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ABSTRACT 

Well log measurements and 3C-3D seismic data are integrated for rock property 

estimation using three methodologies: inversion. geostatistics, and multi-attribute 

analysis. The 3C-3D seismic data set and well logs are from the Blackfoot field. Alberta. 

Conventional model-based inversion is applied to the P-P data to estimate the acoustic 

impedance. 3-D converted-wave (P-S) inversion for shear velocity is developed that 
-n--..+nr 
LuillpUtL. 2 P-S wcightcd-stack fdl~.;icd by ioiivcnlional in;.ci;i~ii a:goi-;thm. Ail 

approximation formula for the incident angle in the P-S case has been derived and tested 

successfully versus ray-tracing. Geostatistical methods of kriging. cokriging, and 

stochastic simulation are used for sand-shale distribution mapping and time-to-depth 

conversion. Linear multi-regression and neural networks are used to derive a relationship 

between porosity logs and a set of seismic attributes. Porosity. sand percentage and sand 

thickness are used to generate a hydrocarbon volume map. 
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Chapter 1 

Introduction 

1.1 Introduction 

Mapping the physical properties of the subsurface is of key importance in the 

development of the hydrocarbon reservoirs. Those propenies, such as P-wave velocity. S- 

wave velocity, density, porosity, permeability and so on. can be measured directly at the 

well locations using well logging tools or core samples. However. the geological model 

developed by 3-D interpolation of those measurements often cannot meet the need of the 

development team. The reasons may include sparseness of the wells. their location. or the 

complexities of the geology. 

The 3-D seismic survey provides more complete coverage of the development area. 

However, the seismic data are band-limited and contaminated with noise and phase 

errors. 

The description and application of the methods for integration of both sources of 

information is the objective of this thesis. 

Post-stack seismic inversion methods (Russell, 1988) provide n picture of the acoustic 

impedance. Pre-stack (AVO) inversion techniques (Russell. 1988) attempt to determine 

the elastic properties of the subsurface. Both methods heavily rely on a theoretically 

derived relationship between the physical property and the seismic nmpli tude. 

However, the influence of some properties, such as porosity and permeability. on the 

propagating elastic waves is complex and non-unique. Therefore great difficulty can arise 

in the attempting to develop a theoretical model. To overcome this problem. we may use 

statistical methods to derive relationships based on a particular data set. In the sixties, the 

mining geologists started to explore the spatial correlation between measured ore 

locations. An interpolation method, called kriging, based on the spatial correlation was 

developed. The method has been extended to incorporate a second variable and the 

method of cokriging was born. The cokriging method is able to integrate the sparse well 



measurement and the dense seismic data to interpolate a desired rock property. Currently, 

the method is used widely for mapping of reservoir properties. 

Regression analysis is used routinely to derive porosity from acoustic impedance 

inversion. In this thesis, I go beyond the concept of simple cross plotting. I use linear 

multi-regression to derive a relationship between a particular measured property at the 
. . 

LVC!! lo~aiioiis and ;om; S C i S i i i i i  attributes. Ofiic ~ ~ u n d .  illis i*t2irllic)il~llip is rlppii~d iu ihr: 

seismic volume and a cube of the desired rock property is genernted. The new technology 

of artificial intelligence. or neural networks, is used to derive a non-linear relationship 

between the rock properties and the seismic attributes. 

The invention of the three-component (3-C) seismic measurement put new challenges in 

front of the geophysical research. A 3-D convened-wave (P-S) model-based inversion 

algorithm is developed and tested. A model-based conversion of P-S data to P-P time is 

described. 

1.2 Blackfoot 3C-3D data set 

I .2. I Geology of the Blackfoot @Id 

The Blackfoot field is located about 15 km southeast of the town of Strathmore. Alberta. 

Canada. in Township 73. Range 13.  A simplified chart of the stratigraphy of the study 

area is shown in Figure 1.1 (Miller. 1996). Within the study area, the Mannville Group 

unconformably overlies the Mississippian carbonates. The target rocks are incised. 

valley-fill sediments within the Glauconitic formation. Numerous Glauconitic incised 

valleys are presented in southern Alberta. The valleys are cut to varying depths through 

the underlying strata and thus their bases may be found directly over or within any one of 

the Ostracod, Sunburst. or Detrital formations. The Glauconitic member consists of very 

fine to medium gained quartz sandstone. The Ostracod beds underlying the Glauconitic 

are made up of brackish water shales. argillaceous. fossilli ferous limestones and thin 

quartz sandstones and siltstones. The thin. low velocity Bantry Shale member underlies 

the Ostracod but is not laterally persistent. The Sunburst member contains ribbon and 

sheet sandstones made up of sub-litharenites and quartzarenites. The Detrital formation 



has a highly heterogeneous lithology containing chert pebbles. lithic sandstone, siltstone 

and abundant shale. 

In the Blackfoot area, the Glauconitic sandstone is encountered at a depth of 

approximately 1550 m and the valley-fill sediments vary from 0 to over 35 m in 

thickness. It is subdivided into three units corresponding to three phases of valley incision 
-. but they are not presented everywhere. m e  iower and upper members are made up o i  

quartz sandstones with an average porosity of approximately 18%. while the middle 

member is tight lithic sandstone. The individual members range in thickness from 0 to 20 

m. Hydrocarbon reservoirs are found in structural and stratigraphic traps where porous 

channel sands pinch out against non-reservoir regional strata or low-porosi t y channel 

sediments. The primary hydrocarbon at the field is oil, although some gas may be 

encountered. 
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Figure 1. I: Stratigraphy chart of the Blackfoot area (from Miller. 1996). 

1.2.2 Acquisition and processing of the Blackfoot 3C-3D data set 

The design of the Blackfoot 3C-3D survey was in p u t  based on the results obtained from 

the 3C-ZD survey which was recorded in the area of the 3D survey in 1995 (Lawton et 

al.. 1996). The acquisition geometry was established in order to maintain the number of 

source points to less than 1400, and record an active patch of up to 700 gophones (2 LOO 

channels). The acquisition parameters used in the final design were: 

Sozi rce parameters: 

Line orientation: north-south 

Source interval: 60 m. 

Source line interval: 210 m. 



Number of source lines 24 

Total number of source points: 1395 

Receiver paranzeters: 

Line orientation: east - west 

Receiver interval: 60 m. 

I ) f i e - ; \ ~ m r  I;no ;m*nmr3]: 3 C C  m 
L.L.bCI . L L  L I L L C .  L I L L C I  . -ad (G!ati~mitic) 

495 m. (Beaverhill Lake) 

Number of receiver lines: 18 

Total number of receivers: 903 

An additional benetit of this geometry was that i t  provided smooth asymptotic fold for P- 

S data using the standard 30 x 30 m bin dimensions. with an average fold of 36 at the 

Glauconitic level. 

The recorded 3C-3D seismic data were processed by the CREWES Project. University of 

Calgary (Lu and Margrave. 1998). The seismic processing software package "ProMAX" 

was used for data processing. The shot gathers were separated into vertical. north (Hz). 

and east ( H l )  components. Deconvolution tests were performed including spiking 

deconvolution and surface consistent deconvolution with different operator lengths and 

pre-whitening parameters. Processing with or without refraction static correction and 

with or without spectral whitening were also tested. After evaluation. the chosen 

processing flow for the vertical component is as follows: 

SEG-D FORMATTED DEMULTIPLEX INPUT 
3D GEOMETRY A S S I G W N T  

TRACE EDITS 
TRUE AMPLITUDE RECOVARY 

SURACE CONSISTENT DECONVOLUTION 
TIME VARIANT SPECTRAL WHITENINIG 

ELEVATION AND REFRACTION STATIC CORRECTION 
VELOCITY ANALYSIS 

RESUDIAL SURFACE CONSISTENT STATICS 
NORMAL MOIEOUT 
FRONT END MUTING 

CDP STACK 
A 
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TIME VARIANT SPECTRAL WHITENTNG 
TRACE EQUALIZATION 
F-XY DECONVOLUTION 

3D PHASE-SHIFT MIGRATION 

Velocity analysis was performed using a grid of 600 rn by 600 m. Phase-shift 3D 

migration with LOO % stacking velocities was applied. 

The processing flow for the radial component is as follows: 

SEG-D FORMATTED DEMULTIPLEX INPUT 
COMPONENT SEPARATION 

3D GEOMETRY ASSIGNMENT 
TRACE EDITS 

ASYMPTOTIC BINNING 
SURFACE CONSISTENT DECONVOLUTION 

TIME VARIANT SPECTRAL WHITENING 
ELEVATION STATICS 

APPLY FINAL REFRACTION AND RESIDUAL STATICS FROM P-P 
CONSTRUCT INITIAL P-SV VELOCITY FROM FINAL P-P VELOCITY 

VELOCITY ANALYSIS 
RECElVER RESIDUAL STATICS (HAND STATICS) 

VELOCITY ANALYSIS 
CONVENTIONAL RESIDUAL STATICS 

VELOCITY ANALYS IS 
NORMAL MOVEOUT 
ACP TRIM STATICS 

FRONT END MUTING 
ACP STACK (DEPTH-VARIANT STACK AND DM0 STACK) 

TIME VARIANT SPECTRAL WHITENING 
TRACE EQUALIZATION 
F-XY DECONVOLUTION 

3D PHASE-SHIFT MIGRATION 
i 

The conversion point binning was performed by the approximate binning method 

(Hanison, 1992), using an average VpNs. The same VpNs was used to construct the 

initial P-S stacking velocity. Velocity analysis was performed using a grid of 600 rn by 

300 m. After stacking, VpNs  for different time windows was extracted. 



