices. Section 5.5 dis

cusses how to handle boundary cases, while Sec. 5.6 briefly discusses implementation 

considerations. Finally, Sec. 5.7 summarizes the key results of the chapter. 

5.1 Subdivision Filter 

Loop subdivision is a face-splitting scheme for triangle meshes [33]. A new (odd) 

vertex is created along each edge, and each existing (even) vertex is displaced. Con

sider a vertex c0 of valence n, as depicted in Fig. 5.1. The subdivision filter for a 

representative even vertex c0 is 

n

f0 = (1 − nβ)c0 + β ci , (5.1) 
i=1 
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Figure 5.1: Local notation for Loop subdivision is centered about representative 
coarse vertex c0 and fine vertex f0. During decomposition, even vertex f0 is replaced 
with coarse vertex c�0, while odd vertices fi=0 are replaced with details. 

where � � � ��2 
� 

1 5 3 1 2π 
β = + cos . 

n 8 
− 

8 4 n 

Odd vertices are defined by 

3 1 
fi = (c0 + ci) + (ci−1 + ci+1) , j = 1, 2, . . . ,

8 8

where periodic indexing is used (that is, c1−1 = cn and cn+1 = c1). Together, these 

filters define the P matrix for Loop subdivision. However, matrix notation for mesh 

subdivision schemes is not as elegant as the curve case. Because of the irregular and 

complex connections between vertices, the subdivision matrix will typically not have 

a banded structure (i.e. a structure in which each column is a shifted version of the 

first column), although the local nature of subdivision will produce a sparse matrix 

(that is, one with mostly zero entries). 
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Solving the wavelet constraint is easier when the subdivision filter (Eqn. 5.1) for 

c0 is expressed in terms of fine vertices fi rather than coarse vertices ci. The general 

form of such a filter is f0 = Ac0 + B fi; A and B can be determined from the 

regular subdivision filters. 

f0 = Ac0 + B fi 
i � 3 3 1 1 

= Ac0 + B c0 + ci + ci−1 + ci+1
8 8 8 8 

3 � 3 � 1 � 1 
= Ac0 + B c0 + ci + ci−1 + ci+1

8 8 8 8 
3 5 � 

= Ac0 + nBc0 + B ci
8 8 
3 5 � 

= A + nB c0 + B ci . (5.2) 
8 8 

Equation 5.1 dictates that the weight 5
8 B applied to 

� 
ci should be β, or 

5 8 
B = β B = β . 

8 
→ 

5 

Similarly, the weight A + 
8
3 nB of c0 should be equal to 1 − nβ, so 

3 8 
A + nB = 1 − nβ A = 1 − nβ . 

8 
→ 

5 

Therefore, the subdivision mask for even vertices based on fine odd vertices is 

8 8 � 
f0 = 1 − nβ c0 + β fi . (5.3) 

5 5 

5.2 Trial Filters 

The local neighborhood of a vertex c0 in a Loop mesh is usually referred to as an 

n-ring, where n denotes the number of edge traversals to get to a vertex from c0. For 

instance, the 2-ring of c0 is the set of all vertices ci = c0 that are at most two edge 
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traversals from c0. The smallest local neighborhood is the 1-ring. For example, in 

Fig. 5.1, {f1, . . . , fn} constitute the 1-ring of f0. 

During decomposition, the 1-ring of an even vertex f0 will be replaced with details 

{d1, . . . , dn}; to satisfy the storage constraint, detail d0 must be computable from this 

neighborhood of stored details. Thus the wavelet constraint for Loop subdivision is 

d0 = α(d1 + d2 + . . . + dn) . (5.4) 

Let the subdivided (not reconstructed) position of a fine vertex fi be denoted by f� 
i. 

Then, using the fine-vertex subdivision mask of Eqn. 5.3, the details for the local 

neighborhood can be expressed by 

8 8 n

d0 = f0 − 1 − nβ c�0 + β f� 
i ,

5 5 i=1 

d1 = f1 − f�1 , 

. . . 

dn = fn − f� 
n . 

Equation 5.4 then becomes � � n n n8 8 � � � 
f0 − 1 − 

5 
nβ c�0 − 

5 
β f�i = α fi − α f�i . 

i=1 i=1 i=1 

A proper selection of α will eliminate the f�i terms. Equating the coefficient from 

the left side with the coefficient from the right, 

8 � � 
β f�i = α f�i

5 
8 

α = β . (5.5) 
5 

Eliminating the f�i terms leaves 

8 � 
f0 − 1 − 

5 
nβ c�0 = α fi 
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f0 − (1 − nα) c�0 = α fi 

n1 α � 
c�0 =

1 − nα
f0 − 

1 − nα 
fi . (5.6) 

i=1 

Equation 5.6 represents the trial decomposition filter �A.


With α = 
5
8 β known, the wavelet constraint of Eqn. 5.4 becomes


n8 � 
d0 = β di . (5.7) 

5 i=1 

From Eqn. 5.7, the contribution of D to F, i.e. �Q, is defined. For even vertices, the 

details di surrounding a vertex should be summed and scaled by α; for odd vertices, 

the associated detail is explicitly stored. 

The final MR filter is B, which computes a set of details D = BF. By the 

wavelet constraint details need to be computed and stored for odd vertices. Consider 

a representative odd detail, d1: 

d1 = f1 − �f1 

3 1 
= f1 − 

8 
(�c0 + �c1) − 

8 
(�c2 + �cn) . (5.8) 

It is feasible to find an expression for d1 that depends only on fine data fi by replacing 

each c�i according to Eqn. 5.6. However, that would involve enumerating the 1-ring 

of four different vertices and determining where they overlap. It is more practical to 

simply use the form above to compute the odd details after computing the coarse 

data. 

5.3 Refinement 

The trial filter of Eqn. 5.6 is biorthogonal and satisfies the storage constraint. How

ever, as Fig. 5.2 illustrates, the trial filter produces high-error coarse approximations. 
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Ck PCk−1 P2Ck−2 P3Ck−3 

E = 0.679 E = 3.290 E = 17.547 

Figure 5.2: The trial decomposition filter produces high error, especially under re
peated applications. A simple model (left) is decomposed (left to right) once, twice, 
and three times, then subdivided without details to the original resolution. 

To alleviate this problem, the local error of c�0 can be reduced by a refinement 

procedure, c0 = c�0 + δ0. Then, δ0 should minimize 

E(δ0) = �d0 − (1 − nβ) δ0� 2 +

3


d1 − 
8 
δ0 

2 

+ . . . +

3


dn − 
8 
δ0 

2 

.
 (5.9)


The form of E(δ0) given by Eqn. 5.9 follows from the Loop subdivision mask: c0 

contributes 1 − nβ to f� 
0 and 3 to f� 

1, . . . , f� 
n.

8 

Simplifying Eqn. 5.9 yields a form that can be solved analytically. 

E(δ0) = a�δ0�2 − v T δ0 + b , 

where 

92 a = (1 − nβ) + n , 
64

n

v = 2 (1 − nβ) d0 + 2 di ,· 
8 i=1 

3


n

b = �di�2 . 
i=0 

The minimum of E(δ0) occurs at 

v 
δ0 = 

2a 
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PCk−1 P2Ck−2 P3Ck−3 

E = 0.638 E = 2.835 E = 18.257 

Figure 5.3: Refinement improves the trial filter displacing each coarse vertex accord
ing to the direction and magnitude of the surrounding details. The original model 
Ck of Fig. 5.2 is decomposed and then subdivided once (left), twice (center), and 
three times (right). However, because of the interdependence of the refinements, the 
error is actually higher than the trial filter error. 

2 (1 − nβ) d0 + 2 3 
i
n 
=1 di 

= � 
· 

8 � 
2 (1 − nβ)2 + 9 n

64 

(1 − nβ) α 
� n di + 3 � n dii=1 8 i=1 = 

(1 − nβ)2 + 9 n
64 

n

δ0 = κ di , (5.10) 
i=1 

where 
(1 − nβ)α + 3 

κ = 8 . 
(1 − nβ)2 + 9 n

64 

Equation 5.7 is used to eliminate rewrite d0 in terms of neighbors di=0. 

Figure 5.3 shows the marked improvement of the trial filter realized by refinement. 

The improvement is especially noticeable after two applications of the filter: where 

the trial filter blew up, the refined filter maintains a shape reasonably close to the 

original. 
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5.4 Partial Refinement 

In Sec. 4.5, it was observed that each local refinement minimizes the local error 

only if no other refinements are performed. When all coarse vertices are refined, 

the assumption of stationary neighbors is violated and the local refinements are no 

longer optimal. So, although refinement does reduce the global error, the refinement 

steps are often too large. 

To account for the interdependence of each refinement, a voting scheme was 

considered, in which each vertex affected by a local refinement “voted” for their 

preferred refinement step size. In practice, this produced filters that behaved very 

closely with established near-minimum-norm filters. 

Using the voting strategy to dampen the refinement of Eqn. 5.10, c�0 wants to 

take the full refinement step (i.e. votes for 1 × δ0), while its neighbors c�i�=0 want c�0 

to not move at all (i.e. vote for 0 × δ0). The central vertex votes for µ = 1 with a 

weight of 1 − nβ, while the first-ring neighbors vote for µ = 0 with a weight of β. 

Thus 

µ = (1 − nβ) 1 + (nβ) 0 = 1 − nβ , 

and δ0 becomes 

n

δ0 = (1 − nβ) κ di . (5.11) 
i=1 

Figure 5.4 compares the full refinement of Eqn. 5.10 with the partial refinement 

of Eqn. 5.11. While the full refinement improves a great deal on the trial filter, 

partial refinement offers an even greater reduction in error. 
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PCk−1 P2Ck−2 P3Ck−3 

E = 0.407 E = 1.256 E = 5.240 

Figure 5.4: Partial refinement improves the trial filter even more by accounting for 
the interdependence of each local refinement. 

Figure 5.5: Boundary vertices and edges in a Loop model can be decomposed with 
cubic B-spline filters. 

5.5 Boundary Filters 

A subdivision mask can only be applied when a complete neighborhood exists. For 

interior vertices, a full neighborhood is always defined, as well as for interior edges. 

If there is a boundary in a mesh, however, then vertices and edges that make up the 

boundary do not have full neighborhoods. Special boundary masks must be defined 

to handle such cases. See Fig. 5.5. 

Because Loop subdivision surfaces are a generalization of cubic B-spline curves, 

boundary vertices are subdivided according to cubic B-spline subdivision. Thus for 
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multiresolution boundary filters, a cubic B-spline multiresolution should be used, 

such as the systems described in Sec. 4.6. In particular, the regular filters Ar, Br, 

and Qr are used along any continuous boundary, while the boundary cases As/e, 

Bs/e, and Qs/e can be applied to corner points (although corner points are difficult 

to automatically detect in a mesh). 

5.6 Closed Form 

The partial refinement vectors are computed as a linear combination of the odd 

details surrounding a representative vertex. So it is possible to write all refinement 

vectors as a vector Δ such that Δ = LD for some matrix L, where L is determined by 

the refinement stage (Eqn. 5.11). L can then be used to lift �A to find the closed-form 

decomposition filter. 

