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Abstract 

Severe droughts of the twentieth century have had large impacts on economics, so-

ciety, and the environment, especially in the Great Plains. Droughts of the 1930s 

displaced up to 20% of humans in central North America and droughts in 1988-1989 

caused agricultural losses of $35 billion US dollars. Past drought variability should 

be investigated to gain an improved understanding needed for society to anticipate 

and plan for droughts of the future. However, drought is not a phenomenon that 

can be easily measured directly. In this thesis, we study a quantitative way to define 

droughts based on 2000 years diatom-inferred salinity time series from three lakes 

in the Canadian Prairies. Through two simulation studies, we show that the Lomb-

Scargie periodogram can be used to investigate the periodicities of droughts even 

when the drought time series are unevenly spaced and value-truncated, and we carry 

out this investigation for Humboldt Lake in Saskatchewan, Chauvin Lake in Alberta 

and Nora Lake in Manitoba. 
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Chapter 1 

Introduction 

In the 1930s, there was an extreme large-scale drought in North America and it 

was called 'Dust Bowl' (Laird et al., 1996). It reduced agricultural output up to 

40%, contributed to topsoil degradation, caused widespread farm abandonment and 

displaced up to 20% of the regional population (Maybank et al., 1995). In the 

summer of 1988, there was another 'big' drought across United States. This drought 

lasted for several years (Trenberth et al., 1988) and caused agricultural losses of $35 

billion TJSD (Woodhouse and Overpeck, 1998), despite compensatory increases in 

commodity values. 

Since severe droughts have large impacts on economies, society, and the environ-

ment, the following questions become important: Are droughts periodic? If yes, how 

can we find their periods? When will the next drought arrive? How long will the 

next drought last? It is hard to get accurate answers, but it is valuable to spend 

time and money on investigating the behavior of droughts in order to understand 

more about droughts. 

Drought is a normal, recurrent feature of climate, although many erroneously 

consider it a rare and random event. It occurs in virtually all climatic zones, but its 

characteristics vary significantly from one region to another. Drought is a temporary 

aberration; it differs from aridity, which is restricted to low rainfall regions and is a 

permanent feature of climate. Drought originates from a deficiency of precipitation 

over an extended period of time, usually a season or more. This deficiency results in 
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a water shortage for some activity, group, or environmental sector. Drought should 

be considered relative to some long-term average condition of balance between pre-

cipitation and evapotranspiration (i.e., evaporation + transpiration) in a particular 

area, a condition often perceived as "normal". It is also related to the timing (i.e., 

principal season of occurrence, delays in the start of the rainy season, occurrence 

of rains in relation to principal crop growth stages) and the effectiveness (i.e., rain-

fall intensity, number of rainfall events) of the rains. Other climatic factors such as 

high temperature, high wind, and low relative humidity are often associated with 

drought in many regions of the world and can significantly aggravate its severity. 

Research by Donald A. Wilhite, director of the National Drought Mitigation Center, 

U.S., and Michael H. Glantz, the National Center for Atmospheric Research, U.S., 

in the early 1980s uncovered more than 150 published definitions of drought. The 

definitions reflect differences in regions, needs, and disciplinary approaches. Wilhite 

and Glantz categorized the definitions in terms of four basic approaches to measur-

ing drought: meteorological, hydrological, agricultural, and socioeconomic. The first 

three approaches deal with ways to measure drought as a physical phenomenon. The 

last deals with drought in terms of supply and demand, tracking the effects of water 

shortfall as it ripples through socioeconomic systems. 

All these tell us that it is difficult to find a universal way to define droughts, espe-

cially quantitatively. It therefore brings many difficulties to studying droughts quan-

titatively. Many researchers have tried to find a way or method to study droughts 

quantitatively and to catch the characteristics of this phenomenon; however, they all 

studied droughts indirectly. For example, most researchers studied drought through 

studying tree rings (Stockton and Meko, 1983; Stahie and Cleaveland, 1988; Gon-
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zalez et al., 2003). Smakhtin and Hughes (2007) studied droughts by using rain 

fall data and developed a new software package for automated estimation, display 

and analysis of various drought indices - continuous functions of precipitation that 

allow quantitative assessment of meteorological drought events. They use five dif-

ferent indices to quantitatively describe drought based on the data from Southern 

Asia. Laird et al. (1996, 2003) and Yu and Ito (1999) studied drought in the north-

ern Great Plains of the United States by using Diatom-inferred salinity data. Yu 

and Ito (1999) also studied the relationship between solar-oscillation periods and 

drought periods and showed that solar minima are in phase with drought periods in 

the northern Great Plains (using data from Rice Lake in North Dakota) and cold 

periods in Greenland. 

Even though the above drought studies are quantitative, the researchers did not 

define drought directly through the data they used. The reason is that drought is 

not a phenomenon like price, index, sales, rainfall, water level in a reservoir etc., 

that we can find a way to measure directly. In fact, it is not entirely clear how to 

measure drought directly to generate a time series that can reflect the history of 

droughts. Also, similar quantitative studies of drought do not seem to have been 

done for the Canadian Prairies. Therefore, in this thesis, we continue the project 

led by Professor Peter Leavitt (University of Regina) and Professor Gemai Chen 

(University of Regina and University of Calgary), in which droughts were defined 

directly using diatom-inferred salinity data for the Canadian Prairies. We use 2000-

year paleoclimatic records from saline lakes and define droughts as any event in which 

the detrended diatom-inferred salinity exceeded the value recorded for Moon Lake 

in 1988-1989 in standardized unit, the last regional drought; see Chapter 2 for more 
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details. 

Our main interest in this thesis is to explore the periodic information hidden in 

the drought history. The common technique used to study periodicities is spectral 

analysis by calculating the periodogram from the Fourier transformation of the time 

series and searching for sharp peaks in the periodogram. If the time series is evenly 

spaced, the periodogram calculation is simplified and can be quickly evaluated with 

the fast Fourier transform (FFT) (Priestley, 1981.). 

However, our drought time series are unevenly spaced time series. In order for 

FFT to be employed, we must first perform linear interpolation on our data. Unfortu-

nately, interpolation leads to an underestimation of high frequency components in a 

spectrum independent of the employed interpolation scheme (Schulz and Stattegger, 

1997). 

Lomb (1976) developed a method for unevenly spaced time series by using least-

squares fitting of sine curves of various periods to the time series data set. Sub-

sequently, Scargie (1982) extended Lomb's work by defining the Lomb-Scargie pe-

riodogram using periodogram analysis approach and proved that the periodogram 

analysis is exactly equivalent to least-squares fitting of sine curves to the data. Home 

and Baliunas (1986) rediscussed the normalization of the periodogram given by Scar-

gle (1982) and studied some properties of the Lomb-Scargie periodogram. Press and 

Rybicki (1989) proposed a practical mathematical formulation of the Lomb-Scargie 

periodogram. 

Even though the Lomb-Scargle periodogram can be used for unevenly spaced 

time series, we are not sure if we can apply it directly to our drought time series. 

Our drought time series are a bit unlike the usual unevenly spaced time series in 
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that they are value-truncated, unevenly spaced time series which are explained in 

detail in Chapter 2. Therefore, in this thesis, through simulation study in different 

situations, we demonstrate that the Lomb-Scargle periodogram may be used for our 

drought time series under some conditions. 

The plan of this thesis is as follows. In Chapter 2, we describe the method of 

data collection, data cleaning and a quantitative definition of drought. In Chapter 

3, we provide the theoretical background of spectral analysis of time series and the 

Lomb-Scargle periodogram. In Chapter 4, we conduct simulation studies and apply 

the Lomb-Scargie periodogram to study the drought time series defined in Chapter 

2. In Chapter 5, we summarize the thesis and discuss some possible further work. 



Chapter 2 

Data 

2.1 Data Collection 

In central Canada, water-shortage is the largest single source of crop insurance losses, 

yet drought risk assessments are based on fewer than 50 years of data. Unlike most 

researchers using tree rings or rain fall data, in this thesis we use 2000 years diatom-

inferred salinity time series from saline lakes to quantitatively define and study the 

periodic behavior of droughts for the Canadian Prairies. 

High-resolution paleoclimate records were derived from analysis of fossil diatoms 

in saline lakes using standard paleoecological techniques (Fritz 1996, Gasse et al. 

1997). These algae are common and abundant members of the flora of inland saline 

lakes whose distribution is strongly related to lakewater salinity (Cumming et al. 

1995, Gasse et al. 1997) and whose fossil species composition allows quantitative 

reconstruction of past lake-water salinity (Fritz 1996, Laird et al. 1998). In the 

Canadian Prairies, where potential evaporation exceeds precipitation, lake level and 

lakewater salinity are regulated mainly by temperature and the balance between pre-

cipitation and evaporation, the same factors that control drought occurrence (Skin-

remi et al. 1996). During warmer or drier periods, lake levels decline in closed 

basins and dissolved salts concentrate. Conversely, cool wet climates result in high 

lake levels and dilution of concentrated brines. As a result, strong osmotic stresses 

imposed by changes in lakewater salinity are the main determinant of diatom species 

6 
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composition in saline lakes (Gumming et al. 1995, Fritz 1996, Gasse et al. 1997). 

Candidate lakes for climatic reconstructions were identified from aerial pho-

tographs (c.1940-1997) that demonstrated lake-level change in response to known 

climatic events. Short cores of lake sediment were then obtained from about 35 lakes, 

sectioned in 1-cm intervals, and analyzed for preservation of fossil diatoms and evi-

dence of historical changes in saline fossil taxa during the 20th century. Chauvin Lake, 

Alberta (52 -41.41'N, 110'06.02'W), Humboldt Lake, Saskatchewan (52'08.5'N, 

105°0.648'W), and Nora Lake (Lake 100), Manitoba (50°28.30'N, 99°56.19'W), 

satisfied these criteria and were selected for full analyses (see Figure 2.1). 

Figure 2.1: The map of sites of candidate lakes. 

