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ABSTRACT 

It is shown, through analysis and simulation, that a constrained adaptive 

beamformer based on a Minimum Redundancy Array (MRA) outperforms the 

equivalent system based on a line array with uniformly spaced elements for 

uncorrelated interferences located in close angular proximity to the look direction. 

A thinned suboptimal adaptive array with elements spaced for minimum spatial 

redundancy is analyzed and compared with a thinned suboptimal adaptive array with 

uniformly spaced adaptive elements. It is found that the thinned array using adaptive 

elements chosen for minimum spatial redundancy achieves superior performance 

against uncorrelated interferences in the main lobe, with no appreciable degradation in 

the rejection of interferences entering the side lobes. A simulation involving a 37 

element thinned adaptive array with 10 adaptive elements confirms the theoretical 

predictions. 

The use of a MRA in conjunction with an adaptive combiner for digital 

communications is examined. It is shown that the bit error probability achieved by the 

MBA based system is lower than that achieved by a comparable uniform array based 

system for interference or multipath components located in close angular proximity to 

the desired signal. The unconditioned bit error probability achieved by the MRA 

based system operating in a two ray multipath environment with equal amplitude rays, 

is shown to be lower than that achieved by a uniform array based system for usable 

SNR. 
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CHAPTER 1 

INTRODUCTION 

Beamforming applications are found in many disciplines [ 1]. A synopsis 

would include passive and active sonar systems [2-5], seismic signal processing 

[6], biomedical imaging systems [7], radio astronomical arrays [8-10], phased array 

radar systems [11,12] and communications applications [ 13,14]. All of these 

applications share the common goal of filtering signals with respect to their spatial 

orientation. 

In order to achieve this spatial filtering, it is necessary to obtain information 

on the spatial makeup of the signals to be considered. This information is obtained 

by sampling the signal environment at discrete spatial points with an array of 

sensors. The structure of the array is important in determining the information 

which can be obtained. The spacing of array elements within a line array can 

influence the shape of the array pattern. For example, if the. elements are located 

very close to one another, such that the total length of the array is small with 

respect to the wavelength of the signal, the array pattern will be very broad, having 

little directivity. Increasing the length of the array increases the directivity. This 

increase in array length can be accomplished by adding sensor elements while 

maintaining the same interelement distance, the shortest distance between adjacent 

1 
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elements within the array, or through increasing the interelement distance. By 

increasing the interelement distance beyond the main lobe of the array pattern 

can be made very narrow, but grating lobes begin to appear. Grating lobes may be 

thought of as a form of ambiguity, in this case, due to a spatial analogue of the 

well known aliasing phenomenon. Consequently, many array structures formed 

using isotropic sensor elements employ a - interelement distance. 

The form of line array which is most commonly employed consists of a row 

of sensors, each located at a distance, d, from the next. This array structure is 

known as an equi-spaced or uniform line array pd will be hereafter referred to as 

a uniform array. . Another form of line array is one in which the array element 

spacings are chosen such that the spatial correlations which can be formed using 

the elements in the array include all integer multiples of the interelement spacing 

from d to Nd with the fewest possible redundant spatial correlations, where Nd is 

the length of the array. Such an array is known as a Minimum Redundancy Array 

(MRA) and is useful for applications requiring high resolution because of the very 

narrow main lobe associated with this array structure [15]. The large sidelobes 

which are associated with the array pattern have formed a severe handicap for most 

applications, but have not prevented the use of MRA's in radio astronomical 

observations, where post processing of the array output could, to some degree, 

compensate for known signals entering through the sidelobes. 
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Adaptive beamforming provides a means by which interferences entering 

through the large sidelobes of the MRA can be rejected. Chapter 2 begins by 

introducing the MRA and continues with an introduction to adaptive beamforming 

[16-18]. The chapter concludes with both calculated and simulated perfoiniance 

measurements of the converged solutions attained by narrowband adaptive 

beamformers based on both uniform and minimum redundancy array structures in 

rejecting discrete uncorrelatea spatial interferences. The simulations used a Frost 

adaptive beamformer structure, based on the well known Least-Mean-Squares 

algorithm, to form converged array patterns for a number of interference conditions 

[19]. 

Many of the disciplines which employ beamforming techniques require array 

structures with large numbers of elements. An adaptive beamformer in which the 

output of each of these sensors is weighted adaptively, known as a fully adaptive 

beamformer, would thus employ a very large number of adaptive coefficients, with 

the attendant misadjustment, slow convergence and large computational burden. 

To overcome this, a form of adaptive beamformer known as the suboptimal array 

is sometimes used. In such a system, the number of coefficients which are 

adjusted by the adaptive algorithm is less than the total number in the weight 

vector. One specific suboptimal array is the thinned adaptive array [20]. An array 

of this type consists of two subarrays, one conventionally steered in the look 

direction, the other weighted adaptively, with the sum of the two subarrays outputs 
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forming the overall output of the system. In chapter 3, the effect of choosing the 

adaptive sensor elements in a narrowband thinned adaptive array on the basis of a 

minimum spatial redundancy criterion is examined and compared with the 

performance obtained using the common method of spacing adaptive elements 

uniformly throughout the array. Again, simulations employing the Frost adaptive 

beamformer structure to determine the adaptive weight coefficients are undertaken 

to confirm the results of calculated performance ratios. 

Most beamforming applications consider the spatial filtering of an unknown 

signal from a known direction. In the digital communications case, however, it is 

quite possible to turn this around. Thus we may desire to observe a known signal 

originating from an unknown direction or directions. The known signal may be a 

training signal, such as that employed in setting up the initial convergence of some 

adaptive equalizers. In this case, the training signal is used to allow the weights of 

the adaptive beamformer to converge to form the optimum spatial directivity 

pattern for the given signal environment. Chapter 4 examines such a case. Two 

signal environments are considered. The first consists of a known digital signal, 

the desired signal, arriving from an unknown direction, in the presence of an 

uncorrelated interfering signal arriving from some other direction. The second is 

based on the two ray multipath model, and postulates two known correlated digital 

signals, both containing the information of the desired signal, arriving at the array 

with different spatial orientations. Under these conditions, destructive interference 
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of the two correlated signals can cause a phenomenon known as fading. The 

efficacy of adaptive arrays with both uniform and MRA element spacing in 

reducing fading effects is considered. The performance of the arrays is primarily 

measured in terms of the piethcted and simulated probability of error achieved by 

the adaptive beamformers after convergence. 

A summary of the results obtained is contained in the final chapter. Also 

included are suggestions for further research in this area. 



CHAPTER 2 

A NARROWBAND ADAPTIVE BEAMFORMER BASED ON A MINIMUM 

REDUNDANCY ARRAY 

2.1. Introduction 

This chapter begins by presenting the background material required for an 

understanding of adaptive beamforming in general. Following that, the MRA is 

introduced. A comparison of uniform and MRA based systems in terms of 

predicted eigenvalues and Signal to Noise and Interference Ratios (SNIR's) is then 

undertaken. The chapter concludes with the results of a simulation study. Four 

element adaptive arrays based on both MRA and uniform configurations are 

simulated to facilitate comparison of the relative merits of the two geometries for 

the rejection of interfering signals. 

2.2. Beamforming 

The output signals from an array of sensors may be combined in various ways 

in order to spatially filter incoming signals in accordance with a particular 

performance criterion. This combining of signals is generally referred to as 

beamforming. Beamforming techniques have been used in many varied and 

6 
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diverse fields; RADAR, SONAR, communications, radio astronomy and 

seismic exploration to name a few [ 1,21]. 

The manner in which the signals are combined may be fixed, as in an 

optimum beamformer where the signal statistics are assumed to remain constant, 

or, it may be adaptive, designed to change in response to changes in the signal 

environment. In either case, a specific performance criterion of one kind or 

another must be employed. One such possible criterion, for a 

communications system, might be that the array maximize the signal to noise 

ratio for a specific known signal, regardless of the direction or directions from 

which the signal originates. As another example, it may be desired, as in 

sonar or radar beainforrning, to pass signals originating from a given spatial 

direction and reject all others. 

The geometry of the sensor array is also of interest. Perhaps the most 

commonly treated of all array geometries is the uniformly spaced or uniform 

linear array. This array consists, of a line of equi-spaced sensor elements. 

Virtually all of the literature dealing with adaptive line arrays focuses upon 

the uniform linear array. Another form of line array which is used, at least 

for radio astronomical observations, is the Minimum Redundancy Array 

(MRA) [15]. This array has certain features which make it desirable for use 

in a beamforming application [8,22]. 
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The following notation and background follows that given by Hudson 

(chapter 2 in [ 16]). The narrowband representation of a signal, travelling in space 

at a sufficient distance from its source that it may be considered to be composed of 

plane (as opposed to spherical) waves, is given as follows: 

[e R I e I2 . . e' Rv  1T (2.1) 

where 

N is the number of spatial samples, 

[]T denotes a transposition operation, 

R1 is the distance from the source to the 1t1i element of the array, 

and k = 2it I 2. is the wavenumber. 

S is known as the space vector and defines the wave's orientation in 

space with respect to the elements of the array. In most cases, the factor 

where R is the distance to the center of the array, may be omitted. The signal 

impinging upon the uniform array shown in figure 2.1 has a space vector of 

_j&!kdsin(a) j - kdsin(a) +j±LLkdsin(a) 1T 
S(a)[e 2 e 

(2.2) 

where 

a is the angular deviation from a perpendicular to the array 

and where the center of the array has been taken as the phase center. 



9 

d d 

x0(t) xl (t) x2(t) xN 1(t) 

Figure 2.1 - Sensor array geometry. 
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In the case of multiple sources, the signal x (t) at each element of the 

array is formed as a linear combination of the impinging signals, each 

individually acted upon by its respective space vector: 

X(t) = m1(t)5 1 + m2(t)52 + + m(t)S (2.3) 

where 

M is the number of signal sources, 

X(t) A [x1(t) x2(t) XM(t) ] is the vector of array element outputs, 

m1 (t) is the modulation component of the i th signal source 

and Si is the space vector of the th signal source. 

A compact matrix representation for (2.3) is 

X(t) = Q(t) (2.4) 

where 

Q is the M x N matrix [ 9-19-2 SM] 

and A(t) A [m1(t) m2(t) ... MM (t) 1T 

If we let W be the N dimensional weight vector of the beamformer, then the 

beamformer output y (t) is given as 

y(t) = (2.5) 

In order to steer a beam in the direction of a source, the weight vector must 

be such that the antenna amplitude gain, g ((x), is maximized in the direction of the 

source. If we define g ((x) as 
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g (a ) i T(a )W * (2.6) 

where 

g (a) is the antenna gain for signals arriving from angle a, 

it is easy to show that the condition that the gain be maximum in the direction of 

the source is met by setting [ 16] 

where 

W = S(a) 

a0 is the angle of arrival associated with the source, 

and []*.indicates complex conjugation. 