However, a side-effect of refinement is a widening of our filter’s closed form. Re

call that the width-3 trial filter for cubic B-splines became filters of width 7 and 

11 after lifting �A by L (Sec. 4.6). This widening arises because computation of the 

refinement vector incorporates information from surrounding details, which them

selves incorporate information from a wider neighborhood around the representative 

vertex. 

For surface subdivision schemes, the concept of a subdivision filter is replaced 

by the concept of a subdivision mask. This is necessary because the interactions 

between vertices is much more complicated than a simple curve. It is possible to 

build a subdivision matrix P to apply Loop subdivision to a mesh, but it would 

not be regular or banded like in the curve case: the weights applied to each vertex 
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Figure 5.6: The multiresolution framework with a refinement step included. After 
decomposing F with � WhenA, the refinement vectors Δ are added to produce C. 
reconstructing, the refinement vectors are first subtracted. 

depend on the valence, and there is no regularity in the vertex connectivity. One 

could also build A, B, and Q matrices and then lift them by some refinement matrix 

L, but the matrices would be specific to a certain mesh, and extracting a set of lifted 

masks from the matrices would be very difficult. 

In fact, matrix notation here is infeasible and unnecessary. A closed-form of 

the Loop trial filter plus refinement would require a 3-ring of neighbors about the 

central vertex. Even if all vertices are regular (valence-6), enumerating a vertex’s 

3-ring is a challenging problem; in a non-regular setting, it is intractable. Thus for 

Loop surfaces – and mesh schemes in general – a stepwise procedure (Fig. 5.6) for 

decomposition and reconstruction is more practical. 

With a refinement stage, decomposition becomes a four-step process. The first 

two steps are part of the normal decomposition procedure, while the latter two steps 

are for refinement. 

1. Compute the trial coarse approximation C� = AF according to Eqn. 5.6. 

2. Compute the details �D = BF according to Eqn. 5.8. 
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3. Compute the refinement vectors, Δ, by Eqn. 5.11. 

4. Add the refinement vectors to the trial vertices: C = C� + Δ. 

Reconstruction also requires a couple of additional steps to undo the refinement 

before the traditional reconstruction can occur. 

1. Compute the refinement vectors, Δ. 

2. Undo the refinement: C� = C − Δ. 

Q�3. Reconstruct the fine data from the coarse data and details: F = PC� + �D. 

5.7 Conclusion 

The method described in Chapter 3 was successfully employed to build a complete 

MR system for semi-regular Loop surfaces. The wavelet constraint leads to a trial 

decomposition filter (Eqn. 5.6), and also dictates how to compute even (Eqn. 5.7) 

and odd (Eqn. 5.8) details. These operations together account for the � QA, B, and �
matrices in the MR system. 

The trial decomposition filter creates high-error coarse approximations (Fig. 5.2), 

so a refinement procedure was used to reduce the error in the coarse vertices. The 

locally optimal displacement of each vertex is given by Eqn. 5.10; however, this 

optimization assumes that only the representative vertex will be displaced, when in 

reality all coarse vertices will be refined. By partially refining each vertex (Eqn. 5.11), 

a more optimal coarse mesh was reached (Fig. 5.4). 

Due to the semi-regular mesh setting, it is difficult to encapsulate both the trial 

filters and refinement procedure into a single operation. For implementation pur
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poses a step-wise decomposition procedure is used, refining the vertices after the 

usual decomposition steps. Before applying the regular reconstruction steps, the 

refinement must first be undone. 



Chapter 6 

Catmull-Clark Surfaces 

Catmull-Clark subdivision is a C2-continuous scheme extended from cubic B-splines. 

Unlike Loop subdivision – which operates only on triangle meshes – Catmull-Clark 

subdivision can operate on any mesh, placing no restrictions on the valence of faces or 

vertices. During subdivision, a k-sided face is split into k quadrilateral (quad) faces, 

so a semi-regular Catmull-Clark mesh consists of only quads. Figure 6.1 illustrates 

the face-splitting structure. 

To build an MR system for Catmull-Clark subdivision, the wavelet constraint is 

again the starting point; in Sec. 6.2, the wavelet constraint is solved to produce a 

trial set of MR filters. In Sec. 6.3 and 6.4, a refinement step is applied to increase 

the similitude of the trial filter. Section 6.5 discusses how to handle boundary cases. 

Finally, Sec. 6.6 summarizes the key results of the chapter. 

Figure 6.1: Catmull-Clark subdivision splits k-sided faces into k quadrilateral faces.
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Vertex-vertex Edge-vertex Face-vertex 

Figure 6.2: In Catmull-Clark subdivision, mesh Ck (left) is subdivided to Ck+1 

(right). Ck+1 has vertices corresponding to every vertex (yellow), edge (red), and 
face (blue). 

6.1 Subdivision Filter 

Catmull-Clark subdivision operates on arbitrary meshes, and consequently the subdi

vision mask is more complex than Loop and other schemes. Where Loop subdivision 

creates two types of vertices – vertex (even) and edge (odd) – Catmull-Clark also 

creates new (odd) vertices at the centroid of every face (Fig. 6.2). 

After subdivision, a semi-regular Catmull-Clark mesh has three types of vertices. 

Vertex-vertices are vertices from the previous level of subdivision and are displaced 

by subdivision; these can also be categorized as even vertices. Edge-vertices are 

vertices at level k + 1 that correspond to edges from level k, while face-vertices 

correspond to faces from level k; both edge- and face-vertices can be categorized as 

odd vertices. The even-odd distinction is necessary for building an MR system, as 

it dictates which vertices will be coarsened and which will be replaced with details. 

However, because not all “odd” vertices use the same subdivision mask, the more 

granular vertex-edge-face vertex characterization is necessary. 



93 

Figure 6.3: The notation for the local neighborhood of a representative vertex-vertex 
vk . At level k, the 1-ring of vk consists of edge neighbors ek and face neighbors fk 

i i,j . 
At level k + 1, the 1-ring of vk+1 contains edge neighbors ei

k+1 and face neighbors 
fk+1 

i . 

The added complexity of Catmull-Clark subdivision necessitates a change of no

tation. In previous chapters, coarse vertices have been denoted by ci and fine vertices 

by fi, and the even-odd distinction was clear because of the simple structure of the 

vertex neighborhoods. Catmull-Clark subdivision involves more complex neighbor

hoods: a vertex of valence n is shared by n faces f1, . . . , fn, each having an arbitrary 

valence n1 
f , . . . , nn

f . 

The notation for the local neighborhood of v in a Catmull-Clark mesh is illus

trated in Fig. 6.3. Level k is not assumed to have subdivision connectivity, while 

level k + 1 results from the subdivision of level k. The notation of level k is therefore 

a bit messy, because the valence of faces connected to vk is arbitrary. Vertices ei
k and 

ei
k+1 share an edge with vk and vk+1 respectively, while vertices fk

i sharei,j and fk+1 

a face but not an edge with vk and vk+1 respectively. 
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Catmull-Clark subdivision is usually represented by the following masks: ⎛ ⎞ 
1 � 

fk+1 ⎝v k k k fk ⎠ 
i = f + ei + ei+1 + i,j , (6.1) 

ni j 

1 � � 
k+1 k k + fk+1 + fk+1 ei = v + ei i−1 i , (6.2) 

4 

v k+1 = 
n − 2 

v k +
1 
2 

� 
ei

k +
1 
2 

� 
fi

k+1 . (6.3) 
n n ni i 

This form of the mask is often confusing because the vertex mask (Eqn. 6.3) is 

expressed in terms of both coarse (the ek
i terms) and fine (fi

k+1) vertices. To make 

construction and analysis easier, masks that are expressed in terms of vertices from 

only one level of subdivision are preferred: either only coarse vertices, as subdivision 

masks are usually represented, or strictly in terms of fine vertices, as done previously 

in Sec. 4.1 and Sec. 5.1. 

Coarse Masks 

Subdivision masks most often express the level-k +1 position of a vertex (even or 

odd) in terms of level-k neighbors. The subdivision mask for face-vertices, given by 

Eqn. 6.1, is already in this form. The masks for edge- and vertex-vertices, however, 

need to be rewritten. By replacing the fi
k+1 terms in Eqn. 6.2 according to Eqn. 6.1, 

the coarse edge mask is expressed as 

1 � � 
ei

k+1 = v k + ei
k + fk+1 + fi

k 

4 ⎛ 
i−1 ⎞ 

1 1 � 1 � ⎝v k k k k k fk k k k fk ⎠= + ei + f (v + ei−1 + ei + i−1,j ) + f (v + ei + ei+1 + i,j )4 ⎛� 
ni−1 � 

j ni j ⎞ 
1 1 1 1 � 1 � 

k+1 ⎝ k k k fk k fk )⎠ei =
4 

1 + 
n fi−1 

+ 
n fi 

(v + ei ) + 
n fi−1 

(ei−1 + 
j

i−1,j ) + 
n fi 

(ei+1 + 
j 

i,j(6.4) 

Similarly, replacing the fi
k+1 terms in Eqn. 6.3 produces a coarse vertex mask: 

k+1 n − 2 k 1 � 
k 1 � 

fk+1 v = v + 
2 

ei + 
2 i n n ni i 
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⎛ ⎞ 

k = 
n − 2 

v k +
1 � 

e k +
1 � 1 ⎝v + e k + e k 

� 
fk ⎠ 

2 i 2 f i i+1 + i,jn n i n i ni j 

n − 2 k 1 � 
k 1 � 1 k 1 � 1 k 1 � 1 k = v + 

2 
ei + 

2 f v + 
2 f ei + 

2 f ei+1 + 
n n i n i ni n i ni n i ni 

1 � 1 � 
fk 

2 f i,j
n i ni j


n − 2 1 � 1 k 1 � 
k 1 � 1 k 1 � 1 k = + v + e e + e + 

2 f 2 i 2 f i 2 f i n n n n n n n ni i i i i i i−1 

1 � 1 � 
fk 

n2 n f i,j

i i j


v k+1 = 
n − 2

+ 
1 � 1 

v k +
1 � 1 � 

fk


n2 f n2 f i,j +

n i ni i ni j


1 � 1 1

1 + + e k . (6.5) 

2 f f i n n ni i−1 i 

Fine Masks 

As in previous chapters, the solution of the wavelet constraint is made easier by 

having a subdivision mask for vk expressed in terms of fine neighbors ei
k+1 and fi

k+1 , 

rather than coarse neighbors ei
k and fi

k . 

