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Abstract 

Conference key distribution (CKD) schemes enable a group of eligible users, referred to as a con-

ference, to compute a common secret key. Assumptions on the size of an eligible conference or 

the communication model are often made when designing such schemes. In an attempt to make 

CKD schemes more applicable to real life scenarios, one might challenge these assumptions. In 

particular, having a perfectly secure and relatively efficient CKD scheme that enables conferences 

of arbitrary sizes to compute a common key is desirable. Also, in real life communication between 

two users is confined by spatial restrictions such as wired connectivity in wired networks, or cov-

erage domain in wireless networks and so, it is not realistic to assume broadcast channels where 

a message sent by a user is received by every other users, unchanged. Although communication 

graphs are known to be better tools to model the communication infrastructure, they have not been 

assumed in CKD schemes as far as we know. 

In this thesis, we study a variety of CKD schemes and propose three schemes that extend the 

most efficient existing CKD scheme with constant conference size, to allow conferences of varying 

sizes. To our knowledge, all previous CKD schemes that are known so far assume broadcast 

model. We also design a new CKD scheme that uses communication graphs to model conference 

connectivity, and show that the scheme is more efficient compared to the other known schemes. 
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Chapter 1 

Introduction 

When users communicate over public channels such as the internet, they are sharing their infor-

mation not only with the intended recipients but potentially to other users that have access to the 

channel. To ensure that messages are private between the sender and the intended receiver, the 

messages being sent over the channel can be encrypted. The original message is often called the 

plaintext and the encrypted message is often called the ciphertext. In a cryptosystem, the encryp-

tion algorithm describes how to transform a plaintext into a ciphertext and the decryption algorithm 

is the process of retrieving the plaintext from the ciphertext. In symmetric cryptosystems, the en-

cryption and decryption algorithms share a common secret key. Without the knowledge of the 

secret key, the ciphertext is unreadable. In this thesis we only work with symmetric cryptosystems. 

In key distribution schemes, the goal is to ensure that two users who wish to apply a symmetric 

cryptosystem are equipped with identical secret keys. In situations where more than two users wish 

to communicate over public channels, it is desirable to devise a method by which all the users get 

access to the same secret key. This leads to conference key distribution (CKD) schemes. A CKD 

scheme is a method of enabling a group of users, referred to as a conference, to agree on a common 

key. Generally speaking, a CKD scheme consists of two phases: initialization and conference key 

computation. In the initialization phase, some private information is distributed among all the users 

which will later be used in the conference key computation phase to generate the common key. The 

conference key computation phase itself can be completed non-interactively or interactively. In a 

non-interactive CKD scheme, often referred to as conference key pre-distribution (CKP) scheme, 

the users can individually complete the conference key computation phase whereas in an interactive 

CKD scheme, often referred to as a conference key agreement (CKA) scheme, the users in a 
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conference are required to interact among themselves in order to complete the conference key 

computation phase. 

In CKA schemes, different communication models might be assumed. In this thesis we only 

study two of such models, broadcast model and communication graph model. In a broadcast 

model, it is assumed that once a user sends a message, all the other users receive it. However, 

in a communication graph model, every user is presented as a node of a graph and every edge 

connecting two nodes represents a communication channel between the respective users. 

Since in this thesis we study a number of different CKD schemes, we need to have a mea-

sure to compare the performance of theses schemes. We define two such measures, key rate and 

communication rate. The key rate of a CKD scheme measures the ratio of the size of the initially 

distributed private information to the size of a typical common key that a conference computes at 

the end of the conference key computation phase. In other words, this measure gives an estimate of 

the amount of private information that has to be distributed among all the users in order to compute 

a common key. The communication rate is the ratio of the size of all the communicated messages 

within a conference to the size of a typical key produced at the end of the conference key computa-

tion phase. We compare schemes with respect to either their key rate or communication rate. The 

scheme with lower rate, key or communication, is considered more efficient. 

Since a CKD scheme enables users to compute identical secret keys for future communica-

tions, it is essential to ensure that the computed conference keys at the end of the conference key 

computation phase, satisfy certain security requirements. This propagates to the security of the 

communicated messages using a symmtric cryptosystem. 

Any user who is not an intended receiver for a message is a potential, so called, bad guy. 

The bad guys might collaborate in different ways to learn about the informations that they are not 

entitled to know. We often assume that there exists an adversary who corrupts the users, bad guys, 

and by defining the adversary's capabilities, we model the possible behaviours of the bad guys. 
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There are two approaches to designate a secure cryptographic scheme: unconditional and com-

putational models. In an unconditionally secure scheme, no limitations are assumed on the com-

putational power of an adversary and the arguments are made in an information theoretic setting. 

Information theory provides a tool to quantify the information contained in any mathematically 

presentable phrase. To prove a scheme is unconditionally secure, the argument often involves 

showing that the publicly available information does not leak any information about a term that 

has to remain secret. In a computationally secure scheme, the computational power of the adver-

sary is limited. Adversary's inability to solve a hard mathematical problem concludes the security 

of such schemes. Note that once a scheme is proved to be computationally secure, it might not 

remain secure in a later time since an effective solution to the hard problem it had assumed might 

be discovered during a course of time. One such hard problem is factoring large integers into prime 

factors. For instance, in [ 14] Peter Shor shows how the factoring problem can be feasibly solved 

on a quantum computer. However, there has not been a realization of a quantum computer such 

that Shor's algorithm can be run on for large integers. 

In this thesis, we study a number of CKD schemes with a broadcast communication, uncondi-

tionally secure and passive adversary model. A passive adversary can only get access to the private 

information of a fixed number of corrupted users. The adversary is also static which means he 

can only decide on who to corrupt at the beginning of the protocol and can not modify them at a 

later time. According to the efficiency measures, we compare the performance of these schemes. 

We also review a previous result that analytically proves an optimal key rate in an unconditionally 

secure model. 

As the first contribution of this work, we extend the result on [5], in which Blundo et al. 

present a CKA scheme to compute r conference keys for conferences of all the same size, g. In 

our extension, we study the possibility of having a CKA scheme to compute U conference keys for 

conferences of varying sizes, g, . . . , 
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The second contribution of this work is a new CKA scheme which is based on a communication 

graph as its communication model rather than a broadcast model and argue that the communication 

graphs are more accurate models to simulate real life communication scenarios. We specifically 

consider conferences whose communication graph has an underlying spanning tree such that by 

properly choosing a root node for it, every non-leaf node has exactly m children. We show that 

our new scheme always achieves better communication rate than the previous broadcast based 

schemes, when applied on a communication graph. We also prove that for certain parameter values, 

our scheme attains better key rate than the previously known most key rate efficient CKA scheme. 

The significance of the contributions is in lowering the key rates of the CKD schemes. A lower 

key rate means a more efficient use of devices' memory which is a critical factor in wireless sensor 

networks. 

Organization: 

In Chapter 2, we present the relative definitions to our work. Chapter 3 contains a review on the 

previous works including some analysis and performance comparisons. In Chapter 4 we present 

and analyze the proposals to extend [5] to compute ' conference keys for conferences of varying 

sizes. Chapter 5 contains our new CKA scheme whose design is based on communication graphs. 

We conclude the thesis in Chapter 6 with a summary of the results and possible future directions 

to it. 
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Chapter 2 

Background and definitions 

This chapter contains the background knowledge and all the definitions we need in this thesis. 

2.1 Information theory 

Information Theory enables us to measure the amount of information contained in a mathemati-

cally representable phrase. Similarly, it addresses more general questions such as the amount of 

information that two such phrases jointly contain or the conditional information contained in a 

mathematically representable phrase given another such phrase, etc. 

We can think of any phrase that contains some information as a random variable over a sample 

set that takes its values with respect to a probability distribution. We can also define numeric 

values to the random variable defined over any sample set by defining a one to one function from 

the sample set to the set of real numbers, IL The word random emphasizes on the fact that we are 

dealing with experiments governed by laws of chance rather than any deterministic law [12]. The 

information contained in a random variable, X, can itself be expressed as how much the entropy, 

randomness or uncertainty about the value of X is cleared out once its actual value is known. In 

other words, how much information one obtains by learning the value of X. 

Definition 1. [12] A random variable is a real-valued function defined over the sample space of 

a random experiment. 

Definition 2. [12] A random variable with discrete probability distribution is called a discrete 

random variable. 

Remark 1. We denote a random variable with uppercase boldface letters, say X, and by the cor-
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responding italic uppercase letter, X, we refer to the respective sample set. Let the italic lowercase 

letters present the numeric value that such an random variable can take, x, with respect to the 

probability distribution {Pr(x) }XEX. 

The amount of information contained in a random variable is regarded as its entropy. In other 

words, the entropy of a random variable represents how uncertain one can be about the actual 

value of that random variable. The term entropy usually refers to the Shannon entropy, which 

quantifies the expected value of the information contained in a message, usually measured in bits. 

Equivalently, the Shannon entropy is a measure of the average information content one is missing 

when he does not know the value of a certain random variable. 

Definition 3. [16] For a discrete random variable X, which takes on values from afinite set X, the 

entropy of X is defined to be the quantity: 

H(X) = - Pr(x)logPr(x). (2.1) 
xEX 

The choice of b determines the unit of measurement. 

Throughout this thesis, we take b =2 and hence the unit is bit. 

Definition 4. [16] The conditional entropy, H(XIY), is the weighted average, with respect to the 

probabilities Pr(y), of the entropies H(Xy) over all possible values y. 

H(XIY) = - L E Pr(y)Pr(xy)log2Pr(xy) 
xEXyEY 

(2.2) 

In other words, the conditional entropy measures the average amount of information about X that 

is revealed by Y. 
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Corollary 1. For two statistically independent random variables, X and Y, we have: 

H(XIY) = - LXEX LYEY Pr(y) Pr(xy) log Pr(xy) 

= - xEX EYEY Pr(y) Pr(x) log Pr(x) 

= ( yEY Pr(y)) (-' ExEX Pr(x) log Pr(x)) 

=H(X). 

Let Pr(x,y) be the joint probability for random variables X and Y. The following corollary 

follows. 

Corollary 2. The joint entropy of two random variables, X and Y, is defined as: 

H(X,Y) = H(X)+H(YIx). (2.4) 

(2.3) 

Another important characteristic of two random variables is their mutual information which, 

roughly speaking, measures their dependency. For instance, two independent random variables 

over a sample set have zero mutual information whereas if they are dependent, their mutual infor-

mation would be a positive value. 

Definition 5. [12] If Pr(xy) represents the conditional probability for two random variables, X 

and Y, the mutual information of these two random variables is defined as: 

I(X;Y) = H(X) — H(XIY). (2.5) 

Figure 2.1 from [ 1] depicts a Venn diagram, presenting the joint entropy, conditional entropy 

and mutual information of two random variables, X, Y. 

2.2 Communication model 

With a communication model we specify the characteristics of the means of communication be-

tween the users. In Distributed Computing, the communication model is perhaps the most signifi-
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Figure 2.1: The conditional entropy, joint entropy and mutual information of two random variables, 
X, Y. 

cant parameter of the setting. In [ 1O], an inclusive description of possible communication models 

and their characteristics are given. Regardless of the specifications of the communication model, 

it contains channels. Below are some of the basic properties of any communication channel. [ 11] 

. A channel is a means of conveying information from one user to another. 

. A secured channel is one form which an adversary does not have the ability to reorder, delete, 

insert or read. 

. An insecure channel is one from which parties other than those for which the information is 

intended can reorder, delete, insert or read. 

In this thesis we either work with point to point or broadcast channels. 

In a point to point channel, every message is intended to be received by exactly one user. 

There are additional assumptions when working in a point to point channel communication model. 

Firstly, we also assume a global clock such that every action takes place at a tick of this clock. We 

also assume that our point to point channels are synchronous, i.e. once a message is sent at time t, 

we assume it is received by time t + 1. We take noise free channels, which are channels through 
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which a message is received identically as it was sent, i.e. the channel doesn't change the messages 

that pass through it. 

In this thesis, by a broadcast channel we refer to a noise free synchronous channel in which 

once a message is sent, all the users receive it. 

2.3 Cryptography 

To introduce cryptography, an understanding of the issues related to information security in general 

is necessary. Quantifying information enables us to study such issues. Studying any transition with 

respect to its cryptographic characteristics is of special importance since it ensures the parties that 

a certain level of information security objectives are obtained. [ 11] 

Definition 6. [11] Cryptography is the study of mathematical techniques related to aspects of 

information security such as confidentiality, data integrity, entity authentication and data origin 

authentication. 

It is important to be advised that in cryptography, we are more concerned with the non-physical 

means of assuring information security such as mathematical algorithms. Also note that cryptog-

raphy provides us with a set of possible techniques to do so, and not necessarily an exclusive set 

of such techniques. Below we introduce each of the cryptographic goals separately [ 11]. 

1. Confidentiality is a service used to keep the content of information from all but those au-

thorized to have it. 

2. Data integrity is a service that addresses the unauthorized alternation of data. Data manip-

ulation includes insertion, deletion and substitution. 

3. Authentication is a service related to identification. This function applies to both entities 

and information itself. Two parties entering into a communication should identify each other. 
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Information delivered over a channel should be authenticated as to origin, date of origin, data 

content, time sent, etc. 

4. Non-repudiation is a service that prevents users from denying actions they have previously 

committed. 

In this work, our cryptographic goal is to preserve confidentiality. The following sample gives 

a better intuition of the setting. To model data transitions, it is often assumed that Alice wants to 

send a message to Bob over an insecure channel such that her messages stays confidential against 

an eavesdropper, Eve. The initial message that Alice wishes to send to Bob is often referred to as 

plaintext. Alice transforms this message to a ciphertext using a predetermined key. The ciphertext 

is only understandable to Bob who shares some previously determined information, such as the 

encryption key, with Alice. On the other hand, Eve should not be able to realize the plaintext 

by only seeing the ciphertext. The primary goal of cryptography is to enable Alice and Bob to 

securely communicate in such setting. The definition below introduces a cryptosystem which is a 

formalization of this idea. 

Definition 7. [16] A cryptosystem is a five-tuple (.9, W, .)', c, ), where the following condi-

tions are satisfied: 

1. .9 is a finite set of possible plaintexts. 

2. W is a finite set of possible ciphertexts. 

3. .', the key space, is a finite set of possible keys. 

4. For each K E X , there is an encryption rule ej E 9 and a corresponding decryption rule 

dK E . Each eK: .9 -4e and dK : -+ .9 are functions such that dK(eK(x)) = xfor every 

plaintext element x E 9. 
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Note that by a user we refer to someone or something that sends, receives or manipulates 

information. For example, Alice and Bob are the users in a cryptosystem. In general, a user can be 

a person, a computer terminal, etc. Users engage in a series of actions to fulfill a certain task with 

an expected level of security.These series of actions are often referred to as protocols or schemes. 

Definition 8. [lilA cryptogarphic protocol, is a distributed algorithm defined by a sequence of 

steps precisely specifying the actions required of two or more users to achieve a specific security 

objective. 

2.4 Adversary model 

To represent the users who try to learn about the information they are not entitled to know, we con-

sider an adversary who corrupts the users. Once a user is corrupted, his locally private information 

and all the messages he communicates will be revealed to the adversary. We further classify the 

adversary type with respect to the extent of the control he obtains over the corrupted users. If an 

adversary only views the private information of a corrupted user, he is called a passive adversary. 

On the other hand, if an adversary can both access the private information of corrupted users and 

force them to manipulate the information according to his will, the adversary is called an active 

adversary. In other words, a passive adversary only steals the corrupted users' private information 

and does not influence their performance whereas an active adversary steals the corrupted users' 

private information and forces them to behave in his favour. 

The behaviour of an adversary can yet be studied from another perspective, his dynamics. Both 

passive and active adversaries can be static or adaptive. An static adversary chooses the users he 

wishes to corrupt once and at the beginning of the protocol and doesn't change them afterward. 

However, the adaptive adversary can decide who to corrupt at any point through the execution of 

the protocol, taking advantage of the information he has accumulated by then. 
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In [7] a formal and well detailed description of different adversary models is given. For this 

thesis, we only consider passive static adversary model. 

2.5 Security model 

The security model of any protocol signifies how that protocol is robust against the designated 

adversary. In general, there are two main frameworks to define security: computational and un-

conditional security. The computational security model is based on the hardness of solving certain 

problems, such as factoring large integers into their prime factors. The argument is that, since 

the adversary cannot feasibly factor large integers, he cannot break the protocol, provided that 

the only way to break the protocol is to factor a large integer. Quantum computers are perhaps 

most threatening for the security of protocols that rely on discrete logarithm or factorization as the 

underlying hard problem. In [14], Peter Shor gave an algorithm to factor large numbers on a quan-

tum computer in polynomial time. However, there are no realizations of a quantum computer to 

practically implement Shor's algorithm for large integers on. In the unconditional security model, 

the adversary is computationally unbounded. The argument is that even if the adversary has un-

limited computational power, there is no way for him to learn anything about the information he 

is not entitled to know in an unconditionally secure protocol. In this thesis, we only work in an 

unconditionally secure model. 

2.5.1 Perfect secrecy 

Take c, ) a specific cryptosystem in which each key k E X is used for only one 

encryption. Let us assume some fixed probability distribution on the plaintext space, 9. We 

also assume that the key is chosen by a specific probability distribution over the key space, X. 

This allows us to define random variables, X and K, to define elements of the plaintext and the key, 

respectively. Since the key is chosen before Alice knows what plaintext she might be sending, it is a 
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reasonable assumption to take X and K as two independent random variables. The two probability 

distributions on .9 and .)f' induce a probability distribution on ', the ciphertext space. Let Y 

denote the random variable that defines the elements of W. To compute this induced probability on 

LX', for any k E .X we define C(k) as the set of all possible ciphertexts when k is used as the key: 

C(k) ={ek(x) : xE .9}. 

For every y E 6', the induced probability on the ciphertext space is: 

Pr(Y = y) = Pr(K = k)Pr(X = dk(y)). 
{k: yEC(k)} 

(2.6) 

(2.7) 

We now have obtained the required terms to define perfect secrecy. Intuitively speaking, a 

cryptosystem has perfect secrecy if the adversary can not learn anything about the plaintext by 

only observing the ciphertext. 

Definition 9. [16] A cryptosystem has perfect secrecy iffor all x E .9 and  E W: 

Pr(xly) =Pr(x). (2.8) 

That is a posterior probability that the plaintext is x given that the ciphertext y is observed, is 

identical to the a priori probability that the plaintext is x. 

