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ABSTRACT 

Bovine parathyroid glands were stained by indirect immunohistochemistry to 

identify the neuropeptides calcitonin gene-related peptide (CGRP) and 

substance P (SP). Nerve fibres containing CORP- and SP-immunoreactivity were 

identified throughout the tunica adventitia of arteries and arterioles, where they 

often made contact with the tunica media. Many of the neuropeptide-

immunoreactive nerve fibres deviated from the vasculature and encircled 

parenchymal lobules. All the immunoreactive nerve fibres were found to contain 

both CGRP- and SP-immunoreactivity. 

Incubating primary bovine parathyroid cell cultures with 10-8 M to , 10-9 M 

CGRP or SP at normal physiological concentrations (1.25 mM) of ionized calcium 

(Ca) resulted in no significant modulation of parathyroid hormone (PTH) 

secretion for up to 90 mm. When CGRP and SP were added together at 

concentrations between 1010 M and 1O M, there was no significant effect on 

PTH secretion for up to 60 mm. In the presence of either 0.5 mM or 2.0 mM 

CGRP or SP did not significantly modulate PTH secretion from the cultures 

for up to 60 mm. 
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INTRODUCTION  

Multicellular organisms have evolved two principal mechanisms to regulate 

and integrate the function of their different cells: the nervous system and the 

endocrine system. While the former sends electrochemical signals along axons 

to target tissues, the latter performs its regulatory function by transporting 

chemical agents via the bloodstream to affect target tissues. At first, the nervous 

system and endocrine system appear to be quite separate. However, they are 

closely interrelated. Many chemical agents have been found to be locallzed in 

and secreted by both neuronal presynaptic terminals and endocrine cells. Also, 

both the nervous and endocrine systems have been shown to modulate the 

activity of each other. This thesis attempts to add to the growing body of 

knowledge concerning the effects of the nervous system on endocrine function, 

especially with regard to the parathyroid gland and calcium homeostasis. 

1.1 CALCIUM HOMEOSTASIS 

The physiological importance of calcium falls into two broad categories. 

Approximately 99% of the body's calcium is found in the skeleton (Stewart and 

Broadus 1987). Calcium in bone exists primarily in the form of small 

hydroxyapatite crystals composed of calcium, phosphate, and hydroxyl ions, with 

the formula: Ca10(PO4)6(OH)2. The skeleton is designed to carry out the 

mechanical functions of providing protection for internal organs, is required for 
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movement by giving rigid support to the extremities and the joints, and serves 

to transmit the force of muscular contraction from one part of the body to 

another. Bone also provides a reservoir of calcium, phosphate and other ions 

essential for a variety of homeostatic functions. 

The remaining 1% of the body's calcium is found in serum and extracellular 

fluids and within cells. Calcium exists in the serum in, three fractions. 50% of 

the calcium is found in an ionized form, 40% is bound to serum proteins (90% 

to albumins and 10% to globulins), and the remaining 10% is complexed to 

anions in the blood, mainly bicarbonate, citrate, and phosphate (Marshall 1976; 

Pedersen 1972). The concentration of calcium in the cytosol is only about one 

one-thousandth of that found extracellularly, as most of the intracellular calcium 

is sequestered within the mitochondria and endoplasmic reticulum. Calcium 

pumps located in the plasma, mitochondrial, and endoplasmic reticular 

membranes control the concentration of calcium in the cytosol. Calcium leaks 

passively into the cytosol by diffusion across these three membranes, but these 

pumps maintain the calcium gradient by actively transporting calcium away from 

the cytosol. Although only 1% of the calcium is found outside the skeleton, its 

intracellular compartmentalization and concentration gradient across the cell 

membrane are essential to the normal functioning of a number of biological 

processes. 
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Calcium ions are responsible for linking excitation and contraction in muscle. 

Skeletal and cardiac muscle utilize the calcium stored within their sarcoplasmic 

reticulum for contraction. Depolarization of the sarcolemma results in the influx 

of calcium from the sarcoplasmic reticulum through voltage-gated calcium 

channels. The abrupt increase in cytosolic calcium binds to troponin C, allowing 

actin and myosin to form cross-bridges, resulting in contraction of the sarcomere. 

In smooth muscle, the increase in intracellular calcium results in increased 

binding of Ca with calmodulin, triggering myosin light chain kinase to 

phosphorylate the myosin heads. This allows the actin-myosin interaction, 

resulting in muscle contraction. 

Release of calcium from the endoplasmic reticulum functions as a second 

messenger system. The binding of a ligand to specific cell receptors activates 

phospholipase C by a specific G-protein. The active phospholipase C hydrolyzes 

phosphatidylinositol-4,5-bisphosphate to myo-inositol-1 ,4,5-trisphosphate and 

diacylglycerol. Myo-inositol-1 ,4,5-trisphosphate releases calcium stores from the 

endoplasmic reticulum (Berridge 1984). Calcium ions can also bind to and 

modulate the activities of key enzymes regulating intermediary metabolism 

(Breslau 1988). 

Exocytosis of hormones, neurotransmitters and other cellular products is 

dependent on a rise in cytosolic calcium in many cells (Knight et al. 1989). 
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Calcium is also an important factor in blood coagulation. Calcium ions are 

required for promoting all but the first two steps in the blood coagulation 

cascade (Guyton, 1991a). 

Because calcium within the serum and extracellular fluid is so important for 

the normal functioning of many biological processes, its concentration must be 

controlled within vary narrow limits. In human beings, serum calcium is 

maintained between 2.12 and 2.62 mM (Breslau 1988). Any deviation from this 

narrow range results in pathological conditions. 

Responsibility for maintaining calcium within these limits is shared primarily 

by three hormones: parathyroid hormone, calcitonin, and the active form of 

vitamin D (1 a,25-dihydroxycholecalciferol). 

1.1.1 Parathyroid Hormone  

Parathyroid hormone (PTH) is the hormone primarily responsible for 

maintaining calcium homeostasis. PTH is found from amphibians to mammals 

and is produced by chief cells within the parathyroid gland. PTH is a single-

chain linear polypeptide composed of 84 amino acids with a molecular weight 

of 9500 (Figure 1.1). The PTH gene is located on the short-arm of 

chromosome 11, and encodes for a larger precursor, termed preproPTH, a 

polypeptide of 115 amino acids with a molecular weight of 13 000. This 

precursor is short-lived, and once it is transferred to the endoplasmic reticulum, 

enzymatic cleavage of the amino-terminal 25 residue leader sequence results in 
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Figure 1.1 The amino acid sequence of bovine parathyroid hormone. 
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a 90 amino acid proPTH polypeptide with a molecular weight of 10 200. ProPTH 

is transferred to the Golgi apparatus, where it is cleaved to form the mature PTH 

molecule which is packaged into secretory granules for storage and subsequent 

secretion. 

The major regulator of PTH secretion is ionized calcium (Ca) in the serum. 

The parathyroid chief cell is unusual in that there is an inverse relationship 

between PTH secretion and serum calcium. Maximum PTH secretion occurs in 

the presence of low extracellular Ca, and high concentrations of extracellular 

Ca suppress PTH release (Brown 1976; Habener et al. 1975; Hanley et al. 

1980; Mayer and Hurst 1978; Morrissey and Cohn 1978; Targovnik etal. 1971). 

However, these investigators reported that high levels of calcium were unable to 

completely suppress PTH secretion. 

PTH, by interacting with its two main target organs, bone and kidney, 

increases the concentration of calcium in the extracellular fluid. PTH acts directly 

on bone by stimulating the combined processes of osteocytic osteolysis and 

osteoclastic bone resorption to release calcium into the blood. PTH stimulates 

already existing osteoblasts and osteocytes to absorb bone mineral from bone 

without resorption or destruction of the bone matrix. This release of calcium 

from bone in response to PTH occurs rapidly, within minutes, and is termed 

osteocytic osteolysis (Guyton 1991b). Qsteoclastic bone resorption, a second 

phase of bone resorption, is a delayed response that occurs only after exposure 
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of bone to prolonged stimulation by PTH. This phase is characterized by the 

destruction and resorption of bone mineral and bone matrix by osteoclasts, and 

requires days or weeks to become fully active, involving the recruitment of new 

osteoclasts (Guyton 1991b). Osteoclasts are highly mobile multinucleated cells, 

probably derived from extraskeletal monocytic progenitor cells. They move along 

the bone surface actively resorbing bone. Although PTH increases the activity 

of osteoclasts, no PTH receptors have been detected on these cells. However, 

PTH receptors are found on osteoblasts. It is postulated that osteoblasts, under 

the influence of PTH, stimulate the osteoclasts to resorb bone, but the signal for 

this is unknown (McSheehy and Chambers 1986). 

PTH, by interacting with its receptors in the distal tubule of the nephron, 

increases the reabsorption of calcium from the tubular filtrate. PTH also 

decreases the proximal tubular reabsorption of phosphate, causing hypo-

phosphatemia. This results in less phosphate available to complex with calcium, 

thus increasing the fraction of free Ca in the serum. In the proximal tubule, 

in addition to inhibiting phosphate reabsorption, PTH also inhibits reabsorption 

of sodium and bicarbonate. Binding of calcium to serum proteins increases 

under alkaline conditions and decreases under acidic conditions (Marshall 1976). 

The excretion of sodium and bicarbonate stimulated by PTH produces mild 

diuresis and may provoke a mild hyperchloremic acidosis. This shifts calcium 

from the bound fraction to the ionized fraction. 
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As well as interacting with bone and kidney, PTH also increases the 

absorption of calcium from the intestine. However, the action of PTH is indirect 

and involves the production of the active form of vitamin D in the kidney (see 

below). 

1.1.2 Calcitonin  

Calcitonin, discovered in 1961 by Copp etal. (1962), is secreted by C cells 

of the thyroid gland (Foster et al. 1964). The C cells are derived from neural 

crest cells (Pearce and Polak 1971). Calcitonin is a 32 amino acid peptide with 

a 1-7 disulphide bond and a carboxy-terminal proline amide residue. The main 

stimulus for the secretion of calcitonin is an elevated serum calcium concentration 

(Heynen and Franchimont 1974; Parthemore etal. 1975; Parthemore and Deftos 

1978), although certain gastrointestinal hormones are also secretagogues (Care 

et al. 1971; Heath and Sizemore 1977; Parthemore and Deftos 1978). 

Calcitonin protects against hypercalcemia, and thus antagonizes the action 

of PTH. The main mechanism of action of calcitonin is to inhibit the release of 

calcium from bone through its actions on osteoclasts, which contain 106 

calcitonin receptors per cell (Nicholson etal. 1986). Activation of these receptors 

results in a reduction in osteoclast motility and spreading, with a loss of their 

ruffled borders, which indicates a decline in bone resorption (Chambers et al. 

1986; Chambers and Magnus 1982; Chambers and Moore 1983). It has also 

been shown that calcitonin directly inhibits resorption of cortical bone by isolated 
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osteoclasts (Chambers et al. 1984, 1985). However, the importance of calcitonin 

in calcium homeostasis has been questioned, as there are no clinical 

manifestations of either an overproduction or underproduction of calcitonin. 

Calcitonin may have a physiological role in protecting the skeleton during times 

of stress, such as during childhood, pregnancy, and lactation. 

1.1.3 Vitamin D3 

Vitamin D3 and its metabolites are steroid hormones; their metabolism and 

mechanism of action have much in common with those of other steroid 

hormones. The ultraviolet irradiation of the skin causes 7-dehydrocholesterol to 

be converted into previtamin D3. Overproduction of previtamin D is prevented 

by the photochemical equilibrium that favours the production of the inert 

metabolites lumisterol and tachysterol during periods of prolonged sun exposure. 

Over a period of several days, the previtamin D3 undergoes a temperature-

dependent isomerization to vitamin D. (cholecalciferol). The vitamin D-binding 

protein in serum has a 1000-fold higher affinity for cholecalciferol than for 

previtamin D3, so that cholecalciferol is transported preferentially into the 

circulation. Cholecalciferol is a biologically inactive prohormone. The first step 

in the activation pathway involves enzymatic 25-hydroxylation of cholecalciferol 

in the liver to form 25-hydroxycholecalciferol (25-OHD3). This conversion is not 

tightly regulated, and 25-OHD3 constitutes the major circulating form of vitamin D 

in humans. 25-OHD3 is transported to the kidney where it is hydroxylated at 
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C-i to produce 1 a,25-dihydroxycholecalciferol (1 a,25-(OH)2D3), the active 

metabolite of vitamin D3. The la-hydroxylation of 25-OHD3 is tightly regulated 

and constitutes the rate-limiting step in the production of 1 a,25-(OH)2D3. PTH 

is the principal activator of the renal synthesis of 1 a,25-(OH)2D3. 1 a,25-(OH)2D3 

acts on the intestinal epithelial cells by increasing the transcription and 

production of calbindin-D9k (Gross and Kumar 1990), which facilitates calcium 

transport across the luminal surface of the duodenum. 