To have such a mask, e ki 
+1 should replace ek

i in Eqn. 6.3. This can be done by 

k k+1 k − fk+1 − fk+1rewriting Eqn. 6.2 as ei = 4ei − v i−1 i . Then Eqn. 6.3 can be rewritten 

as 

k+1 n − 2 k 1 � 
k 1 � 

fk+1 v = v + 
2 

ei + 
2 i n n ni i 

n − 2 k 1 � 
k+1 k − fk+1 − fk+1 1 � 

fk+1 = 
n

v + 
n2 

(4ei − v i−1 i ) + 
n2 i 

i i 

= 
n − 2 

v k +
4 � 

e ki 
+1 1 � 

v k 1 � 
fk+1 1 � 

fi
k+1 +

1 � 
fi

k+1 
2 i−1 2n n2 

− 
n

− 
n2 

− 
n n2 

i i i i i 

n − 2 k n k 4 � 
k+1 2 � 

fk+1 1 � 
fk+1 = v v + ei i + i2 2 2 2n 

− 
n n

− 
n ni i i 

v k+1 = 
n − 3 

v k +
4 
2 

� 
e ki 

+1 1 
2 

� 
fi

k+1 . (6.6) 
n n

− 
ni i 
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6.2 Trial Filters 

The wavelet constraint is used to construct a trial filter and satisfy the storage con

straint. In previous chapters, this has taken the form of deven = α dodd (Eqns. 4.4 

and 5.4). For Catmull-Clark surfaces the same strategy is adopted, but because 

of the heterogeneity of odd vertices, two free parameters are needed: one for edge-

vertex details, and one for face-vertex details. If dv represents the detail term for 

a vertex-vertex, and de and df represent edge- and face-vertex details respectively, 

then the wavelet constraint is 

dv = αe de
i + αf df

i , (6.7) 
i i 

based on the local neighborhood of vk depicted in Fig. 6.3. Each detail term repre

sents the difference between the original data at level k + 1 and the subdivision of 

the coarser data from level k. Using the fine Catmull-Clark vertex mask (Eqn. 6.6), 

the details of interest are expressed as 

dv k+1 n − 3 k 4 � 
k+1 1 � 

f�k+1 = v − 
n

v� + 
n2 

e�i − 
n2 i , 

i i 

de
i = e ki 

+1 − e�ki +1 , 

df
i = fi

k+1 − f�ik+1 . 

To solve for αe and αf , Eqn. 6.7 can be rewritten as 

dv = αe de
i + αf df

i

i i
�� � �� � 

dv = αe ei
k+1 − e�ik+1 + αf fi

k+1 − f�ik+1


i i


k+1 n − 3 k 4 � 
k+1 1 � 

f�k+1
v v�
2 

e�i + 
2 i− 

n 
− 

n ni i 

= αe e ki 
+1 − αe e�ki +1 + αf fi

k+1 − αf f�ik+1 . 
i i i i 
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Setting αe = 
n
4 
2 and αf = −

n
1 
2 will cancel the 

� 
i e�ki +1 and 

� 
i f
�
i
k+1 terms from each 

side, leaving 

v k+1 n − 3 
v�k =

4 
2 

� 
e ki 

+1 1 
2 

� 
fi

k+1
− 
n n

− 
n
i i 

n − 3 k k+1 4 � 
k+1 1 � 

fk+1 

n
v� = v − 

n
e + 

n2 i 2 i 
i i 

n 4 � 1 � 
v�k = v k+1 ei

k+1 + fi
k+1 . (6.8) 

n − 3 
− 
n(n − 3) n(n − 3)i i 

Equation 6.8 represents the trial decomposition filter A for Catmull-Clark surfaces. 

This filter is the same as the final result of Lanquetin and Neveu [28]. 

From the wavelet constraint, the remaining MR filters are also determined easily. 

The B filter must replace every odd vertex with a detail vector. A closed for could 

be derived to express the details only in terms of fine-level vertices, but from an 

implementation standpoint it is more practical to simply compute the details after 

computing the coarse vertices, via 

de
i = e ki 

+1 − e�ki +1 , 

df = fk+1 f�k+1 .i i − i 

The Q filter is responsible for interpreting the wavelet coefficients that result 

from decomposition. In this case, the stored details represent the difference between 

an odd vertex after subdivision and the original fine data. Thus for odd vertices, the 

corresponding detail can be located and added to the subdivided vertex: 

e ki 
+1 = e�ki +1 + de

i , 

fk+1 f�k+1 + df = i i i . 
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Ck PCk−1 P2Ck−2 P3Ck−3 

E = 0.788 E = 4.674 E = 15.202 

Figure 6.4: The trial filter produces high-error coarse approximations, especially un
der repeated applications. (left to right) the original model; after one decomposition 
with Eqn. 6.8; after two decompositions; after three decompositions. 

For even vertices, the correct detail can be computed by Eqn. 6.7: 

dv = 
n

4 
2 

� 
de

i − 
n

1 � 
df . 

2 i 
i i 

Together, all MR filters are determined by the wavelet constraint, and a biorthogonal 

system results. 

Figure 6.4 shows the performance of the trial filter on a simple object. After 

three decompositions, the error has become quite large, turning the muffin into a 

featureless blob. While decomposition followed by subdivision will always cause 

high-frequency details to be lost, perhaps more of the low-frequency information can 

be retained. 

6.2.1 Valence-3 Vertices 

Note that Eqn. 6.8 is undefined when n = 3 because the denominator of each coef

ficient is zero. Therefore, the trial filter cannot decompose valence-3 vertices. This 

result is not unexpected when Eqn. 6.6 is examined: when n = 3, the central vertex 

vk contributes nothing to its subdivided position vk+1; thus there is no chance to 
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Figure 6.5: The trial filter of Eqn. 6.8 fails on valence-3 vertices. However, decompo
sition can be performed in cases where the valence-3 vertex vn

k 
=3 has a non-valence-3 

neighbor v�nk 
=3 at the coarse level. 

recover vk from vk+1 by simply rearranging that equation. This is an unfortunate 

result, but a decomposition mask that works for most valence-3 vertices can be found 

by an alternate method. 

Consider a valence-3 vertex vn
k 
=3 with at least one non-valence-3 coarse neighbor 

vk 
=3, as depicted in Fig. 6.5. At level k these vertices are connected by an edge, n

while at level k + 1 the edge is bijected by edge-vertex ek+1; at level k + 1, the faces 

on either side of the edge are split by face-vertices fa
k+1 and fb

k+1 . 

Recall the regular edge subdivision mask of Eqn. 6.2. For the local neighborhood 

depicted in Fig. 6.5, ek+1 is computed by the mask 

1 � � 
e k+1 =

4 
vn

k 
=3 + vn

k 
=3� + fa

k+1 + fb
k+1 . 

When decomposing level k + 1, ek+1 , fa
k+1, and fb

k+1 are known while v�nk 
=3 and v�nk 

=3 

k+1 kare to be determined. However, Eqn. 6.8, vn=3 can be decomposed to v�n=3, leaving 

1 � � 
e k+1 ≈ 

4 
vn

k 
=3 + v�nk 

�=3 + fa
k+1 + fb

k+1 . 
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This is only an approximation because ek+1 may not result from subdivision (i.e. 

there may be some error introduced by decomposition). Since vn
k 
=3 is the only un

known, this expression can be written as 

vn
k 
=3 ≈ 4e k+1 − v�nk 

=3� − fa
k+1 − fb

k+1 . (6.9) 

In the above formulation it was implied that vn
k 
=3 was not a valence-3 vertex. 

In fact, Eqn. 6.9 allows a valence-3 vertex to be decomposed just in case it has any 

coarse-level neighbor that has been decomposed. 

Unfortunately, decomposing a vertex with something other than the trial filter 

violates the wavelet constraint. In other words, vn
k 
=3 is an even vertex, but Eqn. 6.7 

cannot be used to compute its detail from neighboring odd details; a detail term 

must be explicitly computed and stored for each of these vertices. Because valence-3 

vertices are also being replaced with coarse approximations, a single vertex at level 

k + 1 becomes a vertex and a vector at level k; this violates the storage constraint 

locally and globally. 

Equation 6.9 represents a valid inversion of subdivision: if vertices at level k + 1 

represent the subdivision Ck+1 = PCk of some mesh Ck, then decomposition with 

the trial filter and this special-case filter will return the original mesh. However, in 

general the MR system will be tasked with decomposing a mesh that does not result 

from subdivision. In such cases Eqn. 6.9 may produce a very poor approximation for 

k+1 k+1 vn=3, because it has no contribution from vn=3 itself and thus is totally insensitive 

to high-frequency information. 

To alleviate this issue somewhat, an approach in which each already-decomposed 

k+1 kneighbor of vn=3 nominates a “candidate” position for v�n=3 based on Eqn. 6.9 is used. 
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(a) (b)


(c) (d) 

Figure 6.6: When a valence-3 vertex vk+1 has more than one coarse neighbor that has 
been decomposed, each neighbor nominates a position for v�k and v�k’s final position is 
taken as the average of the candidates: (a) a portion of a fine mesh around vk+1; (b) 
vk+1’s coarse neighbors can be decomposed; (c) each neighbor nominates a position 
for v�k; (d) the final position of v�k is the average of the candidates. 
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Then, the final position of v�nk 
=3 is taken to be the average of all such candidates. 

Figure 6.6 illustrates this approach. This candidate-averaging approach is similar 

in spirit to the decomposition strategy used by Samavati et al. [38] for Doo-Sabin 

surfaces. 

6.3 Refinement 

Notice that in the trial decomposition mask (Eqn. 6.8), the weight applied to vk+1 

nis 
n−3 > 1; for regular valence-4 vertices, the weight would be 4. This large central 

weight causes an amplification of errors under repeated applications of the mask, as 

illustrated in Fig. 6.4. 

A refinement step that replace v�k by vk = v�k + δ can reduce the error incurred 

by the trial filter. To select a δ that will reduce the error, the error about vk is 

considered on a local scale. 

Before refinement, the local error of v�k is E�v = �dv�2 + 
� �de

i �2 + 
� �df

i �2 . To k 

find the error E(δ) after refinement, the coarse masks of Eqns. 6.1 – 6.4 and 6.5 – 

can be used. These masks indicate how much vk contributes to fi
k+1 , ei

k+1, and vk+1 

during subdivision: vk contributes r to vk+1 , si to e ki 
+1, and ti to fi

k+1, where 

n − 2 1 � 1 
r = + ,

2 fn n ni i 

1 1 1 
si = 

4 
1 + 

n fi 
+ 
n fi−1 

, 

1 
ti = f . ni 

When v�k is refined by δ, the subdivision of the coarse data is impacted according to 
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these weights. Thus the local error after refinement can be written as 

E(δ) = �dv − rδ�2 + �di
e − siδ�2 − �df

i − tiδ�2 . (6.10) 

To improve the trial filter, δ should be selected to minimize this quantity. 

Recalling that �x�2 = x x, and therefore �d − xδ�2 = �d�2 − 2xd δ + x2�δ�2 ,· · 

Eqn. 6.10 simplifies to 

� � �� � 
E(δ) = �dv�2 − 2rdv · δ + r 2�δ�2 + �di

e�2 − 2sidi
e · δ + si 

2�δ�2 + 

�df
i �2 − 2tid

f δ + t2 
i �δ�2 .i · 

After grouping of like terms, this further simplifies to 

E(δ) = a�δ�2 − v δ + b , (6.11) · 

where 

2 2 2 a = r + si + ti , 
i i 

v = 2 rdv + sidi
e + tidi

e , and 
i i 

b = �dv�2 + �de
i �2 + �df

i �2 . 