The theorem below, proof of which is provided in [ 16, Theorem 2.4], gives a characterization, 

originally by Shannon, of when perfect secrecy can be obtained. 

Theorem 1. [16] Suppose (.9, ', , ) is a cryptosystem where JXJ = JW J = .9. Then the 

cryptosystem provides perfect secrecy if and only if every key is used with equal probability  

and for every x E .9 and every y E W, there exists a unique key k E .e' such that ek(x) =  Y. 

A very classic example of a cryptosystem with perfect secrecy is the One-time Pad, which was 

first introduced by Gilbert Vernam in 1917. 
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Definition 10. [16] One-time Pad 

Let n ≥ 1 be an integer and take .9 = W = X = (Z2)'. For k E (7L2)'1, define ek(x) to be the 

vector sum modulo 2 of k and x, or equivalently the exclusive-or of the two associated bit strings. 

So, if x = (xl,... ,x) and  = (k1,... ,k), then: 

ek(x) = (xl +ki,. . . ,x, + k) mod 2. (2.9) 

Decryption is identical to encryption. If y = (Yl). .. ,y,), then: 

dk(y) = (yi+ki,. .. ,y,, + k) mod 2. (2.10) 

2.6 Conference key distribution 

Generally speaking, a conference key distribution (CKD) scheme is a method of distributing initial 

secrets shares among the users such that later when they form specific groups, called conferences, 

they can use their secret shares to compute a secret common value, referred to as the conference 

key. In an unconditionally secure setting, a CKD scheme consists of two phases: initialization and 

conference key computation. 

Initialization: 

In the initialization phase, a trusted authority (TA) privately distributes some secret information, 

referred to as user key, among all the users. The user keys will later be used to compute the 

conference keys. The TA does the initialization once at the beginning of the protocol and goes 

offline afterwards. Note that the TA has no prior knowledge about which conferences will later be 

formed. 

Conference key computation: 

The conference key computation phase can be non-interactive, which means that the user keys dis-

tributed by the TA and the available public information are sufficient for each conference member 



15 
to compute the conference key individually, or interactive, where users need to communicate in 

order to compute the conference key. 

We refer to the non-interactive CKD schemes as conference key pre-distribution (CKP) schemes 

and by conference key agreement schemes we refer to the interactive CKD schemes. 

The interaction among the users are done through public noise free channels, i.e. every user 

can see all the transmitted messages and the messages are delivered correctly to the recipients. We 

denote the set of all possible messages sent by the users in conference G by MG and M represents 

the set of all communicated messages among all the conferences. 

We take '3( = {ul, . . . , u,} as the set of n users with i the public id of user u1. We interchange-

ably use i or ui to refer to the same user in ', as long as no confusion is caused. Let U1 denote 

the user key of user i, the set of all possible information that the TA sends privately to user i. For 

any conference G = {u11 ,. . . , u} we define UG = Ui x ... x (Jig and by KG we denote the set 

of all possible values for G1 conference key. We assume that TA distributes Uq,1 according to a 

probability distribution, {Pr(u)}uEua. This induces a probability distribution {Pr(kG)}kQEKG 

on KG. The security model is an unconditional one with a passive static adversary. 

We formally define a CKP scheme as follows. 

Definition 11. [5] Let V = {ul,.. . , u,} be a set of n users with i the public id of user u. If g and 

b are two positive integers such that g + b ≤ n, we define a (g, b)-CKP scheme to be a distribution 

method that satisfies the following: 

1. Correctness: Each user i in a conference, G, of size g, can uniquely compute the conference 

key: 

H(K01U1)=O, Vi  GCà', IGI=g. 

2. Perfect Secrecy: No coalition of adversaries, A, of size at most b, disjoint from a conference, 

G, of size g, can learn anything about the conference key kG: 

H(KGIUA) = H(KG), VA C à', IAI <b, Afl G = 0. 
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Note that as the term pre-distribution suggests, in a CKP scheme the ultimate conference keys 

are pre-distributed among the users and hence no interaction is required to compute the conference 

keys. We formally define a CKA scheme as follows. 

Definition 12. [5] Let '( = {u1,. . . , u,} be a set of n users with i the public id of user u. If g 

and b are two positive integers such that g + b < n, we define a (g, b)-CKA scheme to be a key 

distribution method that satisfies the following: 

1. Interactive Property: No conference member i E G, with IGI = g can compute the conference 

key without interaction with other conference members: 

H(K0U) = H(KG), Vi  G c V, IGI = g. (2.11) 

2. Correctness: The transmitted messages among conference members and the private infor-

mation given to each of the conference members uniquely determines the conference key: 

H(KGIUIMG) = 0, Vi E G C Q', IGI = g. (2.12) 

3. Perfect Secrecy: No coalition of adversaries, A, of size at most b, disjoint from a conference, 

G, of size g, can learn any information about the conference key, kG, given all possible 

transmitted messages for all possible conferences, G1, of size g and the collection of all the 

private information given to members of A: 

H(KGIUAM) =H(KG), AflG=O, Al =b, M= U MG. (2.13) 

In [5], Blundo et al. introduced the idea a CKA scheme that is perfectly secure for forming 

r conference keys, namely v-restricted CKA scheme. We will extensively study their scheme in 

Chapter 3. 

Definition 13. [5] Let V = {ul,. . . , u} be a set of n users with i the public id of user u. If g and 

b are two positive integers such that g + b < n, we define a 'v-restricted (g, b)-CKA scheme to be 

a distribution method that satisfies the following: 
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1. Interactive Property: No conference member i E G, with GI = g can compute the conference 

key without interaction with other conference members: 

H(KGIU1) = H(KG), Vi E G C V, IGI = g• (2.14) 

2. Correctness: The transmitted messages among conference members and the private infor-

mation given to each of the conference members uniquely determines the conference key: 

H(KGIUjMG) = 0, Vi  G C 'W, IGI = g. (2.15) 

3. Perfect Secrecy: For any r conferences G1,. .. , G, with I Gi = g for 1 ≤ I r, and for 

any mG1,. . . , m, no coalition of adversaries, A, of size b such that A fl G1 = 0, has any 

information on the k8: 

H(KG,UAMGI . . .MG) = H(KGI), Afl G1 = 0, JAI = b. (2.16) 

2.7 Secret Sharing Schemes 

In secret sharing schemes, we study the methods to split a secret into shares and assign each user 

with a share such that only when an eligible subset of users put their shares together, the original 

secret can be reconstructed. There is a designated user in secret sharing schemes called the dealer 

who distributes the shares among the users correctly and privately. If a group of users do not satisfy 

the eligibility requirement, their shares will not result in a valid secret. 

More formally, given a set of users, V, and an access structure, d, which is the set of au-

thorized subsets of '; a secret sharing scheme provides the tool to compute and distribute secret 

shares among all the users in 0& such that by pooling the secret shares of the users in any subset of 

d, the original secret is reconstructed. At the same time, such scheme should ensure that the secret 

shares of any group of unauthorized users, B C Q( and B 0 d, will not result in reconstructing the 

original secret. [11] 
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Threshold schemes are a special class of secret sharing schemes in which the eligibility re-

quirement is on the size of the group of users who intend to reconstruct the key. More specifically, 

every group of at least t users, t E N+, should be able to recompute the secret and groups of size 

less than t should not be able to reconstruct the secret when only using their secret shares. 

In [13], Shamir gives a threshold secret sharing scheme. Here we briefly introduce Shamir's 

threshold scheme. Assume that '2' = {ul,. .. , u,} is a set of users such that i is the public identity 

of user u. In Shamir's scheme, the secret, s, is a random value of the field, GF (q). The dealer 

randomly chooses a polynomial of degree t - 1 in one variable, f, over GF(q) such that f(0) = s. 

The dealer computes f(i) as the secret share for user u, for 1 < i < n. Hence any group of at 

least t users have sufficiently many points of f to interpolate it and hence recompute s. However, 

every group of users of size less than t cannot interpolate f and hence have no information about 

s = f(0) by only using their secret shares. 

Note that although there are similarities in the general structure of a secret sharing scheme and 

a CKD scheme, i.e. an initialization and computation phase, there are a few distinctive remarks to 

be considered: 

1. In a secret sharing scheme, users are merely share holders whereas in a CKD schemes, users 

are responsible to compute the conference key. This distinguishes between the potential ap-

plication scenarios that each scheme can be used for with respect to the users characteristics. 

For instance, secret sharing schemes are suitable methods for access control whereas CKD 

schemes are more suitable to provide secure communications. 

2. In a secret sharing scheme, there is one single secret that is shared among all the users 

and hence the shares of any eligible group of users result in reconstructing the same secret. 

However, in a CKD scheme, the conference key computed for any two distinct conferences 

should be statistically independent. 
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3. Following the previous point, a secret sharing scheme can be considered as a key pre-

distribution scheme that facilitates one-time key establishment. [I I] 

2.8 Graph theory 

/ 

This section is allocated to introduce some relative definitions from Graph Theory [9]. 

Definition 14. A graph, G =< V,E>, is an ordered pair of parameters where V represents a set 

of vertices or nodes and  contains a collection of all subsets of V of size 2. Each e = {Vj,Vj} E E 

represent a relation between the respective nodes, vi and v. 

Definition 15. For a graph G =< V,E> and every pair of nodes vj,vj E V, if {vi,vj} E E then 

we call vi and vj neighbours. Also the degree of a vertex, d(v1), is defined as the number of 

neighbours of vi E V. 

Definition 16. In a graph G =< V, E>, a path between two vertices, V, Vj E V is a sequence 

of vertices with vi and Vj at the two ends such that every two consecutive vertices are connected 

via an edge. The number of edges in a path determines its length. A cycle in a graph is a path 

with identical end vertices. If there is a path between every two vertices of a graph, it is called a 

connected graph. 

Definition 17. A tree, T =< V,E>., is a connected graph with no cycles. Nodes of degree 1 in a 

tree are called leaf nodes. 

It is not hard to show that in a tree T =< V,E> with IVI = n, there are JEJ = n - 1 edges. We 

designate a non leaf node yr E V and refer to it as the root node. 

In a rooted tree T =< V, E > with root node Vr, we define a parent/child relation between every 

pair of neighbour nodes by considering the length of the path that connects each of the nodes to 

the root node. The node with the shorter path is called the parent and the one with longer path to 

the root is referred to as the child. 
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Definition 18. In a rooted tree T =< V,E>, if all the non leaf nodes have exactly m children, the 

tree is called an rn-balanced rooted tree. 

2.9 Definitions from Combinatorics 

In this section, we introduce the terms that are later used in Chapter 3 to construct some CKD 

schemes. 

Definition 19. For q prime, a polynomial P(xi,. .. ,xt) = L aj1,...,j1(xi)11 (x2)J2 ... (xt) jl 
O≤ii,...,ft≤k 

of degree k, where E GF(q), is said to be a symmetric polynomial if P(xi,.. . ,X) = 

,x())for any permutation o: {1,2, ... ,t} -+ {1,2,. . . ,t}.[6] 

If a term in a symmetric polynomial can be obtained from the other by applying apermutation 

function, those two terms are called equivalent terms. 

Remark 2. Few remarks regarding symmetric polynomials include: 

1. In a symmetric polynomial in t variables, the coefficients of any two equivalent terms are 

identical. So a11, •., and aj,,. ..,j, are equal if i1,... , t is a permutation of ii,.. . ,J. 

2. The equivalent relation between the terms is itself an equivalence relation, i.e. it is reflexive, 

symmetric and transitive. So the terms in a symmetric polynomial can be organized into 

equivalence classes with designated terms as class representatives. 

The example below presents two polynomials, symmetric and non-symmetric. 

Example 1. Let f(xi,x2,x3) = x +x +4+4x1x2x3 and g(xi,x2,x3) = 4x1x2+3x1x3. It is not 

hard to see that f is symmetric, for instance let us switch xl and x: 

f(x2,xl,x3) = x+x+x+4x2x1x3 =f(xi,x2,x3). 

On the other hand, once switching x and x2 in g, we get: 

g(x2, XI, x3) = 4x2x1 + 3x2x3 0  g(xl,x2,x3), 
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hence g is not a symmetric polynomial. 

As we will see later in Chapter 3, the scheme of Blundo et al. in [5] is based on objects from 

Design Theory. Design theory is a subdivision of Combinatorics in which numeric characteristics 

of sets of objects are related to their representation in specific structures. 

Definition 20. A design is a pair (V, .'), where V is a set of n elements, called points, and .' is a 

set of subsets of V offixed size k, k ≥ 2, called blocks. 

Definition 21. A parallel class of (V, ) consists of a blocks from .% which partition the set V. 

Definition 22. The design (V, .) is said to be a resolvable design if the set of blocks, .c, can 

be partitioned into parallel classes. If .% consists all k subsets of V, then (V, ..%) is called the 

Complete k- Uniform Hypergraph on V and in this case, there will be exactly (k- 1) many parallel 
classes. 

The example below presents a resolvable design with its parallel classes. 

Example 2. Let V={1,2,3,4,5,6}, n=6, and k=3, then 

= {{ 1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,3,6},{l,4,5},{1,4,6},{1,5,6}, 

{z,3,4},{2,3,5},{2,3,6},{2,4,5},{2,4,6},{2,5,6}, 

{3,4,5},{3,4,6},{3,5,6}, 

{4,5,6}} 

with () = () =20 blocks is a complete 3-uniform hypergraph on V. Note that 

C= {{ 1,2,3},{4,5,6}} 

is a possible parallel class that contains = = 2 disjoint blocks of R and the union of its 

components is V. But 

C' = {{ 1,2,3},{l,5,6}} 

does not form a parallel class. The classification below shows how .% can be partitioned into 

r = = 10 = () = n-11 parallel classes: 
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C1={{1,2,3},{4,5,6}}, C2={{1,2,4},{3,5,6}}, 

C3 = {{ 1,2,5},{3,4,6}}, C4 = {{ 1,2,6},{3,4,6}}, 

C5={{1,3,4},{2,5,6}}, C6={{1,3,5},{2,4,6}}, 

C7 ={{l,3,6},{2,4,5}}, C8={{1,4,5},{2,3,6}}, 

c9 ={{1,4,6},{2,3,5}}, C10={{l,5,6},{2,3,4}}. 

The following theorem of Baranyai, proof of which is provided in [17, Theorem 36.1], gives 

a numerical relation between the parameters of a design to assure that it is a uniform complete 

hypergraph. 

Theorem 2. The complete k-unifonn hypergraph on n points is resolvable if n 0 mod k. 

2.10 New Definitions for this thesis 

As a part of the contributions of this thesis, we will introduce a CKA scheme that takes point to 

point channels as its communication model. We will represent such channels by using communi-

cation graphs in which each node represents a user and each edge represent a possible communi-

cation channel. We define an rn-tree (g, b) CKA scheme as a key agreement scheme in which the 

communication channels are modelled by an rn-balanced rooted tree. 

Definition 23. Let T =< V,E> be an rn-balanced rooted tree with V = V in which every edge 

in E represents a communication channel between the respective users. An rn-tree (g, b)-CKA 

scheme is a (g, b)-CKA scheme in which the messages can only travel through the edges of an 

m-balanced rooted tree, such as T. 

To measure the performance of a CKD scheme, we generalized the previous efficiency measure, 

key rate, for computing one conference key to 'r conference keys. We also introduce another 

efficiency ratio, communication rate, that has not been used in the schemes we have studied so far. 
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Table 2.1: Notations look up table 

Parameter Description 

n total number of users 

the set of n users 

Ui user with the public id, i 

G a conference of size g 

A adversary set of size b 

U1 set of user key given to u 

UG collection of all secret values given to users of G 

MG set of all communicated messages between the users of G 

M set of all communicated messages 

KG set of all possible values for the key of conference G 

r number of parallel classes for a resolvable design 

z number of blocks in each parallel class for a resolvable design 

The key rate of a scheme gives a measure on the rate of user keys distributed among all the users 

per bit of a typical conference key. 

Definition 24. The key rate of a CKD scheme is defined as the total size (in bits) of the user keys 

per bit of a conference key: 

log2 IUai.'l  
1092 IKGI 

(2.17) 

Definition 25. The communication rate of a CKD scheme is defined as the total size (in bits) of 

communicated messages in a conference per bit of that conference's key: 

1092 IMGI  
1092 IKaI 

Remark 3. According to Definition 11, the communication rate of any CKP scheme is 0. 

(2.18) 

Table 2.10 summarizes the notations and parameters that will be used in future chapters. 
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Chapter 3 

Previous Work 

In this chapter, we review a number of constructions that represent different approaches to realize 

a perfectly secure CKD scheme and evaluate their performance according to Equation (2.17) and 

(2.18) [15]. We also recall the lower bound on the size of user keys for a perfectly secure CKP 

scheme, presented in [3]. In the next two chapters, we compare the key rate of our proposed 

schemes to the best key rate of the schemes presented in this chapter. 

3.1 Samples of CKP Schemes 

Let '' = {u1, . .. ,u,} denote the set of n users and g,b E NU{O} such that g + b ≤ ii. We also 

take the finite field GF(q) such that q = pk > ii for p prime and k E N. As noted earlier, in a CKP 

scheme, users do not need to interact in order to compute the conference key and hence, for the 

communication rate of all the schemes presented in this section we have, MGI - 0 

Notation: 

To make distinctions between the efficiency ratios of the different CKD schemes that we study in 

this chapter, we use the indices below: 
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CKD scheme Index 

Trivial (g,b)-CKP 

Blom's (2,b)-CKP 

Fiat-Naor's (< n,b)-CKP 

Blundo et al.'s (g, b)-CKP 

Blundo et al.'s 1-Restricted (≤ n,b)-CKA 

Blundo et al.'s 1-Restricted (g, b)-CKA 

Blundo et al.'s i-Restricted (gn, b)-CKA 

3.1.1 Trivial (g,b)-CKP Scheme 

(Trivial) 

(Blom) 

(FiatNaor) 

(Blundo) 

(iBlundo) 

(1RD) 

(RD) 

The trivial scheme is the most straight forward way of realizing a CKP scheme. We assume that 

all possible conferences of size g are publicly enumerated. That is there exists a public table that 

contains the index of each conference and its members, so every users knows the index of the 

conferences he is a member of. 

Initialization. 