1.2 THE PARATHYROID GLAND 

1.2.1 Embryoloqy and Histolociy  

The parathyroid glands are derived from the endodermal germ layer of the 

third and fourth pairs of branchial pouches (Moore 1988). The superior 

parathyroid glands are derived from the fourth branchial pouches. In cattle, 

they remain almost stationary during embryologic development, accounting for 

their final location medial to the common carotid artery just proximal to its 

bifurcation into the external and internal carotid arteries (Figure 1.2). 

The inferior parathyroid glands develop from the third branchial pouches. 

In cattle, the inferior parathyroid glands migrate caudally with the thymus until 

they separate from it, assuming their final position partially embedded in the 

medial surface of the thyroid gland near the trachea (Roth and Schiller 1976) 

(Figure 1.2). 
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Figure 1.2 Location of the parathyroid glands in the bovine neck. The superior 

parathyroid glands are situated proximal to the bifurcation of the common carotid 

arteries, while the inferior parathyroid glands are imbedded within the thyroid 

gland. 
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The principal cell within the parathyroid parenchyma is the chief cell, which 

is responsible for the synthesis and secretion of PTH. The chief cell has the 

typical appearance of an active secretory cell. It has a prominent Golgi 

apparatus and rough endoplasmic reticulum, as well as many secretory granules. 

Chief cells in the bovine parathyroid gland are arranged in cords and sheets 

(Capen et al. 1965). 

Levine (1928) also identified oxyphil cells in the bovine parathyroid gland. 

The cells were few in number and usually scattered as single cells among the 

chief cells. The oxyphil cells contain a poorly developed endoplasmic reticulum 

and Golgi apparatus, and therefore appear not to be normally active secretory 

cells. Oxyphil cells are absent in many species including young human beings. 

Their precise function to date is still unknown, although they are usually packed 

with mitochondria and contain higher levels of energy-producing enzymes than 

the chief cells (Tremblay and Carter 1961). 

1.2.2 Innervation  

Rhinehart (1912) gave the first account of the innervation of the parathyroid 

glands. He found perivascular nerve plexuses. in the arteries of the gland. The 

branching of the nerves accompanied the branching of the arteries, so that each 

smaller artery carried a single nerve fibre. No nerves were found around veins 

or capillaries. Since all the nerves ended in the vessel walls, Rhinehart was . of 

the opinion that the nerves were restricted to a vasomotor function. Since then, 
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several authors have reported unmyelinated nerve fibres to be located primarily 

within perivascular spaces in the parathyroid gland of several species, including 

the bovine (Capen et al. 1965; Jacobowitz and Brown 1980; Mazzocchi et al. 

1967; Munger and Roth 1963; Roth and Munger 1962; Unsicker 1971; Yeghiayan 

et al. 1972; Zawistowski 1966). 

Raybuck (1952) found the perivascular plexuses in dogs and cats to be 

composed of two morphologically distinct fibre types. He identified large 

myelinated fibres located within the superficial portion of the tunica adventitia and 

smaller unmyelinated fibres located adjacent to the tunica media, to which he 

assigned a postganglionic sympathetic vasomotor role. Raybuck noted that 

some of the unmyelinated fibres deviated from the arterial walls and entered the 

parenchyma of the gland where they terminated in dark knob-like swellings in 

intimate relationship with the chief cells. In some instances the individual fibres 

were interlaced with other fibres, giving the appearance of a plexus among the 

chief cells. In other instances, nerve fibres appeared to enter directly into the 

cytoplasm of the chief cells. Using electron microscopy, Altenähr (1971) 

frequently found neuroepithelial synapses between axons and chief cells in 

human beings, with synaptic clefts measuring 15 nm. The preterminal axons 

were also rich in neurosecretory granules. Nerve fibres ending in dark knob-

like swellings in intimate relationship with chief cells, observed by light 

microscopy, electron microscopy, and fluorescence histochemistry, have also 
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been reported by others (Atwal 1981; Mikhail 1971; Norberg et al. 1975; 

Wideman 1980). 

Some investigators have been able to trace the unmyelinated fibres to their 

origin within the cervical chain ganglia, supporting the assumption of earlier 

investigators that these fibres are sympathetic. The origin of the fibres appears 

to show some species specificity. In the rat, the parathyroid glands are 

innervated by postganglionic perikarya located in the medial and/or inferior 

cervical ganglia, which send their axons through the superior cervical ganglion 

to reach the glands via the external carotid nerve (Romeo et al. 1986). There 

are no perikarya in the superior cervical ganglion of the rat that send axons to 

the thyroid or parathyroid glands. However, in the rabbit, Shoumura et al. (1983) 

found numerous labelled neurons in the superior cervical ganglion, but not the 

inferior cervical ganglion following horseradish peroxidase injection into the 

parathyroid gland. In the cat and dog, removal of the cervical portion of the 

sympathetic trunk resulted in a complete degeneration of unmyelinated fibres 

from the vasculature that coursed among the chief cells (Raybuck 1952). Using 

fluorescence histochemistry, Jacobowitz and Brown (1980) were able to confirm 

the presence of adrenergic nerve terminals on the vasculature in the bovine 

parathyroid gland, although their distribution was sparse. 

Mikhail (1971), using light microscopy, reported the presence of 

parasympathetic terminal ganglia scattered throughout the parathyroid gland in 
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dogs, guinea-pigs, and rabbits. The dendrites extended between the 

neighbouring chief cells, forming a delicate plexus between the cells. These 

findings are supported by Shoumura et al. (1983), who found acetyl-

cholinesterase positive nerve fibres in the rabbit parathyroid gland, and labelled 

cell bodies in the dorsal motor nucleus of the vagus after horseradish peroxidase 

injection into the parathyroid gland. 

Raybuck (1952) believed that the large myelinated fibres located within the 

superficial portion of the tunica adventitia were sensory components of the vagus 

nerve. Atwal (1981), who identified myelinated fibres in the interstitium of the 

canine parathyroid gland, also suggested these fibres were afferent as they were 

independent of - the walls of blood vessels and had an average diameter of 

7.04 pm. Myelinated presynaptic fibres characteristically have diameters of 3 pm 

or less (Pick 1970). Wideman (1980) reported vagal fibres near vascular smooth 

muscle, as well as adjacent to the chief cells, in the parathyroid glands of the 

European starling. Most of the myelinated fibres showed signs of degeneration 

ten days after nodose ganglionectomy. However, some fibres retained a normal 

ultrastructural appearance, suggesting additional sources for the myelinated 

fibres. It is conceivable that they are preganglionic parasympathetic fibres. 
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1.3 NEURAL CONTROL OF PARATHYROID HORMONE SECRETION 

While extracellular Ca is the principal factor regulating PTH release, the 

presence of nerves within the parathyroid gland suggests the nervous system 

might directly influence chief cell activity. Previous studies have demonstrated 

that adrenergic agonists can modulate the secretion of PTH. Beta-adrenergic 

agonists bind to specific receptors on dispersed parathyroid cells (Brown et al. 

1977c). Norepinephrine, epinephrine, and dopamine cause an increase in cyclic 

3',5'-adenosine monophosphate (cAMP) production by parathyroid cells, and a 

dose-dependent increase in PTH secretion in vitro and in vivo (Brown et al. 1976, 

1977a, 1977b, 1977c, 1978b, 1983; Fischer et al. 1973; Hanley et al. 1980; 

Hanley and Wellings 1985). The response to norepinephrine, epinephrine, and 

dopamine can be augmented by dibutyryl cAMP, isobutylmethoxamine, or 

theophylline (Abe and Sherwood 1972; Brown et al. 1977b, 1978a) and blocked 

by catecholamine antagonists (Brown et al. 1976, 1977a, 1977b, 1977c, 1978a, 

1978b; Hanley et al. 1980). Brown et al. (1978b) reported that selective 

a-adrenergic activation decreases catecholamine-stimulated cAMP production and 

PTH secretion from dispersed bovine parathyroid cells. Isoproterenol, a pure 

p-agonist, is more potent than norepinephrine and epinephrine. This may be 

due to a-adrenergic activation by norepinephrine and epinephrine. Blum et al. 

(1978), Kukreja et al. (1975), and Metz et al. (1978) were unable to show any 

effect of a-adrenergic agonists on PTH secretion in vivo. 
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MacGregor etal. (1973) identified two pools of PTH in the parathyroid gland. 

One population contained newly synthesized PTH, and the other contained an 

older storage pool of PTH. Work by Morrissey and Cohn (1979) and Hanley 

et al. (1980) demonstrated that activation of cAMP caused secretion from the 

storage pool, but had no effect on the newly synthesized pool. As only the 

storage pool of PTH is responsive to catecholamines, these agents are only able 

to cause a transient release of PTH, lasting for several minutes. While 

subsequent stimulation by catecholamines causes a dose-dependent increase 

in cAMP, no further PTH is secreted by the chief cells. It is therefore believed 

that the cells have depleted their storage pools of PTH. Nonetheless, the chief 

cells are still able to secrete PTH in response to low calcium, which induces the 

release of newly synthesized PTH, which is continually being replenished. 

Catecholamines have their greatest effect on stimulating PTH secretion under 

hypocalcemic conditions. The effect of catecholamines is diminished under 

normal calcium conditions, and they are unable to stimulate PTH secretion during 

a state of hypercalcemia. This may protect against the release of PTH by 

catecholamines during times when there is no need for more extracellular 

calcium. 

The primary question still not answered is what physiological role the nervous 

system, its neurotransmitters, and circulating catecholamines have in parathyroid 

gland function. Vora et al. (1980) reported that electrical stimulation of the 
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superior cervical ganglion resulted in a 30% increase in PTH secretion in the rat. 

In the dog, electrical and chemical stimulation of the cervical vagosympathetic 

trunk failed to affect PTH release (Heath et al. 1985). 

The increase in PTH secretion caused by disodium ethylenediamine tetra-

acetate (EDTA) induced hypocalcemia, is blunted after either adrenalectomy (to 

remove the primary source of epinephrine), or chemical sympathectomy with 

6-hydroxydopamine (6-OHDA) in rats (Vora et al. 1978). However, Heath et al. 

(1980) reported no change in PTH levels over controls in response to a 

hypocalcemic challenge using the same treatments. Cardinali and Ladizesky 

(1985) found that hypocalcemia induced by intraperitoneal (i.p.) administration 

of 100 mg/kg body weight EDTA every 30 min resulted in a much greater 

decrease in serum calcium levels in the superior cervical ganglionectomized rats 

than in sham-operated control rats. They also found that the elevation in PTH 

levels caused by EDTA was considerably higher in control rats than in the 

ganglionectomized animals. However, Heath et al. (1980) demonstrated that 

hypocalcemia caused no difference in PTH levels between controls and rats 

chemically sympathectomized with 6-OH DA. 

Morli et al. (1963) found that vagotomy resulted in an accelerated recovery 

of total serum calcium to induced hypocalcemia in dogs, which was mimicked 

by atropine. Isono and Shoumura (1980) found a proliferation of the Golgi 

apparatus, and an increase in ribosomes and secretory granules in rabbits 24 h 
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after vagotomy. This suggests an inhibitory role of the vagus on PTH secretion, 

with a stimulation of the synthesis and release of PTH in the vagotomized rabbit. 

Williams et al. (1985) demonstrated an inhibition of PTH secretion by cholinergic 

agonists in vitro and in vivo, which were blocked by atropine. 

The presence of adrenergic nerves terminating on chief cells in certain 

species, together, with the known effects of some catecholamines on PTH 

secretion, suggests that these fibres may play an important role in the secretory 

activity of the chief cells. Although neural activity appears to have little effect on 

basal PTH output when the concentration of Ca is normal, sympathetic nerves 

might play a role in PTH secretion under hypocalcemic conditions by transiently 

stimulating the release of a storage pool of PTH. 

There is also evidence that serum PTH and calcium levels undergo circadian 

or pulsatile variations. Jubiz et al. (1972) demonstrated that human PTH levels 

remain constant throughout the daytime, but start to rise at 8:00 p.m., 

progressively increasing until a maximum level is attained between 2:00 a.m. and 

4:00 a.m. Serum PTH returns to its initial value by 8:00 a.m. Sinha et al. (1975) 

found serum PTH levels highest in man between 8:00 a.m. and 2:00 p.m, while 

Arnaud et al. (1971) found the levels progressively increased from 12:00 noon 

to 8:00 p.m. In contrast, Kripke et al. (1978) and Parthemore et al. (1978) found 

several distinct increases in PTH concentration during the night. Kripke et al. 