1.3 Hardware and software used 

The work presented in this thesis was created on a Slln Microsystems network operated 

by the CREWES Project of the Department of Geology and Geophysics at the University 

of Calgary. The well log data were stored using Geovielv from Hampson-Russell 

Software Ltd. The well logs were edited using Matlab. The P-P inversion was performed 

iisi fig Si i i~ i i i  fiaiii 1 I~ ips~f i -Ri issc l l  S i i f t ~ i i i ~  Lid. The P-S i f i v s i ~ i ~ i i  algoiithm x a s  

coded using the 'trice math' option in Pro3D software package from Hampson-Russell 

Software Ltd. The geostatistical analysis was performed using Grostot package and the 

well log prediction was done using Enlrr,pe from Hampson-Russell Software Ltd. The 

images in  this thesis were screen captured using XV. 1Micrusofi Word was used for word 

and image processing and thesis assembly. 



Chapter 2 

P-P and P-S inversion of the Blackfoot 3C-3D data set 

2.1 Introduction 

Seismic inversion can be described as 'a procedure for obtaining models which 

adequately describe a data set' (Treitel et al.. 1988). In the case of seismic exploration. 

our recorded seismic traces show the effects of the rock physical properties on elastic 

waves propagating through the earth. The inversion process allows us to estimate these 

physical properties and so is of great interest to a geophysicist. 

The inversion process often relies on forward modeling, which uses a mathematical 

relationship to generate the earth's response for a given set of model parameters. For 

example, we can generate a synthetic seismogram using the elastic wave equation and a 

model containing the wave velocity and density parameters. The inversion process can be 

seen as a 'reverse' of the forward modeling: for a given data set. find a model. which 

reproduces the observations. 

We can denote the fonvard modeling process as n transformation: s = F(?r). where s is the 

model response. x is a vector containing model panmeten, and F is the mathematical 

transformation which describes the physical process. Then, the process of inversion can 

be written as: x' = F ' (~ ) ,  where x' is the set of estimated parameters derived from the 

data y and F' is the inverse transformation. 

However, there are some difficulties, which make the inversion a challenging task. First, 

we have to describe adequately the physical phenomena by the mathematical transform F. 

Even, if we do so. F' may not exist. Often, there is more than one solution to 

x*  = F ' ( ~ ) ,  i.e. the solution is not unique. Another problem arises from the fact that the 

geophysical recordings are inevitably corrupted by noise. Unfortunately, noise can cause 

wide variations or instabilities in estimates of the model parameters and can destroy 

solution validity. Despite these difficulties, inversion has been successfuIly used to 

extract information from geophysical data (Lindseth, 1979; Cooke and Schneider, 1983: 

Oldenburg et al., 1983). Lines and Treitel (1984) give an excellent tutorial of the least- 



squares inversion and its application. A comprehensive mathematical treatment of the 

problem can be found in Tarantola (1987). 

The new technology of multi-component (3-C or 4-C) seismic measurement put new 

challenges in front of the researchers: developing algorithms and software for converted- 

wave (P-S) inversion. The method is of great interest since the changes in the P-wave 

r n f l n ~ t ; . r ; t \ ,  h , r q r n  r r o 1 . n  3 r r r , + ;  1 r lnmnrrr lnrrmn r - r .  tLn ~ h n  r r r . 6  . .n nr..++ 
tbtt,h6, . tL, ,,, . , ,,al U L ~ ~ ~ , U L , ~ , ~  L~I ,  .tib& - sa, L v L!UL;L$ B j .  cofi:iaji, P-S 

reflectivity is more dependent on S-wave velocity. Stewart (l990) proposed a method for 

a joint P-P and P-S inversion based on the weighted-stacking technique. Vestrum and 

Stewart (1993) used synthetic data to show that the joint P-P and P-S inversion is 

effective in predicting the relative S-wave and P-wave velocities. Ferguson (1996) 

discusses the problem further and applies the method to the Blackfoot field data. 

In the current chapter. a model-based inversion is performed to the Blackfoot P-P data 

using the software package 'STRATA' from Hampson-Russell Software Ltd. A 3-D 

model-based P-S invenion algorithm for estimating shear velocity is developed and 

applied to the P-S data from the Blackfoot area. 

2.2 P-P inversion 

2.2.1 rkleth ods 

Suppose that we have some initial guess, or estimate, of the model, characterized by the 

reflection coefficients, i = 1. ..., N. We could then calculate the model trace, M, using 

the convolutional model: 

where r is the modeled earth reflectivity and w is the seismic wavelet. 

This model trace would differ from the recorded trace, T, for two reasons. First the 

reflectivity r' is different from the true value, r. and second, the recorded trace contains 

measurement noise. We may use least-squares optimization to find that value of r' which 

makes the difference between T and M as small as possible. We may define the error 

trace as Ei =Ti - M i ,  i = 1, ..., N. 



Assume that the correct reflectivity is written as r, = r', +Aq,  i = 1. ..., N. Then we wish 

to find the correction such that the squared error between the recorded trace and the final 

modeled trace is minimized: 

(2.2) 

There is one set of retlection coefficients which minimizes the error J. A 'non- 

uniqueness' comes from the fact that there may be some other combinations of reflection 

coefficients which produce models almost as good as the one derived. One way to 

distinguish between a set of possible solutions is to use a constraint. which sets absolute 

boundaries on how Far the final answer may deviate from the initial guess. 

The discussed method is called 'constrained blocky inversion' in STRATA. Figure 2.1 

describes the full flowchart of the inversion process in  the pro, oram. 

synb etics extraction 

wdl log pick 
condation horizons 

I I 
build 

inlpedmce model 

blocky 
inversion 

acoustic 
impedance 

Figure 2.1: Post-stack inversion flowchart. 



2.2.2 inversion of the P-P Blackfoot seismic data 

The inversion algorithms require information about the seismic wavelet to perform 

inversion. In the frequency domain. the wavelet extraction problem consists of two parts: 

determine the amplitude spectrum 

determine the phase spectrum 

Deirrnlininy the phase spectrum is i h r  more uifficuit of the two pans and presents s 

major source of error in inversion. The extraction methods fall into three categories: 

a) deterministic 

The wavelet is measured directly. 

b) statistical 

The method estimates the wavelet from the seismic data alone. The method can not 

determine the phase spectrum reliably and must be supplied as a separate parameter. 

The amplitude spectrum is calculated as follows: 

- calculate the autocorrelation over a chosen window 

- calculate the amplitude spectrum of the autocorrelation 

- take the square root of the autocorrelation spectrum which approximates the 

amplitude spectrum of the wavelet 

- add the desired phase (zero. constant. minimum) 

- take the inverse FFT to produce the wavelet 

C )  using a well log 

The method combines the well log and seismic information. In theory. the method 

could provide exact phase infom~ation at the well locations. However, the method 

depends critically on the depth-to-time conversion and mis-ties degade the result 

significantly. 

The statistical wavelet extraction procedure was used to extract the wavelet with the 

following parameters (Figure 2.2): 

phase=O 

starttime=800ms 

end time = 1300 ms 



inline 70 to 120 

xline 110 to 140 

length 80 ms 

Once the wavelet is extracted, well log correlation is performed. For each well. the 

process involves a synthetic trace generation and its comparison to the real data trace. 

Stretching and squeezing is appiieri to aiipn the known events. Fisure 3.3 shows the 

correlated 08-08 well. 

The next step in the inversion process is to build an initial guess model by 3-D 

interpolation of the impedance logs (the multiplication of the sonic and density logs). 

Picked seismic horizons are used to introduce structural information in the interpolation. 

Figure 2.4 is a cross-section of the model so-built and Figure 2.5 is the average 

impedance from the model for the channel interval. 

The 'constrained blocky inversion' procedure is applied to the seismic data with the 

following parameters: 

maximum impedance change (deviation) from the model: 35% 

number of iterations: 10 

separate scaler for each trace 

Figure 2.6 is a cross-section of the inversion result and Figure 2.7 is the average 

impedance of the channel interval. The known sand channel (oil wells 01-08. 08-08, 09- 

08) correlates with low-impedance values. The shale-plugged channel (dry well 12- 16) is 

distinguished as high-i mpedance anomaly. The regional 09- 17 is located in a relatively 

low-impedance area, which means that the P-P inversion result may be ambiguous in 

discriminating the sand channel from the regional geology. 



Figure 2.2: Extracted zero-phase wavelet. 

- - - - - - - - - - - - - - - 

Figure 2.3: 08-08 well correlation. 



Figure 2.1: Cross-section of the initial impedance model derived by well log 

interpolation. 

Figure 2.5: Average impedance for the channel interval from the initial model derived by 

well log interpolation. 
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Figure 2.7: Inversion result, average impedance for the channel level. The oil wells are 

located in a low-impedance anomaly. 



2.3 P-S inversion for shear velocity 

2.3. I Methods 

2.3.1.1 P-S ~vig lz ted  stack 

The Zoeppritz equations (Aki and Richards, 1980) allow us to derive the exact plane 

wave amplitude of a reflected, converted S-wave from an incident P-wave as a function 

uf dnylz, but da riot gire US an ir~iuiiirc unclei-s~al~di[ly uT iluw iilir ampii iudcs  r.elaie iu iile 

various physical parameters. Aki and Richards (1980) approximate the equation 

assuming small changes in elastic properties across an interface (Figure 2.5): 

where: 

0 = (oi + €Ii-, )/ 2. cp = (cpi + q,,, )I 2 - average P and S angles across the interface 

u.P.p - average P-wave velocity. S-wave velocity. and density across the interface 

AP I p. Ap I p - relative changes in S-wave velocity and density 

P P-S P-P 

TS 

Figure 2.8: Incident P-wave partitioning at an interface. The reflected P-wave is denoted 

as P-P, the reflected S-wave as P-S, the transmitted P-wave as TP, and the transmitted S- 

wave as TS . 



Equation (2.3) can be cast as a least-squares problem and solved for APIP (Stewart. 

