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Abstract 

This dissertation consists of three essays on productivity and efficiency of two U.S. major 

industries - manufacturing and banking industries. An abstract for each of the three 

essays follows. 

Essay 1 (Chapter 2) takes the econometric approach to productivity measurement in 

United States manufacturing, using KLEM data over the period from 1953 to 2001. I am 

also interested in technical change bias, price elasticties, and elasticties of substitution 

in the U.S. manufacturing industry. I present the empirical comparison and evaluation 

of the effectiveness of three well-known locally flexible cost functions and the globally 

flexible Asymptotically Ideal Model, the latter modified to introduce technical change by 

means of factor-augmenting efficiency index approach. I show that the extended AIM 

model performs much better than the three locally flexible functional forms. 

Essay 2 (Chapter 3) provides estimates of bank efficiency and productivity in the 

United States, over the period from 1998 to 2005, using (for the first time) the globally 

flexible Fourier cost frontier and estimated subject to full theoretical regularity condi-

tions. I find that failure to incorporate monotonicity and curvature into the estimation 

results in mismeasured magnitudes of cost efficiency and misleading rankings of individ-

ual banks in terms of cost efficiency. I also find that the largest four bank subgroups 

(with assets greater than 400 million)experienced significant productivity gains and the 

smallest eight subgroups experienced insignificant productivity gains or even productivity 

losses. 

Essay 3 (Chapte 4) provides parametric estimates of technical change, efficiency 

change, economies of scale, and total factor productivity growth for large banks (those 

with assets in excess of 1 billion) in the United States, over the period from 2000 to 2005. 

In doing so, I propose a distance function based primal total factor productivity growth 
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index, which is valid under both perfect and imperfect competition, and estimate the 

output distance function, subject to theoretical regularity, within a Bayesian framework. 

The results show a clear downward trend in the growth rate of total factor productiv-

ity and my decomposition of the primal Divisia total factor productivity growth index 

into its three components - technical change, efficiency change, and economies of scale - 

indicates that technical change is the driving force behind this decline. 
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1.1 Background 

Productivity measurement and analysis has become widespread since Solow's (1957) de-

composition of output growth into the contribution of input growth and a residual-based 

productivity term. The main thrust of the Solow article is to present a theoretical and 

empirical framework for distinguishing between shifts in the production structure and 

movements along the production structure. The resulting "residual" measure has been 

interpreted as a shift in the production structure and typically has been labeled techno-

logical change, or total productivity growth. Most of the literature follows the innovative 

works by Jorgenson and Griliches (1967), Diewert (1976), Berndt and Khaled (1979), 

Diewert and Wales (1987), and Fare et al. (1994) in investigating total factor productivity. 

This literature is interesting not only because of the critical importance of productivity 

growth to living standards in actual economies, but also because of the related interest-

ing topics analyzed together with productivity growth, such as factor substitutability, 

convergence of macroeconomic structure and performance, and economic growth. 

There are many different approaches to total factor productivity measurement and 

analysis. Among all the approaches, the econometric approach, which involves estimating 

the parameters of an aggregator function (cost, profit, production, or distance function), 

has arguably received the most attention. Compared with other approaches, it has the 

advantage of allowing for the careful testing of various structural and behavioral assump-

tions of a postulated model, i.e. non-competitive pricing behavior, non-constant returns, 

factor-augmenting technical change as well as embellishments like cost-of-adjustment pa-

rameters, rather than to simply impose those features a priori. Prominent works along 

this line include, but not limited to, Berndt and Khaled (1979), Denny, Fuss, and Wa-

verman (1981) and Diewert and Wales (1987). These works typically treat producers as 

successful optimizers, and thus deviations from maximum outputs, from minimum cost 
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and from maximum profit are attributed exclusively to statistical noise. 

The introduction of efficiency change as a source of productivity change into the tra-

ditional econometric approach has lead to the development of the more recent literature 

of stochastic frontier approach (SFA) to productivity analysis.' Recent studies suggest 

that not all producers are always so successful in solving their optimization problems. 

For example, not all of them succeed in utilizing the minimum inputs required to produce 

the outputs they choose to produce, given the existing technology (technical inefficiency), 

or succeed in allocating their inputs in a cost effective manner or allocate their outputs 

in a revenue maximizing manner, given the input and output prices they face (alloca-

tive inefficiency). The presence of technical and allocative inefficiency thus enables one 

to decompose the combined productivity changes into efficiency movements (efficiency 

change) and frontier shift components (technological change), among other components 

- see Kumbhakar and Lovell (2003) for an excellent review. Technically, the only differ-

ence between the traditional econometric approach and the stochastic frontier approach 

is that a two-component composite error term is usually assumed in the estimation of 

the stochastic frontier model with one capturing firm inefficiency and the other capturing 

statistical noise. In this sense, the stochastic frontier approach can be seen as a modified 

econometric approach. 

As a modified econometric approach, the stochastic frontier approach has enjoyed 

great popularity in the analysis of productivity in the last fifteen years. It has been 

widely applied to the analysis of productivity in various industries using firm-level data. 

For example, Bauer (1990) applied it to the analysis of productivity in the U.S. airline 

industry; DeYoung and Hasan (1998) and Berger and Mester (2003), among many others, 

applied it to the analysis of efficiency and productivity in the U.S banking industry; 

'The introduction of efficiency change as a source of productivity change was pioneered by Nishimizu 
and Page (1982), who used a deterministic translog production frontier. It is Bauer (1990) who was the 
first to employ the stochastic frontier approach to decompose productivity change. 
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and Atkinson et al. (2003) applied it the analysis of productivity in the U.S. electric 

utilities. It has also been applied to the analysis of the effect on firm productivity 

of exogenous variables characterizing the environment in which production occurs - 

i.e. public infrastructure, the degree of competitive pressure, network characteristics, 

ownership form, managerial ability - see for example, Simar et al. (1994), Battese and 

Coelli (1999), Huang and Liu (1994) and Mester (1997). In addition, the stochastic 

frontier approach has also been used in the analysis of growth convergence - see, for 

example, Kumbhakar and Wang (2005). 

Despite its popularity, the econometric approach - including both the traditional 

approach and the more recent stochastic frontier approach - suffers from the following 

two problems. First, the functional form employed in the econometric approach suffers 

the problem of not having enough flexibility. Most of the previous studies in this litera-

ture employ a locally flexible functional forms, i.e. the generalized Leontief [see Diewert 

(1971)], translog [see Christensen et al. (1975)] and normalized quadratic [see Diewert 

and Wales (1987)] functional forms, which theoretically can attain flexibility only at a 

single point or in an infinitesimally small region. In the field of firm efficiency, researchers 

have found, however, that the translog function lacks enough flexibility in modelling in-

dustries which are composed of firms of widely varying sizes; see McAllister and McManus 

(1983) and Wheelock and Wilson (2001). Diewert and Lawrence (2002) also find that 

the NQ functional form, the only functional form that possesses the property that cor-

rect curvature conditions can be imposed globally without destroying the flexibility of 

the functional form, does not have enough flexibility in modelling the variations in price 

elasticities over time. 

There are, however, two globally flexible functional forms which can provide greater 

flexibility than locally flexible functional forms: the Fourier flexible functional form [Gal-

lant (1982)] and the Asymptotically Ideal Model (AIM) [Barnett et al. (1991)]. The 
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former is based on a Fourier series expansion and the latter is based on a linearly homo-

geneous multivariate Muntz-Szatz series expansion. Both of them are globally flexible in 

the sense that they are capable of approximating the underlying cost function at every 

point in the function's domain by increasing the order of the expansion, and thus have 

more flexibility than most of the locally flexible functional forms. Despite its greater 

flexibility, the AIM model has never been used to model productivity due to the com-

putational complexity involved. Regarding the Fourier functional form, although some 

previous studies attempted to use it to model productivity and efficiency, all of them ig-

nore the parametric relationship between the 'reparameterized' translog function and the 

trigonometric Fourier series of the Fourier function, and thus potentially reach perverse 

conclusions regarding productivity and efficiency. 

The second problem with the econometric approach is that the estimated parameters 

of the dual functions (i.e. cost, profit functions) frequently violate the monotonicity and 

concavity constraints implied by economic theory. While permitting a parameterized 

function to depart from the neoclassical function space is usually fit-improving, it may 

also cause the failure of duality theory on which dual econometric models are based. 

As Barnett (2002, p. 199) put it, without satisfaction of all three theoretical regular-

ity conditions (positivity, monotonicity and curvature) "the second-order conditions for 

optimizing behavior fail, and duality theory fails. The resulting first-order conditions, de-

mand functions, and supply functions become invalid." With the econometric approach, 

estimates of productivity and efficiency are essentially functions of the estimates of para-

meters. Therefore, the inaccuracy or even wrongness of the estimates of the parameters 

from unconstrained models will eventually show up in the estimates of productivity and 

efficiency. 
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1.2 Objective and Significance of the Research 

Motivated by the widespread practice of ignoring the theoretical regularity conditions 

and not using a globally flexible functional form, the purpose of this thesis is three-fold. 

First to show the superiority of the globally flexible Asymptotically Ideal model (AIM) 

over locally flexible functional forms in modelling productivity. This is done in the second 

chapter. In doing so, I extend the globally flexible AIM by incorporating technological 

change into it without destroying any of the neoclassical theoretical regularity conditions. 

By using the KLEM data for the U.S. manufacturing industry, I present an empirical 

comparison and evaluation of the effectiveness of four well-known flexible cost functions 

- the locally flexible generalized Leontief, translog, and normalized quadratic - and 

the globally flexible Asymptotically Ideal Model, in terms of their ability to capture the 

variation in total factor productivity and price elasticities. While the superiority of the 

globally flexible AIM over locally flexible functional forms is shown within the context 

of productivity measurement in this thesis, it can be easily generalized to other studies 

which involve technology or preference modeling. 

The second purpose of this thesis is to show the importance of the incorporation of 

monotonicity and curvature in the analysis of firm efficiency using the stochastic frontier 

approach. This is done in the third chapter. More specifically, within the framework of 

cost frontier, I show, by comparing results from unconstrained and regularity-constrained 

models, that the violation of monotonicity and curvature constraints may lead to mis-

measured magnitudes of cost efficiency and misleading rankings of individual banks in 

terms of firm efficiency. Intuitively, the violation of curvature at a data point (Pit, Yjt) 

implies that the quantities of some outputs increase as their corresponding prices increase 

(holding other things constant); and the violation of monotonicity at that data point im-

plies the quantities of some outputs decrease as total cost increases (holding other things 
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constant). Both of these two cases mean that the best practice firm is not minimizing its 

cost at (Pit, yjt). Therefore, cost efficiency, which is supposed to be measured relative to 

a cost-minimizing best practice bank, is not accurate when monotonicity and curvature 

are violated. 

The third purpose is to show the importance of the incorporation of monotonicity 

and curvature in the construction of distance function based productivity indexes. The 

construction of distance function based productivity indexes by exploiting the duality 

between the output (input) distance function and the revenue (cost or profit) function 

has become an active research area - see, for example, Orea (2002). However, none of 

the previous studies has treated monotonicity and curvature conditions as maintained 

hypotheses. In the fourth chapter, I first derive a productivity index by exploiting the 

duality between the output distance function and the profit function. Within a Bayesian 

framework, I then demonstrate that violations of monotonicity and curvature constraints 

may lead to perverse conclusion regarding productivity. For example, when monotonicity 

is violated, we may reach a wrong conclusion, i.e. an increase in labor, holding other 

things fixed, may result in an increase in productivity growth. 

1.3 Organization of This Thesis 

The rest of the thesis is organized as follows. In Chapter 2, I take the econometric ap-

proach to productivity measurement in United States manufacturing, using KLEM data 

over the period from 1953 to 2001, and present an empirical comparison and evaluation 

of the effectiveness of four well-known flexible cost functions - the locally flexible gen-

eralized Leontief, translog, and normalized quadratic - and the globally flexible AIM 

model in modelling productivity. Chapter 3 provides estimates of bank efficiency and 

productivity in the United States, over the period from 1998 to 2005, using (for the 
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first time) the globally flexible Fourier cost functional form, as originally proposed by 

Gallant (1982), and estimated subject to global theoretical regularity conditions, using 

procedures suggested by Gallant and Golub (1984): The fourth chapter provides para-

metric estimates of technical change, efficiency change, economies of scale, and total 

factor productivity growth for large banks (those with assets in excess of $1 billion) in 

the United States, over the period from 2000 to 2005. In doing so, I propose a distance 

function based primal total factor productivity growth index, which is valid under both 

perfect and imperfect competition, and estimate the output distance function, subject to 

theoretical regularity, within a Bayesian framework. Chapter 5 concludes the thesis. 
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CHAPTER TWO 

PRODUCTIVITY TRENDS IN U.S. MANUFACTURING: 

EVIDENCE FROM THE NQ AND AIM COST FUNCTIONS 
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2.1 Introduction 

The analysis and measurement of productivity performance has attracted a great deal 

of attention ever since Solow (1957) decomposed the growth in output into the growth 

of inputs and a residual-based productivity term. Most of the literature follows the 

innovative works by Jorgenson and Griliches (1967), Diewert (1976), Berndt and Khaled 

(1979), Diewert and Wales (1987), and Fare et al. (1994) in investigating total factor 

productivity. This literature is interesting not only because of the critical importance 

of productivity growth to living standards in actual economies, but also because of the 

related interesting topics analyzed together with productivity growth, such as factor 

substitutability, convergence of macroeconomic structure and performance, and economic 

growth. 

There are four different approaches to total factor productivity (TFP) measurement 

- growth accounting, the index number approach, the distance function approach, and 

the econometric approach. In this paper, I briefly review each of these methods, and then 

take the econometric approach to productivity measurement in the United States. In 

doing so, I use manufacturing KLEM (capital, labor, energy, and intermediate materials) 

data, over the period from 1953 to 2001. I am also interested in technical change bias, 

price elasticities, and elasticities of substitution in the U.S. manufacturing industry. I 

also present an empirical comparison and evaluation of the effectiveness of four well-

known flexible cost functions - namely, the locally flexible generalized Leontief [see 

Diewert (1971)], translog [see Christensen et al. (1975)], and normalized quadratic [see 

Diewert and Wales (1987)], and one globally flexible cost function, the Asymptotically 

Ideal Model [see Barnett et al. (1991)]. In this literature, there is no a priori view as to 

which flexible functional forms are appropriate, once they satisfy the regularity conditions 

of neoclassical microeconomic theory - positivity, monotonicity, and curvature. 
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I pay explicit attention to all three theoretical regularity conditions and argue that 

much of the older literature on total factor productivity measurement ignores economic 

regularity. I argue that unless economic regularity is attained by luck, flexible functional 

forms should always be estimated subject to regularity, as suggested by Barnett (2002) 

and Barnett and Pasupathy (2003). In fact, I follow Ryan and Wales (1998), Moschini 

(1999), Gallant and Golub (1984), and Serletis and Shahmoradi (2005, 2007) and treat 

the curvature property as a maintained hypothesis and build it into the models being es-

timated. I also address econometric regularity issues and highlight the challenge inherent 

with achieving both economic and econometric regularity. 

I also extend the AIM model and introduce technical change in the AIM cost function 

by means of Thomsen's (2000) factor-augmenting efficiency index approach. The main 

advantage of this approach, unlike the generic time trend models of technical change, is 

that one can measure input specific productivity, changes in input productivity, as well 

as the contribution of each input to overall productivity. My empirical results show that 

the AIM cost function with technical change introduced through the factor-augmenting 

efficiency index approach performs better than traditional locally flexible function forms 

and gives more accurate estimates of total factor productivity. 

The rest of the paper is organized as follows. Section 2 provides a brief review of the 

different approaches to total factor productivity measurement - growth accounting, the 

index number approach, the distance function approach, and the econometric approach. 

In Section 3 I follow the econometric approach and discuss in detail the four cost functions 

that I use as well as the relevant procedures for imposing concavity on each of these 

functions. In Section 4 I deal with data and econometric issues while in Section 5 I 

estimate the models, report on theoretical regularity violations, and report estimates 

of total factor productivity based on the best-performing model(s). The final section 

concludes the paper. 



12 

2.2 Productivity Measurement 

As already noted, there are four different approaches to total factor productivity measure-

ment - growth accounting, the index number approach, the distance function approach, 

and the econometric approach. In what follows, I briefly discuss each of these approaches. 

2.2.1 Growth Accounting 

Growth accounting was suggested by Solow (1957) as a method of estimating the growth 

of total factor productivity. Growth accounting calculation of total factor productivity 

requires the specification of a neoclassical production function. Consider, for example, 

the Cobb-Douglas production function, 

Y = AKL' a E (0, 1) ) 

where Y is (real) output, K is capital, L is labor, and a is the share of capital in output. A 

is a measure of the current level of technology, more commonly referred to as multi-factor 

growth productivity or total factor productivity (TFP) - if, for example, A increases by 

1% and if the inputs (K and L) are unchanged, then output increases by 1%. 

As noted by Carlaw and Lipsey (2003), total factor productivity can be calculated 

either as a geometric index in levels, 

TFP= =A, (2.1) 
KL' 

or as an arithmetic index in rates of change, 

AA AY AK 
AYaK +(1—a) AL ---=LTFP. (2.2) 

Equation (2.2) is the key equation in growth accounting. It defines the growth of total 
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factor productivity, AA/A, as the growth in output that cannot be accounted for by 

growth in capital and labor. /A/A is called the Solow residual, after Robert Solow who 

suggested this method of estimating the growth of total factor productivity. It is also 

known as the rate of technical progress. 

2.2.2 The Index Number Approach 

The index number approach is an extension of (and complement to) growth accounting. 

It involves dividing a (real) output quantity index, Y, by an input quantity index, I, to 

obtain a measure of total factor productivity, A, as follows 

A=. 

The index number approach is widely used by the majority of statistical agencies that 

regularly produce productivity statistics. However, one critical issue regarding this ap-

proach is the selection of the appropriate indexes. In fact, statistical indexes are mainly 

characterized by their statistical properties. These properties were examined in great de-

tail by Fisher (1922) and serve as. tests in assessing the quality of a particular statistical 

index. They have been named, after Fisher, as 'Fisher's system of tests' - see Eichhorn 

(1976) for a detailed analysis as well as a comprehensive bibliography of Fisher's 'test' 

or 'axiomatic' approach to index numbers. 

The index that Fisher (1922) found to be the best, in the sense of possessing the 

largest number of desirable statistical properties, has now become known as the 'Fisher 

ideal' index. Another index found to possess a very large number of such properties is the 

discrete time approximation to the continuous Divisia index, usually called the Tornqvist 

index or just the Divisia index (in discrete time). In fact, the primary advantage of the 

Fisher ideal index over the Divisia index is that the Fisher ideal index satisfies Fisher's 
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'factor reversal test' - which requires that the product of the price and quantity indexes 

for an aggregated good should equal actual expenditures on the component goods - 

while the discrete time approximation of the Divisia index fails that test. However, the 

magnitude of the error is very small - third order in the changes. 

The index number approach does not require an aggregate production function, al-

though the economic approach to statistical index numbers, pioneered by Diewert (1976), 

could be used for selecting the appropriate index - see also Diewert and Lawrence (1999) 

and Diewert and Nakamura (2003) for a detailed discussion. In particular, Diewert (1976) 

provided the link between aggregation theory and statistical index number theory by at-

taching economic properties to statistical indexes. These properties are defined in terms 

of the statistical indexes' ability to approximate a particular functional form for the un-

known underlying aggregator function. For example, Diewert (1976) showed that the 

Divisia index is 'exact' for the linearly homogeneous translog and is, therefore, 'superla-

tive' (since the translog is a flexible functional form). 

2.2.3 The Distance Function Approach 

The distance function approach to measuring total factor productivity seeks to separate 

total factor productivity in two components: changes resulting from a movement towards 

the production frontier (technical efficiency) and shifts in the frontier (technical change). 

The distance function was first introduced separately by Shephard (1953) in the context 

of production analysis and by Malmquist (1953) in the context of consumption analysis. 

But it was introduced as a theoretical productivity index by Caves et al. (1982), and 

then popularized as an empirical productivity index by Fare et al. (1994).' 

'There is also a closely related literature on firm efficiency, using stochastic production (or cost/profit) 
frontiers. Like the Malmquist productivity index discussed below, the parametric stochastic frontier 
approach does not assume that firms are operating at their efficient level, and thus enables one to 
decompose the combined productivity changes into efficiency movements (efficiency change) and frontier 
shift components (technological change), among other components. A two-component composite error 
term is usually assumed in the estimation of the parametric model with one capturing firm inefficiency 
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Using technology in period t as the reference technology (which exhibits constant 

returns to scale), the output-based Malmquist productivity index is written as 

m (Vt, Yt+i, Xt, Xt+i) = d (Yt+i, X t+1)  

d (Vt, Xt) 

where d (Vt, Xt) is the output distance function; that is, the reciprocal of the maxi-

mum proportional expansion of the output vector Vt, given inputs Xt. Alternatively, the 

Malmquist index can be defined in terms of technology in time t + 1. Fare et al. (1994) 

extend this approach by defining the Malmquist total factor productivity index as the 

geometric mean of these two indexes 

di+l (y +1  Xt+i)  1 j 1/2 
dto m (Vt, Yt+i, Xt, Xt+1) = I ;: ::'  x ° , a0+l (Vt, Xt)  

which can be equivalently written as 

dt+l (Vt•i, X t+i) d, (yt+i, Xt+1)  < d, (Vt, Vt)  
m (Vt, Vt+i, X t, X t+i) = d (Vt, Xt) d+l (Vt•i Xt+i) d+l (Vt, X) 

1/2 

where the term outside the brackets on the right-hand side measures the change in relative 

efficiency between years t and t + 1 and the geometric mean of the two ratios inside the 

brackets measures the shift in technology between the two periods evaluated at Xt and 

x 1. It is to be noted that the Malmquist total factor productivity index can also be 

measured on the best practice technologies when variable returns to scale are taken into 

account. 

The Fare et al. (1994) distance function based productivity index has several advan-

tages. It does not require a specific functional form, it does not require information on 

and the other capturing statistical noise. For an excellent review of this literature, see Kumbhakar and 
Lovell (2003). 
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prices, and it can be implemented in a multiple-output setting with many inputs (with no 

separability assumptions being required). Most importantly, it does not assume that firms 

are operating at their efficient level, and thus enables one to decompose the combined 

productivity changes into efficiency movements and frontier shift components. However, 

as Carlaw and Lipsey (2003, pp. 464) put it, "in order to implement this technique, one 

must know everything about the state of technology at every point in time and at every 

level of aggregation that TFP is calculated. Unfortunately, this is not possible given the 

data available." Moreover, implicit in the distance function approach to measuring total 

factor productivity is the assumption that all units (firms, industries, or countries) being 

compared have the same production function, when in fact evidence suggests that even 

firms within the same industry do not have identical production functions. 

2.2.4 The Econometric Approach 

The econometric approach to productivity measurement involves estimating the para-

meters of an aggregator function - cost, profit, or production function. Productivity 

growth can then be expressed in terms of the estimated parameters. 

Technical change (or productivity growth) is usually defined in the primal setup (pro-

duction function), as any shift in the production frontier. In particular, assuming a 

production function 

Y = f(x,t), (2.3) 

where y is output, f is a continuous twice differentiable nondecreasing and quasiconcave 

function of a vector of inputs x ≥ 0, and t denotes a technology index, then technical 

change is defined as 

Of (x, t) lot. 

Technical change can also be defined in the dual setup (cost function), under certain 
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conditions. In particular, if firms competitively minimize the cost of production subject 

to producing a given amount of output, then the technology (2.3) is completely described 

by the dual cost function 

C=C(p,y,t)=yc(p,t), (2.4) 

with the second equality assuming constant returns to scale. In equation (2.4), C is a 

nondecreasing, linearly homogeneous and concave function of prices, p > 0, and c is the 

corresponding unit cost function - for an excellent review of duality theory, see Diewert 

(1982). 

To obtain equations that are amenable to estimation, I apply Shephard's lemma to 

equation (2.4) to get 

x= 50 (p, y, t)  

On 

or a more convenient equation for estimation purposes, by dividing through by y, 

- 1 50 (p, y, t)  

y_y Sp  

Using the envelope theorem, 

SC (p, y, t) - SC (p, y, t) /Sy 
at - Sf(x,t)/St 

(2.5) 
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the rate of technical change can be measured from the cost function as follows 

TFP— 01nf(x,t) - l3f(x,t) 
- at y at 

-- aC(p,y,t)/at  - ainC(p,y,t)/at 

- yaC(p,y,t)/ay - alnC(p,y,t)/alny 

(2.6) 

where e,t = a In C (p, y, t) /t and ecy = 0 In  (p, y, t) 10 In y. According to equation 

(2.6), total factor productivity is the product of the dual rate of cost diminution (Et) 

and the dual rate of returns to scale (e-Y1). Hence, under constant returns to scale (where 

is equal to unity), total factor productivity is the negative of the dual rate of cost 

diminution, meaning that a 1% upward shift in the production function is equal to a 1% 

decrease in the cost of production. 

By taking the derivative of each estimated factor demand equation with respect to 

time and dividing by the estimated demands,, I can also obtain a measure of the effect of 

technical change on each input (denoted by -ri below) - see, for example, Diewert and 

Wales (1992) and Kohli (1994) - as follows, 

'Ti - 01nxj (p,y,t)  
at (2.7) 

If -ri > 0 (< 0), then technical change is input i augmenting (reducing), meaning that 

more (less) of the input is required due to the passing of time. In fact, total factor 

productivity is a weighted average of Ti's. Following Kohli (1994), 1 define these rj's to 
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be technical change biases for each input. In particular, if 

TFP = —ri, (2.8) 

for input i, then technical change is said to be completely unbiased (neutral), in the 

sense that all goods are affected to the same degree. This corresponds to a 'homothetic 

shift' of the isoquants leaving the marginal rate of substitution between any two inputs 

(measured along a ray through the origin) unaffected by technical change. If, however, 

(2.8) does not hold, then technical 'change is said to be biased. This corresponds to a 

'non-homothetic shift' of the isoquants, meaning that the marginal rate of substitution 

between any two inputs is affected by technical change. 

Factor substitution is calculated, using both Allen and Morishima elasticities of sub-

stitution. The Allen-lizawa elasticity of substitution between inputs i and j is given 

by 

C (p, y, t) C (p, y, t)  
(p, ' t) = c (p, y, t) C (p, y, (2.9) 

where the i, j subscripts refer to the first and second partial derivatives of C (p, y, t) with 

respect to input prices pi and p. The Morishima elasticity of substitution between inputs 

i and j is given by 

u(p,y,t) = p3Cjj (p,y,t) pCj (p,y,t)  
C (p, y, t) C (p, y, t) 

(2.10) 

If o > 0 (that is, if increasing the jth price increases the optimal quantity of input 

i), I say that inputs i and j are Allen-TJ'zawa (net) substitutes. If o- < 0, they are 

Allen-'[Jzawa (net) complements. Similarly, if uT > 0 (that is, if increasing the j 
2,3 

price increases the optimal quantity of input i relative to the optimal quantity of input 

j), I say that input j is a Morishima (net) substitute for input i. If oJ < 0, input 
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j is a Morishima net complement to input i. The Allen elasticities provide immediate 

qualitative comparative-static information about the effect of price changes on absolute 

input shares, whereas the Morishima elasticities immediately yield both qualitative and 

quantitative information about the effect of price changes on relative input shares. 

The familiar price elasticities, 

could also be calculated as 

  p  

5Pj x(p,y,t)' 

=  

(2.11) 

where sj is the cost share of input j in total production costs. Notice that the price 

elasticities must satisfy the following condition 

= 0, 

By substituting different unit cost functions into (2.4), I can get different total cost 

functions. Clearly, the econometric approach overcomes ihe problems of the index num-

ber approach and the distance function approach and has the flexibility to incorporate 

pertinent features of the market and industry structures as well as technological features 

that affect the productivity of firms or industries. 

In what follows, I take the econometric approach to productivity measurement (in the 

United States) and provide a comparison between three widely used locally flexible cost 

functional forms - the generalized Leontief, basic translog, and normalized quadratic 

and the globally flexible AIM cost function. 
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2.3 Flexible Cost Functional Forms 

2.3.1 The Generalized Leontief Cost Function 

By substituting the GL unit cost function [see Diewert (1971)] into (2.4), I get the GL 

specification 

C (p, y, t) = ( n 
j=1 

1/2 1/2 
1L)jP P (2.12) 

where Pij = /3. Using Shephard's lemma (2.5), and dividing through by y, yields optimal 

input-output demand equations, as follows 

xi 

y 

n 

j=1 

1/2 -1/2 
p p + Pitt, i=1,•••,n. (2.13) 

Notice that all the parameters of the GL cost function (2.12) can be obtained by esti-

mating only (2.13). It is to be noted that when i = j in (2.13), p'2p"2 = 1 and so 

is a constant term in the ith input-output equation. When ,6ij = 0 for all i, j, i j, then 

input-output demand equations are independent of relative prices and the cross-price 

elasticities are zero. 

Caves and Christensen (1980) have shown that the GL has satisfactory local properties 

when technology is nearly homothetic and substitution is low. However, when technology 

is not homothetic and substitution increases, they show that the GL has a rather small 

regularity region. 

Concavity of the cost function (2.12) requires that the Hessian matrix is negative 

semidefinite. I can therefore impose local concavity (that is, at the reference point) by 

evaluating the Hessian terms of (2.12) at the reference point, where all prices and output 

are unity, as follows 

Hij = —5 ( /2) + (1 - S) 
j=1,ji 

(2.14) 
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j=1 

where 6jj = 1 if i = j and 0 otherwise. By replacing H by —1/2 KK', where K is an 

n x n lower triangular matrix and K' its transpose, the above can be written as 

- (KK') = - Jij ( /2) + (1— (2.15) 

There are two things that should be noted here. First, the /3 (i = 1 •••, n) do not appear 

in (2.15), thus leaving ,8 (i = 1, - •, n) unrestricted. Second, the fact that the elements 

in the same row of H add to zero, that is 

(n n /2) + /2=O, 
j=1,ji j=1,ji 

implies the following restrictions on K 

j=1,•',n, 
i=1 

(2.16) 

i.e. the elements in the same column of K add to zero, where the kij terms are the 

elements of the replacement matrix K. (2.16) can 'be easily shown by expanding out 

(2.15); a similar technique is also used by Fox and Diewert (1999) in imposing convexity of 

a Normalized Quadratic profit function in prices. Obtaining the main diagonal elements 

of K, kii, expressed in terms of kij (i =h i) and then substituting them into (2.15), I will 

obtain /3 (1 ≤ i <j ≤ n) which are expressed only in terms of kij (1 <j <j ≤ n). 

As an example, for the case of three inputs (n = 3), I can use the restrictions (2.16) 

and the lower triangular structure of K in order to eliminate the diagonal elements of 
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K, kii (i = 1, 2, 3), as follows 

= —k21 - k31; 

k22 = —k32; 

k33 = 0. 

Substituting the above restrictions in (2.15), I obtain 

1612 = —k21k11 = k21 (Ic21 + Ic3i ); 

1613 = —k31k11 = k31 (Ic21 + k31 ); 

f7 7 7 1 \ 
P23 = - 1211s.31 + r22h32) = ' i 21'' i 31 + iS32, 

which guarantees concavity of the cost function at the reference point and may also 

induce concavity of the cost function at other data points. As already noted above, 011, 

/22, and P33 in this example are unrestricted and do not have to be expressed in terms 

of the elements of K. Clearly, the flexibility of the GL is not destroyed because the 

n(n - 1)/2 elements of K just replace the n,(n - 1)/2 elements of H in the estimation. 

2.3.2 The Translog Cost Function 

The translog specification, due to Christensen et al. (1975), is obtained by substituting 

the translog unit cost function into (2.4) to get 

lnC(p,y,t) = '11Y+fio +,6tt+ 
i=1 

i=1 j=1 

/3i lflPi+ 

n 

i=1 

/3t In pi + /3ttt2, (2.17) 
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where Pij = i3 • Homogeneity of degree one in prices (given y) implies the following 

restrictions 
n 1,, n n 

(2.18) 

Although I could estimate (2.17) directly, efficiency gains can be realized by estimat-

ing the optimal cost-minimizing input demand equations, transformed into cost-share 

equations, as follows 
n 

/3ij lnp + f3t, (2.19) 

whereEn iPiXi C. 

Guilkey et al. (1983) show that the translog is globally regular if and only if technology 

is Cobb-Douglas. In other words, the translog performs well if substitution between all 

factors is close to unity. They also show that the regularity properties of the translog 

model deteriorate rapidly when substitution diverges from unity. 

The Hessian matrix of the translog cost function at the reference point, where all 

prices and output are set to one, will be negative semidefinite if the following matrix is 

negative semidefinite 

Hij _/3 +i3@ 6ij/3i, i,j = 1'.. .'n, (2.20) 

with 8jj = 1 if i = j and 0 otherwise. Local concavity can be imposed at the reference 

point as in Ryan and Wales (2000) by setting H = —KK', as follows 

/3 +/3i/3j  -  JjjPi  = (—KK'), i, j = 1,• . ., n, (2.21) 

where (as before) K is a lower triangular matrix. Noting that Ejn=jPjj = 0 and 
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En 
= 0 (see equation (2.18)), it can be easily shown that 

n n 

(t3  - /3S + ,B8) - 0, (2.22) 

i.e. the elements in the same row of H add to zero. Further, (2.22) implies the following 

restriction on the elements of K 

n 

=0, j=1,•..,n, (2.23) 
i=1 

i.e., the elements in the same column of K add to zero. Again, (2.23) can be shown by 

expanding out H = —KK', where U satisfies (2.22). Combining (2.21) and (2.23), I 

can replace the elements of B = [,8j] by those of K. It should be noted that, unlike in 

the case of the generalized Leontief, /3 (i = 1, . ., n) are restricted in this case. 

For the case with three inputs (n = 3), equations (2.21) and (2.23) imply the following. 

restrictions on the elements of K 

+ fi1 - —(k21 + k31)2 + /9 - 

012 = —k11k21 -  0102  = (k21 + k31)k21 - 

13 —k11k31 - 31fi3 = (k21 + k31)k31 - 

= -(i4 + k2) + 82 - = —k 1 - k322 + /2 - 

0 22; 22 0 - 11 1 1 1 \ Qo_ i  

P23 - ''21'31 + A22/32) P2P3 - '21''31 + h32 — 162,63; 

/933 = —(k1+k2 +k3)+i33 -/9 —(k 1+k 2)+/33 —/3, 

which guarantee concavity of the cost function at the reference point and may also induce 

concavity of the cost function at other data points. Clearly, the flexibility of the translog 

specification is not destroyed because the n(n - 1)/2 elements of K just replace the 
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n(n - 1)/2 elements of B in the estimation. 

2.3.3 The Normalized Quadratic Cost Function 

The NQ model, due to Diewert and Wales (1987), can be obtained by substituting the 

NQ unit cost function into (2.4) 

C(p,y,t) = 
1 /3pp  

Pin N 
L II:i=1 ajpj 

where I impose two restrictions on the B [8] matrix 

Pij = 

n 

i=1 
)3itpit] ) (2.24) 

for all i,j; (2.25) 

Bp* = 0, for some p* > 0. (2.26) 

Further, the a vector (a > 0) is usually predetermined. 