For a conference G, the TA randomly chooses a key, kG, E GF(q), and privately sends it to the 

users in G1. 

Conference Key Computation: 

Each users in G1 can individually compute the conference key by using the distributed key, kG,. 

Since no user outside of a certain conference, G, receives kG1, no information about kG, is 

given to a disjoint adversary set and hence the trivial scheme is unconditionally secure. 

To compute the key rate for the trivial scheme, note that for every user ui E 'W, there are ( ) 
conferences of size g that ui can be a member of. As each ui E V receives a separate secret key for 

each of these conferences as his user key and a typical conference key is one of these user keys, 
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the key rate for the trivial scheme is: 

I 

Uoà' (Trivial)  f - 1" 
. 1 

IKG \g-1) 

We used an index (Trivial) to refer to the key rate of the trivial (g, b).-CKP scheme. 

3.1.2 Blom's (2,b)-CKP Scheme 

(3.1) 

This scheme was first proposed by Blom, [4], and is designed to produce pairwise keys between 

every two users, i.e. g = 2 and hence b ≤ n —2. 

Initialization. 

The TA randomly chooses a symmetric polynomial in 2 variables, f(xi ,x2), of degree b in each 

variable. TA evaluates f(xi,x2) on its first variable for the public identity, i, of each user ui E  

and sends the resulting 1-variable polynomial, pi (x2) = f(i,x2), to user u, privately. 

Conference key computation 

Two users can obtain a shared key by evaluating their polynomial on the public identity of 

the other user and use the resulting value as the conference key. That is, two users ui and Uf 

individually compute: 

f(i,j) = pi U) = pj(i) (3.2) 

for their conference key. 

An adversary who corrupts at most b users, say A = {ubl,. .. , ubb}, will get access to Pb1 (x2) = 

f(bl,x2), .... pbb(x2) = f(bb,x2), each a polynomial in 1 variable of degree at most b. Since TA's 

symmetric polynomial, f(x1 , x2), is of degree at most b in each variable, at least b + 1 distinct 

shares are required to interpolate f(xi , x2). Hence the adversary cannot interpolate f(xi , x2) using 

the user keys of the corrupted users. This concludes the perfect secrecy of Blom's (2, b)-CKP 

scheme. 

As we will later see in Section 3.1.5, each user receives (n - 1) secret values of GF (q) from 
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the TA to uniquely identifies his 1variable polynomial of degree at most b. Since the conference 

key is also an element of GF(q), the key rate for this scheme is: 

I u I (Blom) 
IKGI = n(n-1). (3.3) 

We used an index (Blom) to refer to the key rate of Blom's (2, b)-CKP scheme. 

3.1.3 Fiat-Naor's (≤ n,b)-CKP Scheme 

In [8], Fiat and Naor proposed a CKP scheme that works for computing conference keys for confer-

ences of any size. In their scheme, the maximum size of the adversary set is b and the distribution 

is based on the possible adversary sets. Let d be the collection of adversary sets of size at most 

b, i.e. d can be the collection of all subsets of V of sizes 0 to b. Their scheme consists of two 

phases as follows: 

Initialization. 

Let b < n denote the maximum size of an adversary set. For every A E d with IAI ≤ b, the TA 

chooses a random value SA E GF(q), and distributes it to all users in ''\A. 

Conference key computation: 

The key associated with any conference G C V is defined as: 

kG= L SA. 
AEd: AflG=ø 

Note that kG is only known to the users in G, since it is composed of the portions of the user 

key that all members of G share. Such values, SA 's, are not distributed among any user in a disjoint 

adversary set, A E d, A fl G = 0. Hence the conference key remains perfectly secure. 

Since every user in I& receives a random secret value from GF (q) with respect to every possible 

adversary set of size at most b, and the observation that a conference key itself is a random value 
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from GF(q), we compute the key rate for Fiat-Naor's scheme as: 

u (FiatNaor) b (n 
= n E j). 

IKG 

We used an index (FiatNaor) to refer to the key rate of Fiat-Naor (≤ n, b)-CKP scheme. 

The example below illustrates how this scheme works. 

(3.4) 

Example 3. Let V = {u1, U2, U3, u4} and b =2 with GF(7). So d consists of all the subsets of 6à' 

of size at most 2. 

d = {O,{1},{2},{3},{4},{1,2},{l,3},{l,4},{2,3},{2,4},{3,4}} 

The TA should send secret values 5A E GF(7) with respect to any adversary set, A E d. If the TA 

chooses the following values: 

S0 = 6, 

s{4}=5, 

5{2,3} = 6, 

S{i} = 3, 

5{1,2} = 3, 

S{2,4} = 2, 

S{2} =3, 

S{1,3} = 3, 

5{3,4} = 4, 

then TA sends 5A to all users in oa'\A. For instance, so is given to Ui, U2, U3, U4, S{i} is given to 

u2,u3,u4 and S{1,2} goes to U3, u4. For G = {2,4}, the conference key is: 

k050+s{1}+s{3}+s{l,3} =0 (Mod7). 

We note that both u2 and U4 receive So,S{i},5{3},S{13} as their user keys and hence are able to 

compute k{2,4} individually. Similarly we compute the conference key of all the other conferences: 

k{ i,2,3,4} = 6, k{2,3,4} = 2, k{134} = 2, k{1,2,41 = 11 

k{ i,2,3} = 4, k{3,4} = 1, k{2,4} = 0, k{2,3} = 1, 

k{i,4} = 3, k{13} = 2, k{i,2} = 3. 

Note that for any conference, G, and any adversary set, A E d, A fl G = 0, none of the sum-

mands to form kG is given to any users in A and hence kG remains completely unknown to A. On 

the other hand, all users in G receive all the summands in their user keys and are able to compute 

kG individually. 
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3.1.4 Blundo et al.'s (g,b)-CKP Scheme 

This scheme is a generalization of Blom's scheme [6]. Let '( = {u1,. . . , u,} be the set of all users 

with i the public identity of user u. 

Initialization: 

The TA randomly chooses a symmetric polynomial, f(xi,.. . ,x), in g variables of degree 

at most b in each variable, where g is the size of the conference and b < n - g is the size of the 

adversary set. The TA evaluates f(xi,. . . , xg) on its first variable for the public identity of each user 

and sends the resulting (g - 1)-variable polynomial to the respective user, privately. For instance, 

user i receives: 

pt(xz,...)xg) = f(i,x2,...,xg). 

Conference key computation: 

When a group of g users decide to form a conference, each user evaluates his private polynomial 

on the public identity of the other g — 1 conference members. Since the original polynomial,f(xi,. . . , 

is a symmetric, every conference member evaluates the same value. This common value will be 

taken as the conference key. For instance, the conference key for G = {u1,... , u} is: 

3.1.5 More on Symmetric Polynomials 

To compute the efficiency of this scheme, we need to know the number of coefficients required to 

uniquely represent a symmetric polynomial, as this determines U and consequently UZ1. To do 

so, we show a correspondence between the terms in a symmetric polynomial and a combinatorial 

problem. The combinatorial problem is to enumerate the different possible arrangement of two 

distinct sets of identical objects. Let one of the sets contain b identical objects, referred to as 

"power objects" and another set of g identical objects, referred to as "variable objects". For a 

given arrangement of these g + b objects, we interpret the number of "power objects" on the left 
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()C1()() 

Figure 3.1: Mapping permutations to the coefficients of a symmetric polynomial 

hand side of the i-th "variable object" to be the value of aj in the term . . .4' . . . x. Once 
deciding all the as's for a single term we have essentially found a class representative term, see 

Remark 2. We randomly choose a coefficient for this term, aa1,..., E GF(q), and put the same 

coefficient for all the terms equivalent to it. We repeat this process for all possible arrangements 

of the "variable objects" and "power objects". Note that each possible arrangement introduces a 

class representativs, see Remark 2. 

Figure 3.1 illustrates how the mapping between each arrangement and terms of a symmetric 

polynomial works. Let the ovals represent the "power objects" and sticks, the "variable objects". 

This arrangement suggests the term x?xxx = 4x. Once choosing a coefficient for this term, all 

other equivalent terms will take the same coefficient. In this case, the equivalent terms are: 

7, 3X7 3X7 3 xx7, x3x, xxL xxi, 

The total number of possible ways to arrange g identical elements together with another b 

identical elements is: 

(g+b)! - (g+b ). 

b!xg! g 

this is the number of random variables that the TA needs to choose in order to form a symmet-

ric polynomial in g variables and of degree b for each variable. Once evaluating such symmetric 

polynomial for one of it's variables, we argue that the resulting polynomial is still a symmetric 

polynomial in g - 1 variables and hence TA needs to send (±b1) coefficients to each user u as 

his user key, U. 
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Here we prove a lemma that states by fixing a variable, say x, a symmetric polynomial in t ≥ 1 

variables, xi,. . . , X, contains all the symmetric terms in the other (t- 1) variables, x2 .. .. X. 

Lemma 1. Let f be a symmetric polynomial in t ≥ 1 variables, xi,. . . , t, and of degree at most 

kfor each variable. By fixing any variable, x, 1 ≤ i < t, the symmetric polynomial, f(x1,. .. ,), 

includes all symmetric terms in the other t - 1 variables, xi,. . . ,x+i, . .. ,Xt. 

Proof. Let us represent f in the following format: 

f (xi, . . . ,x) = c1h1 (a12 ,... , air) +... + cmhm (ci,... , c), 

t) , c E GF (q) and each h (ai,. . . , a) the class representative (see Remark 2) of with m = (  

all symmetric terms in t variables with 0 ≤ aij ≤ k the power of the j-th variable, 1 < j t and 

1 ≤ i ≤ m. Without loss of generality, we show the lemma is true when fixing x1 and the same 

argument can be applied for any of the other variables. We can rewrite f as: 

f (XI , ... ,xt)=x?ro(x2,...,xt)+xir1(x2,...,xt)+...+xrk(x2) ... , xt), 

where r, is a polynomial in t - 1 variables, x2,. . . ,Xt, and is obtained by factoring xi out from all 

the terms in f in which 4 appears, 1 < i ≤ k. Note that ri's together should include all symmetric 
polynomials in t - 1 variables. Otherwise, there exists a term x P2 x ... X x with 0 < /32,. . . , Pt ≤ k 

such that at least one of its equivalent terms is not showing up in any of the re's. Multiplying 4's 

back, under the permutation °i, the permutation function that is identical for input 1, i.e. a ( 1) = 1, 

the missing equivalent term to 92 x ... x x' remains missed. This contradicts the symmetry of f 

and hence no such term can appear in any of the re's. This is equivalent to saying that ri's together 

should include all symmetric terms in t - 1 variables and of degree at most k, for each variable. 

Since f is symmetric, the same argument works when fixing any of the variables other than x1. El 

The argument above justifies the following representation for f: 

f (Xi , ... ,xt) = gl(x1)h1(J3l2,...,/3lt)+...+gl(xl)hl(/3l2,...,/3l), 
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where gj (xi) is a polynomial of degree at most k and hi is the class representative for all symmetric 

polynomials in (t —1) variables with 0 ≤ J&j ≤ k, the power of the j-th term, 1 ≤ j ≤ t and 1 < I < £. 

Note that £ = ( t1) is the number of equivalence classes. 

Hence we conclude that in the (g, b)-CKP scheme of Blundo et al., the TA only needs to sends 

gi (i),. .. , gi(i) to each user ui E 3( obtained from f(i,x2,.. . ,x), to uniquely identify p1 (x2,. . . ,x) = 

f(i,x2. .. . 

Remark 4. For g = 2, Blom Is (2, b)-CKP scheme becomes a special case of Blundo et al.'s (g, b)-

CKP scheme. 

Similar to the scheme of Section 3.1.2, the perfect secrecy of this scheme follows. For the 

efficiency measures, we compute: 

Ulh1b0) (g+b-1'\ 

lKG g-1 )' 

We used an index (Blundo) to refer to the key rate of Blundo et al.'s (g, b)-CKP scheme. 

3.2 Communication in Key Distribution Schemes 

(3.5) 

One possible question at this stage is, does allowing interaction among the users at the conference 

key computation phase help to reduce the size of user keys? In [3], Beimel and Chor address 

this question. They prove a bound on the user key size for non-interactive and interactive CKD 

schemes. We present their results in the following two subsections. 

3.2.1 Non-interactive Schemes 

In [6], Blundo et al. proved a lower bound on the key rate of a perfectly secure CKP scheme and 

showed that their (g, b)-CKP scheme meets this bound with equality. Beimel and Chor in [3] prove 

the same lower bound for a slightly different security model. They show that even if one relaxes 
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the security requirements for a CKP scheme, as defined in Definition 26, the same size of user 

key has to be distributed at the initialization phase as is required in an unconditionally secure CKP 

scheme. In the new security setting, weak security, we assume that the adversary might have some 

guesses about the key by knowing the user key of the corrupted users. We start with the definition 

of the weak security property. 

Definition 26. [3] (Weak Security Property) Let A C ( be an adversary set and let G C 'W be 

a conference, such that G n  = 0. Then users in A having their user keys can not rule out any 

possible value for kG. In other words, for every possible vector of user keys, t =< ui,. , u,2>, 

that TA might distribute with positive probability among all the users and every possible key, kG E 

KG, there exists a vector of user keys that agrees with i2 when restricted to A and results in the 

same key, kG, for G: 

P(KG = kIUA) > 0, V k E K. (3.6) 

CKD schemes studied in [3] and [6], are namely threshold schemes, i.e. any g-subset of CW 

is a conference and any disjoint subset of size b ≤ n - g is an adversary set. We represent these 

schemes as (g, b)-CKD schemes. 

The theorem below gives a lower bound on the size of a user's user key in a weakly secure 

CKP scheme. 

Theorem 3. [3] In a weakly secure (g, b)-CKP scheme with g + b ≤ n users, we have: 

fg+b-1 

lUil ≥ IKl g-1 I (3.7) 

where K is the set of all possible conference keys and U1 is the set of user keys for user i, with 

1 <i<n. 

The proof is given in [3], here we rewrite their proof. 
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Proof. Let V = {userl,... , user,} be the set of all users with n = g + b. Without loss of gener-

ality, we show the bound for the size of user1 's user key. Let G1,. . . , G. C '( be all the distinct 

conferences with userl as a member, so £ = This gives a clue that useri 's user key should 

include at least £ pieces of secret values. In fact we show that for every £-vector of keys, k E Kt, 

there exists a matching vector of user keys i2 E U'. By a matching vector of user key, t, to 

an £-vector of keys, we refer to the user keys that result in evaluating k E k as the key of 

conference G, for all 1 <j < £ 

If we can show that this correspondence between 7's and 's exists, then we can conclude that 

for every distinct £-vector of keys, k E K, there should exist a distinct value for ui in i2 E Ua'. 

This is because the scheme is non-interactive and hence user1 computes the elements of I by only 
using his user key, ui E i. So for every distinct £-vector of keys, k , there should exists a distinct 
vector of user keys, it, in which ul takes a different value. This proves the inequality in Equation 

To show the correspondence between k's and it's, assume I =< k1,. . . ,k >E KE is an 
vector of conference keys without any matching vector of user keys in U. Let i be the maximal 

index, due to non-uniqueness, such that for some E Uq' and its matching I' < k,.. . , k>, 

the first (i - 1) elements of k and the first (i - 1) elements of I' are identical and the first 
inconsistency appears on the i-th entity: 

Vl≤j<i,k=k and 

Note that such index, i ≥ 2, exists since for i = 1 we can come up with i' such that the corre-

sponding I' and I differ in their first component, as long as there are more than one possible 
value for k1. 

Let B = c?I\G, so IBI = b. Note that B intersects with all the Gd's, j i, and given ii the 

members of B should be able to compute k, . .. , , k, . .. , k as the elements of the matching 

key vector, I'. Since I and I' agreed on their first (i - 1) entities, members of B compute the first 



(i - 1) entities of k as well. Now, any positive probability of computing k, given UB = UJEB u, 

with U'j E ', contradicts the maximality of i. Hence: 

Pr(KG = kI U u) = 0, 
fEB 

which contradicts the weak security property of the scheme. So the assumption of not having a 

matching user key vector to I should be false. Hence, for any given t-vector of conference keys, 

k E Kt, there exists a matching vector of user keys, i2 E Ua14.. This completes the proof. L1 

We can similarly conclude that in any CKP scheme with weak security property where each 

user can be a member of at least £, £ < ( 111), distinct conferences, we have: 

U11≥IKIt. (3,8) 

Remark 5. The (g,b)-CKP scheme of Blundo et al. introduced in Section 3.1.4, satisfies this lower 

bound. 

3.2.2 Interactive Schemes 

By showing how to map a CKA scheme to a weakly secure CKP scheme, Beimel and Chor argue 

that including interaction cannot help to reduce the size of user key. Their proof method consists 

of showing how a proper choice of user key can compensate for the broadcast messages and hence 

a CKA scheme can be studied as a CKP scheme. 

Theorem 4. [3] For an unrestricted (g, b)-CKA scheme with n ≥ g + b users, we have: 

(g+b-1\ 
lUd ≥ IKI g-1 I 

where K is the set of conference keys and U is the set of user key given to user. 

Proof. The proof is given in [3], here we represent their proof in the following steps: 
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1. The idea is to show that every unrestricted (g, b)-CKA scheme can be transformed to a 

weakly secure (g, b)-CKP scheme without changing the domain of user keys. Hence the 

lower bound of Theorem 3 applies here too. 

2. Communicated messages, M , during an application of a CKA scheme are determined by the 

user key that TA distributes, -i2 =< Ui,. . . , u,,>, and the local randomness of conference 

members, =< ri,. . . , r,,.>. For a conference G we can write = M(ü, ), where M 

is the function that determines the communicated messages and is the restriction of 

to the members of conference G; similarly for i and M. The communicated vector 

includes all MG for every possible conference G. 

3. We first fix and publish M, a vector of communicated messages for every possible confer-
ence, G. Then distribute the initial secret information, it, such that it is compatible with M. 

By a compatible user key vector, ü, to a communicated message vector, M, we mean a 

vector of secret information for which there exists a vector of local random values, , such 

that M =M(i,). 

4. In the new scheme the users only need to use their user key and the publicly available com-

municated messages to reconstruct respective conference keys without interacting among 

themselves. Note that the TA will not need to distribute any larger amount of data than it did 

for the non-communicating scheme. 