(2.7) 

It is often more convenient to deal with normalized beam patterns. These are 

obtained by dividing the gain, g (a), by the product of the vector norms of S(a0) 

and W. Hence, the normalized unadapted directivity pattern of an array with each 

element weighted equally is defined as 

where 

-  

ItS (a) llD 

all the elements of W are equal, 

cI(a) is the normalized gain, having a maximum amplitude of 1 + JO 

and 11 • 11 is the Euclidian norm. 

(2.8) 
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2.3. Minimum Redundancy Arrays 

A Minimum Redundancy Array (MRA) of order M, is an array which, using 

M elements, allows the formation of all integer spatial correlations from 1 to N 

with the fewest possible elements. A Non-Redundant Array (NRA) is an array 

which forms all possible integer correlations from 1 to N with no duplications. 

The MRAs of order 1 to 4, shown in figure 2.2 (a), are NRAs, but it is not 

possible to form an NRA for arrays with more than four elements. However, for 

orders greater than four, the MRAs generally have few redundant spacings, and 

are thus good approximations of the NRA. For example, for order 8, there 

are two minimum redundancy arrays, shown in figure 2.2 (b), which cover all 

integer spacings from 1 to 23 with only three redundant spacings [15]. 

Minimum redundancy arrays have found application in radio astronomy 

where the characteristically large side lobes did not always pose a problem, and 

the narrow main beam was necessary to achieve the high spatial resolution 

required in mapping the night sky. A priori knowledge of that region of the sky 

could be used to correct fort signals entering the system through the side lobes 

[9]. Obviously, this solution would not be practical for most other disciplines 

where array processing techniques are used. 

We will begin by examining the array patterns of both uniform and minimum 

redundancy arrays. The normalized array pattern of the uniform array is given by: 
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0 

01 0 

01 0 2 0 

01 0 3 0 2 0 

(a) 

0 10 10 9 

0 10 3 6 0 

0 

(b) 

40 3 0 3 0 2 0 

6 ° 2° 3 ° 2 

Figure 2.2 - (a) Minimum redundancy arrays of orders 1 - 4; (b) Eighth order 
minimum redundancy arrays. 
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sin2(+ Nkd sin(a)) 

N2sin2(+kd sin(a)) 

(2.9) 

On the other hand, there is no simple, general expression for the array 

pattern of the MRA. However, if the MRA is approximated by the NRA 

of equivalent order, a general expression can be derived as follows: 

kl)m 12 = 

M - 2 + 2Re[ eih1(a)] 

M 2 

N—i sin(*kd sin(a)) 

M - 2 +2cos( 2 kdsin(c)) sin( +kdsin(a))  

kI)m 12 = 

where 

M 2 

Re indicates taking the real part. 

(2.10) 

(2.11) 

The array patterns of uniform and minimum redundancy arrays of order 4 are 

shown in figure 2.3. 

To understand why the MRA can be useful, it is necessary to consider the 

relationship between the array directivity pattern and the array spacing employed. 

For the uniform array, (2.9) is derived from: 



Figure 2.3 - Normalized array patterns for uniform and minimum redundancy arrays of order 4. 
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where 

M-1 
2 

M-1 
2 

M 

a is the direction of arrival, 

M is the number of elements in the array, 

2t 
k = -r is the wavenumber (7 is the wavelength) 
and d is the distance between array elements. 

From (2.12) the magnitude squared of I (a) is 

(2.12) 

e (_(M_l)8)+2ej((M_2)0)+ +M+(M —1)e3 (8)+ +2e j((M_2)9)+ej ((M1)e) 

where 

M 2 

0 = kdsin(a). 

(2.13) 

Careful consideration of (2.13) shows that the the power gain of the array is 

the Fourier transform of the autocorrelation function of the array, with the usual 

Fourier transform variables of t for time and Co for radian frequency being replaced 

by x for distance and 0 or kd sin(a) for spatial frequency. In the same manner in 

which the power spectrum is the Fourier transform of the autocorrelation of a time 
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domain sequence, we may refer to the spectrum in the spatial frequency domain as 

the angle spectrum. 

Having established this, let us consider what the ideal angle spectrum would 

be. It is desirable to make it as narrow as possible, accepting only signals which 

originate from a specified direction; in short it should be an impulse. The 

transform of an impulse is a fiat response in the transform domain. Thus the 

optimum array should have an autocorrelation which is as close to this ideal as 

possible. 

If the redundant spacings of the MRA are neglected, the angle spectrum of the 

MRA is given as (2.10). It is instructive to note that the autocorrelation function 

of the MRA is composed of two components: a uniform grating, and an impulse. 

Fourier transforming this spectrum results in the uniform grating forming the 

narrow main lobe of the MRA pattern, while the transform of the impulse makes 

up the uniform sidelobes. 

Note that when used, in conjunction with an adaptive beamformer or 

combiner, the narrow main lobe of the MRA allows the adaptive algorithm to null 

interfering signals closer to the direction of the desired signal without adversely 

affecting the main lobe. Another advantage, in terms of receiving multipath 

signals, is that the array is more spread out spatially than a uniform array with the 

same interelement spacing and number of elements and hence there is less chance 
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that all of the elements of the array will be located in a region of destructive 

interference. Because of this, the MRA achieves better decorrelation of the 

received signals for narrow angular separation of the multiple paths. 

Table 2.1 details the MRA's of orders 1 through 10 and the unadapted array 

gains of MRA's containing 5 through 8 elements are compared with their uniform 

array counterparts in figures 2.4 to 2.7. 

Table 2.1. Some of the possible MRA configurations for orders 1 through 10 [15]. 

MRA Configurations 

Length Interelement Spacing Number of Elements 

1 - 

2 1 1 
3 3 1,2 
4 6 1,3,2 
5 9 1,3,3,2 
6 13 1,5,3,2,2 
7 17 1,3,6,2,3,2 
8 23 1,3,6,6,2,3,2 
9 29 1,3,6,6,6,2,3,2 
10 36 1,2,3,7,7,7,4,4,1 

2.4. Eigenvalue Analysis 

Following the eigenvalue analysis given by Hudson (chapt. 2 in [16]) consider• 

two signals impinging upon an array: 

X(t) = m1(t)S 1 + m2(t)S2 (2.14) 
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It can be shown that with uncorrelated modulation components and for I 12 close 

to 1 [ 16]: 

where 

N (it1 + it2)' X2 z N 
it1ic2(1— jj2) 

it1 + it2 

i and X2 are the eigenvalues 

and it1 represents the power in the i1h signal. 

(2.15) 

For the uniform array, expanding (2.9) in series, applying long division and 

truncating the result after 2 terms gives: 

1cb 12 = 1— ..j .(kd sin(a))2(N2 ..... 1) (2.16) 

For the NRA, which we use as an approximation to the MRA, ICm 12 is 

given by (2.11). Again, expanding sine terms in series, using long division and 

truncating after the squared terms gives 

- IM 
-2+ 1N-1  

M 2 2cos I kdsin(a)] [ - (N 2 - 1)(kdsin(a))2N 24 ]] 

(2.17) 

Expanding the cosine in a series, multiplying through, again truncating and noting 

that (M-2+2N)/M2 = 1 

l mI2 - 1-2N  4N2 - 6N + 2  (kd sin((X))2 

24M2 
(2.18) 
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Using (2.15) and taking the ratio of %I and X2 for the uniform and minimum 

redundancy arrays yields the eigenvalue spreads for the uniform and minimum 

redundancy arrays, and P. respectively. 

where 

where 

2,unif = it1ir2(K2 - 1) (kd sin(a))2 

1,unif 12(it1 + 712) 

K is the number of sensors in the array. 

2,mra 

1,mra 

it1it2N(2N2 - 3N + 1)(kdsin(cL))2 

6M2(it1 + 

M is the number of sensors in the array 

and N-i is the length of the array. 

(2.19) 

(2.20) 

Now, comparing the ratios of eigenvalue spreads for arrays of equal 

length, N = K 

im - 2N(2N-1)  

= - M 2(N+1) 

where 

is the ratio of eigenvalue spreads for equal length arrays. 

and for arrays of equal number of elements, M = K 

Om 2N(2N2-3N+1)  

I3 -. M 2(M2 - 1) 

where 

(2.21) 

(2.22) 
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te is the ratio of eigenvalue spreads for arrays with equal numbers of elements. 

Again approximating the MRA with a NRA, we have 

Substituting, 

N. = - - + 1 

2(M4-2M3+4M2-3M +2)  

M2(M2—M + 4) 

M 5-3M4+6M3-7M2+5M-2  

2M(M2-1) 

(2.23) 

(2.24) 

(2.25) 

This yields two results: 

1) minimum redundancy and uniform arrays of the same length have eigenvalue 

spread ratios which are of the same order for narrowly separated signals and 

) the MRA exhibits a smaller eigenvalue spread than the uniform array with 

the same number of elements for closely spaced signals. 

Table 2.2 shows some of the ratios obtained for various lengths and element 

numbers. 



26 

Table 2.2. Eigenvalue Spread Ratios for Various MRAs. 

Eigenvalue Spread Ratios 

MRA Order 
(length) 

Equal Length Equal No. of Elements 

4(6) 
5(9) 

8(23) 
00 

1.42 
1.38 
1.41 
2 

4.6 
5.7 

12.9 
M 2/2 

Thus, to resolve signals close together in space, if the number of sensor 

elements is constrained (perhaps due to the cost of the individual sensor elements) 

it may be desirable to use a minimum redundancy configuration rather than a 

uniform array. However, there is a drawback to using the MRA configuration. 

Because of the large side lobes inherent in the minimum redundancy array 

configuration, in order to be practical, an array based on this geometry should be 

adaptive. Hence, if an interference source arises, it can be nulled out by 

the adaptation process. 

2.5. Adaptive Beamforming 

Adaptive beamforming allows the weight vector to vary over time to adapt to 

or to follow changes in the signal environment. This allows beamformers to steer 

nulls in the direction of interfering signals. 
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Early adaptive beamformers tended to be useful only when the interfering 

signals were much greater in magnitude than the desired signal, or when a pilot 

signal could be provided. Many early beamformers which did not require pilot 

signals fell into the category of Maximum Entropy (ME) systems in that they 

attempted to whiten the output of the spatial filter by nulling plane wave sources. 

If the desired signal were much smaller than the interferences, or were present only 

a fraction of the time (as might occur in a radar system), the adapted pattern would 

attenuate the interferences much more than the desired signal and a large 

improvement in SNIR wduld result. However, if the interferences were small, or if 

there were no interferences, the beamformer would attempt to null the desired 

signal. Obviously this is not acceptable in most cases. 

