
A Case Study in Simulated Concurrent Development and
Evolution: Investigating the Theme Approach

Shafquat Mahmud
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

mahmud@cpsc.ucalgary.ca

Technical report 2004-765-30

1 October 2004

Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

rwalker@cpsc.ucalgary.ca

ABSTRACT
AOSD aims at improving key software engineering properties
(such as traceability, comprehensibility, and evolvability) through
the separation and modularization of crosscutting concerns. The
majority of AOSD research focuses on individual software engi-
neering activities (such as implementation or requirements) in iso-
lation. One exception to this trend is the Theme approach of Clarke
and colleagues, which considers the derivation of implementations
from requirements through design. Evidence is currently meagre
for or against the claims of this approach. This paper describes
a case study involving the development and evolution of a bench-
mark system to evaluate these claims. Alternative decisions are
examined to consider whether one or more feasible development
processes exist in applying Theme. Lessons learned from the study
are discussed for their generalizability to other scenarios.

Categories and Subject Descriptors: D.2.2 [Software Engi-
neering]: Design Tools and Techniques; D.2.7 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement.

General Terms: Design, Experimentation, Languages.

Keywords: Aspect-oriented software development, Theme,
Theme/UML, software evolution, concurrent development, case
study, decision tree.

1. INTRODUCTION
Aspect-oriented software development (AOSD) promotes the sep-
aration and modularization of crosscutting concerns, in order to
improve a number of key software engineering properties such as
comprehensibility and evolvability [16]. Much AOSD research
has concentrated on how crosscutting concerns can be separated
and modularized—i.e., implementation issues; relatively little has
considered how aspect-oriented systems should be designed. The
Theme approach [5, 3, 6, 7, 8] goes beyond the question of how
crosscutting concerns can be separated to consider when and why.
It suggests that a separate design (called a theme) be developed
for each requirement, and that these themes then be composed to
form the complete system. The Theme approach claims to im-
prove traceability, evolvability, comprehensibility, configurability,
and concurrent development [3]. However, to date, the Theme ap-
proach has lacked evaluation of its core claims, concentrating in-
stead on motivational examples to provide explanations of its work-
ings.

Whether the Theme approach is best applied by explicitly sep-
arating crosscutting concerns immediately, or by implicitly deal-
ing with them when they arise, is unclear. Both alternatives have
been promoted [3, 1]. Perhaps neither would work well in prac-
tice; perhaps the alternatives are effectively equivalent; or perhaps
each alternative has certain contexts in which it works best. This
uncertainty reflects a debate within the AOSD community [13]: is
an asymmetric model (where there is explicit base code and as-
pects are added to it) best, or is a symmetric model (where no im-
plementation models are treated strictly as either base or aspects)
best? Current evidence indicates that each model has its strengths
and weaknesses [18], but discerning these deep issues beneath shal-
lower issues of tool usability can be problematic. An imbalance in
tool strengths and weaknesses can falsely skew perceptions. The
apparent ability of the Theme approach to cope with either sym-
metric or asymmetric models [6, 7] might allow the two models to
be evaluated on a fair and equal footing. But to reach that point,
we need evaluation of the strengths and weaknesses of the Theme
approach itself.

As a preliminary step in such evaluation, this paper describes
a case study in applying the Theme approach in developing and
evolving a benchmark system. Since Theme is essentially a de-
scriptive development methodology and not prescriptive, we have
considered the many possible paths through the tree of development
decisions to determine how (or whether) Theme can be applied in
practice.

The paper is organized as follows. Section 2 describes back-
ground and related work on AOSD and the Theme approach. Sec-
tion 3 summarizes the case study and the lessons learned from it.
Section 4 discusses the strengths and weaknesses of our study itself
and how future evaluations can proceed.

The contribution of this paper is to provide a preliminary study
into the claims of the Theme approach regarding traceability, evolv-
ability, and concurrent development, and to consider the effects of
alternative decisions in applying Theme when it is not prescriptive.

2. BACKGROUND AND RELATED WORK
The asymmetric and symmetric models to AOSD are exemplified
by the implementation languages AspectJ [15] and Hyper/J [21];
both build atop Java.

AspectJ permits crosscutting concerns to be encapsulated in
class-like constructs called aspects, which are explicitly sepa-

rated from a standard object-oriented class hierarchy, called the
base code. Aspects are most often described as separating non-
functional requirements, such as synchronization or distribution,
but they can also separate functional requirements, such as the im-
plementations of individual features or collaborations. Each as-
pect defines the points in the base code at which behaviour should
be inserted. These join points can be either static points in the
source code, or descriptions of more dynamic properties that occur
at run time; particular method executions, field accesses, and ob-
ject creations are typical examples. The behaviour to be inserted
at specific join points is described in method-like constructs called
advice. The AspectJ compiler combines aspects and base code to
construct functioning bytecode.

Hyper/J is a language that extends an older AOSD implementa-
tion approach called subject-oriented programming (SOP) [12]. In
SOP, a system is considered to be a composition of separate im-
plementation models, called subjects, each of which represents the
system from a particular perspective. Portions of a given object-
oriented class would be represented in each subject according to
the perspective there. For example, consider a Person class that
is to represent a student who is also an employee; students and
employees are different perspectives on this class that can be repre-
sented separately in two subjects. A subject-oriented compiler must
combine these perspectives to form a functioning system. Hyper/J
extended this idea to recognize that subjects and classes are two,
orthogonal dimensions that describe systems and that additional
dimensions can be of interest in some tasks; this is the notion of
multidimensional separation of concerns [22].

The terminology within the AOSD field has evolved over time.
The ideas underlying AspectJ were and still are often treated syn-
onymously with the term aspect-oriented programming (AOP), and
not as one particular flavour of AOP. Historically, this is under-
standable since AOP was described as distinct from SOP [16]. The
encompassing term advanced separation of concerns (ASOC) was
used to describe these and similar techniques, but was later aban-
doned in favour of AOSD.

Some work has evaluated the claims of AOSD implementation
approaches. Murphy and colleagues [18] provide some initial eval-
uation of the abilities of AspectJ and Hyper/J to refactor crosscut-
ting concerns in existing systems. Various case studies have been
conducted in the aspect-oriented implementation of systems (e.g.,
Kersten and Murphy [14]). Hannemann and Kiczales [11] demon-
strate how the implementations of certain design patterns can be
separated via AspectJ. Walker and colleagues [23] performed a se-
ries of semi-controlled experiments that considered whether the ef-
fects of explicit separation of crosscutting concerns were beneficial
or harmful when implementing, understanding, and evolving sys-
tems; the results were mixed, depending on details of the situation.
Baniassad and colleagues [2] performed similar studies later in an
industrial context, and found that non-separated crosscutting con-
cerns represent an impediment to software evolution tasks in prac-
tice. Kienzle and Guerraoui [17] argued that separation of cross-
cutting concerns can be harmful under some situations, reinforcing
earlier findings. Coady and Kiczales [9] investigated AspectJ-style
separation of some crosscutting concerns in an operating system
and the effects of this on the re-visited evolution history of that
system; the results indicate benefit from the separation.