(1978) found the peaks tended to recur about every 100 mm, and were closely 
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related to the sleep stages. In addition, there were no clear relations between 

the circadian or pulsatile variations in serum PTH levels and plasma calcium 

levels. Fox et al. (1981) found oscillations in serum PTH levels in dogs with a 

period of 12 min which were disrupted by hypocalcemia. These studies suggest 

that the parathyroid glands are under some regulatory influence from the central 

nervous system. 

1.4 INTRODUCTION TO THE NEUROPEPTIDES 

It was once believed that neurons secreted only small molecule transmitters, 

such as acetylcholine, monoamines, and the amino acids glycine, glutamine, 

glutamate, and -y-aminobutyric acid. The first realization that neurons could 

secrete peptides came from the discovery that the hormones, oxytocin and 

vasopressin, which are secreted from neurons in the posterior hypophysis, were 

found to be nonapeptides. Later, the peptides adrenpcorticotropin releasing 

hormone, somatostatin, and thyrotropin-releasing hormone, were also found to 

be secreted from nerves originating in the hypothalamus. These findings' were 

the first to indicate that neurons could in fact secrete peptides. However, it was 

believed that these hypothalamic-hypophyseal axis neurons were unique. Since 

then, several other hormones, including adrenocorticotropin, glucagon, insulin, 

and prolactin have also been found to be secreted from neurons. The gut 

hormones cholecystokinin, gastrin, secretin, and vasoactive intestinal polypeptide, 
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were also localized within the nervous system by immunohistochemistry. Several 

other peptides, which at present appear to be unique to the nervous system, 

have been found. The number of known new peptides secreted from neurons, 

called neuropeptides, is steadily increasing (Hökfelt et al. 1980). 

Several characteristics of neuropeptides distinguish them from the small-

molecule neurotransmitters. Neuropeptides are formed like all other proteins 

destined for secretion. The DNA sequence for a specific neuropeptide is 

transcribed into mRNA, then translated into a peptide sequence on ribosomes, 

which is then transported into the endoplasmic reticulum. The peptide is further 

processed within the Golgi apparatus and then packaged into neurosecretory 

granules. In contrast, the classical neurotransmitters (biogenic monoamines, 

acetylcholine and basic amino acids) are synthesized in axon terminals, where 

they are released. However, secretory granules containing the neuropeptides 

must be transported from the perikaryon, the length of the axon, to their 

terminals where the neuropeptides are released. Because of the laborious 

method of forming the neuropeptides, much smaller quantities of these are 

usually released than for the small-molecule transmitters. However, this is 

partially compensated for by the fact that the neuropeptides are generally a 

thousand or more times potent than the small-molecule transmitters 

(Guyton 1991d). Removal of 'the small-molecule transmitters occurs within 

milliseconds by diffusion away from the synaptic cleft, destruction by enzymes 
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located within the cleft, and by reuptake of the transmitter by the presynaptic 

terminals. The neuropeptides appear to be removed by destruction within a few 

minutes to several hours by specific or nonspecific proteolytic enzymes. 

Therefore, neuropeptides usually cause a much more prolonged effect. 

1.5 SUBSTANCE P 

1.5.1 Discovery  

The first neuropeptide discovered was substance P (SP). von Euler and 

Gaddum (1931) found acid alcohol extracts of equine brain and intestine caused 

a slow contraction of isolated rabbit's intestine and lowered arterial blood 

pressure. The effects were not blocked by atropine, thus ruling out choline 

esters as the active agent. They were also able to separate the substance's 

hypotensive effects from those of adenosine, for unlike adenosine it was unstable 

in alkali. The structure of SP was not determined until 40 years after its 

discovery (Chang et al. 1971). 

1.5.2 Tachykinin Family 

SP has been identified as an undecapeptide, belonging to a class of 

structurally related bioactive neuropeptides called the tachykinins. This family of 

peptides share a consensus aminated C-terminal sequence; -Phe-)(xx-Gly-Leu 

Met-NH2, where the Xxx residue is either Phe or Val (Figure 1.3). Tachykinins 

are found throughout the animal kingdom; being identified from cephalopods to 
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24 

mammals. For many years SP was considered to be the only tachykinin present 

in mammals. In 1983, two unique tachykinins were identified in mammals; 

neurokinin A (NKA), and neurokinin B (NKB) (Kangawa etal. 1983; Nawa et al. 

1983). More recently, two N-terminally extended derivatives of NKA, 

neuropeptide7 (NPy), and neuropeptide K (NPK), have also been identified 

(Kage et al. 1988;Tatemoto et al. 1985) (Figure 1.3). 

SP, NKA, NP and NPK are derived from the first preprotachykinin (PPT) 

gene (PPT I) to have been isolated. Three different SP-encoding mRNAs are 

produced from the PPT I gene as a consequence of differential splicing in which 

the 6th exon sequence is excluded from cz-PPT mRNA, the 7 exon sequences 

are present in 13-PPT, while the 4th exon sequence is excluded from 'y-PPT 

mRNA. SP is encoded in part of the 3rd exon, whereas NKA is encoded in part 

of exon 6. These differentially spliced SP-encoding mRNAs differ in their protein 

coding sequences, and thus have the ability to encode different peptide 

products. Different peptides can be produced from the NKA portion of p- and 

,Y-PPT precursors. Thus, either NM and/or NPK can be produced from p-PPT, 

and either NM and/or NPi can be produced from 7-PPT (Krause et al. 1990). 

The mammalian tachykinin peptide. NKB is produced from a distinct PPT II 

gene, and is the only known peptide derived from this gene. 
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1.5.3 Distribution and Biological Activity 

Fast-sharp pain is transmitted in peripheral nerves to the spinal cord by small 

myelinated type As afferent fibres at velocities of 5-30 m/s. Slow-chronic pain 

is transmitted at velocities of 0.5-2 m/s by very-small unmyelinated type C fibres 

(Shepherd 1988). On entering the spinal cord from the dorsal spinal roots, the 

pain fibres either ascend or descend one to three segments in the tract of 

Lissauer that lies immediately posterior to the dorsal horn of the spinal cord grey 

matter. The C fibres terminate in laminas II and Ill (substantia gelatinosa) of the 

dorsal horns. The signals pass through one or more additional neurons within 

the dorsal horn before entering mainly lamina V, also within the dorsal horn. The 

last neuron in the pathway transmits the signal in the ipsilateral spinothalamic 

tract to the brain stem and thalamus. SP is believed to be the synaptic 

transmitter released by the C fibres in the substantia gelatinosa. SP is slow to 

build up at the synapse and also slow to be destroyed. Therefore, the 

concentration of SP at the synapse is believed to increase for at least several 

seconds, and perhaps much longer, after pain stimulation begins 

(Guyton 1991 c). 

Bayliss (1901) demonstrated that antidromic stimulation of the peripheral 

stump of transected dorsal roots or sensory nerves induced vasodilation in the 

canine skin. More recently, it has been realized that up to 90% of the SP 

synthesized in the cell body of C fibres is transported to the peripheral dendritic 
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terminals (Brimijoin et al. 1980). Here SP is released from the peripheral 

terminals by noxious stimuli and local tissue inflammation. This has led to the 

concept of an axon reflex, where sensory nerve fibres bifurcate in the periphery, 

one branch forming the sensory ending for reception of an irritant stimulus, the 

other supplying blood vessels and mast cells. When the sensory ending is 

activated, nerve impulses travel not only centrally to the spinal cord, but also 

pass antidromically at the other branch points which terminate on the blood 

vessels. This results in the observed vasodilation in the vicinity of the noxious 

stimulus. 

A great deal of evidence suggests that the release of SP, and perhaps other 

neuropeptides, by an axon reflex in response to noxious stimuli, can induce local 

inflammation. Acute inflammation elicited by substances released from sensory 

nerve fibres is termed neurogenic inflammation (Payan et al. 1984). SP causes 

an increase in tumoricidal and antimicrobial activity of macrophages (Peck 1987), 

stimulates phagocytosis by macrophages and polymorphonuclear leukocytes 

(Bar-Shavit et al. 1980), promotes monocyte and neutrophil chemotaxis (Marasco 

et al. 1981; Ruff et al. 1985), and evokes lysosomal enzyme release from 

neutrophils (Marasco et al. 1981). 

Release of SP from sensory fibres of the trigeminal nerve within the eye 

causes miosis and increases intraocular pressure and protein extravasation into 

the eye. SP-LI fibres are found in the respiratory and urogenital tracts. 
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Activation of afferent fibres causes an increase in blood flow and vascular 

permeability within the respiratory mucosa and urogenital epithelium. Sensory 

nerve mechanisms also appear to contribute to the development of inflammation 

in the joints, which may be mediated in part by SP (Holzer 1988). 

The gastrointestinal tract is also innervated by extrinsic SP-IR axons, which 

reach the intestine via the mesenteric nerves and most likely represent sensory 

nerve fibres passing through the prevertebral sympathetic ganglia. Furthermore, 

SP-IR fibres in the vagus terminate in the stomach and the intestine. SP-lR 

neurons in the myenteric ganglia supply the circular muscle, the submucosa, and 

the mucosa, while the submucosal ganglia only supply the mucosa (Holzer 

1988). It, is likely that the sensory neurons in the gastrointestinal tract are 

involved in defence mechanisms, and protect the mucosa against ulceration 

(Holzer and Sametz 1986). 

A great deal of work has gone into trying to identify the mammalian 

tachykinin receptors. However, the work has been hampered by the slow 

development of highly specific agonists and antagonists, and the receptor 

heterogeneity found in many tissues. To date, three receptor types, NK1, NK2, 

and NK3 have been characterized (Regoli et al. 1988). The NK1 receptors are 

found on the endothelium and have a rank order of potency: SP > NKA> NKB. 

Activation by tachykinins may cause vasodilation through the endothelial release 

of endothelium-derived relaxing factor(s) (Minami et al. 1989). NK2 receptors ar 
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found on rabbit pulmonary artery smooth muscle, where activation causes a 

dose dependent vasoconstriction. The rank order of potencies for the NK2 

receptors are: NKA > NKB > SP. NK3 receptors in peripheral vessels are 

probably involved in vasodilation or protein extravasation, and have a rank order 

of potency: NKB> NKA> SP. 

1.6 CALCITONIN GENE-RELATED PEPTIDE 

1.6.1 Discovery 

Medullary thyroid carcinoma (MTC), a tumor of the thyroid C cells, is usually 

associated with elevated calcitonin secretion (Foster 1968). Rosenfeld et al. 

(1981) found that serial transplantations of MTC in rats resulted in a spontaneous 

and permanent decrease in calcitonin biosynthesis by more than ten-fold. 

However, they reported that the reduction in calcitonin was associated with a 

disappearance of the normal form of calcitonin mRNA and its replacement by a 

slightly larger form. They correctly postulated that alternate processing of the 

calcitonin gene was occurring. 

1.6.2 Peptide Sequence and Gene Structure 

In 1982, Amara et al. (1982) identified the predicted peptide from the 

alternately processed mRNA from rat MTC. They identified the peptide as 

calcitonin gene-related peptide (CGRP), a 37 amino acid peptide in rat which 

contained a 2-7 disulphide bond and terminated in a phenylalanine-amide 
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(Figure 1.4). Morris et a! (1984) identified CGRP from human MTC, which 

differed from rat CGRP by four residues (positions 1, 3, 25 and 35). A second 

CGRP, termed /3CGRP to distinguish it from the previously discovered aCGRP, 

has also been identified (Amara et al. 1985; Steenbergh et al. 1985). In man 

and rat, I3CGRP differs from the a-sequence by three and one amino acids, 

respectively (Figure 1.4). CGRP has a 30% homology with salmon calcitonin 

(Breimer et al. 1988). 

The gene which encodes for both calcitonin and CGRP (CALC) consists of 

six exons. The first three exons are common to both calcitonin and CGRP 

mRNA. However, the first exon is not translated. The fourth exon contains the 

sequences for calcitonin and its C-terminal flanking peptide, katacalcin. The fifth 

exon contains the CGRP sequence. The sixth exon is also part of the CGRP 

transcript, but is not translated. Both calcitonin and CGRP mRNA transcripts 

contain a common amino-terminal flanking peptide with the first 75 amino acids 

being identical (Gkonos et al. 1986). 