In order to avoid this, it is necessary to impose a constraint upon the gain of 

the adaptive array for signals arriving from the look direction. A mathematically 

tractable means of expressing this constraint for the case of a narrowband 

beamformer where no steering delays have been employed, is to consider the 

weight vector, W as made up of two components, U and V, with U forming the 

fixed time invariant component required to meet the constraint, and V the time 

varying adaptive component. V must be constrained in some fashion so that it 

does not affect the gain in the look direction. This is achieved by using a 

projection matrix, P, to force the adaptive component to have zero gain in the look 

direction. The projection matrix is of the form 
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P=I   
g FT (ad)  (ad) 

where 

(2.26) 

S(ad) is the space vector of the desired signal, 

and I is the identity matrix. 

The overall weight vector then becomes 

W=U+PV (2.27) 

and V can be varied without constraint (chapt 7 in [ 16]). 

One method of achieving this constrained adaptation was developed by O.L. 

Frost [19]. He devised an adaptive algorithm based on the simple LMS update 

recursion which allowed the imposition of a linear constraint upon the gain of the 

system in the look direction. Because of the simple nature of the LMS recursion, 

the algorithm could be implemented in digital or analog form. The following is 

the discrete time or digital form of the algorithm. 

The structure of the Frost adaptive beamformer is shown in figure 2.8. It may 

be employed in either narrowband or wideband configurations, the difference being 

simply the length of the tapped delay lines, with tapped ' delay lines of length 

greater than 2 being employed in wideband configurations. The beamformer used 

in the simulation performed at the end of this chapter was narrowband, so a single 

delay, D, was chosen to provide a 90 degree phase between the two samples used. 
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Thus, for a sinusoidal input, this corresponds to quadrature sampling. 

In contrast to a Maximum Entropy beamformer, a beamformer which employs 

a constraint in the look direction cannot simply minimize the output power as is 

done in Maximum Entropy beamformers. However, no desired signal is generally, 

available, so the common method of minimizing the difference between the output 

and the desired signal is also not possible. Fortunately, equation (2.27) provides a 

possibility. By constraining the gain of the beamfrmer in the look direction in 

some way, and then minimizing the output power, we achieve the desired result. 

Thus, the beamformer will maintain the desired gain in the look direction, and will 

adapt to minimize the total power arriving from all other directions. The constraint 

vector U is used in the adaptation process to maintain a specified response in the 

desired look direction. This, in conjunction with the beamsteering delays (required 

to define the look direction) shown in the figure, can be related directly to U as U 

also specifies the constant gain in the look direction. 

When the constraint used is a unit gain with zero phase, the desired signal 

will appear at the output undistorted, but with additive noise and interference. This 

is known as a Minimum Variance Distortionless Response (MVDR) beamformer. 

It has also been shown that this represents a Maximum Likelihood (ML) estimate 

of the target signal if all signals involved are Gaussian with zero mean [23]. 
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It should be noted that the beamsteering delays co-phase the desired signal, 

resulting in the same conditions as would prevail if the look direction was 

broadside to the array, regardless of the actual look direction. One significant 

detail which should be made clear, however, is that for two signal - interference 

configurations to be equivalent, it is not the angular separation which must be 

equal, but rather the difference in sin(c). As an example: a look direction of 

broadside (0 degrees, sin(0) = 0.0) with an interference at 30 degrees 

(sin(30) = 0.5) would be equivalent to having a look direction of 30 degrees and an 

interference at 90 degrees (sin(90) = 1.0) as in each case the difference in the sines 

of the arrival angles of signal and interference are equal. But note that the 

difference in the angles is 30 degrees in one case and 60 degrees in the other. 

Since it is possible to treat all cases arising as though the look direction were 

broadside, from this point forward, the look direction will be implicitly broadside 

unless otherwise stated. As a final caution on this point, adapted array patterns 

throughout are plotted with angle of arrival as the horizontal axis. These angles 

are valid only for the broadside look direction, but the results are still general in 

that they represent the result for the equivalent case where the differences between 

the sines of the angles are the same. 

The Frost adaptation may be seen as a two step process [17]. The first step is 

the determination of the unconstrained weight vector. The second step imposes the 

constraint upon the weight vector, adding correction terms evenly across each 
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element of the weight vector. 

Consider the case where the array has N elements and the tapped delay lines 

have L taps. Both the weights and observations may be arrayed in rectangular 

matrices: 

W1k W2k • WLk 

W(L+1)k W(L+2)k W JJ 

Wk= 

W ((N-1)L+1)k WNLk 

Xk X2k XLk 

X(L+l)k X(L+2)k Xjj 

X ((N-1)L+l)k 

The constraint vector is given as: 

C= [CO c1 • CL-11 

XNLk 

(2.28) 

(2.29) 

(2.30) 

Because the beamsteering delays shown at the left of the figure have aligned the 

outputs of the sensors in time such that signals arriving from the desired look 

direction are in phase, the Frost constraint is implemented by requiring that 

[111 . . . ijW = ff (2.31) 

over all time k. 
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We now briefly examine the Frost algorithm itself. 

The first step is the calculation of the unconstrained weight vector: 

W'k+l = Wk + 21YkXk 

where 

(2.32) 

W'k+l is the unconstrained weight vector, 

Wk is the constrained weight vector obtained from the previous iteration, 

p. is the Least Mean Squares (LMS) adaptive gain constant, 

Yk is the output of the beamformer at time k, 

and Xk is the observation vector at time k. 

The constraint error is then calculated and used to form a N x L correction matrix 

E'. 

Ek+1 = [11 •.. 11TLL  ... lJWk+1) (2.33) 

The second step is then to impose the constraint upon the unconstrained weights so 

that 

Wk+1 = W'k+1 + E'k+1 (2.34) 

and this completes the weight update cycle of the Frost algorithm. 

Other methods of achieving the Frost constraint have also been devised [24]. 
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2.6. Signal to Noise plus Interference Ratio Calculation 

Hudson (chapt. 7 in [ 16]) has shown that for a single interference and a unity 

noise variance, the noise plus interference power of a converged linearly 

constrained adaptive array may be written as 

where 

P + ((x)=N +  
1 + itN(1—k((x)I 2) 

P + ((X) is the total noise plus interference power, 

is the interference power, 

a is the angle of arrival of the interference signal, 

N is the number of elements in the array, 

and cI(a) is the normalized array gain in the a direction. 

(2.35) 

Because of the constraint, the signal power, P, at the output of the array is 

fixed at 

where 

Ps - itN (2.36) 

is the power in the signal arriving at the array. 

From these relations, the SNIR can be determined: 

SNIR= P  
Pn+i 

(2.37) 
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it1N k(c 

1+itN 

)l2 
SNIR = Nit5 1   (2.38) 

As mentioned previously, the above relation is based upon a noise variance, 

y2 of 1. Removing this condition, we are left with: 

SNIR = N 11 it1N IcI(a) 12 
2 (2.39) 

Examining (2.39) we find that the SNIR is directly proportional to the power 

in the signal, thus the overall shape of the SNIR function is unaffected by changes 

in signal power. Closer examination reveals that the shape of the SNIR curve is 

dependent upon the ratio of the interference power and noise power. The best 

results in terms of SNIR occur when x corresponds to a null in the unadapted 

pattern, giving I cT(c) 12 as zero, and the overall SNIR then becomes a function of 

signal power and uncorrelated noise only. 

Figure 2.9 shows the SNIR's for various noise and interference power ratios 

as a function of interference arrival angle for four element adaptive MR and 

uniform arrays assuming a broadside look direction. The uniform array does 

achieve a slightly better SNIR for interferences which are at some angular distance 

from the look direction. Note, however, that for interferences located close to the 

look direction, the MRA far outperforms the uniform array. Because we know the 

normalized unadapted directivity pattern of the MRA will have a much narrower 
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main lobe than the uniform array for any order, it is apparent from (2.39) that 

MRA' s of all orders should offer superior performance for interferences located in 

close angular proximity to the desired look direction. 

From figure 2.9 it is apparent that there is an angle which represents the point 

at which the MRA based system and the uniform array based system achieve 

identical performance. In the figure, it is simply the point at which the two curves 

cross. This angle will be referred to as the threshold angle, c. Figure 2.10 

indicates the SNIR curves for MRA and uniform arrays containing 3, 5 and 8 

elements. Table 2.3 contains the threshold angles, given that the look direction is 

broadside, for arrays containing 3 to 8 elements. 

Table 2.3. Threshold angles for arrays of order 3 to 8. 

Threshold Angles for Various Arrays 

sin(c) Number of Elements Threshold Angle 

Oct 

3 30.0 0.500 
4 18.6 0.319 
5 15.2 0.262 
6 15.8 0.272 
7 13.1 0.227 
8 10.9 0.189 

The numbers in the table may be somewhat misleading. For example, 

consider the 5 element arrays. The threshold angle is 15.2 degrees, a narrower 
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39 

angle than that for the 6 element array. An examination of figure 2.10 reveals that 

the SNIR curves for both the MRA and uniform array are very similar between 15 

and 20 degrees. 

These results again indicate that MRA based adaptive systems outperform 

their uniform array based counterparts in the rejection of interferences which are 

located in close angular proximity to the desired signal. The penalty paid for this, 

as can be seen in the figure, is a comparatively small degradation in the MRA 

based systems' ability to reject interferences which are located at some angular 

distance from the look direction. 

2.7. Simulation Results 

A Frost beamformer was used in conjunction with both a uniform and a 

minimum redundancy array with four sensors each to form directivity patterns 

in response to spatially coherent sinusoidal interferences and Gaussian 

noise. The noise is modelled as additive noise at the sensor inputs. In all of the 

following figures, the "look" direction is along the zero axis. Because the 

constraint selected for the Frost algorithm was the maintenance of a 0 dB gain in 

the look direction, each pattern exhibits a zero dB gain in this direction. Each 

directivity pattern was developed by using an LMS adaptation factor, p., of 0.0005 

and allowing the beamformer to adapt for 500000 iterations. The sensor elements 

were spaced at multiples of X. / 2. The extremely small value of p. and the long 
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adaptation time were used to ensure that the beaniformers had converged and that 

the misadjustment of the weight vectors was minimized. 

The case of additive noise only with no coherent interference is considered 

first. In this case the uniform array attenuates the noise by 6.02 dB while 

the MRA provides 6.00 dB of attenuation. This small difference is probably not 

significant in most cases, although it does indicate that the uniform array is slightly 

less sensitive to small weight perturbations. The patterns developed are shown in 

figure 2.11. 