The ability to separate crosscutting concerns within an imple-
mentation does not aid in identifying crosscutting concerns or in
deciding how to design an aspect-oriented system. Some work has
been undertaken to identify crosscutting concerns at the require-
ments level and to provide modelling languages with which to rep-
resent aspect-oriented designs. Unfortunately, relatively little work

has considered how to derive those designs from requirements in
the first place—i.e., full lifecycle issues [7]. Theme [5, 3, 6, 7, 8]
is a notable exception.

Theme derived from the concepts of SOP, and was originally
called subject-oriented design [5]. Theme suggests that each re-
quirement should be designed separately in a model called a theme
(analogous to SOP subjects). Explicit relationships are then de-
fined to specify how the design elements in each theme corre-
spond and how they should be composed. Theme Design pro-
vides an extension to the Unified Modeling Language (UML),
called Theme/UML, to permit modelling of themes. We examine
details of Theme/UML in Section 2.1. Recently, Baniassad and
Clarke [1] have provided Theme/Doc, an approach for identify-
ing crosscutting concerns in structured, natural language, require-
ments specifications and using these to drive the design modelling
in Theme/UML. This application of Theme favours the asymmetric
model of AOSD, resulting in crosscutting themes and base themes.
Explicit identification of crosscutting concerns from the require-
ments specification certainly has some potential benefits, but it also
has potential drawbacks. For example, evolution of the require-
ments could result in widespread changes to the identified cross-
cutting concerns, negating the value of modularizing the original
crosscutting concerns: there is no guarantee that every crosscutting
concern will have been identified in the original system, or that
changes to the set of crosscutting concerns will be readily plug-
gable or unpluggable in an asymmetric approach. But as Clarke
originally defined Theme [3], such explicit identification should
not have been necessary. One should have been able to perform
a feature-oriented decomposition, and any crosscutting concerns
could be dealt with at composition time. Lacking published evi-
dence to the contrary, this possibility remains viable.

The Theme approach claims [3]: (1) if a requirement changes,
its design can be changed in isolation from the designs for other re-
quirements; and (2) if additional requirements are needed, they can
be designed and composed without altering the original themes.
These claims are effectively those of the benefits of locality and
pluggability. Themes can be composed at design-time and imple-
mented in an object-oriented fashion, or the themes and the com-
position relationships between them can be implemented directly
via an AOSD implementation language. Following on these ar-
guments, traceability from requirements to implementation ensues,
evolvability is improved, and concurrent development of themes
becomes possible, since any inconsistencies between themes can
be eliminated at composition time.

Parnas [19] defined the goals of modularization as improved
comprehensibility, evolvability, and ability to perform concurrent
development on a system. Theme’s claims align well with these
goals. Communication overhead is a critical issue in a concur-
rent team development environment. Avoidance of communication
overhead among development teams can improve distributed team
development while reducing its cost. After-the-fact composition
of conflicting design models would presumably permit communi-
cation overhead to be avoided by Theme. The claims of Theme
would be valuable targets if they were achievable.

2.1 Theme/UML
Theme/UML [4] extends standard UML to support separated, com-
posable design models (themes). Each theme is intended to “cap-
ture one requirement” as a separated, object-oriented design model.
Themes are modelled as stereotyped packages.

Different perspectives on a system, and hence the themes used
to model those perspectives, will typically overlap. To form a com-
plete model of a system, the differing perspectives of individual

themes must be reconciled through the specification of composi-
tion relationships. A composition relationship will indicate which
model entities in two themes correspond to each other and how
they should be composed. The two most common relationships
are merge and override. Merge indicates that the composed en-
tity should be a true combination of the original entities. Override
indicates that one should be discarded in favour of the other. Inte-
gration rules may be defined on composition relationships to avoid
the specification of individual composition relationships for every
entity present. A simple rule is “match-by-name” which causes the
merge of all entities of identical kind with identical names. Ex-
plicitly crosscutting themes can be modelled by parameterizing an
ordinary theme via an approach based on UML templates [6, 8]; as
we will not be using this feature in this paper, we will not discuss
it further.

Figure 1 shows an illustrative example of Theme/UML, where
two themes (USERand PORT) are to be composed by accord-
ing to the composition rule merge-by-name. The resulting, com-
posed theme is shown in Figure 2. Each theme is designed
as a stereotyped UML package, containing various classes and
their interrelationships (in addition, interaction models and var-
ious other UML elements can be contained in themes). In the
before-composition model, the dotted arrow connecting theUSER
andPORTthemes represents a composition relationship, indicat-
ing that the two themes are to be composed; the presence of ar-
rowheads at both ends of this arrow indicates that the themes are
to be merged, rather than one replacing the other. The annotation
match[name] on this arrow indicates that all elements within
the package with identical names (judged in a hierarchical fash-
ion) are to have a single, corresponding element in the resulting,
composed theme. In this example, the names of three classes are
identical between the two themes:ControlConn , Executer ,
andArgSynErrorReply .

If the model contained no further composition relationships,
the resulting, composed theme would contain seven classes:
ControlConn , User , Executer , UserLoggedInReply ,
ArgSynErrorReply , Port , andOkReply . However, the cor-
respondence of the names of the twoExecuter classes is coinci-
dental. Not wanting these two to be merged into a single class, a
lower-level composition relationship is specified between them in-
dicatingdontMatch . This directive prevents these classes from
being merged.

We also see that the twoArgSynErrorReply classes are
identical. This is not coincidental. Were we to simply permit these
twins to be merged, any invocation of the methodsgetCode() or
getMessage() would invoke both of the original implementa-
tions, in some unspecified sequence. Since this double invocation
is not necessary or desirable, we can simply have one copy of the
class replace the other outright. This override composition rela-
tionship is indicated with a one-way dotted arrow. Any elements
contained within the classes that are also identically named will
likewise have one copy replace the other, because of the presence
of the composition rulematch[name] .

In the composed theme (Figure 2), we see eight classes resulting
from the specified composition: eachExecuter class has been
maintained in its original form, but renamed to avoid name colli-
sions. Relationships between classes also correspond to the origi-
nals; for example, in thePORTtheme, thePort andExecuter
were associated, so their corresponding classes in the composed
theme (Port andPORTExecuter) will also be associated.

This is a relatively uncomplicated example of the use of
Theme/UML. Unfortunately, themes are not always so readily
composable, as we shall note in the next section.

3. CASE STUDY
This section describes a case study in applying the Theme approach
in developing and evolving a benchmark system [10].

This case study pursued two goals: (1) to evaluate the Theme ap-
proach claims of improving traceability, evolvability, comprehensi-
bility, configurability and concurrent development without commu-
nication overhead among different teams; and, (2) to consider how
(or whether) Theme can be applied in practice, since many paths
through the tree of development decisions are possible. Any fea-
sible path through this decision tree may exemplify a process that
is generally applicable, and any infeasible path may exemplify a
general pitfall.