The CALC-1 gene, which encodes aCGRP and calcitonin, is located on the 

short arm of chromosome 11, between the catalase and PTH genes (Höppener 

et al. 1984; Przepiorka et al. 1984). A second calcitonin/CGRP gene, CALC-11, 

has also been identified on the short arm of chromosome 11 in human and rat 

(Amara et al. 1985; Hoppener et al. 1985; Steenbergh et al. 1985). While the 
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Figure 1.4 Comparison of the a and p amino acid sequences of human and 

rat calcitonin gene-related peptides. 
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CALC-11 gene encodes f3CGRP, it has no known functional calcitonin sequence 

(Alevizaki et al. 1986). 

1.6.3 Distribution and Biological Activity  

CGRP has been identified in the pituitary, thyroid, and in the central and 

peripheral nervous systems (Rosenfeld et al. 1983). However, there are no 

reports of calcitonin being produced in neural tissue. The mechanism for the 

alternate processing of calcitonin and CGRP is still not known. In the brain, the 

distribution of aCGRP and PCGRP mRNA are similar, but in each region, pCGRP 

mRNA expression is less than 20% that of aCGRP mRNA (Amara et al. 1985). 

The mRNA levels for /3CGRP in the thyroid is also less than 20% that of aCGRP. 

However, in the nuclei of the third, fourth, and fifth cranial nerves, mRNA levels 

for /3CGRP exceeds that of aCGRP (Amara et al. 1985). No functional roles for 

the differential expression of aCGRP and /3CGRP have been established. 

CGRP appears to be produced in the normal C cells in man, but at 1/95th 

that of calcitonin. CGRP has been found in the circulation of man, with normal 

values reported to range from 0.25 pM to over 250 pM. Girgis et al. (1985) 

found circulating levels of CGRP five times that of calcitonin, with a mean 

concentration of 25 ± 1.2 pM. The circulating levels of CGRP originate 

predominantly from its release from nerve terminals (Bevis et al. 198.6; Emson 

and Zaidi 1989; Zaidi et al. 1985, 1986). 
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Immunoreactive CORP. has a widespread distribution throughout the 

cardiovascular system. The intravenous (i.v.) injection of CGRP results in 

tachycardia accompanied by peripheral vasodilation (Fisher et al. 1983; Struthers 

et al. 1985). CORP is one of the most potent vasodilators known, being more 

potent than acetylcholine, adenosine triphosphate, histamine, or prostaglandins 

E2 and 12 on the arterial vasculature (Brain et al. 1985, 1986a, 1986b). In the 

heart, CGRP has a positive inotropic and chronotropic effect on contractility 

(Holman et al. 1986; Sigrist et al. 1986; Tippins et al. 1984). This effect is not 

mediated via norepinephrine, histamine, or prostaglandins. It is possible that 

CORP released locally from cardiac nerves binds to specific receptors to 

modulate cardiac contractility (Sigrist et al. 1986). 

CORP is found co-localized with SP in the dorsal root ganglia, dorsal motor 

horns, and sensory nerve terminals (Franco-Cereceda et al. 1987; Gibson et al. 

1984; Ju et al. 1987; Lee et al. 1985a, 1985b; Skofitsch and Jacobowitz 1985; 

Wiesenfeld-Hallin et al. 1984). There is direct evidence that CGRP is released 

along with tachykinins from sensory nerve endings (Diez Guerra et al. 1988). 

CGRP also potentiates the release of SP from primary sensory terminals (Oku 

et al. 1987). It is likely that CGRP, along with the tachykinins, are important in 

neurogenic inflammation. Gamse and Sariä (1985) have shown that CORP 

potentiates the effects of SP, NKA, and NKB, when they are co-injected into rat 

skin. This mode of action of CGRP appears to be the prevention of SP 
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degradation by peptidases (Le Grevès et al. 1985). 

CGRP has been localized to a-motoneurons in the ventral spinal cord 

(Franco-Cereceda et al. 1987; Gibson etal. 1984; Rosenfeld etal. 1983), and to 

motor nuclei of cranial nerves (Takami et al. 1985). CGRP has also been 

localized to secretory vesicles in axon terminals at neuromuscular synapses 

(Takami et al. 1985) and has been demonstrated to cause an increase in the 

number of acetylcholine receptors on the surface of cultured myotubes (New and 

Mudge 1986). It is possible that CGRP exerts some influence on motor 

mechanisms. 

1.7 NEUROPEPTIDES IN ENDOCRINE GLANDS 

The regulation of endocrine cells has traditionally been hypothesized to be 

via a humoral pathway. However, the endocrine system is further regulated by 

the innervation of endocrine glands. Most, if not all, endocrine glands receive 

nerves that appear to control both their blood flow and their secretory activity 

(Ojeda and Griffin, 1988). Although most of the original work on neuropeptides 

went into characterizing their distribution and effects within the central nervous 

system, there is now a growing body of information on their existence within the 

endocrine system. CGRP, cholecystokinin/gastrin (CCK), SP, and vasoactive 

intestinal polypeptide (VIP)-immunoreactivity have been identified within 

parafollicular cells, and nerves within the vasculature and thyroid follicles in 



34 

several mammalian species (Ahrén etal. 1980, 1983; Grunditz at al. 1986). VIP 

causes secretion of iodothyronine, while VIP, SP, and CCK cause a rapid and 

transient release of calcitonin (Ahrén et al. 1980, 1983). 

CGRP and VIP-immunoreactive nerves have been identified within the 

pancreatic islets of all mammalian species investigated (Bishop et al. 1980; 

Larsson et al. 1978; Pettersson at al. 1986; Sternini and Brecha 1986). Buffa 

et al. (1977) identified VIP-immunoreactive cells in the islets of dog, guinea-pig, 

and man, which were distinct from the a-, -, s-, and the pancreatic polypeptide-

cells. Bishop et al. (1980) identified CGRP-immunoreactive cells in the periphery 

of the islets that were identified as s-cells in the rat, and /3-cells in the mouse. 

CGRP has been shown to have a physiological effect on islet cells by 

suppressing insulin secretion (Pettersson et al. 1986). 

Morel et al. (1982) found VIP-immunoreactivity within prolactin-secreting cells 

of the anterior hypophysis. VIP has been demonstrated to increase the, secretion 

of luteinizing hormone and prolactin, but not adrenocorticotropin, follicle 

stimulating hormone or growth hormone (Rotsztejn et al. 1980; Vijayan and 

McCann 1979). 

Neuropeptide Y (NPY)-immunoreactivity has been localized within cells of the 

renal medulla (Lundberg et al. 1986; Varndell et al. 1984) and within cortical 

nerves (Varndell et al. 1984). Only recently have there been any reports of 

neuropeptides in the parathyroid gland. Zabel et al. (1987) identified nerves 
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containing CGRP within the parathyroid stroma in rat, guinea pig, and man, as 

well as in the parenchyma of man and rat only. No CGRP nerves were 

observed in rabbit parathyroid glands. The presence of CGRP has not been 

looked for in bovine parathyroid glands. Joborn et al. (1991) found VIP 

enhanced cAMP release and caused a dose-dependent stimulation of PTH 

secretion from single bovine parathyroid cell suspensions. Consistent with the 

effects of the catecholamines, VIP was found to have a greater effect on PTH 

secretion at 0.5 mMCa than 2.0 mM Cat 

1.8 OBJECTIVES 

It is apparent from the previous review that peptidergic neurons have a wide 

distribution in the endocrine system, and can influence hormone secretion in 

many glands. Zabel et al. (1987) identified neuropeptides in the parathyroid 

glands of rat, guinea-pig, and man. However, no characterization of their 

presence in the bovine parathyroid gland has been attempted. It was thought 

to be likely that CGRP and SP would be present within nerves previously 

identified within the bovine parathyroid gland (Capen et al. 1965; Jacobowitz and 

Brown 1980). The first objective of this research project was therefore to 

investigate the presence of CGRP and/or SP in the bovine parathyroid gland. 

This problem was approached using indirect immunohistochemistry. CGRP and 

SP were visualized under a fluorescence microscope by fluorophore-conjugated 
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secondary antibodies directed against CGRP and SP specific antibodies. The 

possibility that the two neuropeptides were co-localized to nerve fibres within the 

gland was also investigated by double-staining parathyroid gland sections 

sequentially for the two neuropeptides. 

The second objective of this study Was to examine the effects of CGRP and 

SP on the modulation of PTH secretion. Primary bovine parathyroid cell cultures 

were employed for this investigation. Cultures were incubated with CGRP and 

SP to investigate their effects on PTH secretion at varying Ca concentrations. 

PTH secretion from the cultures was quantified using a radioimmunoassay. 

In summary, the intent of this project was to investigate the 

immunohistochemical localization of CGRP and SP in the parathyroid gland, and 

to investigate the effects of these neuropeptides on PTH secretion. By 

completing this project, I hope the distribution and effects of CGRP and SP on 

the parathyroid gland will help broaden our knowledge of the roles of 

neuropeptides in the endocrine system. The more we know about the 

distribution and effects of neuropeptides, the closer we can come to 

understanding the global picture of their role in the physiological modulation of 

endocrine function. 
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MATERIALS and METHODS  

2.1 IMMUNOHISTOCHEMISTRY 

2.1.1 Antisera 

Three primary (unconjugated) antisera were used in this study: (1) Polak's 

rabbit polyclonal antiserum 1209 raised against rat CGRP (rCGRP) (Gibson et al. 

1984), (2) Copper's rabbit polyclonal antiserum Ri raised against human CGRP 

(hCGRP) (Canton et al. 1987), and (3) Pel-Freez Biologicals' (Rogers, AR, USA) 

rat monoclonal antibody NC1/34 HL raised against SP (CueHo etal. 1979). The 

three fluorophore-conjugated secondary antisera were: (1) goat anti-rabbit IgG 

(fluorescein isothiocyanate (FITC)-áonjugated), (2)' goat anti-rabbit lgG 

(tetramethyl-rhodamine isothiocyanate (TRITC)-conjugated), and (3) goat anti-rat 

lgG (FITC-conjugated) purchased from Sigma Chemical Co. (St. Louis, MO, 

USA). Antisera were diluted to their final working concentration of 1:800 for all 

primary antisera, and 1:50 for FITC-labelled lgGs, and 1:100 for TRITC-labelled 

lgG secondary antisera with 0.05 M phosphate-buffered saline (PBS, pH 7.4) 

containing 0.3% Triton X-100 (PBS-TX). 

2.1.2 Tissue Preparation  

Twenty superior parathyroid glands were collected at a local abattoir from 

steers and heifers (Bos bostaurus) up to two years of age, within 15 min after 

death. Glands were immediately trimmed of all excess fat and connective tissue, 

cut in half longitudinally, and immersed in Zamboni's fixative (Zamboni and De 
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Martino 1967) on ice for 30-60 mm, and stored for 24 h at 4°C. The glands were 

then washed 3 x 15 min in PBS on a shaker, left 24 h at 4°C in a solution of 

30% sucrose and 0.1% sodium azide in 0.1 M phosphate bUffer (PB), embedded 

in . 10% sucrose and 5% agarose in 0.1 M PB, frozen in liquid nitrogen, and cut 

into 15 pm serial sections using a cryostat at -24°C. Sections were 

thaw-mounted onto gelatin-coated slides (1% gelatin, and 0.1% chromium 

potassium sulphate) and stored at -20°C. 

2.1.3 Immunohistochemical Procedure 

The indirect immunofluorescence method of Coons et al. (1955) was used 

to localize the neuropeptides. Slides were washed 3 x 10 min in PBS on a 

shaker, aspirated dry, and 100 p1 of blocking serum (1% normal goat serum) 

was added to each slide for 30 mm, washed off, and 100 p1 of the final 

concentration of primary antiserum was added. Slides were incubated for 24 h 

at room temperature, washed 3 x 10 min in PBS on a shaker, and then aspirated 

dry. Slides were then incubated for 2 h with 100 p1 of an FlTC-labelled 

secondary antiserum. Slides were then washed 3 x 15 min in PBS on a shaker, 

mounted in 4:1 glycerin to water and 0.4% n-propyl gallate, and cover-slipped. 

Slides were viewed and photographed on Ilford HP5 film under a fluorescence 

microscope. 

Double-staining was carried out by sequentially staining for the two 

neuropeptides. Slides were incubated with the anti-rCGRP antiserum, 1209, 
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followed by TRITC-labelled secondary antiserum, as mentioned above. The 

slides were subsequently incubated with the anti-SP antiserum, NC1/34 HL, 

followed by FITC-labelled secondary antiserum. 