In order to confirm that the MRA geometry is superior for rejecting 

interferences near the desired signal, a -3 dB sinusoidal interference is 

established 10 degrees off the "look" direction. Further, additive white noise of 

-10 dB is included. Figure 2.12 shows the patterns which result for both the 

MRA and the uniform array for this signal environment. Because the 

interference at 10 degrees is much larger than the noise background, both 

patterns show deep nulls in the direction of the interference: 31.6 dB for the 

MRA based array and 18.6 dB for the uniform array. Note, however, that in 

order to form the null at 10 degrees and maintain the constraint in the look 

direction, the main beam of the uniform array pattern has been "pushed" away 

from the interference. The main lobe is not pointed exactly in the look 

direction, and consequently the attenuation of the background noise is not as 

great as would be desirable, only 2.0 dB in this case. The MRA configuration, 
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on the other hand, because of its narrow main lobe, provides both a deep null in 

the direction of the interference and still maintains a higher degree of 

attenuation for the additive noise, 5.6 dB in this case. The total Noise plus 

Interference Power (NIP) is - 12.0 dB for the uniform array and -15.6 dB for the 

MRA. The MRA is thus 3.6 dB superior in performance in this case. This is 

slightly less than the predicted difference of 4.3 dB from the SNIR calculations of 

section 2.6. 

In the next figure, the same interference is simulated with an increased noise 

of 0 dB magnitude. Here, the MRA attenuates the noise by 5.9 dB while the 

uniform array provides 4.8 dB of, attenuation. The MRA also forms a 

deeper null in the interference direction, with the MRA forming a 16.8'0 

null and the uniform array forming a 6.2 dB null. The overall NIP is -5.9 dB 

for the MRA and -4.0 dB for the uniform array. Here, because the noise is 

more significant than in the previous case, the margin of performance for the 

MRA is reduced. The predicted superiority of the MRA based system in this case 

was 2.3 dB which, again, is slightly more than the simulation result of 1.9 dB. As 

the ratio of noise power to interference power is increased, the uniform array 

eventually equals the performance of the MRA. 
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2.8. Conclusion 

For four element arrays, an adaptive minimum redundancy array beamformer 

was shown to achieve superior noise and interference rejection over that 

achievable with a comparable uniform array based system for cases when 

spatially coherent interferences of significant strength (with respect to the 

overall interference and noise power) were present in close angular proximity to 

the direction of interest. This corresponded to the results predicted from the SNIR 

analysis. Since the results also seemed to correspond with those expected from 

the eigenvalue analysis, it would appear likely that the same advantages 

would also hold for higher order minimum redundancy arrays. 



CHAPTER 3 

A SUBOPTIMAL ARRAY WITH ADAPTIVE ELEMENTS 

SPACED FOR MINIMUM REDUNDANCY 

3.1. Introduction 

The conclusions drawn in the previous chapter were based on the premise that 

the outputs of all of the sensors making up the respective arrays were weighted by 

adaptive coefficients. That is, all of the coefficients in the weight vector were 

variable over time, with the variation controlled by the adaptive algorithm. 

However, there are situations in which it may not be desirable to make the 

weighting coefficient of each and every sensor output adaptive. The greater the 

number of adaptive elements, the larger the misadjustment associated with the 

conve.rged solution. Also, with more adaptive elements, the convergence time 

increases. Finally, the computational burden imposed by requiring that each of a 

large number of weighting coefficients be adaptive can become prohibitive. Thus, 

for a large array, there are significant drawbacks associated with using a fully 

adaptive array. 

The suboptimal array seeks to overcome the problems associated with the 

fully adaptive array by using significantly fewer adaptive coefficients than the total 

46 
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number of coefficients in the weight vector. It has been shown that for large 

arrays, the use of suboptimal adaptive systems, with adaptation applied to only a 

small fraction of the total number of weight coefficients, can achieve results 

comparable to those attainable with a fully adaptive array so long as sufficient 

degrees of freedom are provided to cancel all discrete spatial interferences [20,25]. 

One form of suboptimal array, known as a thinned adaptive array, is an array 

in which only a portion of the weights applied directly to the output of each sensor 

are adaptive. There are other means of implementing suboptimal arrays, but only 

the thinned adaptive array is covered here. 

In this chapter, we will study the effects of using adaptive elements spaced for 

minimum redundancy within a nafrowband uniform line array. Such an array 

belongs to the broad class of suboptimal arrays based on arrays with thinned 

adaptive elements although the common method of choosing the adaptive elements 

in a thinned array is to simply space the adaptive elements out equally amongst the 

nonadaptive elements. Hence, in an array in which one third of the elements were 

to have adaptive coefficients, every third element would be adaptive. It will be 

shown that choosing adaptive elements based on a minimum redundancy criterion 

improves the main lobe interference rejection performance of such an array 

significantly. 
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The performance of the different arrays will be compared on the basis of both 

calculations and simulations undertaken to establish which of the arrays provides 

the better converged solution in various cases. Because most suboptimal arrays 

achieve good sidelobe attenuation of interferences, the emphasis will be placed on 

the ability of each array to reject main lobe interferences. 

3.2. The Thinned Adaptive Suboptimal Array 

In many fields where arrays are used, it is necessary to use arrays with a large 

number of receiving elements. Consider for example, the passive sonar array, 

where the number of hydrophones employed in one array can number in the 

hundreds, and it is desirable to process the data in real time. In cases such as this, 

it is simply not practical to consider employing a fully adaptive array, weighting 

each sensor output by a time variable weight, with the value of the weight 

determined by an adaptive algorithm. The disadvantages associated with such a 

fully adaptive array were briefly mentioned in the introduction, as was a 

compromise solution, the suboptimal array. 

Figure 3.1 shows two forms of the thinned adaptive suboptimal array. If the 

null constraint given by (2.27) is employed for the adaptive subarray, these two 

forms may be equivalent, with 3.1(a) representing the more common 

implementation, as it requires fewer components. Figure 3.1(b), however, allows a 
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better understanding of the way in which the thinned adaptive array operates. 

From figure 3.1(b), it can be seen that there are two subarrays; a conventional 

subarray comprising all the elements which are merely steered in the direction of 

the desired signal, and an adaptive subarray, the elements of which are weighted by 

time varying multipliers. In the case of figure 3.1(a), with unity modulus weights 

employed in the conventional subarray, for a Minimum Variance Distortionless 

Response (MVDR) beainformer, the adaptive subarray would be constrained to 

provide a gain in the look direction which was equal to the number of elements in 

the adaptive subarray. For the configuration shown in figure 3.1(b), the adaptive 

subarray would be required to have a null in the look direction, with the 

conventional (fixed) subarray providing all of the gain in the look direction. From 

this, then, it is apparent that the prime function of the adaptive subarray is to form 

a beam in the direction of any interfering signals, with the magnitude equal to the 

magnitude of the conventional array response in that direction, but the phase 

opposite, producing a null in the direction of the interferences. Using this insight, 

it becomes clear that, the the narrowness of the beam formed by the adaptive 

subarray is of paramount importance, as wider beamwidths would cause more 

significant distortion of the array pattern of the conventional subarray, with this 

criterion becoming critical when the interference is within the main lobe of the 

beam formed by the conventional subarray. This provides the motivation for using 

adaptive elements spaced for minimum redundancy, as it was shown in the 
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previous chapter that such a configuration provides the narrowest beamwidth 

possible without spatial aliasing. 

Some simple changes are required to the equations in chapter 2 which 

describe the weight vector in order to allow for the fact that only some of the 

weights are adaptive. Once again, (2.27) is used to describe the weight vector, but 

in this case the form of the projection matrix, P, previously given by (2.26), is 

slightly different. Using the structure given by figure 3.1(b), the space vector of 

the conventional subarray, S (a) contains N unity modulus coefficients, where N 

is the number of conventionally weighted elements, which in this case is the same 

as the number of elements. The space vector of the adaptive subarray, S, (a) 

contains M unity modulus coefficients, where M is the number of adaptively 

weighted elements, and N—M zero or null coefficients, with the null coefficients 

corresponding to those elements which are not adaptively weighted. Hence, for a 

system with every third element adaptive 

S(a)=[s 0s1s2s3 ... SN ]T (3.1) 

S(o)={s 0OOs3 OOs 6 ... s 2 OO]' (3.2) 

Using S (a) as given by (3.2), the P matrix is now 

P=I v   
(ad )(ad) 

where 

(3.3) 
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I,, is a diagonal matrix with zero elements corresponding to nonadaptive elements, 

i.e. diag(1 0 0 1 0 0 ... 1 0 0) 

and ad is the desired look direction. 

From (3.3) it can be seen that the form of P is such that it is zero over all 

elements in those rows and columns which do not correspond to adaptive elements, 

indicating that they are not involved in the adaptation process. Using these 

relationships, it is possible to derive the noise plus interference power, P, 1, at the 

output of a converged thinned adaptive array. With a normalized uncorrelated 

noise power of 1, from Hudson (chap. 7 in [ 16]) 

P•1 = N + 
1+it1M(1— II 2) 

nj N2 I (D, 12 

where 

7ci is the interference power, 

cT is the normalized array gain of the conventional subarray for the 

interference arrival angle, 

and c, is the normalized unadapted array gain of the adaptive subarray 

in the direction of the interference. 

(3.4) 

Equations (2.36) and (2.37) may be applied to find the Signal to Noise plus 

Interference Ratio (SNIR) of the thinned adaptive array; 
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where 

SNIR 
N;(1+it1M(1—kI 12) 

= 

l+ir1M(1— 

the subscript t is used to indicate that this is the SNIR 

of a thinned adaptive array. 

(3.5) 

The case of interferences located at a large angular separation from the signal 

is considered first. In this case, I, 12 is small, allowing i l,, 12 to be 

approximated by 1. Considering the case of a large interference ( 7ci large ), (3.5) 

becomes 

SNIR 

= 

t3NM 

M+N kI 12 

ts 

(3.6) 

From (3.6) it can be seen that increasing the number of adaptive elements, M, 

up to the maximum, N, will provide the best results in terms of SNIR. However, 

note that if 12 is very small, as would be expected for interferences located at 

some distance from the main lobe, then (3.6) is dominated by N, the number of 

conventional elements. This is the fundamental result which allows the thinned 

adaptive array to achieve very nearly the same performance as a fully adaptive 

array for large interferences located in the array sidelobes. 
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The situation in which the interference is located close to the look direction, 

within the main lobe of the conventional array beam, is somewhat different. Again 

considering the case of a large interference, and noting that for interferences close 

to the look direction, l 2 is close to 1, (3.5) may be approximated by 

SNIR t = ;MN(l— N 12) 

M(l—II 2)+N 

Its 

1 (3.7) 

M(l—ll2) N 

A further approximation may be employed: Noting that 1—I 12 is a very 

small quantity, the SNIR may be approximated by 

SNIR ;M(1— I( 12) (3.8) 

From (3.8) it is apparent that the critical factor for determining SNIR for the main 

lobe interference case is the factor 2• If  IT? 12 falls off rapidly as the 

angle a increases, the SNIR in (3.8) increases rapidly. Hence, the ideal IcT, 12 

will exhibit a very narrow main lobe. 

The approximations developed for I 12 and I 12, (2.16) and (2.18) 

respectively, can be used to compare the relative performance of thinned adaptive 

arrays with adaptive elements spaced uniformly and with minimum redundancy. 