The case study consisted of the development and evolution of a
File Transfer Protocol (FTP) server via the Theme approach. FTP
is described in an informally structured, natural language, require-
ments specification document (RFC 959) [20]. We selected FTP
as the benchmark system [10] to investigate because it is well-
understood and small enough to analyze, but large enough to dis-
play difficulties involving traceability, evolvability, comprehensi-
bility, and configurability.

FTP is a stateful protocol, involving the establishment of a con-
trol connection between a client and server. Files are communi-
cated over a possibly transient, separate data connection. The client
issues string-based commands to the server, which responds with
reply codes (indicating success, failure, enter password, etc.); some
commands initiate file transfer. Each command consists of a four-
letter mnemonic followed by arguments whose syntax depends on
the command being issued. FTP defines state machines for the le-
gal sequences of some commands. See RFC 959 for further de-
tails [20].

We began our study by developing the “Minimum Implementa-
tion” of an FTP server as required by RFC 959. Later versions of
the system added features to this base. Version 2 added the FTP au-
thentication protocol, Version 3 added passive mode features, Ver-
sion 4 added the user login functionality with different accounts,
and Version 5 added help information options to the system. Each
version was designed and implemented without consideration of
any remaining features described by RFC 959, to simulate the need
to accommodate unpredicted changes.

Throughout the life cycle of the system, we explored alterna-
tive development decisions that different development teams might
make. Figure 3 outlines the tree of these development decisions,
which we traversed through the development and evolution of the
system. The remainder of this section is structured as follows. Sec-
tion 3.1 provides an overview of the decision tree shown in Fig-
ure 3. Section 3.2 describes the details of the decision tree ex-
amining consequences of alternative decisions at each level. Sec-
tion 3.4 overviews the resulting evolution steps in constructing Ver-
sions 2 through 5 of the system, each of which involved additional
traversals of the decision tree from root to leaves. Section 3.3 de-
scribes issues in composing the implementations of each theme.
Section 3.5 considers the feasible and infeasible paths through the
tree and discusses the lessons learned.

3.1 Overview of Decision Tree
The development of the system began from the “Minimum Imple-
mentation” section of RFC 959, and thus, this document forms
the root node of the decision tree. The first decision needed was
whether a structured specification was required to develop a sys-
tem with the Theme approach—and what form it should take—or
whether the informal specification was sufficient to proceed with
the development process. The second decision involved deter-
mining ways to decompose a system specification (structured or

ArgSynErrorReply

+ getCode(): int

+ getMessage(): String

OkReply

+ getCode(): int

+ getMessage(): String

Port

− remotePort: int

− remoteAddress: InetAddress

+ setPort(int): void

match[name]

match[name]

PORT
«theme»

USER
«theme»

dontMatch

String): boolean

Executer

+execute(String,String): boolean

Executer

+execute(String,

− user: String

+ setUser(String): void

UserControlConn

+ sendAck(String,
Session): void

ControlConn

+ sendAck(String): void

ArgSynErrorReply

+ getCode(): int

+ getMessage(): String

UserLoggedInReply

+ getCode(): int

+ getMessage(): String

Figure 1: An illustrative example of the composition of themes in Theme/UML. Shown are two themes that are to be composed.

ArgSynErrorReply

+ getCode(): int

+ getMessage(): String

UserLoggedInReply

+ getCode(): int

+ getMessage(): String

USER_Executer

«theme»
USER_PORT

OkReply

+ getCode(): int

+ getMessage(): String

String): boolean

+ sendAck(String): void

ControlConn

+ sendAck(String,
Session): void

− user: String

+ setUser(String): void

User

+execute(String,

PORT_Executer

String): boolean
+execute(String,

Port

− remotePort: int

− remoteAddress: InetAddress

+ setPort(int): void

Figure 2: The resulting, composed theme.

......

...

root

4th Decision: How many and
which themes for each team?

5th Decision: Is design−time
composition necessary?

6th Decision: How should
the system be implemented?

3rd Decision: How much up−
front planning?

1st Decision: How/whether

2nd Decision: How to
decompose into themes?

to structure the specification?

n

k

m

...

... ...

1 2

1 1 2 1 1 2 1 1

1 2 1 2

1 2 3 4

1 2

321

1 2 3 1 2

evolution
steps

3

12

1 2 1 2 21

21

Figure 3: The tree of decisions involved in applying the Theme approach. Each node is labelled with its path-local number; the global
label for a node is found by traversing the tree from the root to that node. For example, the bottom-leftmost leaf has path-local label
1, but a global label 1.1.1.2.1.1.

unstructured) into themes. The third decision determined if any
up-front planning is required to support concurrent team develop-
ment with the approach. If some planning up-front were required,
then the decision would involve determining how much planning is
needed to ensure different development teams can work separately
without communication overhead to develop a system. The fourth
decision was also related to this: consideration of how themes
should be distributed among teams, since different task assign-
ments of themes among development teams might affect the re-
sulting development process significantly. We considered our fifth
decision to be whether a design-time composition of the themes by
different teams is required. Design-time composition can be per-
formed to ensure that the implementations by all teams meet some
degree of uniformity for later composition of implementations. Al-
ternatively, the design and implementation of themes (with or with-
out up-front planning) by each individual team might suffice for the
composability of those models into a fully-functioning system. The
sixth and final decision was to select an implementation strategy
that would satisfy the constraints imposed by the particular path
through the decision tree that brought us to this decision.

3.2 Details of Decision Tree
The root of the tree starts from the informal specification of the sys-
tem. As RFC 959 contains the informal specification of a complete
FTP server, for Version 1 of the system we extracted an informal
specification from RFC 959 containing only those details needed
for this version. This extraction involved copying all the details
from RFC 959 that correspond to the “Minimum Implementation”
of FTP to produce an informal, natural language specification.

The remainder of this section discusses the consequences of al-
ternative decisions at different levels of the tree. This discussion is
formatted as a breadth-first traversal; a depth-first traversal will be
used in Section 3.5.

3.2.1 1st Decision: Structured Specification?
The first decision, taken at the root node, was to consider if a struc-
tured specification is required to derive themes, or if themes can be
derived decomposing a natural language description of the system.
Many possible paths can be considered here. One can continue with
the informal specification (Node 1). One can create a traditionally
structured, natural language specification (Node 2). Different re-
quirements engineering techniques like formal modelling, use case
modelling, repertory grids, concept maps, etc. (Nodes 3 throughk)
can be ways to derive a structured specification.

Formal modelling can be a useful approach to mathematically
validate a system, but in most industrial contexts, it is considered
an impracticable technique because of its high cost. Therefore, we
have not attempted to proceed to Node 3.

We only consider Nodes 1 and 2 further within this case
study. Issues involving other requirements engineering techniques
(Nodes 4 throughk) are discussed in Section 4.

3.2.2 2nd Decision: Decomposition into Themes?
The second decision was how to decompose the system specifica-
tion (structured or unstructured) into themes. We explored paths
through Nodes 1 and 2.