1990). The sum of the squares of the error at a single interface is: 

where R" is the recorded P-S reflectivity, R is the modeled P-S reflectivity and the 

sun~rniltion is over i h t  oCfscis in ii seismic gather. 

Equation 2.6 can be expanded: 

To find the value of APIP that minimizes the error function E, differentiate with respect to 

help: 

Solving for Afi/P: 

P-wave, S-wave and density models in P-S time are required to obtain the AP/P 

weighted-stack. 



2.3.1.2 Modeling 

To create the P-S weighted-stack, we need a geological model containing P-wave 

velocity, S-wave velocity, and density. The model, in P-S time, can be built in the 

following way: 

at the well locations. compute the P-S pseudo-velocity logs, defined by: 

P - S pseudo - velocity log = 2(V:,P:;, J 
where Vp and Vs are the measured P-wave and S-wave velocity logs 

using the computed P-S pseudo-velocity log convert the Vp, VS, and density logs into 

P-S time 

build 3-D Vp, VS, md density volumes in P-S time by 3-D interpolation 

2.3.1.3 D~ciclerlr cl~rgle approsirrtnriorl 

The Ap/p weighted-stack calculation requires knowledge of the incident angle at any 

particular interface (the reflection and transmission angles can be found using Snell's 

law). The incident angle can be found using ray tracing, but in a complex model. as the 

one discussed above. the required time may be large and thus unattractive. The problem 

can be solved by deriving an approximation for the incident angle as a function of the 

offset (Todorov and Stewart, 1998). 
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First. we can look at the approximation of the incident angle for the P-P case (Figure 2.9). 

-- - - 

Figure 2.9: The raypath of a P-P wave in a horizontally layered medium. 

The total two-way P-P travel time tpp is: 

From Snell's law. p = sinOi/ui (p-ray parameter) and since p = dt/dx at any point. the 

incident angle to the interface i can be written as: 

dt 
sin €Ii = a, - 

dx 

Substitute the two-way travel time in equation (2.1 1) and solve: 



Now let's look at the P-S case (Figure 2.10). 

Figure 2.10: The mypath of a P-S wave. 

From the P-P case. for the same incident angle: 

c ~ l * , ,  - - 2x,ui sin 8. = I 

At zero offset: 

where: SI, 8 - average P-wave and S-wave velocities. 

Furthermore, from Tatharn and McCormick (1991), we can convert the P-P offset, 

Xpp=2Xp. to P-S offset. X P S = X ~ X S :  

where g = 



And then, we write the approximation for the incident angle in the P-S case: 

sin 0. = 'gx PS ui 
r 

The angle goes into equation (2.9) to calculate the weights for the AP/P stack. 

Java 2 was used to write a computer program to compare estimated incidence angies 

using r ~ y  tracing (Snell's law) and equation 2.16. Figure 2.1 1 shows the result using P- 

wave and S-wave velocities at the 08-08 location and P-S offset of 1230 rn. 

Inc angle equation I 

Figure 

d e w  desres 

2.11: Incident angles computed using ray tracing and equation 



Now I will describe the P-S inversion flow. It begins with building the geological model 

in P-S time, containing P-wave, S-wave and density information for each seismic sample. 

Then using the model. we calculate the stacking weights for each NMO-corrected CCP 

oather and perform weighted stacking. The resulting AP/P volume can be inverted using 3 

any available P-P inversion routine to derive the shear velocity. Figure 2.17 shows the P- 
C : - r . - r n ; r r r  O-.r+-rho++ 
3 111 V L I 3 i U L L  L i U W L l l c l L L .  

Figure 2.12: Converted-wave (P-S) inversion flowchart. 
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2.3.2 Inversion of the P-S Blackfoot data set 

The S-wave velocity log has been measured at four well locations in the Blackfoot field: 

08-08, 12- 16. 09- 17, and 04- 16. Using equation (2.10) the P-S pseudo-velocity logs are 

computed for the later wells. Figure 2.13 shows the P-wave, S-wave, and computed P-S 

logs for 08-08 well. Note that the time on the right side is the P-S time derived from the 

P-s pscu~o-vc~oci~y log. 3-0 Q-...-... V ,  S-...-... rrarL. altu ..- J u ~ f i ~ i i ~  -I iiiodcli rire built i n  ?-S iimc 

by 3-D interpolation (Figures 3.11 - 2.16). The computed P-S velocity logs are used for 

the depth-time mapping. Using equation (2.16) the incident angles for ten P-S offsets 

intervals. from 670 m to 1930 m. are computed. Figure 2.17 is a cross-section from the 

angle's volume for an offset of 1230 m. Using equations (2.4) and (2.5) the required c- 

weights and d-weights are computed. Figures 2.15 and 1.19 show cross-sections from the 

volumes for the offset of 1230 m. The computed weights are applied to the models and 

the seismic data. and the weighted-stack volume is computed. A 180-degree phase shift 

(polarity reversal) is applied to the weighted-stack before the inversion algorithm. Figure 

2.20 is the derived weighted-stack from the NMO-corrected P-S CCP gathers. 

Using the already discussed model-based inversion technique for zero-offset P-P 

inversion. the S-wave velocity volume is generated. The previously bui It S-wave model 

in P-S time is used as an initial guess model (Figure 2.15). Figure 2.21 is a cross-section 

from the inverted volume. Figure 2.23 is an S-wave data slice at the channel level. 

As expected, the producing oil well, 08-08, is located in n high S-wave velocity anomaly. 

The regional well 09-17 is located in a low S-wave velocity anomaly, while shale- 

plugged 12- 16 has mid-range S-wave velocity. 



m h  mk mh 

Figure 2.13: P-S pseudo-veloci ty log. 

imo 

- .  - .- 4 .  - :.. - . .* -.- ,L - . -.-. - < ' -= ' :- . . .  . ' <  - .  - - .  -. - - - - . .  - . 
Figure 2.14: Cross-section of the P-wave velocity model in P-S time. 
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Figure 2.15: Cross-section of the S-wave velocity model in P-S time. 

Figure 2.16: Cross-section of the density model in P-S time. 
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Figure 2.19: Cross-section of the computed d-weights for an offset of 1230. 

corrected CCP P-S gathers. 
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Figure 2.21: Cross-section of the shear velocity volume from P-S inversion. The ellipse 

shows the channel location. 

Figure 2.22: Shear velocity at the channel level. 



2.4 Conclusions 

Model-based P-P inversion has been performed. The producing oil wells in the sand-fill 

channel correlate with a low-impedance anomaly (-9500 g/cc*rn/s), while the dry wells 

in the shale-plugged channel fall into high-impedance anomaly (-10500 g/cc*m/s). The 

inversion result can be used to discriminate the sand-fill from the shale-fill channel. 

differentiation of the sand-fill channel and the regional geology ambiguous. 

3-D convened-wave (P-S) inversion algorithm has been developed and applied to the 

Blackfoot data set. An approximation formula for the incident angle in the P-S case has 

been derived and used to compute the P-S weighted-stack. The approximation has been 

tested versus ray tracing using Snell's law. The difference between the tow methods falls 

within 1.5 degree. i.e. the approximation is appropriate for pr~ctical use. A conventional 

(P-P) inversion algorithm has been applied to the weighted-stack and shear (S-wave) 

velocity volume has been derived. The producing oil wells are located in a relatively high 

shear velocity anomaly (-2650 rnfs), while the dry and regional wells fall into lower 

shear velocity areas (-2000 - 2450 m/s). 



Chapter 3: 

Geostatistical integration of well logs and 3C-3D seismic data 

3.1 Introduction 

Predicting rock and reservoir properties is an essential task in today's hydrocarbon 

exploration and development. It is of crucial importance for estimating oil and gas 

reserves and planning future production operations. 

Geophysical measurements in the hydrocarbon exploration and development can be 

divided into two major categories: measurements at the well locations (log curves and 

core samples) and seismic data. Geological and reservoir models based on sparse well 

data depend heavily on the well locations. since large areas are not covered by any points. 

They can lead to poor estimation. especially in geologically complex areas. Unlike well 

log data, seismic data can provide good coverage of the exploration area but have 

limitations associated with noise, band-limited frequency. phase error. and lower venical 

resolution. 

Conventional methods for estimating rock and reservoir properties from seismic data rely 

on empirical or regression formulas. Such approaches treat the data as spatially 

independent observations and ignore the existence of spatial patterns. Geostatistical 

methods have the important ability to integrate different types of information into a 

consistent subsurface model. They provide improved reservoir description, considering 

the spatial correlation of the geophysical data, and add the ability to assess the 

uncertainty in the estimation process. 

Geostatistics was developed within the mineral industry to help with mineral reserve 

estimations. The South African mining engineer D. G. Krige used the probabilistic theory 

to improve the gold estimation. His ideas were developed further theoretically by the 

Georges Matherton, an engineer with Ecoles the Mines, who proposed a spatial 

interpolation method called kriging in honor of Dr. K r i p  (Matherton, 1963). The 

successful application in mining industry led to the introduction of the methods to 

hydrocarbon exploration. Doyen (1988) used the cokriging method to derive porosity. 



Hwang and McCorkindale (1994) used geostatistically derived average velocities for 

depth conversion. Gorell (1995) applied the geostatistical techniques to improve the 

reservoir description. Numerous geostatistical case studies have been published since 

then (Hirsche et al., 1996; Tonn, 1998). 

In this chapter, I review the basic geostatistical methods (kriging, cokriging, stochastic 

simc!~tions). Three r e d  &I!? exmples Frorr. the B!~cL.fcc?~ zrea XP nv-enr~d: Y ~ - ~ - ~ ~ ~ -  s ~ ~ d j ~ h l ! ~  

mapping, time-to-depth conversion. and thickness estimation. 