For the NQ cost function, the unknown parameters in (2.24) can estimated by using 

the following system of factor demands 

n 

A  I (?t 227 i En  En 1ajpi1ajpj )  

Before estimating the system in (2.27), I express the main diagonal elements of the B 

matrix, /3, in terms of its off-diagonal elements by using equation (2.26) and assuming 

that p =1. Thus, by estimating the input-output equations (2.27), I obtain estimates of 

,6j, the technical change parameters /3it, and the off-diagonal elements of the B matrix, 

(i i). The main diagonal elements of the B matrix can be recovered from the 

restrictions imposed. 
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The Hessian matrix of the cost function (2.24) is obtained as follows 

oij j=  
a (F n 1,8ipj) 

VPiPi  (p, y) t) = n 2 

a  (= >iri p/3p) 
+ ( 1ajpj)2 ( 1ajpj)3 . (2.28) 

Using the restrictions En j=1 /3p =On at the reference point, I have p/3p2 = 

(Pi*(E n _ fi.)) 0. Thus evaluating the above equation at (p*, t*) yields the 

following equation 

VPiPj  =   (>I=. aip 
(2.29) 

Multiplying both sides of (2.29) by y and rearranging, I get Vp,p, C (p, y, t) = a' p'B. 

Thus the negative sernidefiniteness of V PiP, C (p, y, t) at the reference point requires that 

B is negative semidefinite. More importantly, the negative semidefiniteness of B is not 

only the necessary condition for V PiP, C (p, y, t) to be concave locally at the reference 

point as I just showed, but it is also a sufficient condition for V PiP, C (p, y, t) to be 

concave globally (concave at every possible and imaginable point) - see Diewert and 

Wales (1987) for more details. 

In practice, the concavity of C (p, y, t) may not be satisfied, in the sense that the 

estimated B matrix may not be negative semidefinite. In this case, to ensure global 

concavity (concavity at all possible prices) of the NQ cost function, I follow Diewert and 

Wales (1987) and impose 

B = —KK', (2.30) 
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where K is a lower triangular matrix which satisfies 

K IP* = on. (2.31) 

Note that (2.31) and the lower triangular structure of K imply 

i=1 

(2.32) 

As an example, for the case of three inputs (2.30) and (2.32) imply 

7 / 7 
P11i2 i ( ' 7 21+ 131) 

/12 = —k11k21 = (k21 + k31) k21; 

/313 = —k11k31 = (k21 + k31) k31; 

022 - f2 p ,2\_ ;2 2. 
- - 21 T ''22) - "21 - 32, 

,2. 
023 = - (7 21 7 31 + '22'32) = It.21131 + '32 

/333 = - (k 1 + k2 + k3) = - (4 + k2). 

That is, I replace the elements of B in the input-output equations (2.27) by the elements 

of K, thus ensuring global curvature. It should be noted that in the case of the NQ 

cost model, concavity is imposed globally rather than locally at the reference point as 

I do in the case of the CL and translog specifications. The main advantage of the NQ 

specification comes from its property that correct curvature conditions can be imposed 

globally without destroying the flexibility of the functional form. 
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2.3.4 The AIM Cost Function 

By specifying the unit cost function in (2.4) as a linearly homogeneous multivariate 

MUntz-Szatz series expansion, I get the AIM total cost function without technical change 

[see Barnett et al. (1991)] 

C=g(p,y) = [azflprI, 
[zEA j=1 j 

2' 

(2.33) 

where n is the order of expansion, a the unknown parameters, n the number of produc-

tion factors, and AK = {(i1,i2,. •)i) : i1, i2,. .,i2 E {1, 2,• .,n); i1 ≤ i2, < . . . < i}. 

For simplicity, I call a cost function without technical change the 'stripped-down cost 

function.' 

Now I extend the Barnett et al. (1991) stripped-down AIM cost function to allow 

for technical change - a very valuable source of information about modeling technical 

change is Sato (1975). Instead of using the generic time trend to model technical change, 

as I did with the three locally flexible functional forms, I introduce technical change into 

the stripped-down AIM cost function using the efficiency index approach. In particular, 

I assume that the effects of technical change (t) on the production level y are purely 

factor-augmenting; that is, affecting each factor through a factor specific efficiency index, 

ej = e(t, y) - factor augmenting technical change was pioneered by Kohli (1981, 1982, 

1991, 1993). 

Thomsen (2000) shows generally that in order to obtain a total cost function with 

technical change and returns to scale, C (p, y, t), one can first figure out the stripped-

down cost function denoted by C* (p, y), and then divide p in C (p, y) by a factor specific 

efficiency index. Thomsen (2000) further shows that the efficiency index is capable of 

rendering any stripped-down cost function flexible in y and t. Under the assumption of 
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constant returns to scale I specify the efficiency index as  

log ej = '9,t i = 1,• . , n, (2.34) 

where i9i indicates (when multiplied by 100) the percentage increase in the efficiency of 

factor i from period t to t + 1. By dividing p in (2.33) by the above efficiency index, I 

obtain my AIM cost function with technical change 

C=g(p,y,t) = 
2 

aflq 2__j 

zEA, j=1 

r 2' 
/ -oz 

a,11ij t)2] =yQ(q), 

LZEA, 2=1 

(2.35) 

where qj, is the efficiency-corrected price, defined as qj, = pi, /ej, e is the efficiency index 

as defined by (2.34), and Q(q) is the corresponding unit cost function. The main advan-

tage of the efficiency index approach is that I can easily obtain a new AIM cost function 

with technical change which retains all of the theoretical properties of the stripped-down 

AIM cost function. Another advantage of this approach is that one can measure input-

specific productivity, changes in input productivity, and the contribution of each input 

to overall productivity, unlike the generic time trend models of technical change. I shall 

discuss these advantages in more detail in what follows. 

My AIM total cost function with technical change retains all the theoretical properties 

of the Barnett et al. (1991) stripped-down AIM cost function. First, my AIM total cost 

function with technical change is still globally flexible in the sense that it is capable of 

approximating the underlying cost function at every point in the function's domain by 

2Returns to scale can be easily incorporated in the AIM cost function by modifying the efficiency 
index. Regarding the assumption of constant returns to scale, see the description of the data in Section 
4. 
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increasing the order of expansion Ic. Second, it can be clearly seen from (2.35) that the 

sum of the exponents of prices in each term is still 2'2 = 1, thus satisfying the property 

of global linear homogeneity. Third, as with the stripped-down AIM cost function, I can 

impose concavity and monotonicity on the coefficients of my AIM total cost function 

with technical change by requiring all the coefficients to be nonnegative. In particular, 
2 

with nonnegative coefficients, the function (Pi e._ ) is increasing and concave in p 
for any fixed K. Hence, according to Berge (1963, Theorem 1), (Pi, e-19ijt2 is 

increasing and quasiconcave jointly in all of its variables for any fixed ic. However, as 

shown by Diewert and Wales (1993) when global concavity is imposed on this functional 

form in this manner, it is not flexible and complements are ruled out. 

Applying Shephard's lemma (2.5) to (2.35), and dividing through by y, yields optimal 

input-output demand equations, as follows 

Xi = ; (zEAr. az (Pi, 
_9it) 2 ) 

(2.36) 

The system of factor demand functions produced by applying Shephard's lemma to the 

nth partial sum of the cost function, Cik (p, y, t) will be called the AIM(n) factor demand 

system, and the resulting input-output equations will be called the AIM(n) input-output 

system. 

In empirical applications, the approximation of the AIM cost function must be trun-

cated at some finite value ic (i.e. finite partial sums). The order of approximation ic is 

usually determined empirically and stops when the elasticity estimates and the covari-

ance matrix of the disturbances converge. By using formula (2.35) and (2.36), I now 

explicitly produce the first two partial sum of my expansion of the cost function in the 

four-factor case, AIM(1) and AIM(2) respectively. 
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For four goods (n = 4) and ic = 1, the AIM(1) cost function can be written as 

1/2 1/2 C 1(p,y,t) = y(aiqi +a2q2 +a3q3 +a4q4 +a5q1 q2 

+ a6q"2q"2 + a7q12q 2 + a8q"2q"2 + cxgq"2q"2 + a1oq12q12) . (2.37) 

Applying Shephard's lemma (2.5) to (2.37) yields the factor demand equations of the 

AIM(1) model 

Ct92t 

1 
et93t 

1 
e'L94t 

1 -1/2 1/2 
a5q1 q2 + 

1 1/2 -1/2 
cx5q1 q2 + 

1 ,1/2,1/2 

1 -1/2 1/2 
a8q2 q3 

1 -1/2 1/2" 
+a7q1 q4 

1 -1/2 1/2'\ 
+c 9q2 q4 

1 1/2 -1/2 1 -1 a8q2 q3 + a10q3 /2q1/2) 
-'11 '13 - - z - ) 

(+ 1/2 -1/2 1 1/2 -1/2 1 1/2 1/2 C14 —a7q1 q4 + agq2 q4 + oioq3 q4 
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For n = 4 and k = 2, the AIM(2) cost function can written as 

CK2(p,y,t) =y(aiqi +a2q2+a3q3+4q4 

1/2 1/2 1/2 1/2 1/2 1/2 
+a5q1 q2 +a6q1 q3 +a7q1 q4 

1/2 1/2 1/2 1/2 1/2 1/2 
+a8q2 q3 +a9q2 q4 +a10q3 q4 

3/4 1/4 1/4 3/4 3/4 1/4 1/4 3/4 
+a11q1 q2 +a12q1 q2 +a13q1 q3 +a14q1 q3 

3/4 1/4 1/4 3/4 3/4 1/4 1/4 3/4 
+a15q1 q4 +a16q1 q4 +a17q2 q3 +c18q2 q3 

3/4 1/4 1/4 3/4 3/4 1/4 1/4 3/4 
+a19q2 q4 +a20q2 q4 +a21q3 q4 +a22q3 q4 

1/2 1/4 1/4 1/4 1/2 1/4 1/4 1/4 1/2 
+a23q1 q2 q3 +a24q1 q2 q3 +a25q1 q2 q3 

/4 1/4 1/2 1/2 1/4 1/4 + a27q' 1/2 1/4 +a26q1 q2 q4 1 q2 q4 + a28q1 q2 q4 

' + 3O 
1/4 1/4 ' 1/4 1/4 h1'2 1/4 1/4 + a29q q3 q4 q1 q4 + Q31q q1 q3 

+ Ce32q112 1/4 1/4 + o33q' 1/2 1/4 + a 1/4 1/4 1/2 2 q3 q4 2 q3 q4 34q2 q3 q4 

+a35q11q' 1/4 1/4\ 2 q3 q4 (2.38) 

Applying (2.5) to (2.38) yields the following system of factor demand equations for the 
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AIM(2) model 

a;1 

y 

1 ( 1 -1/2 1/2 1 -1/2 1/2 1 -1/2 1/2 
= -- + a5q1 q2 + a6q1 q3 + a7q1 q4 

3 -1/4 1/4 1 -3/4 3/4 3 -1/4 1/4 
+ a11q1 1 q2 + a12 ' q2 + a13q1 q3 

1 3/4 3/4 3 -1/4 1/4 1 3/4 3/4 
+ c14q1 q3 + -4 a15q1 q4 + cs 16q1 q4 

1 -1/2 1/4 1/4 1 -3/4 1/2 1/4 1 3/4 1/4 1/2 
+ o23q1 q2 q3 + c24q1 q2 q3 + a25q1 q2 q3 

1 -1/2 1/4 1/4 1 -3/4 1/2 1/4 1 -3/4 1/4 1/2 
+ a6q1 q2 q4 + a27q1 q2 q4 + a28q1 q2 q4 

1 -1/2 1/4 1/4 1 -3/4 1/2 1/4 1 -3/4 1/4 1/2 
+ a2gq1 q3 q4 + c30q1 q3 q4 + a31q1 q3 q4 

1 -3/4 1/4 1/4 1/4 
+ a35q1 q2 q3 q4 ) 

— 1 (a21/2 -1/2 1 -1/2 1/2 1 -1/2 1/2 + ci5q1 q2 + c8q2 q3 + c9q2 q4 

1 3/4 -3/4 3 1/4 -1/4 3 -1/4 1/4 
+ q2 + q2 + -4 a17q2 q3 

314 4 h/'4 4 1 -3/4 3/4 + 18qq + 19qq + 2oq q4 

1 1/2 -3/4 1/4 1 1/4 -1/2 1 1/4 -3/4 1/2 
+ 23cj1 q2 q3 + q2 q/4 + a25cJ1 q2 q3 

1 1/2 -3/4 1/4 1 1/4 -1/2 1/4 1 l/43/4 l/2 
+ a26q, q2 q4 + O27q1 q2 q4 + q q 2 4 

1 -1/2 1/4 1/4 1 -3/4 1/2 1/4 1 -3/4 1/4 1/2 
+ a32q2 q3 q4 + a33q2 q3 q4 + a34q2 q3 q4 

1 1/4 -3/4 1/4 1/4" 
+ 0135q, q2 q3 q4 ) 

(2.39) 

(2.40) 
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1 / 1 1/2 -1/2 1 1/2 -1/2 1 -1/2 1/2 
= -- (a3 + a6q1 q3 + —a8 q2 q3 + a10q3 q4 

1 3/4 -3/4 3 1/4 -1/4 1 3/4 3/4 
+ a13q1 q3 + a14q1 q3 + a17q2 q3 

3 1/4 -1/4 3 -1/4 1/4 1 3/4 3/4 
+ a18 cj2 q3 + a21q3 q4 + a22q3 q4 

1 1/2 1/4 -3/4 
+ c23q1 q2 q3 + 

1 1/2 -3/4 1/4 
+ 4 a29q, q3 q4 + 

1 1/2 -3/4 1/4 
+ a32q2 q3 q4 + 

1 1/4 1/2 -3/4 
a24q1 q2 q3 + 

1 1/4 -1/2 1/4 
a30q1 q3 q4 + 

1 1/4 -1/2 1/4 
c33q2 q3 q4 + 

1 1/4 1/4 -3/4 1/4 
+ a35q1 q2 q3 q4 ) 

1 1/4 1/4 -1/2 
a25q1 q2 q3 

1 1/4 -3/4 1/2 
a31 q1 q3 q4 

1 1/4 -3/4 1/2 
a34q2 q3 q4 

- 1 ( 1 1/2 -1/2 1 1/2 -1/2 1 1/2 -1/2 
- + q4 + a9q2 q4 + a1oq3 q4 

1 3/4 -3/4 3 1/4 -1/4 1 /4 -3/4 
+ a15q1 q4 + c16q1 q4 + a19q2 q4 

3 1/4 -1/4 1 3/4 -3/4 3 1/4 -1/4 
+ a2oq2 q4 + a21q3 q4 + a22q3 q4 

1 1/2 1/4 -3/4 1 1/4 1/2 -3/4 
+ a26q1 q2 q4 + c27q1 q2 q4 + 

+ + 30q/4q/2q3/4 + 

1 1/4 1/4 -1/2 
a28q1 q2 q4 

1 1/4 1/4 -1/2 
a31q1 q3 q4 

1 1/2 1/4 -3/4 1 1/4 1/2 -3/4 1 1/4 1/4 -1/2 + a32 1/2 q3 q4 + a33q2 q3 q4 + c34q2 q3 q4 

1 1/4 1/4 1/4 -3/4 
+ o35q1 q2 q3 q4 ) - 

(2.41) 

(2.42) 

Concavity (in prices) requires that the Hessian matrix of the second derivatives of the 

cost function with respect to prices, V PiP, C (p, y, t), is negative semidefinite. In practice, 

concavity of the cost function may not be satisfied. In this case, I impose concavity 

fully (at every data point in the sample) on the AIM model using methods suggested by 

Gallant and Golub (1984) in the case of the Fourier cost function and recently used in 

the context of consumer demand systems estimation by Serletis and Shahmoradi (2005) 
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- I shall discuss this in detail in Section 4.2. 

2.4 Data and Econometric Issues 

I use annual KLEM (capital, labor, energy, and intermediate materials) data for total 

manufacturing in the United States over the period from 1953 to 2001. All series are from 

the website of the U.S. Bureau of Labor Statistics (BLS), at www.bls.gov/data/home.htm. 

The data consists of price and quantity indices for one output and four inputs (capital, 

labor, energy, and materials). All the price series have been normalized to one in 1953 

and the quantity indices for output, capital, labor, energy, materials, and purchased busi-

ness services have been obtained by dividing value of production or factor costs by the 

corresponding normalized price index. It is to be noted that I constructed the price and 

quantity indices for intermediate materials as subaggregates over the two components, 

materials and purchased business services, using the Fisher ideal index. 

A major feature of the BLS data set is that constant returns to scale is built in 

by constructing input factor payments in such a way that they add up to the value of 

output. Thus, tests of returns to scale and scale bias are inappropriate, as are some tests 

of imperfect competition. Another feature of the BLS data set is that it provides the 

price and quantity series for purchased business services inputs. Directly collected data 

on purchased business services are relatively scant, and for that reason they have been 

ignored by similar studies in the past. However, there is ample evidence of an increased 

use of purchased business services by industries over the post-war period and there are 

two important issues to consider. The first is that a sizable and growing input should not 

be ignored in productivity measurement, if aggregate inputs are not to be underestimated 

and mismeasured. The other is the possibility of substitution between capital, labor, and 

services purchased from outside. Examples of the latter are the substitution of leased 
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equipment for owned capital and purchased accounting for services performed by payroll 

employees. 

Maximum likelihood estimates of the three locally flexible cost functions with or 

without curvature imposed is straightforward, and can be approached in a variety of 

well-known ways. The estimation of the AIM model without curvature imposed can also 

be approached easily in the same way as with locally flexible cost functions. 

The estimation, however, of the AIM model with curvature imposed cannot be ap-

proached in the usual way, and has to resort to some more advanced methods. For 

example, Gallant and Golub (1984) used the NPSOL subroutine of the Stanford Systems 

Optimization Laboratory to estimate the constrained Fourier cost function without tech-

nical change. Also Barnett et al. (1991) used numerical Bayesian estimation to solve a 

relatively simple constrained AIM cost function with only two factors (capital and labor) 

and no technical change. In this paper, I follow Gallant and Golub (1984) and Serletis 

and Shahmoradi (2005) and use the TOMLAB/NPSOL tool box with MATLAB - see 

http://tomlab.biz/products/npsol. NPSOL uses a sequential quadratic programming al-

gorithm and is suitable for both unconstrained and constrained optimization of smooth 

(that is, at least twice-continuously differentiable) nonlinear functions. 

2.4.1 Parametric Estimation of the Locally Flexible Forms 

In order to estimate equation systems such as (2.13), (2.19), and (2.27), a stochastic 

component, et, is added to the set of input-output equations or share equations as follows 

Wt = (r y, t, 9) + €,, (2.43) 

where w = (w1,. . ., wa)' is the vector of input-output ratios in the case of the GL 

and NQ models and that of input shares in the case of the translog model. et is a 
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vector of stochastic errors and I assume that E - N (0, 1) where 0 is a null matrix 

and 92 is the n x n symmetric positive definite error covariance matrix. ?/(p, y, t, 9) = 

(01 (Pt, y) t, 9), ... (Pt, y) t, 0))', and 'b (Pt, y, t, 0) is given by the right-hand side of 

each of (2.13), (2.19), and (2.27). 

In the case of the translog model, since the shares in (2.19) sum to unity, the random 

disturbances corresponding to the four share equations sum to zero and this yields a 

singular covariance matrix of errors. Barten (1969) has shown that full information 

maximum likelihood estimates of the parameters can be obtained by arbitrarily deleting 

any one equation. The resulting estimates are invariant with respect to the equation 

deleted and the parameter estimates of the deleted equation can be recovered from the 

restrictions imposed. 

Another issue concerning my stochastic specification is that of endogeneity. At the 

individual firm level, it may be reasonably assumed that inputs prices on the right hand 

side of (2.43) are exogenous. At the more aggregated industry level (like U.S. manu-

facturing), however, input prices are less likely to be exogenous. In this literature, the 

possibility of endogeneity has been addressed by using iterative three-stage least squares 

(3SLS), but the results generally have been about the same as those with iterative Zellner 

estimation - see, for example, Barnett et al. (1991). Diewert and Fox (2004) also argue 

that instrumental variables estimation may be more biased, since the instruments may 

not be completely exogenous, and Burnside (1996) shows that results can vary markedly 

depending on the set of instruments used. In this paper, I choose to use the more com-

monly used iterative Zellner method of estimation. 

The estimation is performed in TSP/GiveWin (version 4.5), using the LSQ procedure, 

and the regularity conditions are checked as follows: 
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. Positivity is checked by checking if the estimated cost is positive, 

C(p,y,t) >0. 

• Monotonicity is checked by direct computation of the values of the first gradi-

ent vector of the estimated cost function with respect to p. It is satisfied if 

VC(p,y,t) >0. 

• Curvature requires the Hessian matrix of the cost function to be negative semi-

definite and is checked by performing a Cholesky factorization of that matrix and 

checking whether the Cholesky values are nonpositive [since a matrix is negative 

semidefinite if its Cholesky factors are nonpositive - see Lau (1978, Theorem 3.2)]. 

Curvature can also be checked by examining the eigenvalues of the Hessian matrix 

provided that the monotonicity condition holds. It requires that these eigenvalues 

be negative or zero. 

2.4.2 Semi-Nonparametric Estimation of the AIM(2) Cost Function 

The AIM(2) factor demand system can be written as 

Zt = I' (p) y, t, 0) + Et, (2.44) 

where z = (zi,. . •, zn)' is the vector of input-output ratios, 0 = (ai, a2, a3, , a2K ) 'O, 94), 

and &(p, y, t, 0) is given by the the right hand side of (2.39)-(2.42). 

As Gallant and Golub (1984, p. 298) put it, 

"all statistical estimation procedures that are commonly used in econometric 

research can be formulated as an optimization problem of the following type 



40 

[Burguete, Gallant and Souza (1982)] 

0 minimizes ço (0) over e 

with (9) twice continuously differentiable in 0." 

(2.45) 

Notice that /'(p, y, t, 0) is nonlinear in t9, '02, '03, and '04, and therefore the AIM (2) 

factor demand system in (2.44) can be fitted using Gallant's (1975, P. 36) seemingly 

unrelated nonlinear regression method to estimate 0. Hence, ço (0) has the form 

- (.))1 (Zt - (2.46) 

where Q is an estimate of the error variance-covariance matrix of (2.44). In minimizing 

(2.44), I use the TOMLAB/NPSOL tool box with MATLAB. NPSOL uses a sequential 

quadratic programming algorithm and is suitable for both unconstrained and constrained 

optimization of smooth (that is, at least twice-continuously differentiable) nonlinear func-

tions. 

I first run an unconstrained optimization using (2.45). As results in nonlinear opti-

mization are sensitive to the initial parameter values, to achieve global convergence, I 

randomly generated 500 sets of initial parameter values and chose the starting 0 that led 

to the lowest value of the objective function. I also check the regularity conditions, i.e. 

positivity, monotonicity, and curvature conditions, using the same methods as specified 

above for the three locally flexible functional forms. 

In case where the curvature conditions are not satisfied at all observations, I then use 

the NPSOL nonlinear programming program to minimize ço (0) subject to the constraint 

that the four eigenvalues of the Hessian matrix, H, are non-positive. This is because a 

necessary and sufficient condition for the concavity of H is that all its eigenvalues are 
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nonpositive - see, for example, Morey (1986). The first derivatives of these eigenvalues 

are needed for the optimization algorithms and can be easily obtained using Matlab's 

Symbolic Math Toolbox. Thus, my constrained optimization problem can also be written 

as 

min ço(0) subject to(p,y,t,O)<0, i=1,•••,n, 

where ço (p, y, t, 0), i = 1,•• , n, are the eigenvalues of the Hessian matrix of the AIM(2) 

cost function. With the constrained optimization method, I can impose curvature re-

strictions at any arbitrary set of points - at a single data point, over a region of data 

points, or fully (at every data point in the sample). 

2.5 Empirical Evidence 

2.5.1 Economic Regularity 

Tables 2.1 - 2.4 contain a summary of results from the CL, translog, NQ, and AIM(2) 

models in terms of parameter estimates and theoretical regularity violations when the 

models are estimated without the curvature conditions imposed and with the curvature 

conditions imposed. Clearly, all models satisfy positivity and monotonicity at all sample 

observations when curvature is not imposed. However, all three locally flexible models 

- the GL, translog, and NQ - violate curvature at all 49 observations when curvature 

conditions are not imposed. Similarly, the AIM(2) model violates curvature at 33 data 

points when curvature is not imposed. 

Because regularity hasn't been attained for any of the models, I follow the procedures 

discussed in Section 3 to impose curvature. In the case of the CL and translog models, I 

impose local curvature using the Ryan and Wales (2000) procedure. However, as noted 

by Ryan and Wales (2000), the ability of locally flexible models to satisfy curvature at 

sample observations other than the point of approximation, depends on the choice of the 
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approximation point. Thus, I estimate each model 49 times (a number of times equal to 

the number of observations) and report results for the best approximation point (best in 

the sense of satisfying the curvature conditions at the largest number of observations) - 

the best approximation point is 1982 for the GL and 1981 for the translog. In the case of 

the NQ model I impose global curvature following the procedure suggested by Diewert 

and Wales (1987). As for the AIM(2) model, I minimize (0) subject to the constraint 

that the cost function is locally concave in 1981 and also subject to the constraint that 

it is fully concave (concave at every data point). 

The estimation results of the three locally flexible functional forms with curvature 

imposed are reported in the second column of Tables 2.1-2.3. My findings in terms of 

regularity violations when the curvature conditions are imposed are disappointing in the 

case of the GL and translog models. In particular, the imposition of local curvature 

on the translog model reduces the number of curvature violations from 49 to 6. The 

performance of the GL is not satisfactory either, since the imposition of local curvature 

does not completely eliminate the curvature violations; it reduces the number of curvature 

violations from 49 to 2. As Barnett (2002, p.199) put it, without satisfaction of all three 

theoretical regularity conditions, "the second-order conditions for optimizing behavior 

fail, and duality theory fails. The resulting first-order conditions, demand functions, 

and supply functions become invalid." As expected, however, the imposition of global 

curvature (at all possible prices) on the NQ model reduces the number of curvature 

violations to zero, without any induced violations of monotonicity. 

Using NPSOL I imposed the curvature condition on the AIM(2) model and report 

the results in the second and third columns of Table 2. 4 - the second column shows 

the results when the curvature constraint is imposed locally (in 1981) and the third 

column shows the results when the constraint is imposed at every data point in the 

sample. Clearly, the effect of imposing the curvature constraint locally is negligible, as 



43 

the number of curvature violations drops only from 33 to 32. However, the imposition 

of the curvature constraint at every data point in the sample has a significant impact 

on the AIM(2) model, as I obtain parameter estimates that are consistent with all three 

theoretical regularity conditions, at every data point in the sample; that is, fully. 

2.5.2 Econometric Regularity 

I have estimated input-output demand equations and share equations from aggregate 

time series data and highlighted the challenge inherent with achieving economic regu-

larity and the need for economic theory to inform econometric research. Incorporating 

restrictions from economic theory seems to be gaining popularity as there are also nu-

merous recent papers that estimate stochastic dynamic general equilibrium models using 

economic restrictions - see, for example, Aliprantis et al. (2007). With the focus on 

economic theory, however, I have ignored econometric regularity. In particular, I have 

ignored unit root and cointegration issues, because the combination of nonstationary 

data and nonlinear estimation in large models like the ones in this paper is an extremely 

difficult problem. 

In this regard, it should be noted that I used two alternative unit root testing pro-

cedures - the augmented Dickey-Fuller (ADF) test [see Dickey and Fuller (1981)] and 

the non-parametric, Z(t) test of Phillips (1987) and Phillips and Perron (1987) - to 

deal with anomalies that arise when the data are not very informative about whether or 

not there is a unit root, and found that my input-output ratios, budget shares, and price 

variables are all integrated of order one [or 1(1) in the terminology of Engle and Granger 

(1987)]. It follows then that for input-output demand equations and share equations to 

make any sense the variables must be cointegrated in levels; that is, the equation errors 

must be stationary. However, unit root test results on the residuals of the locally flexible 

systems - the generalized Leontief, translog, and normalized quadratic models - and 
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the globally flexible AIM model indicate that they are nonstationary. 

If the errors are nonstationary, then there is no theory linking the left hand side 

to the right hand side variables in equation (2.43) or, equivalently, no evidence for the 

theoretical models in level form. In such cases, some important nonstationary variables 

might have been omitted. Allowing for first order serial correlation, as is usually done in 

the literature, is almost the same as taking first differences of the data if the autocorre-

lation coefficient is close to unity. In that case, the equation errors become stationary, 

but there is no theory for the models in first differences. Moreover, as argued by Serletis 

and Shahmoradi (2007), serial correlation correction increases the number of curvature 

violations and also leads to induced violations of monotonicity. 

It is also to be noted that even if the errors are stationary and the estimates are super 

consistent, as argued by Attfield (1997) and Ng (1995), standard estimation procedures 

are inadequate for obtaining correctly estimated standard errors for coefficients in coin-

tegrating equations. In that case, if the equations were all linear, the DOLS method of 

Stock and Watson (1993) or the FM-OLS method of Phillips (1995) could have been used 

to obtain correctly estimated standard errors. With my nonlinear models, however, some 

sort of modification of these procedures is called for, but this is a very difficult issue to 

deal with. 

With the generalized Leontief and translog models failing both economic and econo-

metric regularity and the NQ and AIM(2) models failing econometric regularity, in what 

follows I report total factor productivity estimates and elasticity estimates based only on 

the NQ and AIM(2) models. 

2.5.3 Total Factor Productivity Trends 

Figure 2.1 provides year-by-year total factor productivity estimates with the NQ and 

AIM(2) models, together with productivity measures formed from the Fisher ideal index 
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and the smoothed Fisher ideal index. Roughly speaking, the total factor productivity 

estimates from the NQ and AIM(2) models exhibit similar patterns. First, both of them 

show a general tendency to rise over the sample period. In particular, the estimates based 

on the NQ model rise markedly from 0.55% to 1.99% over the sample period whereas 

those based on the AIM(2) model rise moderately from 0.91% to 1.16%. Second, the two 

models have produced average total factor productivity measures which are very close 

to each other. In particular, the average total factor productivity from the NQ model is 

1.08%, compared with 1.02% from the AIM(2) model. 

To further evaluate the performance of the NQ and the AIM(2) models in capturing 

technical change, I calculate the productivity growth in U.S. manufacturing as a bench-

mark, using the Fisher ideal index. I first calculate the Fisher ideal quantity index for 

the four inputs as 

[  E =1Px  E =1p'x  11/2 
>: t-1 j=lpjxj 3=j P3 xi 

and then calculate the quantity index for the single output as GI = yt/yt_l. The Fisher 

ideal total factor productivity index is then obtained as 

Following Fox (1996), I also obtain a smoothed Fisher ideal total factor productivity index 

by regressing the raw Fisher ideal series on a constant and a time trend and calculating 

the fitted values. Both of these indexes are plotted in Figure 2.1. Clearly, both the NQ 

and AIM(2) measures pass close by the mean of the raw Fisher ideal index series, which 

is volatile from year to year. Further, both of them evolve in a similar pattern as the 

smoothed Fisher ideal index which also shows a general tendency to rise from 0.98% to 

1.31% over the sample period. In this sense, the productivity growth measures from both 

the NQ and AIM(2) models can be regarded as smoothed versions of that from the Fisher 



46 

ideal index. Generally speaking, both the NQ and AIM(2) models perform pretty well in 

modelling productivity growth in the U.S. manufacturing industry. However, a close look 

at Figure 2.1 reveals that the AIM(2) measure resembles the curve of the smoothed Fisher 

ideal index more closely. Moreover, the AIM(2) model captures (though not noticeably) 

the slowdown in productivity between 1974 and 1994, which is missed by the NQ model. 

An advantage of the AIM(2) model over the NQ model is that total factor produc-

tivity can be easily decomposed into growth rates of input-specific efficiencies ('i9's). In 

particular, substituting the AIM(2) cost function into (2.6), I can obtain the specific total 

factor productivity formula for the AIM(2) model 

n 

TFPAIM = 

i=1 

Si i. (2.47) 

Equation (2.47) shows that total factor productivity estimates based on the AIM(2) 

model are an input cost-share weighted average of the growth rates of factor efficiencies. 

As shown in Table 2.4, the long-run growth rate of the efficiency of capital, 191, is 2.94% 

per year. For labor, energy, and materials, the long-run growth rates of efficiency are 

found to be 0.04% (92), 5.47% (9), and 0.96 % (t94), respectively. I further define 

CT = TFPATM 
SiVi 

to be the contribution of factor i to total factor productivity, and plot in Figure 2.2 the 

contribution of each factor to total factor productivity. Clearly, capital and materials have 

been the dominant factors causing productivity growth, with energy having a moderate 

positive contribution to total factor productivity due to its small input cost share. Labor 

has a positive and small impact on total factor productivity. 
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2.5.4 Elasticity Estimates 

I begin by presenting the own- and cross-price elasticities in Table 2.5, evaluated at 

the mean of the data. The signs of all own-price elasticities, i, appear reasonable for 

both models since they are all negative (as predicted by the theory), with the absolute 

values being less than 1, indicating that the demands for all four inputs are inelastic. 

However, the AIM(2) model shows larger own-price elasticities in absolute value than 

the NQ model. In particular, KK from the AIM(2) is -0.522 which is about twice as 

large as that from the NQ model. Similarly, 7/LL (-0.592), '11EE (4.927), and T1MM (-0.297) 

from the AIM(2) model are about 3-10 times as large as their counterparts from the NQ 

model. This implies that capital, labor, energy, and materials are all more responsive to 

their own prices according to the AIM(2) than according to the NQ model. 

I believe there are actually good reasons to graph the own-price elasticities that I 

have estimated. Figures 2.3-2.6 present the own-price elasticities for K, L, E, and M 

for each observation. Clearly, the own-price elasticities are negative at all data points 

for both models, as predicted by the theory. A prominent difference, as can seen from 

these figures, is that the own-price elasticities from the AIM(2) model show quite large 

variations, whereas those from the NQ trend over time. This problem of lacking variations 

in own-price elasticities over time with the NQ model was first noted by Diewert and 

Lawrence (2002) and referred to by them as 'the problem of trending elasticities.' As 

can seen below, this problem in the NQ model is also reflected in its cross elasticities 

and carried over to its Morishima elasticities. To cure this problem with the NQ model, 

Diewert and Lawrence (2002) suggested imposing flexibility at two sample points. 

As with the own-price elasticities, the cross-price elasticities differ significantly be-

tween the two models (see Table 2.5). Moreover, results not presented here, but available 

upon request, indicate that the cross-price elasticities from the AIM(2) model vary con-

siderably over time whereas those from the NQ are very stable. For example, while the 
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AIM(2) model shows the capital-labor substitution ('qKL) in the range between 0.43 to 

0.93, the NQ model show a very stable 77KL, varying in a rather small range between 

0.20 to 0.24. In addition, the two models show different relations between some of the 

four inputs. For example, both models classify capital and labor (see 77KL and 1LK) and 

energy and materials (see riEM and ME) as substitutes, but are inconsistent in their 

classification of capital and materials (seer/Km and MK) and labor and materials (see 

T1LM and ]ML). 