Several paths can be considered from Node 1, the informal, un-
structured specification. We first attempted a feature-oriented ap-
proach to derive themes (Node 1.1). We identified features of
the system and extracted the description of each feature from the
specification. Each extracted description described a part of the
system and can be considered as system feature/requirement/task
that is to be mapped to a theme. We extracted 11 features in this

way, 9 of which involved an individual FTP command (USER,
PORT, TYPE, MODE, STRU, RETR, STOR, NOOP and QUIT)
and the other 2 were for establishing connection with a user and
for interpreting his/her requests. Different possible mappings be-
tween the features/requirements/tasks and themes are possible; as
suggested by Clarke [3], a one-to-one mapping can ensure trace-
ability compared to a one-to-many or a many-to-many mapping.
One-to-many and many-to-many mappings both tend to cause scat-
tering and tangling of the sub-parts (requirements/features/tasks)
across different themes. Therefore we followed a one-to-one map-
ping and mapped the 11 identified features/requirements/tasks into
11 themes (Node 1.1).

An alternative path can be considered from Node 1, on which we
can attempt to extract themes directly from the informal specifica-
tion, not bothering to produce separate descriptions for each of the
themes (Node 1.2). That would leave the development teams with
only the name of each feature (the same 11 names identified for
Node 1.1) and the complete, original specification from which to
work. This could provide each team with the flexibility to interpret
how much of the original specification that a feature involves and
that the corresponding theme is supposed to encapsulate.

Presumably, alternative means of decomposition might be dis-
covered that we have not considered (Nodes 1.3 through 1.m). We
justify why our means is likely to be representative of a typical ap-
proach, in Section 4.

To decompose themes from a structured, natural language spec-
ification (Node 2), multiple alternatives can also be considered.
An example is to consider the immediate identification and sepa-
ration of crosscutting concerns into crosscutting and base themes
(Node 2.1) as proposed by Baniassad and Clarke [1]. In this ap-
proach, a theme may consist of multiple system requirements that
are common to a particular concern, not the one-to-one mapping
between the requirements and the themes that would ensure trace-
ability, as originally claimed by Clarke [3]. This approach also
requires up-front work to identify different possible concerns to
derive themes before different teams can be assigned particular
themes to work with. Moreover, for every version of the sys-
tem, the theme decomposition may require significant restructur-
ing. Non-crosscutting requirements may become crosscutting in
a new version; additional crosscutting requirements may not be
plug-compatible with the current theme decomposition. The need
for such restructuring would likely negate the benefits of a theme-
oriented decomposition. However, we have not attempted to eval-
uate this path further to determine whether negative consequences
would occur in practice. Such a study remains future work to eval-
uate how much it can fare with respect to key software properties
like traceability, comprehensibility, and evolvability in a concurrent
team development environment.

Other ways of deriving themes can be considered from Node 2.
A path can be considered that maps every requirement in the struc-
tured specification into a theme, without consideration of explicit
separation of crosscutting concerns (Node 2.2). However, this ap-
proach is similar to the path from Node 1 to Node 1.1, which we
discuss further in Section 4. That additional alternative paths exist
from Node 2 could be claimed (Nodes 2.3 through 2.m). Presum-
ably, some of these might vary the granularity of decomposition,
i.e., sub-requirements might each become a separate theme. Such
fine-grained decomposition seems pointless in this benchmark sys-
tem, as the resulting themes were already quite simple. Such ap-
proaches might become more viable as the system under consider-
ation scales up.

3.2.3 3rd Decision: Up-Front Planning?
The third decision determined if any up-front planning is required
to support concurrent team development with the approach. If some
planning up-front were required, this decision would also involve
determining how much planning is needed to ensure that different
development teams can work separately while minimizing commu-
nication overhead in developing a system concurrently. We con-
sider three alternatives from Node 1.1 and two from Node 1.2.

First, the themes derived in Node 1.1 can each be assigned to
a different team without any up-front planning, such as interface
definitions or naming conventions (Node 1.1.1). Each team is to
develop its theme according to its specific descriptions, however
they see fit. This approach can, of course, result in numerous
naming/signature conflicts among the themes designed by differ-
ent teams, as there can be no expectation that different teams will
name identical concepts identically (e.g.,ControlConn versus
ControlConnection) or different concepts differently (e.g.,
the twoExecuter classes described in Section 2.1). Naming con-
flicts can be resolved during composition through fine-grained but
straightforward composition relationships, as Theme claims. Dis-
agreements in signatures are less trivial to cope with. Consider
the following example of how we explored this path in the case
study. We derived designs forUSER, TYPEandRETRcommand
themes to simulate the effects of differing (and somewhat incom-
patible) design decisions being made by independent teams work-
ing on each theme. TheUSERtheme expects to be invoked only in
the case of a validUSERcommand, whereby the argument passed
to the theme’s entry point should contain the arguments of the re-
ceivedUSERcommand. On the other hand, theTYPE theme ex-
pects two arguments, the command (i.e.,type , case insensitively)
and its original argument string. This theme checks the command
first, processing the argument only if the command corresponds to
“ type ”. And finally, theRETRtheme expects to receive the raw
client request and to parse this to retrieve the command and its ar-
guments.

The second alternative from Node 1.1 is to perform some plan-
ning of themes up-front before each team begins concurrent devel-
opment. In this way, fewer conflicts should occur at composition
time, thereby reducing composition-time overhead. The question
then becomes whether the cost of up-front planning is more than
made up for by the savings accrued through avoiding composition-
time conflict resolution. The other issue of concern here is to deter-
mine how much planning up-front is sufficient and feasible. Two
paths can be considered with the up-front planning approach: one
with lightweight up-front planning (Node 1.1.2) and the other with
heavyweight up-front planning (Node 1.1.3).

The goal of lightweight up-front planning is to provide just
enough information in the descriptions of different themes so that
the teams developing them can understand what constraints exist
on the boundaries of their respective themes—e.g., what the themes
can expect from the system for their invocations, or what they are
expected to return to the system. The conflicts described above be-
tween theUSER, TYPEandRETRthemes can be resolved up-front
with the lightweight up-front planning approach. In attempting to
conduct lightweight up-front planning, we added extra information
to each command theme’s description so that the themes would ex-
pect a common data format at the expected entry point from the
system for each. The system architect, who decomposed the sys-
tem specification into features (later mapped into separate themes),
should already know enough detail about the system to determine
this extra information with little additional effort.

The other path from Node 1.1 considers the consequences of per-
forming heavyweight up-front planning (Node 1.1.3). While the

lightweight approach deals with adding just enough extra informa-
tion to the description of each theme to provide some uniformity
to their entry points, the heavyweight approach aims to avoid all
possible conflicts a priori, so that composition of themes would
be straightforward. Simple ideas like defining naming conventions
or common data formats would not be too onerous to realize, as
with the lightweight approach. However, these would not suffice
to eliminate significant conflicts and in exploring other paths, we
found that name conflicts are relatively trivial to resolve during
composition; the cost of spending too much time up-front should
far out-weigh the cost of conflict resolutions during composition.
Additional ideas like sketching out the themes prior to detailed de-
sign might be pursued, but such sketches would not converge to
a conflict-free composed model any more than traditional stepwise
refinement approaches [24] avoid the pitfalls of the Waterfall model
of development: non-convergent iteration and slipped schedules.
The attempt to resolve all possible conflicts up-front seems to re-
quire too much work to be considered a feasible approach. Consid-
ering this an infeasible path, we have not attempted to proceed to
Node 1.1.3.