3.2 Geostatistical methods 

3.2.1 Basic statistical terns 

A discrete random variable, Z, is a variable that can take a series of outcomes 

(realizations) Zi , i = 1. .... N, with a given set of probability of occurence pi ,i = 1. .... N. 

The probability of occurence of N outcomes must satisfy the following conditions: 

pi 5 1. for all i = 1. .... N 

The expected value, E{Z}.  or mean m, of a random variable Z is defined as the 

probability - weighted sum of all possible occurrences: 

where E denotes the expectation operator. 

If each outcome is equally possible. pi = 1/N, the mean can be written as: 

The variance, $ ,of a random variable Z is defined as the expected squared deviation of 

Z about its mean: 
N 

~ a r { Z }  =a' = E((Z - m)'} = 2 (zi - m)' 
i = l  



If all the probabilities are equal, pi = l/N: 

1 " 
Var{Z) = -C (z i  - m)' 

N ;=, 

The variance is a characteristic of a spread of a distribution around its mean. 

The covariance, Cov{ X, Y ) ,  of two random variables, X and Y, is defined as: 

CGV(X, Y J = G,\\ = E((X - mn)(Y - iny); = E(XY;  - iiixiiiy (3.6 

where mx and my are the mean values of the two random variables. 

A covariance standardized to be dimensionless is called the correlation coefficient: 

The correlation coefficient is a measure of linear dependence between two random 

variables and is confined in the interval [- 1. 1 1. 

The variogam, yxu . is a measure of variability of two random variables. X and Y. and is 

defined as: 

t S 

The greater the variogam value the less related the two variables are. 

If we view some measured data points on a map. we can often see that low values tend to 

be near other low values and high values tend to be near other high values, i.e. there is an 

existing spatial continuity in the data set. Two data points close to each other are more 

likely to have similar values than two points that are far apart. The dissimilarity between 

all the data pairs can be expressed by the variograrn as a function of the distance h. often 

called offset or lag, between them: 

where N(h) is the number of all pairs separated by distance h. 



If two different properties have been measured. Z and Y, the measure of variability is the 

cross-variogram, defined by: 

The computation of the cross-variogram requires colIocated measurements of the two 

nrnn~rti P S ,  rA "r -. .A- 

In practice. we usually separate the data points into a number of offset bins and compute 

the variogram value in  each bin. In this case, h defines the offset to the center of the bin. 

The direct use of the variogram in a geostatistical technique can lead to some 

mathematical complications, for example singular matrices. multiple solutions. or 

negative mean-square errors (Isaaks and Strivastava, 1989). The vuiogram values are 

computed for all pairs of sample locations. but the geostatistical techniques require n 

variogram value between all the sampled locations and the locations we wish to estimate. 

Therefore. we require a variogram model which is a function of the offset h. The model 

cannot be an arbitrary function. it must obey certain rules (Istlaks and Strivastava. 1989). 

The model is defined by second-order stationarity (Wnckemagel. 1995): the expected 

value is a constant over the area and the variogram depends on the length. and the 

orientation of the offset h, but not on its position x. Figure 3.1 is a typical example of a 

computed (experimental) variogrm and a model (theoretical) variogram fit  to it. The 

offset distance at which the model 'flattens' off to a 'plateau' is called range. This value 

defines the distance at which the difference between the wells becomes random. i.e. they 

are not spatially related. The value of the 'plateau' is called the sill. Note that a non-zero 

value. called nugget, can be added to the model at zero offset. 



Range 
Figure 3.1: Experimental and theoretical variograms. 

Sill 

The most commonly used vilriogrurn models in practice are: 

Spherical. defined by: 

y(h) = ~ [ 1 . 5 ( h / a )  - ~ . j ( h / a ) ~ j ,  if h < a 

= C, i f h > a  

Exponential. defined by: 

y(h) = C[1 -exp(-hla)] 

Gaussian. defined by: 

y(h) = C[I - exp(-h / a)'] 

Power. defined by: 

y(h) = Ch" 

where a is the range, and C is the sill. 

The covariance function can be computed from the variogram (Journel, 1989): 

Cov(h) = y(=) - y(h) = Cov(0) - y(h) (3.15) 

where y(w) is the sill value and C(0) is the zero-offset covariance. 

3.2.3 Kriging 

Kriging is a basic statistical interpolation technique. The goal is to estimate a particular 

property zo* at an unmeasured location by a linearly weighted sum of the known 



(measured) values. A linear estimator. written as an equation for N known values zi , 

i=l ,..., N, is: 

The estimation error at each location is the difference between the estimated value. 20-. 

2nd the true x!ue, z,. The m e x  ~f the en=: distribution is ofizr, re fcmd :G as ;he Sas. ;\ 

reasonable goal for any estimation method is ro produce unbiased estimates, i.e the mean 

value of the estimation errors to be zero: 

where K is the number of estimated points. 

Unfortunately, we do not know the true values. The solution to this problem is to 

conceptualize the unknown values as the outcome of il random variable. For any point at 

which we attempt to estimate the unknown value. our model is a random function that 

consists of random variables. one for each of the sampled locations. Z,, i = l...N. and one 

for the point we are trying to estimate. &*: 

The estimation error is defined as the difference between the estimated 2' and the random 

variable Z modeling the true value. The estimator is unbaised if the expected value of the 

estimation error is zero: 

Using that the expected value is a linear operator (Joumel. 1989). we write: 



Clearly, the unbaised estimator can be achieved only if: 

Thus, the Unbiased Linear Estimator is written as: 
I V 

The kriging estimator is said to be 'best' because the knging weights are determined by 

the minimization of the error variance: 

Var(Z, - 2, } min (3.23) 

The set of weights that minimize the error variance under the constraint that they sum to 

one satisfies the following N + 1 equations (Isaaks and Srivostava. 1989): 

where: p - Lagrange parameter 

Cov{ } - covariance function 

The covariance values in the above equations are derived from the modeled variogram. 

The weights, which are solution of the above system (known as the ordinary kriging 

system) are used to compute the ordinary kriging estimate. Note that having the kriging 

weights. we can compute the actual minimum value of the error variance. 

In oil exploration, we often have two independent measurements: well log curves or core 

samples and a seismic data set. At the well locations we can measure directly the physical 

property of the subsurface, for example the acoustic and shear velocities, the density, the 

neutron porosity, etc. Using the kriging method, we can interpolate and map those 



measurements between the wells. However, we would like to include the seismic data 

into the mapping process since they may provide very good spatial coverage of the 

exploration area. 

The ordinary cokriging estimator zo* is written as: 

As in the kriging case, the estimator is unbiased if  the expected value of the estimation 

error is zero, i.e.: 

One way of guaranteeing unbiasedness is to ensure that the weights in the first term sum 

to I while those in the second term sum to 0 (Isaaks and Srivastava. 1989): 

It should be noted that other non-bias conditions are possible. 

The development of the cokriging system is similar to the development of the ordinary 

kriging system. The ordinary coknging system is derived by minimizing the estimation 

error variance (Isaaks and Srivastava, 1989): 



w i ~ o v { ~ i , ~ j } + ~ v , ~ o v { ~ , , ~ j } + p = ~ o v { ~ , , ~ J j  for j =  1 ..... M 
!=I 

To derive the required covariance values. we need three variogram models: well-to-we1 l. 

seismic-to-seismic, and well-to-seismic. 

The derived weights are used in the cokriging estimation. 

The kriging and coknging algorithms assume that the used data are stationary. If a trend 

is present in the data (the mean value varies in the area) it violates the condition under 

which geostatistics operates best. A possible solution to this problem follows (GEOSTAT 

documentation, 1999): 

divide the dense data into two components. trend and residual: 

remove the trend using linear relationship between the dense and sparse data sets 

perform cokriging with the residual data (assumed to be stationary) 

restore the trend 

Another possible way to integrate well and seismic data is calied kriging with external 

drift (GEOSTAT documentation, 1999). 

3.2.5 Stochastic simrrlation 

Stochastic simulation is a process of generating alternative. equally probable realizations 

of a random variable. The realizations are also called stochastic images. Different 

stochastic simulation algorithms have been developed, but the most used one in the 

geophysical practice is called Sequential Gaussian simulation. The Sequential Gaussian 

simulation is constrained in such a way that all realizations honor the measured data 

values at their locations. The generated stochastic images are called conditional. 



Conditional simulation is used to correct for the smoothing effect seen on the knging 

maps. The knging estimates are weighted moving averages of the original data and they 

have less spatial variability than the data. A smoothed map provided by the kriging is 

appropriate for showing global trends while conditionally simulated maps are more 

appropriate for studies that are sensitive to patterns of local variability (reservoir tlow 

simAu!z!ions for ex2mple). The prntess 3]~0 0cct;idt4s 2 mc3s.v- -< v~m-nv-+-~;mtw ahcut thn 
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generated spatial distribution. By creating a large number of simulation maps, we try to 

reproduce the probability distribution at each point of the grid. From these probability 

distributions, we derive probabilities associated with ranges of the estimated parameter. 

The main steps in the Sequential Gaussian simulation are: 

define a grid and insert the known data at there locations 

select a random point and estimate its value using kriging or cokriging 

the estimate consists of a value and a variance: assuming a Gaussian distribution 

around the estimated value, determine a new value for the point by a random number 

generator 

repeat the above steps for every point. treating the previously estimated ones as an 

exact ones, i.e. use them in the kriging (cokriging) estimation 

3.3 Sandfshale distribution mapping 

Gamma ray logs measure natural radioactivity in formation and because of that. they can 

be used for identifying different lithologies. Shale-free sandstones and carbonates have 

low concentration of radioactive material. and give a low gamma ray reading. In contrast. 

shales and clays show high gamma ray readings because of their high concentration of 

radioactive elements. Besides their use in identifying li thologies and correlating zones, 

gamma ray logs provide information for calculating the volume of shale in sandsones and 

carbonates. One such measure is the gamma ray index, defined by: 

GR,,, = 
GR,, -GR,, 

-GR,,', 

where: 



GRI, - gamma ray reading 

GRshalc - shale line (clean shale) 

GRUnd - sand line (clean sand) 

Using a sand line of 15 API and a shale line of 135 API the average gamma ray index is 

computed for the Channel - Mississippian interval (Table 3.1). 