5. We first show how to choose and fix the public communicated messages, then determine a 

user key vector compatible with it and finally show that the new scheme satisfies the weak 

security property. The method is by showing how a real run of a CKA scheme can be 

obtained in a non-interactive fashion. We refer to the parameters of the CKA scheme with 

an index 1 and the same parameters in the CKP scheme with index 2. Parameters without 

indices are not specific to any of the schemes. 
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In the following we formalize each of the steps above. 

- 

1. Determining M: 

Let it =< ui,... , u, > be an arbitrary vector of user keys that TAI distributes in the CKA 

scheme and let =< r1,. . . , r, > be an arbitrary vector of local random values. Let = 

M(it, ) be the respective communicated messages. If is aired, clearly it is compatible 

with. 

2. Choosing the matching ü: 

TA2 randomly chooses =< u2,... , u, > from the set of all user keys for which there exists 

a vector of local randomness •i' that makes ü compatible to M& for every conference G. 

Note that is also compatible to . On the other hand, since the scheme is an unrestricted 

one, such exists. 

3. Consistency of the new scheme: 

Note that in the new CKP scheme, every conference member can reconstruct the key of the 

respective conferences by only using his user key and the publicly aired vector of communi-

cated messages, without interacting with other users. 

So far we have shown that any given CKA scheme can be transformed correctly to a CKP 

scheme without increasing the size of the user key. We are only left to show that the new 

scheme satisfies the weak security property. 

4. Weak Security Property: 

Let G be an arbitrary conference and A the corresponding disjoint adversary set. By the as-

sumption, the original CKA scheme can be used to securely compute an unrestricted number 

of conference keys. This guarantees that for any k0 E K with a given vector of communicated 

messages, M, there exists a vector of user keys i E Uaà' such that = i and i is com-

patible with MG such that KG = ko. According to the statement of weak security property, 

Equation (3.6), it follows that the transformed scheme is a weakly secure CKP scheme. 
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5. Concluding the proof: 

We have shown that any unrestricted (g, b)-CKA scheme can be viewed as a weakly secure 

(g, b)-CKP scheme with the same domain of user keys distributed by the TA. Using Theorem 

3, we conclude that the size of any user's user key should satisfy: 

(g+b-1\ 
lUil ≥ Kjk g-1 I 

which completes the proof. 

0 

According to Theorem 4, if a CKA scheme is designed to compute an unrestricted number of 

conference keys, the minimum user key size is the same as the minimum user key size for a CKP 

scheme. Another option to obtain a lower user key size is to relax the security requirement, i.e. 

CKA scheme that remains perfectly secure for only a limited number of conference keys. This 

resultd in the definition of r-restricted CKA schemes which we have already seen in Definition 

+b-1 
13. Note that for r> ), from Equation (3.7) one concludes that interaction cannot help to 
reduce the size of user keys in a r-restricted CKA scheme. 

The next theorem gives a lower bound on the size of user key in a v-restricted (g, b)-CKA 

scheme. 

Theorem 5. In any r-restricted (g,b)-CKA scheme with r ≤ (+b.jl) the size of a user key is 

lower bounded by: 

(3.10) 

Proof. The proof given in [3] is an adaptation of the proof of Theorem 4. We show how a 'r-

restricted (g, b)-CKA scheme can be transformed to a weakly secure (g, b)-CKP scheme. Here we 

fix the communication of c predefined sets and require the TA to distribute compatible user keys 

to the communication of these conferences using a similar method as of Theorem 4. The rest of 

the theorem follows in a similar way. 0 
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We observe that the (2, b)-CKP scheme of Blom, see section 3.1.2, requires distributing user 

key of size KI1'1 which is consistent with the statement of Theorem 3, Equation (3.7). On the 

other hand, from Equation (3.10) one obtains the lower bound on the user key size in a 1-restricted 

(2, b)-CKA scheme to be I K. We also know that a 1-restricted (2, b)-CKA scheme can be trans-

formed to a (2, b)-CKP scheme which causes the lower bound on IUd to increase from IKI to 

lKI'. This suggests that the lower bound obtained from Theorem 5, Equation (3.10), is not the 

tightest. In the next section, we investigate the lower bound on user key for a 1-restricted (2, b)-

CKA scheme. 

Lower bound on user key size of a 1-restricted (2, b)-CKA scheme 

To proceed with this task, we include some results from Maurer's work, as stated in [3]. Maurer 

studies the setting with two coin flipping users, each with private piece of information, who execute 

a protocol by communicating over a broadcast channel. After the execution of the protocol, the two 

users generate a common key such that an adversary who eavesdrop all the communication does 

not have any information about the key. Maurer shows that the conditional mutual information of 

the initial secrets that the two users have is at least equal to the entropy of the generated key. In 

other words, the mutual information of any pair of random variables held by the two users cannot 

be increased after a conversation over a broadcast channel. 

More formally, let U1, U2 and U3 be random variables representing the secret information held 

by userl, user2 and user3, respectively. Let useri and user2 communicate over a broadcast channel 

for a number of rounds. Let M denote the random variable corresponding to the communicated 

messages. After execution of the protocol, user1 and user2 will agree on a key, k E K, known to 

both of them such that user3 has no information about it: 

H(KIU1M) = H(KIU2M) = 0 
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and 

H(KU3M) = 

then 

I(Ui;U21U3) ≥H(K). (3.11) 

In the next lemma, we prove a tighter lower bound for the 1-restricted (2, b)-CKA scheme than 

Equation (3.10). 

Lemma 2. [3] Fora 1-restricted (2,b)-CKA schemes with uniform distribution over the key space, 

K, the cardinality of the user key is at least IKlb+l, that is: 

IUd ≥ IKI" 1. 

This Lemma is proved in [3]. Here we rewrite the proof as follows. 

(3.12) 

Proof. Without loss of generality, we assume that n = b +2, and prove the bound for the size 

of useri 's user key. The proof method is by transforming the 1-restricted (2, b)-CKA scheme 

to a 3-user communication scenario of Maurer. Let user' receive the user key of user1 in the 

original scheme and for every 2 

user+i,. . . ,user's user keys1. 

≤ i ≤ b +2, let use 'r2 receive users's user key and user'3 gets 

Following the steps of the original protocol, user'1 and user 

qualify to compute a common key while user '3 will not learn anything about their key. So by 

applying Equation (3.11), we can write: 

I(U;U'jU'3) = I(Ui;UjIUj+i ... Ub+2) ≥H(K). 

On the other hand, from the definition of conditional mutual information, we have: 

'Although this is how the proof proceeds in [3], it seems to hold true for U = UJE'\{1,i} Uj. 

(3.13) 
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b+2 

L I(ui;uu1+1 .. .U1,) 
i=2 

b+2 b+2 

= H(U1IUj+1 ... Ub+2)—LH(UlIUiUj+l ... Ub+2) 
i=2 i=2 

=H(Ui)—H(UiIUz ... Ub+2) 

≤ H(Ui). 

Combining these arguments, we get: 

b+2 

H(U1) ≥ I(U'i;UIU'3) = I(Ui;UjIUj+i ... Ub+2) ≥ (b+1)H(K). 

On the other hand, we know that the distribution over the key space is a uniform one, which 

translates to H(K) = log IKI. Note that for any random variable X, H(X) log IXI. So we can 

rewrite the above inequality as: 

log IUI ≥ H(Ui) ≥ (b+1)H(K) = (b+1) log K, 

which completes the proof. 0 

This lemma strengthens the idea of having more precise bound than that of Theorem 5 when 

'r, g or b take specific values. In the next theorem, a general lower bound on the size of user key is 

given for any r-restricted (g, b)-CKD scheme. 

Theorem 6. [3] Let 'u, g, b be positive integers such that r ≤ ('T1). Consider a -r-restricted 

(g, b) - CKA scheme with n ≥ b + g users and a uniform distribution over the domain of keys, K. 

We have: 

IUiI ≥ jKle , 

T}, and for 'V = 1 the lower bound is: with e = max{v, (kj.1).v1_ 

lKl1 
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Proof. We rewrite the proof as appeared in [3]. From Theorem 5, we can conclude this theorem 

for cases where r ≥ (.ji)r1_T and hence e = T. So we only need to investigate the case for: 

b—i 1_i 1 b—i 
)r Fr  ). 

- g 
(3.14) 

The proof idea is to transform the r-restricted (g, b)-CKA scheme to a 1-restricted (2, c)-CKA 

scheme, where c is a function of v, g and b. Then we apply the result of Lemma 2 to conclude 

the proof. Without loss of generality, we assume that there are n = g + b users in the dr-restricted 

(g, b)-CKA scheme and n' = 2 + c users in the 1-restricted (2, c)-CKA scheme. We will show the 

bound for the size of user1 's user key. Since users communicate to produce one conference key in 

the 1-restricted (2, c)-CKA scheme, this only conference key computation should result in all the 

'r conference keys that are produced in the er-restricted (g, b)-CKA scheme. So we take the keys in 

the new scheme from a domain of size IKI. Let user'1 in the new scheme behave just like he does 

in the original scheme, so it only receives U1. The strategy is to give each user enough shares from 

the old scheme so that every two users in the new scheme are capable of computing r conference 

keys. Let us map a-many distinct users from the old scheme to user, 2 ≤ i ≤ c +2, in the new 

scheme. Note that from combinatorics we know () ≥ (X)Y If we choose a such that: 

7 aa )g-1 > , a≥ 1) IC  (3.15) 

then we conclude that every user, i 1, in the new scheme has enough pieces of user key to 

compute r conference keys when interacting with another user, user1, 1 ≤ I i ≤ c + 2. 

On the other hand, since every user in the new scheme represents a users from the old scheme, 

except for user'1, who acts just like user1, we have: 

a(n'—i)+l=n ,' a(c+1)+1=n=g+b , (+b_1) 
a 

Now that we have obtained the parameters, we can formalize the steps of the new protocol 

as follows. Let U = U1 and for every 2 ≤ i ≤ c +2, U = (Ua(j_1)+1 ,. . . Uaj). Also note that 
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according to the choice of a and c we distribute at most as much user key as was distributed in 

the original scheme. On the other hand, according to Equation (3.15), for every conference G of 

size g in the original scheme, there exists i j such that UG g U' U U. So the key that user; and 

user compute in the new scheme would be a combination of at least 'r keys in the old scheme, 

containing kG. 

So far, we have shown that the transformation is sound. To complete the proof we also need to 

show that the distribution over the key space in the new scheme remains uniform. We show this by 

contradiction. 

Let C be a coalition of users disjoint from user and user, 1 i j c +2, such that using 

U and the communicated messages, enables members of C to learn about the key of user and 

user' j, k, in the new scheme. Note that according to the construction, k includes the key of 'r ij 

conferences, say G1,. . . , G., of the old scheme. We can rewrite this with respect to the original 

scheme as, 31 ≤ £ ≤ r and an adversary set At disjoint from Gt such that the adversaries can learn 

about the key of Gt using their user key, communicated messages and the key of G1,... , G_1. 

Since this argument can hold true for a coalition of size JAt I = n - I Ot I = b, it contradicts the 

security of the original scheme for computing V conference keys. So the distribution over the key 

space in the new scheme remains uniform. 

By applying Lemma 2 for the new scheme, we have: 

IU1I = UI ≥ IK'Ic+l = IKI 1) = IKI'c(['+ga-'J) > 

and for 'V = 1 we have a = g - 1, thus: 

= IKIt' g-1 J = IKIl+TJ 

which completes the proof. E 
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3.3 Samples of CKA Schemes 

In this section we present a number of CKA schemes and compare their key rates. In the last sec-

tion, we noted that if the number of conferences is limited, the interactive schemes can potentially 

achieve lower key rate than the non-interactive schemes. In this section we review a number of 

CKA schemes and compute their key rates and communication rates. 

3.3.1 Blundo et al.'s 1-restricted (≤ n, b)-CKA Scheme 

In [6], Blundo et al. present a CKA scheme that can be used to compute conference keys for 

conferences of sizes 2,. . . , n and an adversary set of size b. In their scheme, as well as the scheme 

of Section 3.1.3, once the size of the adversary set, b, is fixed the scheme enables computing 

conference keys for conferences of size g for 2 ≤ g ≤ n - b. 

Initialization: 

Let ( = {ul,. . . , u,,} be a set of n users with i the public identity of user u. The TA randomly 

chooses a symmetric polynomial in two variables, f(xi , x2), and of degree b in each variable. For 

a user ui € V, the TA evaluates f(xi , x2) by substituting the first variable with the public identity 

of user u and sends the resulting 1-variable polynomial, pi (x2) = f(i,x2), to user u. This provides 

two users, u, Uf E Q/, with a common key: 

= f(i,j) = pi (j) = pj(i). 

Conference key computation: 

When a group of g users, G, decide to form a conference, the user with minimum identity in 

G, say u, randomly chooses a secret, s E GF (q), as the conference key and encrypts it using the 

pairwise key he shares with every other users in that conference. Finally, u sends: 

= sEpE(j), 
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for all j such that uj E G\{ut}. Each user uj E G can uniquely compute the conference key using 

his user key, pj(X2), and the message he receives form user ut as follows: 

s = mt,j pj(). 

Example 4. For G = Jul,- , u}, u1 will randomly choose s e GF(q) and to each user uj E 

G, j 1 sends mu = spi(i). Every user U1 E G with j 1, can compute the conference key by 

performing the following computation: 

mij ED pj(l) = s. 

Without loss of generality, we assume n = g + b. From section 3.1.5 we know that the size of 

_1) logq = (n - 1)logq and since the conference key is a random user key for each user is (  

element of GF (q), the key rate is: 

(lBlundo) 

IKGl 
=n(n-1). (3.16) 

On the other hand, there will be (g - 1) messages that user ut,, a typical conference member 

with minimum id, sends to the other conference members, hence: 

M G I (lBlundo) 
=(g-1). 

IKGI 
(3.17) 

We use the index (lBlundo) to refer to the (≤ n,b)-CKA scheme of Blundo et al. The 1 appearing 

in the index implies that this scheme can only be used to compute one conference key, securely. 

We discuss this point below. 

After one conference key is computed by this scheme, the user keys used to encrypt the con-

ference key, s, are no longer secure. For instance once user u2 receives M21 from Ui in Example 4, 

he can compute s and by XOR-ing s with the other communicated messages, mlj for 2 < j g, he 

can obtain the shared key between user ul and up Hence this scheme is only perfectly secure to 

compute one conference key. 
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3.3.2 Blundo et al.'s 1-Restricted (g, b)-CKA Scheme 

Let( ={1,...,n}bea set ofnusers, CC V be a conference of size g, and  ≤ n—g denote the 

size of the adversary set. Suppose that 2 ≤ £ ≤ g is an integer such that g 1 mod (t - 1) and that 

kENt. 

Initialization: 

The TA distributes user keys corresponding to an (t, b + g - £)-CKP scheme as described in 

Section 3.1.4, implemented over (GF(pc))t, with p prime and k E N such that p1 > n. We denote 

the key of an £-subset of users, L C OZ/, ILl = £, with kL and we think of it as being made up of £ 

independent keys over GF(p') which we denote by kL,1,. . , kj. 

Conference key computation: 

Each user h E G, I G I = g, performs the following steps: 

1. Chooses a random value M(h) = (mt,.. . , m) E (GF (pk) ) r, where r = (1). (According to 
Definition 22, here r is the number of parallel classes that can be formed over a complete 

(t - 1)-uniform hypergraph on G\{h}.) 

2. Partitions the complete ( - I)-uniform hypergraph on G\{ h} into r parallel classes Cl,... , Cr, 

where each consists of X= blocks. We denote each block with for 1 < i ≤ r and 

1≤j≤%. 

3. For each block B 1, denote with B(i, j, h) the set B J U {h} {xi,. . . ,x} and let denote Id 

the index such that x = h. (Note that we are implicitly assuming the users are ordered 

increasingly with respect to their public identities inside each conference, so is uniquely 

determined.) 

4. Encrypts each m using the X keys kB(jjh) ah: 

- k . . h + m (mod k) i,j - B(z,j,h),cz 
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for  < i<rand 1 <j≤. 

5. Broadcasts the vector: 

b(h) - (bh bh ii' br,xi' ' - 1,1,", 1,x'' r1 ,'"'  

The conference key is: 

which can be computed by anyone in G using the broadcast messages bG = (b(1),. .. ,b()) and 

their user keys. 

Here we give an example to clarify how this scheme works. 

Example 5. Let '( = {1,2,3,4,5,6,7}, G = {1,2,3,4,5} with  = 2 and GF(q) = Z11. Since 

5 1 mod (2), we take £ = 3. 

Initialization: 

The TA distributes user keys according to an (3, :5 4)-CKP scheme of Section 3.1.4 over (Zii)3, 

so the coefficients are informs of 3-tuples. Let f(x,y,z) = (7,2, 1)yz, be TA's random symmetric 

polynomial. 

Conference key computation: 

Without loss of generality, we only follow user 114 's actions. His user key is p4 (y, z) = f(4, y, z) = 

(7,8,4)yz. 

1. User u4 chooses a random vectorm44 () = ( 1 4 m,m,m) E (Z11)3. 

2. He divides the design (G\{4}, .) into r = () = 3 parallel classes, where 9 consists of all 
2-subset of G\{4}. 

3. Computes the corresponding a values as follows: 

C= {{ 1,2},{3,5}}, C={{1,3},{2,5}}, C={{1,5},{2,3}}. 

a 1=3,a 2=2, c4,1=3,a,2=2, 
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4. Encrypts each ml with the appropriate keys: 

bl,1 = ml +k{i,2,4},3, 

b ,1 = m+k{l,3,4},3, 

l4, = m + k{ i,4,5},2, 

The arithmetic is done in Z. 

bl,2 = mt+k{3,4,s},2, 

2 2 = n4 + k{2,4,5},2, 

b ,2, = m + k{2,3 ,4},3. 

5. Broadcasts b(4) = (bl,1, bl,2, b 1, b 2, b ,1) b ,2 ). 

Note that k{ 1,2,4} = (3,5,8) and hence k{i,2,4},3 = 8. The same process has to be completed by 

other users in G. Note that once user ui is doing his part, at some point he needs to encrypt his 

secret with k{i,2,4} and since ah = 1, he will pick the value 3 as the encryption key. This should 

clarify why all the encryptions in this scheme are samples of one time pad. 

The security of this scheme directly results from the security of the (g, b)-CKP scheme of 

Section 3.1.4. 