Equation (2.16) must be modified, replacing the interelement spacing d with the 

spacing between adaptive elements, D, where D _- d, and using M, the number 
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of adaptive elements, in place of N. This modification to (2.16) yields 

Out 2 Z 1 - * (kdsin((L))2 (M2_1) 
0 

(3.9) 

Substituting the approximations of (3.9) and (2.18) into (3.8) provides an 

approximation of the SNIR for main lobe interferences impinging upon thinned 

adaptive arrays with uniformly spaced (SNIR) and minimally redundant (SNIR,) 

adaptive elements respectively; 

SNIRUt = g N2 (M2-1)(kdsin(a))2 
12M 

2 3N+1  
SNIR,, N(kdsin(a))2 

6M 

(3.10) 

(3.11) 

Th SNIR approximation of a fully adaptive uniform array is obtained by 

setting M=N in (3.10) giving 

SNIRU Z 7CS  N(N2-1)  (kdsin((X))2 
12 

(3.12) 

In order to compa1e the relative SNIR performances of these arrays, the SNIR 

of the fully adaptive array will be normalized to 1, and the others will be computed 

with respect to this. Thus the relative SNIR, SNIRIa, of the uniformly spaced 

thinned adaptive array is 

SNIRr Ut - NM(M2-1)  

- M 2(N2-1) 
(3.13) 
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which for large N may be approximated by 

SNIR M2-1 
Ut MN (3.14) 

The relative SNIR of the thinned adaptive array with adaptive elements 

spaced for minimum redundancy is 

SNIR = 2(2N--1)  
nit M(N+1) 

which for large N may be approximated by 

SNIR r 4 
,J -h 

(3.15) 

(3.16) 

Equation (2.23) relates N and M in an MRA under the assumption that there 

are no redundant spacings. Using this as an approximation, substituting (2.23) into 

(3.14) gives an estimate of the performance of a thinned adaptive suboptimal array 

with equi-spaced adaptive elements, when the same number of adaptive elements 

as would be found in a thinned array with adaptive elements spaced for minimum 

redundancy are employed. 

-  M 2-1  
SNIR M2 M 

+1)M 
2 2  

which for M>>1 is well approximated by 

(3.17) 
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SNIRr 
M 

(3.18) 

A comparison of (3.18) and (3.16) reveals that a thinned array with adaptive 

elements spaced for minimum redundancy attains a SNIR performance with main 

lobe interferences which is approximately twice that attained by a thinned array 

using the number of equi-spaced adaptive elements. Table 3.1 is a comparison of• 

predicted relative SNIR's for the main lobe interference situation, calculated using, 

(3.13) and (3.15). The array lengths were chosen to correspond to the length of 

MRA's of order 7 through 10, and the number of adaptive elements employed in 

each was the same as the number of sensors in a MRA of the same length. 

Table 3.1. SNIR of thinned adaptive arrays relative to the fully adaptive array of 
the same length; tabulated for interference close to the look direction. 

Conventional 

Subarray 

Length 

Number of 

Adaptive 

Elements 

SNIR Relative to Fully Adaptive 

Adaptive Element Geometry 

Uniform Minimum Redundancy 

N 

18 
24 
30 
37 

M 

7 
8 
9 
10 

N(M2-1) 2(2N-1) 

M(N2-1) 
0.382 
0.329 
0.297 
0.268 

M(N+1) 
0.526 
0.470 
0.423 
0.384 

To illustrate the relationships for the SNIR's of each of the arrays, a specific 

example is now considered. Comparisons are undertaken using the SNIR 



58 

relationships given by (2.39) for the fully adaptive array, and (3.5) for the thinned 

adaptive arrays. A 37 element uniform line array is employed. The thinned 

adaptive arrays each contained 10 adaptive elements, one array with adaptive 

elements spaced uniformly throughout the length of the array, the other with 

adaptive elements spaced for minimum redundancy. For convenience, the look 

direction is once again chosen as broadside, or zero degrees, again, without loss of 

generality, and interference angle of arrivals are given with respect to this. 

Figure 3.2 relates the SNIR performance calculated for the nonadaptive 

conventionally weighted array, the fully adaptive array and the thinned adaptive 

array with equi-spaced adaptive elements. It can be seen from the figure, that the 

thinned adaptive array with equi-spaced adaptive elements should achieve 

performance comparable to that of the fully adaptive array for interferences located 

in the sidelobes. 

Figure 3.3 is a comparison of the SNIR performance expected of both forms 

of thinned adaptive arrays. The performance achieved when the interference is 

located at a large angular distance from the desired signal, in the sidelobes of the 

conventional array pattern, is relatively independent of the geometry employed in 

the adaptive element spacing. However, close observation reveals that the 

performance of the array using adaptive elements spaced for minimum redundancy 

is superior for main lobe interferences. This is more apparent in figure 3.4, which 

is an expanded view of the SNIR curves for interferences located near to the 
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Figure 3.3 - SNIR at the output of thinned uniform and minimum redundancy converged adaptive arrays with 37 elements, 
10 of which are adaptive. 



SNIR (dB) 

20 

15 

10 

5 

0 

-5 

it-=0dB 

it = 0 dB 

o2 —OdB 

thinned uniform 
fully adaptive 

thinned MRA 

-5 
I I 

0 

Interference angle of arrival (degrees) 

Figure 3.4 - Output SNIR comparison for various converged adaptive arrays with a main lobe interference. All 
arrays employ 37 elements, thinned arrays employ 10 adaptive elements. 

5 



62 

desired signal. From figure 3.4, it is clear that the SNIR attained by the thinned 

adaptive array with adaptive elements spaced for minimum redundancy is superior 

to that attained by the thinned adaptive array with uniformly spaced adaptive 

elements. While the difference in the performance of the two systems may not 

appear to be that significant, the increased SNIR achieved by the thinned adaptive 

array with adaptive elements spaced for minimum spatial redundancy does not 

require any increase in the complexity of the system. 

It is also seen that the performance attained by both thinned adaptive arrays is 

significantly inferior to that achieved by the fully adaptive array. Note, however, 

that the enhanced performance is attained at the expense of employing almost four 

times as many adaptive elements as are employed in either of the thinned adaptive 

arrays. It should also be mentioned that the SNIR figures are based on the optimal 

solutions. If the LMS algorithm is used to determine the weight vectors for both a 

fully adaptive and a thinned adaptive array, because of the realationship between .t 

and the number of weight vectors employed, it would be expected that employing 

4 times as many weights would result in a convergence time which is 

approximately 4 times as long or a misadjustment after convergence which is 

approximately 4 times as large, or some combination of these two factors. 
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3.3. Simulation Results 

A simulation study was undertaken using the example considered in the 

previous section. That is, suboptimal arrays based on a 37 element line array, with 

2 thinned array configurations, one with adaptive elements spaced uniformly 

throughout the array, the other employing adaptive elements in a minimum 

redundancy configuration, were simulated. Figure 3.5 shows the simulation model 

which was employed. Uncorrelated Gaussian noise was added to each of the 

elements as shown. In the simulations which follow, the noise power, 2, was set 

to 0 dB. The adaptation was based on the Frost algorithm given in chapter 2, with 

an LMS adaptation factor, .t of 0.0005. The simulation was permitted to run for, 

10,000 iterations, allowing the adaptive coefficients to converge, and the resulting 

converged array patterns for specific interference cases are presented. Due to the 

constraint employed, the gain in the look direction is always 1 (0 dB) and all null 

attenuations are given with respect to this. 

Figure 3.6 shows the array pattern for the case when only uncorrelated noise, 

with no interfering spatially discrete signal, is present. Only one pattern is shown, 

but this represents the converged array pattern of both the unifoimly spaced 

thinned adaptive array and the thinned adaptive array with elements spaced for 

minimum redundancy. The adaptive weights of both systems have all relaxed, 

such that the gains of every element are now equal, with the result that the patterns 
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obtained for both thinned adaptive array configurations are equivalent to that of the 

37 elethent conventional beamformer. 

Figure 3.7 displays the array patterns obtained for a 20 dB interference 

located 45 degrees from the look direction, well into the sidelobes of the 

conventional array pattern. Both thinned adaptive arrays have produced good 

nulls in the interference direction, with 53.6 dB of attenuation for the thinned MRA 

configuration, and 53.1 dB of attenuation provided by the thinned array using 

uniformly spaced adaptive elements. This represents an additional 11.3 dB of 

attenuation for the MRA configuration, and 10.8 dB for the uniform thinned array, 

in addition to the 42.3 dB of attenuation provided by a uniformly weighted 37 

element conventional array. Hence, both thinned adaptive arrays have succeeded in 

essentially eliminating the strong 20 dB interference signal in the sidelobes. The 

uncorrelated 0 dB noise input is attenuated by 15.7 dB by both thinned adaptive 

array configurations. Thus, in this case, both arrays provide comparable 

performance, reducing the total Noise plus Interference Power (NIP) to -15.7 dB. 

It should be noted that this agrees with the results expected from the calculations 

of the previous section, confirming the conclusion that the thinned adaptive arrays 

provide performance comparable to that attainable with a fully adaptive array for 

sidelobe interferences. 

Figure 3.8 is the array patterns obtained with a 20 dB interference located 

only 1 degree from the look direction. This is well within the main lobe of the 
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conventional array pattern. After convergence, it is seen that both thinned adaptive 

arrays have formed good nulls in the direction of the interfering signal, 48.7 dB for 

the MRA configuration and 47.4 dB for the uniform. The attenuation of the 

uncorrelated noise is much lower in this case; 7.47 dB for the thinned adaptive 

array with adaptive elements spaced for minimum redundancy, and 6.35 dB for the 

thinned adaptive array with uniformly spaced adaptive elements. The total NIP is 

-7.43 dB for the MRA based thinned adaptive array and -6.32 dB for the uniform 

thinned adaptive array. This compares well with predictions made using (3.5), 

which show that the thinned adaptive array with adaptive elements spaced for 

minimum redundancy should reduce the NIP to -7.44 dB, while the thinned 

adaptive array with uniformly spaced adaptive elements is expected to achieve a 

NIP of -6.32 dB. Thus, in this case, the overall NIP is reduced by some 1.11 d 

by using adaptive elements spaced for minimum redundancy. 

3.4. Conclusion 

One form of suboptimal array, the thinned adaptive array, was introduced. 

The common method of choosing the positioning of the adaptive elements in such 

an array, spacing them uniformly throughout the length of the array, was indicated. 

It was seen that placing the adaptive elements such that the redundant spacial 

correlations are minimized by using a MRA geometry for the adaptive elements, 
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increased the SNIR achieved by the converged array when rejecting interferences 

located close to the look direction. The increase in SNIR for the main lobe 

interference case is achieved without a significant increase in SNIR for the side 

lobe interference case. Further, there is no difference in the complexity of the 

thinned adaptive array systems. 