I well I gamma m y  index I well / gamma ray index I 

.As expected. the prodwing oil wells (08-08. 09-08. etc.) have low gamma ray index 

values while the shale-plugged 17- 16 has the highest value. 

Through the analysis of isochron maps from multi-component seismic data. the Vp/Vs 

value can be computed (Garotta. 1987): 

01-08 

08-08 

09-08 

2/09-08 

1 1-08 

where: 

tpp - P-P isochron 

t p ~  - P-S isochron 

Figure 3.2 is the computed VpNs ratio map for the Top Channel - Wabamun interval in 

the Blackfoot area. It is assumed that the carbonates below the Missippian have a 

constant effect on the map. The low VpNs anomaly correlates with the producing oil 

wells. The cross plot of the gamma ray index versus derived Vp/Vs values shows high 

correlation of 0.94 (Figure 3.3). Figures 3.4 - 3.6 show the calculated experimental and 

Table 3.1: Average gamma ray index computed for the Channel - Mississippian interval. 

0.42 

0.39 

0.37 

0.36 

0.5 1 

16-08 0.42 

04-16 0.63 

05-16 0.6 1 

L2-16 0.64 

09-17 0.54 



fitted theoretical variograms. Table 3.2 contains the used parameters for the variogram 

modeling. The offset units are number of bins ( I  bin = 30 m). 

Table 3.1: Parameters used in the variogram modeling. 

tYPe 

range 

sill 

nugget 

Using the kriging and cokriging algorithms sandfshale distribution maps are generated 

(Figures 3.7 and 3.9). In both maps, a low shale content anomaly is visible and i t  

correlates well with the known sand channel. but the kriging result is considerably 

smoother. The absolute crrors from cross-validation tests for both methods are shown on 

Figures 3.8 and 3.10. Although the cokriging method shows similar errors we may argue 

that the cokriging result has higher spatial resolution. Ten Gaussian simulations are 

performed and Figure 3.11 shows one of the results. Figure 3.12 is a map of the average 

sandshale distribution values from the performed simulations. Figure 3.13 is a plot of the 

probability to find a gamma ray index less then 0.35, i.e. the probability of finding 

reasonably clean sand. The result clearly identifies the sand channel. 
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Figure 3.2: Input data: V p N s  map. Figure 3.3: Cross plot. gamma ray index vs 

VpNs. 
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Figure 3.4: Well-to-well variogrm. Figure 3.5: Seismic-to-seismic variogmm. 



Figure 3.6: Well-to-seismic variogram. Figure 3.7: Gamma ray index, knging 

result. 

Figure 3.8: Cross-validation, absolute error. Figure 3.9: Gamma ray index, cokriging 

result. 



Figure 3.10: Cross-validation, absolute Figure 3.1 1: Gamma ray index. simulation 

error. result. 

Figure 3.12: Gamma ray index. average of Figure 3.13: Probability of finding clean 

ten simulations. sand. 

3.4 Time-to-depth conversion 

Seismic data are recorded in time. To obtain a depth image of the earth subsurface, a 

correct velocity model is needed. It can be developed by interpolation of measured sonic 

logs, calculated from velocity analysis, or combining both sources. Well information is 



often sparse and interpolation does not reflect possible velocity variations in the regions 

between the wells. Developing a model from velocity analysis could be problematic due 

to the large number of variables that influence the velocity and structural complexity may 

add more difficulties. So, except for some simple cases. it is very difficult to derive the 

correct velocity solution and thus the subsurface depth image. The erron may result in 
. + . c r . .  . ,,,...,, rrr;spua;riChr;rl;, Ch I u~ur c W L ! ~  ur rrr;ac*l~uhii~ii sf pcitciitiii: iCiXr;cS. 

A possible solution to the problem is to integrate the known depths to a particular 

geological top (at the well locations), and the measured two-way traveltime to the 

corresponding horizon. 

Figure 3.15 is the P-P two-way traveltime of the Mannville event. Since the two-way 

traveltime is represented from the seismic processing datum at 1000 m.. ail true vertical 

depths to the Mannville top in the wells were adjusted to the datum (Figure 3-14): 

h, = h, + h, (3.3 1)  

where: 

h, - adjusted to the seismic processing datum depth 

h, - true vertical depth (tvd) to the Mannville 

h, - correction taking into account the difference between the seismic datum and the earth 

surface 

well 
seismic datum 

surface 

&IannvilIe 

Figure 3.14: Depth correction diagram, showing the relative position of the Mannville 

top, earth surface, and seismic datum. 



Table 3.3 shows the wells, used in the geostatistical analysis (column one). the measured 

true vertical depth to the Mannville top at the well locations (column two), the calculated 

correction (column three), and the corresponding adjusted depth (column four). 

well 

3 1-68 

08-08 

Figure 3.16 is a cross-plot of the Mannville P-P two-way traveltime versus the adjusted 

depth. The measure cross-correlation coefficient is 0.96. Since the seismic data contain a 

trend of decreasing values from east to west the trend is calculated (Figure 3.17) and 

removed from the data. Figures 3.18 - 3.10 show the calculated experimental and fitted 

theoretical variograrns. Table 3.4 contains the parameters used for the variogam 

modeling. 

14-03 

tvd depth 
t 4 -  4 
&+A+ 

143 1 

Table 3.3: Calculation of the adjusted Mannville depth. 
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Tabit: 3.4: Parameters used in  the variogram modeilng. 

range 

Using the cokriging method, a Mannville depth structure map is generated (Figure 3.2 1). 

The estimated depth decreases from west to east and has a value of 1505 - 15 10 meters in 

the productive area. A cross-validation test is performed and Figure 3.21 shows the 

calculated absolute error. Since a relatively small absolute error is achieved. the 

generated Mannville depth map can be considered a reliabie result. The use of cokriging 

method shows good performance and does not require a velocity model. Ten Gi~ussian 

simulations are performed. Figure 3.13 shows one of the generated maps and Figure 3.24 

is the average of the performed simulations. 
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Figure 3.15: Input data. Mannville two-way Figure 3.16: Cross plot. tvd depth vs two- 
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Figure 3.17: Computed trend. Figure 3. L8: Well-to-well variogrum. 

- -- 

Figure 3.19: Seismic-to-seismic variogram. Figure 3 20: Well-to-seismic variogrm. 



Figure 3.2 L : Mannville depth structure, 

cokriging result. 

Figure 3.22: Cross-validation, absolute 

error. 

Figure 3.23: Mannville depth structure. Figure 3.24: Mannville depth structure, 

simulation result. average of ten simulations. 

3.4 Thickness estimation 

The problem of thickness estimation is similar to that of time-to-depth conversion. The 

common approach requires the average velocity over the studied interval. The problems 

with obtaining a correct velocity model were already discussed. Another possible solution 



for obtaining isopach maps is to integrate in geostatistical fashion a seismic isochron map 

derived from the 3-D survey and the corresponding thickness estimated from well data. 

Figure 3.25 is a P-P isochron map from Mississippian to Mannville events. The thickness 

of the Mannville - Mississippian interval is calculated from well log data at various well 

locations (Table 3.5). 

Table 3.5: Thickness of the Mannville-Mississi ppisn interval. 

Figure 3.26 is a cross-plot of the isochron values versus calculated thickness at the well 

locations. The cross-correlation is 0.945. 

Due to difficulties to fit a model to the calculated well-to-well variogram points, only the 

seismic-to-seismic variogram is generated (Figure 3.27). Cokriging is performed 

assuming linear relationship between the well and seismic data. i.e. well-to-well and 

well-to-seismic variogarns are computed from the seismic-to-seismic variogaams based 

on that linear relationship. Figure 3.28 is the generated cokriging isopach map and figure 

3.29 is the absolute enor from the cross- validation test. Ten simulations are performed 

and Figure 3.30 is the average result. 
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Figure 3.25: Input data, Mlmnville- Figure 3.26: Cross-plot, isochron values vs 

Mississippian isochron map. thickness. 

Figure 3.27: Seismic-to-seismic variogram. Figure 3.28: Mannville-Mississippian 

isopach map, cokriging result. 



Figure 3.29: Cross-validation. absolute Figure 3.30: Mnnnville-Mississippian 

error. isopach map, average of ten simulations. 

3.5 Conclusions 

A brief review of the geostatistical methods has been given. Three real data examples 

from the Blackfoot area are shown. V p N s  map, derived from 3C-3D seismic 

measurements has been integrated with sand/shale values computed from gamma ray logs 

to generate a sand/shale distribution map. The low shale content anomaly on the 

cokriging map correlates with the producing oil wells. New prospect areas can be 

identified on the map. A picked seismic horizon, Mannville, has been converted to depth 

by cokriging with the corresponding geological depth. The time interval (isochron map) 

between two seismic horizons. Mannville and Mississippian, has been converted to depth 

interval (isopach map). The performed cross-validation tests show relatively low absolute 

errors, i.e. the geostatistical integration provides reliable pictures of the subsurface. 



Chapter 4: 

Well log estimates using elastic seismic attributes 

4.1 Introduction 

The derivation of reservoir and rock properties from seismic data is a major task in 

exploration geophysics. The complex response of the earth to the wave propagation 

makes this task difficult and challenging. Post-stack seismic inversion attempts to deduce 

the subsurface impedance. AVO inversion is used to derive elastic properties. However. 

those methods rely on theoretical relationships usually based upon some assumptions. A 

different approach is to use statistical. rather than deterministic method to derive the 

subsurface properties. Those methods are also known as data-driven methodologies 

(Schultz et a],, 1994). 