I now turn to the estimates of the Morishima elasticities of substitution, o (i, 

K, L, E, and M), presented in Figures 2.7-2.18. Since the Morishima elasticities of substi-

tution are just a simple function of related own- and cross-price elasticities (see equation 

(2.10)), the differences in own- and cross-price elasticities between the NQ and AIM(2) 

models also show up in the Morishima elasticities of substitution. In particular, the 

Morishima elasticities of substitution from the AIM(2) model vary considerably whereas 

those from the NQ model are very stable over the sample period. Moreover, the Mor-

ishima elasticities of substitution from the AIM(2) model are generally larger than the 

corresponding ones from the NQ model. Again, I am more interested in the Morishima 

elasticities of substitution obtained from the AIM(2) model and discuss them in more 

detail in what follows. 

Let's consider first the Morishima elasticity of substitution between K and L, OL, 

which represents the percentage change in the capital services to the labor quantity ratio, 

K/L, when the relative price PL/PK is changed by changing PL and holding PK constant. 

Figures 2.7 and 2.10 reveal that at each data point, ojL > 0LK > 0, and the average 

estimated OL is 1.303, compared with an average estimated crK of 0.766. Thus, capital 

services and labor are Morishima substitutes, irrespective of whether the price of labor 

or the price of capital services changes. 

Of particular interest are cI and cTK in Figures 2.8 and 2.13. The estimates of oE 
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are positive, but °K is positive for most of the sample period (in particular, from 1960 

to 1998) and negative from 1999 to 2001. Thus, capital services and energy are always 

Morishima substitutes when the price of energy changes, but can be either Morishima 

complements (as from 1960 to 1998) or Morishima substitutes (as for the rest of the 

sample period) when the price of capital services changes. In other words, an increase 

in the price of energy (holding the price of capital services constant) always leads to an 

increase in the K/E ratio, but an increase in the price of capital services (holding the 

price of energy constant) can lead to either an increase or a decrease in the E/K ratio. 

I also notice that at each data point between 1960 and 1998, when both °E and cr'K 

are positive, o is greater than cTK, and the average estimated is 1.926 whereas 

the average estimated EK am is 0.247. 

Next I consider 0LE and ' L - see Figures 2.11 and 2.14. CTE is positive throughout, 

but O'L is negative prior to 1977 and positive afterwards. Thus, labor and energy 

are always Morishima substitutes when energy prices change, but they can be either 

Morishima complements or substitutes when the price of labor changes. The estimated 

0KM and CrmMK are always positive - see Figures 2.9 and 2.16. Thus, capital services 

and materials are Morishima substitutes irrespective of whether the price of materials 

changes or the price of capital services changes. The average estimated U'M is 0.221, 

compared with an average estimated am of 0.390. Similarly, the estimates of am 

aL are positive throughout (see Figures 2.12 and 2.17), indicating that labor and 

materials are Morishima substitutes irrespective of whether the price of materials changes 

or the price of labor changes. The average estimated °M is 0.720, compared with an 

average estimated OML of 0.967. Finally, the estimates of EM am are positive and those of 

0ME are positive for most of the sample period, but negative after 1994. 
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2.6 Conclusion 

I have investigated productivity issues in the U.S. (total) manufacturing industry, in the 

context of three popular locally flexible functional forms - the generalized Leontief (GL), 

translog, and normalized quadratic (NQ) - and one globally flexible functional form - 

the Asymptotically Ideal Production Model (AIM). In doing so, I have extended the 

Barnett et al. (1991) AIM model, by incorporating (for the first time in the literature) 

technical change through the factor-augmenting efficiency index approach, proposed by 

Thomsen (2000). 

I estimated the three locally flexible functional forms parametrically and the globally 

flexible functional form semi-nonparametrically and treated the curvature property as a 

maintained hypothesis. In particular, I imposed local curvature on the GL and translog 

models using procedures suggested by Ryan and Wales (2000), I imposed global curva-

ture on the NQ using procedures suggested by Diewert and Wales (1987), and imposed 

local and global curvature on the AIM(2) model using procedures suggested by Gallant 

and Golub (1984) and more recently by Serletis and Shahmoradi (2005). I also showed 

that (with my data set) the imposition of local curvature does not always assure the-

oretical regularity, because of curvature violations at other points within the region of 

the data. I believe that this is a typical result in the literature that uses locally flexible 

functional forms and alert researchers to the kinds of problems that arise when all three 

theoretical regularity conditions are not satisfied - see also Barnett (2002) and Barnett 

and Pasupathy (2003). 

I provided a comparison between the NQ and AIM cost functions, the only two 

models that satisfy all three theoretical regularity conditions. I found that the AIM(2) 

cost function with technical change introduced through the factor-augmenting efficiency 

index approach performs better than traditional locally flexible function forms and gives 
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more accurate estimates of total factor productivity. I also found that the elasticities from 

the AIM(2) model are generally larger and show more variation than those from the NQ 

model, which is consistent with Gallant and Golub (1984) who employed a different 

globally flexible functional form - the Fourier. Finally, I discussed the elasticities based 

on the AIM(2) model to shed some new light on the substitutability/complementarity 

relationship between capital, labor, energy, and materials. 

Although I have achieved economic regularity (in terms of curvature, positivity, and 

monotonicity) with the NQ and AIM(2) models, I have not achieved econometric regular-

ity (in terms of stationary equation errors), which makes interpreting my results difficult. 

Moreover, my econometric modeling assumes a serially uncorrelated Gaussian measure-

ment error, or equivalently serially independent measurement error. To simultaneously 

achieve both economic and econometric regularity seems to be a challenging task and 

an area for potentially productive future research. It could also be that the econometric 

irregularity is caused by my treatment of technical change. That is, I treated techni-

cal change as being smooth over the sample period, but there are fairly large year to 

year fluctuations in technical change as well as secular trends in total factor productivity 

growth. Using the spline techniques pioneered by Diewert and Wales (1993) and Fox 

(1996) to model these trends in the context of the production models used in this paper 

is work that I am currently undertaking. 

Finally, the Bayesian approach, pioneered by Terrell (1996) and Griffiths et al. (2000) 

in imposing regularity on linear factor demand systems, could also be directly used to 

estimate the first three locally flexible cost models presented in this paper, since all these 

three models are linear. For my AIM model with technical change, the application of 

Bayesian inference is more complicated due to its highly nonlinear nature and also the 

difficulty in finding reasonable informative priors. The Griffiths and Chotikapanich (1997) 

method can be used in this case after some appropriate modifications. The Bayesian 
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approach has two major advantages that traditional econometric methods commonly 

used for productivity estimation do not possess. First, the Bayesian approach provides 

exact (small-sample) inference on the productivity components (i.e. technical change, 

efficiency change, and returns to scale) which in many cases are nonlinear functions 

of estimated parameters, whereas the traditional methods provide only point estimates 

of these productivity components without statistical inference. Second, and even more 

importantly, the Bayesian approach allows us to incorporate the theoretical regularity 

restrictions of neoclassical microeconomic theory in the estimation. This can be done 

either by using the accept-reject algorithm - see Terrel (1996) - or the Metropolis-

Hastings algorithm - see Griffiths et al. (2000). 
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TABLE 2.1 

GENERALIZED LEONTIEF PARAMETER ESTIMATES 

Parameter Unrestricted 
Local 
curvature imposed 

oil 
/312 

/313 

/3,4 

/322 

/323 

/324 
/333 

/334 
/344 

pit 

fl2t 

fl3t 

fl4t 

Positivity violations 
IVionotonicity violations 
Curvature violations 

.0966 (.000) 

.0438 (.017) 
-.0082 (.024) 
.0633 (.000) 
.5108 (.000) 
• .0006 (.925) 
-.1371 (.000) 
.0650 (.054) 
.0264 (.001) 
.4033 (.000) 
.0003 (.274) 

- .0073 (.000) 
- .0001 (.430) 
.0026 (.000) 

0 
0 

49 

.0884 (.000) 

.0844 (.000) 
- .0101 (.000) 
.0507 (.000) 
.3130 (.000) 
.0163 (.023) 

- .0386 (.000) 
.0104 (.007) 
.0123 (.059) 
.3044 (.000) 
.0001 (.045) 

-.0052 (.000) 
.0001 (.005) 
.0011 (.000) 

0 
0 
2 

Notes: Sample period, annual data 19532001 (T = 49). 
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TABLE 2.2 

TRANSLOG PARAMETER ESTIMATES 

Parameter Unrestricted 
Local 
curvature imposed 

160 

)31 
/32 
/33 

011 

/312 

/313 

/322 

/323 
,633 

/32t 

/3at 

Pt 

Ott 

Positivity violations 
Monotonicity violations 
Curvature violations 

- .0512 (.000) 
.1635 (.000) 
.4580 (.000) 
.0268 (.000) 
.1055 (.000) 

-.0553 (.000) 
-.0097 (.000) 
.2467 (.000) 

-.0175 (.000) 
.0171 (.000) 
.0024 (.000) 

- .0071 (.000) 
.0003 (.015) 

- .0026 (.006) 
-.0001 (.002) 

0 
0 

49 

1.3182 (.000) 
.2546 (.000) 
.2568 (.000) 
.2265 (.000) 
.1176 (.000) 

- .0747 (.000) 
-.0113 (.216) 
.1810 (.000) 

-.0575 (.000) 
.0886 (.000) 
.0031 (.000) 

- .0050 (.000) 
.0009 (.001) 

- .0075 (.000) 
- .00002 (.550) 

0 
0 
6 

Notes: Sample period, annual data 1953-2001 (T = 49). 
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Parameter 

TABLE 2.3 

NQ PARAMETER ESTIMATES 

Global 
Unrestricted curvature imposed 

/31 

/32 

/33 
/34 

/312 

/313 

/3 4 

/323 

/324 

/334 

pit 

fl2t 

/34t 

.1657 (.000) 

.4179 (.000) 

.0257 (.000) 

.3542 (.000) 

.0287 (.000) 
- .0057 (.005) 
.0409 (.000) 
.0006 (.861) 

- .0868 (.000) 
.0136 (.000) 
.0006 (.074) 

-.0078 (.000) 
- .0001 (.391) 
.0033 (.000) 

.1677 (.000) 

.4251 (.000) 

.0254 (.000) 

.3556 (.000) 

.0331 (.003) 
-.0059 (.015) 
.0324 (.000) 
.0059 (.126) 

-.0197 (.199) 
.0100 (.002) 
.0001 (.686) 

- .0062 (.000) 
- .0002 (.039) 
.0010 (.082) 

Positivity violations 0 0 
Monotonicity violations 0 0 
Curvature violations 49 0 

Notes: Sample period, annual data 1953-2001 (T = 49). 
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TABLE 2.4. AIM(2) PARAMETER ESTIMATES 

Unconstrained Curvature constrained 
Parameter estimates at 1981 fully 
t1 

?92 

793 
194 

a1 
a2 

04 

06 
a7 
as 
a9 
a10 
all 

a12 
a13 

a14 

an 
ai6 

air 
a18 
aig 

a20 
a21 

a22 
a23 

a24 

a25 
a26 
a27 
a28 
a29 

a30 
a31 
a32 
a33 
a34 
a35 

S(0) 
Positivity violations 0 0 0 
Monotonicity violations 0 0 0 
Curvature violations 33 32 0 

0.0072 0.0071 0.0294 
0.0154 0.0154 0.0004 
0.0079 0.0079 0.0547 
0.0048 0.0049 0.0096 

36.5369 36.5660 -0.6979 
48.0633 48.4436 -0.9681 
-7.5918 -7.6265 -0.1435 
57.7529 57.6138 -6.7273 

132.6923 133.0500 11.1911 
12.8664 12.7332 4.1975 

226.2107 225.7530 19.8209 
224.7218 224.7091 -9.3343 
-98.4541 -98.3085 -27.8608 
-99.6927 -99.4859 -25.8908 
-73.6204 -73.8018 -1.6601 

-148.9083 -149.3250 -1.6112 
46.2347 46.1778 -1.5754 
-3.6166 -3.6960 1.9261 

-108.7704 -108.6506 6.1263 
-134.5830 -134.1460 -47.3199 
-158.5638 -159.1355 -3.1487 
-51.6272 -51.4163 -5.8699 
96.5016 95.9014 9.2258 

-45.5792 -45.6127 28.8435 
90.5297 90.5274 6.6752 

-51.3034 -51.1016 30.2694 
-46.7539 -46.9368 13.7951 
182.7781 183.1389 -1.6796 

-133.1851 -133.0411 4.7117 
-21.2014 -21.2212 -33.1634 
38.3530 38.5663 -10.8059 

-15.7660 -15.6267 53.9644 
-113.1907 - 112.5742 -19.8109 
127.3465 127.6929 -17.4536 
-9.9053 -10.5092 49.3125 

-132.7490 -131.3271 31.9598 
-191.5419 -192.2739 36.1132 
347.8034 347.3930 -63.0859 
-20.7763 -21.4390 -28.3207 

0.0070 0.0071 0.0103 

Note: Sample period, annual data 1953-2001 (T = 49). 
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TABLE 2.5 

PRICE ELASTICITIES AT THE MEAN 

Price elasticities 
Factor i Model 71iK ?1iL ?liE 71iM 

(K) NQ -.267 .216 -.040 .092 
AIM(2) - .522 .804 .032 - .314 

(L) NQ .080 - .071 .026 - .035 
AIM(2) .314 -.592 -.011 .289 

(E) NQ - .239 .409 - .547 .376 
AIM(2) .264 -.249 -1.927 1.912 

(M) NQ .042 -.044 .030 - .028 
AIM(2) - .142 .335 .104 - .297 

Note: Sample period, annual data 1953-2001 (T = 49). 



Figure 2.1. Total Factor Productivity Estimates 
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Figure 2.2. Factor Contributions to Total Factor Productivity 
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Figure 2.3. Own Price Elasticities for Capital 
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Figure 2.4. Own Price Elasticties for Labor 
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Figure 2.5. Own Price Elasticties for Energy 
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Figure 2.6. Own Price Elasticities for Materials 
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Figure 2.7. Morishima Elasticities of Substitution between K and L with the Price of L Changing 
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Figure 2.8. Morishima Elasticities of Substitution between K and E with the Price of E Changing 
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Figure 2.9. Morishima Elasticities of Substitution between K and M with the Price of M Changing 
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Figure 2.10. Morishima Elasticities of Substitution between L and K with the Price of K Changing 
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Figure 2.11. Morishima Elasticities of Substitution between L and E with the Price of E Changing 
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Figure 2.12. Morishima Elasticities of Substitution between L and M with the Price of M Changing 
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Figure 2.13. Morishima Elasticities of Substitution between E and K with the Price of K Changing 
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Figure 2.14. Morishima Elasticities of Substitution between E and L with the Price of L Changing 
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Figure 2.15. Morishima Elasticities of Substitution between E and M with the Price of M Changing 
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Figure 2.16. Morishima Elasticities of Substitution between M and K with the Price of K Changing 
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Figure 2.18. Morishima Elasticities of Substitution between M and E with the Price of E Changing 
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CHAPTER THREE 

EFFICIENCY AND PRODUCTIVITY OF THE U.S. 

BANKING INDUSTRY, 1998-2005: EVIDENCE FROM 

THE FOURIER COST FUNCTION SATISFYING FULL 

REGULARITY CONDITIONS 
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3.1 Introduction 

In the last twenty five years (from 1980 to 2005), the banking industry in the United 

States has been greatly transformed by numerous regulatory changes - see, for example, 

Lown et al. (2000), Kroszner and Strahan (2000), and Montgomery (2003) for a detailed 

list of regulatory changes. These changes, and particularly those related to the permis-

sion of interstate branching and combinations of banks, securities firms, and insurance 

companies, stimulated the decade-long consolidation in the industry characterized by the 

dramatic rise in merger and acquisition activities, the rapid decline in the number of 

commercial banks and the increasing concentration of industry assets among the very 

large banks (see Jones and Critchfield, 2005). On the other hand, various innovations 

in technology and 4pplied finance were widespread and intensively adopted by the U.S. 

banking industry. These technological and financial innovations include, but not limited 

to, information processing and telecommunication technologies, the securitization and 

sale of bank loans, and the development of derivatives markets. The widespread and in-

tensive use of information technologies and financial innovation has facilitated the rapid 

transfer of information at low cost, increased the scope and volume of non-traditional 

activities, and also helped facilitate consolidation of the industry (see Berger et al., 1995; 

Berger, 2004). 

The question of whether the unprecedented transformation has made the U.S. banking 

industry more efficient has stimulated a substantial body of efficiency studies - see, 

for example, surveys in Berger and Humphrey (1997) and Berger et al. (1999). One 

dimension of banking efficiency that attracted a lot of research interest (especially in 

studies prior to the 1990's) is scale efficiency and scope efficiency. The former is used 

to measure whether a banking firm is producing at optimal output levels; and the latter 

is used to measure whether it is producing at an optimal combination of outputs. The 
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other dimension of banking efficiency that has received increasing attention since the early 

1990's is X-efficiency. X-efficiency is called 'frontier efficiency' in Bauer et al. (1998) and 

'economic efficiency' in Kumbhakar and Lovell (2003). The interested reader is referred 

to Kumbhakar and Lovell (2003) for an excellent discussion of the relationship between 

different concepts of efficiency. 

X-efficiency is a combination of technical efficiency and allocative efficiency, with the 

former referring to the ability of a firm to produce output from a given set of inputs and 

the latter referring to the extent to which a firm uses the inputs in the best proportions, 

given their prices. X-efficiency is most commonly measured by determining an industry's 

best-practice frontier and comparing how far each firm deviates from this frontier. How-

ever, previous studies revealed that X-inefficiency outweigh scale and scope inefficiencies 

by a considerable margin, and thus, as Bauer et al. (1998, p. 86) put it, "have a strong 

empirical association with higher probabilities of financial institution failures." Accord-

ing to Berger and Humphrey (1991), cost inefficiency consumes 25 percent or more of 

total costs, whereas scale inefficiency and allocative inefficiency consume only 5% or less. 

Therefore, in recent years, the research on the efficiency of the U.S. banking industry has 

increasingly focused on X-efficiency. 

The literature investigating X-efficiency in the U.S. banking industry has been domi-

nated by two methodologies: nonparametric Data Envelopment Analysis (DEA for short) 

and the parametric Stochastic Frontier Analysis (SFA for short). Two other less com-

monly used parametric approaches are the Thick Frontier Analysis (TFA for short, see 

Berger and Humphrey, 1991) and the Distribution Free Approach (DFA for short, see 

Berger, 1993). First put forward by Charnes et al. (1978), the DEA approach is a linear 

programming technique where the efficient frontier is formed as the piecewise linear com-

bination that connects the set of best-practice observations in the data set under analysis, 

yielding a convex production possibility set (see Berger and Humphrey, 1997). However, 
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because DEA uses only the data on inputs and outputs and does not take direct account 

of input prices, it does not incorporate allocative inefficiency. 

The SFA approach, based on the ideas of Aigner et al. (1977) and Meeusen and van 

den Broeck (1977), involves the estimation of a specific parameterized efficiency frontier 

with a composite error term consisting of noimegative inefficiency and noise components. 

X-efficiency can thus be measured in terms of cost efficiency, revenue efficiency, or profit 

efficiency, depending on the type of frontier used. The DEA and SFA approaches gener-

ally give very different efficiency estimates. However, Bauer et al. (1998) and Rossi and 

Ruzzier (2000) argue that it is not necessary to have a consensus on which is the single 

best frontier approach for measuring efficiency. They also propose a series of criteria 

to evaluate if the inefficiency estimates obtained from different approaches are mutually 

consistent in terms of inefficiency scores and ranks. 

Cost efficiency has received the most attention in the parametric analysis of efficiency 

of the U.S. banking industry. According to Berger and Humphrey (1997), 30 out of 

38 studies that employed parametric techniques in the analysis of efficiency in the U.S. 

banking industry were reported to employ cost functions, and the rest employed profit 

functions - among these 38 parametric studies of the efficiency of the U.S. banking 

industry, several employed TFA and DFA. Despite its popularity, the cost frontier used in 

previous studies suffers from the following two problems. First, the estimated parameters 

of cost frontiers frequently violate the monotonicity and concavity constraints implied by 

economic theory, which eventually leads to wrong conclusions concerning efficiency levels. 

While permitting a parameterized function to depart from the neoclassical function space 

is usually fit-improving, it also causes the hypothetical best practice firm not to be fully 

efficient at those data points where theoretical regularity is violated. 

Second, the cost frontier suffers the problem of not having enough flexibility. Most of 

the previous studies employ a translog functional form. Researchers have found, however, 
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that the translog function lacks enough flexibility in modelling the U.S. banking industry 

which is composed of banks of widely varying sizes (see McAllister and McManus, 1993; 

Wheelock and Wilson, 2001). In an attempt to increase flexibility, more recent studies 

employ a so called 'Fourier function' which is actually a translog function augmented 

with trigonometric Fourier terms. Although this so-called 'Fourier function' can improve 

the goodness of fit, it is not a true Fourier flexible functional form, in Gallant's (1982) 

original sense. In particular, the original Fourier flexible functional form consists of two 

components with the first component being a 'reprameterized' translog function and the 

second component a trigonometric Fourier series. It is important to note that these two 

components are not independent of each other. In fact, the scaled variables of outputs and 

input prices are not only used in the Fourier series, but also in the modified translog part. 

However, the so-called 'Fourier function' ignores the parametric relationship between the 

two components of the Fourier function, and just includes the scaled variables of outputs 

and input prices in the Fourier series. While this practice makes it a lot easier to use 

the Fourier function, it may be unable to reach close approximation in the Sobolev norm 

and may result in inconsistent parameter estimates. 

Motivated by the widespread practice of ignoring the theoretical regularity conditions 

and not using a globally flexible functional form, as summarized in Table 3.1, the purpose 

of this paper is to reinvestigate the cost efficiency of the U.S. banking industry with more 

recent panel data over the sample period from 1998 to 2005, and by addressing the above 

two problems inherent in previous studies. In doing so, I take the SFA approach, and 

minimize the potential problem of using a misspecified functional form by employing a 

globally flexible functional form - Gallant's (1982) original Fourier flexible functional 

cost form. It should be noted that there are two globally flexible functional forms which 

can provide greater flexibility than locally flexible functional forms: the Fourier flexible 

functional form and the Asymptotically Ideal Model, introduced by Barnett et al. (1991). 
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The former is based on a Fourier series expansion and the latter is based on a linearly ho-

mogeneous multivariate Muntz-Szatz series expansion. Both of them are globally flexible 

in the sense that they are capable of approximating the underlying cost function at every 

point in the function's domain by increasing the order of the expansion, and thus have 

more flexibility than most of the locally flexible functional forms which theoretically can 

attain flexibility only at a single point or in an infinitesimally small region. In this study 

I employ the Fourier cost functional form which is both log-linear and globally flexible. 

In the implementation of it, I strictly follow Gallant's (1982) original specification of the 

functional form rather than just include the scaled variables of outputs and input prices 

in the Fourier series as previous studies did. 

I also estimate the Fourier flexible cost function subject to full theoretical regularity. 

There are three approaches to incorporating curvature and/or monotonicity restrictions 

into flexible functional forms - the Cholesky factorization approach, the Bayesian ap-

proach, and the nonlinear constrained optimization approach. The Cholesky factorization 

approach can only guarantee the negative semidefiniteness of the Hessian matrix of a cost 

function in a region around the reference point (that is, a data point where curvature 

is imposed), and satisfaction of curvature at data points far away from the reference 

point can only be obtained by luck (see Ryan and Wales, 2000). This is not satisfactory 

especially when the sample size is large and violations of curvature are widespread. The 

Bayesian approach involves specifying prior distributions for parameters and inefficiency 

terms. However, the specification of prior distributions adds extra uncertainty to the 

outcome of the modelling exercise especially when researchers have no idea of how to 

parameterize a priori the unknown parameters (see Diewert, 2004; Greene, 2005). The 

nonlinear constrained optimization approach, originally proposed by Gallant and Golub 

(1984) and recently used by Serletis and Shahmoradi (2005) in the context of consumer 

demand systems, develops computational methods for imposing curvature restrictions at 
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any arbitrary set of points. Monotonicity can also be incorporated into the estimation 

of the cost function although the original Gallant and Golub (1984) paper does not do 

so. This method applies to any cost function as long as the Hessian matrix (or some 

transform of the Hessian matrix) and the first order conditions of the cost function can 

be explicitly specified. While the nonlinear constrained optimization method has many 

desirable properties, no attempt has been made in the stochastic frontier literature to use 

this method to incorporate monotonicity and curvature on parametric (cost or distance) 

functions. 

The rest of the paper is organized as follows. Section 2 provides a brief review of 

stochastic cost frontiers. In Section 3 I present the Fourier cost function and detail the 

homogeneity, monotonicity, and curvature constraints implied by neoclassical microeco-

nomic theory. In Section 4 I discuss the constrained nonlinear optimization methodology 

for imposing these constraints on the parameters of the Fourier cost function. Section 5 

deals with the data description. In Section 6, I apply my model to panel data on U.S. 

banks, and discuss the effect of the incorporation of monotonicity and curvature on cost 

efficiency, and also report my estimates on cost efficiency for twelve different bank groups. 

Section 7 summarizes and concludes the paper. 

3.2 Stochastic Cost Frontier 

Within a panel data framework, the cost frontier model can be written as 

f (X, p) -rtC, i=1,••,I, t=1,..T. (3.1) 

This model decomposes the observed cost for firm i at time t, C, into three parts - 

(i) the actual frontier f(X,p), which depends on X it, a vector of exogenous variables 

(i.e. input prices and output quantities), and p, a vector of parameters, and which 
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represents the minimum possible cost of producing a given level of output with certain 

input prices; (ii) a non-negative term -rit ≥ 1, measuring firm specific inefficiency; and 

(iii) a random error, Cit, which captures statistical noise. The deterministic kernel of the 

cost frontier is f p), and the stochastic cost frontier is f (X it, p) Cit. As required 

by microeconomic theory, f (X t, p) is a linearly homogeneous and concave function in 

prices and also nondecreasing in both input prices and outputs. 

I follow the common practice in this literature and assume that f (X it, p) is a log-

linear functional function. The stochastic cost function in (3.1) is rewritten as 

cit = a + xit /3 + uit + v, (3.2) 

where Cit =lnC; a+ xt 3 =lnf (X it, p); Uit In -r ≥ 0; and vit =ln. xit is the 

counterpart of Xit with the input prices and output quantities transformed to logarithms, 

$ is a K x 1 vector of parameters, and a is the intercept. Thus the composite error term 

e (= uit + vt) consists of two parts with itjt capturing the level of firm inefficiency and 

vit capturing statistical noise. 

In an empirical exercise, assumptions are commonly made about the two error com-

ponents. Usually the va's are assumed to be iid N(0, o.2) and independent of the u's, 

an assumption I maintain throughout this paper. In the specification of the distribution 

for the u's I assume 

Uit = ?7tUi (3.3) 

where 

rit = exp [- 1(t - T) - 2(t— T)2] , t = 1,.. .,T, (3.4) 

where 77, and q2 are parameters to be estimated and the ui's are assumed to be indepen-

dently and identically distributed non-negative truncations of the N(0, cr) distribution. 



84 

Note that the above exponential function of time, nit' is a generalization of that proposed 

by Battese and Coelli (1992) in the sense that it relaxes the monotonicity of the temporal 

variation pattern of the efficiency term using a two parameter specification. 

The cost efficiency of firm i at time t can then be defined as the ratio of minimum 

cost attainable in an environment characterized by exp(vjt) to observed expenditure, as 

follows 

= f(X t,p)  
CE 

cit 

= exp(a + x/3 + vjt - Cit) 

=exp(—ujt), (3.5) 

with CEit < 1. Notice that CEit = 1 if and only if cit = a+x 3+vjt. For example, if a 

firm is 80% efficient, it could reduce costs by 20% simply by becoming fully efficient. 

3.3 The Fourier Cost Function 

I assume that a+xit /3 in equation (3.2) is an M-output and N-input Fourier cost func-

tional form, as follows 

g (l t,qj 9) = u0 + b z, + 1 

Oa +2 (j cos (jAk'Ce zjt) - sin (jAk'z)) }, (3.6) 
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where u0 = a, 3 = (b, ii, ), and i9 = (u0, b, ii, i) is a vector of parameters to be 

estimated. z = (l t,q)' is a (N + M) vector of rescaled log input prices, tit, and 

rescaled log outputs, qit. The procedure for this rescaling is the same as suggested by 

Gallant (1982) 

In = Inpn + In an >0, n=1,..,N; 

(3.7) 

qm =itm (In ym +lnam)>0, m=1,•, 

where Pn is the price for input n, y is the quantity for output m, and the location 

parameters in an and ln m are chosen as 

lna=—niin{1np}+10 5, n=1,.••,N; 

(3.8) 

1nm=—min{lnym}+105, m=1,.•.,M. 

In equation (4.5), A = - >L] uo A2kk'; A is a rescaling factor, and k is a multi-

index - an (N + M) vector with integer components. As Gallant (1982) shows, the 

length of a multi-index, denoted as * = , reduces the complexity of the 

notation required to denote high-order partial differentiation and multivariate Fourier 

trigonometric terms (those sin and cos terms). Following Gallant (1982), these indexes 

are constructed using the following rules (the construction of these indexes is complex 

and is performed using MATLAB). First, the zero vector and any ka whose first non-zero 

element is negative are deleted. Second, every index with a common integer divisor is 

also deleted. 

As a Fourier term is a periodic function in its arguments but the cost function is 
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not, the scaling of the data is also important. In empirical applications, to avoid the 

approximation from diverging from the true cost function, the data should be rescaled 

by a common scaling factor, A, so that the input prices and output quantities lie in the 

interval [0, 2ir]. The common scaling factor, A, for input prices is defined analogously as 

in Gallant (1982). The parameters B (the number of terms) and J (the degree of the 

approximation) determine the degree of the Fourier polynomials. Thus, the Fourier cost 

function has 1 + (N + M) + E(1 + 2J) parameters to be estimated. 

Substituting the cost frontier defined by (3.6) into (3.2), I obtain the basic panel data 

stochastic cost frontier model I am going to use in this paper 

Cit = U0 + b'z + 

+ E Uo,, +2 cos (jAk'zit) - 5j sin (jAkz t)) 
=1 (.. 

(3.9) 

where all parameters and variables are defined the same as above. 

3.3.1 Theoretical Regularity 

As required by microeconomic theory, the Fourier cost function in (3.6) has to satisfy 

certain theoretical regularity conditions, i.e. homogeneity, monotonicity, and concavity. 

The restriction of linear homogeneity on the Fourier cost frontier can be imposed through 

reparameterization, as in Gallant(1982) and Gallant and Golub(1984), 

= 1 (3.10) 
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and 
N 

Ujc ja O if 
n=1 

0. (3.11) 

Restriction (3.10) guarantees the linear homogeneity of the first order terms, and (3.11) 

guarantees the linear homogeneity of both the second order terms and the Fourier trigono-

metric terms. 

i now turn to the monotonicity and curvature constraints. For simplicity, the sub-

scripts i and t for all variables are suppressed in this subsection to avoid notational 

cluster. Define Vg (1, q,%9) = a [g (l,q,'O)] /Oz, and Vzz g (l, q,) = 5 [Vg (l,q,?9)] /5z, 

where z = (l,q) as above. By the two equations defined in (3.7), it can be easily shown 

that 

g(l,q,'O)lnf(pi,...)p,yi,...,ym) 

ell &n qi qm\ 

=lnf(—,...,—,.z—  (3.12) 

where f (pa) , Pm, Yi, , Ym) f(X it, p) is the cost frontier corresponding to the 

Fourier cost function. In what follows, I use f (p, y) instead of f(X,,p). Taking the 

partial derivative of both sides of (3.12) with respect to z, I can obtain the following 

equation 

Of (2', )  
= f (p, y) Z'Vg (l,q,'O)ffi  (3.13) 

where = (p, y) and Z is a diagonal matrix with unscaled input prices (pi,. . ,pN) and 

outputs (y,. ., YM) on its main diagonal. With both f (p, y) and Z' being positive, 
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monotonicity (D [f (p, y)] lap > 0) requires 

Vig (l,q,'O) = ô [g (l,q,'i9)] /ai > 0, n = 1, , N; 

(3.14) 

Vq g (l,q,'O) = 5 [g (l,q,'O)] /5qm  > 0, m = 1,..., 

where V1g (l,q,'i9) has to satisfy EN '71g (l,q,29) = 1, which can be derived from the 

fact that cost function is homogenous of degree one in prices, i.e. 

V1g (l,q,9) = 
n=j 

5lnf(p, y)  
S lnp 

5f(p,y) 1  
pH =1. 

apn jjf() 
(3.15) 

In equation (3.15), the first equality can be obtained by using (3.13). 

Concavity in input prices requires that the Hessian matrix, H, of the cost frontier, 

f (p, y), is negative semidefinite. It can be easily shown that the element of the ith row 

and jth column of the Hessian matrix, H, of the cost function f (p, y) is given by (see 

Appendix) 

Hij = + s - i, j 1,• •, N, 
Pi 

(3.16) 

where si is the cost share for input i, Vl,,p si is the derivative of si with respect to the 

log price of input j, X is the demand for input i, obtained by Shephard's lemma as the 

first derivative of the cost function with respect to input price pi, and 8jj = 1 if i = j 

and 0 otherwise. 

V Since s = V1g (l,q,'O) and V1 s = .1.g (l,q,'O), for i = 1,. . , N, equation (3.16) 
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can be rewritten as 

H ij = (( 2v1ig (1,q,))' V1.g (l,q,) + Vjg (l,q,) s)   
Pi 

(3.17) 

Since X (p,y) is positive by the property of monotonicity, V1,g (l,q,'O) is positive by 

equation (3.6), and pj is also positive, concavity of the Hessian matrix in my particular 

case is equivalent to requiring (in matrix notation) that 

G = Vg (l,q,9) + V1g (l,q,9) (V1g (l,q,'9))' - diag (Vig (l,q,9)) (3.18) 

be a negative semidefinite matrix. Thus, (3.14) and (3.18) are the constraints I need 

to incorporate into the estimation of the Fourier cost frontier defined in (3.6) - the 

monotonicity and curvature conditions are provided in Gallant (1982) without proof. 

3.4 Constrained Optimization 

In this section, I follow Gallant and Golub (1984) and show how the constrained nonlinear 

optimization approach can be used to impose the monotonicity and curvatures constraints 

given in (3.14) and (3.18) on the parameters of the Fourier cost function, defined in 

(3.6). Using the reparameterization method suggested by Battese and Corra (1977), the 

model above is parameterized in terms of a 2 and 'y, where o o + o is the overall 

variance, and 'y cr/cr is an indicator of the relative importance of noise and inefficiency 

variances. Under these assumptions, constrained optimization will give asymptotically 

efficient estimates for all the parameters. 

With the distributional assumptions in Section 2, the log likelihood function for a 
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sample of I firms for T periods of time is given by 

lnL(go(0)) = —IT [ln(2ir) +ln(cr)] - 1)ln(1 —'y) 

i=1 

I 

ln[(l+(_l)'y] _Iln() 

In (1 -  15  (—zfl) + 
i=1 

[[Cc., -  (a + x, 3)] / [c - (a + x/j3)] / [(1 - 'y)cr3 2] (3.19) 

F 1/2 
where 0 = (29, us; 7; 171, 17), z = tyj [Ci - (a + x/3)] / {'y(i - 'y)a [1 + ('q17 - 1)'y] } 
and 15 (.) represents the distribution function for the standard normal random variables - 

see Battese and Coelli (1992) for details about the derivation of the log likelihood function 

and its derivatives in the production frontier context. Estimates of uo, ,3, o, -y, m and 172 

can be obtained by minimizing - In L (go (0)), that is, maximizing the log likelihood func-

tion, In  (go (0)) with respect to the parameters. In minimizing —lnL (go (0)), I use the 

TOMLAB/NPSOL tool box with MATLAB - see http://tom].ab.biz/products/npsol. 