North  
Mtnot.  Grand Forksk\ 

*Far90 Bismarck-M0007 Lake 

---7 

At each site, a 1.75-in piston core encompassing approximate 2000 years was 01)-

tamed and sectioned continuously in 2.5 mm intervals (about 2.7 yr resolution). This 

time period encompasses the present climate system, as well as the most recent major 

climate regime shift (Laird et al. 2003). Fossil diatoms were isolated, identified to 
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Table 2.1: Relationship 

% Variance Study Significant Predictor Variables 
Explained Interval 

Chauvin Lake 28.0 

Humboldt Lake 64.8 

Nora Lake 

1938-1998 spring wheat production, cumulative 
departure from mean precipitation, to-
tal annual evaporation 

1938-1998 flax production, wheat production, an-
nual cumulative evaporation, cumula-
tive departure from mean precipita-
tion, standardized precipitation index, 
Palmer drought severity index 

29.2 1965-1999 oats production, barley production, to-
tal annual precipitation 

species and quantified in alternate samples using standard paleoecological techniques 

(Laird et al. 2003). Sediment ages were determined using radiometric analysis of 

210Pb(10-15 dates core-') and '4C activities (4-6 AMS dates core-1) (Laird et al. 

2003). 

Fossil records from the 2O' century were calibrated against concomitant historical 

records to evaluate lake sensitivity to past droughts and congruence with documented 

crop failures. Canonical correspondence analysis indicated that 28-65% of the past 

variance in diatom species composition was explained by past changes in climate and 

crop production (Table 2.1 (Hall et al., 1999)). 

In addition, diatom-inferred salinity was negatively correlated (r = —0.45 to - 

0.54, P-value. <0.05) with the production of the major regional crop at Humboldt 

Lake, a site with the most extensive historical records (> 60 years). Further, com-

parison of fossil diatom profiles with those of 6'5N and pigments from algae (Rusak et 

al. 2004) demonstrated that while land-use practices influenced the nutrient chem-
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Table 2.2: Basic descriptions for the salinity data from the three lakes 

Lakes Length Max. Value Mm. Value Time Range (years) 

Humboldt Lake 355 24.717 0.621 2000 

Chauvin Lake 381 28.642 0.305 2000 

Nora Lake 312 16.827 0.135 2000 

istry of Humboldt Lake after 1940, these changes did not affect the accuracy of 

climatic reconstructions. In all cases, salinity remained the principle environmental 

factor explaining diatom community variation during the 2011 century (Laird et al. 

2003). Taken together, these historical comparisons show both that fossil diatoms 

accurately recorded changes in climate that influence production of economically im-

portant crops, and that variability in lake chemistry during the last 100 years arose 

in response to climatic variability, rather than changes in land-use and nutrient flux. 

2.2 Preliminary Analysis 

First, we have a look at the salinity data from Humboldt Lake, Chauvin Lake and 

Nora Lake (see Table 2.2 and Figure 2.2). From Figure 2.2 (a), we see that the mean 

pt is not constant over t. From the beginning to around year 400, pt is approximately 

15; and after that, it seems to decrease slowly. This means that the Humboldt Lake 

salinity time series is not stationary in the mean. Similarly, from Figure 2.2 (b) and 

(c), we can conclude that the salinity time series from Chauvin Lake and Nora Lake 

are not stationary as well. 



10 

Humboldt Luke, Saskatchewan 

Year 
(a) 

Chauvin Luke, Albeitu 

Hera Lake, Manitoba 

500 1000 1500 2000 

Year 
(a) 

Figure 2.2: The salinity time series from the three lakes. 

2.2.1 Detrend 

Since there is a certain trend in pt in the three salinity time series, we need to 

eliminate it. A common method to remove a trend is to suppose that the time series 

follows the trend stationary model; that is, the process has stationary behavior 

around a trend, 

(2.1) 

where Xt is our time series (observations), pt denotes the trend, and Yt is a stationary 

process. If we obtain a reasonable estimate of the trend component, say At, then we 
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can work with the detrended series (residuals) 

Yt=xt — Th. (2.2) 

By checking our time series above, we might try two different models for the 

trend component. First, we assume that a straight line is a reasonable model for the 

trend, i.e., 

It = /91+/92t. 

Under this model, we estimate the trend, based on the salinity time series of 

Humboldt Lake as an example, by using the ordinary least squares (LS) method, 

and find 

b1 = 14.785 

b2 = —0.005 

where b1 and b2 are the LS estimates for i3 and /92. Therefore, we have 

It = 14.785 - 0.005t 

for Humboldt Lake. 

To obtain the detrended time series yt, we subtract At from the observations, Xt, 

that is, 

th = Xt - 14.785 + 0.005t, 

and the plot of the detrended time series from Humboldt Lake is given in Figure 

2.3 (a). We see that the trend disappears; namely, the mean of the series becomes 

constant. Similarly, the detrended salinity time series from Chauvin Lake and Nora 

Lake are plotted in Figure 2.3 (b) and (c), respectively. 
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Detrended salinity time series from Humboldt Lake 

Year 
(a) 

Detrended salinity time series from Chauvin Lake 

Delrended salinity time series from Nora Lake 

I I I 

0 500 1000 1500 2000 

Year 
(C) 

Figure 2.3: The detrended salinity time series of the three lakes using simple linear 
regression. 

Second, we assume that a second order polynomial curve is a reasonable model 

for the trend, i.e., 

I-'t =81+92t+/33t2. 

Under this model, we obtain the following LS estimates for the salinity time series 
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from Humboldt Lake, 

b1 = 17.57 

b2 = —0.012 

b3 = 3.168 x icr6 

where b1, b2 and b3 are the LS estimates for /3k, and /33. This leads to 

At = 17.57 - 0.012t + 3.168 x 10 6t2 

and the detrended time series 

th =xt -  17.57 + 0.012t - 3.168 x 10 6t2. 

This detrended salinity time series is plotted in Figure 2.4 together with the 

detrended salinity time series using straight line regression. 

Because b3 is very close to zero, it seems that there is no need to employ the 

second order polynomial trend model. This can also be seen from Figure 2.4. 

Similarly, we apply the same idea to the other two salinity time series from 

Chauvin Lake and Nora Lake. We find that we only need to use straight line as the 

trend model to detrend our salinity time series for all three lakes. 

2.2.2 Defining drought 

Moon Lake, North Dakota, U.S., was studied (Laird et al., 2003) prior to the three 

Canadian Prairies lakes discussed here. As a result of this study, it was suggested, 

using the drought in 1988 1989 as reference, that 1.4 times the standard deviation 

of all positive detrended salinity values can be used as a threshold value to define 

droughts. 
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Detrended Salinity Time Series from Humboldt Lake 

0 500 1000 1500 2000 

Year 

Figure 2.4: The detrended salinity time series of Humboldt Lake using two different 
trend models. 

We illustrate below how to define droughts using Humbodlt Lake as an example. 

Similar results for Chauvin Lake and Nora Lake will be summarized in Table 2.3 and 

Figure 2.7. 

For the detrended Humboldt Lake salinity time series, we find the sample stan-

dard deviation of the positive salinity values to be s = 4.1485. Then, we compute 

the threshold value as 

threshold = 1.4 x s = 5.8079. 

Figure 2.5 can help us understand the definition of drought graphically. In Figure 2.5, 

the horizontal line represents the threshold and those salinity values that are greater 

than the threshold are droughts. 
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Table 2.3: Basic descriptive statistics and thresholds for the three lakes 

Lakes s Threshold 

Humboldt Lake 4.1485 5.8079 

Chauvin Lake 3.3407 4.6769 

Nora Lake 4.4364 6.2109 

Detrended Humboldt Lake Time Series with Threshold Line 

L) 

0 

0-

V 

0 

I I I 

500 1000 1500 2000 

Year 
Threshold: 5.8079 

Figure 2.5: The detrended salinity time series of Humboldt Lake with threshold. 

To emphasize the drought feature, all the salinity values that are less than or equal 

to the threshold value are set to the threshold value and we keep the original values 

unchanged if they are greater than the threshold value. We call the behavior this 

reset value-truncation and this reset time series drought time series. See Figure 2.6 

for a plot. 

The original time series is a salinity time series. It contains information other 

than that pertaining to droughts. For example, the very low salinity values may 

represent floods. If we study the periodicities of the whole original time series and 



16 

Drought Time Series 

0 

I I I 

500 1000 1500 

Year 
No. of> thresh: 46 

Figure 2.6: The drought time series from Humboldt Lake. 

2000 

find some periods, it is hard to say which periods are for droughts and which are for 

floods. Therefore, we isolate the data above our drought threshold to quantitatively 

obtain drought time series and analyze the behavior of droughts by focusing on this 

drought time series. 
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Detrended Chauvin Lake Time Series Detrended Nora Lake Time Series 

U) 

0 

U) 0— Li.J1 
I I I I I I I I 

0 500 1000 1500 2000 0 500 1000 1500 

Year 
Threshold: 4.6769 

Drought Time Series from Chauvin Lake 

0  - 

to - ijtq LLU U) - 

Year 
Threshold: 6.2109 

Drought Time Series from Nora Lake 

2000 

I I I I I I I I 

500 1000 1500 2000 500 1000 1500 2000 

Year 
No. of> thresh: 72 

Year 
No. of> thresh: 16 

Figure 2.7: The detrended salinity and drought time series from Chauvin Lake and. 
Nora Lake with threshold lines marked. 



Chapter 3 

Methodology 

3.1 Introduction 

There are two approaches to analyze time series: time domain approach and fre-

quency domain approach. In time domain, a time series is described by the models 

based on prediction of the present as a regression on the past. In frequency domain, 

which has advantages for periodic processes, a time series is decomposed into dif-

ferent sine and cosine components with different frequencies. It is like a prism that 

splits light into its constituent colors and their strengths that are called the spectrum 

of the light. Shumway and Stoffer (2006) showed that any stationary stochastic pro-

cess (time series) may be thought of, approximately, as a random superposition of 

sines and cosines oscillating at various frequencies. 

Since we are interested in investigating the periodic behavior of drought, this 

thesis will focus on a specific frequency domain approach, namely, estimation of 

the spectrum by means of periodogram, which is often called spectral analysis. A 

fundamental objective of spectral analysis is to identify the dominant frequencies 

in a time series and to find an explanation of the phenomenon from which the 

measurements were taken. It may be done by searching for sharp peaks in the 

periodograms calculated from the Fourier transformation of the time series. If the 

time series is evenly spaced, the periodogram carries simple statistical behavior. Its 

calculation is simplified and can be quickly evaluated with the fast Fourier transform 

18 
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(FFT) (Priestley, 1981). 