From Node 1.2, where each team is left with the original infor-
mal specification and the name(s) of the theme(s) to which it is
assigned, two paths can be considered based on the use of up-front
planning. First, we can choose not to perform up-front planning
(Node 1.2.1). In our case study, we could interpret themes in vari-
ous ways from the informal specification all of which seemed rea-
sonable based on the names of the themes; where the themes ended
was unclear, as they lacked objective boundaries. Unfortunately,
without more information about a theme than just its name (or sim-
ilar, short description), there remains the possibility that themes
implemented by different teams will overlap in significant details
or leave significant details unimplemented. Overlap indicates in-
efficiency in the concurrent development process as effort is du-
plicated amongst teams. Gaps indicate that requirements have re-
mained unmet. At composition time, these overlaps and gaps might
be detected. In fact, at a different node in the decision tree (see Sec-
tion 3.2.5), we did detect unspecified requirements at composition
time, which were then patched over. We have found that composi-
tion of themes developed in this approach can be expensive in con-
sideration of the number of conflicts to be resolved and the number
of missing features to be added during composition; thus, a path
through Node 1.2.1 can be considered an infeasible one.

An alternative path from Node 1.2 can consider the use of some
up-front planning (Node 1.2.2) to combat the problems of theme
development, as just discussed. We have tried to determine what
information can be passed to teams about different themes so that
the problems of overlaps and missing details can be reduced to a
reasonable level. But as we have discussed, the main problem with
developing an individual theme from a system specification—in the
absence of a specific description of the feature it encapsulates—is
how to determine its boundary. Thus, up-front planning would nec-
essarily involve some amount of determination of those boundaries,
which would be effectively identical to Node 1.1. Thus, we do not
proceed to or beyond Node 1.2.2.

3.2.4 4th Decision: Assignment of Themes?
The fourth decision issue was to determine how many and which
themes to assign to each team. The remaining paths that are feasible
and that we wish to investigate pass through Nodes 1.1.1 and 1.1.2.
Three alternative paths can be considered from these nodes, based
on an identical decision.

It can be assumed that there would be fewer numbers of con-
flicts among the themes developed by a single team; the most de-

sirable path would be to assign all the themes to a single team
(Nodes 1.1.1.1 and 1.1.2.1). But this is an unrealistic solution as the
advantages of concurrent development are immediately negated.
These paths are not considered further.

Some random distribution of themes among teams could be per-
formed based on an estimate of the work involved in developing a
given theme and each team’s available person-hours (Nodes 1.1.1.2
and 1.1.2.2). If conservation of effort is important, distribution of
themes based on their similarity (Nodes 1.1.1.3 and 1.1.2.3) may
make more sense. Similar themes being developed by a single team
could be designed similarly, resulting in fewer numbers of conflicts
at composition time, and thus easing the composition effort. The
issue here is whether “similar” themes can be easily identified for
separation, and whether errors in this identification (either falsely
identifying a similarity or failing to identify an actual similarity)
will cause harm.

In our case study, separation of themes that were similar was
not difficult from their descriptions; this involved only 11 themes
to consider, of course. We assignedRETRand STORcommand
themes to one team as they seem similar in functionality,USER
andTYPE themes to one team and so on. Through the other path
with random distribution of themes, we have tried to consider dif-
ferent designs of themes by different teams in our simulated con-
current team development environment.1 In following these four
paths involving random distribution versus similarity-based distri-
bution, the only apparent difference was that random distributions
tended to increase name conflicts; however, these conflicts were
straightforward to resolve at composition time. Thus, all four re-
main feasible at this stage.

3.2.5 5th Decision: Design-Time Composition?
The fifth decision was to consider whether a composition of de-
sign themes is required prior to implementation. A design time
composition can help verify that all conflicts can be resolved or
that deficiencies in functionality exist. However, a careful decom-
position of a system into themes may not require a design time
composition to verify a system. Thus from each nodex where
x ∈ {1.1.1.2, 1.1.1.3, 1.1.2.2, 1.1.2.3}, two paths can be consid-
ered: one applying design-time composition of themes (Nodex.1),
and the other doing without it (Nodex.2).

In our case study, design-time composition (all Nodesx.1) iden-
tified that a feature was missing. The themes that had been iden-
tified for design were derived from a feature-oriented decomposi-
tion of the informal, natural language specification (Node 1). That
specification did not make explicit that the system needs to sup-
port multiple users in stateful sessions, although this requirement
resides implicitly in the document. When we attempted design-
time composition, this missing requirement manifested itself as a
lack of any theme that would have been appropriate to compose di-
rectly with theEstablishConnection theme. This prompted
us to investigate, at which point we recognized that between the
establishment of a connection and interpretation of individual FTP
commands lay a significant gap with no way to determine from
whence the commands came. We then added a 12th theme to the
system (Session) and assigned it to be developed by a separate
team. The function of the theme was to provide a separate session
for each user who gets connected to the system and all requests
from that particular user would be processed within the session.
This new theme was added to be developed in parallel with the oth-
ers, but after up-front planning had been conducted. Nevertheless,
the presence of no more than lightweight up-front planning did not

1The description and design of the themes can be found at
http://www.cpsc.ucalgary.ca/∼mahmud/theme.htm

require iteration back to an earlier node in the tree because of this
discovery.

We continued the paths through the Nodesx.2 to confirm
whether or not their lack of design-time composition would cause
later difficulties.

3.2.6 6th Decision: Implementation Strategy?
The sixth and final decision was to consider which ap-
proach to follow to implement the design themes into a
fully functioning system. Two approaches were possible:
implementation of the composed design model (Nodesy.1
for y ∈ {1.1.1.2.1, 1.1.1.3.1, 1.1.2.2.1, 1.1.2.3.1}) or
implementation of each theme independently followed
by an implementation-time composition (Nodesy.2 for
y ∈ {1.1.1.2.1, 1.1.1.3.1, 1.1.2.2.1, 1.1.2.3.1} and Nodesz.1 for
z ∈ {1.1.1.2.2, 1.1.1.3.2, 1.1.2.2.2, 1.1.2.3.2}).

Direct implementation of the composed design model would be
a waste of the whole effort with the Theme approach. The result
would just be an object-oriented implementation of the system as
a whole. The claim of traceability between the requirements and
the implementations would not be met. Changes to any single
theme would result in modifications to scattered and tangled code.
Although the severity of this problem might vary from system to
system, it clearly would not represent the best application of the
Theme approach. Thus, we do not consider the Nodesy.1 further.