Since the number of adaptive elements in the thinned adaptive array 

corresponds directly to the order of the MRA used to provide the spacing of the 

adaptive elements, the length of the filled array is explicitly specified once the 

number of adaptive elements is chosen. This is a severe handicap in applying this 

technique to real world situations. For instance, given an array of length N, more 

adaptive elements may be required than are found in the MRA of length N. The 

question then becomes how to allocate the additional adaptive elements. Moffet 

[l5] has addressed a similar problem, that of producing regular array structures 

which offer reduced redundancy in spatial correlations. Employing such array 

structures for choosing the adaptive elements in a thinned adaptive array would 

serve to make the technique more general. 



CHAPTER 4 

AN ADAPTIVE MINIMUM REDUNDANCY ARRAY 

FOR DIGITAL COMMUNICATIONS 

4.1. Introduction 

In this chapter, a slightly different application of beatnforming is considered. 

Previously, all the cases considered contained the assumption that no prior 

knowledge of the desired signal other than its direction of arrival was available. 

Now, the case where the direction of arrival is unknown but the information 

content of the signal is known is considered. It is therefore necessary to postulate 

a training sequence, used to allow the weights of the adaptive beamformer to adjust 

to minimize the mean square error under these conditions. This may be seen as 

analogous to the case of an adaptive equalizer which relies on a training sequence 

to provide the initial convergence. 

The chapter begins with a look at the complex envelope simulation employed. 

This includes both the channel simulation and the LMS adaptive combiner used in 

determining the optimum weight values. 

71 
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Next, the case of uncorrelated interferences is considered. This situation may 

occur as a result of co-channel interference or as a result of an intentional attempt 

to disrupt the communication system in the form of jamming. A comparison of the 

effectiveness of both uniform array and MRA based adaptive systems under these 

conditions is then undertaken. 

The multipath, or correlated signal, environment is then examined. A simple 

two ray model is used to allow the calculation of the probability of error under 

various conditions using both the uniform and MRA based systems. Simulations 

using the LMS adaptive combiner are undertaken to confirm the results of these 

calculations. An overall estimate of the total probability of error for each system 

is also given. 

4.2. Complex Envelope Simulation 

It is well known that a narrowband bandpass system may be modelled 

mathematically as a lowpass or baseband system by employing complex 

demodulation to determine the baseband equivalent of the bandpass system [26]. 

This property will be used to simplify the analysis of the situation confronting us 

Figure 4.1 (a) shows a simplified narrowband communications system, with the 

channel transfer function indicated. Figure 4.1 (b) shows the baseband equivalent 

system. The equations which follow indicate the mathematical relationship 
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between the narrowband impulse response and its baseband equivalent. 

h(t) = h(t)e 27cf 0t (4.1) 

where 

h (t) is the baseband equivalent of h(t), 

h (t) is the analytic signal of h(t), 

and f0 is the center frequency of the narrowband function H(f) 

The analytic signal Ii (t) is given by 

h(t) g h(t) + jui(t) (4.2) 

where 

h (t) is the Hilbert transform ofh(t). 

Examination of these equations reveals that, in general, the baseband 

equivalent representation of the impulse response of a narrowband system will be a 

complex function. In the simulations which follow, however, in order to reduce 

the complexity and computational burden imposed by the required convolutions, 

the complex envelope of the channel impulse response contains only real• 

components. This is equivalent to specifying that H (f), the Fourier transform of 

h (t), is a Hermite function, implying that H (f) has a passband which ' is conjugate 

symmetric about the center frequency, f 0. While this is clearly an artificial 

constraint, it does not affect the validity of the results for the more general case 

where the baseband channel impulse response is complex. 
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4.3. Uncorrelated Interference 

Figure 4.2 indicates the geometry of the situation considered in this section. 

Two signals are shown impinging upon - a receiving array. For convenience, but 

without loss of generality, in simulations the desired signal always arrives from 

broadside, that is, with an arrival angle of zero degrees. The second signal is an 

interfering signal, uncorrelated with the desired signal. The difference in arrival 

angle between the two signals is given as a. 

Figure 4.3 is a block diagram representation of the system used to simulate 

the conditions of figure 4.2. There are two signal generators, a desired signal 

generator and an interference signal generator, each generating signals used to 

simulate Quadrature Phase Shift Keying (QPSK). These signal generators consist 

of two parts: a symbol source that generates a random sequence with independent 

real and imaginary components followed by a NRZ rectangular pulse generator. 

The QPSK signal used, s (t), is written as 

s (t) = Re[Aap (t - 

where 

A is the magnitude of s (t) implying that the energy per bit, Eb = A 2 

a is the nih symbol in a sequence of uncorrelated symbols, 

(4.3) 
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Figure 4.2 - Signal, interference and array geometry. 
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1+j 1—j —l+j —1—f  

,'J , 

p (t - nT) is a rectangular pulse of unity amplitude, 

and ejO)0t is a carrier component, with coo the center frequency. 

The signals generated in the simulation are the baseband equivalent of s (t) given 

by 

t) =Aap(t - nT) 
ti 

(4.4) 

The generated signals are then convolved with a channel impulse response. In 

this case, the channel impulse response is a 256 point Hamming window function, 

providing a basic lowpass characteristic. While the magnitude response of each of 

the channels is equal, a time delay is introduced into the impulse response, 

allowing the convolved outputs to differ in phase. It should be noted that in 

general the channel impulse responses of the interference and desired signals 

normally differ. However, for simplicity, the same impulse response is employed 

for each channel. The output of each channel is then multiplied by a direction 

vector, one for each individual channel, which determines its relative phase at each 

element of the receiving array. Independent Gaussian noise is then added to the 

output of each element of the array. 

Mathematically, X(t), the vector of outputs of the sensors of the array is 

expressed as: 
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X(t) = 31(t) * h1(t)S 1(a1) + 2(t) * h2(t)S2((X2) + N(t) (4.5) 

where 

X(t) = [20(t) 11(t) 

x (t) is the output of the 1th sensor, 

s 1(t) is the desired signal, 

S2(t) is an uncorrelated interference, 

h (t) is the complex envelope representation of the i th channel impulse response, 

N(t) = [v0(t) v1(t) . v, (t )]T is a vector of independent, zero mean, AWGN elements 

and Si (c) is the space vector producing the required phase relationship. 

The outputs of the receiving elements are then sampled and input to the LMS 

adaptive combiner, shown in figure 4.4, which is based upon the following update 

recursions from chapter 6 in [ 17]: 

where 

A =  WkXk (4.6) 

ek = dk - Yk (4.7) 

+ 

k is the time index, 

t is the LMS adaptation factor, 

Wk = {w0 w1 WN] ' is the weight vector at time k, 

Xk = [x0 . is the observation vector at time k, 

(4.8) 
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dk is the desired signal at time k, 

Yk is the output of the combiner at time k, 

8k is the error at time k, 

[]T indicates transposition, 

[]* indicates conjugation, 

and []H indicates the Hermitian or conjugate tranpose. 

The outputs of the sensor elements form the observation vector, Xk, input to 

the combiner. This vector is multiplied by the Hermitian of the weight vector, Wk, 

to form an estimate of the desired signal, Yk which is then subtracted from th 

known value of the desired signal, dk, to produce the error term. This error term 

is then used (in (4.6)) to determine the magnitude of the correction applied to the 

weight vector. 

The combiner can be used to receive broadband signals by employing a 

tapped delay line to maintain a memory of the past observation vectors. If no 

memory is employed, the system is nanowband as in the case shown. Another 

important feature is the lack of a constraint on the look direction, found in most 

beamformers. 

The output of the combiner, Yk is then input to a decision device, which 

determines which symbol was transmitted. Although it was not examined in this 

study, it seems probable that decision directed learning, using the output of the 
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decision device to produce the desired signal, would allow the adaptive combiner 

to depend upon a training sequence only for initial convergence. Following the 

initial convergence, obtained with the known desired signal provided by the 

training sequence, a sufficiently large proportion of the decisions will be correct, 

allowing the combiner to be switched to decision directed learning. Again, this 

was not examined in this study, but decision directed learning is employed in FIR' 

based linear adaptive equalizers [27]. There appears to be no reason why the same 

technique could not be employed in this case. 

4.4. Simulation: Uncorrelated Interference 

A four element equi-spaced array and a four element MRA, each with 

interelement spacing were employed in the following simulations. The combiner 

employed was narrowband, using one complex sample per element from the 

current symbol interval. In all cases, the LMS combiner employed an LMS 

adaptation factor, it, of 0.0005 and the recursion was allowed 1000 iterations to 

complete its initial convergence. After the initial convergence, the outputs of the 

combiner were compared with the transmitted symbols and the probability of error 

under these conditions was determined. Additionally, the weights developed by the 

combiner could be used to indicate the directivity pattern of the system. 
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To establish a baseline for the system, a simple test case was employed. 

Additive White Gaussian Noise (AWGN) of 0 dB was added to each of the four 

receiving elements while a QPSK signal of 3 dB (corresponding to 0 dB per bit) 

was transmitted. Because the desired signal is co-phased, or multiplied by complex 

weights such that the desired signal component of each sensor output is added in 

phase by the combiner, the SNR is increased by a factor of 4, the number of 

elements in the array. Employing the relationship for the bit error probability for 

the QPSK signals of (4.3) with AWGN [28]: 

I IA1 
(4.9) 

where 

© _ 2 

1 
the Q function is given by: Q (x) A - fe 2 d ? 

and an is the standard 1eviation of the AWGN, 

it is found that the expected bit error probability using the ideal weight vectors for 

both MRA and equi-spaced systems under these conditions is 0.023. From 

simulation, the MRA based system achieved a bit error probability of 0.025 while 

the equi-spaced array system achieved a 0.023 bit error probability over an 18,000 

bit (9,000 complex symbol) run. Figure 4.5 shows the directivity pattern of the 

combiners under these conditions. 
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Figure 4.5 - Directivity patterns for 4 element uniform and minimum redundancy adaptive combiners with AWGN. 
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To further test the working of the combiners, a 10 dB interfering signal, 

uncorrelated with the desired signal, was placed 10 degrees from the desired signal. 

The signal power was 3 dB, while the uncorrelated noise employed was -40 dB. 

Under these conditions, both combiners succeeded in nulling out the interference 

satisfactorily, completing 18,000 bit runs with no errors. Figure 4.6 shows the 

resulting directivity pattern. Notice the deep null at 10 degrees in each of the 

resulting directivity patterns. 

Five more simulations were then carried out. Each involved 3 dB desired 

signals, 0 dB additive Gaussian noise and spatially coherent interferences of 10 dB 

magnitude. The interferences were placed successively at angles of 10, 12, 14, 16 

and 22 degrees away from the desired signal. The 22 degree angle is significant as 

that represents the peak of the first sidelobe of the MRA pattern. Thus, the 

performance of the MRA based system with an interference at that angle should be 

as bad as for any angle outside of the main lobe. The results, based on data 

samples of 22,000 bits, are tabulated in table 4.1. 
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Table 4. 1. Probability of Error for Various Interference Conditions with 
Unity Noise Power. 