Equation 6.11, the error function E(δ) that we want to minimize, is quadratic in 

δ, and can be solved analytically by differentiating and finding a zero-crossing: 

v 
E(δ)� = 2aδ − v = 0 = ⇒ δ =

2a
. 

This is a minimum, because E(δ)�� = 2a > 0. Therefore 

v 
δ = 

2a 
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PCk−1 P2Ck−2 P3Ck−3 

E = 0.783 E = 4.838 E = 13.598


Figure 6.7: A refinement step is used to reduce the error of the trial filter.


2(rdv + 
� 
sid

e
i + 

� 
tid

f
i ) 

2(r2 + s2 
i + t2 

i ) � � f � � f r(αe de
i + αf di ) + sid

e
i + tidi 

r2 + s2 
i + t2 

i 

(rαe + si)di
e + (rαf + ti)di

f 

δ = � � . (6.12) 
r2 + s2 

i + t2 
i 

The final simplification step is made possible by Eqn. 6.7. 

6.3.1 Valence-3 Vertices 

It is unclear whether the special-case valence-3 vertices discussed in Sec. 6.2.1 should 

be refined or not. In practice, we have observed that not refining these vertices 

produces better coarse approximations. 

6.4 Partial Refinement 

Using the voting strategy to dampen the refinement of Eqn. 6.12, v�k wants to take 

the full refinement step, while its neighbors e�ki do not want v�k to move at all. Each 

vote is weighted according to the subdivision mask: v�k votes for µ = 1 with a weight 
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PCk−1 P2Ck−2 P3Ck−3 

E = 0.783 E = 4.336 E = 12.099 

Figure 6.8: Partial refinement reduces the per-vertex displacement to account for 
the interdependence of the refinements. Visually, the results are similar to the full 
refinement, but the error measurement shows improvement. 

of r, while e�ki vote for µ = 0 with a weight of 1 
2 (1 + 1 

f + f 
1 ). So 

n n ni i−1 

1 1 1

µ = r(1) + 

2 
(1 + f + f ) (0) = r .


n ni ni−1


Using this value to dampen δ, the per-vertex refinement vector becomes 

(rαe + si)d
e
i + (rαf + ti)d

f
iδ = r � � 

r2 + s2 
i + t2 

i 

(r2αe + si)di
e + (r2αf + ti)di

f 

= 
r2 + 

� 
s2 

i + 
� 
t2 
i 

. (6.13) 

Figure 6.8 illustrates the difference between refining with Eqn. 6.12 and partially 

refining with Eqn. 6.13. The differences are subtle in this instance, but careful 

inspection reveals that the partially refined mesh retains more of the muffin’s bulge 

after three decompositions. 

6.5 Boundary Filters 

For the Catmull-Clark subdivision masks to be applied, an entity (vertex, face, or 

edge) must have a complete neighborhood. For a vertex of valence n, a full neigh

borhood requires n edge neighbors and n faces; if the number of edge neighbors is 
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Figure 6.9: Boundary vertices and edges in a Catmull-Clark model can be decom
posed with cubic B-spline filters. 

greater than the number of connected faces, then the vertex is on a boundary and 

does not have a full neighborhood. For an edge, the mask requires to adjacent faces; 

if the edge has only one adjacent face, then it is on a boundary and does not have 

a full neighborhood. The subdivision mask for a face requires only the vertices in 

the face, and so a face always has a full neighborhood. Thus, only boundary vertices 

and boundary edges require special treatment during subdivision, and by extension, 

require special treatment during decomposition and reconstruction. 

Like Loop surfaces, Catmull-Clark surfaces are a generalization of cubic B-spline 

curves, and so the cubic B-spline filter is used to subdivide boundary vertices and 

edges. For boundary MR filters, therefore, a cubic B-spline multiresolution can be 

used during decomposition and reconstruction, such as those presented in Sec. 4.6. In 

particular, the regular filters Ar and Qr can be used along any continuous boundary, 

while the boundary cases As/e and Qs/e should be used for corner points. 
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6.6 Conclusion 

In this chapter, the first complete MR system for Catmull-Clark surfaces has been de

veloped. In Sec. 6.2 a trial decomposition filter resulted from the wavelet constraint. 

While the trial filter (Eqn. 6.8) is equivalent to the filter proposed by Lanquetin and 

Neveu, our construction simultaneously satisfies the storage constraint. This rep

resents a substantial benefit of our work, because it opens the door to applications 

such as mesh compression. 

An additional refinement procedure is developed to reduce the error in the trial 

coarse approximation. The refinement (Eqn. 6.12) is based on minimizing the local 

error around a coarse vertex. However, minimality is only satisfied when other 

coarse vertices in the local neighborhood are not displaced; in practice, then, the 

refinements are too large because elements of the local neighborhood are also being 

displaced by refinement. By dampening each local refinement (Eqn. 6.13), the trial 

filter is improved even more. 

One drawback of the MR system developed in this chapter is that valence-3 

vertices must be handled by special filters, and in certain pathological cases cannot 

be decomposed at all. Most valence-3 vertices can be decomposed by the procedure 

described in Sec. 6.2.1; only in the pathological case where all even vertices are 

valence-3, such as a cube, could the method fail. Because Catmull-Clark subdivision 

produces mostly regular vertices (all edge vertices are valence-4), the method could 

only possibly fail at the topmost level of the mesh hierarchy, and again only in 

pathological cases. Thus, the valence-3 issue is not a significant problem in practice. 
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Chapter 7 

Results 

In this chapter we will quantitatively analyze the MR systems constructed in Chaps. 4– 

6. For each type of curve or surface, the performance of our filters – both the trial 

and refined – will be compared to that of existing filters. 

The procedure outlined Sec. ?? is used to evaluate each MR system. That is, 

given a semi-regular object Ck, the object is decomposed j times with A, 

Ck−j = Ak−j Ak−1AkCk ,· · · 

and then subdivided without details back to level k, 

C� k = Pk−1Pk−2 Pk−j Ck−j .· · · 

The least-squares error E(C� k) is then measured as 

E(C� k) = �Ck − C� k�2 . 

The C� k notation cannot distinguish how many times a reconstructed object was 

initially decomposed. As an alternative and more precise notation, the reconstruction 

of Ck−j will be denoted as Pj Ck−j . 

This error metric has no absolute meaning; the numerical value of E will depend 

on the coordinate system of the particular object. Relatively, however, a “better” 

filter will generally produce a lower error value. 
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7.1 Cubic B-Splines 

In Chapter 4, an MR system was constructed for cubic B-spline subdivision curves. 

A trial filter of width-3 resulted from the wavelet constraint: 

a0 a±1 

2 −1 . 
2 

To refine this filter, the error was considered in two differently-sized local neigh

borhoods, one of width 3 and the other of width 5. The 3-element neighborhood 

produced a closed-form filter of width 7, the W-7 filter: 

a0 a±1 a±2 a±3 
35 95 33 33 . 
34 272 −68 272 

To evaluate this filter in a broader context, it is compared against a minimum-norm 

width-7 filter from Bartels and Samavati [3], 

a0 a a a±1 ±2 ±3 
,52 9 23 23 

49 28 −49 196 

which will be referred to as the BS-7 filter. 

When considering the error in a larger 5-element neighborhood, the trial filter 

widened even further to a width-11 decomposition filter, the W-11 filter: 

a0 a a a a a±1 ±2 ±3 ±4 ±5 
.71 103 18 87 3 3 

70 280 −35 560 −140 560 

Bartels and Samavati’s 11-element BS-11 filter, given by 

a0 a a a a a±1 ±2 ±3 ±4 ±5 
,5714 4479 2024 141 1138 569 

6019 12038 −6019 −926 6019 −12038 

is used for comparison 
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7.1.1 Analysis 

Figure 7.1 shows several curves and a tensor product surface that together represent 

the high-resolution test data Ck . 

Figure 7.2 shows each filter applied twice (left column) and three times (right) 

to the car object of Fig. 7.1(a). Below each figure, the error E(C� k) is listed. As 

expected, the trial filter performs much worse than all other filters, especially after 

several decompositions. The W7 filter performs near-equivalently to Bartels and 

Samavati’s, which is a strong validation of our method. In the 11-element filters, 

Bartels and Samavati’s filter reduces the error even further than the 7-element filter, 

as one would expect; curiously, however, the W11 filter does not perform as well and 

actually produces higher errors (though visually there is little difference). 

These trends continue for Figs. 7.3–7.6. The trial filter performs quite poorly, 

particularly under repeated decompositions. The W-7 filter performs very near to 

the BS-7 filter, while the wider W-11 filter performs reasonably well but always worse 

than the W-7 filter. Filter BS-11 is consistently the best performer. 

Overall, these results are in line with expectations. That the W-7 filter per

forms essentially the same as a minimum-norm filter is validation of the refinement 

procedure and also of the partial refinement strategy. 

The one unforeseen result is the relatively poor performance of our W-11 filter, 

both in comparison to the BS-11 filter and to the narrower width-7 filters. Looking 

at the filter vectors for each filter, one observation is that both width-7 filters have 

a central weight a0 > 1; the W-11 filter also has a0 > 1, while the central filter for 

BS-11 is a0 < 1. From this observation, it seems that the refinement that lead to 
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(a)


(b)


(c) (d) 

(e) 

Figure 7.1: Original fine data Ck for evaluating the cubic B-spline MR system of 
Chapter 4. 



112 

Filter P2Ck−2 P3Ck−3 

Trial 
E = 1.111 E = 2.689


W-7 
E = 0.480 E = 1.178


BS-7 
E = 0.478 E = 1.162


W-11 
E = 0.502 E = 1.247


BS-11 
E = 0.409 E = 0.968 

Figure 7.2: A car model is decomposed two (left column) and three (right column) 
levels and then subdivided the same number of times. 
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Filter PCk−1 P2Ck−2 

Trial 
E = 0.688 E = 2.551


W-7 
E = 0.423 E = 1.476


BS-7 
E = 0.421 E = 1.470


W-11 
E = 0.433 E = 1.534


BS-11 
E = 0.393 E = 1.237 

Figure 7.3: A wolf model is decomposed one (left column) and two (right column) 
levels and then subdivided the same number of times. 
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.880 E = 2.042 E = 6.218


W-7 
E = 0.452 E = 0.657 E = 1.340


BS-7 
E = 0.447 E = 0.630 E = 1.337


W-11 
E = 0.470 E = 0.725 E = 1.480


BS-11 
E = 0.405 E = 0.504 E = 0.886 

Figure 7.4: A face model is decomposed one (left column), two (middle), and three 
(right) levels and then subdivided the same number of times. 
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Filter PCk−1 P2Ck−2 

Trial 
E = 0.843 E = 3.933


W-7 
E = 0.450 E = 1.323


BS-7 
E = 0.448 E = 1.282


W-11 
E = 0.464 E = 1.475


BS-11 
E = 0.403 E = 0.953 

Figure 7.5: A tree model is decomposed one (left column) and two (right column) 
levels and then subdivided the same number of times. 
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.696 E = 3.736 E = 12.097


W-7 
E = 0.390 E = 1.063 E = 2.563


BS-7 
E = 0.390 E = 1.050 E = 2.526


W-11 
E = 0.398 E = 1.117 E = 2.706


BS-11 
E = 0.359 E = 0.902 E = 2.176 

Figure 7.6: A terrain patch is decomposed one (left column), two (middle), and three 
(right) levels and then subdivided the same number of times. 

f 
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Figure 7.7: A plot of least-squares error for the car model of Fig. 7.2. 

the W-11 filter did not lessen the impact of the central vertex to the same extent 

as BS-11. The L matrices support this, as the weights of d and d1 are 33 ≈ 0.48−1 68 

for the W-7 filter and 69 ≈ 0.49 for the W-11 filter. Thus a refinement step that 
140 

produced a lower central weight would likely produce a better result for the wider 

5-element neighborhood. 