Paths to the remaining nodes consider implementation of indi-
vidual themes by different development teams and composing these
implementations later by the architecture team. The Nodesz.1
demonstrated at this point the problem of not having verified the
completeness and composability of the themes via a design-time
composition. The missing requirement manifested itself, and had
to be added after the fact. Since this additional theme would then
have needed to be developed in sequence with the other themes, and
not in parallel, the benefits of concurrent development with Theme
were decreased. This approach would also have delayed noticing
any serious design conflicts until after implementation was com-
plete, also introducing the need for iteration prior to delivery of a
single system version. We did not encounter this latter difficulty in
our case study, but presume it to remain a possibility.

Of the remaining Nodesy.2, Nodes 1.1.1.2.1.2 and 1.1.1.3.1.2
were mildly problematic due to the lack of any up-front planning.
Inconsistencies in naming conventions and differing expectations
of preconditions on the entry points to independently developed
themes had to be reconciled at composition time. The feasibility of
these paths through multiple evolution steps might remain stable as
only mildly problematic even as systems scale up. Thus, they rep-
resent less-attractive alternatives that can be considered for future
study.

This left two nodes (Nodes 1.1.2.2.1.2 and 1.1.2.3.2) as the rep-
resentatives of the paths that seemed most feasible up to this point.
For implementation of the themes by different teams, we chose Java
as a standard language for object-oriented implementation. For
composition of the themes (implemented as java packages), various
AOSD implementation languages/tools such as AspectJ or CME2

might be used. For our study we chose to apply AspectJ, as the
most commonly used and so far considered a standard AOSD tool.
In addition, we chose to use AspectJ (which supports an asymmet-
ric AOSD model) in composing theme implementations designed
with a symmetric model in mind as an interesting test of the cross-
compatibility of the two models. Similarly, paths through Node 2.1
(the approach of Baniassad and Clarke [1]) that design themes with

2The Concern Manipulation Environment (CME) has superseded
Hyper/J.

the asymmetric AOSD model in mind might apply a symmetric im-
plementation tool to consider the opposite cross-compatibility; this
remains future work.

The two paths in this level differ only in the distribution of the
themes in the 4th decision; one considers random distribution of
themes among teams and the other considers distribution of themes
based on their similarities. In our case, we have found little dif-
ference between the approaches; both have considered descriptions
of themes with lightweight up-front planning as discussed earlier.
Since both of these paths provide themes that have been described
with specific boundaries, it should not be surprising that the designs
of the resulting themes do not differ much. We have found that dif-
ferences in both the paths are minor, mainly involving shared class
and method names. If done by the same team, the shared names
can be uniform. We have also found that these naming conflicts do
not matter much as they can be resolved in a straightforward man-
ner during composition. In the end, the implementation of the first
version of the system in both the paths proved to be much the same.

3.3 Composition Strategy for Implementation
Models

For composing themes implemented as Java packages, we used
AspectJ as the composition tool. Design-time composition in the
Theme approach allows for merge and override integrations and
composition relationships like match-by-name [3]. These integra-
tion mechanisms require the combination of behaviours from mul-
tiple classes in different themes, into individual, composed classes
belonging to the composed theme. AspectJ does not provide any
direct support for these mechanisms, since it is based on the asym-
metric AOSD model for adding crosscutting behaviour to base
code. We devised a technique to emulate the composition mech-
anisms of the Theme approach with AspectJ; the process is dis-
cussed below.

We represent themes as Java packages. For each composition
relationship between themes, we create a new package to contain
the resulting, composed theme. The classes from each theme par-
ticipating in that composition relationship are copied into this new
theme. Naming conflicts between classes from different themes
are resolved by altering the names of the copies of these classes,
prepending the name of the theme and an underscore to the origi-
nal name of the class. If any of these classes are to be integrated
according to the composition relationships defined, an additional,
empty class is added to the new theme. An aspect will then be de-
fined to introduce methods into this new class, and to advise these
introductions to invoke each of the original methods.

Figure 4 shows a composition specification of two FTP
themes from our case study; Figure 5 shows the result-
ing, composed theme. The themes participate in a compo-
sition relationship of match-by-name. Two classes (Server
and ControlConn) of each theme are affected by this com-
position relationship. According to our technique, in our
implementation we renamed them (asEstablishConnec-
tion Server andSession Server , andEstablishCon-
nection ControlConn and Session ControlConn) be-
fore we copied all classes of the two themes into the new theme. We
created new classes (Server and ControlConn) in the com-
posed theme, and added the composed behaviour to them with as-
pects. Figure 6 illustrates the aspect that was created to compose
the EstablishConnection andServer classes with merge
integration and match-by-name. Here either of the integration tech-
niques (merge or override) would provide the same results.

The aspect adds behaviour to the Server object. In the code, Ad-
vice 1 instantiates both the original classes when instantiation of

public aspect serverAspect {
// introduce attributes
private Server

EstablishConnection_Server.thisServer;
private

EstablishConnection_Server Server.server1;
private Session_Server Server.server2;
private Socket Server.socket;

// introduce the desired methods
public static void Server.main(String[] args) {
}
public void Server.run() {
}
public void Server.dummySession(Socket socket) {
}

// Advice 1
// instantiate the composing classes
after () returning (Server server):

call (public Server. new()) {
server.server1 =

new EstablishConnection_Server();
server.server2 = new Session_Server();
server.server1.thisServer = server;

}

// Advice 2
// replace main method with an alternative
void around (String[] t):

execution (public static void
Server.main(String[]))

&& args (t) {
EstablishConnection_Server.main(t);

}

// Advice 3
// replace server execution with an alternative
void around (Server s):

execution (public void Server.run())
&& this (s) {
s.server1.run();

}

// Advice 4
// dummySession(Socket) provides a hook
void around (Socket socket,

EstablishConnection_Server s):
call (public void

EstablishConnection_Server.
dummySession(Socket))

&& target (s) && args (socket) {
s.thisServer.dummySession(socket);

}

// Advice 5
// replace the hook with real functionality
void around (Socket socket, Server s):

call (public void
Server.dummySession(Socket))

&& target (s) && args (socket) {
s.server2.createSession(socket);

}
}

Figure 6: An example aspect defined to integrate theEstab-
lishConnection and Server classes.

+ CommandInterpreter(Session)

Session

+ run()

+ sendReply(String)

ControlConn

+ ControlConn(Session, Socket)

+ run()

+ sendAck(String)

+ close()

+ getCommand(String): String

match[name]

Session
«theme»

String): boolean
+ execute(Session, String,

CommandExecuter

CommandInterpreter

+ getArgument(String): String

Server

«theme»
EstablishConnection

Server

+ run()

+ dummySession(Socket)

+ main()

+ createSession(Socket)

+ getMessage(): String

+ getCode(): String

+ getMessage(): String

+ getCode(): String

ConnEstablishedReply

ServiceDelayedReply
+ sendAck(String)

ControlConn

+ ControlConn(Socket)

− socket: Socket

Figure 4: Two sample themes designed during the case study, one for the Establish Connection feature and the other for the Session
feature. A simple composition relationship was defined between these themes.