Interference Pb (e) 
Angle 

(degrees) 
Power 
(dB) 

MRA Equi-Spaced 

- 

- 0.0248 0.0234 

10 10 0.0309 0.1320 
12 10 0.0263 0.0980 

14 10 0.0265 0.0724 

16 10 0.0322 0.0552 
22 10 0.0499 0.0317 

Figures 4.7 through 4.9 show the directivity patterns developed for the 10, 16 

and 22 degree interference conditions. 

With these results it is apparent that the MRA based system is better at 

rejecting uncorrelated interferences which are close in angular proximity to the 

desired signal, while the uniform geometry achieves superior performance for 

interferences located far from the desired signal. 

4.5. Multipath 

If the second signal shown in figure 4.10 is a time delayed version of the 

desired signal with variable amplitude, a multipath condition occurs. It is 

necessary to further examine the implications of this two ray multipath model. 

The examination begins by showing that it is possible to calculate the expected 
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Figure 4.8 - Directivity patterns for 4 element uniform and minimum redundancy array based adaptive combiners 
with a 10 dB interference located 16 degrees from the desired signal and AWON of 0 dB. 



Array Gain (dB) 

10 - 

0 

-10 - 

-20 - 

-30 - 

-40 - 

-50 

-90 

Interference 
Angle of Arrival 

  unif 
  MRA 

I I I 

-45 0 

Angle of arrival (degrees) 

45 

Figure 4,9 - Directivity patterns for 4 element uniform and minimum redundancy array based adaptive combiners with 
a 10 dB interference located 22 degrees away from the desired signal and AWGN of() dB. 

90 



91 

LOS 

Desired Signal 

d d 

Multipath: Desired Signal 

Figure 4.10 - Two ray multipath signal and array geometry. 
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error probabilities by determining the SNR at the output of an optimal combiner 

for various multipath conditions using this model. 

Because these two rays in the multipath model actually represent continuous 

plane waves propagating in space, a field is set up which can be expressed as the 

sum of the two waves at any point in space. Since this thesis deals exclusively 

with line arrays, the field need only be expressed as a function of one dimension, 

x, where the x axis is the axis of the array. Using (4.3), the contribution of each 

signal, r1 (x ,t), at a point x along the axis of the array is given as: 

r1(x,t) = Re[A1 ap (t -  Tj  - nT)esmt)e00te1] I = 1, 2 (4.10) 
n 

where 

Al is the amplitude of the i' signal, 

'c1 is the time delay component associated with the i th signal, 

e sin1) represents the spatial variation of the signal along the x axis, 

Cti is the direction of arrival of the 1th signal, 

and 4j jO)0t1. 

Equation (4.10) can be simplified by virtue of the fact that it is not necessary 

to deal with the carrier component, as only the complex envelope, (x ,t), of the 

signal, r1 (x ,t), is of interest, where 

?1(x,t) = A1 ap (t - - nT)e1m1)e1 1 

n 
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At any point along the x axis, we may find the envelope of the field, 2 (x ,t) as the 

sum of the two ray components. 

(X It) = 1(x,t) + 2(x,t) (4.11) 

If ' z T, the symbols, a, in each of the signals (1 = 1, 2) will be the same 

over most of each symbol interval. This is illustrated in figure 4.11. This case, 

with the symbols in each ray correlated with those in the other ray is the multipath 

case which will be considered. (If the symbols in the two rays are uncorrelated the 

signal' environment becomes identical to that considered previously, that of a 

desired signal with an uncorrelated interference.) The sampled complex envelope, 

(x ,n), under the two ray multipath model is obtained by sampling the envelope, 

(x,t). Substituting (4.10) into (4.11) and taking the magnitude squared (with the 

assumption that the symbols in the two rays are the same) gives 

I2(x,n)I 2 =A? +A + 2A 1A2cos(kdi(sin(cx1) - sin(a2)) + - 2) 

(4.12) 

Ftorn 2 (x ,n) in (4.12), the SNR at the output of an optimal combiner can be 

determined (and hence, employing the assumption that the noise is AWGN, the 

error probability for a digital communications system can be derived). Let y (n) 

denote the output of a uniform optimal combiner at time nT, while Ym (n) denotes 

the output of a MRA based optimal combiner at time nT. Sampled outputs of the 

uniform and MRA based combiners respectively, at the nh interval are: 
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where 

y,, (n) w(di,n)((di,n)+v1(n)) 
iE1) 

Ym(') = Z Wmi(dt,fl)(2(dl,fl) + vi (n)) 
iE1C 

d is the interelement distance, 

= (alphabet of uniform array element positions), 

K = (alphabet of MRA element positions}, 

w (di , n), is the complex uniform array based optimal combiner weight 

corresponding to the element at position di at time nT, 

Wm (di ,n) is the complex MRA based optimal combiner weight 

corresponding to the element at position di at time nT, 

and v (n) is the AWGN at the Ph element, at time nT, 

v1(n), v1(n) are uncorrelated I #j. 

(4.13) 

(4.14) 

The summations in (4.13) and (4.14) are over the sets 1 and K corresponding to the 

array spacings of a uniform array and a MRA respectively. For example, for four 

element arrays; 

_3 113 

2 2'2'2 

K = {-3,-2, 1,3) 

The arrays represented by the sets o and K are centered about x = 0, with each 

sensor of the array located a distance d times the corresponding element i in the 

set, from the origin. 
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The weights which maximize the SNR at the output of the combiner, 

(assuming that the noise power is the same at each element) are [ 14] 

w(di,n) = 2 (di,n) (4.15) 

Hence, the SNR at the output of the uniform array based combiner is 

2 
i(di,n)l' 

IE1) 

SNRU =  (4.16) 
I(di,n)I 

i1) 

I(di,n)I 2 
iEU 

where 

(TV is the variance of each of the noise components, v (n). 

Similarly, the SNR at the output of the MRA based combiner is 

SNRm - 

I(di,n)I 
IEK 

CYV 

Substituting (4.12) into (4.16) and (4.17) gives 

M (A? +A2 ) + , 2A 1A 2cos(kdi (sin(a1) - sin(a2)) + - 

SNRU 
iEt) 

(4.17) 

(4.18) 
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M(A? +A) + Z 2A 1A2cos(kdi(sin(c1) - sin(a2)) + - 2) 

SNRm 
LEK 

(4.19) 

The cosine summations in (4.18) and (4.19) may be simplified as follows: 

considering the summation over the elements in the unifonii array found in (4.17) 

first, the spatially variable component 4, is 

= 2A 1A 2c05(kdi (sin((x1) - sin(()) + v) 
tEl.) 

where 

(4.20) 

W1 (1)2 

This may then be rewritten, using a trigonometric identity and taking terms not 

involved in the summation outside: 

= 2A 1A 2cos(W) Z cos(kdi (sin(a1) - sin(a2))) 
IEI) 

(4.21) 

Comparing (4.21) with (2.12) it is seen that (4.21) may be rewritten in terms of 

so long as sin((x), employed in Chapter 2, is replaced with sin(a1)—sin((X2). Hence, 

= 2A 1A 2cos()(M J? ((X1,(X2)) (4.22) 

and substituting into (4.18), the SNR at the output of the uniform array based 

optimal combiner is 
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SNRU = 
M(A? + A) +2A iA2cos(V)(M(ci1,(X2)) 

(4.23) 

In a similar fashion, the relationship for SNRm as a function of its array 

pattern can be derived, again after replacing sin(a) employed in chapter 2 with 

sin(c 1) - sin(a2), can be derived. The resultant formulation is 

M(A? + A)+2AiA2cos(V)(M (Dm (ai,a2)) 
SNRm 

cy 
(4.24) 

The probability of error per bit for QPSK signals was given by (4.7). The bit 

error probabilities for the uniform array and MRA based systems for the multipath 

case, under the assumption that Ni, o, and c2 are known, are 

'bu (e I y,a1,a2) = Q (-\fS-N—Ru] 

Pbm (e INi,a1,a) = Q [/S_NRm] 

(4.25) 

(4.26) 

From an examination of (4.23) and (4.24) it is apparent that the SNR at the 

output of both the uniform and MRA based combiners in the two ray multipath 

environment is the sum of a fixed term, M (A? + A ), which represents the 

average power, and a term which varies over space, 2A iA2cos(1IJ)(McIm ( 12)) It 

is the spatially varying component which is of greatest interest. Ideally, for a 

communications system, the spatially varying component should be minimized in 

order to minimize the overall probability of error. This is desirable because the 
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random phase introduced by the cos(W) function in (4.23) and (4.24) makes it 

impossible to determine beforehand whether the spatially varying term will result 

in increased SNR, from constructive interference, or decreased SNR, due to 

destructive interference. 

The assertion that i is a random variable is based on the assumption that only 

a small relative change in the path lengths of the two rays is necessary to cause a 

large change in the phases of the signals. By increasing the length of the path 

followed by one of the rays by X (where X is the wavelength of the carrier, and is 

generally small with respect to the transmission distance) the random phase term 

associated with that ray, 4, is increased by 180 degrees. Thus, if the distance 

from the transmitter to the receiver is a large number of wavelengths, as is 

necessary in any case for the plane wave approximation to hold true, the 

assumption that 01 is random is valid. Given that Oj is uniformly distributed in the 

inter'al from - it to it and independent of Oj, i:7-Li, it follows that ic is also 

uniformly distributed in the interval - it to K. 

Since the properties of the unadapted array patterns were examined in some 

detail in Chapter 2, it is possible to apply those results to obtain a better 

understanding of the implications of (4.23) and (4.24). 

Remembering that the main lobe of the pattern produced by the MRA is much 

narrower than that of the corresponding uniform array, it can be seen that when 
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sin((x1)—sin((X2) is small, corresponding to a small value of sin((X) and hence small 

angles in the unadapted array pattern, the MRA based system will have a smaller 

variation in SNR over space than the uniform array based system. Thus when the 

multiple paths are close together the MRA based system would be preferred. 

However, when the multiple paths are located at some large angular distance from 

one another, corresponding to a large value of sin(a1)—sin(a2) in the multipath 

case, or a lrge value of sin(c) for the unadapted array pattern, the uniform array 

based system will show a smaller variation in the possible range of SNR's. 

A specific case is now examined in more detail. Under the two ray multipath 

model, the worst case occurs when two correlated equal amplitude signals are used, 

thus allowing for complete spatial nulls, points in space where the two signals 

cancel each other out completely. This specific case will be used to show that the 

performance of the MRA based system is superior under worst case conditions for 

small angular separation of the multiple paths. For convenience, it will be assumed 

that one of the signals, designated the Line Of Sight (LOS) signal, and representing 

the direct path, arrives at an angle perpendicular to the array axis. The second 

signal, the multipath signal, will arrive at an angle a with respect to broadside. 