Without loss of generality, assume g + b = n. From Section 3.1.5 we know that each user has to 

'T') pieces of random values from (GF(q)). On the other hand, the ,final. conference key get (  

is obtained by concatenating the g random values that conference members share, each consists of 

r = () pieces from GF (q). Hence the key rate is: 

Iuq1 I(lRD) £ (2:) 
IKGl _ng(g...2). (3.18) 

To compute the communication rate, note that each user broadcasts a vector that contains r>< X 

entities, each from GF(q). Hence the communication rate is: 

IM GI (1RD) - grX 

=z, Kal - gr 

with Z=  

(3.19) 
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We used the index (1RD) to refer to the 1-restricted (g, b)-CKA scheme of Blundo et al. The 1 

in the index refers to the fact that this scheme can be used to compute one conference key, securely. 

The RD in the index refers to the application of Resolvable Designs in their scheme. 

3.3.3 Blundo et al.'s r-Restricted (g,b)-CKA Scheme 

In this section we introduce the 'r-restricted scheme of Blundo et a1., [5], and analyze its efficiency. 

The r-restricted (g, b)-CKA scheme of Blundo et al. is based on their 1-restricted (g, b)-CKA 

scheme, described in the previous section. The idea is to use r copies of the 1-restricted (g, b) - 

CKA scheme while recycling the user keys that have not been used in the computation of the i-th 

conference key, to compute the (i + 1) -th conference key, where 1 ≤ i < r - 1. The protocol can 

be used to compute conference keys for r conferences of all the same size, g. 

Initialization: 

The TA distributes z - 1 sets of user keys according to the initialization phase of a 1-restricted 

(g, b + 1)-CKA scheme of Blundo et al., see Section 3.3.2. TA also distributes one set of user keys 

according to the 1-restricted (g, b) -CKA scheme of Blundo et al. Let L.j refer to the i-th 1-restricted 

scheme of Blundo et al. We randomly choose zS.j from (GF(pk1)), where p is prime and pki > n 

with k≤ki,V1≤i≤r. 

Conference key computation: 

1. When users in conference G1, want to compute a common key, they do so by using the 

conference key computation of Al. 

2. For all the other conferences, Gi with 2 ≤ i ≤ r, all conference members follow the confer-

ence key computation phase of Lj. 

3. Since G11 and G1 are distinct conferences, G\G_i 0 0. Let uh E G\G_1 be the user with 

the smallest identity. Note that uh has not used his user key from User uh randomly 
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chooses a value r(h) E GF (jjki_i) and encrypts it by following the conference key computa-

tion phase of ii_i' when all the £ entities of his shared key is used for this encryption. The 

final conference key for G1 = {u1,. . . , uig  is: 

kGj = ,n(u1)II (ig)11(h) 

This scheme requires that all users hold a counter which is incremented each time a conference 

key is generated. 

Remark 6. 1. The conference key piece that user uh G G\G1_1 appends to k 1 is randomly 

chosen from GF (pi_1) and will be encrypted using all the £ entries of uh 's user key from 

2. In some cases it is desired to have all the conference keys of a same size. For G1 we have 

kGi I = grki logp and for all 2 ≤ i ≤ v, the size of the final conference key is JkGj I = (grk1 + 

rek1_i) log p. So we need to ensure that for all i, 2 ≤ i ≤ r: 

gkj = gk1+k1_i. (3.20) 

Since all elements in both sides of the equation above are positive values, we conclude that 

in this scheme the size of the i-th field, GF (pI'1) used to initialize the Ai, is smaller than the 

size of the field GF (pJC1), used to initialize Al. In Section 3.4.2 we study the field size of the 

conferences in more detail. 

3.4 Analysis of the r-Restricted (g, b)-CKA scheme of Blundo et al. 

We analyze the pr-restricted (g, b)-CKA scheme of Blundo et al. from three perspectives: (i) we 

show that a realization of this scheme does exist regarding the field sizes to preserve the fixed size 

of the conference keys, (ii) growth of the computation field sizes and (iii) comparing the efficiency 
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of the er-restricted (g, b)-CKA scheme with 'r independent copies of the 1-restricted ( n, b)-CKA 

scheme (see Section 3.3. 1) and r copies of the 1-restricted (g, b) -CKA scheme (see Section 3.3.2). 

3.4.1 Soundness of the construction 

In this section we review the analysis presented in [5] to investigate the possibility of having a 

collection of ks's that satisfy Equation (3.20). 

In the following we show that for any given integers n, g, b, £ and 'r such that g + b < n and 

2 < 1 < g with g 1 mod ( - 1), there always exist positive integers k1,. . . , k satisfying Equa-

tion(3 .20). 

Lemma 3. [5] Let g and £ be two positive integers such that 2 < £ < g. Let 11 1 and It = 

gt_l 't1 for 2 ≤ t ≤ v. If gk1 = gk + ekt i,for 2 < t ≤ r, then it holds that kt k1. 1 for 

1 < t < i;. 

Proof. The proof is by induction on t. For t = 1, we have k1 = k1 11. Now suppose that the lemma 

is true for some t < r, then we prove it is also true for t + 1, i.e. kt+i = k1 1. According to the 

assumption, we know: 

gkj=gk 1+ek -+ gk 1=gk1—ek, 

and also according to the inductive step, for t we have: 

k=k1-k 1. 
gt— 

Substituting kt from Equation (3.22) in Equation (3.21), we get: 

It £I gt— It  
gk +i = gki k1gt_i = ki(_ gt_i) = k1( k 9 t-1 ) =k1(1), 

k+i =ki1. 

(3.21) 

(3.22) 
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3.4.2 Growth of the Field Sizes, ks's 

In this section, we study the growth of kt for 1 ≤ t ≤ r. We start with comparing k1 , k2 and k3. We 

have the following equations that relate these three variables: 

kj≤ki, 1<i≤'v, 

gk1 = gk2+I?ki 

gki = gk3 + . k2 

-+ g(k2 - k3) = £(k3 - k1) 

In general for every 1 ≤ i,j < r — l we have: 

gk1 + £k_1 = gk1 + £k_ i, 

g(kj+i—kj+i) =(k—k1), 

which leads to the following results: 

1. Let i = 1, then g(k2 

2. Let i=2, then g(k3 

3. Let i = 3, then g(k4 

4. Let i=4, then g(k5 

For'r — l odd, 

For r - 1 even, 

—k +1) =(k—ki) 

<0 

-+ k2≤k3≤ki 

—+k2≤k, V1≤j≤r. 

—k +1)=.e(k—k2) —+ k3 > kj V2≤j≤i. 

>0 

—k1+1) =(k— k3) 

—k +1) =(k— k4) 

>0 

-+k4 < kj V3 ≤ I ≤ . 

—+k5≥k1 V4≤j≤v. 

g(k—k1+i)=.(k1—k_i) —*k≤k_1, 

<0 

g(k—k11)=e(k1—k._1) —+ kr ≥k_1. 

>0 

In Figure 3.2 we show pictorially why the field sizes fluctuate between k1 and k2. Figure 3.3, 

pictures how the field sizes line up, smallest to the largest. 
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K 

k1 

k2 k2. k2 ki 

k-I k2__j 
A  A___ 

Figure 3.2: Computation field sizes' fluctuations 

- g x ic1 = K 

—'gck2+ k1=K—k2<k 

—'9xk3+ k2=K-1k3 >k2 

k2 Ic4. ) Ic5 k k'.1 

Figure 3.3: Field sizes line up 
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Finally, to measure the efficiency of this scheme we compute: 

(g+b\ fg+b-1 
U = £(k1 +... + k_) ( —1) log p + £k t-1 ) log 

and 

Ig - 2 
\ 

IKG = grki logp = gk1 — 2) logp, 

(RD) - (£(kj +...  + k_i) (t) + £k fg+b-1 I\ £_1 I  ). IKGI - gk1 () gk 1g2\ 
- 

With respect to the communication rate, we compute: 

MG I ( RD) gr - 

IMG.I ('rRD) gr+r  -  2 <i< T. 
= grki gkj 

3.4.3 Comparison of the v-Restricted (g, b)-CKA scheme to previous CKA schemes 

(3.23) 

(3.24) 

In this section we show that the v-restricted (g, b)-CKA is more key rate efficient than using r 

copies of a 1-restricted CKA schemes, i.e. the 1-restricted (g,b)-CKA scheme and the (≤ n,b)-

CKA scheme. We begin with comparing the efficiency of the r-restricted (g, b)-CKA scheme with 

the efficiency of the scheme obtained by 'r copies of the 1-restricted (g, b)-CKA scheme. 

The following lemma from [5] states that under certain conditions, the r-restricted (g, b)-CKA 

scheme is more efficient than using r copies of the 1-restricted (g, b)-CKA scheme, with respect 

to their key rates. 

Lemma 4. Let v be an integer greater than 1 and let g and £ be two positive integers such that 

2 ≤ £ < g. If gki = gkt + £k_i for 2 < t < 'r, then there exist integers k1,. .. , k, such that: 

KGI - KG 

(g+b\ fg+b-1\ fg+b-1\ 
(k1 +...   + k_1) u—+',) k £-1 ) <  £-1 )  

(:)  ki + fg-2\ - Ig-2\ 
e-2) 

(3.25) 
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Proof. The proof is by induction on r. If r = 2, then by choosing k1 = g and k2 = g - £, Equation 
(3.25) holds: 

g - £ (g+b-1) ( t-1  g g+b-1) 7g + b) ≤(g+ (g+b- 1) 
___ 1 £-1 (- + £-1 ) g (g-2\ - (g-2" 

- —2) 

g(g+b)!  < (g+t)(g+b-1)!  
(-1)!(g+b—+1)! - (t-1)!(g+b—)! g(g+b) ≤ (g+)(g+b — +1) 

44 

£2—(b+1)t—g≤O. 

Now suppose that inequality (3.25) is true for some ' ≥ 2, we show it holds for r + 1. To 

conclude this, we first replace kt with k1 according to Equation (3.25): 

(ki +. . . + kr_i) () k fg+b-1\ fg+b\ fg+b-1\ 
12 'v_i e-i) I ) £-1 ) = (1+ - +. + ) /g-2\ + g-1 (g_2) 

(=) + 7 g g €-2) t-2) 

On the other hand, for every pair of positive integers x and y with x ≤ y - 1, we have that: 

(YX) " (y_ 1) + (y-1'\ 
x-1 

so: 

(g+b-1'\) - (g+b) -  (g+b-1). 

£-1 e-i 
Substituting this into the last equality, results in: 

(g+b\ (g+b-1\ (g+b-1 
(1 12 _ _) k £-2 ) k  

g • ' g 2 ' g11) (g-2\ g1 (g-2\ - (g-2 
.t-2) 'J-2) t-2 

Note that the last inequality is obtained by the inductive step and hence is only true when £2 - (b + 
(+b1) 

1) - g 0. By rewriting the inequality above and adding the term  to both sides we 

get: 

12 fg+b\ (g+b-1\ (g+b—i\ fg+b-1\ (g+b-1' 
(i++ 'vi 'i t—i) 'v-i-i  e—i ) £-1 ) + 'l £-2 ) 'v+i  t—i /  - fg-2\ jr-1 fg-2\ + gV (g-2\ 9 •• + + i-) (g_.2) + g ( 2) t-2) —2) —2) 
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The left hand side of this inequality is now in the desired form for proving the induction hypothesis. 

To give the right hand side in the desired format, using Lemma 3 we replace i with g'7: - 

which results in: 

fg+b\ (g+b-1) /g+b-1\ 

(i+ 12 + '7:—i I  ke-i) +i ' £-1  <er+1)' £-1 ) 
g • + + gg r-2 T_ i) (:) + g -r fg-2\ 

e-2) 

To conclude the lemma, we need to show that 

fg+b-1\ fg+b-1\ 
Ii  '. £-2 ) '  

(=) gr fg —2)-2\ 

g(9b•1) - £( 1) ≤ 0 

I1 
g El 

(g+b—i\ £I (g±b-1) 
t-2 )  
fg-2\ g7: (:) 
l-2) 

________ £ 

which is indeed true as long as £2 —(b+ 1)e— g ≤ 0. El 

So for £2 - (b + 1)t - g ≤ 0, the 'r-restricted (g, b)-CKA scheme of Blundo et al. achieves better 

key rate than the using r copies of the 1-restricted (g,b)-CKA scheme of Blundo et al. Now, if we 

show that the 1-restricted (g, b)-CKA scheme of Blundo et al. achieves better efficiency than the 

1-restricted (≤ n, b)-CKA scheme of Blundo et al., we can conclude that for £2_ (b + 1) - g ≤ 0, 

the dr-restricted (g, b)-CKA scheme is also more key efficient than the 1-restricted (≤ n, b)-CKA 

scheme. 

Let 2 ≤ £ ≤ g, such that g 1 mod o - 1) be the best value for £ that minimizes the key rate 

for the 1-restricted (g, b)-CKA scheme. Without loss of generality, let n = g + b. We conclude: 

lUaiel (1RD) 
IKaI 
,, In—I 
ojo-1  
(g-1 
g O2 

(1RD) 
<i&-  
- IKGl £=2 

< 2(n-1) 
- g 

(3.26) 

On the other hand, from Equation (3.16) we know that the key rate for the 1-restricted (≤ n, 

CKA scheme is: 
Uo4' I(lBlundo) 

IKGI 
=n-1. 
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Note that since g ≥ 2, from Equation (3.16) and Equation (3.26) we conclude that: 

2(n-1)  
g 

IUQi'I (1RD) 

t= o 

< n—i, 

(lBlundo) < UqI  
—TAf 

From Lemma 4 we conclude that for v ≥ 1 and 2 < £ ≤ g such that g 1 mod(t - 1) and 

£2 - (b + 1) - g < o, the -restricted (g,b)-CKA scheme has lower key rate than applying 

copies of the 1-restricted (≤ n, b)-CKA scheme as well. 

3.5 Conclusions 

In this chapter we studied a number of major works in which different methods were examined 

to realize a CKD scheme. We saw that the (g, b)-CKP scheme of Blundo et al. provides perfect 

security for forming an unlimited number of conference keys. We showed a lower bound on the 

size of user key's in an unconditionally secure (g, b)-CKP scheme and showed that Blundo et al.'s 

schemes achieves this bound with equality. We also studied the novel work of Beimel and Chor, 

[3], that rules out the possibility of having a CKA scheme that is perfectly secure to compute an 

unlimited number of conference keys with lower key rate than the (gib)-CKP scheme of Blundo 

at al. 

We concluded that in order to obtain a lower key rate, we must restrict the number of confer-

ences that can be formed. We reviewed the v-restricted (g, b)-CKA scheme of Blundo et al. as 

an example of a CKA scheme that distributes less amount of user key among the users than the 

efficient (g,b)-CKP scheme of Blundo et al. 

Since users do not necessarily form conferences of the same size, it is interesting to study the 

possibility of generalizing the idea of the i-restricted (g, b)-CKA scheme of Blundo et al. to a 

,r-restricted (gi,. .. , g ) b1,. . . , b)-CKA scheme, where gj is the size of the i-th conference and b 

is the size of the respective adversary s&, for all 1 ≤ i < r. We pursue this idea in Chapter 4. 
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Table 3.1: Summary of the studied CKD schemes 

Scheme Conference Size Key Rate Communication Rate 

Trivial (g,b)-CKP variable 0 

Blom's(2,b)-CKP 2 n(n-1) 0 

Fiat-Naor's (≤ n,b)- 
CKP 

variable n 0 () 0 

Blundo et al.'s (g,b)- 
CKP 

g n() 0 

Blundo et al.'s 1- 

Restricted (≤ n, 
CKA 

variable n(n - 1) (g - 1) 

Blundo et al.'s i- 

Restricted (g, b)-CKA 
g 

Blundo et al.'s v- 

Restricted (g, b)-CKA 
r conf. of size g 

k : 1+tk  

We also remark that the communication model in all the schemes we have studied in this 

chapter is a broadcast model. In real life networks, broadcast channels must be implemented using 

point-to-point or multicast channels. Network constraints defies assuming that every two users can 

directly transmit messages and users need to rout their messages through other nodes in order to 

communicate. In Chapter 5, we consider a special type of communication graph and introduce a 

new 1-restricted (g, b)-CKA scheme assuming this communication model. We show that our new 

scheme always attains better communication rate and for certain parameter values, better key rate 

when compared to the 1-restricted (g, b)-CKA scheme of Blundo et al. 

Table 3.1 present a summary of the schemes we have studied in this chapter. 
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Chapter 4 

A r-restricted CKA scheme for conferences of varying sizes 

In the previous chapter we studied the r restricted (g, b)-CKA scheme of Blundo et al. and saw that 

it attains better key efficiency for computing r conference keys compared to other CKD schemes 

that we studied so far. This scheme enables r conferences, all of size g, to securely compute 

conference keys. It uses resolvable designs and the communication model is broadcast. 

In real life applications, users in a network form conferences of different sizes to fulfill differ-

ent purposes and so it is desirable to have a CKA scheme that securely and efficiently computes 

conference keys for conferences of varying sizes, say 2 ≤ ga,. . . , g ≤ n, with n being the total 

number of network users. 

In this chapter we introduce three protocols to securely compute a r-restricted CKA scheme 

for a v-tuple of conference sizes i = (gi,.. . , g.) with the respective adversary set sizes .% = 

(bi, . . . , b) such that for all 1 ≤ i ≤ 'r, gj + b1 ≤ n. We follow each construction with its perfor-

mance measures and finally present a practical way to compare their performances. 

4.1 Introduction 

In this section, we formalize the idea of having 'r-restricted CKA schemes for a v-tuple of confer-

ence sizes. To do this, we extend Definition 13 as follows: 

Definition 27. Let ( = {ul,. . . , u,} be a set of n users and 01 = (gi,... , g) be a r-tuple of 

conference sizes with respective maximum adversary set sizes R = (b1,. .. , br), such that 2 ≤ gj ≤ 

n and g1+b < n, for all l < i<r. We refer to the i-thconference, 1 <i<v, of size gj by G. A 

,r-restricted ( 1, .)-CKA scheme is a key agreement scheme that satisfies the following conditions: 
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1. Interactive property: Without knowing the communicated messages within a conference G1 

with I G1 = gj E I, no subset of users has any information on kG1, given all the user keys, 

H(KG,lU) —H(KGI). (4.1) 

2. Correctness: For every conference G1 with I Gil = gj E 9, all users uj E G, 1 < j ≤ gj, 

using their secret information and knowing the communicated messages, m, can compute 

the conference key for G1: 

H(KG1lUjMi) = 0. (4.2) 

3. Perfect secrecy: No information about the key of any of the conferences, G1 with IG1I = gi E 

can be found by the members of a disjoint adversary set, A1 with JAi I = bi e ., Gi flA1 = 0, 

given all the user keys of the members of A1 and all the communicated messages: 

H(KG1IUA,M) =H(KG1). (4.3) 

Remark 7. The r-restricted (g, b) -CKA scheme of Blundo et al. is a special case of the er-restricted 

(v', )-CKA scheme when all the gj 's in 1 are initialized to g. 