+ getMessage(): String

+ getCode(): String

ServiceDelayedReply

String): boolean
+ execute(Session, String,

CommandExecuter

CommandInterpreter

«theme»
EstablishConnection_Session

+ getMessage(): String

+ getCode(): String

ConnEstablishedReply

+ getArgument(String): String

+ run()

+ sendAck(String)

+ close()

+ ControlConn(Socket)

+ ControlConn(Session, Socket)

Session

+ run()

+ sendReply(String)

ControlConn

+ getCommand(String): String

+ CommandInterpreter(Session)

+ main()

+ createSession(Socket)

Server

+ run()

+ dummySession(Socket)

− socket: Socket

Figure 5: The theme resulting from the composition of theEstablishConnection and Session themes.

the composed class is attempted. This is a basic rule that we fol-
lowed for composing any two (or more) classes that participate in
any composition relationship. Advice 2 replaces themain method
of the originalServer class with the composed alternative. Ad-
vice 3 reroutes attempts to run theServer to the composed server
object.

An explanation is needed for the presence of thedummyMethod
in the aspect shown. As we discussed in Section 3.2.5, we ini-
tially missed a feature that was implicit in the informal specifi-
cation for FTP, namely the need to provide separate sessions to
clients as they establish connections. Thus, in the description of
the EstablishConnection theme, no mention was made of
passing control to a session upon setting up a connection with a
client. Since this theme was oblivious to the existence of ses-
sions, it was unable to pass control as needed. Therun method
of EstablishConnection Server ran in a separate thread
and as a result some mechanism was required to pass control to
a session (by invokingSession Server ’s createSession
method) from within the thread, whenever a client established a
connection; two alternatives were available. As the first alternative,
we introduced a dummy methoddummySession(Socket) in
EstablishConnection Server to provide an explicit hook
point inside the thread. The second alternative would be to cap-
ture the outgoing call (sending a reply message to the client) from
within the thread viaafter advice. This advice would then in-
voke thecreateSession method. We chose to follow the first
alternative because of drawbacks with the second as follows. To
invoke thecreateSession method, it was necessary to capture
the value of thesocket field. While such capture could be ac-
complished by AspectJ’sset pointcut, the Theme approach does
not currently support a means for capturing the values of fields in
compositions [7].

3.4 Evolution
In order to investigate the evolvability properties of the Theme ap-
proach, we evolved Version 1 of the system through a few addi-
tional versions along the identified feasible paths of the decision
tree.

For Version 2 of the system, we added the user authentication
protocol, requiring behavioural changes to several features of Ver-
sion 1. A new theme for thePASScommand theme was needed.
The functionality of theUSERtheme needed to change to authenti-
cate a user; this could be accomplished either through the modifica-
tion of the existing theme, or through the addition of a new theme
that overrides the old one. In this case, the authentication feature re-
quired such extensive modification to theUSERtheme of Version 1
that it made more sense to create a newUSERtheme to override the
old one. All other command themes needed to test whether the ses-
sion be authenticated, prior to invoking their main functionality, to
ensure that only authenticated users can request some services. We
selected this feature on the basis of its strongly crosscutting nature
with respect to the existing features of Version 1.

To ensure that all command themes conform to the authentica-
tion protocol, two approaches could be followed: (i) adding the
authentication-state check to all the command themes; or, (ii) pro-
viding the authentication-state check as a feature mapped into a
new theme.

We tried the first approach by adding aPassword class to ev-
ery command theme so that it could check if the user were au-
thenticated and thereby allow or disallow his/her request. But this
approach required modifications of all command themes to incor-
porate the extra checking behaviour. The need for such widespread
modification would indicate poor evolvability of systems developed

under the approach. Therefore, we followed the second approach.
In Version 3 of the system, we added a new requirement to sup-

port passive mode withPASVcommand. In Version 4 of the sys-
tem, we added a new feature to check for user account information
with ACCTcommand. Both the features were selected because they
crosscut other features of the system. In Version 5 of the system,
we added support for theHELPcommand. This feature is a simpler
one compared to the previous evolution steps, thereby assessing
whether simple additive changes were made excessively compli-
cated. All the three evolution steps have been attempted following
the same approach as in the first evolution step (Version 2).

3.5 Path Feasibility and Lessons Learned
On exploring consequences of alternative decisions at different lev-
els of the tree, we have traversed some paths that can be considered
feasible, some that can be considered infeasible, and a few that re-
main topics for future study.

We have considered a feature-oriented decomposition of a spec-
ification into themes for the case study. As we discuss in Section 4,
other decomposition techniques can be assessed for their feasibil-
ity and can be considered for future study. We have determined
several feasible paths up to the 5th decision within the tree, as can
be seen in Figure 3. In the final decision, two paths seem to be
most feasible in our study. We have preferred the paths that con-
sider some up-front planning in describing themes to the ones that
do not consider any up-front planning at all; however, some of the
unexplored nodes after the 6th decision cannot be completely ruled
out as systems scale and evolution becomes more complex.

The two paths that we have considered most feasible in the study
differ only in their treatment of how themes should be distributed
among development teams. The results from each of these paths
differed little.

In the course of exploring alternative decisions and investigating
the consequences at different stages of software development, we
have learned some lessons that can provide guidelines in applying
the Theme approach in a more generalized manner. We have found
that providing specific descriptions of themes is useful in support-
ing concurrent team development. Our lightweight approach to up-
front planning may not work effectively in all systems, although
an up-front plan can certainly help teams design themes in a more
uniform manner, and making them more readily composable into
a fully functioning system. Design-time composition has been an
essential ingredient in our case study, but this may not be a gen-
eral case; other decompositions into themes might exist that could
avoid the need for design-time composition.

AspectJ does not function well as a tool for composition of in-
dependently developed, base-level implementation models. This is
not surprising as it was created as a tool to weave explicitly cross-
cutting behaviour into base code.

4. DISCUSSION
This section discusses some important decisions that were made
across the life cycle of the system development with the case study.
Based on the study, we also present an initial evaluation of the
Theme approach with respect to some key software properties like
traceability, comprehensibility, and evolvability.

In exploring different paths in Decision 1 of the tree, we ignored
Nodes 3 throughk where different requirements engineering tech-
niques could be investigated in deriving a structured specification.
One reason was that, in our view, the results we obtained follow-
ing feature-oriented decomposition would not vary much following
those techniques, while requiring significantly more work. Realisti-
cally, they are approaches that would compete against Theme, and

not necessarily mesh nicely with it. But these approaches can be
candidates for explorations in future study.

One node that we did not explore could make a difference in
assessing the necessity of design-time composition verification of
themes: Node 2.2, where we could map every requirement in the
structured specification into themes. Our motivation behind not ex-
ploring that path was to determine if the system development was
possible and feasible with Theme following a more lightweight ap-
proach. The feature-oriented decomposition seemed a lightweight
one compared to decomposition into a traditional specification.
This path can be explored in future study to find if this can provide
a complete set of themes. We again note that we initially missed
one theme via our lightweight approach, which was noticed during
design-time composition. Whether spending more time up-front in
decomposing themes can reduce the cost of verifying the system via
design-time composition and incorporating changes accordingly.