2.1.4 Specificity of Antisera  

For preabsorption controls antisera were diluted to 1:800 and preabsorbed 

for 24 h at 4°C with synthetic rCGRP, hCGRP, or SP (Sigma Chemical Co.), at 

various concentrations. The preabsorbed antisera were used in place of the 

regular antisera in the immunohistochemistry procedure above. Replacing either 

the primary or secondary antisera with PBS-TX in the incubation step gave 

negative results for all antisera. 

In the co-localization procedure, no specific staining was observed when 

antiserum NCl/34 HL was incubated with the TRITC-labelled antiserum. 

However, the FITC-labelled antiserum cross-reacted with antiserum 1209. By 

incubating slides with antiserum 1209, followed with TRITC-labelled antiserum, the 

FITC-labelled antiserum was unable to bind antiserum 1209, and therefore, slides 

were stained for CGRP prior to staining for SP (Mortimer et al. 1990). Neither 

the FITC fluorescence nor the TRITC fluorescence bled through into the other 

fluorophore's filter range. 
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2.2 Cell Culture 

2.2.1 Culture Media 

(1) Sterile saline was made using 9 gIl NaCl at pH 740. (2) Wash medium 

was made using Hanks' Balanced Salts Solution (Sigma Chemical Co.) 

containing 15 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), 

4.2 mM NaHCO3, 2.0 mM 0.8 mM Mg, 10 mg/ml gentamicin sulfate, 

10 000 U/mI Penicillin G, 10 mg/ml Streptomycin Sulphate, and 10 mg/ml 

amphotericin B, pH 7.40. (3) Digestion medium was made using Ca' and 

Mg free Waymouth MB 752/1 Medium (Gibco BRL, Burlington, Ontario, 

Canada) supplemented With 15 mM HEPES, 4.4 mM NaHCO3, 2.0 mM 

0.75 mM Mg, 10 mg/ml gentamicin sulfate, 10 000 U/mI penicillin G, 10 mg/ml 

Streptomycin, and 10 mg/ml amphotericin B, pH 7.40. (4) Culture medium was 

made using Dulbecco's Modified Eagle's Medium (DMEM) (Gibco BRL) 

containing 15 mM HEPES, 44 mM NaHCO3, 1.25 mM Ca, 0.75 mM Mg, 

0.87 pM bovine insulin (Sigma Chemical Co.), 64 nM bovine transferrin (Sigma 

Chemical Co.), 10 mg/ml gentamicin sulfate, 10 mg/ml amphotericin B, pH 7.40. 

2.2.2 Collagenase Purification  

Collagenase for gland dispersion was purified according to the method of 

Schultz et al. (1980). 1.00 g of Clostridium collagenase (Worthington Biochemical 

Corporation, Freehold, NJ, USA) was dissolved in 10 ml column buffer (10 mM 

HEPES, 2.0 mM CaCl2, pH 7.40), and applied to a 5 cm x 60 cm column 
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(Pharmacia Fine Chemicals, Piscataway, NJ, USA) containing Sephadex G-1 00 

superfine gel (Pharmacia Fine Chemicals) at 4°C, and eluted at a flow rate of 

17 ml/h. Fractions were collected at 30 min intervals and ultraviolet absorbance 

read at 280 nm to determine protein content. The first protein peak after the 

void volume, representing purified collagenase, was pooled, lyophilized, brought 

up in digestion medium at a concentration of 12 000 U/mI, and stored at -70°C 

before use. 

2.2.3 Gland Collection and Digestion  

Gland collectioh and digestion was modified from MacGregor et al. (1983). 

Thirty five superior parathyroid glands were collected at a local àbattoir from 

steers and heifers (Bos bostaurus), up to two years of age, within 15 min after 

death. Glands were placed in 75 ml sterile wash medium on ice and transported 

to the laboratory. Glands were washed for 2 min in a solution of 50:50 sterile 

0.15 mM NaCl to 70% ethanol, followed by three washes in sterile saline, then 

two washes in wash medium while on ice. Glands were trimmed of all excess 

fat and connective tissue, then sliced into 10 pm sections with a Stadie-Riggs 

tissue slicer (Thomas Scientific Inc., Swedesboro, NJ, USA). The tissue was 

placed in a 100 ml beaker containing wash medium and further minced using 

fine surgical scissors and the fat allowed to float to the surface before being 

decanted off. This was carried out several times until no fat was visible. The 

tissue was transferred to a 500 ml erlenmeyer flask with 60 ml digestion medium 
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containing 400 U/mI purified collagenase, 150 jig/ml papain (Boehringer 

Mannheim Biochemicals, Indianapolis, IN, USA), and 40 pg/mI deoxyribo-

nuclease II (Sigma Chemical Co.). The tissue was then digested for 6 h in a 

37°C Dubnoff metabolic shaking incubator (Precision Scientific, Inc., Chicago, IL, 

USA) at 140 rpm. The tissue was vigorously pipetted every 30 min with a 10 ml 

serological pipette fitted to a 10 ml syringe to further aid in dispersing the tissue. 

After all the cells were dispersed, they were placed in 50 ml conical tubes and 

centrifuged at 1000 rpm for 10 mm. The medium was aspirated off, the cells 

resuspended in wash medium, and centrifuged at 800 rpm for 5 mm. This was 

repeated 4 times, the last two times using culture medium. A 100 p1 aliquot was 

removed and 10 p1 of 0.5% Trypan Blue added. Cell counts were determined 

using a haemocytometer and viability assessment made by Trypan Blue 

exclusion. The cells were seeded at a density of 1.0 x 106 viable cells/ml/well in 

24 well plates (Nalgene Co., Rochester, NY, USA) using culture medium 

supplemented with 10% heat-inactivated fetal calf serum (FCS) (Gibco BRL) and 

placed in a humid 37°C incubator (Model #3331, National Appliance Co., 

Portland, OR, USA) in an atmosphere of 5% CO2 and 95% air. 
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2.3 INCUBATIONS 

2.3.1 Chemicals and Media  

Synthetic a-hCGRP (80.4% peptide) and SP (73.0% peptide) were purchased 

from Bachem Inc. (Torrance, CA, USA), and both peptides were greater than 

99% pure. The lyophilized powders were diluted to 10-3 M using sterile distilled 

water, with the concentrations calculated according to the peptide content, 

aliquoted into Ependorif micro-centrifuge tubes, and stored at -70°C before use. 

The purity of the peptides was verified using high performance liquid 

chromatography with detection by absorbance at 210 nm. Culture medium was 

made using DMEM (Gibco BRL) containing 15 mM HEPES, 44 mM NaHCO3, 

either 0.5, 1.25, or 2.0 mM Ca, 0.75 mM 10 mg/ml gentamicin sulfate, 

and 10 mg/ml amphotericin B, pH 7.40. 

2.3.2 Procedure  

Between 2-3 d after seeding, culture medium was aspirated from each well, 

and replaced with 1200 p1 of the equilibrated incubation medium. 200 p1 of the 

medium was immediately removed (time 0 mm). 200 p1 of medium was removed 

at either 30 min or 45 mm, and replaced with 200 p1 of equilibrated medium. At 

either 60 min or 90 mm, 800 p1 of the medium was removed. All the medium 

was placed into Ependorif microcentrifuge tubes and spun for 1 min in a micro-

centrifuge. Medium was then removed from the tubes and placed in 75 mm x 

150 mm test tubes containing 10% 0.5 M acetic acid (v/v) and stored at -20°C. 
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2.4 RADIOIMMUNOASSAY 

An equilibrium radioimmunoassay (AlA) of secreted PTH in the culture 

medium was performed using a guinea-pig antiserum (GP-467) raised against a 

crude preparation of bovine PTH (bPTH) (TCA powder, Inolex Laboratories, 

Grenwood, II, USA), which has been characterized as having a detection 

preference for intact PTH (Hanley et al. 1985). A final antibody dilution of 1 to 

140 000 in the assay was used in 0.01 M Veronal buffer, 0.01 M EDTA, pH 8.6, 

containing PTH free human plasma (1:5 v/v) as the assay buffer. Standards 

and samples were assayed in triplicate, using a Gilson diluter. 25 p1 intact bPTH' 

(Bachem Inc.) was used for the reference standard. 50 p1 radiolabelled bPTH 

(100 cpm/pl) was added to each tube and incubated for 4 days at 4°C. Bovine 

PTH was lodinated with 1251 (Amersham Canada Ltd., Oakville, Ontario, Canada) 

by chioramine I according to the method of Roos and Deftos (1979). Bound 

and free tracer were separated by the double antibody method. 100 p1 of 

guinea-pig serum (1:300) and 100 p of goat anti-guinea pig antiserum (1:16) in 

0.01 M veronal buffer were added to each tube and incubated at 4°C for 24 h. 

Tubes were spun at 3000 rpm for 30 min at 4°C in a DCP-6000 centrifuge (IEC, 

Needham Heights, MA, USA), aspirated, and counted on an LKB-Wallac 1274 

RiaGamma counter (Cambridge, England) using the spline-function method 

(Rawlins and Yrjönen, 1978). 



45 

2.5 STATISTICS 

Each experimental condition was repeated on 4 wells within an experiment 

and experiments repeated at least 3 times. Data are expressed as 

mean ± standard deviation (SD) of 4 replicates. After conversion to amount of 

PTH secreted above time 0 mm, secretion data were pooled and analyzed by the 

non-parametric two-tailed Mann-Whitney U-test for small samples (Siegel and 

Castellan 1988). The criterion for significance was set at P < 0.05 for all 

comparisons. 
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RESULTS 

3.1 IMMUNOHISTOCHEMISTRY 

3.1.1 Calcitonin Gene-Related Peptide  

Rat CGRP-like immunoreactive (CGRP-LI) nerve fibres with varicosities were 

observed within the parathyroid gland using Polak's anti-rCGRP antiserum. 

Numerous rCGRP-LI fibres were observed close to or within the walls of blood 

vessels. Most arteries and arterioles observed contained rCGRP-Ll fibres within 

the tunica adventitia and often closely apposed to the tunica media (Figure 3.1 A). 

The fibres showed a large variation in size. No rCGRP-Ll fibres were associated 

with any veins or capillaries. Rat CGRP-Ll fibres were not restricted to the 

arterial vasculature, but appeared also throughout the stroma of the gland. Most 

of the fibres were located in large stromal areas containing arteries. Both 

straight and tortuous, as well as large and small fibres were found here 

(Figure 3.1A). 

Frequently slender rCGRP-Ll fibres were found winding through small stromal 

areas between individual parenchymal lobules, apparently not associated with 

any vessels. 'Many of these fibres were closely apposed to the parenchyma. 

Some parenchymal lobules were devoid of encompassing fibres, while others 

appeared to be almost completely surrounded by fibres (Figure 3.1 B). They had 

a characteristically patchy distribution with areas totally devoid of immunoreactive 

fibres. However, none of the fibres were found to enter the parenchyma and 
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Figure 3.1 Immunofluorescence localization of CGRP-Ll in the bovine parathyroid 

gland using Polak's anti-rCGRP antiserum 1209 (A, B) and Cooper's anti-hCGRP 

antiserum Ri (C, D). A, C Immunoreactive nerve fibres are located within the 

walls of small muscular arteries (arrowheads), and within the stroma of the gland 

independent of the vasculature. B, D Immunofluorescence localization of CGRP-

LI nerve fibres encircling parenchymal lobules (PL). No immunoreactive fibres 

are seen penetrating into the parenchyma. A, C x 62.5, B x 250, D x 125. 

Bars: 50 pm (A, B), 20 pm (C, D). 
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synapse with the chief cells. 

Similar results were obtained using Cooper's antiserum to hCGRP. The 

pattern and distribution of hCGRP-LI nerve fibres were the same as those 

observed using antiserum to rCGRP. That is, hCGRP-LI fibres were observed 

within arteries and large stromal areas (Figure VC) and encircling the 

parenchymal lobules (Figure 3.1 D), but no contacts were observed between 

fibres and chief cells. 

Preabsorption controls were carried out according to the methods described. 

Discernable staining diminished from 100% to 0% within a 100-fold increase in 

concentration of antigen for both Polak's and Cooper's antisera (Table 3.1). 

Both antisera showed the same levels of staining when preabsorbed with 10-5 M 

SP as with unpreabsorbed antisera, indicating no cross-reactivity of either CGRP 

antisera with SP. 

3.1.2 Substance P  

Substance P-like immunoreactive (SP-Ll) fibres were also identified in bovine 

parathyroid glands. The SP-Ll fibres appeared to be similar to CGRP-Ll fibres 

in diameter and the presence of varicosities, and had a staining intensity and 

distribution comparable to those for CGRP. The immunoreactive fibres were 

observed within the stroma of the gland (Figure 3.2A). Many of the fibres were 

found within the tunica adventitia closely apposing the tunica media in arteries 

and arterioles (Figure 3.2A). Similarly to the CGRP-Ll fibres, SP-Ll fibres were 
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Table 3.1 Preabsorption controls for the immunohistochemical antibodies. 