NPSOL uses a sequential quadratic programming algorithm and is suitable for both un-

constrained and constrained optimization of smooth (that is, at least twice-continuously 

differentiable) nonlinear functions. 

I first run an unconstrained optimization using (3.19) and check the theoretical reg-

ularity conditions of monotonicity and curvature. In case that the monotonicity and 

curvature conditions are not satisfied at all observations, I use the NPSOL nonlinear 

programming program to minimize - In L (go (0)) with monotonicity and concavity im-

posed. Essentially, this becomes a constrained maximum likelihood problem. 

While I follow Gallant and Golub (1984) and use nonlinear constrained optimization to 

impose curvature, I do not do it by constructing their submatrix K 22 using a Householder 
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transformation and then deriving an indicator function for the smallest eigenvalue of K 22 

and it derivative. Instead, I work directly with the matrix G defined in (3.18), restricting 

its eigenvalues to be nonpostive. This is because a necessary and sufficient condition for 

negative semidefiniteness of G is that all its eigenvalues are nonpositive (see Morey, 

1986). Compared with the Gallant and Golub (1984) approach where a reduced matrix 

K 22 is sought, the direct restriction of the eigenvalues of G to be nonpositive seems more 

appealing. 

It is well known that an N x N real symmetric matrix has N eigenvalues, with these 

eigenvalues being real numbers (see Magnus,1985). Let A = [A],. ., A] then denote the 

N eigenvalues of G, a real symmetric matrix defined in (3.18). The nonlinear curvature 

constraints for my constrained optimization problem can then be written as 

A.≤0, 

The eigenvalues of G can be obtained by solving 

IG —AINI =0, (3.20) 

where 'N is an N x N identity matrix. Clearly, A (n = 1, - •, N) are functions of 

the elements of G, denoted G, which are in turn linear functions of V 1.g (1, q,%9) and 

Vj5g (l,q,'t9) as can be seen from (3.18). In fact, in my case with N = 3, I have 

A (9) = An [G11 () , G12 (9) , G13 (9) , C22 (9) , G23 (9) , G33 (i9) ] , (3.21) 

for n = 1, 2, 3, where 

(9) = V 1g (l,q,'i9) + V1g (l,q,'O) Vjg (l,q,O) - (l,q,O) , (3.22) 
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for i = 1, 2, 3 and j = i, - •, 3. Explicit formulas for A ('0) in terms of the Gij elements 

can be easily obtained using the symbolic toolbox in MATLAB. After substituting (3.22) 

into A ('0), the eigenvalues in terms of Vii .g (l,q,'O) and V1g (1,q,'0) can be obtained. 

As for the derivatives of A (0), they can be obtained using equation (3.21), as follows 

/ N N CA [a (l,q,'0)] 

- 13Gij  + 
i=1 1=i 

+Vjg (l,q,'O) 3 [Vzg (l,q,'i.9)] + [171g (l,q,'i.9) jj] ' [Vjgalo 

All of 9 [v 1.9 (l,q,'i9)] 1&0, ,9 [V1g (l,q)'0)] /&0, and 3 [Vz,g (l)q,'0)] /9'0 can be easily 

computed. In my case with N = 3, each of (the eighteen) 3A/3G (for n = 1, 2, 3, 

i = 1)2,3, and j = i,. . ., 3) are calculated using the symbolic toolbox in MATLAB. 

In addition to the imposition of concavity, the monotonicity constraints in (3.14) also 

need to be imposed, if monotonicity is violated. The derivatives for the monotonicity 

constraints, 5 [Vg (l,q,'0)] /5'O and a [Vq g (l,q,t9)] /5i9, also can be easily computed. 

Hence, my constrained maximum likelihood problem can be written as follows 

subject to 

min(0) = —1nL((p(0)), (3.24) 

A ('0) = 0, n = 1, - , V ; (3.25) 

W 3 ('0) ≥ 0, j = 1,. . ., M + N; (3.26) 



93 

where A is the curvature constraint for each observation and W 3 is the monotonicity 

constraint for each observation as shown in (3.14). As already noted, I can impose the 

regularity constraints locally (at single data point), regionally (over a region of data 

points), or fully (at every data point in the sample). After estimates of u0, j3, o, y, 

ij, and 772 are obtained, cr 2 and cr can then be calculated by using cr = c + cr and 

= o/o, both of which are discussed above. 

Following Battese and Coelli (1992), the minimum-mean-squared-error predictor of 

the cost efficiency of the ith bank at time t, CEit = exp (—u) is 

CEit = E (exp{—ujt }l jt) 

where 

[mo1 - (/cr)] 1 2 
=  1— {-(/)] } exp (_ 77it1Ji*+ Thti) 

* 

Ii = (o  2 + cr) 

(3.27) 

(3.28) 

(3.29) 

This framework allows us to calculate the efficiency level of each bank relative to the 

best-practice bank represented by the cost frontier. 

While I follow Gallant and Golub (1984) in imposing the theoretical regularity condi-

tions on the parameters of the Fourier flexible cost function, I extend Gallant's method 

in two ways. First, I extend Gallant's constrained non-linear optimization approach from 

a traditional factor demand system framework to a stochastic frontier framework. This 

extension involves the use of a much more complicated log likelihood function as the 
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objective function, rather than the simple least squares based objective function used 

in Gallant and Golub (1984). This is because a composed error term is assumed in the 

stochastic frontier framework, whereas a simple Ed N (0, o.2) error term is assumed in the 

traditional factor demand system framework. Second, I extend Gallant's method from a 

time series framework to a panel data framework. 

3.5 The Data 

The data used in this study, obtained from the Reports of Income and Condition (Call 

Reports), cover the period from 1998 to 2005. I examine only continuously operating 

banks to avoid the impact of entry and exit and to focus on the performance of a core 

of healthy, surviving institutions during the sample period. There were 10,139 banks in 

the United States banking industry in 1998, and the number declined to 8,390 in 2005 

due to industry consolidation. After deleting those observations whose input prices are 

negative or zero, I obtained a balanced panel of 6,010 observations for 8 years, from 1998 

to 2005. 

In choosing which financial accounts to specify as outputs versus inputs, I use the 

accounting balance-sheet approach of Sealey and Lindley (1977). All liabilities (core 

deposits and purchased funds) and financial equity capital provide funds and are treated 

as inputs. All assets (loans and securities) use bank funds and are treated as outputs. 

This approach is different from the intermediation approach which is consistent with the 

value added definition of output production by financial firms and with user-cost price 

evaluation of the services of outputs. An accurate representation of the intermediation 

approach can be found in Barnett (1987), Barnett and Hahm (1994), Barnett and Zhou 

(1994), Barnett et al. (1995), and Hancock (1991). 

In this paper, three output quantities and three input prices are identified. The three 
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outputs are consumer loans, yi; non-consumer loans, Y2, is composed of industrial and 

commercial loans and real estate loans; and securities, y, includes all non-loan financial 

assets, i.e., all financial and physical assets minus the sum of consumer loans, non-

consumer loans, securities, and equity. All outputs are deflated by the Consumer Price 

Index (CPI) to the base year 1998. The three prices includes: the wage rate for labor, pi; 

the interest rate for borrowed funds, p2; and the price of physical capital, p. The wage 

rate equals total salaries and benefits divided by the number of full-time employees. The 

price of capital equals experises on premises and equipment divided by premises and fixed 

assets. The price of deposits and purchased funds equals total interest expense divided 

by total deposits and purchased funds. Total cost is thus the sum of these three input 

costs. This specification of outputs and input prices is the same as or similar to most 

of the previous studies in this literature (see, for example, Akhigbea and McNulty, 2003; 

Stiroh, 2000; Berger and Mester, 2003). Thus, M = N = 3 in this paper. The three 

outputs and three input prices are then scaled, using the formulas specified in equation 

(3.7)—(3.8) of Section 3 for each of the twelve asset size classes, which I will discuss in 

more detail below. 

The set of elementary multi-indexes that satisfy 3 I = 0 and have norm kia ≤ 3 

are displayed in Table 3.2 - these three (i = 1, 2, 3) are the three elements in 

the kc, vector corresponding to the three input prices. For this set E = 32, and I 

take J = 1. While Chalfant and Gallant (1985) and Eastwood and Gallant (1991) 

have suggested that the number of parameters to be estimated should be equal to the 

number of effective sample observations raised to the power of 2/3, in this paper I set the 

number of parameters such that kjc, ≤ 3 in order to reduce the number of parameters to a 

manageable level, given that I also have to deal with hundreds of variables and thousands 

of highly non-linear constraints. Thus I have a total of 1 + (N + M) + E(1 + 2J) = 

1 + (3 +3) + 32 x (1 +2) = 103 free parameters (that is, parameters estimated directly). 
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However, the effective number of parameters is 85 due to the following restrictions. 

The homogeneity restriction, 
3 

= 1, 
i=1 

(3.30) 

reduces the number of free parameters by one. The remaining restrictions are due to 

the overparameterization of the A matrix. In particular, A is a 6 x 6 symmetric matrix 

which satisfies three linearly independent homogeneity restrictions, 

3 

j=1,•,6. (3.31) 

Moreover, the symmetry of the matrix A also implies 

A1=0, i=1,...,6. (3.32) 

Thus A can have at most 15 free parameters, and in the parameterization 

A - 32 uoA2kk (3.33) 

15 of the uO parameters are free parameters and 17 parameters must be set equal to 

zero. These seventeen icc, parameters are listed in the last seventeen columns of Table 

3.1. 

Following Berger and Mester (2003), I add three more variables into the Fourier cost 

function: financial equity capital, il, non-traditional banking activities, Y2, and a time 

trend, t. Financial equity capital is treated as a fixed net input and off-balance-sheet 

items are treated as a fixed net output. The time trend t is intended to capture the effect 

of technological change on cost. In the treatment of non-traditional banking activities, 

I follow Boyd and Gertler (1994) and use an asset-equivalent measure (AEM) of these 
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non-traditional activities. I assume that all non-interest income is generated from off-

balance-sheet assets, and that these non-traditional activities yield the same rate of 

return on assets (ROA) as traditional activities do. Thus, I transform the off-balance-

sheet income into an equivalent asset. The two fixed net inputs are measured in 199'8 

constant dollars and used in logarithm form. When adding the il, , and t variables 

in the Fourier cost function, these variables are used in linear and quadratic form (i.e. 

,8z1 + /3Z13 Z1 + /3 2z2 + /3 23 z2 + /3t + /3t2), and do not interact with the outputs and 

input prices in order to reduce the number of parameters to a manageable level and to 

lessen the effects of multicollinearity. 

Separating banks into asset size classes is a common approach in assessing the perfor-

mance of banks asset size. However, given the unique nature of the distribution of asset 

size for commercial banks in the United States, it is very difficult to categorize banks 

based upon asset size and also there is no industry standard on asset ranges. Over my 

sample period, from 1998 to 2005, around 85% of all commercial banks report less than 

$500 million in total assets. However, over that same time period, there exists a cluster of 

extremely large banks with over $3 billion in total assets that accounts for roughly 2.3% 

of all commercial banks. In this paper, I classify all banks into three groups: banks with 

over $500 million in total assets are classified as large banks, banks with assets between 

$100 million and $500 million are classified as medium banks, and banks with under $100 

million in assets are classified as small banks. 

This classification is mainly based on the standard asset size categories that are used 

by the Federal Financial Institutions Examination Council (FFIEC), as specified in forms 

031, 032, 033, and 034. The only difference is that FFIEC sets the asset cap for medium 

banks to $300 million. The reason for this change is to keep consistency with the Financial 

Modernization Act and many previous studies which use $500 million as the lower limit 

for large banks. To reduce the computation time for each of the bank subgroups and in 
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order to avoid heterogeneity biases associated with asset size, I further classify each of 

the three bank groups into several subgroups. Specifically, I use cutoffs at $20 million, 

$40 million, $60 million, and $80 million within the small bank group; $200 million, $300 

million, and $400 million within the medium bank group; and $1 billion and $3 billion 

within the large bank group. Table 3.3 presents the twelve bank subgroups, together 

with their corresponding asset ranges at 2000 dollars and at 2005 dollars, as well as the 

number of banks in each subgroup. 

It is to be noted, however, that this classification keeps the asset ranges fixed for 

the asset classes from year to year. These fixed asset ranges raise a serious question 

regarding the usefulness of the results when a long sample period, such as this study's 

sample period, is under examination. To deal with this problem, an approach similar to 

that laid out in the Financial Modernization Act (FMA) is used. In particular, I define 

a community bank is defined to be an institution with average total deposits over the 

proceeding three years of no more than $500 million. Each subsequent year, the asset 

cap is adjusted upward by the growth in the CPI (for all urban consumers) unadjusted 

for seasonal variation for the previous year (see Federal Registry, 2000). The cap for each 

year is published in the Federal Registry, early in the year, along with the inflation rate 

used in the adjustment. For example, the official asset cap for community banks in 2005 

is adjusted to $567 million (see Federal Registry, 2005). Consistent with the approach, 

all the asset size cutoffs are set at 2000 constant dollars, and are adjusted upward by the 

growth in the OPT. 

3.6 Empirical Results 

I use the TOMLAB/NPSOL tool box with MATLAB to estimate the model using panel 

data for each of the twelve bank subgroups. For each subgroup, the model is estimated 
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under four different levels of constraints: with no constraints imposed; with only the 

curvature constraint imposed; with only the monotonicity constraint imposed; and with 

both the monotonicity and curvature constraints imposed. For each of the latter three 

cases, I impose curvature and/or monotonicity in a stepwise manner - first locally and 

then globally in case that regularity is not satisfied when local imposition is employed. 

Tables 3.4-3.15 summarize the results for each of the twelve subgroups in terms of para-

meter estimates, together with the percentages of monotonicity and curvature violations. 

Due to space limitations, I report only the intercept, u0, the coefficients on the first order 

terms, b, the coefficients on the second order terms, iio, and the coefficients on the time 

trend and il and i2 variables. 

A parametric bootstrapping method is usually used in constrained optimization to 

obtain statistical inference for the estimated parameters (/3) or nonlinear transformations 

of these parameters (q(fi), i.e. elasticities or efficiency) (see Gallant and Golub, 1984). 

This involves the use of Monte Carlo methods, generating a sample from the distribution 

of the inequality constrained estimator ,8, large enough to obtain a reliable estimate of the 

sampling distributions of @ and However, the possibility of the use of Monte Carlo 

methods depends on the complexity of the problem in question. For a simple problem 

where the objective function is simple and the number of observations and constraints 

is small, like the traditional factor demand problem with 24 observation in Gallant and 

Golub (1984), a few hundred simulations are easily affordable in terms of computing time. 

Unfortunately, this is not the case with my problem. The complicated objective function 

and the large number of observations and constraints render the Monte Carlo method 

almost unaffordable. In particular, it takes at least one hour of CPU time on a Pentium 

4 PC to run the optimization problem once. A 500 simulation would take at least 500 

hours. When coupled with the number of bank subgroups, 12 in my case, it would take 

over 6,000 hours of CPU time to obtain standard errors for all the twelve groups. This 
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is certainly unafforable at present. Therefore, only point estimates are provided for the 

estimated parameters (,8) in the following tables. 

When neither monotonicity nor curvature is imposed (see the second column of each 

table), both monotonicity and curvature are violated for each of the twelve subgroups, 

with the percentage of curvature violations ranging from 1.4% to 34.7% across subgroups 

and that of monotonicity violations ranging from 0.1% to 46.5%. Since regularity is not 

achieved for all of the twelve bank subgroups, I first impose curvature alone on the 

parameters of the cost function. Clearly, the imposition of curvature alone reduces the 

percentage of curvature violations to zero for each of the twelve bank subgroups, however, 

it does not guarantee the satisfaction of monotonicity at every data point for all the 

twelve subgroups (see the third column of each table). In particular, the percentage 

of monotonicity violations still ranges from 3.2% to 46.6% across bank subgroups when 

only curvature is imposed. I further notice that, while the imposition of curvature alone 

reduces the percentage of violation for all of the twelve bank subgroups, it may also 

induce more violations of monotonicity that otherwise would not have occurred. Taking 

bank subgroup one (see Table 3.4) for example, the percentage of monotonicity violations 

is 1.3% when no constraints are imposed, but increases to 5.7% when curvature alone is 

imposed. This confirms Barnett's (2002, p. 202) argument that "imposition of curvature 

may increase the frequency of monotonicity violations. Hence equating curvature alone 

with regularity, as has become disturbingly common in this literature, does not seem to 

be justified." 

Similarly, the imposition of monotonicity alone reduces the percentage of monotonic-

ity violations to zero for each of the twelve bank subgroups, but it does not guarantee 

the satisfaction of curvature at every data point (see the fourth column of each table). 

In particular, the percentage of curvature violations still ranges from 5% to 20% across 

subgroups when only monotonicity is imposed. I also notice that the imposition of 
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monotonicity alone may induce more violations of monotonicity that otherwise would 

not have occurred (see for example bank subgroup 1). This further confirms the argu-

ment of Barnett and Pasupathy (2003, P. 135) that "regularity requires satisfaction of 

both curvature and monotonicity conditions. Without both satisfied, the second order 

conditions for optimizing behavior fail and duality theory fails." I thus followed the pro-

cedures discussed in Sections 3 and 4 and imposed both curvature and monotonicity on 

the parameters of the Fourier cost function for each of the twelve bank subgroups. As 

expected, regularity is satisfied at every data point after curvature and monotonicity are 

globally imposed (see the fourth column in each of Tables 3.4-3.15). 

A common practice in this literature is to derive cost efficiency measures from cost 

functions without theoretical regularity imposed. While permitting a parameterized func-

tion to depart from the neoclassical function space is usually fit-improving (this can be 

seen from the decrease in the log likelihood values as constraints are imposed), it also 

causes the hypothetical best practice firm not to be fully efficient at those data points 

where curvature and/or monotonicity are violated. In particular, the violation of cur-

vature at a data point (Pjt, yjt) implies that the quantities of some outputs increase as 

their corresponding prices increase (holding other things constant); and the violation 

of monotonicity at that data point implies the quantities of some outputs decrease as 

total cost increases (holding other things constant). Both of these two cases mean that 

the best practice firm is not minimizing its cost at (Pit, Yjt). Therefore, cost efficiency, 

which is supposed to be measured relative to a cost-minimizing best practice bank, is 

not accurate for all the twelve bank subgroups when monotonicity and curvature are not 

imposed. In fact, I find that the difference in the eight-year mean efficiency between the 

unconstrained models and their corresponding curvature and monotonicity constrained 

versions range from -0.73% to 0.92% (see Table 3.16).' Hence, the failure to impose 

'The eight-year mean efficiency for a subgroup is obtained by first averaging over eight years (from 
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monotonicity and curvature can produce misleading estimates of cost efficiency. 

Another issue of particular interest is whether failure to impose theoretical regularity 

affects the ranking of individual banks in terms of cost efficiency. I calculate the Spear-

man rank correlation coefficient between unconstrained models and their corresponding 

(curvature and monotonicity) constrained versions, using the following formula 

6>.1(Ranki - Rank 2)2 
R=1 

flk(fl-1) 
(3.34) 

where nk is the number of banks in the subgroup, Rank 1 is the rank of bank i based on 

the constrained version of the model, and Rank 2 is the rank of the same bank based on 

the unconstrained version of the model.' If R = —1, there is perfect negative correlation; 

if R = 1, there is perfect positive correlation; and if R = 0, there is no correlation. 

As can be seen in Table 3.17, all of the twelve rank correlation coefficients are different 

than 1, indicating that the ranking of banks in term of cost efficiency changes due to the 

imposition of theoretical regularity. 

Roughly speaking, the rank correlation coefficient between unconstrained and (theo-

retical regularity) constrained models is negatively related to the percentage of monotonic-

ity and curvature violations. For example, bank subgroup 1, which has the lowest percent-

age of monotonicity violations (0.1%) and the lowest percentage of curvature violations 

(1.4%), has the highest rank correlation coefficient (0.9997); bank subgroup 12, which has 

1998 to 2005), and then averaging over all banks in this subgroup, as follows 

8-year MEFF = 
-- ( 

where T = 8 and nk is the number of banks in the subgroup. 
2Here, I use the time invariance cost efficiency for each bank, that is, 

EFF 
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the highest percentage of monotonicity violations (46.5%) and the highest percentage of 

curvature violations (34.1%), has the lowest rank correlation coefficient (0.8684). Hence, 

I alert researchers to the potential problems caused by failure to check for and impose (if 

necessary) theoretical regularity. 

3.6.1 Cost Efficiency and Productivity of U.S. Banks 

I now turn to the discussion of cost efficiencies by asset size class, reported in Table 

3.18. Clearly, the mean efficiency for each of the twelve subgroups ranges from 82.19% 

to 91.78%, implying that about 8 % to 18 % of incurred costs over the sample period can 

be attributed to cost inefficiency relative to the best cost-practice banks. These results 

are similar to earlier estimates that examined commercial banks. Berger and Humphrey 

(1997), for example, report mean cost efficiency of 84% with a standard deviation 6% 

across 50 studies of US banks using parametric frontier techniques. Likewise, Berger and 

Mester (1997) report average cost efficiency of 87% using a large data set of almost 6,000 

US commercial banks that were in continuous operation over the six-year period from 

1990 to 1995. 

There are several findings that emerge from Table 3.18. First, the largest two sub-

groups are less efficient than the other ten subgroups. In particular, the very largest 

subgroup (with assets greater than $3,000 million) is about 5.6% less efficient than the 

second largest subgroup and 7.8% less efficient than the third largest subgroup. The 

same subgroup is 6.3% to 9.6% less efficient than the medium sized and small banks. 

The second largest subgroup (with assets between $1,000 million and $3,000 million) is 

1.2% less efficient than the third largest subgroup, and ranges from 0.9% to 3.9% less 

efficient than medium sized and small bank subgroups. Second, in general cost efficiency 

falls with bank size for banks with assets above $100 million except for subgroup 3 (with 

assets between $500 million and $1 billion) and subgroup 5 (with assets between $300 
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million and $400 million). However, cost efficiency increases with bank size for banks 

with assets below $200 million except for subgroup 9 (with assets between $60 million and 

$80 million) and subgroup 10 (with assets between $40 million and $60 million). These 

findings are partially consistent with Kaparakis et al. (1994) who applied a translog cost 

function to a large data set of almost 5,548 commercial banks in the United States. In 

particular, Kaparakis et al. (1994) also finds that banks with assets greater than $1,000 

million are less efficient than smaller banks. However, he finds that average efficiency 

increases with bank size for banks with assets less than $500 million. 

I am also interested in the time patterns of cost efficiency of the different bank sub-

groups, plotted in Figure 3.1. Several conclusions emerge. First, all the bank subgroups 

experienced a drastic decline in cost efficiency over the period from 1998 to 2004, and 

then showed an improvement in cost efficiency in 2005. For example, the cost efficiency of 

the largest bank subgroup (with assets greater than $3,000 million) declined from 94.79% 

in 1998 to 73.65% in 2004, and then resurged a little bit to 73.91% in 2005. The most 

efficient subgroup with assets between $100 million and $200 million shows a decline in 

cost efficiency from almost full efficiency in 1998 to 80.12% in 2004, and then shows a re-

bound to 84.47% in 2005. Second, the largest bank subgroup is consistently less efficient 

than the other bank subgroups. Further, the gap in cost efficiency between the largest 

bank subgroups and the other bank subgroups has increased. For example, the largest 

banks were 3.34% less efficient than the second largest bank subgroup in 1998, but 7.24% 

less efficient than the second largest bank subgroup in 2005. 

The drastic decline in cost efficiency for all asset size classes during the first seven 

years of my sample period can be partially justified by the failure of banks to adjust to 

the rapid technological change of the best practice cost frontier. Figure 3.2 plots the 

technological change of the best practice cost frontier for all the size classes. Clearly, all 

twelve asset size classes have shown rapid technological change, with large banks being 
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more favored by the technological change. In particular, the largest size subgroup (with 

assets greater than $3,000 million) has seen the fastest technological change of around 

6.71% per year; and even the second smallest size subgroup (with assets between $20 

million and $40 million) - which has shown the lowest technological change - has 

also seen a technological change of around 1% per year. Rapid technological change, 

which makes feasible the production of given levels of outputs with fewer inputs (or, 

equivalently, the production of more outputs with given levels of inputs), could result in 

lower average bank efficiency, even if banks became increasingly productive over time. 

This can be clearly seen from equation (3.5). 

The second reason may lie in unmeasured improvements in service quality and vari-

ety. Banks have provided an improved array of services (e.g., mutual funds, derivatives, 

on-line services, etc.) that increased bank costs, but at the same time were able to raise 

revenues to more than cover these costs. This is consistent with a strong improvement 

in profitability over the sample period. Another partial explanation for the decline in 

cost efficiency for the very large banks (those with assets greater than 1 billion) is that 

many of them have been engaged in geographical diversification and product diversifica-

tion. The passage of the Riegle-Neal Interstate Banking and Branching Efficiency Act 

of 1994 undoubtedly helped spur large banks to spread across state lines and to grow. 

This development helped create large, geographically diversified branch networks that 

stretch across large regions and even coast-to-coast. The Gramm-Leach-Bliley Financial 

Services Modernization Act of 1999 allowed the largest banking organizations to engage 

in a wide variety of financial services, acquiring new sources of noninterest income and 

further diversifying their earnings. While these geographical diversification and product 

diversification have increased the large banks' profits, they also greatly increase their 

costs. 

Finally, one thing that needs to be clarified here is that a lower cost efficiency does 
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not mean a lower productivity growth. In order to illustrate, I calculate the average pro-

ductivity growth for each bank subgroup over the sample period. Within a cost frontier 

context, productivity growth can be decomposed into four components: a technological 

change term, a technical efficiency change term, an input allocative efficiency change 

term, and a scale effect term - see Kumbhakar and Lovell (2003) for more details. For 

simplicity, let's ignore the last term and call productivity growth, which is now composed 

of only the first three terms, 'net' productivity growth (NTFPG). Following Kumbhakar 

and Lovell (2003), I then express the net productivity change as 

NTFPG = Olnfit Ouit 

at at (3.35) 

where the first term is the technological change of the best practice cost frontier and 

the second term is the change in cost efficiency, including both technical and allocative 

efficiency changes. The average annual net productivity growth for each of the twelve 

subgroups is plotted in Figure 3.3. Generally speaking, the net productivity growth rate 

increases with asset size, with the largest four bank subgroups (with assets greater than 

$400 million) experiencing significant productivity gains (NTFPG> 1%) and the smallest 

eight subgroups (with assets less than $400 million) experiencing insignificant productiv-

ity gains (NTFPG < 1%) or productivity losses (NTFPG < 0). In particular, the largest 

size subgroup, which has the lowest cost efficiency, shows the fastest average annual net 

productivity growth of 3.3% whereas, subgroup 7, which has the highest cost efficiency, 

shows a moderate average annual net productivity growth of 0.4%. This finding is also 

consistent with the view expressed by Berger (2003) and Bernanke (2006) and others that 

technological advances have favored larger banks at the expense of small lenders. How-

ever, these productivity gains by larger banks are mainly due to technological advances 

rather than cost efficiency gains. 
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3.7 Conclusion 

The estimation of stochastic cost frontier is popular in the analysis of bank efficiency. 

However, the theoretical regularity conditions (especially those of monotonicity and cur-

vature) required by neoclassical microecononiic theory have been widely ignored in the 

literature. In this paper, and for the first time in this literature, I use the globally flex-

ible Fourier functional form, as originally proposed by Gallant (1982), and estimation 

procedures suggested by Gallant and Golub (1984) to impose the theoretical regularity 

conditions on the Fourier cost function. Hence, I provide estimates of bank efficiency in 

the United States using (for the first time) parameter estimates that are consistent with 

full regularity. 

I find that failure to incorporate monotonicity and curvature into the estimation will 

result in mismeasured magnitudes of cost efficiency and also misleading bank rankings 

in terms of cost efficiency. Regarding cost efficiencies from my theoretical regularity 

constrained models, I find that the largest two subgroups are less efficient than the 

other subgroups. I also find that all twelve asset size classes show a decline in cost 

efficiency from 1998 to 2004, and then see a slight improvement in 2005. This decline in 

cost efficiency can be the result of adjustments to fast technical progress or unmeasured 

improvements in service quality and variety. For the very large banks, the decline in 

cost efficiency can be a result of their engagement in geographical diversification and 

product diversification after deregulation. Further, I find that the largest four bank 

subgroups (with assets greater than $400 million) experienced significant productivity 

gains (NTFPG > 1%) and the smallest eight subgroups (with assets less than $400 

million) experienced insignificant productivity gains (NTFPG < 1%) or productivity 

losses. 

In estimating bank efficiency and productivity in the United States, I have also high-
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lighted the challenge inherent with achieving economic regularity and the need for eco-

nomic theory to inform econometric research. Incorporating restrictions from economic 

theory seems to be gaining popularity as there are also numerous recent papers that 

estimate stochastic dynamic general equilibrium models using economic restrictions (see 

Aliprantis et al., 2007). With the focus on economic theory, however, I have ignored 

econometric regularity. In particular, I have ignored unit root and cointegration issues, 

because the combination of nonstationary data and nonlinear estimation in large models 

like the ones in this paper is an extremely difficult problem. Dealing with these difficult 

issues is an area for potentially productive future research. 
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3.8 Appendix 

Let C(p,y) denote the total cost function which is expressed in logarithmic form (i.e. 

translog or Fourier cost functions). By Shephard's lemma, X (p,y) = 5C(p,y)/ap, 

where ki is the demand for input i. Also, let s (p,y) denote the cost share for input i. 

The element of the ith row and jth column of the Hessian matrix of C(p,y) can be 

derived as follows 

Hi - alnx (p,y) (p,y)  
- OlnPj pj 

In [ö(p,y)p4Si] 5:j(p)y) 

= Olnpj pi 

- 5lnsi+5lnC(p,y)+8lnp1 j(p,y)  
- 5 in pj alnpj alnpj I Pj 

(_ asi 5z3) 5i(P)Y)  Si +8 5p2 Pi 

= (s'Vi 5s + s - S)  
Pi 

where 5jj = 1 if i = j and zero otherwise. 