7.1.2 Conclusion 

The results indicate that the trial filter is unsuitable for producing low-error coarse 

data. Meanwhile, comparisons of the W-7 and W-11 filters with established near-

minimum-norm filters of the same widths – BS-7 and BS-11 – indicate that our 

MR construction method is able to create high-quality filters within an extensible 

framework that other constructions are lacking. 
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Figure 7.8: A plot of least-squares error for the wolf model of Fig. 7.3.


Figure 7.9: A plot of least-squares error for the face model of Fig. 7.4.
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Figure 7.10: A plot of least-squares error for the tree model of Fig. 7.5.


Figure 7.11: A plot of least-squares error for the terrain model of Fig. 7.6.
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7.2 Loop Surfaces 

In Chapter 5 an MR system for Loop subdivision surfaces was developed. From the 

wavelet constraint, a trial filter was reach, for which the decomposition mask �A is 

given by 

1 α � 
c�0 =

1 − nα
f0 − 

1 − nα 
fi . 

To increase the quality of the coarse meshes produced by the trial filter, a partial 

refinement step was developed: each coarse vertex c�0 is displaced by δ0, where 

δ0 = (1 − nβ)κ di . 

This filter will be referred to as the refined filter (though it is in fact the partially 

refined filter of Sec. 5.4). 

Recently, Li et al. developed a Loop MR scheme [31]. Their method is based 

on rewriting the subdivision rules with some free parameters such that when the 

rules are inverted and the free parameters defined, an MR system is induced. Their 

construction does not indicate how details for even vertices are computed, so their 

construction appears to not satisfy the storage constraint. Nevertheless, the decom

position process that results from the inverted rules is essentially the same as our 

trial-refined sequence. When viewed this way; their refinement step is 

δ0 = αLQS de
i + βLQS ds

i , (7.1) 

where αLQS and βLQS are the free parameters of their scheme, and ds
i are details 

from “sidewing” vertices (Fig. 7.12). This filter is referred to as the LQS filter. 
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Figure 7.12: Notation for the refinement mask of Li et al. [31]. Our refinement step

is based on the edge details d
ei , while their refinement also takes the sidewing details

d
si into account.


7.2.1 Analysis 

The set of semi-regular Loop meshes shown in Fig. 7.13 were used for testing. In 

Fig. 7.14, the performance of each filter is shown. in the top row, the mesh produced 

by the trial filter is quite poor after two decompositions and after three applications 

the error has exploded. The refined filter performs much better, and even after 

three decompositions the general shape is preserved. The LQS filter performs about 

the same as the refined filter for the first two decompositions, but after three de

compositions the resulting mesh looks better than the refined version. Figure 7.18 

summarizes the error values from each filter. 

The pawn model depicted in Fig. 7.15 again shows that the trial filter produces 

high-error approximations, in particular over several levels of decomposition. The 

refined filter does a much better job of keeping the error at a reasonable level. Visu
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(a) (b) 

(c) (d) 

(e)


Figure 7.13: Fine data Ck for testing the Loop MR system of Chapter 5.
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.901 E = 4.067 E = 14.152


Refined 
E = 0.520 E = 1.517 E = 6.089


LQS 
E = 0.517 E = 1.414 E = 4.946


Figure 7.14: The alien model of Fig. 7.13 is decomposed several times in succession.
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ally and numerically, there is little difference between the refined filter and the LQS 

filter. Figure 7.19 summarizes the errors from each filter for this model. 

Figure 7.16 shows some fairly subtle differentiation of the filters when a hand 

model is decomposed. After one decomposition, each filter produces a low-error 

approximation, but after two decompositions the trial filter shows some noticeable 

deformation around the knuckles of the hand. Again, the refined filter is noticeably 

better than the trial filter, and about the same as the LQS filter. The results are 

recapped in Fig. 7.20. 

The wolf model of Fig. 7.17 represents a difficult challenge for a decomposition 

filter, particularly in the sharp teeth. Subdivision will always round off sharp features 

(unless special sharp-feature masks are used), so a low-error approximation of such 

sharp features is tough to satisfy. The trial filter performs nearly as well as the refined 

filters after one decomposition, but the teeth area blows up after two decompositions; 

there is also some noticeable deviation around the ears. The LQS filter also has 

difficulty, though with less drastic results, with the teeth region of the wolf. In this 

case, the refined filter is remarkably able to handle the sharp teeth and produce a 

good coarse approximation after two decompositions. The errors of each filter are 

summarized in Fig. 7.21. 

Figures 7.22 summarizes the results from the vase model from Chapter 5, while 

Fig. 7.23 shows the results of applying the filters to a head mode. In each case, the 

refined and LQS filters perform essentially the same. 
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 1.965 E = 7.229 E = 22.544


Refined 
E = 0.993 E = 2.632 E = 4.728


LQS 
E = 0.929 E = 2.171 E = 3.657


Figure 7.15: The pawn model of Fig. 7.13 is decomposed several times in succession.
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Filter PCk−1 P2Ck−2 

Trial 
E = 0.461 E = 1.742 

Refined 
E = 0.277 E = 0.764 

LQS 
E = 0.279 E = 0.832 

Figure 7.16: The hand model of Fig. 7.13 is decomposed several times in succession. 
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Filter PCk−1 P2Ck−2 

Trial 
E = 0.201 E = 22.265


Refined 
E = 0.183 E = 1.276


LQS 
E = 0.113 E = 4.420 

Figure 7.17: The wolf model of Fig. 7.13 is decomposed several times in succession. 
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Figure 7.18: A plot of least-squares error for the alien model of Fig. 7.14.


Figure 7.19: A plot of least-squares error for the pawn model of Fig. 7.15.
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Figure 7.20: A plot of least-squares error for the hand model of Fig. 7.16.


Figure 7.21: A plot of least-squares error for the wolf model of Fig. 7.17.
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Figure 7.22: A plot of least-squares error for a vase model.


Figure 7.23: A plot of least-squares error for a head model.
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7.2.2 Conclusion 

As indicated by the error-versus-number of decompositions graphs of Figs. 7.18– 

7.23, the refined filter represents a large improvement over the trial filter, and more 

importantly it is competitive with the established LQS filter. 

These results – both quantitative error measurements and qualitative visual eval

uation of the meshes – further validate our method. As Fig. 7.12 depicts, the refine

ment step of Li et al. considers a wider neighborhood of details than our refinement; 

we would expect the wider support to yield a more optimal displacement. The fact 

that the refined filter produces equivalent quality with narrower support is even more 

gratifying. 

7.3 Catmull-Clark Surfaces 

In Chapter 6, a complete MR system for Catmull-Clark subdivision surfaces was 

built by the method described in Chapter 3. Though the subdivision masks for this 

scheme are more complicated than others, the wavelet constraint was able to derive 

a trial filter with only slight alterations. The resulting trial filter, 

n 4 � 1 � 
v�k = v k+1 e	k+1 + fk+1 ,i i n − 3 

− 
n(n − 3) i n(n − 3) i 

is the same decomposition filter as Lanquetin and Neveu [28]. 

After satisfying the storage constraint with the trial filter, a refinement process 

is applied to improve it. In the refined filter, every coarse vertex v�k is displaced by 

δ, where δ is determined by a local neighborhood of details: 

(r2αe + si) de
i + (r2αf + ti) d

f 

δ =	 � � 
i . 

r2 + si 
2 + ti 

2 



132 

In Figs. 7.25–7.36, the high-resolution models of Fig. 7.24 are decomposed several 

times with both the trial and refined filters. 

7.3.1 Analysis 

In the muffin model of Fig. 7.25, both filters produce a reasonable results after one 

level of decomposition. After two levels, the trial filter is beginning to show some 

large errors while the refined filter is keeping the overall shape in tact. By the third 

decomposition, the error in the trial filter has blown up, while the refined filter 

has lost some of the original shape dimensions but has retained the overall shape. 

Figure 7.26 plots the error from each filter for this model. 

Fig. 7.27 depicts the donut model of Fig. 7.24 depicted after several decompo

sitions. After one and two decompositions, both filters have reasonably low errors. 

Visually, however, the refined filter looks much more faithful to the original object; 

one might say that the refined filter spends its error budget more wisely. After three 

decompositions, the refined filter outperforms the trial filter both visually and nu

merically. These error values, as well as after a fourth level of decomposition, are 

shown in the graph of Fig. 7.28. 

Figure 7.29 shows each of the filters applied to a bullet model. As summarized 

in Fig. 7.30, the errors produced by each filter are numerically close. However, a 

visual inspection of the resulting meshes shows that the refined filter again spends 

its error budget more wisely: unlike the trial filter, the refined filter preserves the 

overall bullet-like shape of the mesh even after several decompositions. 

A bicycle seat was decomposed with each filter, and the results are summarized in 

Figs. 7.31 and 7.32. For the first level, the trial and refined filters perform equally. For 

http:7.25�7.36
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.24: Original fine data Ck for evaluating the Catmull-Clark MR system of 
Chapter 6. 
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.788 E = 4.674 E = 15.202


Refined 
E = 0.783 E = 4.336 E = 12.099 

Figure 7.25: A semi-regular Catmull-Clark muffin model is decomposed with the 
trial and refined filters. 

Figure 7.26: A plot of least-squares error for the muffin model of Fig. 7.25.
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.559 E = 2.953 E = 11.170


Refined 
E = 0.483 E = 2.884 E = 8.754 

Figure 7.27: A semi-regular Catmull-Clark donut model is decomposed with the trial 
and refined filters. 

Figure 7.28: A plot of least-squares error for the donut model of Fig. 7.27.
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 1.354 E = 3.863 E = 6.141


Refined 
E = 1.576 E = 4.037 E = 5.886 

Figure 7.29: A semi-regular Catmull-Clark bullet model is decomposed with the trial 
and refined filters. 

Figure 7.30: A plot of least-squares error for the bullet model of Fig. 7.29.
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.202 E = 1.313 E = 7.292


Refined 
E = 0.201 E = 1.056 E = 5.139 

Figure 7.31: A semi-regular Catmull-Clark seat model is decomposed with the trial 
and refined filters. 

more decompositions, the refined filter pulls ahead both visually and quantitatively. 

The dog model first shown in Chapter 1 is decomposed with both the trial and 

refined filters; Fig. 7.33 shows the results. After one level of decomposition, the 

results are hard to distinguish. But after two levels the refined filter has significantly 

lower error and, equally important, produces a better-looking mesh. compare the 

ears of the dog under each filter; the refined filter is clearly more able to preserve 

the shape and dimensionality of that feature. 