Antiseraa Antigen Concentration of antigen  

10 11M 10 10M 10 9M 1OM 10 7M 1OM 1O 5M 

rCGRP rCGRP ++  

hCGRP  

SP ++ 

hCGRP rCGRP ++ ++ ++ 

hCGRP  

SP ++ 

SP rCGRP ++ 

hCGRP ++ 

SP  

a Antisera used were Polak's anti-rCGRP antiserum 1209, Cooper's anti-hCGRP 

antiserum Ri, and Pel-Freez Biologicals' anti-SP antiserum NC1/34 HL 

preabsorbed with synthetic rCGRP, hCGRP, and SP. 

b The binding is expressed as: ++,'100% maximum; +, 50% maximum; 

—, 0% maximum. 
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Figure 3.2 Immunofluorescence localization of SP-Ll in the bovine parathyroid 

gland using Pel-Freez Biologicals' anti-SP antibody NC1/34 HL. A 

Immunoreactive nerve fibres are located within the arterial vasculature 

(arrowheads), and within the stroma of the gland where they cannot be followed 

along any vessels. B Immunoreactive fibres surrounding the parenchymal 

lobules (PL). No immunoreactive fibres are seen penetrating into the 

parenchyma. x 125. Bars: 30 pm. 
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also found in close proximity to the parenchymal lobules (Figure 3.213). However, 

the fibres did not enter the parenchyma nor made contact with any chief cells. 

Antiserum NC1/34 HL preabsorbed with synthetic SP gave results similar to 

those for Cooper's antiserum preabsorbed with hCGRP (Table 3.1). Staining 

intensity decreased from maximal to zero within a 100-fold increase in the 

concentration of antigen. Antiserum NC1/34 HL preabsorbed with i0 M rCGRP 

or hCGRP showed the same levels of specific staining as with unpreabsorbed 

antiserum. 

3.1.3 Co-localization of Calcitonin Gene-Related Peptide and Substance P  

Since both CGRP-Ll and SP-Ll fibres were found to have approximately the 

same distribution in bovine parathyroid glands, I attempted to determine whether 

the two neuropeptides were present in the same fibres. Sections were stained 

with antisera 1209 and NCl/34 HL. Fibres containing both rCGRP-Ll and SP-Ll 

were observed in double-staining experiments. All of the fibres showed identical 

staining for both CGRP and SP (Figure 3.3). 

3.2 EFFECTS OF CALCITONIN GENE-RELATED PEPTIDE AND 

SUBSTANCE P ON PARATHYROID HORMONE SECRETION 

3.2.1 Calcitonin Gene-Related Peptide  

The effects of hCGRP on PTH secretion from bovine parathyroid cell cultures 

was investigated. CGRP, at concentrations between 10'8 M  and 10-5 M,  had no 
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Figure 3.3 Immunofluorescence co-localization of CGRP-Ll and SP-Ll in bovine 

parathyroid gland using Polak's anti-rCGRP antiserum 1209 and Pel-Freez 

Biologicals' anti-SP antibody NC1/34 HL. CGRP-Ll nerve fibres seen .under a 

TRITC filter (a) and SP-IR nerve fibres seen, under a FITC filter (b). All 

immunoreactive fibres within the gland are seen under both filters indicating that 

all fibres contain both neuropeptides. x 125. 
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significant effect on PTH secretion at 45 min after its addition into cultures in the 

presence of a normal physiological .calcium concentration of 1.25 mM Ca' 

(Figure. 3.4). Similar results were also seen after the 'cultures had been 

incubated for 90 mm. 

Cultures incubated in low calcium concentrations (0.5 mM Ca') also showed 

similar results. Cultures incubated at CGRP concentrations between 10 M and 

10-5 M for 60 min showed no significant change in their' rate of PTH secretion 

over control cultures not exposed to CGRP (Figure 3.5). In, the , presence of 

2.0 mM cultures also showed no change in PTH secretion when incubated 

with CGRP at concentrations of 10-8 M to 10',9 M (Figure 3.6). 

3.2.2 Substance P  

The bovine parathyroid cultures also did not respond to the presence of SP 

in the incubation medium. Figure 3.7 shows a dose response curve for cultures 

incubated at 1.25 mM Ca in the presence of SP at concentrations between 

10-8 M  and 107,5 M. At 45 min and 90 mm, the cultures did not change their rate 

of PTH secretion from that of cultures incubated at 1.25 mM Ca'1 in the 

absence of SP. 

SP, at concentrations between 10-8 M  and 1 0-5 M, also had no significant 

effect on PTH secretion at 0.5 mM Ca' for up to 60 mm (Figure 3.8). Similar 

results were also found in cultures incubated with SP .(10-8 M to 10-5 M) at 

2.0 mM Ca (Figure 3.9) for up to 60 mm. . 
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Figure 3.4 Dose response curve for hCGRP effect on PTH secretion from bovine 

parathyroid cell cultures in the presence of 1.25 mM Ca 
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Figure 3.5 Dose response curve for hCGRP effect on PTH secretion from bovine 

parathyroid cell cultures in the presence of 0.5 mM 
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Figure 3.6 DOse response curve for hCGRP effect on PTH secretion from bovine 

parathyroid cell cultures in the presence of 2.0 mM 
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Figure 3.7 Dose response curve for SP effect on PTH secretion from bovine 

parathyroid cell cultures in the presence of 1.25 mM Cat 
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Figure 3.8 Dose response curve for SP effect on PTH secretion from bovine 

parathyroid cell cultures in the presence of 0.5 mM Ca. 
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Figure 3.9 Dose response curve for SP effect on PTH secretion from bovine 

parathyroid cell cultures in the presence of 2.0 mM 
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3.2.3 Calcitonin Gene-Related Peptide and Substance P  

The possibility that CGRP and SP are required together to have an effect on 

PTH secretion was also investigated. The results were the same as when CGRP 

and SP were incubated separately. Concentrations of CGRP and SP between 

10-10 M to 10-6M had no significant effect on PTH secretion at 1.25 mM Ca' at 

either 30 min or 60 mm (Figure 3.10). 

3.2.4 Responsiveness to Known Secretagogues  

The cultures were responsive to calcium. Cultures exposed to 0.5 mM Ca 

showed a significant increase in PTH secretion from cultures exposed to 2.0 mM 

Ca (Table 3.2). At 1.25 mM PTH secretion from cultures incubated with 

isoproterenol (10-6 M) or dopamine (10-5 M) were significantly higher than control 

cultures incubated without the catecholamines (Table 3.2). 



63 

•10 

0 I • I I I 

0 -10 -8 -6 

hCGRP and SP Concentrations (Log M) 

Figure 3.10 Dose response curve for the effects of hCGRP and SP on PTH 

secretion from bovine parathyroid cell cultures in the presence of 1.25 mM Cat 
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Table 3.2 Responsiveness of the parathyroid cell cultures to calcium and the 

catecholamines isoproterenol, and dopamine. 

Secretion of PTH 

(ng PTH/well above time 0 mm) 

45 min 90 mm 

0.5 mM Ca (8) 20.04 ± 7.31 

1.25 mM Ca (12) 16.41 ± 11.14 

1.25 mM Ca" + 10-6 M Isoproterenol (12) 41.37 ± 13.26a 

1.25 mM Ca + 10-,9 M Dopamine (12) 34.09 ± 9.65a 

2.0 mM Ca (8) 12.74 ± 5.95 

40.32 ± 8.23 

33.14 ± 11.10 

66.15 ± 22.00a 

64.93 ± 9.41a 

25.21 ± 11.92b 

Data are expressed as mean ± SD. The number of cultures used are indicated 

in parentheses. After conversion to amount of PTH secreted above time 0 mm, 

secretion data were pooled and analyzed by the non-parametric two-tailed Mann-

Whitney U-test for small samples (for n=8) or large samples (for n=12. 

a Significantly different from 1.25 mM Ca, p < 0.05. 

'Significantly different from 0.5 mM p < 0.05. 
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DISCUSSION  

4.1 CALCITONIN GENE-RELATED PEPTIDE AND SUBSTANCE P IN THE 

VASCULATURE 

In the present study I used indirect immunohistochemistry to identify, for the 

first time, the presence of immunoreactive CGRP and SP within the bovine 

parathyroid gland. CGRP immunoreactivity was positively identified in nerve 

fibres within the substance of the gland. I found CGRP-Ll fibres to be located 

within the small arteries and arterioles throughout the gland. These fibres within 

the arterial vasculature of the parathyroid gland formed a meshwork within the 

tunica adventitia. Many of the fibres were found at the tunicae adventitial-medial 

junction, but did not penetrate into the tunica media. 

Shortly after CGRP's discovery, thin beaded CGRP-Ll fibres were identified 

within the smooth muscle of blood vessels of the gastrointestinal tract, heart, 

lung, and tongue (Rosenfeld et al. 1983). High concentrations of CGRP-Ll have 

been reported in the abdominal aorta, as well as the carotid, cerebral, femoral, 

renal, and superior mesenteric arteries (Hanko et al. 1985; Mulderry et al. 1985; 

Uddman et al. 1986; Wanaka et al. 1987). CGRP also has a wide distribution 

within small arteries and arterioles (Wanaka et al. 1986), which is consistent with 

its presence in the bovine parathyroid gland vasculature. Hanko et al. (1985), 

Uddman et al. (1986), and Wanaka et al. (1987) found CGRP-Ll nerves present 

as a meshwork in the tunica adventitia, often making contact with, but not 
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penetrating the tunica media. 

I did not observe any CGRP-Ll fibres associated with the venous system in 

the bovine parathyroid gland. While high levels of CGRP have been reported in 

the proximal regions of the femoral and renal veins, and inferior vena cava, the 

nerve fibre frequency diminishes as the veins are traced peripherally (Mulderry 

et al. 1985; Uddman et al. 1986). 

I also established for the first time the presence of SP in nerve fibres within 

the parathyroid gland. Like CGRP, many SP-Ll fibres were found as a meshwork 

within the tunica adventitia in arteries and arterioles, where they frequently 

apposed the tunica media. In several mammalian species, almost every arterial 

bed investigated to date (brain, cardiovascular system, and the respiratory, 

gastrointestinal, urinary, and reproductive tracts) has been shown to be supplied 

with SP-containing fibres down to the level of the arterioles and metarterioles 

(Costa et al. 1980; Edvinsson and Uddman 1982; Furness et al. 1982; Reinecke 

etal. 1980; Sundler etal. 1977; Wharton etal. 1981). The SP-Ll nerve networks 

are present in the tunica adventitia, and the tunicae adventitial-medial junction of 

the arterial vessels.' 

Like the CGRP-Ll fibres, no SP-Ll fibres were found associated with the 

venous system in the bovine parathyroid gland. SP-Ll nerves have been found 

within large veins, but their density decreases as one traces the veins distally, 

becoming very sparse or absent in small veins and venules (Furness et al. 1982; 
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Reinecke et al. 1980; Wharton et al. 1981). 

The distribution of SP-LI fibres within the bovine parathyroid gland was similar 

to that described for CGRP-Ll fibres. In double-staining experiments, all fibres 

showed identical staining for both CGRP and SP (Figure 3.3). Many 

investigators have found a high level of co-localization of CGRP and SP within 

the same fibres in both the central and peripheral nervous systems (Gibbins 

et al. 1985; Hardebo et al. 1989; Lee et al. 1985a; 1985b; Skofitsch and 

Jacobowitz 1985; Wiesenfeld-Hallin et al. 1984). Gulbenkian et al. (1986) were 

able to demonstrate the coexistence of CGRP and SP within secretory vesicles 

of peripheral nerves in the guinea pig, suggesting they maybe co-released from 

peripheral axons. 

Capsaicin (8-methyl-N-vanillyl-6-nonenamide), a pungent ingredient found in 

peppers of the genus Capsicum, is a neurotoxin (Bevan and Szolcsányi 1990; 

Holzer 1988; Maggi and Mel! 1988). Capsaicin causes the selected depletion 

of neuropeptides from C fibres with no evidence of actions on non-sensory 

neurons, and is therefore used as a marker for C fibres. It is well documented 

that systemic capsaicin treatment of guinea pigs and rats leads to the depletion 

of CGRP and SP immunoreactivity from nerve fibres in the vascular system (Barja 

et al. 1983; Duckles and Buck 1982; Duckles and Levitt 1984; Furness et al. 