TABLE 3.1. A SUMMARY OF FLEXIBLE FUNCTIONAL FORMS 
ESTIMATION OF COST EFFICIENCY OF US BANKS 

Study Model used 
True Curvature 
Fourier imposed 

Ferrier and Lovell (1990) 
Berger and Humphrey (1991) 
Berger (1993) 
Kaparakis et al. (1994) 
Berger and Mester (1997) 
Berger et al. (1997) 
Peristiani (1997) 
DeYoung (1997) 
Mester (1997) 
DeYoung et al. (1998) 
Stiroh (2000) 
Clark and Siems (2002) 
Berger and Mester (2003) 

Translog 
Translog 
Translog 
Translog 
Translog 
Translog 
Translog 
Translog 
Translog 
Translog + Fourier trigonometric terms 
Translog 
Translog 
Translog + Fourier trigonometric terms 

No 
No 
No 
No 

+ Fourier trigonometric terms No No 
+ Fourier trigonometric terms No No 

No 
No 
No 

No No 
No 
No 

No No 

Note: Some studies employed both cost and profit frontiers. 
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TABLE 3.2. ELEMENTARY MULTI-INDEXES 

a 1 2 3 4 5 6 7 8 9 10 11 

11 1 1 0 0 0 0 1 1 0 1 1 
12 -1 0 1 0 0 0 -1 0 1 -1 0 
13 0 -1 -1 0 0 0 0 -1 -1 0 -1 
qi 0 0 0 1 1 0 1 0 0 0 1 
q2 0 0 0 -1 0 1 0 1 0 0 0 

0 0 0 0 -1 -1 0 0 1 1 0 
2 2 2 2 2 2 3 3 3 3 3 

a 12 13 14 15 16 17 18 19 20 21 22 

11 0 1 1 0 1 1 1 0 0 0 0 
12 1 1 0 1 4 -1 -1 1 1 0 0 
13 1 0 1 1 0 0 0 1 1 0 0 
q1 1 0 0 0 -1 0 0 0 0 1 1 

0 0 0 1 0 -1 0 -1 0 -2 0 
q3 0 1 1 0 0 0 -1 0 -1 0 2 
IkI* 3 3 3 3 3 3 3 3 3 3 3 

a 23 24 25 26 27 28 29 30 31 32 

11 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 

1 1 2 2 0 0 0 0 0 0 
q2 1 1 0 1 1 1 2 2 1 0 
q3 4 0 1 0 -2 1 -1 1 0 1 

3 2 3 3 3 2 3 3 1 1 



TABLE 3.3. BANK ASSET SIZE CLASSES 

Asset size Asset size 
Bank groups (in millions of 2000 dollars) (in millions of 2005 dollars) Number of banks Share of banks  

Large banks 

Group 1 assets ≥ 3,000 assets ≥ 3,402 141 2.3% 
Group 2 1, 000 ≤ assets <3,000 1134 ≤ assets < 3,000 218 3.6% 
Group 3 500 < assets < 1,000 567 assets < 1134 381 6.3% 

Medium banks 

Group 4 400 ≤ assets <500 453.6 ≤ assets <567 201 3.3% 
Group 5 300 ≤ assets <400 340.2 ≤ assets <453.6 321 5.3% 
Group 6 200 ≤ assets <300 226.8 ≤assets ≤ 340.2 602 10.0% 
Group 7 100 ≤ assets < 200 113.4 ≤assets ≤ 226.8 1262 21.0% 

Small banks 

Group 8 80 assets < 100 90.72 ≤assets ≤ 113.4 477 7.9% 
Group 9 60:5 assets <80 68.04 ≤assets ≤ 90.72 597 9.9% 
Group 10 40 ≤ assets <60 45.36 ≤assets ≤ 68.04 669 11.1% 
Group 11 20 assets <40 22.68 ≤assets ≤ 45.36 813 13.5% 
Group 12 assets ≤ 20 assets ≤ 22.68 328 5.5% 

Total 6010 100% 
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TABLE 3.4. PARAMETER ESTIMATES FOR GROUP 1 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

UO 7.3739 6.6017 7.7557 7.3661 
b1 0.6699 0.6858 0.9193 0.6671 
b2 0.0818 0.0949 -0.0971 0.0824 
b3 0.1557 0.1188 0.1955 0.1353 
b4 -0.4922 -0.5293 -0.0912 -0.2805 
b5 0.5639 0.6936 0.5790 0.3820 

0.3094 0.2655 0.0954 0.3084 
UO2 -0.2870 -0.2473 -0.2998 -0.2855 

0.3850 0.3496 0.2252 0.3825 
0.0021 -0.0460 -0.0041 0.0089 

-0.0701 -0.0773 -0.0645 -0.0712 
0.5085 0.2820 0.5583 0.3658 

U07 0.0112 0.0097 0.1887 0.0163 
0.0837 0.0816 0.1284 0.0911 

U09 -0.0450 -0.0436 -0.0559 -0.0520 
-0.0577 -0.0657 -0.0733 -0.0640 
-0.1521 -0.1403 -0.4515 -0.1577 
-0.3178 -0.2892 -0.2849 -0.3127 

U013 -0.3056 -0.2670 -0.2984 -0.3022 
0.4326 0.3922 0.4842 0.4286 

UOl5 0.0062 0.0068 0.1567 0.0105 
t -0.1080 -0.1050 -0.1021 -0.1076 

0.0045 0.0043 0.0033 0.0045 
Nontrad -0.0910 -0.0622 -0.1062 -0.0886 
Nontrad2 0.0136 0.0093 0.0171 0.0136 
Equity 0.1726 0.2953 0.1996 0.1820 
Equity  -0.0051 -0.0089 -0.0056 -0.0054 

0.1719 0.1690 0.1862 0.1716 
0.9473 0.9486 0.9543 0.9472 

771 0.0574 0.0438 0.0309 0.0560 
12 0.0449 0.0403 0.0436 0.0446 

Log likelihood 
Curvature violations 
Monotonicity violations 
Mean efficiency 

611.5 586.9 593.4 572.1 
1.4% 0 37.5% 0 
0.1% 5.7% 0 0 

0.8171 0.8219 
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TABLE 3.5. PARAMETER ESTIMATES FOR GROUP 2 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

u0 12.8594 12.3481 13.2671 12.9243 
b1 0.8502 0.8710 0.8531 0.8048 

0.0493 0.0484 0.0427 0.1095 
b3 0.1119 0.0972 0.1144 0.0718 

-0.0299 -0.0214 0.0503 0.1488 
b5 0.3419 0.3793 0.3318 0.3613 

-0.0274 -0.0434 -0.0449 -0.0734 
-0.0518 -0.0229 -0.0408 0.0338 
0.0174 0.0213 -0.0002 -0.0169 

-0.0314 -0.0265 -0.0345 -0.0147 
U05 -0.0050 -0.0042 0.0042 -0.0024 
U06 -0.0540 -0.0515 -0.0603 -0.0633 
U07 0.0013 -0.0060 0.0207 0.0250 

0.0261 0.0318 0.0242 0.0248 
-0.0178 -0.0203 -0.0163 -0.0204 

uolo -0.0262 -0.0273 -0.0240 -0.0262 
uoll 0.0345 0.0492 0.0122 0.0144 
U012 0.0316 0.0456 0.0263 0.0473 
U013 0.0133 0.0295 0.0082 0.0326 

-0.0268 -0.0489 -0.0210 -0.0535 
12015 -0.0450 -0.0501 -0.0232 -0.0162 
t -0.0812 -0.0849 -0.0822 -0.0896 

0.0043 0.0048 0.0044 0.0052 
Nontrad 0.0371 0.0371 0.0389 0.0370 
Nontrad2 -0.0026 -0.0026 -0.0031 -0.0022 
Equity -0.6221 -0.6221 -0.8316 -0.8418 
Equity  0.0299 0.0299 0.0389 0.0389 

0.0769 0.0769 0.0771 0.0745 
ly 0.8851 0.8851 0.8866 0.8794 
111 0.1523 0.1523 0.1819 0.1282 
112 0.0794 0.0794 0.0923 0.0682 

Log likelihood 934.6 926.9 933.2 919.4 
Curvature violations 12.6% 0 13.2% 0 
Monotonicity violations 6.0% 6.2% 0 0 
Mean efficiency 0.8852 - - 0.8820 
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TABLE 3.6. PARAMETER ESTIMATES FOR GROUP 3 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

UO 11.6880 11.9781 11.7559 11.2504 
b1 0.6484 0.6503 0.6456 0.6142 

0.0696 0.0798 0.0657 0.0936 
b3 0.0552 0.0948 0.0782 0.0956 

0.2464 0.2113 0.1904 0.7056 
b5 0.7217 0.7357 0.5611 0.5993 

-0.1411 -0.1574 -0.0803 -0.2350 
'a02 0.1323 0.1550 0.0685 0.2363 
UO3 -0.1258 -0.1401 -0.0657 -0.2247 
U04 -0.0275 -0.0332 -0.0127 -0.0135 
U05 -0.0181 -0.0175 -0.0104 -0.0120 
U06 -0.0316 -0.0207 -0.0222 -0.0234 
U07 -0.0395 -0.0430 -0.0539 0.0909 
'a08 0.0511 0.0374 0.0379 0.0340 
'a09 -0.0344 -0.0225 -0,0266 -0.0220 
U010 -0.0428 -0.0335 -0.0318 -0.0289 
U011 0.0318 0.0406 0.0486 -0.1009 
U012 0.1832 0.1929 0.1292 0.1390 
UQ3 0.1852 0.1964 0.1283 0.1394 
UQ4 -0.1932 -0.2029 -0.1406 -0.1495 
'a015 -0.0228 -0.0303 -0.0366 0.1070 
t -0.0953 -0.0954 -0.0878 -0.0869 

0.0045 0.0045 0.0039 0.0038 
Nontrad -0.0249 -0.0288 -0.0581 -0.0600 
Nontrad2 0.0063 0.0068 0.0104 0.0105 
Equity -1.0046 -1.0320 -0.9691 -1.0279 
Equity  0.0450 0.0462 0.0429 0.0456 

0.0679 0.0673 0.0670 0.0664 
ly 0.8095 0.8073 0.8022 0.7996 
fli 0.1468 0.1687 0.1791 0.1917 
12 0.0834 0.0896 0.0998 0.1047 

Log likelihood 1230.1 1227.5 1212.8 1211.4 
Curvature violations 3.9% 0 1.9% 0 
Monotonicity violations 14.2% 13.0% 0 0 
Mean efficiency 0.8964 - - 0.9038 
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TABLE 3.7. PARAMETER ESTIMATES FOR GRouP 4 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

U0 

b1 

b3 

U01 

UO2 

UO3 

U04 

U05 

U06 

U07 

U08 

U09 

U010 

U011 

U012 

U013 

U014 

U015 

t 

t2 

Nontrad 
Nontrad2 
Equity 
Equity  
or 2 
8 

.7 

?12 

16.3202 13.4177 13.7549 13.9571 
0.8400 0.8932 0.8297 0.8821 
0.0051 -0.0047 0.0699 0.0065 

-0.1996 -0.1471 0.1099 -0.0925 
0.6406 0.7147 0.8458 0.7259 

-0.3814 -0.4059 0.0530 -0.3640 
0.1010 0.0541 -0.1530 0.0817 

-0.1280 -0.1116 0.1309 -0.1301 
0.1540 0.1168 -0.0963 0.1366 
0.0198 0.0152 -0.0123 0.0235 

-0.0175 -0.0204 -0.0096 0.0105 
-0.1723 -0.1521 -0.0834 -0.0881 
0.1640 0.1770 0.2031 0.1396 
0.1137 0.1006 0.0421 0.0993 

-0.1032 -0.0920 -0.0285 -0.0784 
-0.1216 -0.1030 -0.0380 -0.0845 
-0.1620 -0.1587 -0.1988 -0.1310 
-0.1940 -0.1791 -0.0568 -0.1841 
-0.2006 -0.1820 -0.0645 -0.1827 
0.2257 0.1921 0.0778 0.1969 
0.1479 0.1590 0.1804 0.1266 

-0.0676 -0.0649 -0.0678 -0.0600 
0.0020 0.0020 0.0021 0.0026 
0.0037 -0.0001 -0.0221 -0.0126 
0.0044 0.0053 0.0071 0.0053 

-1.6658 -1.1140 -1.4599 -1.3593 
0.0828 0.0568 0.0727 0.0671 
0.0798 0.0777 0.0792 0.0908 
0.9076 0.9021 0.9048 0.8900 

-0.0478 -0.0074 -0.0210 0.1715 
0.0449 0.0604 0.0532 0.0678 

Log likelihood 985.9 972.6 975.5 885.0 
Curvature violations 27.4% 0 26% 0 
Monotonicity violations 8.9% 5.3% 0 0 
Mean efficiency 0.8948 - - 0.8856 
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TABLE 3.8. PARAMETER ESTIMATES FOR GROup 5 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

UO 1.1076 1.7548 2.1774 1.1061 
0.8642 0.8134 0.8777 0.8547 
0.1917 0.1211 0.1995 0.1784 
0.3425 0.1699 0.0957 0.3717 
1.2590 1.2956 0.7711 1.2594 
0.3305 0.2992 0.1345 0.3497 

U01 -0.5118 -0.4297 -0.2394 -0.5000 
UO2 0.4670 0.3949 0.1955 0.4597 
UO3 -0.4237 -0.3655 -0.1489 -0.4161 
U04 -0.0886 -0.0785 -0.0432 -0.0818 
U05 0.0153 0.0222 0.0154 0.0191 

-0.0727 -0.0928 -0.0430 -0.0337 
U07 0.3283 0.3347 0.1879 0.3356 
U08 -0.0537 0.0054 0.0190 -0.0405 

0.0478 -0.0037 -0.0208 0.0431 
UOiO 0.0563 0.0017 -0.0118 0.0481 
u0fl -0.3064 0.0017 -0.1673 -0.3173 
U012 0.0579 0.0394 -0.0043 0.0578 
U013 0.0730 0.0486 0.0080 0.0578 

-0.0795 -0.0509 -0.0106 -0.0649 
U015 0.3066 0.3250 0.1610 -0.0649 
t -0.0704 -0.0708 -0.0735 -0.0703 
t2 0.0041 -0.0884 0.0043 0.0038 
Nontrad -0.1196 -0.0884 -0.1454 -0.1237 
Nontrad2 0.0196 0.0158 0.0223 0.0203 
Equity 0.7371 0.6224 0.7959 0.7308 
Equity  -0.0402 -0.0343 -0.0433 -0.0401 

0.0586 0.0609 0.0579 0.0605 
0.8155 0.8179 0.8115 0.8132 

771 0.2249 0.2020 0.2393 0.2228 
772 0.0967 0.0916 0.1004 0.0996 

Log likelihood 
Curvature violations 
Monotonicity violations 
Mean efficiency 

1246.2 1224.6 1238.3 1210.8 
23.4% 0 20.9% 0 
5.1% 3.2% 0 0 

0.8975 - - 0.8961 
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TABLE 3.9. PARAMETER ESTIMATES FOR GRouP 6 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

UO 7.7279 6.7066 7.3981 6.3933 
0.7662 0.6810 0.8205 0.7750 

b2 0.0372 0.1106 -0.0014 0.0679 
0.1921 0.1692 0.1683 -0.0108 
0.2053 0.3839 0.3832 -0.6297 

b5 0.1310 0.1047 0.2217 0.1336 
U01 -0.0341 -0.0749 -0.0900 0.2667 

0.0112 0.0898 0.0497 -0.2775 
-0.0282 -0.0642 -0.0832 0.2919 

'U04 -0.0406 -0.0347 -0.0183 0.0069 
U05 -0.0100 -0.0098 -0.0073 0.0003 
'U06 -0.0758 -0.0744 -0.0384 -0.0234 
'U07 0.0147 0.0637 0.0455 -0.2440 
'U08 -0.0200 -0.0091 0.0066 0.0493 
'U09 0.0222 0.0145 0.0082 -0.0413 

0.0077 0.0021 -0.0023 -0.0456 
-0.0180 -0.0705 -0.0451 0.2499 

'U012 -0.0311 -0.0299 0.0067 -0.0138 
-0.0318 -0.0337 0.0049 -0.0179 
0.0505 0.0419 0.0103 0.0264 

U015 0.0161 0.0650 0.0453 -0.2500 
t -0.0822 -0.0840 -0.0841 -0.0819 
P 0.0047 0.0050 0.0049 0.0049 
Nontrad 0.0484 0.0531 0.0427 0.0413 
Nontrad2 -0.0021 -0.0028 -0.0013 -0.0016 
Equity -0.2235 -0.0551 -0.2071 0.3698 
Equity  0.0123 0.0037 0.0112 -0.0187 

0.0669 0.0665 0.0691 0.0719 
0.8736 0.8697 0.8766 0.8762 
0.0585 0.0735 0.0647 0.0938 

772 0.0552 0.0591 0.0561 0.0686 

Log likelihood 1579.3 1559.5 1567.6 1528.5 
Curvature violations 17.4% 0 17.4% 0 
Monotonicity violations 8.1% 5.8% 0 0 
Mean efficiency 0.8878 - - 0.8890 



119 

TABLE 3.10. PARAMETER ESTIMATES FOR GRouP 7 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

UO 6.0068 9.2679 5.6587 9.2110 
0.6884 0.7039 0.7227 0.7683 
0.1302 0.1014 0.1308 0.1054 

b3 0.2685 0.1194 0.2281 0.1085 
0.8774 -0.7582 1.0423 -0.6621 
0.1013 -0.1570 0.1091 -0.0876 

U01 -0.2710 0.2711 -0.2858 0.2395 
0.2489 -0.2925 0.2555 -0.2766 

-0.2164 0.3174 -0.2247 0.2989 
U04 -0.0634 -0.0529 -0.0388 -0.0269 
U05 -0.0215 -0.0148 -0.0091 -0.0010 
U06 -0.0034 -0.0145 0.0007 0.0046 
U07 0.1988 -0.2022 0.2111 -0.2064 
U08 -0.0233 0.0189 -0.0190 0.0130 
UQ9 0.0310 -0.0126 0.0231 -0.0097 
uolo 0.0091 -0.0310 0.0098 -0.0194 

-0.2084 0.1982 -0.2181 0.2070 
U012 -0.0124 -0.0966 -0.0087 -0.0749 
U013 -0.0075 -0.0910 -0.0026 -0.0662 
U014 0.0137 0.0986 0.0097 0.U772 
U015 0.1954 -0.2077 0.2077 -0.2154 
t -0.0577 -0.0572 -0.0593 -0.0584 

0.0031 0.0030 0.0032 0.0031 
Nontrad 0.0717 0.0756 0.0653 0.0711 
Nontrad2 -0.0021 -0.0028 -0.0017 -0.0025 
Equity -0.2653 -0.2342 -0.2424 -0.2603 
Equity  0.0125 -0.2342 0.0108 0.0117 
or 2 0.0596 0.0605 0.0606 0.0613 

0.7285 0.7289 0.7309 0.7300 
771 0.5445 0.5318 0.5369 0.5202 
12 0.2418 0.2375 0.2391 0.2347 

Log likelihood 
Curvature violations 
Monotonicity violations 
Mean efficiency 

2165.9 2152.7 2156.9 2143.1 
10.8% 0 8.0% 0 
22.1% 20.3% 0 0 
0.9181 - - 0.9178 
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TABLE 3.11. PARAMETER ESTIMATES FOR GROUP 8 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

UO 

b2 
b3 

b5 
U01 

UO2 

UØ3 

U05 

U06 

U07 

U08 
U09 

U010 

U011 

U014 

UO,5 

t 
P 

Nontrad 
Nontrad2 
Equity 
Equity2 
2 
S 

1i 
12 

5.0832 5.5241 5.4229 5.6218 
0.7878 0.8074 0.7354 0.7780 
0.1347 0.1106 0.1638 0.1307 
0.1606 0.1013 0.1548 0.1355 
0.5805 0.6484 0.5695 0.5083 
0.1429 0.2829 0.2858 0.3314 

-0.1841 -0.2200 -0.2056 -0.1941 
0.1418 0.1735 0.1757 0.1544 

-0.1301 -0.1600 -0.1569 -0.1377 
-0.0495 -0.0415 -0.0420 -0.0389 
0.0096 0.0153 0.0038 0.0060 

-0.0187 -0.0157 -0.0128 -0.0108 
0.1069 0.1312 0.1037 0.0922 

-0.0034 0.0038 -0.0035 -0.0020 
0.0166 0.0032 0.0098 0.0061 
0.0062 -0.0065 0.0040 -0.0006 

-0.1040 -0.1284 -0.1049 -0.0903 
-0.0059 0.0235 0.0285 0.0356 
0.0173 0.0443 0.0458 0.0530 

-0.0106 -0.0295 -0.0446 -0.0436 
0.1031 0.1244 0.1027 0.0864 

-0.0502 -0.0500 -0.0487 -0.0486 
0.0021 0.0022 0.0019 0.0020 
0.0894 0.0879 0.0793 0.0775 

-0.0088 -0.0085 -0.0076 -0.0073 
0,2311 0.0942 0.0885 0.0754 

-0.0109 -0.0034 -0.0035 -0.0026 
0.0690 0.0684 0.0692 0.0686 
0.8195 0.8165 0.8188 0.8161 
0.3468 0.3527 0.3441 0.3507 
0.1807 0.1811 0.1818 0.1829 

Log likelihood 1307.2 1302.2 1303.3 1298.7 
Curvature violations 19.2% 0 16.6% 0 
Monotonicity violations 8.4% 6.9% 0 0 
Mean efficiency 0.9145 - - 0.9129 
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TABLE 3.12. PARAMETER ESTIMATES FOR GROUP 9 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

U0 3.6871 4.9381 4.0945 5.3413 
0.6942 0.6576 0.7199 0.7237 
0.0930 0.1085 0.0792 0.0698 

b3 0.3937 0.2634 0.3275 0.1084 
0.4650 -0.3527 0.3046 -0.6066 
0.0291 -0.2014 0.0867 -0.0221 

U01 -0.1841 0.1708 -0.1242 0.2453 
UO2 0.1683 -0.1748 0.1023 -0.2700 
1103 -0.1607 0.1874 -0.0976 0.2700 
1104 -0.0352 -0.0182 -0.0266 0.0001 
1105 -0.0178 -0.0177 -0.0123 -0.0130 
1105 -0.0149 0.0108 -0.0160 0.0026 
1107 0.0902 -0.1468 0.0360 -0.2222 
U08 -0.0672 -0.0269 -0.0442 0.0251 
1109 0.0682 0.0274 0.0484 -0.0194 

0.0466 0.0055 0.0292 -0.0387 
-0.0873 0.1434 -0.0344 0.2233 

12012 -0.0147 -0.0841 -0.0039 -0.0413 
12013 -0.0055 -0.0755 0.0057 -0.0312 
U014 0.0072 0.0810 -0.0016 0.0393 
12015 0.0956 -0.1413 0.0415 -0.2191 
t -0.0585 -0.0567 -0.0597 -0.0579 

0.0036 0.0036 0.0036 0.0037 
Nontrad 0.1336 0.1374 0.1303 0.1374 
Nontrad2 -0.0157 -0.0163 -0.0156 -0.0166 
Equity 0.4182 0.4907 0.3689 0.4779 
Equity2 -0.0210 -0.0257 -0.0194 -0.0264 
or 2 0.0948 0.0934 0.0933 0.0909 

0.8429 0.8382 0.8392 0.8316 
71, 0.3910 0.3988 0.3900 0.4058 
12 0.1875 0.1893 0.1864 0.1908 

Log likelihood 1305.1 1292.3 1300.5 1280.9 
Curvature violations 17.3% 0 15.6% 0 
Monotonicity violations 5.6% 6.2% 0 0 
Mean efficiency 0.8916 - - 0.8936 
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TABLE 3.13. PARAMETER ESTIMATES FOR GROUP 10 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 

Unconstrained only only Curvature 

UO 7.7178 7.7385 7.0927 7.4785 
b1 0.4581 0.5502 0.5566 0.6193 

0.3386 0.2337 0.2494 0.1889 
b3 0.0949 0.1325 0.1248 0.0854 

0.1616 0.2084 0.2485 0.2047 
-0.0204 0.0220 0.1263 0.0414 

no1 -0.0765 -0.0842 -0.1249 -0.0646 
0.0955 0.0868 0.1189 0.0469 

-0.0226 -0.0365 -0.0701 -0.0126 
-0.0215 -0.0260 -0.0184 -0.0163 

U05 -0.0085 -0.0118 -0.0088 -0.0070 
-0.0089 -0.0129 -0.0145 -0.0104 

tL07 -0.0014 0.0173 0.0180 0.0156 
U08 -0.0366 -0.0386 -0.0238 -0.0098 
'to9 0.0180 0.0240 0.0145 0.0018 
'uolo 0.0039 0.0118 0.0058 -0.0041 
U011 -0.0208 -0.0305 -0.0363 -0.0281 
nOl2 -0.0202 -0.0182 0.0087 -0.0204 
'uO13 -0.0125 -0.0104 0.0150 -0.0120 
U014 -0.0045 0.0073 -0.0270 0.0104 

0.0107 0.0228 0.0315 0.0215 
t -0.0436 -0.0422 -0.0440 -0.0421 

0.0039 0.0038 0.0039 0.0038 
Nontrad -0.0343 -0.0455 -0.0516 -0.0562 
Nontrad2 0.0066 0.0083 0.0085 0.0095 
Equity -0.3892 -0.3857 -0.3324 -0.3070 
Equity  0.0211 0.0218 0.0170 0.0166 

0.0593 0.0600 0.0604 0.0610 
0.8038 0.8029 0.8065 0.8054 

771 0.4957 0.4924 0.4878 0.4878 
12 0.1885 0.1880 0.1865 0.1874 

Log likelihood 1276.0 1261.9 1270.1 1257.2 
Curvature violations 27.5% 0 22.4% 0 
Monotonicity violations 8.4% 7.1% 0 0 
Mean efficiency 0.9003 - - 0.9001 
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TABLE 3.14. PARAMETER ESTIMATES FOR GROUP 11 

Parameter 

Both 
Monotonicity 

Curvature Monotonicity and 
Unconstrained only only Curvature 

U0 

b2 
b3 
b4 

U0' 

UO2 

UO3 

U05 

U06 

1108 

1109 

U0" 

UO,2 

UO,3 

U014 

U015 

t 
P 

Nontrad 
Nontrad2 
Equity 
Equity  
or 2 
S 

77, 

12 

2.4555 2.4245 2.2933 2.3250 
0.7153 0.7153 0.7035 0.6845 
0.0126 0.0123 0.0365 0.0321 

-0.0280 -0.0280 0.0622 0.0609 
-0.3451 -0.3451 0.2483 0.2173 
0.7115 0.7115 0.3907 0.3571 

-0.0803 -0.0803 -0.1619 -0.1266 
0.0098 0.0097 0.0971 0.0768 

-0.0078 -0.0080 -0.0875 -0.0696 
-0.0338 -0.0345 0.0008 0.0003 
-0.0045 -0.0105 0.0011 0.0016 
-0.0474 -0.0458 -0.0358 -0.0323 
-0.1212 -0.1211 0.0282 0.0233 
0.0268 0.0266 0.0045 0.0060 

-0.0328 -0.0327 -0.0082 -0.0094 
-0.0447 -0.0446 -0.0199 -0.0201 
0.1241 0.1241 -0.0247 -0.0194 
0.1461 0.1461 0.0574 0.0486 
0.1506 0.1506 0.0581 0.0495 

-0.1382 -0.1376 -0.0487 -0.0389 
-0.1085 -0.1084 0.0348 0.0279 
-0.0315 -0.0315 -0.0342 -0.0339 
0.0031 0.0029 0.0033 0.0033 

-0.1056 -0.1056 -0.1309 -0.1292 
0.0143 0.0142 0.0169 0.0167 
0.8097 0.8097 0.7047 0.7264 

-0.0571 -0.0571 -0.0512 -0.0521 
0.0706 0.0706 0.0728 0.0722 
0.8438 0.8438 0.8438 0.8421 
0.4668 0.4668 0.4526 0.4605 
0.2068 0.2068 0.2052 0.2071 

Log likelihood 1283.9 1266.8 1258.9 1257.6 
Curvature violations 3.8% 0 2.3% 0 
Monotonicity violations 21.4% 25.1% 0 0 
Mean efficiency 0.9034 - - 0.9024 
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TABLE 3.15. PARAMETER ESTIMATES FOR GROUP 12 

Parameter 
Curvature Monotonicity 

Unconstrained only only 

Both 
Monotonicity 

and 
Curvature 

U0 

b1 

b3 

U01 

'UO2 

UO3 

'U05 

ZLO6 

UQ7 

UOS 

U09 

UO1O 

Itoh 

12012 

12013 

12014 

U015 

t 
P 

Nontrad 
Nontrad2 
Equity 
Equity2 
or 2 
S 

ly 

771 
772 

Log likelihood 
Curvature violations 
Monotonicity violations 
Mean efficiency 

9.9718 
0.8387 
0.0200 
0.0051 

-0.0320 
0.3304 

-0.0956 
0.0018 

-0.0036 
-0.0754 
-0.0191 
-0.0472 
0.0135 
0.0451 

-0.0385 
-0.0536 
0.0005 
0.0554 
0.0571 

-0.0513 
-0.0055 
-0.0517 
0.0044 
0.0007 
0.0047 

-1.4230 
0.0871 
0.0679 
0.8513 
0.2559 
0.1018 

660.6 
34.1% 
46.5% 
0.8867 

8.9411 
0.7629 
0.0677 

-0.0150 
0.0840 
0.1658 

-0.0606 
0.0027 
0.0116 

-0.0664 
-0.0112 
-0.0437 
0.0438 
0.0469 

-0.0422 
-0.0538 
-0.0307 
0.0095 
0.0113 

-0.0087 
0.0258 

-0.0512 
0.0043 
0.0111 
0.0036 

-1.1720 
0.0704 
0.0706 
0.8537 
0.2358 
0.0982 

651.8 
0 

46.6% 

8.1803 
0.7857 
0.0479 
0.0378 
0.1272 
0.2147 

-0.0784 
0.0084 

-0.0010 
-0.0203 
-0.0017 
-0.0116 
0.0171 
0.0220 

-0.0206 
-0.0294 
-0.0021 
0.0340 
0.0331 

-0.0363 
-0.0025 
-0.0563 
0.0055 
0.0277 
0.0002 

-1.0914 
0.0590 
0.0579 
0.8083 
0.3856 
0.1357 

627.5 
24.9% 

0 

11.0359 
0.6458 
0.1558 
0.2757 
1.4352 
0.4760 

-0.5649 
0.5311 

-0.4995 
-0.0495 
-0.0163 
-0.0158 
0.3617 

-0.0450 
0.0439 
0.0389 

-0.3706 
0.1043 
0.1016 

-0.1090 
0.3537 

-0.0637 
0.0062 

-0.0078 
0.0037 

-2.6916 
0.1637 
0.0632 
0.8155 
0.3318 
0.1149 

603.1 
0 
0 

0.8856 
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TABLE 3.16. DIFFERENCES IN AVERAGE EFFICIENCY BETWEEN 
UNCONSTRAINED AND REGULARITY CONSTRAINED MODELS 

Bank group Difference in average efficiency 

Large banks 

Group 1 
Group 2 
Group 3 

Medium banks 

Group 4 
Group 5 
Group 6 
Group 7 

Small banks 

Group 8 
Group 9 
Group 10 
Group 11 
Group 12 

—0.48% 
0.32% 
—0.73% 

0.92% 
—0.05% 
—0.12% 
0.03% 

0.16% 
—0.20% 
0.01% 
0.10% 
0.11% 
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TABLE 3.17. SPEARMAN RANK CORRELATION COEFFICIENTS 
BETWEEN UNCONSTRAINED AND CONSTRAINED MODELS 

Bank group Rank correlation coefficient 

Large banks 

Group 1 
Group 2 
Group 3 

Medium banks 

Group 4 
Group 5 
Group 6 
Group 7 

Small banks 

Group 8 
Group 9 
Group 10 
Group 11 
Group 12 

0.9997 
0.9861 
0.9792 

0.9460 
0.9809 
0.9742 
0.9869 

0.9963 
0.9918 
0.9911 
0.9772 
0.8684 
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TABLE 3.18. COST EFFICIENCY (%) PER ASSET GROUP 

Bank group 
5% 95% 

Mean Mm. Max. percentile percentile 

Large banks 

Group 1 
Group 2 
Group 3 

Medium banks 

Group 4 
Group 5 
Group 6 
Group 7 

Small banks 

Group 8 
Group 9 
Group 10 
Group 11 
Group 12 

82.19 42.50 98.95 
88.20 72.52 99.21 
90.38 72.22 99.45 

66.68 
77.04 
81.71 

88.56 71.86 98.58 77.89 
89.61 74.17 99.48 79.77 
88.90 72.90 99.40 78.97 
91.78 78.52 98.85 83.87 

91.29 77.16 98.79 83.11 
89.36 75.28 99.30 75.42 
90.01 75.56 98.96 80.48 
90.24 75.53 98.97 80.99 
88.56 70.32 98.97 78.18 

97.42 

98.36 
98.08 

97.86 
97.71 

98.20 
97.90 

98.12 
98.07 

• 97.93 
97.85 
97.58 



Figure 3.1: Cost Efficiency per Asset Class 
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Figure 3.2: Technological Change per Asset Class 1998 - 2005 
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Figure 3.3: Net Productivity Growth per Asset Class: 1998-2005 
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CHPATER FOUR 

EFFICIENCY, TECHNICAL CHANGE, AND RETURNS TO 

SCALE IN LARGE U.S. BANKS: PANEL DATA EVIDENCE ON 

BAYESIAN ESTIMATION OF THE OUTPUT DISTANCE 

FUNCTION 
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4.1 Introduction 

In the last 25 years, fundamental regulatory changes together with technological and 

financial innovations have greatly transformed the commercial banking industry in the 

United States. Regarding regulation, major changes include the removal of geographic 

restrictions and the permission of combinations of banks, securities firms, and insurance 

companies - for a complete list of regulatory changes, see Jones and Critchfield (2005). 

On the other hand, the industry has widely adopted various innovations in technology 

and applied finance. These technological and financial innovations include (but are not 

limited to) information processing and telecommunication technologies, the securitization 

and sale of bank loans, and the development of derivatives markets - see Berger et al. 

(1995) and Berger (2004) for more details. One of the most important consequences of 

these regulatory changes and technological and financial innovations has been financial 

consolidation, leading to larger and more complex banking organizations - see, for 

example, Berger (2004) and Jones and Critchfield (2005). In fact, according to Jones 

and Critchfield (2005), the asset share of large banks in the United States (those with 

more than $10 billion in assets) increased dramatically from 42 percent in 1984 to 73 

percent in 2003. 

This raises the issue of whether the recent transformation of the U.S. banking industry 

has made the industry more productive. In particular, has the adoption of technological 

and financial innovations caused any shift in the production frontier or more generally 

the best practice frontier of the banking industry (technical change)? Have legislative 

and regulatory changes increased the ability of banks to produce more output from a 

given set of inputs with existing technology (efficiency change)? Finally, has the increased 

concentration of industry assets among the very large banks brought these banks closer to 

their optimal output levels (economies of scale)? These interesting questions have been 



133 

partially investigated in previous studies with data prior to 2000 - see, for example, 

Stiroh (2000), Alam (2001), and Berger and Mester (2003). 

The purpose of this paper is to contribute to this literature (more generally the pro-

ductivity analysis literature), by proposing a new productivity index, applying it to more 

recent data, and building on recent work by Feng and Serletis (2008) paying particular 

attention to the theoretical regularity conditions of neoclassical microeconomic theory. 

More specifically, I have three objectives in this paper. To propose a new distance func-

tion based primal productivity index which is suitable for both perfectly and imperfectly 

competitive markets and which can also be further decomposed into technical change, 

efficiency change, and economies of scale components. To slightly modify the O'Donnell 

and Coelli (2005) Bayesian method of imposing nonlinear constraints on the distance 

function to guarantee the economic meaningfulness of the new primal productivity in-

dex, and finally to apply the new productivity index to large U.S. banks using recent 

panel data over the period from 2000 to 2005. 

The literature on productivity growth has been dominated by two methodologies - 

the nonparametric Malmquist index approach [see Fare et al. (1994)] and the parametric 

stochastic frontier approach. For a comprehensive review of the different approaches to 

productivity measurement, see Feng and Serletis (2007). The nonparametric Malmquist 

index approach involves fitting distance functions to data on input and output quantities 

using the nonparametric, linear programming techniques of data envelopment analysis. 

This approach has two major advantages: it does not require behavioral assumptions and 

it does not require information on prices. The latter advantage is especially desirable for 

the study of productivity growth for sectors where price information is missing or dis-

torted - for example, infrastructure, public sectors, regulated industries, and industries 

with pollutants. It is also very useful in the case where price information cannot be ob-

tained as accurately as quantity information. Taking the studies on banking productivity 
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and efficiency, for example, most of them assume that the input market is competitive 

and then take a cost function approach. Moreover, in the measurement of input prices, 

almost all existing studies use the actual prices paid by banks (i.e. dividing expenses 

by the stock of inputs) to proxy the prevailing market prices - one exception is Berger 

and Mester (2003) who use market average prices (i.e. the weighted average of the prices 

of the other banks in the market excluding the bank's own price). However, actual 

input prices paid by banks vary greatly across banks, contradicting the assumption of 

a competitive input market. Thus, a primal measure of productivity growth, i.e. the 

nonparametric Malmquist index approach, becomes more appealing in this case. 

However, the nonparametric Malmquist index approach suffers from several draw-

backs. It assumes away any measurement error and so could potentially suffer from 

outliers. It cannot provide deep insights into important production structures (i.e. sub-

stitution elasticities), since it is nonparametric. More importantly, it has problems in 

measuring the contribution of scale economies, which has been proved to have important 

implications for market structure. Fare et al. (1994) imposed a constant returns to scale 

restriction on the frontier technology and used a variable returns to scale technology only 

when further decomposition of efficiency change was needed. Although Ray and flesh 

(1997) disagreed with Fare et al. (1994) on the roles of the constant returns to scale and 

variable returns to scale frontiers in the decomposition of productivity change indexes, 

the alternative method they proposed also neccessitated the constant returns to scale 

assumption in computing the overall productivity change index - see Ray and flesh 

(1997) and Atkinson et al. (2003). 

The stochastic frontier approach, based on the ideas of Aigner et al. (1977) and 

Meeusen and van den Broeck (1977), involves the estimation of parametric production, 

cost, or profit frontiers with a composite error term consisting of nonnegative inefficiency 

and noise components. With this approach, the contribution of scale economies can 
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be easily identified. For example, Bauer (1990), using a production frontier and a cost 

frontier, successfully decomposed productivity growth into three components including 

a scale effect component. Kumbhakar and Lovell (2000) further analyzed the case of 

multiple outputs using cost and profit frontiers and decomposed productivity growth 

into even more components. However, the decomposition of productivity growth using a 

production frontier suffers from the problem of not allowing for multiple output analysis. 

Thus, it is not suitable for the study of many industries (such as, for example, banking, 

agriculture, and telecommunications), where multiple outputs is a common feature of the 

production process. Moreover, the decomposition of productivity growth using cost and 

profit frontiers involves the use of prices, thus losing its appeal in many situations where 

information on prices is missing, distorted, or inaccurate. 

In this paper, I extend and combine the best elements of the non-parametric approach 

and the parametric approach, and propose a distance-function based primal Divisia total 

factor productivity growth index. In particular, under the assumption of perfect compe-

tition, and by solving the problem of profit maximization subject to the output distance 

function being less than or equal to one, I replace in the conventional Divisia total factor 

productivity growth index the observed revenue shares by quantity-based shadow rev-

enue shares and the observed cost shares by quantity-based shadow cost shares. I also 

show that this primal Divisia total factor productivity growth index obtained from the 

problem of profit maximization under perfect competition is also valid in the presence of 

imperfect competition. In this case, the obtained primal Divisia total factor productiv-

ity growth index is equal to a markup and markdown adjusted dual Divisia total factor 

productivity growth index, which reflects the firm's true marginal revenue and marginal 

costs. Then based on the primal Divisia total factor productivity growth index, I de-

compose the growth rate in total factor productivity into three components - technical 

change, efficiency change, and a scale effect. Due to its parametric nature, the proposed 



136 

primal Divisia total factor productivity growth index does not suffer from the problem of 

not allowing for the scale effect or the problem of lacking deep insights into production 

structures, as the nonparametric Malmquist index approach does. At the same time, 

the primal Divisia total factor productivity growth index requires only information on 

input and output quantities, and thus can be widely used in sectors where information 

on prices is missing or distorted. 