Figure 7.35 summarizes the results of applying each filter to a teddy bear model. 

The interesting aspect of this model is that the refined model performs slightly worse 

than the trial filter. The error of each filter is relatively low, but the refined filter 

should still be able to outperform the trial filter. 

Finally, Fig. 7.36 shows the decomposition of a terrain patch with the Catmull-

Clark filters. After one level, the difference between the trial and refined filters is 

negligible. By the second decomposition, the trial filter is beginning to show some 
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Figure 7.32: A plot of least-squares error for the seat model of Fig. 7.31. 

Filter PCk−1 P2Ck−2 

Trial 
E = 0.463 E = 3.766


Refined 
E = 0.484 E = 3.197 

Figure 7.33: A semi-regular Catmull-Clark dog model is decomposed with the trial 
and refined filters. 
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Figure 7.34: A plot of least-squares error for the dog model of Fig. 7.33.


Figure 7.35: A plot of least-squares error for a teddy bear model.
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Filter PCk−1 P2Ck−2 P3Ck−3 

Trial 
E = 0.841 E = 4.272 E = 17.389


Refined 
E = 0.735 E = 3.441 E = 12.997 

Figure 7.36: Terrain model decomposed with the trial and partially-refined Catmul
l-Clark decomposition filters. 

error amplification, and by the third level the terrain bears little resemblance to 

the original model. The refined filter is much better at maintaining the overall 

shape of the terrain, even after drastically reducing the mesh resolution by three 

levels. Figure 7.37 compares the results of the two filters, including a fourth level of 

decomposition not shown. 

7.3.2 Conclusion 

The results presented here indicate that the trial decomposition filter produces large 

errors in general, as well as amplifying errors from previous levels. This result is 

expected, due to the narrow support of the trial filter. The refinement step greatly 

improves upon the trial filter, especially when the results are evaluated visually: 

where the trial filter produces wavy or irregular meshes, the refined filter respects 
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Figure 7.37: A plot of least-squares error for the terrain model of Fig. 7.36. 

the original shape and dimensions of an object. 

Curiously, the numerical results are not as strong as the visuals would sug

gest. The error reduction realized by refinement is not as dramatic as with previous 

schemes, and in several cases the refined filter actually produces higher error accord

ing to the least-squares metric. Refinement still constitutes a major improvement 

because regardless of what the measured error is, visual faithfulness the the original 

model is of the utmost importance – and the refined filter is clearly better in this 

respect. Nonetheless, the numerical results seem to indicate that an even greater 

improvement to the trial filter could be made. 



Chapter 8 

Conclusions & Future Work 

In this thesis, a general framework for constructing MR systems from existing subdi

vision schemes has been presented. The construction exploits the inherent even/odd

old/new vertex structure that all subdivision schemes share to categorize fine vertices 

into two groups: those that will be coarsened, and those that will be replaced with 

detail terms. This classification leads to the wavelet constraint, a way of satisfying 

the storage constraint by having missing details be computable from stored details. 

The solution of the wavelet constraint results in a set of trail filters, which is 

a fully biorthogonal MR system but that typically produces high-error coarse ap

proximations. Therefore, a local optimization is applied to reduce the error; because 

the wavelet terms represent geometric information, a local neighborhood of details 

is used to decide which direction and by how much to displace each coarse vertex. 

In Chapters 4–6, this method was followed to produce MR systems for cubic 

B-spline curves, Loop subdivision surfaces, and Catmull-Clark surfaces. When com

pared against previous MR systems for these types of subdivision (Chapter 7), the 

generic construction is found to produce very competitive filters. 

In Chapter 4, two different MR systems were developed, primarily distinguished 

by the width of the decomposition A filter. The narrower width-7 filter performed 

in line with the near-minimum-norm filter of Samavati & Bartels [3], but the wider 

width-11 filter was slightly outmatched by the wider filter of Samavati & Bartels. 

This result seems to indicate that the wider neighborhood of details used in the W-11 
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refinement are less indicative of a good displacement direction than the smaller W-7 

neighborhood. Since the wider neighborhood analysis of W-11 is difficult to extend 

to mesh schemes, however, the important point is that the W-7 filter performed very 

well. 

For Loop surfaces, the filters constructed in Chapter 5 generally performed well in 

comparison to the filters of Li et al.; there were instances where our filters performed 

better (Fig. 7.17, for instance), and also instances where their filter produced more 

pleasing results (Fig. 7.14). This underscores the difficulty of constructing an MR 

system that can perform equally well on all types of meshes. 

The filters derived for Catmull-Clark surfaces in Chapter 6 represent a major 

improvement over the earlier work (Lanquetin and Neveu [28]) for two reasons. First, 

the storage constraint is satisfied, whereas previous work simply provides coarsening 

masks and assumes that detail terms will be stored for all vertices. Second, the 

refinement step produces much more stable coarse approximations than the trial 

filter. 

Future Work 

There are several possible directions to take this work in the future. An immediate 

goal is to find a more elegant solution to the valence-3 vertex issue in the Catmull-

Clark filters (Sec. 6.2.1). First, the candidate positions suggested by Eqn. 6.9 are 

insensitive to high-frequency data because the position of the valence-3 vertex is not 

considered in the mask. Second, and more importantly, the special-case mask does 

not satisfy the wavelet constraint, and therefore the storage constraint cannot be 
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satisfied at these vertices. 

In Chapter 4, two filters were reached: a width-7 filter and a width-11 filter. 

The W-11 filter was expected to perform better than the W-7 filter, because it takes 

into account a larger set of data to construct the coarse approximation. But in 

practice, the W-11 filter was generally worse than the narrower filters. However, 

in the comparison filters BS-7 and BS-11, the wider width-11 filter is consistently 

better. To reconcile these results, it would be interesting to recast the Samavati 

& Bartels filters as refinements of the trial filters and see what kind of refinement 

their filters implied. This would perhaps indicate a different refinement strategy that 

could be extended to mesh schemes to improve the quality of their MR systems. 

There are some more general questions that arise from our construction. For 

instance, is the voting scheme proposed for the partial refinements even close to 

optimal? The results from cubic B-spline curves and Loop surfaces are encouraging, 

but there seems to be room for improvement in our Catmull-Clark filters. Perhaps 

the voting idea could be carried further into more game theory-like schemes in which 

each vertex would vote less selfishly and recognize that a more optimal solution is 

for every vertex to move a little bit. Ultimately, more investigation is needed to 

determine if and how much the filters could be improved. 

In the longer term, having a full multiresolution system for Catmull-Clark opens 

the door to many interesting applications. Polygonal mesh representations of objects 

are always going to be popular because of their natural integration into the render

ing pipeline; commodity graphics hardware is highly optimized to render polygons, 

not implicit surfaces or other types of object representations. Thus the creation 

of intuitive and powerful modeling tools is an important problem that needs to be 
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addressed in computer graphics. 

A recent research direction in graphics is sketch-based modeling. Sketch-based 

modeling systems attempt to leverage a person’s natural ability to draw or otherwise 

convey the important features of an object. This is a difficult problem for 3D model

ing because sketching is a 2D process; the 3rd dimension must be inferred, and often 

the results are not what the user would expect. As well, most sketch-based systems 

produce produce irregular and imprecise meshes as output. To truly replace the 

traditional control-point based modeling paradigms, sketch-based systems must pro

duce high-quality meshes. In the context of the techniques discussed in this thesis, a 

sketch-based system that produced semi-regular meshes that could be decomposed 

would be a great benefit. 
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[45] W. Sweldens	 and P. Schröder. Building Your Own Wavelets At Home. In 

Wavelets in Computer Graphics, pages 15–87. ACM SIGGRAPH Course notes, 

1996. 

[46] L. Wecker, F.F. Samavati, and M. Gavrilova.	 Iris synthesis: A reverse subdi

vision application. In Proceedings of Graphite 2005, in association with ACM 

SIGGRAPH, pages 121–125, Dunedin, New Zealand, 2005. 
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Appendix A


Notation


Multiresolution systems exist within a nested set of linear function spaces V 0 ⊂ 

V 1 ⊂ · · ·, and a complementary set of wavelet spaces {W 0,W 1 , . . .}, such that 

W k + V k = V k+1 . 

The basis functions Φk = φ0 
k(x) . . . φk

v(k)−1(x) of V k are called scaling functions. 

The scaling functions defined by a subdivision procedure define a nested function 

space, and vice versa. In such a setting, the scaling functions are said to be refinable. 

Wavelets Ψk = ψ0 
k(x) . . . ψw

k 
(k)−1(x) are the basis functions of the wavelet spaces 

W k . 

The subdivision matrix Pk represents the refinement of the scaling functions: 

Φk+1 = ΦkPk . Similarly, the matrix Qk matrix quantifies the relationship between 

wavelets at level k − 1 and the scaling functions of level k: Ψk+1 = ΦkQk . Together, 

Pk and Qk are called reconstruction filters. 

Multiresolution systems encapsulate two operations: reconstruction (the increas

ing of resolution), and decomposition (decreasing resolution). Decomposition is rep

resented by two matrices, Ak and Qk, which are related to the scaling functions and 

wavelets as
 ⎤⎡ 

Ak⎢⎢⎣ 
⎥⎥⎦Φk−1 Ψk−1 = Φk .
|


Bk 

Ak	 and Bk are decomposition filters. 

The object to be operated on by a multiresolution system, be it a signal, curve, 
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or mesh, is represented as a vector of scaling function coefficients, Ck . The terms 

coarse and fine are relative terms referring to the resolution at which an object 

representation exists. 

When an object Ck is downsampled or decomposed to Ck−1, some information is 

lost. The missing information Dk−1 can be embedded in the wavelet space W k−1 as 

coefficients of the wavelets. These wavelet coefficients are informally referred to as 

the details. When the coarse data is then subdivided, the results is an approximation, 

denoted C� k, of the original data Ck . 

For simplicity of notation, the superscripts are often omitted. In that case, the 

original fine data is represented as F, while the coarse data after one decomposition 

is denoted C. When C is subdivided, an approximation F� results. 

In the development of multiresolution filters, the local nature of subdivision allows 

the analysis to be carried out for a single representative vertex. For cubic B-splines, 

the representative vertex f0 ∈ F is neighbored by vertices f−1, f−2, . . . on the left 

and f1, f2, . . . on the right. When the fine data is coarsened, f0 is replaced by a 

coarse approximation c0 ∈ C; fine vertices with even indexes are also coarsened. 

Meanwhile, fine vertices with odd indices, f±1, f±2, . . ., are replaced by detail terms 

d±1, d±2, . . .. 

For Loop surfaces, the representative vertex is f0 ∈ F, which is replaced by coarse 

approximation c0 ∈ C when decomposed. If the valence of f0 is n, then the 1-ring 

(the immediate neighbors) of f0 consists of f1, f2, . . . , fn. After decomposition, these 

vertices are replaced by details d1, d2, . . . , dn. 