However, palaeoclimatic data sets, such as the salinity time series we have, are 

normally unevenly spaced time series, which is also true for our drought time se-

ries. This is often a product of the non-linear relationship that commonly exists 

between depth and time, resulting in the transformation of a sampling regime that 

is equidistant in the depth domain into a non-uniformly spaced series in the time 

domain. 

One way to solve this problem is to linearly interpolate the time series into an 

evenly spaced time array before applying the FFT. Unless performed carefully such 

an interpolation procedure can lead to aliasing of the signal (Schulz and Stattegger, 

1997) resulting in the introduction of spurious components that may influence or 

even dominate the signal in the frequency domain. 

Another way to solve this problem is to find an alternative method to use. For-

tunately, there exists an alternative approach, which was first introduced in astro-

physics called the Lomb-Scargie preiodogram that can overcome the problem caused 

by uneven spacing. 

Astronomers could not always control viewing times, telescope availability and 

the position of an object in the sky—all of which is reminiscent of similar problems 

in using palaeoclimatic data sets. When studying variable stars in astronomy, Lomb 

(1976) sought a way to find periodicities in unevenly spaced time series by using 

least-squares fitting of sine waves of various periods to the data. Scargie (1982) ex-

tended Lomb's work by defining the Lomb-Scargie periodogram using periodogram 

analysis approach and proved that the periodogram analysis is exactly equivalent 

to least-squares fitting of sine curves to the data. Home and Baliunas (1986) re-
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discussed the normalization of the periodogram given by Scargie (1982) throught 

clarifying the proper definition of the variance that is used to normalize the Lomb-

Scargle periodogram and studied some properties of the Lomb-Scargie periodogram 

as well. Press and Rybicki (1989) proposed a practical mathematical formulation of 

the Lomb-Scargie periodogram which was implemented in C (Press et al., 2002). 

3.2 Spectral Analysis of Time Series 

Spectral analysis primarily refers to the process of calculating and interpreting a 

spectrum for deciphering information from time series in the frequency domain. To 

carry out a spectral analysis, periodogram is the most commonly used quantity to 

detect periodic components of signals hidden in noise when the observed times are 

evenly or unevenly spaced. Periodogram has its population counterpart called the 

power spectrum, and its estimation is a main goal of spectral analysis. 

From now on, all time series will be referred to as stationary time series except 

when otherwise stated. We use a set of real valued functions of time t 

X,=X(t) 

to represent a phenomenon, and we use 

fxt, j=1,2,...,N} 

to represent a time series of size N which is arbitrarily sampled (evenly or unevenly) 

from X(t). If the observed times are evenly spaced at interval h, it is customary to 

take h = 1, and tj = j. So, we write evenly spaced time series of size N as 

{xj:j=1,2,...,NJ. 
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A cosine wave of time t is represented by 

A cos(2irwt), 

where A is the amplitude and w is the frequency. A sine wave is defined similarly. 

We measure frequency, w, by cycles per time unit and discuss the implications 

of certain frequencies in terms of the problem context. Of descriptive interest is the 

period T of a time series, defined as the number of points in a cycle, i.e., 

T=!. 

We call the combination of a sine wave and a cosine wave a harmonic function, 

namely, 

A cos(2irwt) + B sin(2irwt). 

When we do spectral analysis on a time series {x t, j = 1,2,3,.. . , N}, we use 

the following model, 

= gt + st, for j = 1, 2,..., (3.1) 

where g,, are signals and et, are random observational errors, which are often called 

noise. Hereafter, we assume that the signal will be taken to be strictly periodic and 

the errors at differnt times are independent; that is, eti is statistically independent 

of et, for i j. We also assume that et, is normallr distributed with zero mean and 

constant variance 

3.2.1 Orthogonal Transformation of Time Series 

Spectral analysis can be viewed in terms of an orthogonal transformation. The basic 

idea behind this view is to decompose a time series into a number of components, 
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each one of which can be associated with a particular frequency. It is similar to 

vector decomposition in Calculus and Linear Algebra: an n-dimensional vector can 

be represented as a linear combination of n orthogonal vectors in n-dimensional 

space. 

Let {f (t) : i = 1, 2,. . . , N} be a set of real-valued functions such that 

1, ifi=j; 

t=i I 0, otherwise. 
(3.2) 

We then analyze our time series with respect to the basis provided by {f1(t)} by 

computing the transformation coefficients ai defined as 

aj=Extfj(t), i=1,2,...,N. (3.3) 

Given the transformation coefficients, we reconstruct our time series from the a 

using 
N 

xt=af(t). (3.4) 
1=1 

If the process {X} represents some physical process such as a current or voltage, 

the total energy dissipated by the process in any time interval is equal to the sum 

of the amounts of energy dissipated by each component. Therefore, the key to a 

meaningful analysis is to pick a transformation such that the ai have some physical 

interpretation so that the energy decomposition with respect to these ai is relevant 

to our time series. There are several orthogonal transformations that can do so. 

The Fourier transformation, which provides the basis for spectral analysis, is such a 

transformation. 



23 

3.2.2 The Fourier Transform 

The Fourier transform of a time series is an orthogonal transformation in which the 

ai are 'stretched' and normalized versions of the trigonometric functions cos(t) and 

sin(t). Stretching is accomplished by introducing the notion of angular frequency 

2irw to produce cos(2irwt) and sin(2irwt). 

We note that there are the following relationships between cosine and sine func-

tions, 

{ 
jti+T T c0s2(2irnwt)dt = 1t1+T sin2 (2irnwt)dt = 

J ti+T cos(2irmwt) cos(2irnwt)dt = j i+T sin(2irmwt) sin(2irnwt)dt = 0, m 

ftj+T sin(2irmwt) cos(2irnwt)dt = 0, 

(3.5) 

where T = is the period of the sine and cosine functions and m,n are integers. 

The equations (3.5) illustrate that sine and cosine are orthogonal in the interval 

(t1, t1 + T) for any t1. Therefore, in this interval, a combination of cos(2irnwt) and 

sin(2irnwt) for all n = 0, 1,2,... forms a set of orthogonal functions. When m goes 

to infinity, it is a complete orthogonal set. 

Therefore, any real-valued periodic function g, (t), which is a deterministic func-

tion of t with period T, may be expressed as an infinite linear combination of sine 

and cosine functions, 

00 

an cos(2irnwt) + bn sin(2irnwt)), (3.6) 
n=1 

1 
where T = -. 

w 

The expression on the right-hand side of (3.6) is called a Fourier series, and the 

constants {a} and {b} are called Fourier coefficients. We also call the right-hand 
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side of (3.6) the sum of harmonics. 

3.2.3 Periodogram for evenly spaced time series 

An evenly spaced time series {x : j = 1, 2,. . . , N} can be expressed by the Fourier 

series model as 

K 

Xj = a0 + 
i=:1 

(ai cos(2irwj) + j3j sin(2lrwij)) + ej, (3.7) 

where w, = is the z 1 harmonic of the fundamental frequency , K  - 2 N — i if 

N is odd, and K = if N is even. We treat (3.7) as a multiple regression model, 

and use the least-squares method to find the estimates of a0, ai and Oi as follows: 

If N = 2q + 1 is odd, where q is an integer, 

= xi, 

= xcos(2irwj), 
i=1 
hT 

Exjsin(2irwjj), 

where. i= 1,2,... ,q. 

Then, we define the periodogram as consisting of q = (N - 1)/2 values 

I(w)=(a+b), i=i,2, ... ,q. 

(3.8) 

(3.9) 

If N = 2q is even, where q is an integer, equations (3.8) and (3.9) will remain the 
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same only for i = 1, 2,..., (q — 1), and for i=q, 

aq 
3= 

bq = 0, 

I(wq) = 1(0.5) = N a. 

(-1)x, 

See Box et al. (1994) for details. 

Once we have a0, {a} and foil, i = 1,2,. . . , q, estimated under model (3.7), we 

have a mathematical expression of the decomposition of the time series. It is still not 

easy to use it to detect the dominant frequencies. Periodogram, on the other hand, 

gives us an effective way. If the phenomenon X(t) contains a sinusoidal component 

of frequency Wr, then at and near Wr, a + bl makes a large contribution to X(t). 

Hence the presence of a sinusoid is indicated by a large value of I near one value of 

w, i.e., as a distinct narrow peak in the spectrum. 

3.3 Periodogram for Unevenly Spaced Time Series 

Here we introduce the Lomb-Scargle periodogram using the periodogram approach 

instead of the least-squares approach. 

3.3.1 Lomb-Scargie periodogram 

Given a time series {x j = 1, 2,. . . , N}, the discrete Fourier transform (DFT) is 

defined as 
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d(w) = xe_2t1 + xt2e_2t2 + + xe 

= xt3e" 

(By Euler formula e0 = cos 0 + i sin 0) 

= X 3 (cos(-2irwtj) + i sin(_2irwt)) 

= X (cos(2irwt) - i sin(2irwtj)). 

The periodogram is then conventionally defined as 

1(w) = jId(w)12 

1 .2 
= - t -2irzwtjNt5 

3=1 

= 2 
xtj (cos(27rwt3) - isin(2lrwtj))  

= 2 x cos(2irwt3) - x sin(2irwt3)  

IV 

= (( Xt1 cos(2lrwti)) + (E xt sin(2irwt3) 
) 2) 

(3.10) 

(3.11) 

(Scargie, 1982). 