I also pay explicit attention to theoretical regularity. I show that for the primal multi-

output Divisia total factor productivity growth index to be economically meaningful (that 

is, each of the shadow revenue shares and cost shares to be non-negative and the sum 

of the revenue/cost shares to be equal to unity), certain regularity conditions have to be 

imposed. In particular, I show that the non-negativity of the shadow revenue and cost 

shares can be guaranteed by the monotonicity conditions of the output distance function 

(i.e. the output distance function is non-decreasing in outputs and non-increasing in 

inputs), and that the unity sum of shadow revenue shares can be guaranteed by the 

linear homogeneity of the output distance function in outputs. As my empirical results 

show, the non-negativity of the shadow shares and unity sum of the shadow revenue 

shares cannot be automatically satisfied unless the regularity conditions are imposed on 

the output distance function. This suggests that an estimation method that is capable 

of imposing regularity conditions has to be employed. 

In this regard, I use Bayesian methods to estimate a parametric translog (locally flex-

ible) output distance function. The Bayesian approach has two major advantages that 

traditional econometric methods (such as the maximum likelihood method, the least 

squares dummy variables method, and the generalized least squares method) commonly 

used for productivity estimation do not possess. First, the Bayesian approach provides 

exact (small-sample) inference on the productivity components (i.e. firm efficiency, tech-

nical change, and returns to scale) whereas the traditional methods provide only point 
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estimates of the productivity components without statistical inference. This is so, be-

cause there is no way to calculate the probability density function of those productivity 

components with traditional methods, since they are generally all nonlinear functions of 

the estimated parameters. Second, and even more importantly, the Bayesian approach al-

lows us to incorporate the theoretical regularity restrictions of neoclassical microeconomic 

theory in the estimation. As discussed above, the imposition of regularity conditions is 

particularly important in this study to ensure that the shadow revenue and cost shares 

are economically meaningful. This can be done either by using the accept-reject algo-

rithm - see Terrel (1996) - or the Metropolis-Hastings algorithm - see Griffiths et al. 

(2000) - within a Bayesian framework. It is to be noted that the imposition of theoreti-

cal regularity is beyond all of the simple traditional methods. Although I can reformulate 

those traditional methods within a constrained optimization method, as in Gallant and 

Golub (1984), in order to impose theoretical regularity, my experience shows that obtain-

ing statistical inference is still a big problem with the constrained optimization method. 

Due to the complexities associated with the imposition of theoretical regularity, the vast 

majority of studies using traditional econometric methods in the productivity analysis 

literature have failed to incorporate theoretical regularity. 

The rest of the paper is organized as follows. In Section 2, I derive a primal multiple 

output Divisia total factor productivity growth index, which is valid under both perfect 

competition and imperfect competition, and specify the conditions this index has to 

satisfy. I also present a decomposition of the growth rate of total factor productivity, 

isolating the separate contributions of scale economies, technical change, and technical 

efficiency change. In Section 3 I present the translog output distance function and specify 

the homogeneity, monotonicity, and curvature constraints required by the decomposition 

of the primal Divisia total factor productivity growth index. In Section 4 I discuss 

Bayesian estimation procedures for imposing theoretical regularity on the parameters of 
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the translog output distance function. Section 5 deals with data issues. In Section 6 I 

apply my methodology to a panel data of 292 large banks in the United States, discuss 

the effects of incorporating monotonicity and curvature, and also report my estimates of 

total factor productivity growth and its components. The last section summarizes and 

concludes the paper. 

4.2 Theoretical Framework 

4.2.1 The Output Distance Function 

For each input vector, x Rv at time t, let P (xt) be the set of feasible outputs (or 

production possibilities set) 

Pt (xt) = {yt E RM : y is producible from x} 

Following Shephard (1970), I can define the output distance function relative to the 

output set as follows 

I 

D (yt t) = if {o> 0: E pt (x t) 

Thus, for any output quantity vector, Vt, at time t 

Y  

D(yt, xt)' 

(4.1) 

is the largest output quantity vector on the ray from the origin through yt that can be 

produced by x'. In the case of a single output (M = 1), 

Ft (xt  yt )  
D(yt,xt)' 
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is the familiar production function, implying that D (yt, xt) is just the ratio of the 

observed output yt to the maximal output Ft (xt) . 

Output distance functions are non-decreasing, convex and linearly homogeneous in 

outputs, and non-increasing and quasi-convex in inputs - see Fare and Grosspokf (1994) 

for more details. From equation (4.1) it follows that 

D(yt,XI) <1. (4.2) 

In (4.2), the equality holds only if y' is on the output isoquants, which are given by 

IsoqPt (xt)= {yt Dot (yt, xt) = 1 I , (4.3) 

where IsoqPt (xt) is the boundary of the output set or production 'frontier.' 

To intuitively motivate the output distance function, I can consider Pt (xt) to be like 

a multi-input and multi-output production function. Then the output distance function 

represents the distance from the boundary of the output set or production frontier. If 

y is on the boundary of the output set, the output distance function is equal to one, 

implying there is no 'distance' from the production frontier. If y is within the boundary 

of the output set, the output distance is less than one, indicating the deviation of the firm 

from the production frontier or technically 'best-practice' production. Hence, the output 

distance function coincides with the Farrel type output oriented measure of technical 

efficiency [see Kumbhakar and Lovell (2003)], 

D (xt, yt) = TE (xt yt) 

A unity value of the output distance function indicates that the firm is operating at full 

technical efficiency level, and a value less than one indicates that the firm is operating 
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with technical inefficiency. 

To facilitate the calculation of technical change, I follow the common practice in the 

empirical literature and model the effect of time through an exogenous time variable, t. 

Thus, the output distance function defined in (4.1) can be rewritten as D0(x, y, t), which 

I will use throughout this paper. Deviation of the output distance function from one, 

due to technical inefficiency, can be accommodated as follows, 

D,, (x, y, t)'b(t) = 1, (4.4) 

where (t) is a function of a random variable, u, which will be discussed in more detail 

in Section 3. Equation (4.4) will be used below in the decomposition of productivity 

growth. Also, after specifying functional forms for D0(x,y, t) and 'b(t), equation (4.4) 

will be econometrically estimated. 

4.2.2 A Primal Divisia TFP Growth Index 

Perfect Competition 

I start by assuming that the markets for both outputs and inputs are perfectly compet-

itive (that is, price-taking behavior in both markets). In this case, prices for outputs 

and inputs are exogenous. When all these prices are accurately available, total factor 

productivity growth for banks can be easily obtained from the conventional dual total 

factor productivity growth index [see Jorgenson and Griliches (1967)]: 

(4.5) 

where x, denotes input n, Ym denotes output m, and a dot over a variable indicates the 

growth (or change) rate of the variable - for example, ' = d ln y/dt. Also, in equation 

(4.5), 9. = PmYm/ >I PmYm denotes the observed revenue share of output Ym and 
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Sn = wx/ >r wx the observed cost share of input x. W = (w1,. •, w,) and p 

= (pi, .,p,) are price vectors for inputs and outputs, respectively. In (4.5), the first 

term is a Divisia index of real output growth and the second a Divisia index of real 

input growth. The Divisia total factor productivity growth index has been widely used 

in productivity research. In the special case of a single output, it is just the Solow (1957) 

residual. 

However, there are many situations where information on prices is missing, distorted 

or inaccurate, as I noted above. In those cases, productivity growth has to be calculated 

by resorting to the primal approach - an approach that relies only on quantity infor-

mation. This means that the price information required for the calculation of the dual 

Divisia total factor productivity growth index has to be replaced by quantity information. 

This can be done in many ways such as, for example, by exploiting the duality between 

the revenue function and the output distance function [see Shephard (1970)] and the 

duality between the output distance function and the indirect output distance function 

or cost function [see Fare and Primont (1990)]. But banks are generally assumed to be 

profit maximizing firms. To be consistent with this assumption, I replace the price infor-

mation in (4.5) with quantity information by solving the following profit maximization 

problem in perfectly competitive markets. 

= max I 
{v,x} I 

M=1 

PmYm - 

N 

n=1 

WmXm : D0 (y, x, t) (t) (4.6) 

where the constraint is equivalent to D0 (y, x, t) 1, which completely represents the 

firm's technology - see, for example, Fare and Primont (1990). The duality between 

the profit function and the output distance function under the assumption of prefect 

competition is discussed in Fare and Primont (1995, p. 129) and Kumbhakar and Lovell 

(2003, p. 206), and used in BrUmmer et al. (2002) in the literature of agricultural 
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economics. 

The first-order conditions corresponding to output, Ym, are 

prn=p aDO(Yxt)() m = 1,..., M, (4.7) 

where p is the Lagrange multiplier. Multiplying both sides of (4.7) with y,,,/Do (y, x, t) 

and rearranging yields 

PmYm  - b(t)OmnD0 (y, x, t)  m=1,•,M, 
D0(y,x,t) - alnym 

Summing up the M equations in (4.8) yields 

D(;,x, t) = 
i=1 

0lnD0(y,x,t)  

Olrlym 

(4.8) 

(4.9) 

since the output distance function is linearly homogeneous in y and D0 (Ym (p, x, t) , , t) '/(t) 

1. Noting that 0 In D0 (y, a, t) /0 In Ym = 1 by linear homogeneity of the output 

function in outputs [see equation (4.31) below], I divide (4.8) by (4.9) to obtain 

81nD0(y,x,t) PmYm  

0lflYm = R 
m=1,•••, (4.10) 

according to which the observed revenue share for the mth output, m, is equivalent to the 

elasticity of the distance function with respect to the mth output, 5 In D0 (y, x, t) /5 in y 

under perfect competition and instantaneous adjustment when they are evaluated at the 

same point. In fact, in this case the elasticity of the distance function with respect to 

output is a shadow measure of the revenue share. However, the equivalency between the 

actual and shadow revenue shares will not hold with imperfect competition, as will be 

elaborated in the next subsection. 
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A similar procedure can be applied to the inputs. The first-order conditions corre-

sponding to inputs are 

Wn = 1(t) OD, (y,x,t) (4.11) 

where p is the Lagrange multiplier. Multiplying both sides of (4.11) with x/D0 (y, x, t) 

and rearranging yields 

5lnD0(y,x,t) - 1 wx 

Dlnx - b(t)D0(y,x,t)' 

Summing up the N equations in (4.12) yields 

n = 

N 0inD0(y,x,t) - 1 N ç WnXn    
5inx - 1(t) D0 (y, x, t) 

n=1 

Dividing (4.12) by (4.13) yields (for n = 1, . •, N) 

O1nD0 (y, x, t)  

U in x N 

n=1 

1 

51nD0(y, x,t)/5inx 

•,N. 

wnxn 
= -N = Sn, 

Lin=i WX 

(4.12) 

(4.13) 

(4.14) 

according to which the observed cost shares can be replaced by their corresponding 

normalized elasticities of the output distance function with respect to inputs. In fact, 

the left hand side of (4.13) is actually the shadow cost share. 

Substituting (4.10) and (4.14) in (4.5) yields a primal measure of the Divisia total 

factor productivity growth index which needs only quantity information 

dlnTFP 

dt 

M 

WmYm - 

Primal M=1 

N 

n=1 

wflófl, (4.15) 
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where 

- alnD0(y,x,t) 
Wm 

5111Ym 

is the shadow revenue share for output m, and 

wn = 
5lnD0 (y, x,t)/a1nx  

alnD0 (y, x,t)/alnx 

(4.16) 

(4.17) 

is the shadow cost share for input n. To further simplify the notation in (4.17), I define 

= alnD0(y,x,t)  
alnxn 

and 

so that w., in equation (4.18) can thus be rewritten as 

(4.18) 

where e has been shown by Fare and Grosskopf (1994, p. 103) to be the returns to scale 

(RTS) in terms of the output distance function. 

Imperfect Competition 

While most studies on banking productivity and efficiency assume that the market for 

bank services (output market) is perfectly competitive, some empirical studies show that 

monopolistic competition is more appropriate for the banking industry in most coun-

tries - see, for example, Bikker and Haaf (2002) and Claessens and Laeven (2003). In 

particular, one widely used technique to empirically measure the degree of competitive 

behavior in the market is the H statistic, developed by Panzar and Rosse (1987). In 
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particular, the H statistic is used to measure the elasticity of revenue with respect to 

input prices. H = 1 implies perfect competition, H = 0 indicates perfect collusion, and 

0 < H < 1 indicates monopolistic competition; values less than 0 are also consistent with 

perfect collusion. Both Bikker and Haaf (2002) and Claessens and Laeven (2003) have 

found the H statistic for the U.S. banking industry to be around 0.5, indicating that the 

U.S. market for bank services is characterized by monopolistic competition. 

With this in mind, a natural question to ask is whether the primal Divisia total factor 

productivity growth index obtained under the assumption of perfect competition is the 

correct measure of productivity growth in the presence of imperfect competition. To 

address this question, in what follows I assume that market power is limited to output 

markets and that input markets are perfectly competitive (the assumption of competitive 

input markets can be relaxed without affecting the validity of the primal Divisia total 

factor productivity growth index, as I shall show below). I assume that each firm (bank) 

solves the following profit maximization problem 

max 7r={ 
M=1 

Pm(Ym)Ym C(Ywt)} (4.19) 

where Prn (Ym) is the inverse demand function, and C (y, w, t) is obtained from the fol-

lowing first-stage cost minimization problem 

C (y, vi, t) = min {w'x: D0 (y, x, t) 1'(t) = 1}. (4.20) 

The duality between the output distance function and cost function is discussed in Fare 

and Primont (1990) and Primont and Sawyer (1993). 
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The first-order conditions corresponding to (4.19) are 

5Ym 
(4.21) 

where \ is the Lagrange multiplier for the profit maximization problem in (4.19), and 

mm - MY.) Y. r u -- , 
aYm Pm _ 

is the nonnegative ad valorem monopolistic markup for the mth output. Applying the 

envelope theorem to equation (4.20) with respect to the mth output, I obtain 

aC(y,w,t) - 0D0(y,x,t)  

aYm 
(4.22) 

where A is the Lagrangian multiplier for the cost minimization problem in (4.20). Sub-

stituting (4.22) into (4.21) yields 

3D0(y,x,t)  
Pm (1 - mm) = —A.'(t) , m = 1,• .. M. (4.23) 

0Ym  

Multiplying both sides of (4.23) by Ym/Do (y, x, t), yields 

An  - mm)ym = A(t)ôlnDo(yxt) m = 1,•• •,M. (4.24) 
D0(y,x,t) 511 Ym 

Summing up the M equations in (4.24) yields 

M M EllnD0(y,x,t) 
A(t)   m=1,.••,M. (4.25) Pm (l_mm)Ym D( ôlnym i=1 i=1 

Noting that >I 0ln D0 (y, x, t) /alnym = 1, by linear homogeneity of the output func-
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tion in outputs, and dividing (4.24) by (4.25) yields 

pm(1—mm)ym - alnD0(y,x,t)  

Pm (1 M.) Y. - am y,,, 
(4.26) 

according to which the elasticity of the output distance function with respect to the 

mth output is equivalent to a markup-adjusted revenue share of the mth output under 

imperfect competition and instantaneous adjustment when they are evaluated at the 

same point. 

Combining (4.14) and (4.26) gives 

dlnTFP 

dt Primal 

M 

M=1 

M 

N 

wnan 
n=1 

pm (1mm )ym  

i=1 P- (1 mm) ym 

N 
wmxn 
AT 
n=1 WnXn 

(4.27) 

where Co.,, and Wn are defined separately in (4.16) and (4.17). According to (4.27), in the 

presence of imperfect competition in the output market, the primal Divisia total factor 

productivity growth index is equal to a markup-adjusted Divisia real output index minus 

the Divisia real input index. In the special cases where the markups are zero (as in the 

case with perfect competition), or markups are constant across outputs, or there is only 

one output, the markup-adjusted dual Divisia total factor productivity growth index 

reduces to the conventional dual Divisia total factor productivity growth index without 

markup in (4.5). 

It should be noted that (4.27) can be easily generalized to the case where market 
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power is present in both output and input markets. In that case 

d1nTFP 

dt 

where 

Primal 

M 

W 
rn=1 

N 

n=1 

wth 

I  / 

E prn (1—mm )ym 
M Ym 

>1p (1— mm )ym 

nn - ÔW(Xn )Xm  --  
oxfl wfl 

w(1— nn) x 
x, (4.28) 

is the nonnegative ad valorem monopsony markdown for the nth input. According to 

(4.27), in the presence of imperfect competition in the output market, the primal Divisia 

total factor productivity growth index is equal to a markup-adjusted Divisia real output 

index minus a markdown-adjusted Divisia real input index. 

The primal Divisia total factor productivity growth index shown in (4.15) has sev-

eral advantages. First, like the nonparametric Malmquist productivity index, it does not 

require price information and thus can be widely used in situations where price infor-

mation is missing or distorted as, for example, in infrastructure, regulated industries, 

and industries with pollutants. Second, it is consistent with all types of returns to scale, 

(i.e. decreasing, constant, and increasing returns to scale) and does not require prior 

knowledge of the underlying market structure. This is a very desirable property since 

I don't have to impose returns to scale a priori. In this sense, the primal Divisia total 

factor productivity growth index is preferable to the nonparametric Malmquist produc-

tivity index proposed by Fare et al. (1994) where the assumption of returns to scale has 

to be imposed a priori. Finally, a parametric approach shares many desirable properties 

with the stochastic frontier approach - forexample, it allows an easy calculation of the 

contribution of the scale effect and a deep insight into important production structures. 
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The Properties of the Primal TFP Growth Index 

There is a general consensus among researchers that a total factor productivity growth 

index should satisfy four desirable properties: identity, separability, monotonicity, and 

proportionality [see Orea (2002)]. The identity property states that if outputs and inputs 

do not change, the productivity index should remain unchanged. Clearly, the primal 

Divisia total factor productivity growth index satisfies this property. The separability 

property implies that a total factor productivity index can be interpreted in the same 

way as in the single-output single-input case, for example, as a relationship between an 

(aggregated) output and an (aggregated) input. As Førsund (1997) pointed out, this 

property relies on a separability restriction on technology, instead of the formula chosen 

to construct the productivity index. Consequently, if technology is separable in outputs 

and inputs, the primal total factor productivity index has this desirable property. 

The monotonicity property requires that the primal Divisa total factor productivity 

index be non-decreasing in the output vector and non-increasing in the input vector. An 

examination of (4.15) reveals that the monotonicity property can be satisfied if 

0lnD0(y,x,t) >ft 
ôlnym - 

(4.29) 

alnD0 (y, x, t)  

51nx 

which is equivalent to the monotonicity conditions of the output distance function (i.e. 

UD0 (y, x, t) lay,,, ≥ 0 and EIDO (y, x, t) /0x ≤ 0), since outputs, inputs, and distance 

are all non-negative. Monotonicity violations will give rise to incorrectly signed elas-

ticities, with the perverse implication that productivity can be improved by increasing 

inputs (decreasing outputs) while holding outputs (inputs) fixed. 

The proportionality property means that whenever (X +1, = (AX, iX), a total 
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factor productivity index (i.e. TFP = Y/X where Y and X are output and input 

quantity indexes, respectively) should be equal to pt/A. The primal Divisia total factor 

productivity growth index will satisfy this property if and only if the shadow revenue/cost 

shares sum to unity, respectively. To see this, I take the exponential of both sides of the 

primal Divisia total factor productivity growth index to obtain its corresponding total 

factor productivity index 

TFP= 
/ exp m in (Ym,t+i/Ym,t)] - (yi,t+i/yi,t) x ... X (YM,t+1/ YM,t)\WM  

exp w, ln (m,t+i/m,t)] - 1,t+h"x1,t "  x ... X (XM,t+1/XM,t)'" 

From the above equation, it is clear that the proportionality property in my particular 

case requires 
M M 

Ecjm = l and E Wn =  1. (4.30) 
M=1 M=1 

(4.30) can actually be guaranteed by the linear homogeneity of the output distance 

function in outputs. Formally, 

M=1 

M 
0lnD0(y,x,t)  

5 In 
M=1 M=1 

(OD, (Yxt) ) 1  
Ym = 1. (4.31) 

5Ym D0(y,x,t) 

Moreover, >I' w = 1 is also satisfied by definition. 

It should be noted at this point that certain theoretical regularity conditions (i.e. 

non-decreasing, convexity and linearly homogeneity in outputs, and non-increasing and 

quasi-convexity in inputs) have to be imposed on the parameters of the output distance 

function. These theoretical regularity conditions are not only used for the validity of the 

output distance function to completely describe the technology, but also for guaranteeing 

the economic meaningfulness of the total factor productivity growth index, as shown in 

(4.29) and (4.30). This suggests that an estimation method that is capable of imposing 

the theoretical regularity conditions has to be employed. 
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4.2.3 Decomposition of the Primal Divisia TFP Growth Index 

Equations (4.15), (4.29), and (4.30) provide a basic framework for further decomposing 

the total factor productivity growth index using the output distance function. In partic-

ular, totally differentiating equation (4.4) with respect to time (after taking logs of both 

sides) and rearranging yields 

51nD0(y,x,t). 3lnD0(y,x,t) dln'çb(t)  
51 Ym Ym at dt 

M=1 

Substituting (4.32) into (4.15) yields 

where 

din TFP 

dt 

n=1 

TC+ ATE +SC, 
Primal 

TC= —51nD0(y,x,t)/5t 

ATE - —51n''(t)/5t 

IV 51nD0(y,x,t). 
x. (4.32) 

51nx, 

(4.33) 

(4.34) 

(4.35) 

SC = ( —1) (b)th (4.36) 

The first term in (4.33) is a primal measure of the rate of technical change. In terms of 

the output distance function, it captures the change in the best practice distance frontier 

which is solely due to the passing of time. In fact, it is a continuous time version of 

the technical change term in the Malquist productivity index, which measures the shift 

in technology between the two periods evaluated at Xt and x 1. The second term is a 

primal measure of the change in technical efficiency. It represents the rate at which an 
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observed firm is moving towards or away from the frontier. It is positive (negative) as 

technical efficiency increases (decreases) over time. It should be noted that what matters 

to productivity growth is not the level of technical efficiency, but its improvement over 

time. The third term captures the contribution of economies of scale. It is positive when 

increasing returns to scale prevails (s> 1 in this case), negative when decreasing returns 

to scale prevails (a < 1 in this case), and vanishes when constant returns to scale is 

present. 

4.3 The Translog Output Distance Function 

In order to implement my total factor productivity growth index decomposition, I need to 

parameterize and calculate the parameters of an output distance function. Here I choose 

to parameterize D. (y, x, t) as a translog function, which is the functional form often 

employed to model bank technology. The translog output distance function, defined over 

M outputs and N inputs can be written as 

M 
1 

1nD0(y,x,t) =ao+amlnym+ 
m=1 

N 

b In x- + 
n=1 

N 

j=1 

bjlnxlnx +6t+ 

NM 

+ gnm1nxnlnym + 
n=1 m=1 ,n=1 

tlnym + E 5tlnx, (4.37) 
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where t denotes a time trend. Symmetry requires amp = apm and b,,3 = The 

restrictions required for homogeneity of degree one in outputs are 

>am = 1; 
M=1 

M 

T.a.P=O forallm=1,2,...,M 
P=1 

M 

g,=0 for alln=1,2,...,N; 
M=1 

8ym =0. 
M=1 

One way of imposing these restrictions is to normalize the function by one of the 

outputs - see, for example, Lovell et al. (1994) and O'Donnell and Coelli (2005). This 

specific transformation through normalization has the advantage of converting equation 

(4.37), which is difficult to estimate directly, into an estimable regression model. I choose 

the Mth output for normalization, which leads to the following expression 

lnD0—,x,t =lnIYM _-Do(Ycc t) ]. 
G2M I  

Using the homogeneity restriction, replacing - In D0 (y, x, t) with u = ln('1'), and adding 
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a random error, v, yields the stochastic output distance function 

- 'YM = a0 4-

IV 

n=1 

M-1 M-1 M-1 

a. In (Y-) + 
M=1 YM 2 m=1 p=i 

N 

b1nx + bnj lnxlnx + tt + 

ampin( - in(--  
\YMJ \YM 

N 

N M-]. M-1 

+gnmlnxnln( +övmtIn( 
n=1 m=1 YM / m=1 YM) 

N 

n=1 

5tlnx + U + V, 

(4.38) 

where the v's are assumed to be independently and identically distributed (iid) as N(O, o2), 

intended to capture statistical noise; u = - in D is a nonnegative random variable, in-

tended to capture technical inefficiency. I assume that u follows an exponential distrib-

ution with scale parameter A, which I will discuss in more detail in Section 4. Further, I 

assume that v and u are independent of each other, an assumption I maintain throughout 

this paper. 

Technical efficiency, technical change, and returns to scale can thus be shown, respec-

tively, to be 
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TE = exp(—'u) (4.39) 

M N 
TC 51nD0(y,x,t) 

= - it +ttt+ ym i11 m Jxn  (4.40) 
M=1 

at 

RTS= 
n=1 

N 
alnD0(y,x,t)  

alnxn 

n=1 

(4.41) 

Equation (4.39) can then be used to obtain efficiency change, ATE = —du/dt, and (4.41) 

can be used to obtain the scale effect, 

N 

(6— 1) (-) &n -

n=1aXn 

4.3.1 Monotonicity Constraints 

As required by microecononiic theory, the output distance function (4.37) has to sat-

isfy the theoretical regularity conditions of monotonicity and curvature. Monotonicity 

requires that D0 (y, x, t) is non-increasing in x and non-decreasing in y. That is, 

or, equivalently, 

OD, (y,x,t) ≤0 and 3D(y,x,t)  

ay", 
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shadow revenue and cost shares are economically meaningful when decomposing the 

primal total factor productivity growth index (4.15), as I discussed above. 

I now explicitly produce the monotonicity conditions for the output distance function 

k. 5lnD0(y,x,t)  
ô in x,, 

N M 

=bn+>}mjlnxj+),gnm inym +6xnt≤O, forn1,,N; (4.43) 
j=1 

= 

8 In Ym 

8lnD0(y, x, t)  

m=1 

M N 

=am+  amp lnyp+>gnm inxn +5ymt≥O, for m=1,...,M. 
P=1 n=1 

Noting that [see equation (4.31)] 

M 
51nD0(y,x,t) E d =1, 

81nym 

the monotonicity condition for the Mth output can be also rewritten as 

m=1 

4.3.2 Curvature Constraints 

0inD0(y,x,t) >0. 
8iny - 

(4.44) 

Curvature requires that the output distance function D0 (y, x, t) be quasi-convex in in-

puts and convex in outputs - see Fare and Grosskopf (1994, p.38). For D0 (y, x, t) to be 

quasi-convex in x it is sufficient that all the principal minors of the following bordered 
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Hessian matrix 

F = 

are negative, where 

o fl fN 

fl f21 f2N 

fN fNi fNN 

aD0(y,x,t) - kD0(y,x,t)  
fn =  Ox" - xn 

and 
c2 ( ( 

-  ' i - (J I 7 7 7  a  
J nj - - Uj T I I - (Pj Tt) 

(./XL/Xj XX 

with çb = 1 if n = j and 0 otherwise. Noting that factoring out D. (y, a, t) /x from the 

rows and 1/x1 from the columns of F does not change the signs of its principal minors, 

I can consider the following matrix 

fN fNi •.• fNN 

where f,, = k, and fj = bnj + kk - Thus, for D. (y, x, t) to be quasi-convex in 

x it is sufficient that all the principal minors of F are negative. 

Convexity in outputs will be ensured if and only if all the principal minors of the 

Hessian matrix, 

h11 h12 him 

h21 h22 h2M 

- him h2M •.. hMM - 
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are non-negative, where 

Ô2D0(y,x, t) D0(y,x,t)  
hmp = (amp - rmrp - /5mprm) 

YmYp 

for m, p = 1, - •, M and Omp = 1 if m = p and 0 otherwise. Note that factoring out 

D0 (y, x, t) /Ym from the rows and 1/y from the columns of H does not change the signs 

of its principal minors. Hence, I can simplify the problem by considering the following 

matrix 

where 

11= 
h21 h22 h2M 

hiM h2M ... hMM 

hmp = amp - rmrp - mprm. (4.45) 

Thus, the distance function will be convex in outputs if and only if H is positive-

semidefinite. 

4.4 Bayesian Estimation 

With the translog function for D0(y,x, t), the stochastic output distance function in 

(4.38) can be rewritten in a panel data framework as 

qit = zf3 + uit + vit, (4.46) St 

where i = 1, - . ., K indicates firms, t = 1,• . , T indicates time, qt = - lnys,, zit is a 

vector comprising all the variables which appear on the right hand side of (4.38), and /3 

refers to the corresponding vector of coefficients of the translog function (including the 
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intercept). 

The formulation of my empirical model as a random effects model (4.46) is convenient 

for Bayesian analysis. Although equation (4.38) can also be formulated as a fixed effects 

model and then estimated using Bayesian procedures, I prefer a random effects model 

for the following two reasons. First, with a fixed effects model I have to specify the same 

number of intercepts as that of observational units, which makes the implementation of 

Bayesian estimation methods cumbersome, since I have 292 banks in this study. Second, 

most previous studies investigating U.S. bank efficiency adopted maximum likelihood 

models, a special case of random effect models. Hence, adopting a random effects model 

will enable us to compare my empirical results regarding bank efficiency to those from 

previous studies. It is also to be noted that fixed effects models generally give different 

results than maximum likelihood models, since in the fixed effects models technical effi-

ciency is measured relative to the best performing bank in the sample, rather than using 

equation (4.39). 

With this in mind, letting h = 1/o.2, the Bayes theorem in my particular case can be 

restated as 

f(/3,h,u,)C 1Iq) oc L(q3,h,u,)C')p(f3,h,u,)C'), (4.47) 

where f (,3, h, u, )C I q) is the posterior joint density function for all the parameters, /3, 

u and ).1, given q. The posterior density summarizes all the information about /3, h, 

u and )C' after q is observed. L (q 1,3, h, u, )C') is the likelihood function of the sample, 

which summarizes all the sample information. p (/3, h, u, )C1) is the joint prior density 

function for the parameters, /3, h, u and )C', summarizing the best initial guess of /3, h, 

u and )1 

Under the assumption that the va's are iid normal, the likelihood function in (4.47) 
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can be shown to be 

L(q/3,h,u,)C') =HH 
i=:L t=1 

KT{ 
h h 
—exp -- 
2ir 2 

r 1 
o h , exp [_v v] 

(qt - zt,@ - ut) 

2} 

(4.48) 

where v = (q - z')3 - IKTu), with 'KT being the KT X KT identity matrix. 

The Bayesian model in (4.47) also requires choosing prior parameter values. I choose 

a flat (constant) prior for ,3 - it is to be noted that the sum or integral of the prior values 

may not even need to be finite to get sensible answers for the posterior probabilities 

P (3) 0C I (j3 E Ri), (4.49) 

where I (.) is an indicator function which takes the value 1 if the argument is true and 

0 otherwise, and Rj is the set of permissible parameter values when no theoretical reg-

ularity constraints (j = 0) are impOsed and when both the monotonicity and curvature 

constraints (j = 1) must be satisfied. Generally speaking, a flat (constant) prior is 

assumed when the researcher does not wish to impose prior constraints on model para-

meters, and thus renders the posterior proportional to the sampling density (likelihood 

function). With the constant equal to an indicator function, my particular flat prior for 

3 allows us to slice away the portion of posterior density that violates monotonicity and 

curvature of the output distance function. 

I adopt the following prior for h 

p(h) oc h', where h = > 0. (4.50) 
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The main effect of such a prior is to downweigh excessively large values of the precision, 

h. 

As stated above, I choose an exponential distribution for uj. This is mainly because 

van den Broek et al. (1994) argue that this distribution for inefficiency uit is more robust 

to prior assumptions about parameters than other distributions. Since the exponential 

distribution is a special case of the gamma distribution, the prior for u, is 

p(Uit IA') = fGarnrna (Uit I1,A-') (4.51) 

where fGamma is a gamma density function. According to Fernandez et al. (1997), in 

order to obtain a proper posterior I need a proper prior for the remaining parameter, A. 

Accordingly, I use the proper prior 

famma(AI 1, 1flT), (4.52) 

where r is the prior median of the efficiency distribution. 

With the priors (4.49)-.(4.52), my joint prior probability density function is therefore 

f (/3, h, u, .\-') = p (/3) p(h)p (u IA') p() -') 

KT 

R)fGamma (A_l1,_lnr*)JJflfGamma(ujtj1) /\— l) - 
i=1 i=1 

(4.53) 

Finally, my best prior for the efficiency of large banks in the United States is the mean 

efficiency value of 0.899 reported by Tsionas (2006) who applied a Bayesian cost frontier 

(without constraints) to 128 large U.S. banks. In fact, after reviewing the results of 50 
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U.S. bank efficiency studies, Berger and Humphrey (1997) found that the annual average 

efficiency is 0.84 with a standard deviation of 0.07. So I am comfortable following Tsionas 

(2006), setting r = 0.899 in this study. 

Combining the likelihood function in (4.48) and the joint prior distribution in (4.53) 

yields the posterior joint density function 

f Iq) cc h(<TI2_l)exp [_ i ] 1 (13 E R) x 

KT 

X fGamma ()C1I1, - 1.flr*) fl  fGamma(Uit 
i=1 t=1 

(4.54) 

Also, technical change (TO), elasticities (e,), returns to scale (RTS), and total factor 

productivity growth are all functions of ,@, h,u, and )C'. I am particularly interested in 

the posterior marginal densities of 3, u, TE, , RTS, and TFP growth, and the means 

and standard deviations of these posterior densities. 

Let g(,G, h,u, )T') represent these functions of interest. In theory, I could obtain the 

moments of g(,i3, h,u, )C') from the posterior density through integration. Unfortunately, 

these integrals cannot be computed analytically. Therefore, I use the Gibbs sampling 

algorithm which draws from the joint posterior density by sampling from a series of 

conditional posteriors. Essentially, Gibbs sampling involves taking sequential random 

draws from full conditional posterior distributions. Under very mild assumptions [see, for 

example, Tierney (1994)], these draws then converge to draws from the joint posterior. 

Once draws from the joint distribution have been obtained, any posterior feature of 

interest can be calculated. 



163 

The full conditional posterior distributions for 3, h, u, and )-'can be shown to be 

p (A-' I q,)3, h, u) 0( fGamma (A-' I1T + 1, UtKT - lnr*) , 

p(hq,/3,u,A') 0(fGamma (h 

pq,h,u,A') OCfNormal [i3 

KT1, 
--' v V 

(4.55) 

(4.56) 

b, h' (z'z) 1] .r (/3 E R) (4.57) 

KT 

p (u I q,)3, h, A-') = fNormal (u I q - z')3 - (hA)'tKT, h'IKT) H fli (Uit ≥ 0) (4.58) 
i=1 t-1 

where b = (z'z)'z' [q - IKTU], with tKT being the KT vector of ones, and fNormal is a 

normal density function. 