1982; Gibbins et al. 1985; Lundberg et al. 1985; Wharton et al. 1986). This 

strongly suggests a sensory origin for these nerves. 
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Cross-reactivity with other peptides and proteins containing amino acid 

sequences recognized by the CGRP and SP antisera cannot be excluded. 

Therefore, the expression CGRP- and SP-Ll was used throughout this thesis. 

It was unlikely that the anti-CGRP antibodies were cross-reacting with 

calcitonin. Gibson et al. (1984) reported no áross-reactivity between 10 nmol 

calcitonin/ml anti-CGRP antiserum 1209. Amylin, the major peptide component 

of islet amyloid commonly found in the pancreases df patients with non-insulin-

dependent diabetes mellitus, shows 46% sequence homology with CGRP 

(Cooper et al. 1987). Antisera to rCGRP has also been shown to cross-react 

with human amylin (Clark et al. 1987). However, amylin and calcitonin do not 

appear to be present in the nervous system. 

There is a possibility that the anti-SP antiserum NC1/34 HL cross-reacts with 

NKA or NPK, which are reported to exist in sensory nerves (Dalsgaard et al. 

1985; Diez Guerra et al. 1988; Hua et al. 1985). RIA crossreactivity experiments 

indicate that NCl/34 HL recognizes a determinant located in the carboxy-terminal 

portion of SP (Cuello et al. 1979). It is possible that NC1/34 HL recognizes the 

carboxy-terminal tripeptide sequence common to all tachykinins, and was cross-

reacting with a tachykinin other than SP in the bovine parathyroid gland. 
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4.2 CALCITONIN GENE-RELATED PEPTIDE AND SUBSTANCE P NEAR THE 

PARENCHYMA 

I found that many of the peptidergic fibres were closely apposed to the 

parenchyma and not associated with any arteries. Although these fibres 

appeared to encircle some parenchymal lobules, I was unable to demonstrate 

any CGRP or SP fibres extending into the parenchyma. No synaptic contacts 

with the chief cells was observed either. There appears to be a species 

specificity to the distribution of CGRP within the parathyroid gland. The 

distribution of CGRP-Ll fibres in man and rat are different from those in the 

bovine. However, the innervation of the bovine parathyroid gland with 

peptidergic nerves is consistent with the findings of earlier workers, Capon et al. 

(1965) and Jacobowitz and Brown (1980), who reported nerve fibres confined 

to the stroma. 

The chief cells are likely targets for these perilobular fibres. As no intimate 

contact with chief cells was observed, these neuropeptides would probably have 

a paracrine mode of action. By diffusing into the parenchyma, CGRP and SP 

might interact with receptors on the chief cells to initiate a physiological 

response. Therefore, the short term effects of CGRP and SP on PTH secretion 

from primary bovine parathyroid cell cultures were investigated. 
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4.3 EFFECT OF CALCITONIN GENE-RELATED PEPTIDE AND 

SUBSTANCE P ON PARATHYROID HORMONE SECRETION 

I was unable to demonstrate any direct effect of CGRP or SP on PTH 

secretion from the. primary bovine parathyroid cell cultures with treatment as high 

as i0 M for up to 90 min at 1.25 mM and 60 min at 0.5 and 2.0 mM 

SP has been co-localized with CGRP in nerve terminals. There is very little 

known for the significance of this co-localization. While knowledge of the actions 

of neuropeptides on target cells has advanced greatly in recent years, the 

majority of studies have focused on actions of single substances, applied one 

at a time. Less is known of the consequences of the exposure of cells to 

combinations of neuropeptides. The possibility that CGRP and SP are required 

together to affect PTH secretion was investigated. Incubating the primary cell 

cultures with CGRP and SP simultaneously at 1.25 mM Ca did not affect PTH 

secretion for up to 60 mm. 

The cultures were responsive to calcium, secreting a significantly greater 

amount of PTH in response to 0.5 mM Ca than to 2.0 mM Ca (Table 3.2). 

This is consistent with the response of parathyroid chief cells to extracellular 

At high extracellular Ca concentrations, the cultures continued to show 

a non-suppressible component of PTH secretion, which is also consistent with 

the normal physiological response of these cells to high calcium levels. 
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Isoproterenol and dopamine, which have been well documented to stimulate PTH 

secretion (Brown et al. 1976, 1977a, 1977b, 1977c, 1983; Hanley and Wellings 

1985), were also found to significantly increase PTH secretion from the cell 

cultures (Table 3.2). As the cultured parathyroid cells responded normally to 

isoproterenol and dopamine, it is likely that they have replaced or have not lost 

their cell surface receptors as a result of the digestion procedure. 

I do not feel it is likely that the conditions of the incubations caused 

degeneration of CGRP or SP. Endopeptidases capable of degrading CGRP and 

SP have been isolated from cerebrospinal fluid (Le Grevès et al. 1989; Nyberg 

et al. 1984), but such peptidases have not been identified in serum, and it is 

unlikely that CGRP and SP were being acted upon by these peptidases within 

the culture incubations. Furthermore, Brain and Williams (1985) and Brain et al. 

(1986b) reported that CGRP retains its biological activity upon incubation in 

human blood or plasma for 1 h at 37°C. In contrast, incubating SP in rat plasma 

for 1 h at 37°C resulted in a loss of 89% biological activity (Lembeck at al. 1978). 

With the concentration of FCS used in the cultures, any enzymes present 

probably would have had little inactivating effect on SP. 

The CGRP and SP used in these studies are synthetic peptides, and there 

is no assurance that their effects truly mirror physiological events. The possibility 

that these neuropeptides must be further cleaved, or processed to express their 

biological activity cannot be ruled out. However, other investigators have found 
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synthetic CGRP and SP actiVe in many in vitro cell systems. Although I was 

unable to demonstrate any effect of CGRP or SP on PTH secretion, a possible 

role for these neuropeptides on PTH secretion in vivo cannot be ruled out. The 

compound may have been given in doses or over time periods different from 

usual in vivo circumstances. Some studies have found PTH undergoes circadian 

or pulsatile variations. The neuropeptides may have to be released in a pulsatile 

manner to have an effect on PTH secretion. 

4.4 POSSIBLE ROLES FOR CALCITONIN GENE-RELATED PEPTIDE 

AND SUBSTANCE P IN THE BOVINE PARATHYROID GLAND 

The above evidence suggests that CGRP and SP may not play a direct role 

in PTH secretion. The distribution of the fibres within the bovine parathyroid 

gland suggests other possible functions for these neuropeptides. CGRP and SP 

found co-localized to fibres within the vasculature of the parathyroid gland 

suggests a likely vasomotor role for these sensory nerves. Brain et al. (1985) 

reported a direct vasodilatory effect of CGRP on aortic rings precontracted with 

norepinephrine. CGRP is a potent dilator of human and porcine coronary 

vessels (Greenwald et al. 1986; McEwan et al. 1986). Dilatation of skin arterioles 

of man and rabbit following intradermal injection, and dilatation of the hamster 

cheek pouch after topical application have also been reported (Brain et al. 1985). 

aCGRP and pCGRP appear to be equipotent as vasodilators (Brain etal. 1986b). 
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This may explain the presence of the peptidergic fibres near the tunica media of 

arteries and its absence from the veins. CGRP and SP, released from the 

peptidergic fibres, may diffuse into the tunica media causing relaxation of the 

vascular smooth muscles. 

The physiological mode of vasodilation is not fully understood. It is not clear 

as to whether CGRP is endothelial requiring, and may depend on the location 

of the vessel. Endothelial-dependent relaxation has been found in rat aorta 

(Brain et al. 1985), but relaxation is independent of endothelium in certain rat, 

rabbit, and cat arteries (Edvinsson et al. 1985; Hanko et al. 1985). Sigrist et al. 

(1986) identified binding of CGRP to the tunica adventitia and tunica media in rat 

aorta. CGRP does not cause protein extravasation (Brain and Williams 1985; 

Brain et al. 1985, 1986b; Kubota et al. 1985). 

In the case of endocrine glands innervated with SP, the release of.SP may 

increase the rate at which the hormone enters the circulation from the 

extracellular space. Although SP is 1000-times less potent than CGRP as a 

vasodilator in subcutaneous vessels (Brain et al. 1985, 1986b), it has recently 

been demonstrated that SP increases protein extravasation (De Sanctis et al. 

1990; Prior et al. 1990), probably through the release of histamine from mast 

cells (Fewtrell et al. 1982; Foreman et al. 1983). SP has also been found to 

require an intact endothelium in renal, celiac, and superior mesenteric arteries 

from cat, dog, and rabbit (Edvinsson et al. 1985; Furchgott et al. 1983; Zawadzki 
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etal. 1981). 

There are data that suggest CGRP and SP play a role in neurogenic 

inflammation. It is possible that CGRP- and SP-Ll nerves in the parathyroid are 

involved in this inflammatory response. CGRP- and SP-Ll nerves have been 

identified in close proximity to mast cells in the rat (Domeij et al. 1991), and often 

make contact with them (Crivellato et al. 1991; Stead et al. 1987). Levine (1928) 

reported the presence of large numbers of mast cells in the bovine parathyroid 

gland, while Capen et al. (1965) and Zawistowski (1966) found only the 

occasional mast cell within the stroma of the gland. It is likely that fibres within 

the bovine parathyroid gland which deviate from the vasculature are associated 

with stromal mast cells. This would fit into the idea that these peptidergic fibres 

are involved in neurogenic inflammation via an axon reflex. The release of CGRP 

within the arterial walls could induce vasodilation, while SP release from the same 

fibres could be responsible for plasma extravasation by inducing mast cells to 

release histamine. The resultant plasma extravasation may aid in the movement 

of PTH from the extracellular fluid into the circulation, while the vasodilation could 

increase parathyroid blood flow, which would enhance the rate at which PTH 

enters the general circulation. At the same time, these potential actions of CGRP 

and SP on the pérathyroid gland would increase the rate at which possible 

secretagogues in the circulation gain access to the parenchymal cells. 
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The notion of peptidergic fibres causing inflammation in the parathyroid gland 

maybe important in looking for an indirect affect of CGRP and SP on PTH 

secretion. The release of histamine by mast cells in response to CGRP or SP 

may have an effect on PTH secretion. Several groups have found that histamine 

causes an increase in parathyroid cell cAMP levels, and stimulates PTH secretion 

in vitro (Abboud et al. 1981; Brown 1980; Williams et al. 1981) and in vivo 

(Williams et al. 1981). The investigators found the histamine effects could be 

blocked by the H2-receptor antagonist cimetidine. Bovine mast cells have also 

been reported to contain high levels of dopamine (Bertler et al. 1959), a known 

PTH secretagogue. It is conceivable that CGRP and SP may indirectly stimulate 

PTH secretion by, causing mast cells to release histamine and/or dopamine 

during an inflammatory response. The cell cultures utilized in this study would 

have eliminated the required association between parathyroid and mast cells. 

4.5 A ROLE FOR CALCITONIN GENE-RELATED PEPTIDE AND 

SUBSTANCE P IN CALCIUM HOMEOSTASIS. 

Despite the above evidence that CGRP lacks an effect on PTH secretion, at 

least over 90 min in vitro, there is a growing amount of evidence suggesting that 

CGRP can modulate calcium metabolism. However, these effects are species-

specific. In rats, most of the data have demonstrated that CGRP has 

hypocalcemic properties similar to calcitonin in vitro and in vivo. The ix. injection 
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of CGRP causes a dose-dependent decrease in total plasma calcium (Bevis et al. 

1987; Datta et al. 1989; Tippins et al. 1984). Zaidi et al. (1988) reported a 

significant reduction in total plasma calcium levels after 60 min infusion, or 30 

min following the intramuscular, i.p., i.v., or subcutaneous injection of hCGRP, 

which had a duration of 1 to 2 h. 

The majority of evidence suggests that CGRP's hypocalcemic properties in 

rats are mediated by interacting with the skeleton. Goltzman and Mitchell (1985) 

were the first to demonstrate the binding of CGRP to bone. Roos et al. (1986) 

found that CGRP inhibits the release of 45Ca from organ cultures and lowers 

blood calcium levels. CGRP was also able to cause an escape phenomenon 

(Roos et al. 1986; Yamamoto et al. 1986) similar to that seen with prolonged 

calcitonin exposure (Wener et al. 1972). 

It is likely that CGRP's hypocalcemic properties are mediated via inactivation 

of osteoclasts. In support of this notion, Zaidi et al. (1 987a, 1987b, 1988) found 

CGRP directly inhibited bone resorption from isolated osteoclasts. However, the 

dose of hCGRP or rCGRP required for maximal hypocalcemic effects are 

consistently 100-1000 fold greater than that required for calcitonin (Bevis et al. 