1(w) may be evaluated for any value of the frequency w. For evenly spaced time 

series {x3 : j = 1, 2, . . . , N}, equation (3.11) may be rewritten as 

1(w) yId(w)12 

N 

N 1_ j(cos(2irwj) _isin(27rwj)) 2 
3=1 

2 NT 

= (\'(1 xj cos(27rw)) + (E xj sin(2irwj) 
) 2) 

(3.12) 

There are two problems with periodogram (3.11) and (3.12). First, 1(w) is very 

noisy even when the data are only slightly noisy, and the noise does not diminish 
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in amplitude with increasing sample size. Second, there is spectral leakage. This 

means that for a sinusoidal signal at a given frequency, Wr, the spectrum in the 

periodogram not only appears at Wr, but is also present in other frequencies. This 

problem is inherent to frequency analysis with a finite amount of data. Aliasing is 

one particular leakage which is a leakage of spectrum from high frequencies to much 

lower frequencies. Fortunately, anything from a slight to major unevenness in the 

sampling substantially reduces aliasing. 

Due to these two problems, Scargle (1982) developped a slightly modified peri-

odogram 

1(w)
-  . { [E31 Xt3 cos(2irw(t1 - r))12 Xj sin(27rw(t - T))] 2 

- cos2(2irw(t1 - r)) sin 2(2irw(tj - r)) J' (3.13) 
3=1 

where r is defined through 

tan(4irwi-) = ( sin(4irwti)) /  ( cos(4lrwti)). (3.14) 

Like periodogram (3.11), (3.13) reduces to equation (3.12) if the sampling spac-

ing is even and has time-translation invariance. Beyond this, the Lomb-Scargie 

periodogram (3.13) has two other useful properties. First, it is equivalent to the 

least-squares fitting of sine waves. Second, and the most important, it has a simple 

statistical property that if the signal Xt, is pure Gaussian noise, then 1(w) is expo-

nentially distributed. This exponential distribution provides a convenient estimate 

of the probability that a given peak is a true signal, or it is the result of randomly 

distributed noise. 



28 

3.3.2 Distribution of 1(w) 

To study the distribution of 1(w), we rewrite (3.13) as 

where 

1(w) = (C2 (W) + S2 (W)), 

C(w)=A( 

S(w)=B( 

) 

) 

N 

j=1 

N 

3=1 

Xtj cos (2'irw(t - 

xtj sin (2irw(tj - r)) 

A(w) = (cos2 (2irw(t - ,r)) 

2(w) = ( sin  (2irw(t - ,r)) 
j=1 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

If {X t,} are iid normally distributed with zero mean and constant variance v.2, 

then C(w) is a normal random variable as well since C(w) is a linear combnation of 

independent and normally distributed random variables, and 

Ic = E(C(w))=O, 

= Var(C(w)) 

= Var (A (w)E Xtj cos (2w(t - r)) 
=1 

= A(w)2u2 c0s2 (2w (t - r)) 

(Since {X,} are Ed normally distributed with common variance or 2.) 

= cr2 (by equation (3.18)). 
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Similary, S(w) is a normal random variable with 

Is 

as 

= E(S(w))=O, 

= Var(S(w)) 

= Var (B (w) xt, sin (2w (t - r)) 

= B(w)2a2 )'sin2 (2irw(tj - r)) 

j=1 

(Since IX t,} are iid normally distributed with common variance 0.2.) 

=a 2 (by equation (3.19)). 

Therefore, 1(w) = (C2(W) + 82(w)) has the distribution function 

P(I(w)<z)=-iexP(\_-) z>O. 

Thus, if we define the normalized periodogram IN(w) as IN(w) = 1(w)/a2, then 

IN (w) has the standard exponetial distribution with the density function f(z) = 

3.3.3 Detecting periodic components 

Our goal of using the Lomb-Scargle periodogram is to detect periodic components 

from a set of time series data. Therefore, we desire to find a power spectrum level 

z0 so that we can claim the detection of a sinusoidal component when the calculated 

power spectrum exceeds this level, and we will be wrong with only a small probability, 

say a, correspondingly. 

Suppose that the time series data are pure Gussian noise, then at any frequency 

wr, we have P (IN (wr) <z) = 1 - e_z. Let w1, w2, . . . , wN be a set of frequencies in 

a Lomb-Scargie periodogram such that IN (w,), r = 1) 2,. . . , Nlfld, are independent, 
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then for any power spectrum level z0, we have 

P ( mac IN (W,) ≥ zo) = 1 - (1 - e_z0)d . 
l<r<Nj fld 

If we let a equal the probability in equation (3.20), we get 

(3.20) 

zo = - ln(1 - (1 - a) h/'mnd) (3.21) 

We call z0 the critical value at level a, and call a the significance level. In Scargie 

(1982), a is called the false alarm probability. 

From (3.21), if a peak at frequency Wr in a Lomb-Scargle periodogram is as high 

as or higher than z0, we report a sinusoidal component at frequency Wr with (1— 

confidence. 

Home and Baliunas (1986) performed extensive Monte Carlo simulations and 

gave a simple least squares formula to estimate the number of independent frequen-

cies N1d from the number of observations, N, in a time series: 

N1d —6.362 + 1.193N + 0.00098N2. 

To illustrate the above procedure, let the periodic signal be cos(2ir0.005t) (Fig-

ure 3.1 (a)), which is contaminated by noises from N(0,22) (Figure 3.1 (b)). We 

randomly take a sample of size 200 from the contaminated signal. It is an unevenly 

spaced time series (Figure 3.1 (c)). The Lomb-Scargle periodogram caculated from 

the 200 contaminated observations (Figure 3.2) shows that there is a peak at fre-

quency 0.005 that is higher than the critical value at a = 0.05 level of significance. 

That is, we detect the periodic signal with frequency w = 0.005 with 95% confidence. 
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Figure 3.1: Illustration of the use of the Lomb-Scargle periodogram in detecting 
periodic component—data plots. 
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Figure 3.2: Illustration of the use of the Lomb-Scargle periodogram in detecting 
periodic component—periodogram. 



Chapter 4 

Analysis and Results 

We plan to use the Lomb-Scargie periodogram to analyze the drought time series 

from the three lakes to see whether the droughts in the Canadian Prairies have any 

periodic pattern. As mentioned in Chapter 2, our drought time series are unevenly 

spaced and value-truncated time series. We know that the Lomb-Scargie periodogram 

works for stationary unevenly spaced time series. However, we are not sure whether 

it works for value-truncated time series as well. 

In this chapter, we first simulate value-truncated time series in two different 

situations and check to see whether the Lomb-Scargie periodogram may be used to 

detect periodic signals. Then we apply the Lomb-Scargle periodogram, to our real 

drought time series. 

4.1 Simulation One 

We simulate drought time series according to the following model: 

X(t) = 81(t) + S2(t) + Noise(t), 

where S1(t) and S2(t) are pure sinusoidal waves with frequencies w1 and W2, respec-

tively, and t represents time. We use capital letters to represent the model and lower 

case letters to denote the specific simulated series. 

33 
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4.1.1 Simulation set up 

Sinusoidal components 

Case 1: 

X1(t) = S11 (t) + S12 (t) + Noise(t), 

where the sinusoidal components are 

S11 (t) = 3cos(2ir0.005t), 

S12 (t) = 7cos(2ir0.02t+ ff ). 

Case 2: 

(4.1) 

X2(t) = S21 (t) + S22 (t) + Noise(t), (4.2) 

where the sinusoidal components are 

S21 (t) = 3c0s(2ir0.005t), 

S22 (t) = 3cos(2ir0.02t+). 

The frequencies 0.005 and 0.02 used in Case 1 and Case 2 correspond to periods 

of 200 years and 50 years, respectively. Evenly spaced time series of length 2000 are 

first generated as the sum of the sinusoidal components, where t E {1, 2,... 120001. 

Noise addition 

Through the addition of noise it is possible to reduce the signal-to-noise ratio by 

increasing the variance of the noise. Here we assume the noise is normally distributed 

with mean 0 and variance ojse, i.e., Noise N(0, °ojse) We simulate 2000 iid noise 

terms from N(0, Uojse) and add them to the 2000 pure sinusoidal values already 

generated and denote the result by {Xt t = 1, 2, . . , 2000}. 
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Table 4.1: Levels for factors 5n01se, m and TC 

Factor Levels in Case 1 Levels in Case 2 

anojse 2,3,5,7 1,2,3,4 

n 355, 300, 200 355,300 

TC 0.5, 1, 1.4, 2, 2.2 0.5, 1, 1.4, 2, 2.2, 2.4 

Taking arbitrarily spaced samples 

We randomly take a sample of size n, fxt, j = 1, 2,.. . , n} from {Xt : t = 

1, 2, . . . , 2000}. Since this sample is a random sample, the spacing for {Xt3 : j = 

1,2,...,n} is uneven. 

Value-truncation 

We use different threshold values to truncate the unevenly spaced time series {x 

j = 1, 2,. . . , n} to obtain unevenly spaced and value-truncated time series, ytj 

j = 1, 2,. . . , n}. Since we use 1.4 times SD of the positive detrended values as the 

threshold value to define droughts, in our simulation we use different values (denoted 

by TC hereafter) to time SD to set up different threshold values. 

Processing simulation 

We consider Unoise, n and TC as factors that may affect the period detection for 

the simulated unevenly spaced and value-truncated time series by using the Lomb-

Scargie periodogram. The levels that each factor will take are listed in Table 4.1. 

In each combination of °n01se, n and TC, for example, crnojse = 3, n = 300 and 

TC = 1.4, we run the above steps 500 times. For each run we compute the Lomb-

Scargel periodogram for the simulated time series, and in the 500 runs we count 

the percentage of times the known built-in frequencies are detected. We call this 
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percentage the successful detection rate (SDR). For some combinations, we conduct 

5000 runs to see the convergence trend of the successful detection rate. 

Note here that when we say a built-in frequency w is detected, we mean that 

the Lomb-Scargie periodogram contains a 95% confident peak at a frequency w' such 

that w' is in the interval w ± 0.05w. 

4.1.2 Simulation results 

Case 1: 

The simulation results for Case 1 are listed in Table 4.2 to Table 4.6. We report four 

different kinds of SDR, namely, SDR for S11, SDR for S12, SDR for both S11 and 

S12 and SDR for either S11 or 512. Table 4.2 to Table 4.5 are based on 500 runs and 

Table 4.6 is based on 5000 runs. From these tables, we can clearly see that all three 

factors °n018e, n and TO affect the SDR significantly. For example, if we decrease the 

sample size from 300 to 200, when we keep 0no1se and TO at low levels, say 2 and 

0.5, respectively, the SDR for S11 will drop sharply from 90.8% to 54.2%. If we keep 

sample size n at high levels, say 355, and keep TO = 1.4, then when increases 

from 3 to 5, the SDR for S11 drops from 81.6% to 19.8%. It is also clear to see that 

when TO increases SDR decreases. 