3-D seismic data are usually presented in a form of stacked volume. Taner et al. (1979) 

introduced the complex seismic trace and instantaneous attributes. Since then. seismic 

attribute technology has seen great interest and new seismic attributes are introduced 

routinely. Chen and Sidney (1997) give a good summary of the existing seismic 

attributes. However, the interpretation of the seismic attribute volumes is ambiguous and 

it is difficult to derive quantitative information from them. 

In this chapter, I present a method for deducing rock properties based on the integration 

of seismic attributes and measured well log curves (or core samples). The basic idea is to 

find a relationship between the measured rock properties and some seismic attributes at 

the well location. Once derived it can be applied to the seismic volume and a predicted 

log property volume is generated. The derived relationship can be linear (using linear 

multi-regression analysis) or non-linear (using neural networks). The reliability of the 

derived relationship is determined by cross-validation tests. The theoretical foundations 

of the methods are discussed and two real data examples are presented involving 

prediction of impedance and porosity logs. In the second example, attributes derived from 

converted (P-S) data are included in the prediction alongside rhe conventional P-P 

attributes. To do so, a model-based conversion of P-S data to P-P time is developed. 



4.2 Methods 

In general, the relationship between the log property and the seismic attributes (in time) 

can be written in  the following form: 

P(x. y, t) = F[At(x1 y, 0. A ~ x .  Y. t), ... .A~I(X. y. t)] (4.1) 

where: 

P(x, y. !) - !og property 2s 2 fnnction of spxe  2nd  cordi in.^!^^ x. ;., ! 

F[ ... ] - functional relationship 

Ai - seismic attributes from i = 1. ..., M at coordinates (x. y, t )  

42.1 Multi-regression analysis 

The functional relationship can be found using linear multi-regression analysis. For N 

measured log property values at a particular location at different times. we have: 

PI = W I A I I  + W2AZl + ... + W h t A ~ l I  + C 

P-, = W I A l l  + W2A11 + ... + W ~ I A ~ ~ ~  + C 

. . . 

PN = W I A I N  + bV2AZN + ... + WMAICIN + C  

where: 

Pj - well log values as function of time increment. j = 1, ..., N 

W, - unknown weights. i = 1. .... M 

Aij - attribute samples, i = I ,  .... M, number of attributes, j = 1, ..., N, number of time 

samples 

C - constant 

A more advanced approach is to use time convolution operators instead of single weight 

in  the regression analysis: 

P = W I * A l + W 2 * A z +  ...+ W b l * A h I + C  (4.3) 

where: 

Wi - convoIution operators (vectors), i = 1, ..., M 



If we have 3-point convolutional operator and two attributes (Figure 4. I), the j" sample is 

computed by the following equation (i=1,2): 

Pj = WI.-IAI ,~-I  + WI.OAI.~  + W I . I A I . ~ + ~  + W?,-IA?.~-I + W ~ , O A ~ , ~  + W ~ . I A Z . ~ + I  + C 

(4.4) 

well log attribute 1 attribute 2 
- well log sample 

II - seismic attribute samples 

Figure 4.1 : Using 3-point convolutional operator. 

In the case of L-point convolution operator, there are L.M unknown weights to be 

determined by minimizing the mean squared prediction error: 

A number of attributes have been used recently. So the question, "How many and which 

attributes to use?" is a major one. One may want to find the best attributes. K of them, out 

of the total M. One possible procedure is the exhaustive search, which means to try all 

possible K combinations from the M attributes. Then the combination with the lowest 

prediction error is selected. The problem with the method is computational time. which 

becomes unacceptably long for practical work. 

A much faster procedure is step-wise regression (Draper and Smith, 1981). The 

procedure can be described as follows: 

from all M attributes find the one with the smallest prediction error, i.e. the best 

attribute (A1 ) 



Find the best pair of attributes, assuming that the first attribute is A 1, i.e. { A l .  A?} 

find the best triplet of attributes assuming that the first two are A l ,  A2, i.e. { A l ,  A?. 

A3 1 
repeat until the best K attributes are found, i.e. ( A l .  A2, A3. .... AK} 

From a theoretical point of view. the combination of K+l attributes will have smaller 

pi-~dictiun e[Tur iilall [he m e  of K a~~ribulrs. The step-wise regression can teii us which 

are the best K attributes. but can not answer the question "How many attributes to use'?". 

i.e. the quantity of K. 

The process that may be used to determine the value of K is called cross-validution. In 

cross-validation analysis. we exclude a well from the regression analysis. compute the 

weights. and predict the values of the excluded well. Since we know the actual measured 

value of the well. we may compute the validation error between the real log and the 

predicted one: 

where: 

m - measured log samples 

p - predicted log samples 

N - number of samples 

We can repeat the process for all the wells used in the analysis and compute the avenge 

validation error Ev: 

where L is the number of the welIs. 

Now the procedure for determining the meaningful attributes for a particular length of the 

convolutional operator can be described: 

find the best single attribute and compute the validation error, VE(1) 

find the best pair of attributes and compute the validation error, VE(2) 



if VE(2) < VE(l), find the best tripled of attributes and compute the validation error. 

(m3) 

i f  VE(3) < VE(3), find the best four attributes and compute the validation error. VE4 

do so until VE(K+ 1) > VE(K) 

If VE(K+ 1) > VE(K), the K+l attribute introduces noise in the prediction process and the 

cumbinaiiun or the first K at~ributrs shouid be used in the prediction process. 

4.2.2 ~Verrral networks 

The discussed method can perform well if the functional relationship between the 

predicted log property and the seismic attribute is linear. In the case of a non-linear 

relationship, we may apply a non-linear transform prior to the least-squares optimization 

or we may use artificial neural networks (Haykin, 1994) as a prediction tool. 

In its most general form, an artificial neural network is a set of electronic components or 

computer program that is designed to model the way in which the brain is thought to 

perform. The brain has been described as a highly complex. nonlinear, and parallel 

information-processing system. The structural constituents of the brain are nerve cells 

called neurons, which are linked by a large number of connections called synapses. This 

complex system has the great ability to build up its own rules and store information 

through what we usually refer to as 'experience'. 

The neural network resembles the brain in two respects: 

knowledge is acquired by the network through a learning process: 

inter-neuron connection strengths known as synaptic weights are used to store the 

know ledge. 

The procedure used to perform the learning process is called a leaming algorithm. Its 

function is to modify the synaptic weights of the network in an orderly fashion to attain a 

desired design objective. 

Although neural networks are relatively new to the petroleum industry, their origins can 

be traced back to the 1940's, when psychologists began developing models of human 

learning. With the advent of the computer, researchers began to program neural network 



models to simulate the complex behavior of the brain. However, in 1969, Marvin Minsky 

proved that one-layer perceptrons, a simple neural network being studied at that time. are 

incapable of solving many simple problems. Optimism soared again in 1986 when 

Rumelhart and McClelIand published a two-volume book 'Parallel Distributed 

Processing'. The book presented the back-propagation algorithm. which has become one 

v h r r  r ,,,, most p o p u ! ~  !caming algorithms for :hc multi-laycr f;~df~r;iaid 7;i;iat i;;t~oik. 

Since then, the effort to develop and implement different architectures and learning 

algorithms has been enormous. In 1990. Donald Specht published the idea of the 

probabilistic neural network, which has its roots in the probability theory. The trend was 

picked up by research geophysicists and a number of successful applications were 

reported in the geophysical literature (Huang et al.. 1996: Todorov et al.. 1998). 

4.2.2.1 M~ii~il~rredjkec~onc~urd ~iertrui uenvork (IMLFN) 

Figure 4.2 shows schematically the basic neural network architecture of rnultilayered 

feedforward neural network. It consists of a set of neurons that are arranged into two or 

more layers. There is an input layer and an output layer, each containing at least one 

neuron. Between them there are one or more 'hidden' layers. The neurons are connected 

in the following fashion: inputs to neurons in each layer come from outputs of previous 

layer, and outputs from these neurons are passed to neurons in the next layer. Each 

connection represents a weight. In the example shown on Figure 4.2. we have four inputs 

(four seismic attribute samples: A l ,  A3, A3, AJ), one 'hidden layer' containing three 

neurons and an output neuron (the measured log sample). The number of connections is 

15, i.e. we have 15 weights. 
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Figure 4.2: Basic neural network architecture. 

A neuron is an information-processing unit that is fundamental to the operation of the 

neural network. Figure 4.3 shows the model of a neuron. We may identify three basic 

processes of the neuron model: 

each of the input signals x, is multiplied by the corresponding synaptic weight w, 

the weighted input signals are summed 

a nonlinear function. called the activation function. is applied to the sum 

Mathematically, the process is written as: 

n-l 

neur~n ' sou t~u t  = = f ( z x l w i  + w,,) 
I =0 

where: 

y - neuron output 

wi - connection synaptic weights. i = 1, .... n-l 

w, - constant called bias 

Xi - neuron inputs, i = 1, ..., n-1 

f - activation function 



Figure 4.3: Model of a neuron. 

input synaptic 
signals weights 

The activation Function defines the output of il neuron in terms of the activity level 

associated with its input. The sigmoid function is by Far the most common form of 

activation function used in the construction of artificial neural networks. It is defined as rr 

strictly increasing function that exhibits smoothness and asymptotic properties. An 

example of the sigmoid function is the logistic function. defined by: 

L 

The logistic function assumes a continuous range of values from 0 to 1. It is sometimes 

desirable to have the activation function mnge from - 1 to 1, in which case the activation 

function assumes anti-symmetric form with respect to the origin. An example is the 

hyperbolic tangent function, defined by: 

(4. LO) 

A neural network is completely defined by the number of layers. neurons in each layer. 

and the connection weights. The process of weight estimation is called training. 