The Gibbs sampler for Bayesian estimation without monotonicity and curvature con-

straints can be implemented by setting I (/3 e Ro) in (4.57) equal to one and then draw-

ing sequentially from the conditional posteriors in (4.55)-(4.58). Sampling from (4.55), 

(4.56), and (4.57) is straightforward. However, sampling from (4.58), a multivariate 

truncated normal distribution, is more complicated. Luckily, in my particular case, sam-

pling from the multivariate truncated normal distribution (4.58) can be simplified as KT 

independent draws from the following univariate truncated normal distribution 

p (uit I q, )3, h, A') = fNormal (qt - 4)3 - (hA)', h') I (uit ≥ 0), (4.59) 

by noting that the covariance matrix is a scalar times an identity matrix, and the trun-

cations are independent. Sampling from univariate truncated normal distributions can 

be easily implemented, using procedures discussed in Griffiths (2004). 
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The Gibbs sampler for Bayesian estimation with monotonicity and curvature con-

straints also involves taking sequential random draws from the above full conditional 

posterior distributions. Sampling from (4.55), (4.56), and (4.58) is the same as in the 

case without monotonicity and curvature constraints. However, sampling from the mul-

tivariate normal distribution (4.57) is even more involved than sampling from the mul-

tivariate normal distribution (4.58) in that the region to which /3 is truncated cannot 

be explicitly specified. There are two approaches in this literature which can be used to 

handle the sampling from the truncated multivariate normal distribution like (4.57) - 

the accept-reject algorithm [see Terrell (1996)] and the Metropolis-Hastings (M-H) algo-

rithm, proposed by Griffiths et al (2000) and used by O'Donnell and Coelli (2005). The 

accept-reject algorithm has been criticized for its inefficiency in that it needs to generate 

an extremely large number of candidate draws before finding one that is acceptable - see 

Griffiths et al. (2000). In this paper, I follow Griffiths et al. (2000) and sample the trun-

cated multivariate normal distribution (4.57) using the Metropolis-Hastings algorithm, 

which in my case proceeds iteratively as follows: 

• Step 1: Start with an initial value 13i satisfying both the monotonicity and curva-

ture constraints. Let j denote the state of 3, and set j = 1. 

• Step : Using the current value ,8, sample a candidate point /3 from a symmetric 

proposal density q(/3C, )3i), which is the probability of returning a value of /3' given 

a previous value of 13i• 

• Step 3: Evaluate the monotonicity and curvature constraints at the specified data 

points using the candidate value, /3c. If any constraints are violated, set a(/33, 

3c) = 0 (that is, the probability that the move from j to c is made) and go to Step 

5. 

0 Step 4: Calculate c(/3i,)3c) = mm [a1, 1] where a1 is the ratio of the target density 
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at the candidate ([3c) and current (13i) points, and can be written (in my case) as 

exp [(/3c_ b) (hz'z) (3C b)] 

exp [(i - b) (hz'z) (i - b)] 

• Step 5: Generate independent uniform random variables, u, from the interval [0, 1]. 

• Step 6: Set 3.i+1 = /3c if u < a(/3, 3c) and 3.1 otherwise. 

• Step 7: Set j = j + 1 and return to Step 2. 

The algorithm works best if the proposal density matches the shape of the target 

distribution. Therefore, the proposal density is chosen to be a multivariate normal with 

mean equal to the current state 13i and covariance matrix equal to the maximum like-

lihood estimate of the covariance matrix of the parameters, multiplied by a tuning pa-

rameter. The tuning parameter can be used to adjust the acceptance rate, which is the 

fraction of proposed samples that is accepted in a window of the last ic samples. The 

optimal acceptance rate (i.e., the one which minimizes the autocorrelations across the 

sample values) has been shown to lie within the range between 0.45 (in one-dimensional 

problems) and approximately 0.23 (as the number of dimensions beomes infinitely large) 

- see Roberts et al. (1997). In this paper, I choose the tuning parameter so that the 

acceptance rate lies within this range. 

Compared with the conventional M-H algorithm, the above M-H algorithm is capable 

of imposing monotonicity and curvature constraints through manipulating c(/3i, j3c). 

More specifically, it sets c(/3, /3c) = 0 when any monotonicity and curvature constraints 

are violated, and equal to the expression in Step 4 (as in the conventional M-H algorithm) 

otherwise. And in the case where a(/3i, 3°) = 0, the candidate draw will always be 

rejected, thus ensuring that monotonicity and curvature are satisfied. 
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4.5 The Data 

The data used in this study are obtained from the Reports of Income and Condition 

(Call Reports) over the six-year period (T = 6) from 2000 to 2005. I examine only 

continuously operating banks to avoid the impact of entry and exit and to focus on the 

performance of a core of healthy, surviving institutions during the sample period. In this 

paper, I selected the subsample of large banks, namely those with total assets in excess 

of one billion dollars (in 2000 dollars) in the last three year in the sample. This gives a 

total of 292 banks (K = 292) observed over 6 years. 

To select the relevant variables, I follow the commonly-accepted intermediation ap-

proach proposed by Sealey and Lindley (1977), which treats deposits as inputs and loans 

as outputs. On the input side, three inputs are included. The quantity of labor, x1; the 

quantity of purchased funds and deposits, x2; and the quantity of physical capital, x3, 

which includes premises and other fixed assets. On the output side, three outputs are 

specified. These are securities, y, which includes all non-loan financial assets (i.e., all 

financial and physical assets minus the sum of consumer loans, non-consumer loans, se-

curities, and equity); consumer loans, y2; and non-consumer loans, y3, which is composed 

of industrial, commercial, and real estate loans. All the quantities are constructed by 

following the data construction method in Berger and Mester (2003). These quantities 

are also deflated by the CPI to the base year 2000, except for the quantity of labor. 

While non-traditional activities are clearly increasing in importance, the wide range of 

activities and imperfect data make the measurement of non-traditional activities problem-

atic - see Stiroh (2000) for a discussion of the different approaches to the measurement 

of non-traditional activities. To avoid the uncertainties associated with the introduction 

of non-traditional activities, I choose not to include it as an output. But I do run an 

alternative model where non-traditional activities are considered as an extra output to 
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check the robustness of the estimates of technical change. 

4.6 Empirical Results 

4.6.1 Regularity Tests 

I start with unconstrained parameter estimates and make 50,000 draws discarding the 

first 20,000 as a burn in. Table 4.1 presents the estimated parameters and also reports 

both standard deviations and 90% posterior density regions calculated as the 5th and 

90th percentiles of the MCMC sample observations. I calculate 90% posterior density 

regions because it provides a better indication of likely values of the parameters when 

the marginal posterior distributions are asymmetric. 

Regularity tests can be implemented by analyzing the estimated unconstrained mar-

ginal posterior pdfs of k and Tm and the principal minors of F and II. I first evaluate 

the posterior means of k and Tm and the principal minors of F and H, at each of the 

1752 (= K x T) observations, and then calculate the proportions of regularity violations 

relative to the total number of observations. The results, presented in the first column 

of Table 4.2, indicate that only two (k2 and r1) of the six monotonicity conditions are 

satisfied at all the 1752 observations and that both curvature conditions are violated, 

with the quasi-convexity in outputs being violated at all observations. I then evaluate 

the posterior coverage regions of k and Tm and of the principal minors of F and H, 

again at each of the 1752 observations, and calculate the ratio of the number of observa-

tions, where posterior coverage regions span inadmissible values, to the total number of 

observations (1752). As can be seen in the second column of Table 4.2, all eight regularity 

conditions have a positive probability of being violated at some observations. In fact, 

both of the curvature conditions have a positive probability of being violated at all the 

1752 observations. 
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These violations of monotonicity and curvature in the unconstrained model may lead 

to perverse conclusions concerning TFP growth. To see this, I also generate the marginal 

density plots for the shadow input cost shares, w for n = 1, 2, 3 in (4.15), and the 

shadow output revenue shares, Co,,, for m = 1,2, 3 in (4.15), from the unconstrained 

model, evaluated at the mean value of all inputs and outputs in each year. As discussed 

above, both w, and Co,, are required to be positive and less than one. Due to space 

limitations, only the marginal densities in 2005 are plotted in Figure 4.1.1-4.1.6 - the 

marginal densities for other years are similar to those in 2005. Clearly, all the three 

shadow output shares are reasonable, containing no negative values or values larger than 

one. However, the plot of the shadow input shares shows that the labor share and the 

capital share may be negative. A negative input share implies that an increase in the 

use of that input (with all other inputs and outputs held constant) will increase the 

(measured) productivity of that bank, which is economically implausible. Moreover, 

Figure 4.1.2 shows that the shadow input share for funds may be greater than one, 

implying that an increase in the use of that input (with all other inputs and outputs held 

constant) will reduce the (measured) productivity of that bank by more than the growth 

rate of funds, which is again economically implausible. 

Since monotonicity and curvature are not attained in the unconstrained model, I fol-

low the procedures specified in Section 4 to impose those constraints on the translog 

output distance function. Again, I generated a total of 50,000 observations, and then 

discarded the first 20,000 as a burn-in. The associated estimates of parameters are re-

ported in Table 4.3, the monotonicity and curvature violations reported in Table 4.4, 

and the marginal densities for the shadow input and output shares are plotted in Figure 

4.2.1-4.2.6. Generally speaking, the constrained model has smaller posterior standard 

deviations and narrower confidence intervals in terms of posterior moments for the esti-

mated parameters and shadow revenue and cost shares. This is consistent with Dorfman 
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and McIntosh (2001) and O'Donnell and Coelli (2005) who find that incorporating in-

equality constraints into the estimation process has the effect of reducing the variances of 

the estimated marginal pdfs. In addition, Figures 4.2.1-4.2.6 show that some densities are 

asymmetric - for example, those for the funds share, capital share, and non-consumer 

loans share. Kleit and Terrell (2001) found similar results and suggested that the asym-

metry perhaps reflects the fact that the constrained posterior density slices away the 

portion of the unconstrained posterior density that violates monotonicity and curvature. 

As I expected, monotonicity and curvature are satisfied by all measures after monotonic-

ity and curvature are incorporated. In particular, k and ?m and the principal minors 

of F and H are correctly signed at all 1752 observations whether they are evaluated 

by using posterior means or by using posterior coverages. Moreover, the shadow shares 

are all positive and less than one. In what follows, I will discuss technical efficiency, 

technological change, returns to scale, and the contributions of each of these components 

to TFP growth, based on the constrained translog output distance function. 

4.6.2 Results from the Constrained Model 

Technical Efficiency 

Table 4.5.1 reports the estimates of average technical efficiency over the sample period, 

together with the 90% posterior density regions. The average technical efficiency for each 

year is evaluated at the mean value of all inputs and outputs in that year. As indicated by 

the standard deviations and 90% density regions, the estimates of the average technical 

efficiency are statistically significant for every year over the sample period. The scores 

of technical efficiency show a high level of efficiency, ranging from 92.43% to 93.41%. 

Thus, on average, a 7% to 8% proportional increase in outputs can be achieved by solely 

increasing efficiency, without altering production technology and input usage. 

My estimates of the technical efficiency are quite close to those from recent research; 
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see, for example, Stiroh (2000) and Tsionas (2006) - both of these studies employed a 

translog cost frontier (dual method), rather than a distance frontier (primal method). 

Thus, one of the differences in efficiency estimates could be due to allocative efficiency. 

For example, Tsionas used the panel data on 128 large U.S. banks over the period from 

1989 to 2000 and found that the average efficiency is 88.9% when a dynamic effect is 

not considered and 95.5% when a dynamic effect is considered. Further, my technical 

efficiency estimates show no specific pattern of temporal change. In particular, it starts 

at 93.41% in 2000, falls to 92.49% in 2001, rebounds slightly in the following two years, 

falls slightly again in 2004, and picks up again to 92.69% in 2005. This time pattern 

of technical efficiency means that the change in technical efficiency is not a consistent 

source of TFP growth. 

To get a better understanding of the distribution of technical efficiency across banks, 

in Table 4.5.2 I report the minimum and maximum technical efficiency in each year, 

together with standard deviations, and the 5th and 95th percentile values. The results 

show that the scores of technical efficiency can differ greatly across banks in all the 

sample years. Taking the technical efficiencies in 2005 as an example, the highest is 

97.63% whereas the lowest is only 35.08%. Despite these extreme cases, the results on 

standard deviations and the 5th and 95th percentile values show that the vast majority 

of the banks fall within the range between 84% and 96%. 

Returns to Scale 

Table 4.6 summarizes the returns to scale (RTS) estimates, again evaluated at the mean 

value of all inputs and outputs each year. The standard deviations and 90% density 

regions indicate that the RTS estimates are statistically significant for every year over 

the sample period. Clearly, the point estimates of RTS in Table 4.6 are all greater 

than one, ranging from 1.037 to 1.056, suggesting that the large commercial banks in 
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the sample exhibit moderate increasing returns to scale. This is consistent with recent 

research that found scale economies in the U.S. banking industry using data for the 1990s 

- see, for example, Berger and Mester (1997), Hughes and Mester (1998), and Stiroh 

(2000). Increasing returns to scale indicates the presence of imperfect competition in the 

U.S. banking industry, which is consistent with the findings of Bikker and Haaf (2002) 

and Claessens and Laeven (2003) that the U.S. banking industry is characterized by a 

relatively low level of competition. 

The presence of moderate increasing returns to scale also has two implications for 

productivity growth. First, the presence of moderate increasing returns to scale implies 

that productivity growth will exhibit procyclical behavior to some extent. This is because 

the contribution of scale economies to productivity growth is positive when the share 

weighted input aggregate grows over time, but negative when the share weighted input 

aggregate declines over time, as as can be seen from (4.36). Second, since the economies 

of scale is moderate in magnitude, the scale effect will not be a consistent significant 

source of TFP growth. In addition, the presence of moderate increasing returns to scale 

also implies that the large banks in the U.S. are expected to be engaged in more mergers 

and acquisitions until the returns to scale are exploited. 

Technical Change 

Table 4.7.1 reports technical change rate estimates, again evaluated at the mean value 

of all inputs and outputs each year. Clearly, the estimates are statistically significant in 

every year over the sample period. On average, the rate of technical change is 2.22% per 

year. Compared with the estimates of technical efficiency, which show no specific pattern 

of temporal change, the estimates of the rate of technical change show a declining trend. 

In particular, the rate of technical change falls consistently from 6.0% in 2000 to -1.79% in 

2005. In terms of the output distance function, this decline in the rate of technical change 
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means that the growth rate of the ratio of actual output to potential output declines as 

time passes (holding all other things constant). In terms of the revenue function, which 

is dual to the output distance function, this decline in the rate of technical change means 

that the growth rate of the revenue generated from a fixed combination of inputs declines 

with the passing of time. Considering the small variation in technical efficiency and the 

small magnitude of the scale effect, technical change seems to be the dominant force 

driving the growth in total factor productivity. 

Considering the importance of technical change, I also estimated three alternative 

models to check the robustness of my results regarding the time pattern of technical 

change. In the first alternative model (Model 1), I treat securities (instead of non-

consumer loans) as the numeraire for normalizing the outputs, to see whether the choice 

of the numeraire has any effect on the time pattern of technical change. The second 

alternative model (Model 2) is just the unconstrained model, where all the outputs and 

inputs remain unchanged. This model, though having been discarded due to its violations 

of monotonicity and curvature, is used to see whether the imposition of constraints has 

greatly altered the time pattern of the rate of technical change. In the third alternative 

model (Model 3), I add an off-balance-sheet variable to see whether the exclusion of non-

traditional activities affects the estimated time pattern of the rate of technical change. 

The estimates of the rate of technical change, together with 90% posterior density regions, 

from the three alternative models are reported in Table 4.7.2. 

The estimates of the rate of technical change from the first alternative model (Model 

1), reported in the first column of Table 4.7.2, are almost the same as those in Table 

4.7.1 (my standard model), suggesting that the choice of the numeraire has almost no 

effect on the estimated time pattern of the rate of technical change. The estimates based 

on the second alternative model (Model 2), reported in the second column of Table 

4.7.2, also follow the same pattern as in my standard model, although there is a slight 
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difference in magnitude of the technical change rate estimates between the two models. 

This suggests that the imposition of constraints has little effect on the estimated time 

pattern of technical change. When the off-balance-sheet variable is added, the technical 

change rate estimates change on average by 0.45% in absolute terms. However, as can 

be clearly seen in the third column of Table 4.7.2, the time pattern of technical change 

is still almost the same. As I discussed above, the wide range and imperfect data of 

the non-traditional activities could introduce more uncertainty regarding the estimates 

of the rate of technical change. Thus, the third alternative model (Model 3) is not my 

preferred model. 

In summary, the time pattern and (to a lesser degree) magnitude of the rate of 

technical change estimates are very robust to the different choice of the numeraire output, 

the imposition of monotonicity and curvature constraints, and the inclusion of off-balance-

sheet variables. 

TFP Growth and Its Components 

I now turn to a decomposition of the growth rate of total factor productivity, as shown in 

Table 4.8 - it should be noted that the first year in the sample period is dropped because 

I have to difference the technical efficiencies in two consecutive years to obtain efficiency 

changes. Again, all the estimates are evaluated at the mean values of all inputs and 

outputs in each year. In addition to the estimates of the three TFP growth components, 

I also calculate the percentage contribution of each of the three productivity components 

to total factor productivity growth, shown in brackets in Table 4.8. 

Overall, the results presented in the first column of Table 4.8 indicate that total 

factor productivity grew in all years, except the last, at an average annual rate of 1.98%. 

However, the estimates for total factor productivity growth also exhibit a clear downward 

trend. In particular, total factor productivity growth is quite impressive in the first three 
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years, in all exceeding 2%. But, it falls almost to zero in 2004 and even turns negative in 

the last year in the sample. It should be noted that while TFP growth shows a downward 

trend, TFP level has been increased over the sample period except the last. In particular, 

if I normalize the productivity level in 2000 to 100, then the productivity level in the last 

year will be 109.91. 

The decomposition of total factor productivity growth in Table 4.8 identifies the forces 

that drive its decline. In particular, the estimates for efficiency changes, —du/dt, in the 

second column of Table 4.8 are rather small in magnitude, averaging only 0.14% per year. 

Moreover, they fluctuate around zero, indicating that efficiency change has an unstable 

effect on total factor productivity growth. The small effects of efficiency changes on 

total factor productivity growth are also reflected in the percentage contribution to total 

factor productivity growth, reported in Column 3 of Table 4.8, averaging 7.27% per year. 

The estimates reported in the fourth column of Table 4.8 indicate that the scale effect 

has a moderate positive effect on total factor productivity growth, averaging 0.44% per 

year. In terms of average percentage contributions, the scale effect is the second largest 

factor contributing to growth in total factor productivity (22.30%). This is consistent 

with my estimates of returns to scale, which show moderate economies of scale in large 

commercial banks in the United States. 

Without doubt, the last component, technical change, is the dominant force behind 

total factor productivity growth. This can be clearly seen from the average annual rate of 

technical change (of 1.39%) in column 6 of Table 4.8. The importance of technical change 

can also be seen from its percentage contribution - it contributes over 75% each year 

to productivity growth. Further, the technical change estimates show a clear downward 

trend, accounting for the decline in total factor productivity growth over the sample 

period. 
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4.6.3 Sensitivity Analysis 

A possible problem with my estimation of the output distance function is endogeneity - 

that is, the regressors on the right hand side of equation (4.38) may not be exogenous. 

To investigate the robustness of my results to alternative estimation procedures, in this 

subsection I use instrumental variables. 

The variables on the right hand of (4.38) can be classified into two types of variables 

- the output ratio variables (i.e. Ym/YM, m = 1, - •, M - 1) and the input variables. 

According to Coelli and Perelman (1999), the output ratios are measures of the output 

mix which are more likely to be exogenous. Schmidit (1988) and Mundlak (1996) also 

find that, in the context of a production function, the input ratios do not suffer from 

the endogeneity problem; the basic argument also applies to the output ratios in the 

transformed output distance function. Thus, the only variables suspected of causing 

possible endogeneity problems are the input variables. To use instrumental variables 

for the input variables, I follow the assertion of Griliches (2000, p. 62) that "good 

instruments are hard to find without the supporting theory that give them a formal 

role in the model." As I noted above, the U.S. banking industry is more likely to be 

characterized by monopolistic competition. Hence, in order to be consistent with the 

theoretical framework of profit maximization in the presence of imperfect competition, 

input prices and the time trend are chosen as instruments. 

The empirical results are summarized in Table 4.9. A comparison of Tables 4.8 and 

4.9 reveals that the major conclusions reached in the previous subsection are still valid, 

although I notice that there are some changes. First, total factor productivity growth still 

shows a clear downward trend, implying that productivity has been growing at a lower 

rate. In particular, it has consistently decreased from 0.0491 to 0.033 over the sample 

period. Second, technical change is still the driving force behind the decline in total factor 

productivity growth. From the contributions of the three productivity components, I see 
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that technical change is still the dominant force, accounting for 70.32% of the productivity 

growth on average. With the contributions from the other productivity components being 

rather small, the consistent decline in technical change (see the last column of Table 

4.9) results in the decline in productivity growth. Third, the estimates of efficiency 

change and the scale effect when instrumental variables are used are comparable to my 

earlier estimates. Finally, I also find that the estimates of the contributions of the three 

productivity components when instrumental variables are used are very similar to my 

earlier estimates as well. In particular, the average contributions of technical change, scale 

effect, and efficiency change when instrumental variables are used are 70.32%, 21.94%, 

and 7.74%, respectively, and they are 70.33%, 22.30%, and 7.27% when instrumental 

variables are not used. Therefore, my major conclusions in the previous subsection are 

quite robust to the use of instrumental variables. 

4.7 Conclusion 

In this paper, I extend and combine the best elements of the non-parametric approach 

and the parametric approach, and propose a distance-function based primal Divisia total 

factor productivity growth index. In particular, I show that this Divisia total factor 

productivity growth index is equivalent to the conventional dual Divisia total factor 

productivity growth index under the assumption of a competitive market. I further show 

that, in the presence of imperfect competition, it is equivalent to a markup and markdown 

adjusted dual Divisia total factor productivity growth index, which reflects the firm's true 

marginal revenue and marginal cost. Based on the primal Divisia total factor productivity 

growth index, I present a decomposition of productivity change, isolating the separate 

contributions of scale economies, technical change, and technical efficiency change. The 

primal Divisia total factor productivity growth index has several advantages, as it does 
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not require price information (and thus can be widely used in situations where price 

information is missing), it does not require prior knowledge of the underlying market 

structure, and it allows an easy calculation of the contribution of scale effect and a deep 

insight into important production structures. 

I also pay explicitly to the theoretical regularity conditions of the output distance 

function (i.e. non-decreasing, convex and linearly homogeneous in outputs, and non-

increasing and quasi-convex in inputs). I show that these conditions are not only neces-

sary for the validity of the output distance function as a means of completely describing 

the technology, but also some of the conditions are necessary for its validity as a produc-

tivity growth index. In order to impose these nonlinear theoretical regularity conditions, 

I need to adopt an estimation method which is capable of incorporating monotonicity 

and curvature conditions implied by neoclassical microeconomic theory. In this respect, 

I follow O'Donnell and Coelli (2005) and use the Bayesian approach to impose the the-

oretical regularity conditions on the parameters of a translog output distance function. 

Implementing the approach involves the use of a Gibbs sampler with data augmenta-

tion. A Metropolis-Hastings algorithm is also used within the Gibbs sampler to simulate 

observations from truncated pdfs. 

I applied my methodology to the panel data on 292 large banks in the United States 

over the period from 2000 to 2005. my results confirm that the monotonicity and concav-

ity constrained model yields more accurate and favorable results than an unconstrained 

model. In particular, shadow revenue and cost shares are well behaved, and the standard 

deviations are largely reduced. my results show that total factor productivity grew at 

an average rate of 1.98% for the large U.S. commercial banks over the sample period. 

However, the estimates of total factor productivity growth show a clear downward trend 

and my decomposition of the total factor productivity growth rate indicates that techni-

cal change is the driving force that leads to the decline in the total factor productivity 
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growth rate. my results indicate that returns to scale also have a positive effect on pro-

ductivity growth, suggesting that the scale effect should be included when examining 

bank productivity growth. 

In estimating technical change, returns to scale, and efficiency in large banks in the 

United States, I have used a translog output distance function. A locally flexible func-

tional form, the translog is only suitable for samples composed of relatively homogenous 

firms - for example, only large banks with assets greater than $1 billion are used in this 

study. In cases where the firms are of widely varying sizes, globally flexible functional 

forms which can provide greater flexibility will be more appropriate. There are two glob-

ally flexible functional forms - the Asymptotically Ideal Model, introduced by Barnett et 

al. (1991), and the Fourier flexible functional form, introduced by Gallant (1982). How-

ever, due to the trigonometric terms which are not neoclassical, the Fourier functional 

forms has been criticized for its possibility of overfitting the data - see, for example, 

Barnett et al. (1988). In contrast, with the globally regular Mtintz-Szatz series, the AIM 

model form fits only that part that is globally regular, thus eliminate the risk of over-

fitting. Therefore, using an AIM output distance function to estimate technical change, 

returns to scale, and efficiency is an area for potentially productive future research. It 

should also be noted that the estimates of technical changes, technical efficiency, returns 

to scales, and productivity growth may be biased due to the selection problem associated 

with restricting the sample to surviving banks. However, since most of the banks that 

were driven out of the banking serives market were small banks with under 1 billion in 

assets - see Jones and Critchfield (2005), selection effects should be quite small. 
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TABLE 4.1 

PARAMETER ESTIMATES FROM THE UNCONSTRAINED MODEL 

Variable 
Standard 

Parameter Estimate deviation 
90% posterior 

coverage regions 

intercept a0 0.2060 0.0723 (0.0663, 0.2617) 
1nx1 b, -0.0795 0.0418 (-0.1437, - 0.0184) 
In X2 b2 -0.9555 0.0357 (-1.0081, - 0.8993) 
In X3 b3 -0.0030 0.0276 (-0.0441, 0.0377) 

(lnxi)2 bil -0.3669 0.0618 (-0.4754, - 0.2815) 
(In X2)2 b22 -0.0268 0.0372 (-0.0815, 0.0273) 
(In x3)2 b33 0.09353 0.0281 (0.0499, 0.1352) 
(lnxi) (In X2) b12 0.2467 0.0399 (0.1906, 0.3114) 
(lnxi) (In X3)b13 0.1210 0.0344 (0.0719, 0.1782) 
(In X2)(In X3) b23 -0.0328 0.0053 (-0.0408, - 0.0247) 
la y1 a1 0.3956 0.0209 (0.3635, 0.4261) 
In y2 a2 0.1094 0.0102 (0.0942, 0.1246) 
In y3 a3 0.4951 0.0202 (0.4651, 0.5260) 
(m  y1)2 all 0.0987 0.0231 (0.0584, 0.1296) 

(In y2)2 a22 0.0268 0.0039 (0.0207, 0.0326) 
(In Y3)2 a33 0.1376 0.0218 (0.0997, 0.1680) 
(lnyi) (In Y2) a12 0.0061 0.0066 (-0.0040, 0.0163) 
(lnyi) (In Y3) a13 -0.1047 0.0215 (-0.1342, - 0.0672) 
(In Y2) (In y3) a23 -0.0328 0.0053 (-0.0408, - 0.0247) 
(In xi) (m  y1) 91, -0.0211 0.0226 (-0.0565, 0.0125) 
(lnxi) (In Y2) 912 0.0274 0.0132 (0.0080, 0.0479) 
(lnxi) (In Y3) 913 -0.1047 0.0215 (-0.1342, - 0.0672) 
(In X2)(m  y1) 921 0.0776 0.0196 (0.0483, 0.1083) 
(In X2) (In Y2) 922 -0.0090 0.0099 (-0.0241, 0.0062) 
(In X2)(In Y3) 923 -0.0328 0.0053 (-0.0408, - 0.0247) 
(In X3) (lnyi) gi -0.0543 0.0156 (-0.0785, - 0.0313) 
(In X3) (In Y2) 932 -0,0127 0.0082 (-0.0250, - 0.0006) 
(In X3) (In Y3) 933 0.0671 0.0148 (0.0452, 0.0897) 
t Ct -0.0867 0.0138 (-0.1073, - 0.0664) 

Cu 0.0163 0.0038 (0.0107, 0.0219) 
(lnxi)t 9x1t 0.0088 0.0097 (-0.0230, 0.0056) 
(lnx2)t 9x2t 0.0028 0.0079 (-0.0094, 0.0145) 
(1nx3)t 9x3t 0.0053 0.0061 (-0.0036, 0.0145) 
(lnyi)t 9vit -0.0229 0.0047 (0.0300, - 0.0158) 
(1ny2)t 9y2t 0.0002 0.0022 (-0.0031, 0.0034) 
(1ny3)t 9y3t 0.02269 0.0046 (0.0158, 0.0297) 
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TABLE 4.2 REGULARITY VIOLATIONS 

Regularity conditions 
Regularity violations pdf> 0 

(at the posterior mean) (in inadmissible region) 

Mono tonicity 

k1 ≤ 0 
k2 ≤ 0 
k3 < 0 
r1 > 0 
r2 > 0 
r3 > 0 

Curvature 

11.59% 
0% 

69.29% 
0% 

6.51% 
0.34% 

89.21% 
0.57% 

98.80% 
5.03% 

42.92% 
0.74% 

All the principal minors of: 

Fare negative, and 100% 100% 

IL is positive semidifinite 16.15% 100% 
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TABLE 4.3 

PARAMETER ESTIMATES FROM THE CONSTRAINED MODEL 

Standard 
Variable Parameter Estimate deviation 

90% posterior 
coverage regions 

intercept ao 0.2548 
1nx1 bi -0.1166 
In X2 b2 -0.8705 
In X3 b3 -0.0521 
(lnxi)2 b11 -0.0288 

(In x2)2 b22 0.0119 

(In x)2 b33 0.0076 
(In xi)(In X2) b12 0.0140 
(In xi)(In X3) b13 0.0059 
(In X2) (In X3) b23 -0.0243 
1ny1 ai 0.3996 
In Y2 a2 0.1171 
In Y3 a3 0.4834 

(lnyi)2 all 0.0720 
(In y2)2 a22 0.0099 

(In Y3) 2 a33 0.0865 
(lnyu) (111 y2) ai2 0.0023 
(inyi) (111y3) ai3 -0.0743 
(In y2) (In y3) a23 -0.0122 
(in xi) (m  y1) 911 -0.0264 
(in xi) (In Y2) 912 0.0123 
(in xi) (In Y3) 913 0.0141 
(In X2)(lnyi) 921 0.0582 
(In X2)(In Y2) 922 0.0064 
(In X2)(111y3) 923 -0.0647 
(In x3) (In yi) 931 -0.0075 
(In X3)(In Y2) 932 -0.0023 
(In X3)(111y3) 933 0.0098 
t Ct -0.0914 

Ctt 0.0183 
(lnxi)t 9xlt -0.0056 
(1nx2)t gx2t 0.0040 
(1nx3)t 9x3t 0.0010 
(inyi)t 9ylt -0.0158 
(1ny2)t 9y2t -0.0021 
(1ny3)t 9y3t 0.0179 

0.0194 
0.0223 
0.0223 
0.0151 

0.0112 

0.0223 
0.0047 
0.0145 
0.0042 
0.0084 
0.0169 
0.0059 
0.0171 

0.0076 

0.0007 
0.0054 
0.0023 

0.0062138728 
0.0021915983 
0.010685836 

0.0046178735 
0.010467973 
0.012142793 

0.0056902557 
0.011890464 

0.0032 
0.0014 
0.0036 
0.0120 
0.0032 
0.0047 
0.0046 
0.0011 
0.0036 
0.0010 
0.0036 

(0.2222, 0.2873) 
(-0.1580, - 0.0825) 
(-0.9094, - 0.8363) 
(-0.0763, - 0.0283) 

(-0.0465, - 0.0092) 

(-0.0246, 0.0488) 
(0.0011, 0.0162) 

(-0.0105, 0.0370) 
(-0.0010, 0.0127) 

(-0.0386, - 0.0112) 
(0.3741, 0.4301) 
(0.1069, 0.1264) 
(0.4524, 0.5098) 

(0.0590, 0.0837) 
(0.0087, 0.0111) 
(0.0776, 0.0951) 

(-0.0014, 0.0061) 
(-0.0842, - 0.0639) 
(-0.0158, - 0.0086) 
(-0.0439, - 0.0079) 

(0.0045, 0.0203) 
(-0.0031, 0.0311) 
(0.03789, 0.0790) 
(-0.0042, 0.0152) 

(-0.0848, - 0.0443) 
(-0.0130, - 0.0027) 
(-0.0046, - 0.0002) 

(0.0041, 0.0158) 
(-0.1116, - 0.0708) 

(0.0126, 0.0238) 
(-0.0133, 0.0020) 
(-0.0029, 0.0116) 
(-0.0009, 0.0028) 

(-0.0219, - 0.0098) 
(-0.0037, - 0.0003) 

(0.0120, 0.0240) 
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TABLE 4.4 REGULARITY VIOLATIONS (CONSTRAINED MODEL) 

Regularity conditions 
Regularity violations pdf> 0 

(at the posterior mean) (in inadmissible region) 

Monotonicity 

k1≤0 0% 0% 
0% 0% 

k3 0 0% 0% 
r1≥0 0% 0% 
r2≥0 0% 0% 
T3≥0 0% 0% 

Curvature 

All the principal minors of 

Fare negative, and 0% 0% 

H is positive semidifinite 0% 0% 
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TABLE 4.5.1 AVERAGE TECHNICAL EFFICIENCY 

Average Standard 90% posterior 
Year technical efficiency deviation coverage regions 

2000 0.9341 0.0048 (0.9259, 0.9418) 
2001 0.9249 0.0057 (0.9151, 0.9339) 
2002 0.9294 0.0052 (0.9203, 0.9376) 
2003 0.9277 0.0054 (0.9183, 0.9361) 
2004 0.9243 0.0057 (0.9144, 0.9331) 
2005 0.9269 0.0055 (0.9174, 0.9357) 

TABLE 4.5.2 DISTRIBUTION OF TECHNICAL EFFICIENCY ACROSS BANKS 

Standard 5% 95% 
Year Minimum Maximum deviation percentile percentile 

2000 0.5242 0.9726 0.0335 0.9083 0.9585 
2001 0.5245 0.9719 0.0365 0.8882 0.9531 
2002 0.4589 0.9789 0.0406 0.8855 0.9616 
2003 0.4593 0.9868 0.0441 0.8770 0.9673 
2004 0.3717 0.9779 0.0476 0.8700 0.9638 
2005 0.3508 0.9763 0.0474 0.8773 0.9603 
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TABLE 4.6. RETURNS To SCALE 

Average 
Year returns to scale 

Standard 90% posterior 
deviation coverage regions 

2000 
2001 
2002 
2003 
2004 
2005 

1.0365 
1.0394 
1.0413 
1.0446 
1.0509 
1.0560 

0.0061 
0.0047 
0.0041 
0.0042 
0.0047 
0.0058 

(1.0266, 1.0465) 
(1.0315, 1.0474) 
(1.0346, 1.0485) 
(1.0378, 1.0517) 
(1.0430, 1.0583) 
(1.0462, 1.0659) 
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TABLE 4.7.1. TECHNICAL CHANGE 

Average 
Year technical change 

2000 
2001 
2002 
2003 
2004 
2005 

0.0684 
0.0507 
0.0335 
0.0153 

-0.0051 
-0.0247 

Standard 
deviation 

0.0085 
0.0055 
0.0030 
0.0030 
0.0054 
0.0083 

90% posterior 
coverage regions 

(0.0540, 0.0829) 
(0.0415, 0.0598) 
(0.0282, 0.0383) 
(0.0098, 0.0199) 

(-0.0143, 0.0040) 
(-0.0380, - 0.0102) 

TABLE 4.7.2. TECHNICAL CHANGE ESTIMATES 
FROM ALTERNATIVE MODELS 

Year Model 1 Model 2 Model 3  

2000 0.0682 0.0660 0.0600 
(0.0568, 0.0795) (0.0517, 0.0806) (0.0460, 0.0733) 

2001 0.0504 0.0509 0.0454 
(0.0434, 0.0576) (0.0415, 0.0605) (0.0366, 0.0535) 

2002 0.0333 0.0365 0.0311 
(0.0294, 0.0379) (0.0310, 0.0419) (0.0265, 0.0355) 

2003 0.0151 0.0206 0.0159 
(0.0108, 0.0198) (0.0154, 0.0260) (0.0098, 0.0213) 

2004 -0.0053 0.0018 -0.0014 
(-0.0139, 0.0024) (-0.0075, 0.0111) (-0.0115, 0.0092) 

2005 -0.0248 -0.0157 -0.0179 
(-0.0376, -0.0129) (-0.0303, -0.0013) (-0.0333, -0.0016) 

Note: The 90% posterior coverage regions are shown in parentheses. 