We tried to approach the feature-oriented decomposition in a
manner that can represent decomposition by any software devel-
opment team, not biasing the decomposition results towards any
particular design model. To justify our approach, we conducted a
small survey of 5 graduate students in software engineering with
varying industrial development experience. To minimize bias from
leading questions, each of them was handed a copy of RFC 959 and
was asked to decompose the system (Version 1) in a way that would
support concurrent team development. None of them were told any-
thing regarding the Theme approach or anything related to follow-
ing any decomposition process. From their responses it was found
that all of them suggested that different FTP commands should be
distributed to concurrent teams with a few of them also suggesting
that commands with similar functionality be given to one team. The
tasks for integrating the commands or providing an interface for the
core system to interact with users and performing different com-
mands varied in their suggestions. But all their responses aligned
closely with our derived set of requirements. Based on the survey,
we can assume that our set of system features/requirements/tasks
can be considered as a representative approach for decomposing
this system.

In light of the case study, we found that the Theme approach
could certainly improve some key software properties like trace-
ability, comprehensibility, and evolvability, provided the develop-
ment process follows a feasible route as discussed in Section 3.5.
With requirements encapsulated into separate themes, each require-
ment can be traced through design and code. Moreover, dealing
with a specific requirement would require understanding a specific
theme; understanding a part of the design model and a package
in the code can be sufficient to deal with a particular requirement.
With the direct traceability and improved comprehensibility, evolv-
ability is also improved as observed in the case study. Different
evolution steps were performed via the same paths without non-
localized modifications.

5. CONCLUSION
The Theme approach to AOSD considers full life cycle issues in
moving from requirements through designs to implementations. To
date, Theme has lacked evaluation of its core claims to improve
key software properties like traceability, comprehensibility, evolv-
ability, configurability, and concurrent development. This paper
has provided a preliminary study in evaluating the Theme approach
with respect to these claims. The paper presents a study on applying
the methodology in developing and evolving a benchmark system,
an FTP server. Since Theme is essentially a descriptive develop-
ment methodology and not a prescriptive one, the study considered
the many possible paths through the tree of development decisions

in determining how (or whether) Theme can be applied in practice.
In traversing through a tree of development decisions, the study

points out some infeasible paths that can be potential pitfalls, and
explores some feasible paths that can provide directions for apply-
ing Theme to develop software in a more generalized manner. The
study considered development decisions in all stages of the soft-
ware life cycle. The results indicate that a feature-oriented decom-
position of a system and then encapsulating each of the features into
themes can lead to feasible solutions. The feasible paths in gen-
eral have been reached through designing themes from explicit de-
scriptions of the feature each of them captures. Attempting theme
designs directly from a natural language description without their
separate and explicit descriptions can lead to pitfalls. Lightweight
up-front planning before designing themes in a concurrent develop-
ment environment was more feasible compared to no up-front plan-
ning whatsoever. The study also suggests that design-time compo-
sition of themes developed by different teams is worthwhile, to val-
idate the developed themes. The validation also helps composition
of the themes implemented in parallel without any communication
overhead. The study examined a process in implementing Theme
composition with AspectJ; the development and different evolution
steps support the feasibility and comprehensibility of the process,
although AspectJ is not the ideal tool for supporting the symmetric
model of AOSD.

6. ACKNOWLEDGEMENTS
We thank our anonymous survey participants for their assistance.
This research was supported in part by a Discovery Grant from the
Natural Sciences and Engineering Research Council.

7. REFERENCES
[1] E. Baniassad and S. Clarke. Theme: An approach for

aspect-oriented analysis and design. InInt’l Conf. Softw.
Eng., 2004.

[2] E. Baniassad, G. Murphy, C. Schwanninger, and M. Kircher.
Managing crosscutting concerns during software evolution
tasks: an inquisitive study. InInt’l Conf. Aspect-Oriented
Softw. Dev., 2002.

[3] S. Clarke.Composition of object-oriented software design
models. PhD thesis, Dublin City University, 2001.

[4] S. Clarke. Extending standard UML with model composition
semantics.Science of Computer Programming, 2002.

[5] S. Clarke, W. Harrison, H. Ossher, and P. Tarr.
Subject-oriented design. InACM Conf. Object-Oriented
Progr. Lang. Syst. Appl., 1999.

[6] S. Clarke and R. Walker. Composition patterns: An approach
to designing reusable aspects. InInt’l Conf. Softw. Eng.,
2001.

[7] S. Clarke and R. Walker. Towards a standard design language
for AOSD. In Int’l Conf. Aspect-Oriented Softw. Dev., 2002.

[8] S. Clarke and R. Walker. Generic aspect-oriented design with
Theme/UML. In R. Filman et al., editors,Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[9] Y. Coady and G. Kiczales. A retroactive study of aspect
evolution in operating system code. InInt’l Conf.
Aspect-Oriented Softw. Dev., 2003.

[10] S. Demeyer, T. Mens, and M. Wermelinger. Towards a
software evolution benchmark. InInt’l Wkshp. Princip.
Softw. Evol., 2001.

[11] J. Hannemann and G. Kiczales. Design pattern
implementations in Java and AspectJ. InACM SIGPLAN
Conf. Object-Oriented Progr. Syst. Lang. Appl., 2002.

[12] W. Harrison and H. Ossher. Subject-oriented programming (a
critique of pure objects). InACM Conf. Object-Oriented
Progr. Syst. Lang. Appl., 1993.

[13] W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs.
symmetrically organized paradigms for software
composition. Technical Report RC22685, IBM T.J. Watson
Research Center, 2002.

[14] M. Kersten and G. Murphy. Atlas: A case study. InACM
Conf. Object-Oriented Progr. Syst. Lang. Appl., 1999.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. InEurop. Conf.
Object-Oriented Progr., 2001.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Europ. Conf. Object-Oriented Progr., 1997. LNCS 1241.

[17] J. Kienzle and R. Guerraoui. AOP: Does it make sense? The
case of concurrency and failures. InEurop. Conf.
Object-Oriented Progr., 2002.

[18] G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating
features in source code: An exploratory study. InInt’l Conf.
Softw. Eng., 2001.

[19] D. Parnas. On the criteria for decomposing systems into
modules.Commun. ACM, 15(12), 1972.

[20] J. Postel and J. Reynolds. File Transfer Protocol (FTP).
Request for Comments 959, Internet Engineering Task
Force, 1985.

[21] P. Tarr and H. Ossher. Hyper/J user and installation manual.
Technical report, IBM T.J. Watson Research Center, 2000.

[22] P. Tarr, H. Ossher, W. Harrison, and S. Sutton.N degrees of
separation: Multi-dimensional separation of concerns. In
Int’l Conf. Softw. Eng., 1999.

[23] R. Walker, E. Baniassad, and G. Murphy. An initial
assessment of aspect-oriented programming. InInt’l Conf.
Softw. Eng., 1999.

[24] N. Wirth. Program development by stepwise refinement.
Communications of the ACM, 14(4), 1971.