During the process of training, the neural network builds a model by presenting 

examples. Each example consists of an input-output pair: an input signal and the 

corresponding desired response for the neural network. Thus, a set of examples represents 

the knowledge. For each example, we compare the outputs obtained by the network with 



the desired outputs. If y = [y,, yz, ...,y,] is a vector containing the outputs (note that p is 

the number of neurons in the output layer). and d = [dl, d2, .... d,] is a vector containing 

the desired response, we can compute the error for the example k: 

If r c  ha-cc ii cxamplcs. {bc {dial c m r  is: 

Obviously, our goal is to reduce the error. It can be done by updating the weights to 

minimize the error. Thus, in its basic form a neural network training algorithm is an 

optimization algorithm which minimizes the error with respect to the network weights. 

Masters ( 1995) combines conjugate-gradient algorithm with si mulnted annealing for 

search of the global minimum of the error function. 

As training canies on. the error based on the training data set gets smaller. Theoretically. 

given enough neurons and iterations, the error based on the training set will approach 

zero. However. this is undesirable since the neural net will be fitting random noise and 

some irrelevant details of the individual cases. This pitfull is called 'overfitting' or 

'overtraining'. The problem of 'overfitting' versus 'generalization' is similar to the one of 

fitting a function to known points and later use the function for prediction. If we use a 

high-enough-degree polynomial, we may fit the points exactly (Figure 4.4, the solid line). 

However, if we use a 'smoother' function. the prediction of the unknown points is better 

(Figure 4.4, the dashed line). 
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Figure 4.4: Overfitting versus generalization. The solid line fits the known points exactly. 

but the 'smoother' dashed line predicts the unknown points better. 

To overcome the problem. we can divide the data into two sets: training and testing. The 

tirst one is used to train the neural network and the second one to evaluate its 

performance. The training is performed in the following fashion: 

hidden neurons are added one at a time 

training is performed and tested 

construction is stopped when the correlation on the test data shows no further 

improvement 

During training the network builds a nonlinear mathematical model which later is applied 

to the seismic attributes to generate a predicted well log property cube. 

4.2.2.2 Probabilistic neural ~tenvork (PNN) 

The basic idea behind the general regression probabilistic neural network (Specht. 199 1: 

Masters, 1995) is to use a set of one or more measured values, called independent 

variables, to predict the value of a single dependent variable. The independent variable 

can be represented by a vector x = [xl, XZ, ..., xp], where p is the number of independent 

variables. The dependent variable, y, is a scalar. The inputs to the neural network are the 

independent variables, xi, xz, ..., xp, and the output is the dependent variable, y. The goal 



is to estimate the unknown dependent variable, y', at a location where the independent 

variables are known. This estimation is based on the fundamental equation of the general 

regression probabilistic neural network: 

where n is the number of examples and D(x, xi) is defined by: 

D(x, x,) is actually the scaled 'distance' between the point we are trying to estimate. x, and 

the training points, Xi. The 'distance' is scaled by the quantity 4, called the smoothing 

parameter, which may be different for each independent variable. 

The actual training of the neural network consists of determining the optimal set of 

smoothing parameters, a,. The criterion for optimization is minimization of the validation 

error. For the mth example, the prediction is: 

So the predicted value of the mth sample is y',. Since we know the actual value. y,, we 

can calculate the validation error: 

The total validation error for the n examples is: 

The validation error than is minimized with respect to the smoothing parameters using 

conjugate-gradient algorithm. 



4.3 Model-based conversion of P-S data to P-P time 

To simultaneously use the seismic attributes extracted from P-P and P-S data, we have to 

convert the P-S data to P-P time. The two-way, zero-offset P-S time tps to a particular 

depth z is: 

where Vp and is are the P-wave and S-wave average velocities. 

The depth z can be written as a function of the two-way. zero-offset P-P time tpp: 

Using equations (4.18) and (-1.19). we can write the two-way. zero-offset P-S time: 

Solving for tpp: 

The model-based conversion scheme is done in the following way: 

at the well locations compute the P-S pseudo-velocity logs (equation 2.10) 

using the computed P-S pseudo-velocity logs. convert the Vp and Vs logs into P-S 

time 

build a 3-D Vp and Vs model in P-S time by 3-D interpolation 

compute the P-P time for each P-S sample using equation (4.1 1)  

Note that the sampling rate in  the resulting seismic trace is not a constant due to varying 

V p O p  ratio (Figure 4.5). 
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Figure 4.5: Conversion of P-S data to P-P time. Note that the regularly sampled P-S 

seismic trace (a) (At - sampling rate) becomes an irregularly sampled trace in P-P time. 

The next step is to resample the convertrd-wave trace (now in P-P time) in a regularly 

sampled sequence with a constant sampling rate At. Let's compute the amplitude at the 

location nAt (Figure 4.6). We find the actual amplitude before and after this time. Ai and 

A;+, . and then we compute the amplitude at time location nAt by linear interpolation: 

(A,,, - A, X n ~ t  - PP, ) 
A,, = A, + 

PP,+, - PP, 

where PPi is the computed P-P time for the i-th P-S sample. 



Figure 4.6: Resampling the converted P-S data to regularly sampled P-P time. 

Using the previously described procedure. the Blilckfoot converted-wave (P-S) data 

volume (Figure 4.7) is converted to P-P time (Figure 1.8). 

P-S dPta h P-S trme 

Figure 4.7: Traces from the P-S data volume in P-S time. 
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Figure 4.8: Traces from the P-S data volume converted to P-P time. The shown horizons 

are picked on the P-P volume. 

4.4 Prediction of impedance logs 

In the following section, I present an example of predicting acoustic impedance logs in 

the Blackfoot area. The logs are computed by multiplying the measured sonic and density 

lop .  The first step is to convert the logs in depth to seismic time and resample them to 

the seismic sampling rate (2 ms). A number of seismic attributes are extracted from the 

seismic trace. However, because of the bandlimited nature of the seismic signal we need 

additional information for the low frequencies. The impedance model. built to perform 

the model-based inversion in chapter 2.  was filtered with high-cut frequency of 20 Hz 

and used as an additional attribute. Figure 4.9 shows the input data for the 08-08 well: the 

target acoustic impedance log, the seismic trace at the well location (from which the 

attributes are extracted), and the low-frequency model used as an attribute. The horizontal 

red lines show the chosen time window for the analysis, the Mannville to Mississippian 

levels. 



Figure 4.9: Input data for well 08-08. 

A1 together 13 wells and the corresponding seismic traces (extracted at the well locations) 

are used in the analysis. 

Table 4.1 shows the results of the performed step-wise regression using 9-point 

convolution operator. Note that the shown RMS error corresponds to a combination of 

the attribute with the ones above it. The 'Validation' column represents the cross- 

validation error. From a theoretical point of view, the error in the 'RMS error' column 

decrease as we add new attributes, but we see that by adding the fifth attribute, Average 

frequency, the validation error increases. So we choose to use the first four attributes in 

the prediction process. Figure 4.10 is graphical representation of the table 4.1. The lower 

black line is the error using all wells in the calculation and the upper red line is the 

validation error. 



Attribute 

I Amplitude weighted phase 1 916 1 965 1 

Integrated trace 

Low frequency model 20 Hz 

1 Instantaneous phase I 902 1 959 1 

RMS error 

(m/s).(g/cc) 

Validation 
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I 

Figure 4.10: Average error as a function of the number of seismic attributes. 

1077 

944 

Average frequency 

The two types of neural networks are trained using the same four attributes with a 9-point 

convolutional operator. MLFN prediction en-or is 846 m/s * g/cc and the validation error 

is 1273 m/s * gcc. The PNN shows superior results, i.e. lower prediction error of 607 m l s  

* g/cc and lower validation error of 934 m/s * gee. Figures 4.1 1 and 4.12 show the 

measured (in black) and the predicted (in red) impedance logs at 16-08 and 29-08 

locations. We see that the probabilistic neural network predicts the logs with higher 

accuracy. The multi-regression analysis predicted the logs with correlation 0.65 while the 

neural network predicted them with correlation 0.87. Figures 4.13 and 4.14 show the 

results from the validation analysis. 

1095 

975 

Table 4.1: Results from the step-wise regression. 

889 96 1 



Figure 4.1 1: Measured impedance logs (in 

black) and the predicted ones (in red) using 

multi-regression. The correlation is 0.65. 

Figure 4.12: Measured impedance logs (in 

black) and the predicted ones (in red) using 

neural network. The correlation is 0.87. 
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Figure 4.13: Validation result using multi- Figure I .  14: Validation result using neural 

regression. The correlation is 0.59. network. The correlation is 0.63. 

Once the relationship between the seismic attributes and the impedance logs has been 

determined, it is applied to the data volumes. Figures 4.15 and 4.16 show a cross-line 

from the predicted impedance cube. The measured impedance log at the 08-08 location is 

inserted. The sand channel is visible as a low impedance anomaly. Note the higher 

resolution achieved using the neural network. 
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Figure 4.15: Cross-line from the predicted impedance volume using multi-regression 

analysis. 
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Figure 4.16: Cross-line from the predicted impedance volume using neural network. 

Figures 4.17 and 4.18 are impedance data slices at the sand channel level. As in the 

conventional inversion, performed in chapter 2, the oil wells coincide with the low- 

impedance anomaly. The regional well 09-17 is similarly located in a low-impedance 

anomaly while the shale-fill channel has high impedance. 



Figure 1.17: Data slice at the channel level using multi-regression analysis. 



Figure 4.18: Data slice at the channel level using neural network. 