Notation: 

We refer to the 1-restricted (g, b)-CKA scheme of Blundo et al. as (g, b) - 1RD scheme. This 

notation is used to emphasize on the use of Resolvable Designs for computing one conference 

key. Similarly, by (g, b) - 'RD scheme we refer to the v-restricted (g, b)-CKA scheme of Blundo 

et al. 

Remark 8. We assume that for a given tuple of conference sizes, 9 = (gi,. .. , g), we have gj 

g--i for i = 1,... ,'v - 1. This ensures that Vi < i < r - 1, 3Uh E G+i\Gt such that uh has unused 

user keys distributed for computing kG1 that can be brought forward when computing k011. We 

also assume that once a conference key, kG1, is computed, the conference members remember this 
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key for future applications. In other words, once a conference key is computed, we do not consider 

recomputing it. This has been the assumption for all the CKD schemes we have studied so far; too. 

Making this assumption helps when we argue later how the encryptions are samples of one-time 

pad. 

Remark 9. Given 9 = (g,. . . , g), whenever we refer to an application of the (gi, b1) - 1RD, 

we assume that the TA chooses the £i that minimizes the respective key rate for the (gi, b1) - 1RD 

scheme, Equation (3.18), for all gi E 9. 

Remark 10. In this chapter; all the schemes assume a broadcast channel for their communication 

model. 

In the following three sections, we introduce three i-restricted (', .)-CKA schemes. 

4.2 Scheme 1 

For the first scheme, we use a (gi, b1) - 1RD scheme of Blundo et al., for each gi E Y and the 

respective bi E R. 

Initialization 

• Given the ordered tuple of conference sizes, 1 = (ga,... , g), the TA privately distributes r 

sets of user keys according to the respective (gi, b1) - 1RD scheme to each user in 0& over 

GF(p"i), the respective finite field, for all 1 <i < r. 

Conference Key Computation 

• When a group of users, Gi = {Uj1,. . . , ujgj }, IGtI = gi, want to compute a conference key, 

they follow the conference key computation phase of the respective (gi, b) - 1RD scheme, 

for all 1 <i < ii.. 
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Remark 11. Since we want to have conference keys of all the same size, we require that for all 

1 ≤ i 

giriki = 

pki > n, 

with ri = (=). 

4.2.1 Efficiency 

(4.4) 

From Equation 3.18 and Equation 3.19, we can directly evaluate the performance of this scheme. 

For the key rate we compute: 

,uV -'r .(gi+bi_l'\ 'v 
't1 £-1 I . 'e,—ij (45) 

KGI g1r1k1 i=1 gjrj 

where k1 is replaced from Equation (4.4). Similarly, the communication rate is: 

IMGjI -   gjrjXjkj - 6 
IKQ,I - g1r1k1 — Xi, (4. ) 

with r = () and =  , for all 1 ≤ i 'r. 

Before we continue with other schemes, we discuss the challenge of having different confer-

ence sizes, gj's. 

Remark 12. Note that in a (g, b) - ' RD scheme, described in Section 3.3.3, since all the confer-

énces are of a same size, g, once fixing £ such that g 1 mod (t - 1), this will hold for all the r 

conferences. However, in a 'r-restricted (, ,) -CKA scheme, after choosing an appropriate £ for 

gj, it might be the case that: 

gj 1 mod (j - 1), 

1 mod (.e - 1). 

The inconsistency in Equation (4.7) affects the performance of Uh E Gi+l\Gi when he wants to 

append another piece of secret to the key of as his user keys from Ai will not match the block 

sizes in the parallel classes of G+i. 
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4.3 Scheme 2 

The idea of this scheme is to stay as close as possible to the 'rRD scheme by handling the potential 

parameter inconsistencies, mentioned in Remark 12. 

Since the key rate in (gj, b1) - 1RD is a function of Li for 2 ≤ Lj ≤ gj, there is a possibility 

the value of Li that minimize the key rate, happens for Lj > 2. In this case, we might encounter 

a similar inconsistency as in Equation (4.7). One way of addressing this problem is to introduce 

dummy users. 

The idea is to find the minimum integer, fj E N U {O}, such that for all g 

g1+fj 1 mod (L_i—l), V2≤i≤r. (4.8) 

Let . . , u be dummy users with public identities in GF (pCi). We assume these identities 

have not been assigned to any other users in V. Take G = G U {u, . .. , u }, so G I = gj +f 

and according to the choice of fj, the (Li_i - 1)-uniform hypergraph over G\{Uh}, is a resolvable 

design with z' = many (ti_i - 1)-subsets in each parallel class, for uh E G\G1_1 with 

minimum identity. Hence uh's user key from A..1 is compatible with the size of the blocks in 

G \{uh} 's parallel classes and so uj can append another piece of secret to kG, by following 

similar steps as if it is a (g + J, b1) - rRD scheme. 

Remark 13. Given a = (gli,. . . , g), let umax = max {g,. . . , g}. Since fj 's satisfy: 

O≤fj≤g, 

we conclude that: 

max {fj,1 < i≤v}≤gm. (4.9) 

Remark 14. For all 1 ≤ i ≤ r we assume that GF(p'i) has at least n + gnax elements. 

For this construction, given a 'r-tuple of conference sizes, 9 = (gi,. . . , g), and the respective 

adversary set sizes, % = (b1,. . . , b.c), the TA can compute the Li's and form another 'r-tuple 2 2 = 



64 
(loi . .. ,lø). Finally, let (O,f2,. . . ,f) be a 'r-tuple containing the respective number of 

dummy users, according to Equation (4.8). We describe the two phases of the scheme below. 

Initialization: 

• The TA distributes the user keys according to r - 1 copies of a (gj, b +1) - lRD scheme over 

(GF(pldi))ti for 1 < i < r— 1 and one copy of the user keys according to the (g,bt) - 1RD 

scheme over (GF(p!))t, for some positive integer values ki ≤ k1, V 1 ≤ i ≤ r. See Section 

3.3.2. 

Conference key computation: 

• When users in Gi want to compute the conference key, they follow the conference key com-

putation phase of the (gi , bi) - 1RD scheme. 

• For all 2 ≤ i ≤ v, users in G1 follow the conference key computation phase of the respective 

(gj, b1) - 1RD scheme. Since we assumed that for all 2 ≤ I ≤ r, g- 1 ≤ g, we are assured 

that there exists a uh E G1\G1....1. uh randomly chooses another value r(h) E GF (pj_1pki_l) 

Note that uh shares a common key with any (4.1 - 1)- subset of G. Using these keys, uh 

encrypts r(h) with all the 4..l components of his shared key with the blocks in G. 

We remark that the key size for the first conference, G1, is: 

IkGiI = girl k11og2p, 

and for all 2 < i ≤ r, the key size for conference G1 is: 

Ikc1I = (g1rk+.e_1rk1_1)log2p, 

with r1 = () and r = +). So we need to make sure that the equation below always holds 

for an arbitrary choice of ': 

gikiri = gkr+1_irk1_i. (4.10) 
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In fact we show that for every choice of 91 = (gi,...,g) and, with  < gi g2 :5 ... ≤ g, 

and consequently the 2 and 9,, there are always values for k2,. . . , kc such that a realization of the 

proposed scheme is possible. 

Lemma 5. Let k1 be a positive integer such that p1" > n + g,. Given 01 = (gi,. . . , g), such that 

gi > 2, and all integers 2 ≤ ellt ≤ gt such that g 1 mod ( - 1), 1 ≤ t ≤ 'r, let Ii = girl - 

and It = girl --iti. If gikiri = gkr +t_1k_ir then it holds that k = 9t rt ''2 t T. 9t rt 

Proof. We prove this lemma by induction on t. Let t =2, then: 

gikiri = g2k2r2+I!ikir, 

k2 = g1k1r1 t1k1 k1 kl 4 —(girl — 1kir2 = — Ii. 
g2r2 g2r2 g2r2 g2r2 

Assume the lemma holds for some t < , we show it also holds for t +1: 

gikiri = gt+ikt+irt+i + tktr+i ,' kt+l = 1 (gikiri - £tktr+i). 
t+i rt+l 

By the induction hypothesis we can substitute for k = 1t—i which leads to: 9t rt 

k1 
k+i = 1 gtlrt+l (gikirj — tT+i gr gtlrtl gtrt gtlrtl (girl  It—l) =  It, (  

which concludes the proof. D 

Remark 15. For gj = 2, £2 must be 2 and hence k2 = 0. To avoid this, we assume gi > 2. Note 

that for g = 2, a similar issue also occurs in the original paper of Blundo et al., [5]. 

We give an example that shows how the scheme works. 

Example 6. Given /, 9 and R with gj = 7 and £_i = 6. Let Gi = {ul,. . . , u7}. To satisfy 

Equation (4.8), we take f = 4. 

7+41 mod (6-1). 
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(d) (d) (d) (d)( d) (d) (d) (d) 

By adding four dummy users, u1 , u2 , u3 ,u4 , toG1 we get G" = GU{u1 ,u2 , u3 , u4 }. 

Without loss of generality, assume Uh = u7. The collection of all subsets of size £_ - 1 = 5 in 

G\{u7} is.. 

{{1,2,3,4,5}, { 1,2,3,4,6}, { 1,2,3,4,fi}, 

{1,2,3,4,f2}, { 1,2,3,4,f3}, { 1,2,3,4,f4} 

{6, fl, f2,f3,f4}} 

We expect to reorganize these blocks into r = (112) = () = 126 parallel classes such that 

there are Xi = = 2 subsets in each class. Hence by applying the dummy users method, a 

complete set of-parallel classes can be formed in which the size of the elements properly match the 

parameters of A1_1. 

4.3.1 Prformance 

The key rate of this scheme is computed as: 

IuQ/ I r-1 £k1 (f') + £Tk (g+b-1 4 ) —1  

IKGI =n( giriki giriki ) 
and the communication rate is: 

with ri = (:), 

4.4 Scheme 3 

IMG1I - girixiki  

IKGJ - giriki 

IMGI - rixi  

IKG1I - g1r1k1 

• -  - (g+J-2) d ' - g+fj-1  
- an - 

(4.11) 

(4.12) 

(4.13) 

This last scheme can be viewed as a special case of the previous scheme, when all £'s are set to 

2. Note that in this case, Equation (4.7) is satisfied and hence with 9 = (0,. . . , 0), one can follow 



67 

the steps of the previous scheme. We remark that for this scheme, ri = r 1 and Xi = = g - 1, 

for all 1 ≤ i 

Initialization: 

• The TA distributes the user keys according to the user keys of a (gi, b) - 1RD scheme over 

GF (p ki )2 with 4 = 2, for all 1 ≤ i ≤ c - 1. The TA also distributes one copy of the user keys 

distributed according to the (g, b - 1) - 1RD scheme over (GF (pkr) )2, for some positive 

integer values ki ≤ k1, 1 < i < r. See Section 3.3.2. 

Conference key computation: 

• When users in G1 want to compute the conference key, they follow the conference key com-

putation phase of the respective (gi , b1) - 1RD scheme. 

• For all 2 ≤ i ≤ r, the users in G1 follow the conference key computation phase of Scheme 2, 

described in Section 4.3 with ii = 2. 

It is important to make sure that all the computed conference keys are of the same size, i.e. the 

following equation holds true: 

giki=gk+2k_i, V2≤t≤v. (4.14) 

The argument that states for every given r-tuple of conference sizes, 9, a realization of our scheme 

exists is identical to Lemma 5 when £'s are all set to 2. 

4.4.1 Performance 

Substituting tj = 2 and f =0, we compute r1 = () = 1, Xi = = gj - 1, r; = = 1 

and ; =  - 1. From Equations (4.11), (4.12) and (4.13), we compute the key rate and 

communication rate of Scheme 3 accordingly. For the key rate we compute: 

IUVI =n(E 2k(gj+b) + 2k.(g+b T _1)) (4.15) 
IKoI i=1 g1k1 g1k1 
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The communication rate is: 

!MaiI - 
 =zi=gi-1, (4.16) 

IKGiI - giriki 

- gj(gj— l)k 2(i_ 1)k_i V2≤ i≤ T. (4.17) 
g1k1 g1k1 

Remark 16. We remark that the security of Scheme 1, 2 and 3 is directly obtained from the perfect 

secrecy of the (gi, b) - 1RD. 

4.5 Comparison 

To compare the performance of these three schemes, we used Mathmatica 7 to simulate all the 

parameters that appear in the respective efficiency expressions: 

Note that once n, 'r, ci, p and k1 are given, the rest of the parameters can be computed uniquely. 
To show the result of comparison, we chose to present the key rates in a 2D graph. If the i-th point 

on the horizontal axis represents having the first i conference sizes from ci = (gi, . .. , g), the 

vertical axis presents the key rate as if r = i. That is having only the first i conference sizes, 

= (gi). .. , g), from 1 to compute conference keys for. 

In the following sections, we compare the key rates and communication rates. 

4.5.1 Key rates 

To compare the key rates of the three schemes, we need to compare the expressions below, from 

Equation (4.5), (4.11) and (4.15): 

 - giriki - 1 gin 

 +  
n (F—,!=—1 giriki giriki )' 

fl(L r_1 ≥kL + 2(n-1)k  
g1k1 g1k1 )' 

with ri = (:). 

(4.18) 
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Figure 4.1: Scheme l's key rates for i+2 

Note that without loss of generality, we take gj + b1 = n, Vi ≤ I ≤ v. These expressions 

depend on multiple parameters. To simulate all these parameters, we implemented the key rate of 

each scheme using Mathematica 7 and conducted the experiment with a range of parameter values. 

The Mathematica code sample is provided in Appendix A.1.i. In the next section we present 

one of the results of running this code for certain parameter values. 

Simulation result 

Applying the code, sample of which is provided in Appendix A.1.1, we obtained Figures 4.1, 

4.2 and 4.3 for the key rate of Scheme 1, 2 and 3, respectively, with 91 generated by function 

g[i] = 31+2, i.e. i+2 = (5,8,11,14,17,20,23,26,29,32,35,38). This choice of g[i] results in 

non-trivial li's and f1's, i.e. not all li's are equal to 2 and not all f's are equal to 0. This is of 

significant importance for our simulation because in case all Ii = 2, then Scheme 2 and Scheme 3 

are essentially identical. Similarly for the case where all fj = 0. 
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Analysis 

Note that since in Scheme 2: 

1. We had recycled the unused user keys from L\.j in 4 and hence used smaller field sizes, 

(with Ai referring to the section of the scheme for relative parameters to gj) 

2. We used the best values for £'s so that the respective key rate of (gj, b) - 1RD is minimized, 

we expected Scheme 2 to have the lowest key rate comparing to Scheme 1 and Scheme 3. However, 

despite our expectation, Scheme 2 does not have better key rate than the other two schemes. To 

investigate the result, let us look back at Equation (4.18). By comparing the key rate expressions 

of Scheme 1 and Scheme 2, one would see that the factors that differentiate the growth pace in the 

key rates of the two schemes are essentially (Ti) k1 and The indices ( 1) and (2) refer 

to the respective field sizes of Scheme 1 and Scheme 2. We run another code to compare these two 

values, a sample of which is provided in Appendix A. 1.2. 

It turns out that (E21) grows faster than () compared to how faster k2 shrinks compared 
(1) . j,i(SCh2) ,j(SCh1) 

to Ic1 . Hence the whole expression for grows faster than 
G TV 

On the other hand, when comparing the key rates for Scheme 2 and Scheme 3, we note that 

e (2) 
the differentiating factor is () -4- and 2nk 3 . Using the sample code presented in Appendix 

A.1.3, we conclude that f grows much faster than 2n, compared to how fast k2 shrinks 
(3) . Iuz,I(5dh12) ui(Sdhi3) 

compared to Ic1 . Hence the whole expression for grows faster than 

The simulation result for comparison of Scheme 1 and Scheme 3 shows that choosing the best 

value for £i to minimize the respective (gj, b1) - 1RD key rate, as is in Scheme 1, is more influential 

than implementing the (gj, b1) - 1RD schemes over smaller fields, as is in Scheme 3. 

In conclusion, the idea of recycling the unused user keys that are distributed by the TA for 

computing the i-th conference key for the computation of the (i + 1)-th conference key, enables us 

to choose the user keys for the (i + 1)-th protocol from a smaller field compared to the user keys 
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chosen for computing the first conference key. However, for schemes that rely on dummy users, 

it turns out that the reduction caused in the field sizes is smaller than the incrementation caused in 

the size of user keys. 

4.5.2 Communication rate 

To compare the communication rates of the three schemes, we need to compare the expressions 

below, from Equation (4.6), (4.13) and (4.17): 

IMGj I(Sc'hul) - 

-FCT —Xi, 
Ma, I (Sch2) -  r%k,_i  

- giriki 

Mail (Sch3) - g,(g,-1)k, + 2(g,- 1)k,_1  
- g1k1 g1k1 

(4.19) 

with r = = , r = and x = t1TI', for all 2 ≤ I ≤ T. 

Since these expressions depend on many parameters, we simulate them using Mathematica 7. 

A sample of the code is provided in Appendix A.2. 

Simulation result 

Figure 4.4, 4.5 and 4.6 picture the communication rate for Scheme 1, 2 and 3, respectively. 

According to the simulation result, Scheme 1 has the lowest communication rate comparing to 

Scheme 2 and 3. 

We remark that for most of the gj's, the best value for Ii to minimize the corresponding key 

rate was 2. However, at times where Ii > 2, we observed unpredictable increase or decrease in the 

communication rate values. 