1987; D'Souza et al. 1986;. Miyaura et al. 1992; Roos et al. 1986; Tippins et al. 

1984; Yamamoto et al. 1986; Zaidi et al. 1987a, 1987b, 1988). It has been 

suggested that CGRP's ability to modulate calcium levels is due to a weakly 

agonistic action on the calcitonin receptor. Even though salmon calcitonin and 
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CGRP are only 30% homologous (Breimer et al. 1988), their size and charge 

are similar, and they share amino-terminal cysteine rings and carboxy-terminal 

amidated residues, which might result in similar conformational structures of 

these two peptides such that they have affinities for the same receptors. 

Goltzman and Mitchell (1985) found CGRP and calcitonin cross react with each 

others receptors, but with lower affinity to the other's receptor in many tissues, 

including bone. 

There is less consistent evidence in other species for a role of CGRP in 

modulating calcium homeostasis. Joborn et al. (1991) found no difference in 

PTH secretion from dispersed bovine parathyroid cell suspensions at 1.25 mM 

Ca during 30 minute exposures to 10 M or 10 M CGRP. In the rabbit and 

chicken, the effects of CGRP somewhat resemble those of PTH. In rabbits, 

5 Mg/kg calcitonin and CORP were equipotent in their hypocalcemic effects 

(Bevis et al. 1987; Tippins et al. 1984). However, increasing the dose of CGRP 

to 10 pg/kg resulted in the initial hypocalcemia being succeeded by 

hypercalcemia. Bevis et al. (1990) found the i.v. injection of CGRP into chickens 

also caused an initial 15 min hypocalcemia which was succeeded by hyper-

calcemia 30 min after the CGRP injection. Ancill et al. (1990) found no change 

in calcium levels 20 min after CORP injection into chickens, but reported a 

marked hyercalcemia at 60 min. Ancill et al. (1991) also found that CGRP 

caused a high level of calcium uptake into bone in vivo, which had a duration 
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of 10 mm, as demonstrated by an elevation into a variety of bones of a 

simultaneous administered 45 Ca label. This transient uptake of calcium could 

explain the initial hypocalcemic response by CGRP in chickens reported by Bevis 

et al. (1990). 

Many investigators have been able to isolate populations of bone cells 

responsive to CGRP but not to calcitonin, which might explain the PTH-like 

effects of CGRP found in rabbits and chickens. Crawford et al. (1986) found that 

2 x 10-9 M CGRP increased cAMP production 30-40 fold over controls in cultured 

osteoblast-like cells. In an osteogenic sarcoma subclone (UMR 106-01) with no 

measurable calcitonin receptors or response, CGRP caused a dose-dependent 

increase in cAMP production (Michelangeli et al. 1986). Michelangeli etal. (1989) 

found production of cAMP by CGRP and PTH were additive in mouse, rat, and 

chicken osfeoblast-rich bone cell cultures. Furthermore, PTH inhibitors had no 

effect on the response to CGRP. This suggests that bone contains a 

•subpopulation of osteoblast-like cells with CGRP receptors linked to adenylate 

cyclase. However, heterogeneity of the cells cannot be ruled out, and the exact 

identification of the cells is unknown. In the subclones, the expression of CGRP 

receptors maybe unrelated to the osteoblastic phenotype of those cells. 

The role of CGRP in osteoblast function is unknown, as the circulating levels 

of CGRP are too low to have an effect, on bone mineralization, and Crawford 

et al. (1986) found CGRP had no effect on osteocalcin or prostaglandin 
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production by cultured osteoblast-like cells. 

There has been very little investigation of an effect of SP on calcium 

homeostasis. Zaidi et al. (1988) found the i.v. injection of 500 pmol SP into rats 

had no effect on total plasma calcium levels. Joborn etal. (1991) also found no 

difference in PTH secretion from bovine parathyroid cell suspensions at 1.25 mM 

Ca during 30 minute incubation with SP at concentrations between M to 

1O M. 

The possibility that CGRP and SP are able to effect calcium homeostasis is 

further complicated by the finding of CGRP- and SP-Ll nerve fibres within the 

skeleton. SP has been localized by immunohistochemistry to nerve fibres within 

the porcine periosteum (Hohmann et al. 1986), while CGRP- and SP-Ll nerves 

have also been identified in the periosteum of rat mandible, tibia, and calvarium 

(Hill and Elde 1988, 1991). CGRP- and SP-containing nerves have also been 

identified within the rat tibia (Bjurholm et al. 1988, 1889; Hill and Elde, 1991). 

Many of the fibres were found associated with the vasculature. However, several 

fibres deviated from the vasculature and terminated in networks of beaded 

varicosities near the bone surface. This suggests a role for these neuropeptides 

in the periosteum separate from vasodilation. As neither CGRP- or SP-containing 

fibres could be demonstrated between bone lamellae, it appears unlikely that 

their distribution is suitable for a role in calcium homeostasis. However, Bjurholm 

et al. .(1 988) reported the greatest density of fibres at the epiphyseal plate, which 
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suggests that these fibres may have an important role in growth at the 

epiphyseal plate. 

Although there is little evidence for a role of CGRP- or SP-containing fibres 

in calcium metabolism, capsaicin-treated rats showed a dramatic reduction in 

CGRP- and SP-Ll nerve fibres in the periosteum (Hill and Elde, 1991), suggesting 

these fibres are primary afferent in órigin. The release of neuropeptides from 

unmyelinated C fibres may play a primary role in mechanoreception or 

nociception within bone. There is also a growing body of evidence that 

suggests these fibres may not only be involved in the perception of pain, but 

may also contribute to the healing process. Bernard and Shih (1990) and Shih 

and Wang (1992) found that CGRP had an osteogenic effect, increasing the 

number and size of bone colonies in vitro. Sensory nerve impulses caused by 

bone injury may release CGRP and SP by axon reflex into the vicinity of the 

osteoprogenitor cells, which maybe important for growth during healing. 

Reimann and Christensen (1977) found a greater number of nerves in 

osteoarthritic than healthy human bone. CGRP was found to be high in human 

osteoarthritic tibial periosteum (Grönblad et al. 1984). Kvinnsland and Heyeraas 

(1992) and Taylor et al. (1988) found an increase in CGRP and SP fibres in rat 

molars in response to injury. These findings suggest that CGRP and SP may 

play a role in healing of injured bone, and that nerve proliferation may be 

required to deliver the neuropeptides in high enough concentration in close 
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proximity to the site of injury to promote growth and possibly mineralization of 

new bone during the healing process. 

It is also of some interest that PAS-57, the amino-terminal cleavage peptide 

of procalcitonin, which has been identified within the circulation at levels 1.7 times 

greater than calcitonin, recently has been reported to have mitogenic properties 

on osteoblast rich cultures at nanomolar concentrations in vitro (Burns et al. 

1989). PAQ-55, the amino-terminal peptide derived from cleavage of proCGRP 

has its first 50 amino acid residues identical to PAS-57. Although its presence 

has not been confirmed yet, it is conceivable PAQ-55 maybe released from 

osseous nerve fibres in close proximity to bone cells to play a physiological role 

on bone mineralization. 

4.6 FUTURE STUDIES 

4.6.1 What are the Origins of the. Neuropeptide Fibres? 

This study did not attempt to characterize the origin of the CGRP and SP 

fibres within the bovine parathyroid gland. Because it is well documented that 

CGRP and SP are present in primary sensory C fibres, it is likely that this is the 

case in the bovine parathyroid glands. Depletion of neuropeptides from these 

fibres using capsaicin or its more potent analog resiniferatoxin, would confirm the 

primary sensory origin of these peptidergic fibres. The làcation of the 

parathyroid glands suggests that their sensory fibres would be located in the 
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trigeminal or nodose ganglia. Injection of the tracers horseradish peroxidase or 

lucifer yellow into the parathyroid glands and locating the labelled sensory cell 

bodies would identify the source of these fibres. 

4.6.2 Are other Neuropeptides Present in the Parathyroid Gland?  

1) Studies to further characterize neuropeptides in the bovine parathyroid gland 

should be carried out. As several mammalian tachykinins have been identified 

in nervous tissue, immunohistochemical techniques using antisera specific for the 

different. tachykinins should be utilized to determine more precisely the relative 

abundance of the various tachykinins within the parathyroid gland. Radio-

immunoassays specific for the different tachykinins could also be utilized to 

determine the presence and relative abundance of the various tachykinins within 

the parathyroid gland. 

2) There is a complex distribution of neuropeptides in the nervous system. In 

addition to CGRP, SP has been found co-localized with arginine vasopressin 

(Kai-Kai et al. 1986), bombesin (Fuxe et al. 1983), CCK (Dalsaard et al. 1982; 

Leah et al. 1985; Tuchscherer and Seybold 1985), NKA (Dalsgaard et al. 1985), 

and VIP (Leah et al. 1985) within primary sensory neurons. CGRP has also been 

co-localized with NKA (Diez Guerra et al. 1988) in these fibres. The possibility 

that other neuropeptides are present in the parathyroid innervation and have 

physiological effects on the parathyroid gland should also be investigated. 

Joborn et al. (1991) found VIP increased PTH secretion from bovine parathyroid 
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glands. The i.v. injection of CGRP (3.0 nmol) into mice enhances the stimulatory 

effect of VIP on thyroxine secretion (Grunditz et al. 1986). A similar phenomenon 

may take place in the parathyroid gland whereby CGRP enhances VIP stimulated 

PTH secretion. 

4.6.3 What are the Roles of Calcitonin Gene-Relate Peptide and Substance P  

in the Parathyroid Gland?  

There is a possibility that CGRP and SP are able to indirectly effect PTH 

secretion as a result of their potential role in neurogenic inflammation. During 

the inflammatory response, histamine and/or dopamine released from mast cells 

near the parenchyma might reach high enough concentrations to stimulate PTH 

secretion. The perifusion of small pieces of gland (Hanley et al. 1980), which 

contain stromal components and intact mast cells in close anatomical orientation 

to the parenchyma could be used to investigate this possibility. The ability of 

histamine and dopamine antagonists to block any effects of PTH secretion would 

suggest that histamine or dopamine are released from within the tissue, 

supporting the involvement of the mast cells. 

However, CGRP and SP in the bovine parathyroid gland may play a role in 

• nociception and neurogenic inflammation and have no effect on PTH secretion. 

The natural nociceptive stimuli for these afferent fibres in the parathyroid gland 

are unknown at this time. SP is a mitogen for fibroblasts (Nilsson et al. 1985), 

T-lymphocytes (Payan et al. 1983; Stanisz at al. 1986), and smooth muscle cells 
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(Mitsuhashi and Payan 1987; Payan 1985), which could play an important role 

in the growth of tissue in response to being damaged. Therefore, SP may act 

as a mitogen on parathyroid tissue. The release of neurôpeptides from fibres 

in abnormal conditions could contribute to hyperplasia of the parathyroid gland. 

The possibility that SP or CGRP cause parathyroid growth or hyperplasia could 

be tested by using [3H]thymidine incorporation into parathyroid cultures as an 

index of DNA synthesis and cell proliferation. 

These studies would add to our knowledge of the distribution and effects of 

neuropeptides in the endocrine system. The more we know about the 

distribution and effects of neuropeptides in the parathyroid gland, the closer we 

can come to understanding the role of the parathyroid gland in health and 

disease. This increased knowledge• could enable improved treatment of 

parathyroid disorders. 
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SUMMARY 

1) Using indirect immunohistochemistry, I was able to identify human and rat 

CGRP-Ll nerve fibres in the bovine parathyroid gland within the stroma, arterial 

walls, and surrounding parenchymal lobules. However, no CGRP-Ll fibres were 

found to enter the parenchyma and synapse with the chief cells. 

2) SP-Ll fibres were also identified within the stroma, arterial walls, and encircling 

the parenchyma, with a staining intensity and distribution comparable to those 

for CGRP. 

3) Fibres containing both CGRP- and SP-Ll were observed in double-staining 

experiments. All of the fibres showed identical staining for both CGRP and SP. 

4) Primary bovine parathyroid cell cultures incubated for up to 90 min with either 

CGRP or SP had no direct effect on PTH secretion at concentrations between 

10-8 M to 10-5 M at normal physiological concentrations of calcium 

(1.25 mM Ca). 

5) In the presence of either low (0.5 mM) or high (2.0 mM) extracellular 

concentrations of CGRP or SP did not significantly affect the amount of 

PTH secreted over control values from the cultures for incubation times as long 

as 60 mm. 

6) Cultures incubated for up to 60 min with 10.10 M to 10 M CGRP and SP 

together, in the presence of 1.25 mM Ca, had no significant effect on PTH 

secretion. 
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