From Table 4.6, we see that the SDRs based on 5000 runs are only slightly 

different from those based on 500 runs. The largest difference is less than 1%. This 

means that the results based on 500 runs are representative. 

It is easier to express how strong the noise is relatively to the signal by using 

Signal-to-Noise Ratio (SNR). In our case, the signal is the composite of the two 

sinusoidal components. The SNRs are listed in Table 4.7. The last line is in dB 
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Table 4.2: Successful Detection Rates in Case 1-Part 1 

detect signal 1; 500 runs 

Standard Deviation of Noise (unoise)  
SDR(%) 2 3 5 7 

Sample Size (n) = 355 
TO = 0.5 
TC= 1.0 
TC= 1.4 
TC=2.0 
TC=2.2 

Sample Size (n) = 300 
TO = 0.5 
TO = 1.0 
TO= 1.4 
TO = 2.0 
TO = 2.2 

Sample Size (n) = 200 
TO = 0.5 
TC= 1.0 
TC= 1.4 
TC=2.0 
TC=2.2 

98.4 
99.2 
99.4 
98.0 
92.8 

90.8 
92.2 
92.0 
84.4 
73.8 

54.2 
57.8 
57.0 
37.2 
24.2 

89.4 
87.8 
81.6 
56.2 
39.6 

73.0 
69.6 
60.0 
32.6 
18.2 

34.8 
30.4 
21.8 
6.2 
2.2 

43.6 
31.8 
19.8 
6.0 
3.4 

26.2 
15.6 
7.2 
1.4 
0.6 

8.6 
4.8 
1.8 
0.0 
0.0 

15.6 
8.8 
5.0 
0.4 
0.2 

5.8 
2.2 
1.4 
0.0 
0.0 

2.8 
0.8 
0.2 
0.0 
0.0 
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Table 4.3: Successful Detection Rates in Case 1-Part 2 

detect signal 2; 500 runs 

Standard Deviation of Noise (0 noise)  

SDR(%) 2 3 5 7 
Sample Size (m) = 355 

TC = 0.5 100 100 100 100 
TC=1.0 100 100 100 100 
TC = 1.4 100 100 100 99.8 
TC = 2.0 100 100 99.8 76.6 
TO = 2.2 100 100 90.4 50.6 

Sample Size (n) = 300 
TO = 0.5 100 100 100 100 
TO = 1.0 100 100 100 99.8 
TO = 1.4 100 100 100 98.6 
TO = 2.0 100 100 94.0 57.6 
TO = 2.2 100 99.4 71.6 25.6 

Sample Size (n) = 200 
TO = 0.5 100 100 100 98.8 
TO = 1.0 100 100 99.6 90.0 
TO = 1.4 100 100 97.8 66.8 
TO = 2.0 99.6 94.6 41.8 10.2 
TO = 2,2 96.6 68.4 17.0 1.8 
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Table 4.4: Successful Detection Rates in Case 1-Part 3 

detect both signals; 500 runs 

Standard Deviation of Noise (noise)  
SDR(%) 2 3 5 7 

Sample Size (m) = 355 
TC=0.5 
TC= 1.0 
TC=1.4 
TC=2.0 
TC=2.2 

Sample Size (n) = 300 
TC=0.5 
TC= 1.0 
TC=1.4 
TC=2.0 
TC=2.2 

Sample Size (n) = 200 
TC-0.5 
TC=1.0 
TC=1.4 
TC=2.0 
TC=2.2 

98.4 
99,2 
99.4 
98.0 
92.8 

90.8 
92.2 
92.0 
84.4 
73.8 

54.2 
57.8 
57.0 
37.2 
23.8 

89.4 
87.8 
81.6 
56.2 
39.6 

73.0 
69.6 
60.0 
32.6 
18.2 

34.8 
30.4 
21.8 
6.0 
2.0 

43.6 
31.8 
19.8 
6.0 
3.4 

26.2 
15.6 
7.2 
1.2 
0.6 

8.6 
4.8 
1.8 
0.0 
0.0 

15.6 
8.8 
5.0 
0.0 
0.0 

5.8 
2.2 
1.4 
0.0 
0.0 

2.8 
0.8 
0.2 
0.0 
0.0 
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Table 4.5: Successful Detection Rates in Case 1-Part 4 

detect either signal; 500 runs 

Standard Deviation of Noise (noise)  
SDR(%) 2 3 5 7 

Sample Size (n) = 355 
TO = 0.5 100 100 100 100 
TC=1.0 100 100 100 100 
TO = 1.4 100 100 100 99.8 
TO = 2.0 100 100 99.8 77.0 
TO = 2.2 100 100 90.4 50.8 

Sample Size (n) = 300 
TO = 0.5 100 100 100 100 
TO = 1.0 100 100 100 99.8 
TO = 1.4 100 100 100 98.6 
TO = 2.0 100 100 94.2 57.6 
TO = 2.2 100 99.4 71.6 25.6 

Sample Size (n) = 200 
TO = 0.5 100 100 100 98.8 
TO = 1.0 100 100 99.6 90.0 
TO = 1.4 100 100 97.8 66.8 
TO = 2.0 99.6 94.8 41.8 10.2 
TO = 2.2 97.0 68.6 17.0 1.8 
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Table 4.6: Successful Detection Rates in Case 1-Part 5 

detect signal 1; 5000 runs 

SDR (%) 
(noise)  

3 5 7 
Sample Size (n) = 355 

TO = 0.5 88.68 44.54 15.64 
TO = 1.0 86.82 32.38 8.52 
TO = 1,4 81.10 20.52 4.24 
TO = 2.0 56.16 5.22 0.60 
TO = 2.2 40.40 2.44 0.28 

detect signal 2; 5000 runs 

Sample Size (n) = 355 
TC=0.5 100 100 100 
TO = 1.0 100 100 100 
TO = 1.4 100 100 99.58 
TO = 2.0 100 99.04 77.26 
TO = 2.2 99.96 91.20 49.92 

detect both signals; 5000 runs 

Sample Size (n) = 355 
TO = 0.5 
TO = 1.0 
TO = 1.4 
TO = 2.0 
TO-2.2 

88.68 
86.82 
81.10 
56.16 
40.40 

44.54 
32.38 
20.52 
5.18 
2.36 

15.64 
8.52 
4.22 
0.40 
0.14 

detect either signal; 5000 runs 

Sample Size (n) = 355 
TO = 0.5 100 100 100 
TO = 1.0 100 100 100 
TO = 1.4 100 100 99.60 
TO = 2.0 100 99.08 77.46 
TO = 2.2 99.96 91.28 50.06 
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Figure 4.1: Successful detection rate for Signal 1 in Case 1. 

unit, which is 10 times log10 of the line labeled mean. The larger the value is, the 

more power the signal contains compared with the noise. The negative value in dB 

means the power carried by the signal is less than the power carried by the noise, 

which means the data is very noisy. Using SNR, we display the successful detection 

rates for various combinations of 0noise, n and TC in Figure 4.1 to Figure 4.4. In 

each figure, a 'solid line' represents 8.60dB SNR, a 'dashed line' represents 5.08dB, 

a 'dotted line' represents 0.64dB and a 'dotdash line' represents -2.28dB. 

To summarize the results in Case 1, we conclude that for SNR no less than 

5.08dB, n = 355 (the length of the drought time series from the three lakes) and 
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Figure 4.3: Successful detection rate for both Signal 1 and Signal 2 in Case 1. 

The simulation results are listed in Table 4.8 and Table 4.9, and are displayed in 

Figure 4.5 and Figure 4.6. SNRs corresponding to the 4 values of 7noise are listed 

in Table 4.10. In Figure 4.5 and Figure 4.6, a 'solid line' represents 9.54dB SNR, a 

'dashed line' represents 3.52dB, a 'dotted line' represents 0dB and a 'dotdash line' 

represents -2.50dB. 

From Table 4.8 and Table 4.9 and Figure 4.5 and Figure 4.6, we can see that the 

SDR for 821 is now quite similar to the SDR for 522. Compared to the results in 

Case 1, the SDR for both 521 and S22 and for either 521 or S22 is higher than the 

SDR for both S11 and S12 and for either or S12, respectively. For SNR no more 
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Figure 4.4: Successful detection rate for either Signal 1 or Signal 2 in Case 1. 

than 0dB, n = 355 and threshold values no more than 1.4 times SD, the SDR is 

above 94% in Case 2. 

4.2 Simulation Two 

The simulation results in the last section show that the Lomb-Scargie periodogram 

has the potential to detect periodicity buried in unevenly spaced and value-truncated 

time series. In this section we want to set up a new simulation having the features 

of the salinity time series from the three lakes in the Canadian Prairies. By doing 

so, we move to a better position to analyze the real time series from the three lakes 
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Table 4.7: Signal-to-Noise Ratios in Case 1 

for case 1 

Standard Deviation of Noise (Ofloj) 

2 3 5 7 
Signal-to-Noise Ratio 

mean 7.2472 3.2210 1.1596 0.5916 
95% C.I. (7.2401, 7.2544) (3.2178, 3.2242) (1.1584, 1.1607) (0.5910, 0.5922) 
(dB) 8.60 5.08 0.64 -2.28 

using the Lomb-Scargle periodogram. 

In this new simulation, we first extract potential periodic components of droughts 

from salinity time series and treat those components as the sinusoidal components 

of the simulation model. Then we take those sinusoidal components away from the 

salinity time series and find an approximate representation for the series without the 

potential droughts information. Finally, we add the potential sinusoidal components 

of droughts back to the approximate representation to have a way to generate time 

series that look like the original salinity time series. 