4.6 Conclusion 

To realize a CKD scheme that works for computing r conference keys for conferences sizes 9 = 

(gi,.. . ,g.), we adopted the idea of the v-restricted (g, b)-CKA scheme of Blundo et al. Our goal 
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Figure 4.5: Scheme 2's communication rates for '3i+2 
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Figure 4.6: Scheme 3's communication rates for i+2 

was to incorporate previously distributed secrets to compute the i-th conference key for computing 

the (i + 1) -th conference key. Since the scheme in [5] works for computing r conference keys for 

conferences of the same size, g, the main challenge is the inconsistency in the parameter values, as 

stated in Equation (4.7). 

We proposed three ways of realizing such CKD schemes, (i) use a 1-restricted (gj, b)-CKA 

scheme of Blundo et al. for all 1 ≤ i ≤ ' (ii) use dummy users to obtain the consistency in the 

parameter values, and (iii) initialize all the £'s to 2. 

We provided an implementation of the key rates in these three schemes using Mathematica. 

Our code can be used to asses the key rate of the three schemes for given parameter values and 

conference sizes. We saw that despite our expectation, the key rate of Scheme 2 is not always 

lower than the key rate of Scheme 1 or 3. This contradicts our expectation since in Scheme 2, 

all fields sizes are smaller than k1 whereas in Scheme 1 the field size remains the same for any 

conference size, gj and in Scheme 2, although the field sizes are smaller than k1, they are larger 

than the counter field size in Scheme 2. By doing further comparison, we concluded that the reason 
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behind the inconsistency of the comparison results to our expectation is the fact that in order to 

lower the field size in Scheme 2, we had to introduce the fake users and distribute the user keys 

as if there are such fake users. This increase in the user key size caused by the fake users is more 

significant than the reduction in the field sizes. 

In conclusion, for a given 4' = (g,. . . , g.), multiple applications of the (gj, b) - 1RD scheme 

of Blundo et al. results in a better key rate and communication rate than applying Scheme 2 or 

Scheme 3. On the other hand, we remark that another promising approach to design a ( 9, )-

CKA scheme is to initiate a vi-restricted (gj, b1)-CKA scheme for every gj E #', with rj the number 

of times gj has appeared in . 

The work in this chapter does not conclude the research line regarding the realization of a 'r-

restricted (v', %)-CKA scheme. There are many interesting open questions such as lower bound 

on the size of user keys in such setting and also constructions in which the conference sizes in 

do not necessarily obey the condition that g ≤ gj, for 2 ≤ i ≤ 'c, which are left for future work. 
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Chapter 5 

CKD scheme for Tree Structured Conferences 

In this chapter we argue that broadcast channels are not suitable tools to model the communication 

infrustructure with. Instead, communication graphs provide a better model of the communication 

settings. In a communication graph, every user is represented by a node and two nodes are con-

nected with an edge if there exists a communication channel connecting the respective users. This 

forces the associated communication graph to a group of users to be a connected one or otherwise 

there is no other means of communication for that group of users to communicate with one another. 

Since from graph theory we know that every connected graph has a spanning tree, we intro-

duce a new CKA scheme in which the communications are based on the spanning tree within a 

conference's communication graph. Our scheme is designed to compute one conference key for a 

conference of size g and adversary set of size b such that g + b ≤ n. We compare the performance 

of our scheme to a modified version of (g, b) - 1RD scheme in which the messages are commu-

nicated through the edges of a communication graph instead of broadcasting them. We prove that 

our scheme always attains a lower communication rate and for certain parameter values, achieves 

a lower key rate. 

5.1 Motivation 

In large networks, two users may not be directly connected and therefore need to find a path 

through other users to communicate. Communication graphs, where each node represents a net-

work user and an edge represents a point to point communication channel, have been used to model 

communication channels and communication paths between users. 

For instance, Figure 5.1 clearly shows the underlying spanning tree in the communication graph 
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Grrjteka PM to Pm netAwkfromA,,2u4 2002 

CiIcd0J Nod tlpf(nod d.codep C corn) 

Figure 5.1: Gnutella peer to peer file sharing network from August 4th 2002 for about 100 nodes 

of the Gnutella peer to peer file sharing network. This figure is obtained from the data set in [2] for 

approximtely the first 100 nodes out of a total of 10876 nodes. Each node represents a computer 

and the edges show the communications between the computers. 

5.2 The model 

In this chapter we consider a setting where users are connected to each other by point to point chan-

nels, and use the collection of such channels to represent the communication graph of the users. 

We assume that all transmitted messages are visible to the adversary, that is the communication 

channels guarantee authenticated communication but is not private. For two users to communicate 

over such communication graph, it is necessary that the corresponding nodes be connected through 

a path in the graph. For a group of users that form a conference, it is necessary to have the subgraph 
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whose nodes designate that group of users be a connected one. From graph theory, this guarantees 

a spanning tree within the communication subgraph of group of users, say T. We assume that the 

communication subgraph associated with a conference of size g has an rn-balanced rooted span-

ning tree: a rooted tree in which every node, except the leaf nodes, has exactly m children, see 

Definition 18. We also assume that this rn-balanced rooted tree is symmetric with respect to the 

root node and is complete in the sense that the length of the path from any leaf node to the root is 

d. This assumption is made in order to compute the efficiency measures easier, as in Section 5.5. 

In the next section we present a new 1-restricted (g, b) -CKA scheme that is designed specifi-

cally for these tree structured networks. 

5.3 Tree Structured Key Agreement 

In this section we introduce our new CKA scheme for conferences with an rn-balanced rooted tree 

as the communication graph. The idea is to have the TA provide a set of g shared keys between 

every pair of parent-child nodes in the initialization phase. Later at the conference key computation 

phase, each user chooses a random value and shares it with other conference members. The final 

conference key is obtained by concatenating all these random values. We design a method to assure 

that all these random values get delivered to all the conference members. We do this in two phases 

of message communication: leaf-to-root and root-to-leaf. 

At the leaf-to-root phase, starting from the leaf nodes, each user encrypts and sends his ran-

dom value and all the other random values he has received from his children, to his parent node. 

Once the root receives all the random values of the conference members, this phase of message 

transmission completes. 

At the root-to-leaf phase, starting from the root node, each user sends each one of his children 

an encrypted version of his random value and all the other random values he has received from 

his parent or other children except the recipient child. This second phase of message transmission 
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completes once all the leaf nodes receive the g - 1 random values of the other conference members. 

Note that we assume an order according to which the messages are transmitted. For instance, 

in the leaf-to-root phase, a non-leaf node does not start sending messages to his parent node unless 

he has received all the messages he expects from his children. Similarly, in the root-to-leaf phase, 

a non-root node does not start issuing his messages to any of his children unless he has received 

all the expected messages from his parent node. Note that the topology of the network is publicly 

known to all the users. 

Here we begin the formal description of our new 1-restricted rn-tree (g, b)-CKA scheme. 

Let V = {uj, . . . , u,} be a set of n users with i denote the public identity of user U1. Let 

97  E N with g + b ≤ n and p be a prime such that p > rn. Let T =< V,E> denote the rn-

balanced rooted tree underlying the communication graph of the whole network. 

Initialization: 

1. For every user ui E except leaf and root nodes, the TA randomly chooses a polynomial, 

f(x), in one variable of degree at most min{b,m - I  over (GF(p)). TA privately sends 

f (x) to the respective user, u, evaluates fj (x) on the unique public id of user ui's chil-

dren, and sends each child the resulting g-tuple value. That is k1,1 = (kL ,. . . , k9. ) = fi (I) E Id 

(GF(p))g denotes the g-tuple shared key between a parent node, u, and the child, u. For 

ui E W who is not a leaf node nor the root node, the user key consists of a random polynomial 

J and one random g-tuple over (GF(p)) . 

2. The TA sends the root node only one random one-variable polynomial of degree at most 

min{b,rn— l} over (GF(p)). 

3. The TA sends each leaf node a g-tuple from (GF (p))9 obtained from the random polynomial 

given to that leaf node's parent. 

Conference key computation: 
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Let G = {ul,... , u8} C W be a conference. Without loss of generality, take ul as the root for 

TG, the subtree obtained from T with its nodes restricted to G. We define C1 as the set containing i 

and the public identity of user ui's children. Also let T1 = (Vc1,Ec) denote the subgraph obtained 

from TG when its node set, Vs,, is restricted to C. 

Every user ui E G chooses a random value ri E GF(p). There are two phases of message 

transmission: leaf-to-root and root-to-leaf. 

1. In the leaf-to-root phase, starting from the leaf nodes in the conference, every user ui encrypts 

and sends his secret, r, including all the secret values he has received thus far from his 

children, to his parent node, Uf, using the g-tuple shared key, k: 

in(t) . .= r 
i,J jP 

wherecECi and 1≤ t <g- 1. 

This phase completes once u, the root node, receives g - 1 messages from his children. 

2. In the root-to-leaf phase, starting from the root node, u1, every user ui encrypts and sends 

to each of his children, Uf, his secret value, r, and all the secret values that he has received 

from his parent and children, except uj, using the unused entries in their g-tuple shared key, 

where s E G\V1 and 2 ≤ t ≤ g - 1. This phase completes once all the leaf nodes receive 

g - 1 messages from their parents. 

Note that t basically counts the number of messages that have already been transmitted between the 

respective two users and is used to determine which component of the g-tuple shared key should 

be used for encryption. 
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It is not hard to see that once these two steps are completed, every node has the secret of all 

the other conference members. The ultimate conference key is formed by concatenating all these 

g secrets, according to conference members' identities, smallest to the largest: 

kG =r1Ii ... Iirg. 

Remark 17. Note that every two users communicate exactly g messages. For T =< V,E>, the tree 

that denotes a conference communication graph, we have IV  = g. By removing any edge, e E E, 

the tree T disconnects into two sub trees T1 =< V1,E1 > and T2 =< V2,E2 > such that V1 UV2 = V 

and E1 U E2 U {e} = E. So the missing edge, e, is the only means of communication between the 

users in T1 and T2. Since every node produces exactly one random number, we conclude that exactly 

lvii messages had to pass efrom one direction and I V21 messages from the opposite direction. This 

adds up to exactly I Vi  + lv2I = lvi = g messages to pass through any edge. 

The following example is to better illustrate the protocol. 

Example 7. Let Qi = {ul,...,u13} and G = {ul,...,u7} with b = 6 and m = 3. Take p = 11, 

so p > in. Figure 5.2 and 5.3 shows the communication graph of G, TG, with ul as the root 

node. According to the protocol, to each non-leaf user, ui E 'P1, the TAsends a randomly chosen 

polynomial, J (x), of degree min{ b, m - 11 = 2, with coefficients from (GF (i1)). The TA also 

sends the shared key obtained from f (x) to each of the u 's children. Let the random polynomial 

that the TA gives to U3 be: 

f3 (x) = (2,4,3,8,O,1,8)x2+(1,2,3,4,5,6,7)x+ (0, 3,4,2,0,3, 1). 

Here we have used 7-tuples over GF (11) to show elements of GF (ii). The TA sends u 's children, 

u5, u6, u7, the respective shared key, f (5), f (6), f (7): 

f3(5) = (0, 3,6,2,3,3,5) =k3,5, 

f3(6) = (1,5,9,6,8,9,1) = k3,6, 
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Figure 5.2: Leaf-to-root phase of the conference key computation 

f3(7) = (6)4,7,4,2,6,2) = 

Note that U3 also receives a shared key, fi (3) E (GF(1 i)), from the TA to communicate with his 

parent node, u1. 

In the first phase of conference key computation, starting from the leaf nodes, each user, u, 

randomly chooses a value r1 E GF(1 1), encrypts and sends it together with the encrypted version 

of all the random values he has received from his children, to his parent node. 

In the second phase of conference key computation, starting from the root node, u, every user, 

u, sends his children, Uf, the encrypted version of his random value and all the random values he 

possess and did not receive from uj. 

Now consider the messages that are sent between U3 and u5. In the first phase, u5 sends u3: 

(1)( 1) 
m5,3=r5EJ 3k5,3  -+ m5,3=r5O. 
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UI 

Figure 5.3: Root-to-leaf phase of the conference key computation 

In the second round, U3 sends the following messages to u5: 

m3,5 =r1 3, 1n3,5 =r26 

(4) (5) 
m3,5 =r32, 1n35 =r4 ED 3 

(6) (7) 
m3,5 =r6 ED 3, In (7)  ff35 

The final conference key is kG = nil... 11r7. 

5.4 Security of the scheme 

In this section we show that the scheme in Section 5.3 satisfies the requirements of a 1-restricted 

rn-tree (g, b)-CKA scheme. That is, the requirements of Definition 12 and 23 are satisfied. 

1. Interactive property: In order to show that the scheme of Section 5.3 satisfies the interactive 

property, Equation (2.11), we need to show that: 

H(KoiUi) = H(KG), Vi E G c V, IGI = g. 

This is indeed true because the conference key, kG = ri ii ... I lrg with G = {Uj1,. . . , Ujg} and 

rij is the random value chosen by user uij E G, and so conference members cannot compute 

the conference key without interacting with other members. 
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2. Correctness: To show that the new scheme in Section 5.3, satisfies the correctness condition, 

Equation (2.12), we need to show that: 

H(KGIU1M G) = 0, Vi E G IGI = g. 

According to the description of the scheme, any conference member is capable of uniquely 

computing the conference key using his user key and the communicated messages. This 

confirms the correctness of our scheme. 

3. Perfect secrecy: To prove that the scheme is perfectly secure, Equation (2.13), we need to 

show that: 

H(KGIUAM) =H(KG), 

for A fl G = 0, JAI = b and M = UG',IGI=g MG. Our scheme is designed for computing 

one conference key and so M = MG, where G is an arbitrary conference with I GI = g. 

To prove the perfect secrecy of the scheme we argu'e that the adversary's knowledge consists 

of two components: (a) the messages that are communicated during the execution of the 

protocol, and (b) the user key of the corrupted users. We then show that these components 

are statistically independent from the conference key. 

To show (a), note that according to Remark 17, every message is encrypted using a distinct 

key, hence one-time-pads. Also, from Theorem 1 we conclude that the encrypted messages 

are perfectly secure and do not leak any information. So from Corollary 1, we can write: 

H(MGIUA) = H(MG), 

H(MGIKG,UA) = H(MG). 

(5.1) 

To show (b), note that kG is built by concatenating fresh random values that the conference 

members share during the conference key computation phase, whereas the TA gives UA to 

members of A at the initialization phase. This means that the two random variables, KG and 
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UA, are statistically independent. From Corollary 1 we can write: 

H(KGIUA) = H(KG). (5.2) 

To complete the proof, we remark that from Corollary 2, for two random variables X and Y, 

we have: 

H(X, Y) = H(X) +H(YIX). 

This can be extended to three random variables, X, Y and Z: 

H(X,Y,Z) = H(X,Y) +H(ZIX,Y) 

= H(X) +H(YX) +H(ZIX,Y). 

Using Equation (5.3), we can write: 

or: 

H(KG,UA,M) = H(K) +H(UAKG) +H(MIKG,UA), 

H(KG,UA,M) = H(UA) +H(MIUA) +H(KGUA,M). 

By equating the right hand sides of Equation (5.4) and (5.5), we have: 

H(KGIUA,M) = H(KG) +H(UAIKG) +H(MKG, VA) —H(UA) - H(MIUA). 

From Equation (5.1) and (5.2), we have: 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

H(KGUA,M) = H(KG) +H(UA) + H(M) — H(UA) — H(M) 

=H(K). 

This completes the argument regarding the perfect secrecy of our new scheme. On the other 

hand, we just showed that our scheme satisfies the conditions of a 1-restricted (g, b)-CKA 

scheme. Since the communication model is based on an rn-balanced tree, we conclude that 

our new scheme has all the conditions to be an rn-tree (g, b)-CKA scheme. 
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5.5 Performance 

In this section we compute the efficiency of our scheme and compare the result with the (g, b) - 

1RD scheme of Blundo et al, when applied on a communication graph. We show that for certain 

parameter values, our scheme has better key rate and it always achieves a better communication 

rate. 

As mentioned in Section 5.2, we assume that the communication tree is symmetric with respect 

to the root node and is complete in the sense that the length of the path from any leaf node to the 

root is d. So, there are rn'1 leaf nodes and a total of n = f_0m1 min-j-1 users. To specify a 

random polynomial, f(x), of degree min{b,m - l}, exactly (min{b,m - l} + 1) coefficients are 

needed. Hence TA sends to every user u, except the root and the leaf nodes, (min{b, in - l} + 2) 

random values from (GF(p'c)). This includes a polynomial to communicate with their children 

and one separate key to communicate with their parent. The TA also sends (min{b,m - l} + 1) 

random values from (GF(pk))g to the root node and one such random value to each leaf node. So 

the TA distributes a total of: 

u= (m"+(min{b,m—l}+1)+(min{b,in-1}+2)(n—(m"--1))gklog2p 
= 

(5.8) 

bits of user keys among all the users. On the other hand, a typical conference key in this scheme 

consists of g random values from GF(pk), and: 

IKGl = g klog2p. (5.9) 

Hence for the key rate of our scheme we have: 

UI (T) =md+(min{bm_l}+l)+(min{bm_l}+2) nid_m 
KI rn—i (5.10) 

To compute the total number of transmitted messages, we count the total number of messages 

that pass through each edge multiplied by the number of edges. We know that for a tree T = (V, G) 
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with IV  = g, we have JEl = g - 1. From Remark 17, we obtain: 

MGI _— gx(g—l) k1og2p. 

Hence the communication rate of our scheme is: 

Ml(T) 
=1. 

IKGI g— 

By an index (T) we refer to the efficiency ratios of our scheme. 

5.6 Comparison 

(5.11) 

We first compute the minimum value for the communication rate of the (g, b) - 1RD scheme, 

when adapted to the tree based communication model rather than broadcast model. Next we prove 

a lemma that gives bounds on the key rate of the (g, b) - 1RD scheme. 

5.6.1 Technical lemma 

To compute the communication rate of the (g, b) - 1RD scheme, we note that this protocol uses 

broadcast channels for communication. This means that a sent message is directly received by 

all other users. In settings where communication is confined to point-to-point channels, such as 

a tree, nodes may need to forward messages to other nodes in order to allow certain nodes to 

communicate. Since in the broadcast model, every message gets delivered to all the other users, 

we think of this as every user emitting g - 1 messages, one for every user in G. Similarly, each 

user expects to receive g - 1 messages from the other users. Focusing on the leaf nodes only, this 

adds up to 2(g - 1) messages to travel through the edge that connects any leaf node to his parent 

node. 