For Catmull-Clark surfaces, there are three types of vertices in a semi-regular 

mesh (that is, a mesh that results from Catmull-Clark subdivision, or has the same 
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connectivity): vertex-, edge, and face-vertices, of which vertex-vertices are considered 

even, and edge- and face-vertices are considered odd. The representative fine vertex is 

vk+1 ∈ Ck+1 of valence n, which shares an edge with edge vertices e k+1 , e k+1 , . . . , en
k+1 ,1	 2 

and shares a face with face vertices f1 
k+1, f2 

k+1, . . . , fn
k+1 . After decomposition, vk+1 

is replaced by vk, and the neighboring edge and face vertices are replaced by details, 

de 
1, d

e 
2, . . . , dn

e and df 
1 , d2 

f , . . . , df
n respectively. 

List of Variables 

A	 The decomposition filter for coarsening: C = AF. The trial version is 

denoted �A. 

A The trial decomposition filter, such that C� = AF. 

B The decomposition filter for computing details, or wavelet coefficients: 

D = BF. The trial version is denoted B� . 

c	 A coarse vertex, c ∈ C. A subscript 0 is often used to denote a represen

tative vertex c0. A coarse vertex produced by the trial decomposition 

filter � c.A is denoted �
C A coarse (low-resolution) object: C represents a vector of the object’s 

vertices. 

d	 A detail vector. When an object F is decomposed, some vertices fodd are 

replaced with detail vectors. In Catmull-Clark subdivision, there are 

vertex-, face- and edge-vertices; the corresponding details are denoted 

dv , df and de respectively. 

D	 A vector of wavelet coefficients produces by decomposition: D = BF. 
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e 

E 

f 

In Catmull-Clark subdivision, refers to an edge-vertex. 

Denotes the error in an object representation Ck−j , relative to some 

original data Ck . The least-squares error metric is used, meaning that 

E(Ck−j ) = 
� 
�Ck − Pj Ck−j �2 . 

A fine vertex, f ∈ F. For Catmull-Clark surfaces, f refers to a face-

vertex. 

f� 

F 

A fine vertex that results from subdividing a coarse approximation of f . 

If there is any error in the decomposition, then f �= f�, and d = f − f� . 

A fine (high-resolution) object: F represents a vector of the object’s 

vertices. 

k Denotes the level of the multiresolution hierarchy at which an object 

exists, or at which a filter acts. For instance, C = AF could be alter

natively expressed as Ck−1 = AkCk . 

L A matrix encapsulating the computation of the refinement vectors from 

the details: Δ = LD. 

n 

nf 

Vertex valence, or the number of edges incident to a vertex. 

Face valence, or the number of vertices (equivalently edges) in a face. 

P The subdivision matrix, F = PC. 

Q The reconstruction matrix for interpreting the detail terms: F 

QD. The trial version is denoted �Q. 

= PC+ 

r A coefficient used in Catmull-Clark refinement. 

s A coefficient used in Catmull-Clark refinement. 

t A coefficient used in Catmull-Clark refinement. 
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v 

V k 

W k 

In Catmull-Clark subdivision, refers to a vertex-vertex. 

A function space in which an object C or F exists. 

A wavelet space, in which the details D exist. W k is the complement 

of V k in V k+1 . 

α The free variable in the wavelet constraint; when α is determined, the 

trial filters can be found. In Catmull-Clark subdivision, different α 

are required for face- and edge-vertices; they are denoted αf and αe 

respectively. 

β A parameter of Loop subdivision, β is a function of vertex valence n. 

δ A refinement vector, used to displace a coarse vertex �c such that after 

Δ 

subdivision, c = �c + δ has lower error that �c. 
A collection of refinement vectors Δ = [δ0, δ1, . . .]. 

refined as C = �C + Δ. 

An object �C is 

κ The coefficient applied to the 1-ring of details to compute the Loop 

refinement vector δ. 

µ The scaling factor applied to a refinement vector δ under a partial 

φk 
i (x) 

Φk(x) 

ψk 
i (x) 

Ψk(x) 

refinement strategy. 

Wavelets, which define the basis functions of W k . 

The set of all wavelets of W k . 

Scaling functions, which define the basis functions of function space V k . 

The set of all scaling functions of V k . 



Appendix B 

System Interface 

B.1 Cubic B-Spline Curves & Patches 

A curve editing application was written to generate results for the cubic B-spline 

multiresolution system described in Chapter 4. Figure B.1 shows the main window 

of this application. 

The editing area of the application is where users can manipulate vertices of the 

curve. Vertices are selected by clicking with the left mouse button, and moved by 

dragging them. Vertices can be deleted by right-clicking on them. 

To increase the resolution of the curve by via subdivision, the user can click the 

Subdivide button. If there are any details available, they will be used to reconstruct 

high-frequency information. 

The resolution of a curve can be reduced at any time by decomposing; this is ac

complished by clicking the Decompose button. When decomposing, the application 

will also compute and store details in place of vertices that are removed during de

composition. The details allow for full reconstruction of the high-resolution features 

after any editing is done at the coarse level. 

The filter selection box allows users to easily toggle between several filters: the 

trial filter (Eqn. 4.8), the W7 filter (Eqn. 4.26), the W11 filter (Eqn. 4.27), and the 

comparison filters of Samavati & Bartels [35]. 

Curves created in this application can be saved to disk in a proprietary curve 
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Figure B.1: The main window of the cubic B-spline curve editor. 

format, and later be loaded back into the application for decomposition or further 

editing. 

An extension of this application was also written to allow the creation and editing 

of 2D subdivision patches. The interface for the 2D program is similar. 

B.2 Loop & Catmull-Clark Surfaces 

To test the Loop and Catmull-Clark multiresolution systems described in Chapters 5 

and 6, a mesh editing application was written. Mesh editing is an intensely complex 

task, so the editing options and capabilities of our system are fairly limited. 
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Figure B.2: System window. 

The main application window is shown in Fig. B.2. On the left pane, there is 

a set of interface items for controlling the behavior of the underlying MR systems, 

while the right side of the window is dedicated to rendering the mesh and the editing 

interface. 

There are four rendering options available to the user. The traditional rendering 

mode is wireframe, in which only the edge connections between vertices are rendered; 

the faces are transparent. For larger models, a wireframe rendering is indecipherable 

because of the sheer number of edges being rendered. The outline mode alleviates 

this issue by rendering only lines that would be visible with opaque faces. Flat 
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Figure B.3: Four different rendering modes are available: wireframe, outline, flat 
shaded, and smooth shaded. 

shading is a traditional mode for visualizing the face structure of a mesh while at 

the same time conveying some color and material properties. Finally, smooth shading 

is a visually pleasing output that smoothly interpolates the material across each face. 

Figure ?? illustrates each of these modes. 

The user can dynamically switch between each MR system with the scheme selec

tion tool (Fig B.4). The default scheme is Catmull-Clark, but Loop and LQS Loop 

(an implementation of Li et al. [31] are also available. When a new scheme is selected, 

the currently loaded mesh is tested for compatibility by the scheme and adjusted ac

cordingly. For example, Loop subdivision only operates on triangle meshes, so the 

Loop schemes will convert any non-triangle faces in the active mesh to triangles. 

Regardless of which subdivision scheme is active, there are some common options 

available (Fig B.5). If the Linear checkbox is enabled, then subdivision will only split 
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Figure B.4: Three multiresolution schemes were implemented: Catmull-Clark, 
(Chapter 6), Loop (Chapter 5), and LQS Loop (from Li et al. [31]). 

Figure B.5: Several options are available to control the behavior of each multireso
lution system. 

the faces; even vertices will not be displaced, and edge/face vertices will be simple 

linear averages. When the Sharp features option is enabled, the application will 

automatically identify edges that lie between faces that belong to different groups, 

and tag the edge and corresponding vertices as being sharp features; this means 

that they will be subdivided with boundary masks rather than regular masks. The 

Refine option, and the Partial sub-option, determines whether the refinement step 

will be applied during decomposition. Finally, the Details option dictates whether 

the application should use computed details during subdivision to reconstruct the 

high-frequency information; the sub-option Local frame controls whether the detail 

terms are represented in a global or local coordinate frame (local frames generally 

provide more intuitive editing results). 

The editing area of the application allows a mesh to be interactively manipu

lated in some basic ways. Using the mouse, a user can select multiple vertices and 
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then apply affine transformations to them. There are three basic editing operations 

available: translation, scaling, and rotation. Figure B.6 illustrates the translation 

interface. When a vertex is selected, the vertex can be translated by holding the G 

key and dragging the mouse; the selected vertices will be displaced within a plane 

that is perpendicular to the view direction, as determined by the mesh’s rotation 

quaternion. 

The scaling operation is performed similarly. By holding the S key and dragging 

the mouse, the selected vertices are uniformly scaled about the user-defined origin. A 

helpful interface is displayed to indicate the amount of scaling that is being applied, 

as shown in Fig. B.7. The black box shows the initial position (scaling by 1.0), and 

the yellow box indicates the amount of scaling being applied. The results are also 

previewed while the mouse button is held down, and then applied when the button 

is released. 

A vertex selection can be rotated about an arbitrary axis and origin by holding 

the R key and dragging the mouse. The axis of rotation is defined to be pointing 

into the screen, and is computed by rotating the z axis by the inverse of the mesh’s 

quaternion. The origin of rotation is defined by the user. Figure B.8 illustrates the 

rotation operation, including the user interface that is displayed while the user is 

rotating. 
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Figure B.6: Editing by translation: the selected vertices are moved in a plane per
pendicular to the camera direction. 

Figure B.7: Scaling: the selected vertices are scaled uniformly about a user-defined

origin point. A visual guide is shown to indicate the amount of scaling being applied.
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Figure B.8: When rotating, the selected vertices are rotated about an axis pointing 
out of the screen, centered at the user-defined origin point. A helpful user interface 
helps the user to control the amount of rotation. 



Appendix C 

Implementation Details 

C.1 Cubic B-Spline Curves & Patches 

The application described in Sec. B.1 was implemented in C++, using OpenGL for 

rendering duties. 

Because of the simple nature of subdivision curves, built-in types were used as 

the data structures in the application. A standard template library (STL) vector was 

used to model both the curve and the details. The only difficulty in this approach 

is ensuring that the indexing is correct. 

A subdivision patch editor was created later on to test the filters on more complex 

objects. This application was written in the Python programming language, with 

OpenGL again providing the rendering functionality. 

C.2 Loop & Catmull-Clark Surfaces 

The application described in Sec. B.2 was implemented in the C# programming lan

guage, with rendering duties handled by Microsoft DirectX. Version 2.0 of the .NET 

programming environment was used, mainly because the introduction of generics 

(equivalent to templates in C++) allowed some data structures to be implemented 

more naturally. 

The class structure of the application is discussed in Sec. C.2.1, while Sec. C.2.2 
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describes the mesh data structure in depth. Finally, Sec. C.2.3 considers the impor

tant problem of mesh tagging. 

C.2.1 Class Structure 

The application was designed with extensibility in mind. Whenever possible, func

tionality was abstracted into a base class and then implemented explicitly in a child 

class. Figure C.1 shows the main classes and the relationships between them. 

The top-level class that the user interface interacts with is the MRObject class. 

An MRObject exposes a simple interface, IMeshInterface, which defines a set of 

fundamental operations: Open, Save, Render, Refine (subdivide or reconstruct), and 

Coarsen (decompose). 