4.2.1 Extraction of salinity time series features 

Denoting a detrended salinity time series by {z, : j = 1, 2,. . . , n}, we can represent 

{Xt2 } using an infinite Fourier series: 

Xtj = [a cos(2irwt) + b2 sin(2irw2t)] 

= [Ai cos(2irwtj + j = 1,2,... , 
(4.3) 
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Table 4.8: Successful Detection Rates for signals in Case 2-Part 1 

detect signal .1; 500 runs 

SDR (%) 
(°noise)  

1 2 3 4 
Sample Size (n) = 355 

TO = 0.5 100 100 99.9 97.8 
TO = 1.0 100 100 99.5 89.6 
TO = 1.4 100 100 96.8 72.8 
TO = 2.0 100 98.6 64.8 25.3 
TO = 2.2 100 92.7 41.5 11.3 
TO = 2.4 99.9 72.2 19.1 4.3 

Sample Size (n) = 300 
TO = 0.5 99.9 100 99.8 90.7 
TO = 1.0 100 100 97.4 76.8 
TO = 1.4 100 99.9 89.3 53.5 
TO = 2.0 100 91.1 40.4 10.0 
TO = 2.2 99.9 74.6 18.1 3.6 
TO = 2.4 99.0 43.3 5.6 1.3 

detect signal 2; 500 runs 

Sample Size (n) = 355 
TO = 0.5 100 100 100 97.8 
TO = 1.0 100 100 99.8 91.6 
TO = 1.4 100 100 97.8 73.0 
TO = 2.0 100 98.0 61.3 23.9 
TO = 2.2 100 88.3 36.8 10.3 
TO = 2.4 99.4 58.4 14.4 2.6 

Sample Size (n) = 300 
TO = 0.5 100 100 99.5 93.0 
TO = 1.0 100 100 97.9 76.9 
TO = 1.4 100 99.9 89.3 55.0 
TO = 2.0 100 86.3 38.0 11.2 
TO = 2.2 99.5 63.3 16.8 4.2 
TO = 2.4 89.3 27.6 4.6 1.0 
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Table 4.9: Successful Detection Rates for signals in Case 2-Part 2 

detect both siganis; 500 runs 

(°nose)  

SDR(%) 1 2 3 4 
Sample Size (m) = 355 

TO = 0.5 100 100 99.9 95.6 
TO = 1.0 100 100 99.3 81.8 

TO = 1.4 100 100 94.8 52.2 

TC = 2.0 100 96.7 41.2 6.3 
TO = 2.2 100 82.8 17.3 1.1 
TO = 2.4 99.3 46.7 4.3 0.0 

Sample Size (n) = 300 

TC = 0.5 99.9 100 99.3 84.0 
TO = 1.0 100 100 95.3 57.9 
TC = 1.4 100 99.8 79.2 28.3 
TC = 2.0 100 79.2 16.0 0.8 
TC = 2.2 99.5 50.4 4.2 0.2 
TC = 2.4 88.9 15.9 0.2 0.0 

detect either signal; 500 runs 

Sample Size (n) = 355 

TO=0.5 100 100 100 100 
TC = 1.0 100 100 100 99.4 
TC = 1.4 100 100 99.8 93.6 
TC = 2.0 100 99.9 84.9 42.9 
TC = 2.2 100 98.2 61.0 20.5 
TC = 2.4 100 83.9 29.2 6.9 

Sample Size (n) = 300 

TO = 0.5 100 100 100 99.7 
TC = 1.0 100 100 100 95.8 

TC = 1.4 100 100 99.4 80.2 
TO = 2.0 100 98.2 62.4 20.4 
TO = 2.2 99.9 87.5 30.7 7.6 
TO = 2.4 99.4 55.0 10.0 2.2 
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Table 4.10: Signal-to-Noise Ratios in Case 2 

for case 2 

Standard Deviation of Noise (o,) 

1 2 3 4 
Signal-to-Noise Ratio 

mean 8.9940 2.2485 1 0.5621 
95% C.I. (8.9835, 9.0046) (2.2459, 2.2511) (0.9982, 1.0005) (0.5615, 0.5628) 
(dB) 9.54 3.52 0.00 -2.50 

where 

ai = c[ i Xtj cos(2irwitj)], 

bi = [ E1 xt sin(2irwjt)], 
Ai = 

qj = arctan (_ bi 
a) 

(4.4) 

and c is a coefficient of the form, , where d > 0 that ensures the Fourier series 

approximation to xt, is on the original scale. 

We use the detrended salinity time series from the Humboldt Lake to illustrate 

how to extract drought periodicity features. In Figure 4.7, we plot the original 

detrended time series and three approximations to the original series using 1001, 1429 

and 2001 terms in equation (4.3). We see from Figure 4,7 (d) that the approximation 

becomes very close to the original by using 2001 terms. We use x'j to denote the 

approximation using 2001 terms, that is, 

2001 

[. cos(2irwt + j= 1,2,.. . ,355.  (4.5) 

Now for the fixed threshold 1.4 times SD of the positive detrended salinity values, 

we find 46 detrended values higher than the threshold. This is shown in Figure 4.8 
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Figure 4.5: SDR in Case 2—Part 1. 

by using dots in the bottom plot. These 46 values carry the information about the 

drought history in Humboldt Lake according to our drought definition. For each of 

the 46 values, we order the 2001 terms in its approximation from the largest to the 

smallest. We find that in 30 out of the 46 cases the frequencies 0.0045 and 0.0065 

appear in the top two largest terms in the ordered approximation terms, and appear 

in the third and fourth place in some of the remaining cases. These two frequencies 

together with the corresponding amplitudes and phases are listed in Table 4.11, 

respectively. We consider the two corresponding periods 222 years and 154 years as 

the periodic drought features for Humboldt Lake. 
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Figure 4.6: SDR in Case 2—Part 2. 

Note that the above drought periodic feature extraction process cannot be treated 

as a formal way to find drought periodic features. However, we use this process to 

set up a way to generate time series that look like the real detrended salinity time 

series from the three lakes. 

4.2.2 Simulation set up 

Sinusoidal components of droughts 

From Table 4.11, we use the sum of the two listed sinusoidal waves 

0.2713cos(2ir0.0045t + 0.2513) + 0.2949cos(2ir0.0065t - 1.4447) 
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Figure 4.7: The plot of different approximations to represent the detrended salinity 
time series in Humboldt Lake. 

to represent two periodic drought components. 

Representing the salinity time series without the potential droughts 

First, we take out the two terms in (4.5) that correspond to the two frequencies 

0.0045 and 0.0065. To do this completely, we actually take away a band of frequencies 

from 0.003 to 0.008. This means that we take away the 11 terms from (4.5) that 

are associated with the frequencies from 0.003 to 0.008 and use the remaining 1990 

terms as an approximation to the detrended salinity time series without the potential 

droughts denoted by x, j= 1,2,. -- ,355. 

Next, we take the first 400 terms in x, to represent the major features of the 

detrended salinity time series without the potential droughts and denote this by 
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Figure 4.8: The plot of drought time series of Humboldt Lake and the plot of the 46 
detrended salinity values greater than the threshold. 

tj x, j = 1, 2,. . . , 355. Plots of virsus t1; x virsus t; = (x - x) virsus t tj 

and the histogram of rt, are displayed in Figure 4.9. We see from Figure 4.9 that tj 

looks largely like tj and rt, can be described by N(0, 0.2), where 

rtk  =2.352. 

j=1 ( 
Together, we use 

Zt3 = 0.2713 cos(2ir0.0045tj + 0.2513) + 0.2949 cos(2ir0.0065tj - 1.4447) + + Ct, 
tj 

(4.6) 

to generate time series similar to the detrended salinity time series from the Hum-

boldt Lake by simulating iid sequences e, where N(0, 2.352). 
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Table 4.11: Potential drought components for Humboldt Lake 

Frequency (Hz) Amplitude Corresponding Phase  

0.0045 0.2713 0.2513 
0.0065 0.2949 -1.4447 
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Figure 4.9: The plots related to Simulation Two. 

Value-truncation 

We use different threshold values to truncate the unevenly spaced time series {Zta 

j = 1, 2,. . . , 355} to obtain the unevenly spaced and value-truncated time series 

{yt3 : j = 1, 2,. . . , 355}. We use three different values (denoted by TC hereafter) 

times SD of the positive values of {y} to set up different threshold values. 
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Processing simulation 

Since the tj in (4.6) are from the real salinity time series and the standard deviation 

of the noise term is a = 2.35, we only set up one factor TO to see how it affects 

the detection of the potential periodic components of droughts by using the Lomb-

Scargie periodogram. The levels assigned to TO are 1, 1.4 and 1.8. 

At each level of TO, we generate time series according to (4.6) either 500 times 

or 5000 times, and in each run we apply the Lomb-Scargle periodogram to detect 

the built-in periodic components of droughts. We count the percentage of times 

the built-in potential periodic components of droughts are detected out of 500 runs 

and 5000 runs separately. This percentage is called the successful detection rate 

(SDR) and four different kinds of SDR, namely, SDR for frequency 0.0045, SDR for 

frequency 0.0065, SDR for both 0.0045 and 0.0065, and SDR for either 0.0045 or 

0.0065 are calculated and summarized in Table 4.12. 

4.2.3 Simulation Results 

The results at the top of Table 4.12 are based on 500 runs, the results in the middle 

are based on 5000 runs, and the differences between 500 runs and 5000 runs are listed 

at the bottom of Table 4.12. We see from the top of Table 4.12 that at TO = 1.4, 

the SDR for both 0.0045 and 0.0065 is 89.4%; the SDR for 0.0045 and the SDR for 

0.0065 go up to 91.2% and 97.2%, respectively, and the SDR for either 0.0045 or 

0.0065 is up to 99%. If we decrease TO to 1.0, then we see that the SDR for either 

0.0045 or 0.0065 is 100% and the other three SDRs are at least 97%. Even when we 

increased TO to 1.8, the lowest SDR is still as high as 63%. 