Having an rn-balanced tree as the communication graph, we argue that the minimum value 

for communication rate of the (g, b) - 1RD scheme is obtained for the case where G consists of a 
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node, u, together with some of ui's children, Uj1,. . . , That is, we assure that every leaf node's 

message gets delivered to its destination via a path of length at most 2, which is the minimum length 

compared to conferences with d> 2. Now, since there are g - 1 leaf nodes and g - 1 edges such 

that 2(g - 1) message travel through each, we obtain: 

MGI = 2(g _ 1)2 X r k10g2p. (5.12) 

From Section 3.3.2, we know: 

IKGI = g r k1og2p, (5.13) 

so the communication rate is: 

IMa (1'1) 2(g -1)2Z 5.14 
IKoI - g () 

where X =   We remark that the key rate of the (g, b) - 1RD scheme is independent of its 

communication model and hence, according to Equation 3.18: 

(1RD) (n-i 
Uo1 = t_i 

IKGI 

In the following lemma, we give a lower and upper bound on the key efficiency of the (g, b) - 

1RD scheme. 

Lemma 6. In the 1-restricted (g,b)-CKA scheme of Blundo et al.: 

1 IUpjI (1RD) <  (1RD) 

2 IKGI t=2 IKGI - IKGl t=2 

Proof. From Equation (3.18) we have: 

iui (1RD) -  

FT - fg-2' 

Note that: 

jj1(1RD)() £(n-1)!(- 2)!(g —.e)! - (n—l)! £ (g—.e)!  
g-2' g(g-2)!(-1)!(n—.e)! g(g-2)L-1(n—e)! KGI - g(_2) 
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We know that <g<n-+n—>g—t and we can write  as: 

(g —t)! 

(n—I)(n—I?—i)...(n—(n—g-i-)-i-l)(n—(n—g+e))! (n—.e)...(g—e+1) 

Let f(s) = (n-)...(g-+1) We argue that f() > f(2) because for £ = 2, the terms in the denomi-

nator are larger in value and hence the whole fraction takes its smallest value. So: 

Ui  ( R1 (n—i)! £ (n—i)! £  

IKGI = g(g-2)! x £- 1 g(g-2)! x £ 1 

Let us now simplify the terms in the right hand side of the inequality: 

(n—i)! £ £ (n- 1)(n-2)! 1  £ n—i 
g(g_2)!_l(2)_t_lX g(g-2)! X(fl_2)••(g_1)=_1X g 

So we can write: 

£ n-1 < IU1I11° 
-ii. 

On the other hand we know that for a fixed g ≥ 2: 

min< lud  (1RD) - , 2 ≤ £ < g} <ii.. (1RD) = 2(n - 1) 
1KGI - IKGI £=2 g 

From Equation (5.15) and Equation (5.16) we conclude that: 

£ n—i u1 (1RD) 2(n-1) 

H g KG - g 

(5.15) 

(5.17) 

Also note that --r is a uniformly decreasing series for £ ≥ 2. On the other hand, we remark that 

although 2 ≤ £ ≤ g, the value of £ that minimizes j4 (1RD) KG must happen for some 2 £ . So 

≤4≤2and: 

For  > 2, 

n_i<  £ n—i 
><  

g-2—i g 

and from Equation (5.17) we conclude: 

n-i 1U (1RD) 11 < 2(n-1)  
- g ' 

(1RD) < u11 (1RD) i(1RD) 
t=2 < j!?jl 

(5.18) 

(5.19) 
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Since in this scheme all users receive the same amount of secret information from TA, I Uq4. I = 

n x I U11. Multiplying all terms in Equation (5.19) by n preserves the direction of the inequalities 

and completes the proof. 0 

iI Remark 18. Note that Equation (5.18) gives a tighter lower bound of  g2 n(n-1) for Iu (1RD) than 

n(n-1)  
g 

5.6.2 1-restricted rn-tree (g, b)-CKA scheme vs. (g, b) - 1RD scheme 

In this section we compare the key rate and communication rate of our scheme, with the (g, b) - 

1RD scheme. 

Key rate 

For m ≤ b we compute: 
IUI(T) md_ rn 

(m'+m)+(m+i)  
IKGI - rn—i 

On the other hand from Equation (3.19), for the (g, b) - 1RD scheme we computed: 

(1RD) 
- ______ 

IKGI gr 

where g - 1 0 mod ( - 1) and r = (). From Lemma 6 we know that: 

iu (1RD) U,I(l?l)) < IUVI (1RD) 

2 IKGI £=2 IKaI - IKGI £ 2 

and from Equation 3.18 we compute: 

1IUa,iI  
2 IKaI 

(1RD)_ n—i 
—nX  

g 

with n = m/+lj1. To find the cases where our scheme achieves better key rate than the (g, b) - 1RD 
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scheme, we considered the cases for which: 

uI (T) 
JKGI 

(rn' + rn) +(rn+ 1)fljd_Jfl 
in-1 

< 1 IUa?lI 
2 IKGI 

(1RD) 

t=2 

≤ nxi:jJ 
(5.20) 

< nx 

g≤. 

So for all conferences of size at most 11, our scheme achieves better key rate than the (g, b) - 1RD 

scheme. 

However, for b < m, the key rate of our scheme becomes 

UI(T) — m'+(b+l)+ (b+2) (md_rn)  
Kl rn—i 

Our attempts to analytically compare the key rates for this case did not result in a short or more 

intuitive expression. 

Communication rate 

From Equation (5.11) and (5.14) we have: 

g 

< 1MG1() 
—T7T 
< 2(g-1)2  
- g 

≤ 2(g-1). 

Since X ≥ 1, we conclude that for all g ≥ 2, the inequality above holds. 

5.7 Simulation 

(5.21) 

Since our attempts to conclude the comparison for the case where b < in did not result in a short 

form or more intuitive expression and also as mentioned in Remark 18, there are tighter lower 

bounds than which we based our conclusion on, we implemented the key rate of our 1-restricted 

rn-balanced (g, b)-CKA scheme and the key rate of (g, b) - 1RD in Mathematica. This code can be 
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used to simulate the key rates for different parameter values. We remark that once in, d and g are 

given, the rest of the parameters can uniquely be computed. The code is provided in Appendix B. 

We ran our code for several cases. Here we present the case where (m, d, n) = (3,5,364) with 

2 < g < n. The horizontal axis represent the possible conference sizes, 2 ≤ g ≤ n, and the vertical 

axis represents the key rate. The blue curve shows the key rate for the (g, b) - 1RD scheme and the 

red curve shows the key rate of our scheme. 
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Figure 5.4: 1-restricted rn-tree (g, b)-CKA scheme's key rate vs. (g, b) - 1RD scheme's 
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Figure 5.5: Cross over section of the key rates for 1-restricted rn-tree (g, b)-CKA scheme and the (g, b) - 1RD scheme 
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Remark 19. We remark that this simulation is of importance in at least two perspectives: 

1. The simulation and the analytic result in Equation (5.20) are compatible. That is, for g ≤ 

182, our scheme achieves lower key rate. Note that for g < , b = n - g < = 182, and 

hence in =3 <b, which is the assumption we made for our analytical comparison of the two 

efficiency measures. 

2. The fluctuating section in Figure 5.5 shows how the two key rate expressions are not compa-

rable, in general. 

5.8 Conclusions 

In this chapter, we studied the problem of CKD for networks of users where not all nodes can 

directly communicate with each other. We presented an interactive key agreement scheme for 

conferences that have an rn-balanced tree as their communication graph. We showed that our 

new 1-restricted (g, b)-CKA scheme always attains better communication complexity than the 1-

restricted (g, b)-CKA scheme of Blundo et al. and for certain parameter values, it achieves better 

key efficiency. 

As a possible extension of this work, it would be interesting to study ways of having tree struc-

tured CKA schemes for computing multiple conference keys. Moreover, note that our scheme is 

based on spanning trees within a conference communication graph. We remark that a communi-

cation graph often has more edges than its spanning tree does. This means more communication 

channels and hence a potential for having other CKA schemes based on the communication graph 

model with better performances. 
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Chapter 6 

Conclusions and Future Work 

The main focus of this thesis was on the study of CKD schemes and design of new schemes to 

better accommodate the real life situations. 

The contributions of this thesis are: (i) extending the work of Blundo et al. to compute 'r 

conference keys for conferences of varying sizes, 9 = (gi, . . . , g.), and (ii) designing a new CKA 

scheme for conferences that have tree structured communication graphs. 

We proposed three schemes to extend the er-restricted (g, b)-CKA scheme of Blundo et al. To 

evaluate and compare the performance of the proposed schemes, we developed a code using Math-

ematica 7 to calculate the key rates and communication rates of these schemes. By initializing the 

parameters, the code is compatible to evaluate and compare the efficiency measures of any instance 

of such schemes. We concluded that our first proposed scheme in which a 1-restricted (gj, b1)-CKA 

scheme of Blundo et al. is used for each gj E #, has the best key rate and communication rate, 

compared to the other schemes. 

We questioned the suitability of broadcast channels to model the real life communication set-

tings. By the hint of some data obtained from Gnutella peer to peer file sharing networks, we 

choose to take communication graphs as a more accurate model of communication infrastructure. 

We introduced a new 1-restricted (g, b)-CKA scheme that takes an rn-balanced tree as its commu-

nication graph and enables the users to compute one conference key, securely. We compared the 

performance of this new scheme with a modified version of the 1-restricted (g, b)-CKA scheme 

of Blundo et al. This is the most efficient CKA scheme that has been discussed in the thesis and 

the modification was to adjust the (g, b) - 1RD scheme to the communication graph model. We 

showed that for certain parameter values, our scheme achieves a lower key rate than the modified 
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(g, b) - 1RD scheme while our new scheme always achieves a lower communication rate. 

6.1 Future Work 

There are a number of interesting problems and directions that came out form this study for future 

work. Some of these are outlined below. 

1. In Chapter 4 we restricted the conference sizes to be an increasing list of numbers, i.e. in 

= (gi,. .. . g), gj ≤ gi+i, Vi ≤ i ≤ r - 1. It is interesting to study other cases to realize 

a (', )-CKA scheme without such restrictive conditions. In Chapter 4 we introduced a 

scheme that can be used for any 9. However, this may not be the most efficient scheme and 

future research to construct more efficient schemes is needed. 

2. Another interesting problem is to find a general lower bounds, similar to [3], on the key rate 

of a (, 9)-CKA scheme. Similarly, finding a general bound on the key rate of an optimal 

CKD scheme with communication graph model, is a problem that have not been studied yet. 

3. Our 1-restricted rn-tree (g, b)-CKA scheme in Chapter 5 is perfectly secure to compute one 

conference key. It is interesting to study the extension of our construction to compute 'r 

conference keys. This itself can be seen as having v conferences of the same or varying 

sizes. 

4. In our scheme of Chapter 5, we made the most basic assumption on the communication 

graph, i.e. being connected. This implies a spanning tree within the communication graph. 

However, according to the data from [2], real life communication graphs are rather popu-

lated. This opens a number of interesting options to design a CKD scheme based on com-

munication graphs. For instance one might assume that between every two nodes, there 

exists at least t ≥ 1 paths. Another assumption can be working with special class of graphs 
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such as bipartite or cluster graphs. Some other characteristics of graphs might also become 

useful for designing new schemes. 

5. Another realistic assumption over the communication graphs is that some of the edges can 

be secured edges. That is, only a number of designated users in the network have access to 

communication over these edges. This defines a different area for research where our setting 

would become a special case of it, where the number of such secure channels is 0. 

6. Finally, we remark that in certain situations, the eligibility of a conference is based on other 

characteristics of the users rather than the size of the conference. For instance, in an institute 

with designated roles and titles, a conference may consists of two users of manager level 

or a manager can be replaced with two users of admin level or an admin can be replaced 

by two staffs. Designing CKD schemes for not uniformly privileged users, and considering 

eligibility conditions other than the conference size, would be interesting extensions to this 

work. 
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Appendix A 

Here we present a sample of the Mathematica code we produced to compare the performance of 

the proposed schemes in Chapter 4. 

A.1 Key rates 

A. 1.1 Graphic presentation 

kO: 7 

iLl] = 1 /. Last[Minimize[{i*Binomial[n - 1, 1 - 

(g [ 1] *Binomial Eg [ 1] - 2, 1 - 2]), 

2 <= 1 <= gEl], 1 \[Element] Integers}, 1 ]]; 

ForLi = 2, i <= tau, i++, 

iLi] = 1 /. Last[Minimize[{1*Binomial[n - 1, 1 - 1]! 

(g[i]*Binomial[g[i] - 2, 1 - 2]), 

2 <= 1 <= gli], 1 \[Element] Integers}, 1 ]]; 

f Li] = f I. Last [Minimize [{f, Mod [gEl] + f - 1, 1 [1 - 1] - 1] 0, 

0 <= f <= 1[i - l]}, f]];] 

ri [i_] : Binomial [gEl] - 2, l[i] - 2]; 

r2 [ii : = Binomial Eg Li] + f[i] - 2, 1 Li - 1] - 2]; 

(*Scheme 1*) 

(*s[i] ' s represents the field sizes*) 

s[l] := 

s[j_] := If [Floor EgEll rl[l] k Ell /(gEj] rl[j])] >= kO, 

Floor[g[l] riEl] k[l]/(g[j] rl[j])], kO]; 
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EfflEll := lEl] Binomial En - 1, 1E1] - 1]/g Ell *rlEll 

Effl[j_] := Eff1[j - 1] + l[j] Binomial[n - 1, l[j] - 1] 

s[j]/(g[j] rl[j] kEl]); 

(*Graphs*) 

ListLinePlot[{Table[EfflEj], -Cj, 1, tau}]}, PlotLabel -> 

"Key rate of Schemes 1", 

AxesLabel -> {" i-th conference", "Key Rate"}, PlotRange -> All, 

AxesOrigin -> {0, 0}, PlotMarkers -> {" l"}] 

A.1.2 Comparing key rates of Scheme 1 and 2 

This piece of code is meant to compare (jT.') k1 and 2) which appear in the key rate of 

Scheme 1 and Scheme 2, respectively: 

Print["Scheme 1 <? Scheme 2: "3; 

Print["k{1}[i] Binomial[n-1, l[i]-1]< k{2}[i] BinomialEn, 

ForCi = 1, ± <= tau, i++, 

Print ["tau ", 1, ", ", N Es [l] *Binomial En - 1, l[i] - 1]] , " <  

NEk[i]*Binomial[n, lii] - 1]]]]; 

A.1.3 Comparing key rates of Scheme 2 and 3 

/ 

This piece of code is meant to compare () Le with 2nk'3 which appear in the key rate of 
Scheme 2 and Scheme 3, respectively: 

Print["Scheme 3 <? Scheme 2: "]; 

Print [" 2*k-C3}*n < l[i]*k{2}[i]*BinomialEn, l[i]-1]/rE1]"]; 
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For[i = 1, ± <= tau, i++, 

Print ["tau= ", I, ", ", NE2*m[j]*n] , 

N[l[i]*kEi] *Binomial En, iLl] - 

A.2 Communication rates 

chilEl_] := (g[i] - 1)/(l[i] - 1); 

chi2E1_] := (g[i] + f[l] - 1)/(i[l - 1] - 1); 

(*Scheme 1*) 

ComRatelLj_] := N[chil[j]]; 

(*Scheme 2*) 

(*J represents I in the actual scheme *) 

(*k[i]'s represent the field sizes*) 

J[1] = gLi] riLl] - iLl] r2[2]; 

J Li_] : = g El] ri El] - l[i] r2 Ci + 1] J Cl - 1] / (g Ci] ri Ci]); 

k[i-] := IfCFioor[k[1]*JCi - 1]/(gE1] nil])] >= kO, 

FloonikEl] JEI - l]/(g[l] nlCl])], kO]; 

ComRate2[l] := NEchil[1]]; 

ComRate2[j_] := 

N[(g[j] rlEj] chil[j] k[j] + l[j - 1] r2[j] ch12[j] k[j - 1] 

l)/(g[l] rl[1] k[l])]; 

(*Graphs*) 
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ListLinePlot[{Table[ComRatel[j], -Cj, 1, tau}]}, 

PlotLabel -> "Communication rate of Schemes 1", 

AxesLabel -> -C"i-th conference", " Communication Rate"}, 

PlotRange -> All, AxesOrigin -> -CO, 0}, PlotMarkers -> {" l"} ] 
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Appendix B 

We present the code we ran on Mathemtica 7 to compare the key rate of the 1-restricted rn-balanced 

(g, b)-CKA scheme with the (g, b) - 1RD scheme when modified for a communication tree struc-

ture. 

B.1 Key rate 

m = 3 ; d = 5; 

n = (m(d + 1) - 1)/(m - 1); 

Print["(m, d, n) = (", m, II d, 

dataBlundo = 

Table [-Cg, 

NCMinValueC{n (l*Binomial[n - 1, 1 - 1])/(g* 

Binomialig - 2, 1 - 2]), 

ModEg - 1, 1 - 1] == 0 && 2 <= 1 <= g && 

ElementEl, Integers]]-, -Cl]-, WorkingPrecision -> 10]]]-, {g, 2, 

n - 1]-]; 

dataTree = 

Table [-Eg, 

md + Min[m, n - g] + 

1 + ((Min[m, n - g] + 2) (md - m))/(m - 1)}, {g, 2, n - 1}]; 
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ListPlot[-CdataBlundo, dataTree}, AxesOrigin -> -(0, O}, 

PlotRange -> All, AxesLabel -> -C"g", "Key Rate"}, 

Joined -> -CFalse, False}, 

PlotLabel -> 

"Key rate of the 1-restricted (g, b)-CKA scheme of Blundo et al. vs \ 

the 1-restricted rn-tree (g,b)-CKA Scheme"] 

ListPlot[{dataBlundo, dataTree}, AxesOrigin -> -(250, 300)-, 

PlotRange -> -(-(250, 365)-, -(300, 1200)-)-, 

AxesLabel -> -C"g", "Key Rate")-, Axes -> -(True, True)-, 

Joined -> -(True, True)-, PlotMarkers -> -(Automatic, Tiny)-, 

PlotLabel -> 

"Key rate of the 1-restricted (g, b)-CKA scheme of Blundo et al. vs \ 

the 1-restricted rn-tree (g,b)-CKA Scheme"] 
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