Two adaptive combiners, each containing 4 elements, one based on the 

uniform array geometry, the other based on the MRA geometry, are employed. 

The noise variance is chosen to be unity, of 0 dB, for this experiment, while each 
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of the two multipath QPSK signals is 3 dB. Using (4.25) and (4.26), an upper 

bound on the probability of error (assuming the channel is not bandlimited) is 

determined for various values of c. These results are given in Table 4.2 as 

"theoretical". 

To confirm that the performance of the systems under these multipath 

conditions follows that expected from the calculations, the following simulations 

were carried but using the system shown in figure 4.12. The desired signal was 

convolved with two separate channels, one for each of the two rays in the 

multipath model, with the delay of the multipath channel chosen to introduce a 

phase shift producing the worst possible SNR at the output of the combiner given 

the specified angles of arrival. Both channels were identical otherwise, and again 

were modelled as 256 point Hamming window functions providing a lowpass 

characteristic. Simulations were then undertaken for various angular separations of 

the signals. The LMS adaptive combiner shown in figure 4.4 was used to process 

the signals from a fourth order MRA and 'a four element uniform array. This LMS 

combiner again employs the recursions given by (4.6), (4.7) and (4.8). Additive 

Gaussian noise of 0 dB, a i of 0.0005 and data samples of 22000 bits were again 

employed. 

Because the spatial correlation matrix is no longer Toeplitz, and hence no 

longer corresponds to the case of plane waves, the directivity patterns no longer 

give a good indication of the degree to which a signal arriving from a given angle 
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will be rejected [16]. For this reason, no directivity patterns are included in this 

section. 

The probability of error figures for these simulations and, for comparison, the 

probability of error figures developed theoretically are shown in Table 4.2. 

Table 4.2. Error Probabilities for Equal Strength 
Multipath Signals with Various Angular Separations and Worst Case Phase. 

1.0. 

Multipath 
Angular Separation 

Simulated 

Pb (e) 

Theoretical 

Pb (e) 
Angle 

(degrees) 
MRA Uniform MRA Uniform 

No Multipath 0.0274 0.0264 0.0228 0.0228 

10 0.0102 0.1024 0.0094 0.1172 

12 0.0037 0.0960 0.0040 0.0796 
14 0.0043 0.0509 0.0046 0.0592 

16 0.0088 0.0370 0.0095 0.0347 

The preceding results show clearly that under these circumstances, the MRA 

based array considerably outperforms the equi-spaced array system. Also, note that 

there is relatively good agreement between the theoretically determined estimates 

of error probability and those determined through simulation. 

It is desired to obtain an estimate of the average error probabilities for these 

systems. To do this, several assumptions are necessary. We will take V, a1 and a2 

to be independent unifoiiu.ly distributed random variables. The unconditioned bit 
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error probability of either the uniform array or the MRA based system may then be 

found as: 

where 

IC IC IC 

= ---5 -J--5 J.$Q [4SNR)dNfd(xld(X2 
-IC - 0 

SNR is given in (4.23) for the uniform array 

and in (4.24)for the MRA based system. 

(4.27) 

The inclusion of the Q function within the integrand makes a closed form 

evaluation of this integral impossible. However, numerical techniques can be used 

to solve this integral. Equation (4.27) is used to determine the total error 

probability for 4 element adaptive combiners based on the uniform and MRA 

geometries operating in a multipath environment where the two rays are of equal 

strength and differ only in relative phase. Various SNR's at the input of the array 

are employed and the results are shown in figure 4.13. 

The results show a definite plateau effect, past which increasing the SNR at 

the input has little effect on the error probability. This occurs as a result of the 

deep fading which is possible because of the simplistic two ray model with equal 

strength rays and has been reported by Stein in [29]. For low values of input SNR 

the error probability for both systems approaches 0.5. As the input SNR increases, 

the low variance in SNR provided by the uniform array for large values of 
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Figure 4.13 - Bit error probabilities for converged 4 element uniform and minimum redundancy adaptive arrays receiving 
QPSK signals in a two ray multipath environment with equal amplitude rays. 
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sin((x1) - sin(a2) causes this array to show a more significant decrease in 

probability of error. However, as the SNR is increased still further, most of the 

errors occur when sin(a1) - sin(a2) is small, allowing for large destructive 

interference. In this region, the MRA based system performs best. Note that for 

usable error probabilities, that is, low error probabilities, the MRA based system 

outperforms the uniform system. 

The preceding results were obtained under the assumption that a1 and a2 are 

independent uniformly distributed random variables. In practice, we would expect 

that a1 and a2 would be somewhat correlated, with a tendency towards small 

values of al—(X2- -This in turn implies that sin(a1)—sin(a2) will be biased in favour 

of small values. As a result the margin of superiority that the MRA based system 

achieves would, in terms of the unconditioned bit error probability, be greater than 

that previously indicated. 

4.6. Conclusion 

It has been shown both through theoretical calculations and by a simulation 

study that uncorrelated interferences which are within the main lobe of the uniform 

array tend to be rejected more readily by the MRA because of its narrower main 

lobe. In a communications system, this translates directly into lower error 

probabilities. In the multipath case, the two ray multipath model was used to show 

that the MRA based system outperforms the uniform based system when the 
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multiple paths are separated by small angles. Again, simulations seemed to 

confirm this. Calculations undertaken to determine the unconditioned bit error 

probability indicated that for 4 element arrays operating in an arduous multipath 

environment, the MRA based system was superior for usable error probabilities. 



CHAPTER 5 

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH 

In this thesis, the use of the Minimum Redundancy Array in conjunction with 

a narrowband adaptive beamformer has been examined. It has been shown that the 

narrow main lobe of the array pattern formed by the M.RA, when used in 

conjunction with an adaptive beámformer to reduce the effect of interference 

entering through the sidelobes, allows for better spatial resolution than that 

obtained using a similar system based on a uniform array. The SNIR obtained 

using an adaptive beamformer based on a MBA was found, both through 

theoretical calculations, and through simulations employing a fourth order MRA 

and a four element uniform array, to be significantly superior to that achieved with 

a system based on a uniform array for the case when an interfering signal was 

located in close angular proximity to the look direction. The SNIR achieved by 

the MRA based system was, however,, slightly worse when the interference was 

located in the sidelobes, at a large angular distance from the look direction. 

The minimum spatial redundancy concept was also applied to the choice of 

adaptive elements in a thinned adaptive array. In comparison to the common 

method of selecting adaptive elements by simply spreading them uniformly 

throughout the array, it was seen that choosing the adaptive elements based on a 

108 
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minimum spatial redundancy criterion in a thinned adaptive array improved the 

converged SN]R performance of the system for uncorrelated interferences located 

within the main lobe of the conventional subarray. There was no significant 

difference in the performance for interferences located in the sidelobes. This 

performance increase was accomplished without changing the complexity of the 

system, the length of the array, or any other feature which would tend to reduce 

the desirability of adopting this technique. A simulation was undertaken using 37 

element arrays, with 10 adaptive elements spaced uniformly in one and in a 

minimum redundancy configuration in the other. The results of the simulation 

study conformed to the predictions of the previous calculations. 

An adaptive LMS combiner, working on the assumption that the desired 

signal was a known sequence, was simulated in conjunction with both a 4 element 

uniform array and a four element MRA. The results of the simulations indicated 

that the MIRA based system achieved superior performance, in terms of worst case 

bit error probability, when an uncorrelated interference was located in close angular 

proximity to the desired signal. The uniform array based system performed better 

when the uncorrelated interference was located at a large angular distance from the 

desired signal. The two ray multipath model was then used to show, both 

theoretically and through simulation, that for correlated signals located in close 

angular proximity to one another, the MIRA based system achieves superior worst 

case bit error probabilities. When the two rays of the multipath model were widely 
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separated, it was seen that the uniform array based system achieved superior 

performance. It was also shown that in the two ray multipath environment, with 

equal amplitude rays arriving from independent, uniformly distributed random 

directions, with random phase, the unconditioned bit error probability of a 4 

element MIRA based system is lower for usable SNR than that obtained by a 4 

element uniform array based system. 

An obvious extension of the work in this thesis is to consider the use of 

MIRA's in conjunction with a broadband beamforrning structure. By employing 

information about the signal gathered over several sampling periods, a broadband 

beamformer can be formed.. Broadband beamforming systems have been used to 

receive frequency hopped, spread spectrum signals. The use of adaptive arrays 

with spread spectrum signals of this type is especially appealing, as it is a 

relatively easy matter to allow the beamformer to adapt in a signal free 

environment (by employing a notch filter which tracks the frequency hopping to 

remove the signal from the beamformer input){17]. It would be interesting to 

discover if the advantages found using MRA based narrowband adaptive systems 

also extend to the broadband case. 

The work in chapter one, dealing with the use of an MIRA in conjunction with 

an adaptive beamformer with the look direction constrained, could be extended to 

deal with the situation in which the interference is correlated with the desired 

signal. One method which is currently employed to avoid signal cancellation under 
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these conditions in uniform array based structures is the Duvall beamformer [ 17], 

which adds the signal component in adjacent sensor elements with opposite phase 

to allow the beamforming to take place in a signal free environment. However, 

because of the unique structure of the MRA, the Duvall beamforming technique 

cannot be directly applied to an array based on a MRA. An extension of the 

Duvall beamformer for the case where sensor elements are not equi-spaced would 

form a valuable contribution. It is worthy of note that the Duvall technique can be 

directly applied to thinned suboptimal arrays, even if the adaptive elements are 

chosen using a minimum spatial redundancy criterion, as the overall array structure 

used is that of a uniform array, allowing the cancellation of signal components 

from adjacent signal elements. 

While the MRA appears to have significant advantages over the uniformly 

spaced array in certain circumstances, it is not known how sensitive the adaptive 

MRA structure is to sensor element perturbations. A comparison of the relative 

sensitivities of the uniform array and MRA based adaptive beam.formers would be 

of interest. 

In order to more closely approximate real world conditions, a more in depth 

computer simulation could be undertaken. A more sophisticated computer 

simulation could employ signals and interferences which are spread over a region, 

rather than originating from a discrete spatial source. In a similar vein, near field 

(not plane wave) interferences and signals could be employed. This would be 
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especially useful to simulate reflections off objects which are located close to the 

receiving array. 

Finally, no amount of simulation can replace building and testing a system 

based on a MIRA. This becomes especially important when considering the 

multipath case, where different multipath models will produce very different 

results. Because of the high cost and technical complexities associated with RF 

equipment, it may be desirable to conduct experiments based on an array of 

acoustic sensors initially (assuming that a suitable RF array is not available to the 

researcher). The adaptive beamforming techniques employed are general and 

hence, the type of signal considered, whether it be acoustic, electromagnetic, or 

some other form, is unimportant. 
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