From the middle and the bottom of Table 4.12, we see that the SDRs based on 
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Table 4.12: Successful Detection Rates for simulated drought time series 

500 runs 

Categories of Signal Detection  

0.0045 0.0065 Both Either 
SDR (%) 
TO = 1.0 97.40 99.80 97.20 100 
TO = 1.4 91.20 97.20 89.40 99.00 
TO = 1.8 69.20 84.20 63.80 89.60 

5000 runs 

Categories of Signal Detection  

0.0045 0.0065 Both Either 
SDR (%) 
TO = 1.0 96.02 99.86 95.90 99.98 
TO = 1.4 90.04 97.96 88.06 99.18 
TO = 1.8 67.82 83.30 62.80 89.30 

difference between 500 runs and 5000 runs 

Categories of Signal Detection  

0.0045 0.0065 Both Either 
Difference (%) 

TO = 1.0 1.30 0.06 1.40 0.02 
TO = 1.4 0.98 0.76 1.34 0.18 
TO = 1.8 1.38 0.90 1.00 0.30 

Note: 'Both' means both 0.0045 and 0.0065; 'Either' means either 0.0045 or 0.0065. 
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500 runs and the SDRs based on 5000 runs are very close with the biggest difference 

being 1.38%. 

To summarize the results in Simulation Two, we conclude that for the salinity 

time series from Humboldt Lake, we have reasonable confidence to apply the Lomb-

Scargie periodogram to our unevenly spaced and value-truncated drought time series 

to detect the periodic components of droughts. If we set the threshold value to 1.4 

times the SD of positive values of the detrended salinity time series, the successful 

detection rate is above 89.4%. 

4.3 Applications 

Based on the results of Section 4.1 and Section 4.2, in this section, we use the Lomb-

Scargie periodogram. to explore the periodic behavior of droughts in the Canadian 

Prairies represented by the salinity time series from Humboldt Lake in Saskatchewan, 

Chauvin Lake in Alberta and Nora Lake in Manitoba. 

4.3.1 Humboldt Lake 

The periodogram plot from computing the Lomb-Scargie periodogram using 1.4 times 

SD threshold for the detrended salinity time series from Humboldt Lake is displayed 

in Figure 4.10. We see from Figure 4.10 that there are several high peaks at low 

frequencies, and there are another cluster of peaks around frequency 0.43. At 95% 

confidence level, the peaks at low frequencies are related to periodic components 

of droughts and the cluster of peaks centered around frequency 0.43 are related to 

random noise. 
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Figure 4.10: The Lomb-Scargie periodogram for the drought time series from Hum-
boldt Lake. 

Enlarging the low frequency peaks in Figure 4.10 and displaying these peaks in 

Figure 4.11, we see that the top three significant peaks correspond to frequencies 

0.0022, 0.0044 and 0.0062, respectively, or in terms of periods, 454, 227 and 156 

years, respectively. This means that droughts of a magnitude at least equal to that 

of the late 1980s may reoccur approximately every 450 years, every 227 years and 

every 156 yeas in Humboldt Lake area. These three periods are the main drought 

periods for Humboldt Lake, which are comparable to the finding of Yu and Ito (1999) 

based on a study of Rice Lake in North Dakota, U.S.. 

If we use 1.2 times SD or 1.6 times SD as the threshold, the findings are both 

similar to those of using 1.4 times SD threshold. 
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Figure 4.11: Top three powers of the Lomb-Scargie periodogram for the drought 
time series from Humboldt Lake. 

4.3.2 Chauvin Lake 

We take the same approach to analyze the detrended salinity time series from Chau-

vin Lake. The periodogram plot for 1.4 times SD threshold is given in Figure 4.12. 

After enlarging the low frequency peak in Figure 4.12 and displaying it in Figure 4.13, 

we see from Figure 4.12 and Figure 4.13 that, at 5% significance level, there are two 

significant peaks near frequencies 0.0008 and 0.85. This amounts to 1250 years and 

1 year in terms of period. Looking back at Figure 2.7, the 1 year period seems to 

come from the truncation. 

At 1.2 times SD threshold and 1.6 times SD threshold, the Lomb-Scargie pen-

odograms are plotted in Figure 4.14 (top and bottom, respectively). We see from 

Figure 4.14 that the results are both similar to those of using 1.4 times SD threshold. 

However, if using 1.9 times SD threshold, we can only detect one significant peak at 
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Figure 4.12: The Lomb-Scargie periodogram for the drought time series from Chau-
vin Lake. 

frequency 0.0008. 

4.3.3 Nora Lake 

The story for Nora Lake is a little different. At 1.2, 1.4 and 1.6 times SD thresholds, 

no peaks are detected at 5% significant level; see Figure 4.15 for details. To under-

stand why, we refer to Figure 2.7. From the bottom right corner of Figure 2.7 we see 

that after value-truncation, there is little drought information left. However, if we 

use 0.7 times SD threshold, a peak at frequency 0.0078 is detected at 5% significance 

level, which amounts to a period of 128 years. Other information is needed to see 

whether this period relates to any kind of droughts. 
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Figure 4.13: The enlargement of the Lomb-Scargie periodogram for the drought time 
series from Chauvin Lake at low frequencies. 
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Figure 4.14: The Lomb-Scargie periodograms for the drought time series from Chau-
vin Lake using 1.2 and 1.6 times SD as threshold values. 
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Figure 4.15: Lomb-Scargie periodograms for the drought time series from Nora Lake. 



Chapter 5 

Summary and Future Work 

5.1 Summary 

Motivated by the need to understand the droughts in the Canadian Prairies better, 

in this thesis we have investigated the periodic behaviors of droughts by using the 

2000 years diatom-inferred salinity time series from Humboldt Lake in Saskatchewan, 

Chauvin Lake in Alberta and Nora Lake in Manitoba. In doing so, we have addressed 

the following important issues. First, we have taken a direct way to define droughts, 

using the 1988-1989 drought as a reference. This approach is intuitive as well as 

quantitative, but the resulting drought time series become value-truncated and un-

evenly spaced time series. 

Second, to analyze value-truncated and unevenly spaced time series, we have 

adapted the Lomb-Scargle periodogram to our problem. Through simulation studies, 

we have confirmed that the Lomb-Scargle periodogram is applicable to study the 

drought periodicities based on the value-truncated and unevenly spaced drought 

time series. 

Finally, we have analyzed the three drought time series from the three lakes using 

the Lomb-Scargle periodogram and found that for droughts of a magnitude as large 

as or larger than that of the drought in 1985-1986, Humboldt Lake seems to have 

had droughts with periods 454, 227 and 156 years, Chauvin Lake seems to have had 

droughts with a period of 1250 years, and Nora Lake seems to have had no periodic 

64 



65 

drought history. 

5.2 Future Work 

Drought is a very complicated phenomenon. It may be affected by many factors 

that we cannot use a simple way to measure. Our simulation study did not consider 

dependence among the error terms, but in applications dependence is a fact that 

cannot be ignored. More simulation studies need to be conducted. 

Recently, some researchers used wavelet analysis to reveal periodicity of a phe-

nomenon. Tian et al. (2006) investigated late-Holocene drought and Brown et al. 

(2005) studied fire cycles in North American interior grasslands and their relation 

to prairie drought by using wavelet analysis. Spectral analysis can be viewed in 

terms of an orthogonal transformation. The Fourier transformation, on which the 

Lomb-Scargle periodogram is based, is such an orthogonal transformation that has 

led to some (partial) solutions to problems related to periodicity, and the Wavelet 

transformation is another one. Therefore, it would be interesting to apply wavelet 

technique to study our drought time series. In particular, it would be desirable to 

develop a wavelet version of the Lomb-Scargle periodogram. 

On a more intuitive ground, since we mainly care about whether a salinity value 

is greater than a threshold value or not, we can transform the salinity time series 

to a binary series according to a threshold. For example, all the salinity values that 

are greater than a threshold value are reset to be "1" and the rest reset to "0". 

Figure 5.1 is a plot obtained by using the drought time series from Humboldt Lake 

and 1.4 times SD threshold value. 
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Figure 5.1: The binary version of the drought time series from Humboldt Lake. 

Many researchers have investigated ways to predict the pattern of binary data 

sets by using non-linear and adaptive prediction techniques for digital communication 

signals. It would be interesting to try this approach to study drought periods. 



Appendix A 

The following are the codes for a MatLab program which computes the Lomb-Scargie 

periodogram for a given detrended time series (mydata) and user supplied threshold 

(ThreshCoeff time SD) and user supplied highest frequency examined (highestf). 

function lspgrm(mydata, ThreshCoeff, highestf) 

°h This program is based on a Lomb-Scargle implementation in 

°h Press, Teukoisky, et al. Numerical Recipes, "Spectral 

°h Analysis of Unevenly Sampled Data." and is a modified version 

°h of Brett Shoelson's. 

global dataid datamatrix effm ep fhi freqs hifac info jmax 

lines n umax nout np of ac prob px py s sigfreqs 

sigpowers tmax tmin x y 

inputdata = textread(mydata); 

dataid=1; 

if size(inputdata,2) -= 2 

error('Input data must be an n x 2 matrix of numbers.') 

end 

dataniatrix = cut(inputdata,ThreshCoeff); 

67 



68 

%Plot input data points 

figure('nuinbertitle', 'off', 'name' ,'Plots of data sets'); 

subplot(2,1,1); plot(inputdata(:,1),inputdata(:,2),'k- 3); 

set(gca, 'xlini', [niin(real(inputdata(: ,1))) niax(real(... 

inputdata(: ,1)))] , 'ylim', [1.1*min(real(inputdata(: ,2))) 

1.1*max(rea1(inputdata( ,2)))]); 

axis([min(inputdata(: ,1)) max(inputdata(: ,1)) 

(min(inputdata(: , 2))-... 

O.5*abs(min(inputdata(: ,2))))... 

1.1*max(inputdata(: ,2))]); 

set(gca, 'Fontsize' ,8); 

xlabel('Year') ;ylabel('Salinity'); 

subplot(2,1,2); plot(datamatrix(: ,1) ,dataniatrix(: ,2), 'k-'); 

set (gca, 'xlim', [min(real(datamatrix(: , 1))) max(real(... 

datamatrix(: ,1)))] , 'ylim', [1. 1*min(real(datamatrix(: ,2))) 

1. 1*max(real(datamatrix(: ,2)))]); 

axis(Emin(datamatrix(: ,1)) max(datainatrix(: ,1)) 

(min(dataniatrix(: ,2))... 

-O.5*abs(min(datamatrix(: ,2))))... 