4.5 Prediction of porosity logs 

Porosity mapping is a major task in the exploration and development work. The second 

example in this chapter involves prediction of porosity logs simultaneously using 

attributes from P-P and P-S data. The calculation of the attributes for both data sets is the 

same; however, we have to convert the P-S data to P-P time. Figure 4.19 shows some of 

the input data: the measured porosity log, the P-S seismic trace, used to extract the P-S 

attributes, and some of the P-P attributes. Since the porosity is very often correlated with 

the impedance, the results from the model-based P-P and P-S inversions are used as 

additional attributes. 
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Figure 4.19: Input data. 

Table 4.1 shows the results of the step-wise regression performed using a 3-point 

convolution operator (similar to table 4.1). In the current example. we see that by adding 

the seventh attribute. Seismic amplitude of the P-P trace. the validation error increases. 

So we choose to use the first six attributes in the prediction process. Figure 4.20 is 

graphical representation of the table 4.2. The lower black line is the error using all wells 

in the calculation and the upper red line is the validation error. 

Table 4.2: Results from the step-wise regression. 

Validation 

% 

4.440 

4.40 1 
, 

4.396 

4.395 
* 

4.389 

4.347 

4.363 

Attribute 

Impedance from P-P inversion 

S-veloci ty from P-S inversion 

Integrated trace (P-P) 

Amplitude envelope (P-S)  

Integrated trace (P-S) 

Cosine instantaneous phase (P-S) 

Seismic amplitude (P-P) 

RMS error 

% 

4.377 

4.3 15 

4.256 

4.228 

4.192 

4.123 

4.086 
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Figure 4.20: Average error as a function of the number of attributes. 

As in the previous example. the two types of neural networks are trained using the same 

six attributes with 3-point convolutional operator. MLFN prediction error is 3.79 8 and 

the validation error is 4.65 %. The PNN shows superior results, i.e. lower prediction error 

of 2.15 % and lower validation error of 3.98 76. Figures 4.21 and 4.22 show the measured 

(in black) and the predicted (in red) porosity logs at 08-08 and 09-08 locations. Again. we 

can see that the neural network predicts the logs with higher accuracy. The multi- 

regression predicted the logs with correlation 0.77 while the neural network predicted 

them with correlation 0.95. Figures 4.23 and 4.24 show the results from the validation 

analysis. 



Figure 1.21: Measured porosity logs (in Figure 1.22: Measured porosity logs (in 

black) and the predicted ones (in red) using black) and the predicted ones (in red) using 

multi-regression. The correlation is 0.77. neural network. The correlation is 0.95. 
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Figure 4.23: Validation result using multi- Figure 4.24: Validation result using neural 

regression. The correlation is 0.74. network. The correlation is 0.79. 



Once the relationship between the seismic attributes and the porosity logs has been 

determined it  is applied to the data volumes. Figures 4.25 and 4.26 show a cross-line 

from the predicted porosity cube. The sand channel can be distinguished very well as a 

high porosity anomaly. Again, note the higher resolution achieved using the neural 

network. 

Figure 4.15: Cross-line from the predicted porosity cube using multi-regression analysis. 

Figure 4.26: Cross-line from the predicted porosity cube using neural network. 
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Figures 4.27 and 4.28 are porosity data slices at the sand channel level. The oil wells 

coincide with the high porosity anomaly. The result from the neural network prediction 

identifies the channel better. 

Figure 4.27: Porosity data slice at the channel level using multi-regression. 



Figure 4.28: Porosity data slice at the channel level using neural networks. 

4.6 Hydrocarbon reserves estimation 

By multiplying isopach values, sand percentage, and porosity we can estimate the sand 

pore volume within the channel interval. The isopach map for the Mannville - 

Mississippian interval has been generated in chapter three. Since the Mannville - 
Mississipian interval is relatively constant, subtracting a constant value of 120 m from the 

isopach map can give the Channel top - Mississippian isopach map. By multiplying the 

sand porosity column map by the oil saturation, we can generate an oil column map. 

Figure 4.29 is the estimated oil column map using oil saturation of 75%. The reservoir 

area is then multiplied with the oil column map to estimate the oil reserves. Assuming 

550 000 m' reservoir area with 3.3 m average oil thickness, the hydrocarbon reserves has 

been estimated at 11 340 000 barrels of oil. 



Figure 4.29: Oil column map. 

1.7 Conclusions 

Statistical methods have been applied successfuIly to estimate measured log properties 

from seismic attributes. Step-wise multi-regression analysis and cross-validation tests are 

used to determine the best attributes. Multi-regression analysis is used to find a linear 

relationship between the seismic attributes and the measured rock property at the well 

locations. A non-linear relationship is also derived using neural networks. The 

relationships are applied and a predicted rock property volume is generated. Cross- 

validation tests show the various levels of confidence in the prediction process. 

Two types of neural networks, feed-foward and probabilistic, have been tested. The 

following conclusions can be made: 

the probabilistic general regression neural network showed lowest validation error, 

i.e. gives better results 



due to the random number generator, used in the simulated annealing in the feed- 

forward neural network, training with identical parameters may produce different 

results 

the training process in PNN is reproducible 

the application of the probabilistic neural network to a large data set is slow 

Two real data examples have been presented. The prediction of impedance logs can be 

seen as a statistical algorithm for deriving the acoustic impedance of the subsurface. The 

derived result is similar to the traditional model-based inversion from Chapter 2 .  

However, no theoretical assumptions have been made (like the convolutional model for 

example). No wavelet estimation is required. which is a major problem in traditional 

inversion algorithms. 

Converted-wave (P-S) seismic attributes have been used simultaneously with P-P data to 

predict porosity. Although the best attribute to predict porosity is the acoustic impedance. 

four out of the best six attributes used are from P-S data. 

Using the derived impedance result. the discrimination of the sand channel from the 

regional stratigraphy is ambiguous. However, the predicted porosity volume. integrating 

P-P and P-S data clearly discriminate the sand channel from the shale-plugged channel. 

and the regional stratigraphy. 

By multiplying isopach values, sand percentage, porosity, and oil saturation. an oil 

column map has been generated and used to estimate the oil reserves in the field: 300 000 

barrels of oil. 



Chapter 5: 

Conclusions 

5.1 ConcIusions 

Integrating well log measurements and 3C-3D seismic data for improved description of 

the subsurlace hits bean described. Three different approaches have been discussed: 

inversion. geostatistics. and multi-attribute analysis. 

The goal of the post-stack, acoustic (P-P) invenion is to derive the acoustic impedance of 

the subsurface. The implementation of multi-component measurements leads to 

estimation of elastic properties. A flow for the inversion of 3-D converted-wave (P-S) 

data for shear velocity has been developed. It involves the computation of P-S weighted- 

stack from NMO-corrected CCP gathers followed by conventional inversion algorithm. 

An approximation formula for the incident angle in  the P-S case has been derived cmd 

used in the P-S weighted-stack. The P-P and P-S invenion techniques have been applied 

to the Blackfot 3C-3D data set. The producing oil sand correlates with low-impedance 

anomalies (-9500 dcc*m/s) Rom the P-P inversion while the shale-fill channel has 

higher impedance values (-10500 g/cc*m/s). However. some  relative!^ low-impedance 

areas fall in regional geology. which may lead to an ambiguous interpretation. The 

ambiguity may be resolved by using the result from the P-S inversion since the regional 

geology has lower shear velocity than the reservoir sands. 

3C-3D seismic measurements can be used to derive VpNs values, which are a 

lithological indicator. High-correlation (0.94) between the sand/shale and VpNs is found 

in the Blackfoot area. Geostatistics has been used to integrate the sparse sandlshale well 

measurements and the dense seismic data. As a result. a cokriging map of the sandfshale 

distribution has been generated with a relatively low absolute error. Geostatistical 

techniques have been used to perform depth-time conversion for the Mannville interval 

(-1490 - 1520 m) and thickness estimation for the Mannviile-Mississippian interval 

(-160- 190m). 



Statistical methods and artificial neural networks provide powerful tools for rock 

property estimation from seismic attributes. The theory and some practical consideration 

have been discussed. Examples of impedance prediction from P-P attributes and porosity 

prediction from both, P-P and P-S attributes, have been shown. The predicted impedance 

confirms the conclusions derived from the conventional inversion. The sand-channel is 

idc:,:ificd as high-pcrcsity mcm-ly ( -1S5) .  TLe -bi!ity of nezr,! netv:orGs !O find 2 ~ofi- 

linear relationship leads to lower prediction and validation errors compared with the 

linear-regression. 

Although the three methods have similar objectives. they differ in a very basic level. The 

conventional inversion methods are based on existing physical models, i.e. the fonvard 

problem has been solved (often with assumptions and approximations). The geostatistical 

and multi-attribute analysis are based on statistical relationships derived from the existing 

data sets. They do not require an a ptiori physical model. Geostatistical methods explore 

the spatial correlation of the data, i.e. they require a variogram function. In the multi- 

attribute analysis we use regression or neural network to determine the relationship. 

which is not spatially dependent (although X, Y coordinates may be used as attributes). 

Note that the statistical methods depend heavily on the data quality and its representation 

of the physical phenomena. 

By integrating some of the results from the three methods (isopach values, sand 

percentage, and porosity), an oil column map has been generated and used to estimate the 

oil reserves in the field: 11 340 000 bmels of oil. 



5.2 Future work 

Some future directions: 

P-S inversion 

Post-stack processing of the P-S weighted-stack may improve the inversion result. 

geostatistics 

analysis can be used to predict the desired rock property using more then one attribute. 

Then the predicted property is used as a second variable in the cokriging method. 

neural networks 

Although the back-propagation neural network is probably the most used type of neunl 

network. in my work it has been outperformed by the probabilistic general-regression 

network. Further research in the area of 'overfitting versus generalization' should be done. 

Possible solution can be found in developing a back-propagation neural network with 

regularization operator. 
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