TABLE 4.8. PRODUCTIVITY CHANGE 

Average 
Year productivity change 

Efficiency change Scale effect Technical change 
Estimates Contribution Estimates Contribution Estimates Contribution 

2001 0.0662 
(0.0530, 0.0794) 

2002 0.0311 
(0.0211, 0.0409) 

2003 0.0202 
(0.0107, 0.0296) 

2004 0.0041 
(-0.0087, 0.0166) 

2005 -0.0225 
(-0.0395, -0.0049) 

Average 0.0198 

0.0092 
(0.0013, 0.0172) 

-0.0045 
(-0.0124, 0.0034) 

0.0017 
(-0.0059, 0.0094) 

0.0034 
(-0.0046, 0.0113) 

-0.0026 
(-0.0106, 0.0055) 

13.90% 0.0063 
(0.0051, 0.0076) 

-14.47% 0.0020 
(0.0017, 0.0024) 

8.42% 

9.52% 

6.43% 

0.0032 15.84% 
(0.0027, 0.0037) 

82.93% 0.0059 
(0.0050, 0.0067) 

11.56% 

0.0014 7.27% 

143.90% 

0.0047 -20.89% 
(0.0039, 0.0056) 

0.0044 22.30% 

0.0507 
(0.0415, 0.0598) 

0.0335 
(0.0282, 0.0383) 

0.0153 
(0.0098, 0.0199) 

-0.0051 
(-0.0143, 0.0040) 

-0.0247 
(-0.0380, -0.0102) 

0.0139 

76.59% 

107.72% 

75.74% 

-124.39% 

109.78% 

70.33% 

Notes: The 90% posterior coverage regions are shown in parentheses. 



TABLE 4.9. 

Average 
Year productivity change 

2001 

2002 

2003 

2004 

2005 

Average 0.0266 

PRODUCTIVITY CHANGE WHEN INSTRUMENTAL VARIABLES ARE USED 

Efficiency change Scale effect Technical change 
Estimates Contribution Estimates Contribution Estimates Contribution 

0.0491 
(0.0179, 0.0784) (-0 

0.0360 
(0.0127, 0.0592) (-0 

0.0263 
(0.0062, 0.0463) (-0 

0.0183 
(-0.0039, 0.0407) (-0 

0.0033 
(-0.0268, 0.0333) (-0 

0.0021 

.0150, 0.0192) 

0.0007 

.0162, 0.0178) 

0.0008 

.0163, 0.0178) 

0.0032 
.0140, 0.0206) 

0.0004 
.0173, 0.0179) 

4.29% 

2.06% 

2.97% 

0.0040 
(0.0004, 0.0081) 

0.0020 
(0.0007, 0.0033) 

0.0022 

(0.0010, 0.0036) 

17.48% 0.0029 
(0.0012, 0.0052) 

11.89% 0.0023 

0.0014 7.74% 

8.21% 

5.57% 

8.50% 

0.0430 
(0.0204, 0.0645) 

0.0333 
(0.0192, 0.0472) 

0.0233 
(0.0145, 0.0333) 

16.13% 0.0121 
(-0.0004, 0.0247) 

71.30% 0.0005 
(0.0007, 0.0044) (.0.0207, 0.0214) 

0.0027 21.94% 0.0224 

87.50% 

92.36% 

88.53% 

66.39% 

16.81% 

70.32% 

Notes: The 90% posterior coverage regions are shown in parentheses. 



Figure 4.1. Estimated Distributions of the Shadow Shares 

from Unconstrained Model Evalauted at Mean Prices in 2005 
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Figure 4.2. Estimated Distributions of the Shadow Shares 

from Constrained Model Evalauted at Mean Prices in 2005 
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CHAPTER FIVE 

CONCLUSION 
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This thesis has focused on the productivity and efficiency issues of two U.S. major in-

dustries - manufacturing and banking industries in the context of traditional econometric 

and more recent stochastic frontier approaches. 

In the second chapter of this thesis, I have investigated productivity issues in the U.S. 

(total) manufacturing industry, in the context of three popular locally flexible functional 

forms - the generalized Leontief (GL), translog, and normalized quadratic (NQ) - 

and one globally flexible functional form - the Asymptotically Ideal Production Model 

(AIM). In doing so, I have extended the Barnett et al. (1991) AIM model, by incorporat-

ing (for the first time in the literature) technical change through the factor-augmenting 

efficiency index approach, proposed by Thomsen (2000). I estimated the three locally 

flexible functional forms parametrically and the globally flexible functional form semi-

nonparametrically and treated the curvature property as a maintained hypothesis. The 

results show that the imposition of local curvature on the GL and translog models does 

not always assure theoretical regularity. I then provided a comparison between the NQ 

and AIM cost functions, the only two models that satisfy all three theoretical regular-

ity conditions. I found that the AIM(2) cost function with technical change introduced 

through the factor-augmenting efficiency index approach performs better than traditional 

locally flexible function forms and gives more accurate estimates of total factor produc-

tivity. I also found that the elasticities from the AIM(2) model are generally larger and 

show more variation than those from the NQ model, which is consistent with Gallant and 

Golub (1984) who employed a different globally flexible functional form - the Fourier. 

Finally, I discussed the elasticities based on the AIM(2) model to shed some new light 

on the substitutability/complementarity relationship between capital, labor, energy, and 

materials. 

In the third chapter, I have investigated the cost efficiency of 6,010 commercial banks 

in the U.S. over the period from 1998 to 2005. Cost efficiency of an individual bank 
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is measured relative to a best practice cost frontier that is estimated using stochastic 

frontier techniques. In estimating the best practice cost frontier, I (for the first time in 

this literature) use the globally flexible Fourier functional form, as originally proposed 

by Gallant (1982), and estimation procedures suggested by Gallant and Golub (1984) to 

impose the theoretical regularity conditions on the Fourier cost frontier. I find that failure 

to incorporate monotonicity and curvature into the estimation will result in mismeasured 

magnitudes of cost efficiency and also misleading bank rankings in terms of cost efficiency. 

Regarding cost efficiencies from the theoretical regularity constrained models, I find that 

the largest two subgroups are less efficient than the other subgroups. We also find that all 

twelve asset size classes show a decline in cost efficiency from 1998 to 2004, and then see 

a slight improvement in 2005. Further, I find that the largest four bank subgroups (with 

assets greater than $400 million) experienced significant productivity gains (NTFPG 

> 1%) and the smallest eight subgroups (with assets less than $400 million) experienced 

insignificant productivity gains (NTFPG < 1%) or productivity losses. 

In the fourth chapter, I propose a distance-function based primal Divisia total factor 

productivity growth index. In particular, I show that this Divisia total factor productiv-

ity growth index is equivalent to the conventional dual Divisia total factor productivity 

growth index under the assumption of perfect competition. I further show that, in the 

presence of imperfect competition, it is equivalent to a markup and markdown adjusted 

dual Divisia total factor productivity growth index, which reflects the firm's true mar-

ginal revenue and marginal cost. Based on the primal Divisia total factor productivity 

growth index, I present a decomposition of productivity change, isolating the separate 

contributions of scale economies, technical change, and technical efficiency change. I fol-

low O'Donnell and Coelli (2005) and use the Bayesian approach to impose the theoretical 

regularity conditions on the parameters of a translog output distance function. I then 

applied the methodology to the panel data on 292 large banks in the United States over 
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the period from 2000 to 2005. My results confirm that the monotonicity and concav-

ity constrained model yields more accurate and favorable results than an unconstrained 

model. The results show that total factor productivity grew at an average rate of 1.98% 

for the large U.S. commercial banks over the sample period. However, the estimates of 

total factor productivity growth show a clear downward trend and my decomposition of 

the total factor productivity growth rate indicates that technical change is the driving 

force that leads to the decline in the total factor productivity growth rate. 



194 

Bibliography 

[1] Aigner D.J., C.A.K. Lovell , and P. Schmidt. 1977. "Formulation and estimation 

of stochastic frontier production function models." Journal of Econometrics 6(1), 

21-37. 

[2] Akhigbea A., and J.E. McNulty. 2003. "The profit efficiency of small US commercial 

banks." Journal of Banking and Finance 27(2), 307-325. 

[3] Alam, I.M.S. 2001. "A non-parametric approach for assessing productivity dynam-

ics of large banks." Journal of Money, Credit, Banking 33, 121-139. 

[4] Aliprantis, C.D., W.A. Barnett, B. Cornet, and S. Durlauf. 2007. "Special issue 

editors' introduction: the interface between econometrics and economic theory." 

Journal of Econometrics 136, 325-329. 

[5] Atkinson, S.E., C. Cornwell, and 0. Honerkamp. 2003. "Measuring and decom-

posing productivity change: stochastic distance function estimation versus data 

envelopment analysis." Journal of Business and Economic Statistics 21, 284-294. 

[6] Attfield, C.L.F. 1997. "Estimating a cointegrating demand system." European Eco-

nomic Review 41, 61-73. 

[7] Barnett W.A. 1987. "The microeconomic theory of monetary aggregation". In New 

Approaches to Monetary Economics, Barnett WA, Singleton K (eds). Cambridge 

University Press: Cambridge, UK; 115-168. 

[8] Barnett, W.A. 2002. "Tastes and technology: curvature is not sufficient for regu-

larity." Journal of Econometrics 108, 199-202. 



195 

[9] Barnett W.A., J. Geweke, and M. Wolfe. 1991." Semi-nonparametric bayesian es-

timation of the asymptotically ideal production model." Journal of Econometrics 

49(1/2), 5-50. 

[10] Barnett W.A., and J.H. Hahm. 1994. "Financial-firm production of monetary ser-

vices: a generalized symmetric barnett variable-profit-function approach." Journal 

of Business and Economic Statistics 12(1), 33-46. 

[11] Barnett W.A., M. Kirova, and M. Pasupathy. 1995. "Estimating policy-invariant 

deep parameters in the financial sector when risk and growth matter." Journal of 

Money, Credit, and Banking 27(4), 1402-1430. 

[12] Barnett WA, and M. Pasupathy. 2003. "Regularity of the generalized quadratic 

production model: a counterexample." Econometric Reviews 22(2), 135-154. 

[13] Barnett, W.A. and P. Yue. 1988. "Semi-nonparametric estimation of the asymp-

totically ideal model: the AIM demand system." In Advances in Econometrics, Vol 

VII, Rhodes, G and Fomby, T.B. (eds), Greenwich: CT: JAI Press , 229-252. 

[14] Barnett WA, and G. Zhou. 1994. "Financial-firms' production and supply-side mon-

etary aggregation under dynamic uncertainty." Federal Reserve Bank of St. Louis 

Review 76(2), 133 -165. 

[15] Barten, A.P. 1969. "Maximum likelihood estimation of a complete system of de-

mand equations." European Economic Review 1, 7-73. 

[16] Battese G.E., and T.J. Coelli. 1992. "Frontier production functions, technical ef-

ficiency and panel data: with application to paddy farmers in India." Journal of 

Productivity Analysis 3(1/2), 153-169. 



196 

[17] Battese G.E., and T.J. Coelli. 1995. "A model for technical inefficiency effects in a 

stochastic frontier production function for panel data." Emprirical Economics 20, 

325-332. 

[18] Battese G.E., and G.S. Corra. 1977. "Estimation of a production frontier model: 

with application to the pastoral zone of eastern Australia." Australian Journal of 

Agricultural Economics 21(3), 169-179. 

[19] Bauer, P. 1990. "Decomposing TFP growth in the presence of cost inefficiency, 

non-constant returns to scale and technological progress." Journal of Productivity 

Analysis 1, 287-301. 

[20] Bauer P.W., and A.N. Berger, G.D. Ferrier, and D.B. Humphrey. 1998. "Consis-

tency conditions for regulatory analysis of financial institutions: a comparison of 

frontier efficiency methods." Journal of Economics and Business 50(2), 85-114. 

[21] Berge, C. 1963. Topological Spaces. New York: Macmillan.. 

[22] Berger A.N. 1993. "Distribution-free estimates of efficiency in the US banking in-

dustry and tests of the standard distributional assumptions." Journal of Produc-

tivity Analysis 4(3): 261-292. 

[23] Berger A.N. 2004. "The economic effects of technological progress: evidence from 

the banking industry." Journal of Money, Credit, and Banking 35(2): 141-176. 

[24] Berger A.N., R.S. Demsetz, and P.E. Strahan. 1999. "The consolidation of the 

financial services industry: causes, consequences, and the implications for the fu-

ture." Journal of Banking and Finance 23(2-4): 135-94. 

[25] Berger A.N., and D.B. Humphrey. 1991. "The dominance of inefficiencies over scale 

and product mix economies in banking." Journal of Monetary Economics 28(1): 



197 

117-148. 

[26] Berger A.N., and D.B. Humphrey. 1997. "Efficiency of financial institutions: inter-

national survey and directions for future research." European Journal of Operational 

Research 98(2): 175-212. 

[27] Berger A.N., A.K. Kashyap, and J.M. Scalise. 1995. "The transformation of the 

U.S. banking industry: what a long, strange trip its been." Brookings Papers on 

Economic Activity 1995(2): 55-218. 

[28] Berger A.N., J.H. Leusner, and J.J. Mingo. 1997. "The efficiency of bank branches." 

Journal of Monetary Economics 40(1): 141-162. 

[29] Berger, A.N. and L.J. Mester. 1997. "Inside the black box: what explains differences 

in the efficiencies of financial institutions?" Journal of Banking and Finance 21(7): 

895-947. 

[30] Berger A.N. and L.J. Mester. 2003. "Explaining the dramatic changes in the per-

formance of U.S. banks: technological change, deregulation, and dynamic changes 

in competition." Journal of Financial Intermediation 12(1): 57-95. 

[31] Bernanke B.S. 2006. "Community banking and community bank supervision in the 

twenty-first century." Remarks at the Independent Community Bankers of America 

National Convention and Techworld, Las Vegas, Nevada, March 8. 

[32] Berndt, E.R. and M.S. Khaled. 1979. "Parametric productivity measurement and 

choice among flexible functional forms." Journal of Political Economy 87, 1220-

1245. 

[33] Bikker, J.A. and K. Haaf. 2002. "Competition, concentration and their relationship: 

an empirical analysis of the banking industry." Journal of Banking and Finance 26, 



198 

2191-2214. 

[34] Boyd J, and M. Gertler. 1994. "Are banks dead? or are the reports greatly exag-

gerated." Federal Reserve Bank of Minneapolis Quarterly Review Sum: 2-23. 

[35] Brummer, B., T. Glauben, and G. Thijssen. 2002. "Decomposition of productiv-

ity growth using distance functions: the case of dairy farms in three european 

countries." American Journal of Agricultural Economics 84, 628-644. 

[36] Burnside, C. 1996. "Production function regressions, returns to scale, and exter-

nalities." Journal of Monetary Economics 37, 177-201. 

[37] Burguete, J.F., A. R. Gallant, and G. Souza. 1982. "On unification of the asymptotic 

theory of nonlinear econometric models." Econometric Reviews 1, 151-190. 

[38] Carlaw, K. I. and R. G. Lipsey. 2003. "Productivity, technology and economic 

growth: what is the relationship?" Journal of Economic Surveys 17, 457-495. 

[39] Caves, D.W., and L.R. Christensen. 1980. "Global properties of flexible functional 

forms." American Economic Review 70, 422-432. 

[40] Caves, D.W., L.R. Christensen, and W.E. Diewert. 1982. "The Economic theory of 

index numbers and the measurement of input, output, and productivity." Econo-

metrica 50, 1393-1414. 

[41] Chalfant J.A. and A.R. Gallant. 1985. "Estimating substitution elasticities with the 

Fourier cost function: some monte carlo results." Journal of Econometrics 28(2): 

205-222. 

[42] Charnes A., W.W. Cooper and E. Rhodes. 1978. "Measuring the efficiency of de-

cision making units." European Journal of Operations Research 2, 429-444. 



199 

[43] Christensen, L., D.W. Jorgenson, and L.J. Lau.1975. "Transendendal logarithmic 

utility functions." American Economic Review 65, 367-364. 

[44] Claessens S. and L. Laeven. 2003. "Financial development, property rights, and 

growth." Journal of Finance 58, 2401-2436. 

[45] Clark JA, and T.F. Siems. 2002. "X-efficiency in banking: looking beyond the 

balance sheet." Journal of Money, Credit, and Banking 34(4), 987-1013. 

[46] Coelli, T.J. and S. Perelman. 1999. "A comparison of parametric and non-

parametric distance functions: with application to european railways." European 

Journal of Operational Research 117, 326-339. 

[47] Denny, M., M. Fuss and L. Waverman. 1981. "The measurement and interpretation 

of total factor productivity in regulated industries, with an application to Canadian 

telecommunications". In: Cowing, T., Stevenson (Eds.), Productivity Measurement 

in Regulated Industries. New York: Academic Press, pp. 179-218. 

[48] DeYoung R. 1997. "A diagnostic test for the distribution-free efficiency estimator: 

an example using U.S. commercial bank data." European Journal of Operational 

Research 98(2), 243-249. 

[49] DeYoung R. and I. Hasan. 1998. "The performance of de novo commercial banks: 

A profit eciency approach." Journal of Banking & Finance 22, 565 - 587. 

[50] DeYoung R., I. Hasan and B. Krichhoff. 1998. "The impact of out-of-state entry on 

the cost efficiency of local commercial banks." Journal of Economics and Business 

50(2), 191-203. 

[51] Dickey, D.A. and W.A. Fuller. 1981. "Likelihood ratio statistics for autoregressive 

time series with a unit root." Econometrica 49, 1057-72. 



200 

[52] Diewert, W. E. 1971. "An application of the shephard duality theorem: a general-

ized leontief production function." Journal of Political Economy 79, 481-507. 

[53] Diewert, W.E. 1976. "Exact and superlative index numbers." Journal of Econo-

metrics 4, 115-145. 

[54] Diewert, W.E. 1982. "The duality approach to microeconomic theory." In Kenneth 

J. Arrow and Michael D. Intriligator (eds). Handbook of Mathematical Economics 

Vol. 2, Amsterdam: North Holland, pp. 535-599. 

[55] Diewert, W.E. 2004. Preface. In Functional Structure and Approximation in Econo-

metrics, Barnett WA, Biriner J (eds). Elsevier: Amsterdam. 

[56] Diewert, W.E. and A.O. Nakamura. 2003. "Index number concepts, measures of 

decompositions of productivity." Journal of Productivity Analysis 19, 127-159. 

[57] Diewert, W.E. and D. Lawrence. 1999. "Measuring New 

Zealand's productivity." Wellington, New Zealand Treasury. 

http://www.treasury.govt.nz/workingpapers/1999/99-5. asp 

[58] Diewert, W.E. and D. Lawrence. 2002. "The deadweight costs of capital taxation in 

Australia." In Efficiency in the Public Sector, Kevin J. Fox (ed.). Boston: Kluwer 

Academic Publishers, pp. 103-167. 

[59] Diewert, W.E. and K.J. Fox. July 2004. "On the estimation of returns to scale, 

technical progress and monopolistic markups." Working paper, Department of Eco-

nomics, University of British Columbia. 

[60] Diewert, W.E. and T.J. Wales. 1987. "Flexible functional forms and global curvature 

conditions." Econometrica 55, 43-68. 



201 

[61] Diewert, W.E. and T.J. Wales.1992. "Quadratic spline models for producer's supply 

and demand functions." International Economic Review 33, 705-722. 

[62] Diewert, W.E. and T.J. Wales. 1993. "Linear and quadratic spline models for con-

sumer demand functions." Canadian Journal of Economics 26, 77-106. 

[63] Dorfman, J.H. and C.S. McIntosh. 2001. "Imposing inequality restrictions: effi-

ciency gains from economic theory." Economics Letters 71, 205-209. 

[64] Eastwood B.J. and A.R. Gallant. 1991." Adaptive rules for semi-nonparametric 

estimators that achieve asymptotic normality." Econometric Theory 7(3), 307-340. 

[65] Eichhorn, W.1976. "Fisher's tests revisited." Econometrica 44, 247-256. 

[66] Engle, R.F. and C.W.J. Granger.1987. "Cointegration and error correction: repre-

sentation, estimation and testing." Econometrica 55, 251-276. 

[67] Fare, R, S. Grosskopf, M. Norris, and Z. Zhang. 1994. "Productivity growth, tech-

nical progress and efficiency change in industrialized countries." American Eco-

nomic Review 84, 66-83. 

[68] Fare, R. and S. Grosskopf. 1994. Cost and Revenue Constrained Production. 

Springer. 

[69] Fare, R. and D. Primont. 1990. "A distance function approach to multi-output 

technologies." Southern Economic Journal 56, 879-891. 

[70] Fare, R. and D. Primont. 2000. Multi-Output Production and Duality: Theory and 

Applications. Netherlands: Kluwer Academic Publishers. 

[71] Federal Register. 2000. Volume 65, Number 51, 13867. March 15. 

[72] Federal Register. 2005. Volume 70, Number 5, 1444. January 7. 



202 

[73] Feng, G. and A. Serletis. 2008. "Productivity trends in U.S. manufacturing: evi-

dence from the NQ and AIM cost functions." Journal of Econometrics 142, 281-311 

[74] Feng, G. and A. Serletis. 2008. "Efficiency and productivity of the U.S. banking 

industry, 1998-2005: evidence from the fourier cost function satisfying global reg-

ularity conditions." Journal of Applied Econometrics (forthcoming) 

[75] Fernandez, C., J. Osiewalski, and M.F.J. Steel. 1997. "On the use of panel data 

in stochastic frontier models with improper priors." Journal of Econometrics 79, 

169-193. 

[76] Ferrier G.D. and C.A.K. Lovell. 1990. "Measuring cost efficiency inbanking: econo-

metric and linear prograniming evidence." Journal of Econometrics 46(1/2), 229-

245. 

[77] Førsund, F.R. 1997. "The malmquist productivity index, TFP and scale." Taipei 

International Conference on Efficiency and Productivity Growth, June 20-21. 

[78] Fisher, I. 1922. The Making of Index Numbers: A Study of Their Varieties, Tests, 

and Reliability. Boston: Houghton Muffin. 

[79] Fox, K.J. 1996. "Specification of functional form and the estimation of technical 

progress." Applied Economics 28 , 947-956. 

[80] Fox, K.J. and Diewert, W. E. 1999. "Is the asia-pacific region different? technical 

progress bias and price elasticity estimates for 18 OECD countries 1960-1992." 

In Economic Efficiency and Productivity Growth in the Asia-Pacific Region, Fu, 

T.T., C.J. Huang, and C.A.K. Lovell (eds.), Northampton, MA: Edward Elgar 

Publishing, pp. 125-144. 



203 

[81] Gallant, A.R. 1975. "Seemingly unrelated nonlinear regressions." Journal of Econo-

metrics 3, 35-50 

[82] Gallant, A.R. 1982. "Unbiased determination of production technology." Journal 

of Econometrics 20(2), 285-323. 

[83] Gallant, AR and G. Golub. 1984. "Imposing curvature restrictions on flexible func-

tional forms." Journal of Econometrics 26(3), 295-321. 

[84] Greene, W. 2005. "Reconsidering heterogeneity in panel data estimators of the 

stochastic frontier model." Journal of Econometrics 126(2), 269-303. 

[85] Griffiths, W.E. 2004. "A gibbs sampler for the parameters of a truncated multivari-

ate normal distribution." In Contemporary Issues in Economics and Econometrics: 

Theory and Application, R. Becker and S. Hum (eds.), Cheltenham, U.K.: Edward 

Elgar, pp. 75-91. 

[86] Griffiths, W.E. and D. Chotikapanich. 1997. "Bayesian methodology for imposing 

inequality constraints on a linear expenditure function with demographic factors." 

Australian Economic Papers 36, 321-341. 

[87] Griffiths, W.E., C.J. O'Donnell. and A.T. Cruz. 2000. "Imposing regularity condi-

tions on a system of cost and cost-share equations: a bayesian approach." Australian 

Journal of Agricultural and Resource Economics 44, 107-127. 

[88] Griliches, Z. 2000. R &4 D, Education, and Productivity: A Retrospective. Cam-

bridge, Harvard University Press. 

[89] Guilkey, D., C. Lovell, and R. Sickles. 1983. "A comparison of the performance of 

three flexible functional forms." International Economic Review 24, 591-616. 



204 

[90] Hancock, D. 1991. The Theory of Production for the Financial Firm. Kluwer Aca-

demic: Boston. 

[91] Huang, C.J. and J.T. Liu. 1994. "Estimation of a non-neutral stochastic frontier 

production function." Journal of Productivity Analysis 5(June), 171-180 

[92] Hughes, J.P. and L.J. Mester. 1998. "Bank capitalization and cost: evidence of 

scale economies in risk management and signaling." The Review of Economics and 

Statistics 80, 314-325. 

[93] Jones K.D. and T. Critchfleld. 2005. "Consolidation in the U.S. banking industry: 

is the long, strange trip about to end?" FDIC Banking Review 17(4), 31-61. 

[94] Jorgenson, D.W. and Griliches, Z. 1967. "The explanation of productivity change." 

Review of Economic Studies 34, 249-280 

[95] Kaparakis E., S. Miller and A. Noulas. 1994. "Short-run cost inefficiency of com-

mercial banks: a flexible stochastic frontier approach." Journal of Money, Credit, 

and Banking 26(4): 875-893. 

[96] Kleit, A. and D. Terrell. 2001. "Measuring potential efficiency gains from dereg-

ulation of electricity generation: a bayesian approach." Review of Economics and 

Statistics 83, 523-530. 

[97] Kohli, U.R. 1981. "Nonjointness and factor intensity in U.S. production." Interna-

tional Economic Review 22, 3-18. 

[98] Kohli, U.R. 1982. "Production theory, technological change and the demand for 

imports." European Economic Review 18, 369-386. 

[99] Kohli, U.R. 1991. Technology, Duality and Foreign Trade: The GNP Function Ap-

proach to Modeling Imports and Exports. Ann Arbor, MI: University of Michigan 



205 

Press 

[100] Kohli, TJ.R.1993. "U.S. technology and the specific factors model." Journal of In-

ternational Economics 34, 115-136. 

[101] Kohli, U.R. 1994. "Technological biases in U.S. aggregate production." Journal of 

Productivity Analysis 5, 5-22. 

[102] Koop, G., J. Osiewaiski, and M. Steel.1997. "Bayesian efficiency analysis through 

Individual effects: hospital cost frontiers." Journal of Econometrics 76, 77-105. 

[103] Kroszner R. and P.E. Strahan. 2000. "Obstacles to optimal policy: the interplay 

of politics and economics in shaping bank supervision and regulation reforms." 

Working Paper 7582. National Bureau of Economic Research. 

[104] Kumbhakar, S.C. and C.A.K. Lovell. 2003 Stochastic Frontier Analysis. Cambridge: 

Cambridge University Press. 

[105] Kumbhakara, S.C. and H.J. Wang. 2005. "Estimation of growth convergence using 

a stochastic production frontier approach." Economic Letters 88, 300-305. 

[106] Lau, L.J. 1978. "Testing and imposing monotonicity, convexity, and quasi-convexity 

constraints." In Production Economics: A Dual Approach to Theory and Applica-

tions Vol. 1, M. Fuss and D. McFadden (eds.), Amsterdam: North Holland , pp. 

409-453. 

[107] Lovell, C.A.K., S. Richardson, P. 'I1avers, and L.L. Wood. 1994. "Resources and 

functionings: a new view of inequality in Australia." In Models and Measurement 

of Welfare and Inequality, W. Eichhorn (ed.), Berlin: Springer-Verlag Press, pp. 

787-807. 



206 

[108] Lown C.S., C.L. Osler, P.E. Strahan and A. Sufi. 2000. "The changing landscape 

of the financial services industry: what lies ahead? Federal Reserve Bank of New 

York" Economic Policy Review 6(4), 39-54. 

[109] Magnus J.R. 1985. "On differentiating eigenvalues and eigenvectors." Econometric 

Theory 1(2), 179-191. 

[110] Malmquist, S. 1953. "Index numbers and indifference surfaces." Trabajos de Es-

tadistica 4, 209-242. 

[111] McAllister P.H. and D. McManus. 1993. "Resolving the scale efficiency puzzle in 

banking." Journal of Banking and Finance 17(2/3), 389-406. 

[112] Meeusen W. and J. van den Broeck. 1977. "Efficiency estimation from Cobb-

Douglas production functions with composed error." International Economic Re-

view 18(2), 435-444. 

[113] Mester L.J. 1997. "Measuring efficiency at U.S. banks: accounting for heterogeneity 

is important." European Journal of Operational Research 98(2), 230-242. 

[114] Montgomery L. 2003. "Recent developments affecting depository institutions." 

FDIC Banking Review 15(2), 54-60. 

[115] Morey E.R. 1986. "An introduction to checking, testing, and imposing curvature 

properties: the true function and the estimated function." Canadian Journal of 

Economics 19(2), 207-235. 

[116] Moschini, G. 1999. "Imposing local curvature in flexible demand systems." Journal 

of Business and Economic Statistics 17, 487-490. 

[117] Mundlak, Y. 1996. "Production function estimation: reviving the primal." Econo-

metrica 64, 431-438. 



207 

[118] Ng, S. 1995. "Testing for homogeneity in demand systems when the regressors are 

nonstationary." Journal of Applied Econometrics 10, 147-163. 

[119] Nishimizu, M. and J.M. Page Jr. 1982. "Total Factor Productivity Growth, Tech-

nological Progress and Technical Efficiency Change: Dimensions of Productivity 

Change in Yugoslavia, 1965-78." The Economic Journal 92(368), 920-936 

[120] O'Donnell, C.J. and T.J. Coelli. 2005. "A bayesian approach to imposing curvature 

on distance functions." Journal of Econometrics 126, 493-523. 

[121] Orea, L. 2002. "Parametric decomposition of a generalized malmquist productivity 

index." Journal of Productivity Analysis 18, 5-22. 

[122] Panzar, J.C. and J.N. Rosse. 1987. "Testing for monopoly equilibrium." Journal of 

Industrial Economics 35, 443-456. 

[123] Peristiani S. 1997. "Do mergers improve the X-efficiency and scale efficiency of US 

banks? evidence from the 1980s." Journal of Money, Credit, and Banking 29(3), 

326-337. 

[124] Phillips, P.C.B. 1987. "Time series regression with a unit root." Econometrica 55, 

277-301. 

[125] Phillips, P.C.B. 1995. "Fully modified least squares and vector autoregression." 

Econometrica 62, 1023-1078. 

[126] Phillips, P.C.B. and P. Perron. 1987. "Testing for a unit root in time series regres-

sion." Biometrica 75, 335-346. 

[127] Primont, D. and C. Sawyer. 1993. "Recovering the production technology from the 

cost function." Journal of Productivity Analysis 4, 347-352. 



208 

[128] Ray, S.C. and E. Desli. 1997. "Productivity growth, technical progress and effi-

ciency change in industrialized countries: comment." American Economic Review 

87, 1033-1039. 

[129] Rossi M.A. and C.A. Ruzzier. 2000. "On the regulatory application of efficiency 

measures." Utilities Policy 9(2), 81-92. 

[130] Ryan, D.L. and T.J. Wales.1998. "A simple method for imposing local curvature 

in some flexible consumer-demand systems." Journal of Business and Economic 

Statistics 16, 331-338. 

[131] Ryan D.L. and T.J. Wales. 2000. "Imposing local concavity in the translog and 

generalized Leontief cost functions." Economic Letters 67(3), 253-260. 

[132] Roberts, G.O., A. Gelman and W.R. Gilks. 1997. "Weak convergence and optimal 

scaling of random walk metropolis algorithms." Annals of Applied Probability 7, 

110-120. 

[133] Sato, K. 1975. Production Functions and Aggregation. Amsterdam: North-Holland. 

[134] Schinit, P. 1988. "Estimation of fixed effect Cobb-Douglas system using panel 

data." Journal of Econometrics 37, 361-380. 

[135] Sealey C. and J. Lindley. 1977. "Inputs, outputs, and a theory of production and 

cost at depository financial institutions." Journal of Finance 32(4), 1251-1266. 

[136] Serletis A. and A. Shahmoradi. 2005. "Semi-nonparametric estimates of the demand 

for money in the united states.' Macroeconomic Dynamics 9(4), 542-559. 

[137] Serletis, A. and A. Shahmoradi. 2007. "Flexible functional forms, curvature condi-

tions, and the demand for assets." Macroeconomic Dynamics 11(4), 455 - 486. 



209 

[138] Shephard, R.W. 1953. Cost and Production Functions. Princeton: Princeton Uni-

versity Press 

[139] Shephard, R.W. 1970. Theory of Cost and Production Functions. Princeton: Prince-

ton University Press. 

[140] Simar, L., C.A.K. Lovell, and P.V. Eeckaut. 1994. "Stochastic frontiers incorpo-

rating exogenous influences on efficiency." Discussion Paper No. 9403, Institute de 

Statistique, Universite Catholique de Louvain, Belgium 

[141] Solow, R. 1957. "Technical change and the aggregate production function." Review 

of Economics and Statistics 39 , 312-320. 

[142] Stiroh, K.J. 2000. "How did bank holding companies prosper in the 1990s?" Journal 

of Banking and Finance 24(11), 1703-1745. 

[143] Stock, J.H. and M.W. Watson. 1993. "A simple estimator of cointegrating vectors 

in higher order integrated systems." Econometrica 61, 783-820. 

[144] Terrell, D. 1996. "Incorporating monotonicity and concavity conditions in flexible 

functional forms." Journal of Applied Econometrics 11, 179-194. 

[145] Thomsen, T. 2000. "Short cuts to dynamic factor demand modelling." Journal of 

Econometrics 97, 1-23. 

[146] Tierney, L. 1994. "Markov chains for exploring posterior distributions (with dis-

cussion)" Annals of Statistics 22 , 1701-1762. 

[147] Tsionas, E.G. 2006. "Inference in dynamic stochastic frontier models." Journal of 

Applied Econometrics 21, 669-676. 

[148] van den Broeck, J., G. Koop, J. Osiewaiski, and M. Steel. 1994. "Stochastic frontier 

models: a bayesian perspective." Journal of Econometrics 46, 39-56. 



210 

[149] Wheelock D.C. and P.W. Wilson. 2001. "New evidence on returns to scale and prod-

uct mix among U.S. commercial banks." Journal of Monetary Economics 47(3), 

653-674. 