1.1*niax(datamatrix(: ,2))]); 

set (gca, 'Fontsize' ,8); 

xlabel('Year');ylabel('Salinity'); 

lines=1; 
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freqs=[] ;sigfreqs={] ;brkvals=[] ;freqsofint=[] ;sigpositions=[]; 

funcper=[] ;sigpowers=[]; 

np=O; 

x=dataniatrix(: , 1); 

y=datamatrix(: ,2); 

tmin=min(x); 

tmax=max(x); 

n=lengtb(x); 

fprintf('\n\nn = 

info{lines}=sprintf('n = 

lines=lines+1; 

fprintf('\ntmin = °hf, tmax = °hf\n\n',tmin,tmax); 

info{lines}=sprintf('tmin = %f, tmax = °hf',tmin,tmax); 

lines=lines+1; 

period(highestf); 

if isempty(freqs) 

/OCREATE SPECTRUM FIGURE 

igure('ne','Power Spectrum' ,'NumberTitle' , 'off'); 

plot (freqs(: ,1) ,freqs(: ,2), 'color', 'k'); 

spectimage=gca; 
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axis([O fhi 0 1.1*max(freqs(:,2))]); 

set (gca, 'Fonts ize' , 14); 

xlabel('Frequency (Hz) ') ;ylabel('Power Spectrum'); 

title( ['Threshold value is ',num2str(ThreshCoeff),... 

times SD']); 

axes(spectiniage); 

end °hif isempty(freqs) 

if isempty(freqs) 

%GENERATE TABLE OF PROBABILITIES 

%Generating expytable. 

expytable=exp (-freqs (: , 2)); 

%Generating corresponding alpha values. 

alphas=1-(1-expytable) . effm; 

°hCorrecting for alpha = 0. (This ensures unique values 

%in "highly significant" regions.) 

for 1=1: length(alphas) 

if alphas(i)=O 

alphas (i) =rand/ 1e20; 

end 

end 
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%CALCULATE GIVEN SIGNIFICANCE LEVELS FOR GRAPH 

alph=[0.001 0.005 0.01 0.05 0.1 0.5]; 

lineat=log(1./(1-(1-alph) . (1/effm))); 

%PFtOBABILITY LINES and LABELS 

for 1=1: length(alph) 

line([freqs(1, 1) ,0.85*fhi], [lineat(i) ,lineat(i)],... 

'color' ,'black', 'linewidth' ,i/5, 'linestyle' , 

text(O.87*fhi,lineat(i), ['a = ' nun12str(alph(i))],... 

'fontsize' ,8, 'fontnaine' ,'symbol'); 

end 

/ODETERMINE WHICH FREQUENCIES ARE SIGNIFICANT 

fvals=find(alphas<=0.05)'; 

freqsofint=freqs(fvals,1)'; 

lenstring=length(freqsofint)-1; 

for i=1:lenstring 

%fprintf('Checking frequency %i of 0/4 for 

%significance.\n' ,i,lenstring); 

if freqsofint(i) >freqsof mt (i+1) 

freqsofint=freqsofint (1: i); 

end 

end 

alphasofmnt=alphas(fvals,1)'; 
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%FIND POSITIONS OF BREAKS IN FVALS (FOR DATA CLUSTERING) 

for 1=1: length(fvals)-1 

if fvals(i) -=fvals(i-i-1)-1 

brkvals= [brkvals i]; 

end 

end 

brkvals=[brkvals length(fvals)]; 

fprintf... 

('\n\nLAST STAGE... locating significant frequencies.\n\n'); 

%LOCATE SIGNIFICANT FREQUENCIES 

for i=1 : length (brkvals) 

if i==1 

minalph=min(alphasofint(1 :brkvals(i))); 

sigfreqs= [sigfreqs freqsofint (alphasofint==... 

minaiph)]; 

else 

minalph=min(alphasofint(brkvals(i-1)+... 

1:brkvals(i))); 

sigfreqs= [sigfreqs freqsofint (alphasofint==... 

minaiph)]; 

end °I0if 1=1; 

end %f or i1:... 
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%END LOCATE 

%T0 WRITE THE SIGNIFICANT FREQUENCIES OUT OT A FILE 

°hif isempty(sigfreqs) 

%xlswrite( ' sigfreqs' ,sigfreqs'); 

°hend 

%POWER AT SIGNIFICANT FREQUENCIES 

for i=1 : length(sigfreqs) 

sigpositions=[sigpositions find(freqs(: ,1)==... 

sigfreqs(i))]; 

end 

sigpowers=freqs (sigpositions ,2)'; 

if 1se1npty(sigfreqs) 

fprintf(['\n\nSignificant frequencies (in Hz) at ', 

num2str(sigfreqs)]); 

info{lines}=sprintf(['Significant frequencies at ', 

num2str(sigfreqs)]); 

lines=lines+1; 

fprintf ( ['\nCorresponding powers: 

num2str(sigpowers)]); 

info-Clines}=sprintf(['Corresponding powers: ',... 

nuxn2str(sigpowers)]); 

lines=lines+1; 
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else 

fprintf(' \nNo significant frequencies found. \n'); 

info{lines}=... 

sprintf('No significant frequencies found.'); 

lines=lines+1; 

end 

end °hif isempty(freqs) 

fprintf('\n\nANALYSIS IS COMPLETE\n\n'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 

%SUBFUNCTION 

function period(highestf) 

global arg ave c cc cwtau effm ep expy fhi freqs hifac 

info ival jmax jval lines n nmax nout np of ac 

pnow prob px py pymax s ss sunic sunicy sums sunish 

sunisy swtau tmax tmin variance wi wpi wpr wr 

wtau wtemp xmin xmax x xave xdif y yy 

f hi = highestf; 
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hifac=fhi*2* (tmax-tmin) In; 

ofac = 4; 

pause (0. 1); 

close(findobj ('name', 'ofac')); 

fprintf('\nhifac = %f',hifac); 

info{lines}=sprintf('hifac = °hf' ,hifac); 

lines=lines+1; 

fprintf('\nofac = °hf',ofac); 

info{lines}=sprintf('ofac = %f' ,ofac); 

lines=lines-I-1; 

np=ofac*hifac*n*O. 5; 

noutfloor (0. 5*ofac*hjfac*n); 

ave=mean(y); 

variance=var(y); 

xmin=tmin; 

xmax=tmax; 

xdif=tmax-tmin; 

xave=0. 5* (xmax+xmin); 

pymax=0; 

pnow=1/ (xdif*ofac); 

fprintf(' \nConiputing °hi JVALS . \n\n' ,n); 



76 

hbar = waitbar(O,'JVALS...'); 

for jval=1:n 

waitbar(jval/n); 

arg=2*pi* C (x (jval) -xave) *pnow); 

wpr(jval)=-2*sin(O. 5*arg) '2; 

wpi(jval)=sin(arg); 

wr(jval)=cos(arg); 

wi(jval)=wpi(jval); 

end 

close (hbar) 

fprintf('\nIVAL: Computing %i values. \n\n' ,nout); 

hbar = waitbar(O,'IVALS ... '); 

for ival=1:nout 

waitbar (ival/nout); 

px (ival) pnow; 

sumsh=O; 

sunc=O; 

for jval=1:n 

cwr(jval); 

s=wi(jval); 

sunish=sumsh+s*c; 
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sunic=sumc+(c-s)*(c+s); 

end 

wtau=O 5*atan2 (2*sumsh, sumc); 

swtau=sin(wtau); 

cwtau=cos(wtau); 

sunis=O; 

suinc=O; 

sumsy=O; 

suincy=O; 

for jval=1:n 

s=wi(jval); 

cwr(jval); 

ss=s*cwtau-c*swtau; 

cc=c*cwtau-I-s*swtau; 

sums=sunis+ss2; 

sunic=sunic+cc2; 

yyy(jval) -aye; 

sumsysunisy+yy*ss; 

Sunlcy=sulncy+yy*cc; 

wtemp=wr(jval); 

wr(jval)=(wr(jval)*wpr(jval)-wi(jval)*wpi(jval))... 

+wr(jval); 

wi(jval)=(wi(jval)*wpr(jval)+wtemp*wpi(jval))... 

+wi(jval); 
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end 

py (ival) =0.5* (sumcy2/sumc+sumsy2/sums) /variance; 

%WRITE OUTPUT 

freqs(ival,1)=px(ival); 

freqs(ival,2)=py(ival); 

pnow=pnow+1/ (of ac*xdif); 

end 

close (hbar); 

pymax=max(py); 

jmax=find (py==pymax); 

expy=exp (-pymax); 

%effni is an estimate of the number of 

'independent' frequencies 

effm=2*nout/ofac; 

if isempty(effm) & effm=0 

prob=1-(1--expy) -effm; 

fprintf('\npymax = %f',pymax); 

info{lines}=sprintf('pymax = °hf' ,pymax); 
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lines=lines+1; 

fprintf('\nfmax = °hf',px(jma.x)); 

info{lines}=sprintf('fmax = %f' ,px(jmax)); 

lines=lines+1; 

fprintf('\neffm = °hf',effni); 

info{lines}=sprintf ( 'effm = 70f' , effm); 

lines=lines+1; 

fprintf('\nexpy = °hf',expy); 

info{lines}=sprintf('expy = %f' ,expy); 

lines=lines+1; 

fprintf('\nnout = 

info{lines}=sprintf('nout = %i' ,nout); 

lines=lines+1; 

fprintf('\nalpha = %f',prob); 

info{lines}=sprintf('alpha = %f' ,prob); 

lines=lines+1; 

else 

fprintf('period.m: No frequencies to analyze.'); 

end %if isempty(effm) & effm=O 

return 

oio,o,oIo,o 

010!010I010 0 0/01010101010 

function [DroughtData] = cut(noisedata,coeff) 
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indicatorPosi = find(noisedata(: ,2)>O); 

posl = noisedata(indicatorPosi,2); 

SdofPosi = std(posi); 

thresh = coeff*SdofPosi; 

thresh 

indicatorThresh = find(noisedata(: ,2)<thresh); 

noisedata(indicatorThresh, 2) = thresh; 

DroughtData = noisedata; 

return 
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