An MRObject instance contains many other classes to facilitate all of this func

tionality. Of primary importance to the material in this thesis is the MRMesh 

class. An MRObject is comprised of zero or more MRMeshes (the pieces). This 

encapsulation was imposed to gracefully handle objects that have independent sets 

of faces and vertices. For instance, a car model might model the wheels as toruses 

that are not connected in any way to the body of the vehicle. If each independent 

set of faces is treated as a complete mesh, then it can be subdivided and decomposed 

independent of the rest of the object. 

The MRMesh class is where the actual mesh data – vertices, faces, edges, ma

terials, and so on – is stored. Each MRMesh is capable of rendering itself, so the 

parent MRObject’s render method simply calls the render method of each MRMesh 

piece. The geometric information stored in a half-edge data structure (Sec. C.2.2). 

In brief, each MRMeshFace and MRMeshVertex has a reference to a MRMesh
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Figure C.1: Class diagram.
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HalfEdge, from which the vertices in the face and the neighborhood of a vertex can 

be easily traversed. The faces are separated into MRMeshFaceGroups; usually, 

faces are grouped according to material type. The vertices are stored in a simple 

List data structure, while the half-edges are stored in a MRMeshHalfEdgeArray 

that encapsulates some hashing functionality. 

To facilitate editing operations, each MRMesh contains an MRMeshEditVer

texArray. Each MRMeshEditVertex is initialized to the position of its associ

ated vertex, and when a user applies an editing operation an intermediate position is 

created. The MRMeshEditVertexArray class wraps up a collection of MRMeshEd

itVertexes and then exposes some methods for applying editing operations, such as 

translation, scaling, and rotation. 

Finally, an MRMesh contains an array of MRMeshDetailLevels. As the name 

implies, each MRMeshDetailLevel represents the details from a particular level of 

the mesh hierarchy. Details are stored and looked up via a hashing algorithm 

based on the surrounding coarse vertices, which are represented by an instance of 

MRMeshVertexTuple. More specifically, an edge detail for edge < v1, v2 > is 

hashed by creating a consistent hash value from the sorted tuple (v1, v2); for a face 

detail, a hash value is created from a tuple made up of vertices in the face. 

An MRMesh can be subdivided/reconstructed or decomposed by passing it an 

instance of the MRPrimalScheme class; an MRObject contains a list of avail

able subdivision schemes from which the user can choose. CatmullClarkScheme, 

LoopScheme, and LQSLoopScheme are all instance of MRPrimalScheme. 

To have a consistent MR interface and allow for easy swapping between differ

ent schemes, each instance of MRPrimalScheme must override the virtual methods 
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defined in MRPrimalScheme. For subdivision, there are the SubdivideVertex, Subdi

videFace, SubdivideEdge, and SubdivideSplitFace methods. The former three meth

ods apply the subdivision mask to each vertex, edge, and face (if applicable), while 

the latter method is responsible for creating the new face structure. As well, there 

is a SubdivideUnrefineVertex; as the name indicates, this method should compute 

and subtract a vertex’s refinement vector. 

For decomposition, MRPrimalScheme defines four virtual functions. Decompose-

TagVertices is responsible for partitioning a mesh into even and odd vertices, if 

possible. DecomposeCoarsenVertices replaces even vertices with coarse approxima

tions, and odd vertices with details. DecomposeMergeFaces computes the coarse 

face structure, while DecomposeRefineVertex computes and applies the per-vertex 

refinement. 

To facilitate these subdivision operations, each face, vertex, and edge has some 

additional data elements for storing intermediate data; because the subdivision masks 

rely on the original positions of vertices, subdivision cannot be done in place. Each 

vertex, edge, and face has a SplitVertex that represents the location of the associ

ated vertex after subdivision. Additionally, each face has a set of SplitFaces, which 

represents the new faces that result from splitting the original face. 

The final noteworthy class is the MRMeshLoader class. Each instance of this 

class must implement Read and Write methods, and also state which file types it 

is able to process. For example, a loader for the Wavefront OBJ file type would 

list “obj” as its PrimaryExtension, and could possibly claim to be compatible with 

“mtl” files (OBJ material files). 

The MRObject class contains a list of MRMeshLoader instances. When a user 
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Figure C.2: The half-edge data structure. Each edge is split into two half-edges. A 
half-edge (red) stores pointers (green) to the next half-edge in the face, the opposite 
half-edge, and optionally to the previous half-edge. Each vertex (yellow) contains 
a pointer to some half-edge rooted at it. A face (blue) also requires only a single 
pointer to a half-edge in the face. 

requests a particular file to be loaded, the MRObject will check each registered 

MRMeshLoader for compatibility with the file’s extension; if a compatible loader is 

found, it is given the opportunity to load the file. 

C.2.2 Half-Edge Data Structure 

The main challenge in implementing a mesh-based MR system is in choosing a ro

bust data structure. A common mesh data structure is the half-edge structure [24], 

illustrated in Fig. C.2. 

In the half-edge structure, most of the connectivity information in a mesh is 

represented by edges. Each edge in a mesh is split into two directed edges, each of 

which contains a reference to the other as its opposite half-edge. Edges are related to 

the mesh’s face structure: each edge (except boundary edges) is shared by two faces. 

Therefore, each half-edge is associated with exactly one face (the adjacent face), and 
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contains a reference to it. Each half-edge is also “rooted” at exactly one vertex (the 

root vertex ) in the mesh and contains a reference to it as well. Finally, for rendering 

and subdividing a mesh there needs to be some way to traverse from vertex to vertex 

or around a face. To facilitate this, each half-edge contains a pointer to the next and 

previous half-edge in the associated face. 

The geometric information is represented by a vertex structure, where a vertex 

v contains a position p, a normal n, and a pointer to one of the half-edges, h, 

rooted at it. For subdivision and multiresolution applications, a vertex’s 1-ring must 

often be traversed. This is easily accomplished in a half-edge structure. As Fig. C.3 

illustrates, the opposite and next pointers of a half-edge can be used to walk around 

a vertex neighborhood. If h is rooted at v, then the neighbor along that edge is given 

by h->next->vertex. To traverse the vertex’s entire neighborhood, the half-edge can 

be updated as h h->opposite->next.← 

Traversing a face is even simpler than a vertex neighborhood traversal. Starting 

from the face’s half-edge, h, a face can be traversed by following the next pointers 

until the h is reached again. Figure C.4 illustrates the face traversal process. 

C.2.3 Semi-Regular Mesh Tagging 

Before a mesh can be decomposed, it must be partitioned into sets of even and odd 

vertices. The reasons are twofold. First, if the partitioning process fails, then the 

mesh must not have the proper semi-regular connectivity. Second, if the partitioning 

succeeds, then the MR system must know which vertices to replace with coarse 

approximations, and which to replace with details. 

This process is called mesh tagging, and is a process applied before decomposition. 
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Figure C.3: Vertex traversal in a half-edge structure: starting from any half-edge h 
rooted at v, the neighbor vertex is given by h->next->vertex. To get to the next 
neighbor, h can be replaced by h->opposite->next. 

Figure C.4: A face can be traversed starting from h by following the next pointers 
until h is reached again. 



�

174 

Mesh tagging is essentially a graph traversal process that is initialized with a known 

vertex type. Then, the structure of the subdivision scheme in question determines 

what the neighborhood of the active vertex should consist of. 

The necessity of mesh tagging underscores the need to represent an object as a 

set of independent meshes: if any vertex is unreachable from the initial vertex by a 

traversal procedure, then that vertex cannot be tagged and will not be known to the 

decomposition procedure. 

If a mesh does not have subdivision connectivity, a remeshing process such as 

those discussed in Sec. 2.3.1 could be employed first. 

Loop Meshes 

In a Loop surface, there are two types of vertices: even vertices v correspond to 

vertices in the coarse mesh, and odd vertices e correspond to edges at the coarse 

level. By the face-splitting structure of Loop subdivision, every neighbor of an even 

vertex is an odd vertex. Every odd vertex has exactly six neighbors: the original 

endpoints of the edge, which are even, and two odd neighbors between them, forming 

a sequence of neighbors v-e-e-v-e-e. 

To tag the vertices in a Loop mesh, the algorithm should be initialized with an 

even vertex. Fortunately such a vertex is easy to find except in pathological cases, 

because all odd vertices have a valence of six. Thus, any vertex with valence n = 6 

must be even. 

Figure C.5 illustrate the traversal algorithm. Starting at an even vertex (v), all 

neighbors can be tagged as odd (e). Then, in a breadth- or depth-first traversal, 

one of the tagged but unvisited vertices can be selected. It the selected vertex is 
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odd, then it must have been tagged by an even vertex, in which case the v-e-e-v-e-e 

sequence is easily determined. If the selected vertex is even, then all neighbors can 

be tagged as odd. The algorithm proceeds until all vertices have been tagged. 

Catmull-Clark Meshes 

To decompose a mesh that has Catmull-Clark connectivity, we must be able to 

distinguish the v-vertices from the f - and e-vertices. Starting from a known v-

vertex, we can use a breadth- or depth-first search to classify all remaining vertices 

by considering the vertex-edge structure of a mesh as a graph. 

Starting from the known (or assumed) v-vertex vroot, all neighbor vertices can be 

tagged as e-vertices and added to the graph as children of vroot. Then, selecting the 

next active vertex vactive by depth or breadth, the algorithm proceeds as follows: 

1. If vactive is an e-vertex: 

Starting from the parent node – a v-vertex – tag the remaining neighbors as 

f − v − f (if not previously tagged) and add the v-vertex neighbor as a child. 

2. If vactive is a v-vertex: 

Tag all untagged neighbors as e-vertices and add as children. 

This process is illustrated in Figure C.6. In (a), a portion of a mesh is shown, 

along with the starting vertex vroot. From vroot, all immediate neighbors are tagged 

as e-vertices and added to the graph, as in (b); the process continues in (c), where 

an e-vertex is chosen as vactive, and its neighbors are tagged as f − v − f . After the 

process completes, we get a complete tagging of all vertices, as shown in (d). 
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The tagging process should be seeded with a v-vertex. In most cases it is reason

able to assume that vertex 0 is a v-vertex and spread from there. Supposing that 

this assumption does not hold – i.e. that we attempt to start from a non-v-vertex – 

we will either encounter an inconsistency or find an equivalent tagging. 
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(a) (b)


(c) (d) 

Figure C.5: Vertex tagging for Loop surfaces: (a) The algorithm is initialized with 
a known v-vertex (or a guess); (b) each neighbor of a v-vertex is an edge vertex; (c) 
each edge vertex has six neighbors, in the sequence v-e-e-v-e-e; (d) a correct tagging 
is reached after visiting all vertices. 
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(a) (b)


(c) (d) 

Figure C.6: Vertex tagging precedes decomposition: (a) The algorithm is initialized 
with a known v-vertex (or a guess); (b) each neighbor of a v-vertex is an edge vertex; 
(c) each edge vertex has four neighbors, in the sequence v-f-v-f ; (d) after visiting all 
vertices, we have a correct tagging. 


