
Evaluation of Complex Surveillance Systems for Emergent Vulnerability

Christopher Thornton Ori Cohen Jörg Denzinger Jeffrey E. Boyd
University of Calgary

Calgary, Alberta, Canada
chris.thornton@shaw.ca ocohen@ucalgary.ca denzinge@cpsc.ucalgary.ca jboyd@ucalgary.ca

Abstract

The current paradigm for testing tracking and surveil-
lance systems is to identify representative metrics for system
components, then optimize the performance of that metric
against test data. The assumption is that optimization of
individual components will optimize the surveillance sys-
tem as a whole. However, while optimizing components is
a necessary step to improve systems, it is not sufficient to
address vulnerabilities that emerge in a large system with
many components. A large surveillance system will have
many cameras and other sensors. In some cases, to cover
more area, the cameras and sensors may be mobile. Cov-
erage is unlikely to be complete in all areas at all times, so
sensor allocation will follow some policy. The combination
of sensors, sensor properties, mobility and policy can result
in a system that is vulnerable in ways that are difficult to
predict. We present a method to model and predict emer-
gent vulnerabilities in a complex surveillance system. To
demonstrate the method, we apply it to a downscaled phys-
ical surveillance system that uses multiple stationary and
mobile camera platforms to monitor and defend against in-
trusions. Our method finds two vulnerabilities in the system
in simulation, one of which we demonstrate with the physi-
cal system.

1. Introduction

With detailed knowledge of the operation of a system,
methods of testing appear to be obvious. Such is the case
with tracking and surveillance system. We know that suc-
cess in tracking depends on factors including accuracy of
data over varying conditions, dynamic modelling of targets,
data association, missing data, occluded targets, and spu-
rious targets. A natural way to test a tracking system is
then to acquire data that confounds these factors in some
way and then measure performance by some metric such
as track accuracy, or erroneously added and dropped tracks.
This type of testing is an essential part of success in tracking
and surveillance.

We take a step beyond this type of testing and consider
surveillance systems that are composed of numerous com-
ponents of varying complexity and quality. Such systems
can be extraordinarily expensive [15] and as examples show,
can fail in spite of the investment [1] in the underlying tech-
nology. Because of costs and unpredictable outcomes, it is
essential to test systems, not just components, before de-
ployment.

It is known that unexpected behaviors can emerge from
large systems of simple components. A classic example is
Reynolds’ flock simulations [19]. In these flock simula-
tions, a collection of simple components can result in in-
teresting emergent behaviors [14]. Similarly, we expect in-
teresting behaviors to emerge from the complexity of a large
surveillance system. Factors contributing to this includethe
following.

1. Variety: Although video cameras are the chief sensor,
other sensors including infrared imagers, motion de-
tectors, and optical beams can be part of a surveillance
system.

2. System size:Surveillance systems have a large com-
ponent/sensor count as the surveilled area gets larger.

3. Dynamic elements: Video cameras often have vari-
able pan, tilt, and zoom. Also, in some situations, sen-
sors can be mounted on mobile platforms. Therefore,
the location and properties can change over time.

4. Policy: Dynamic elements require a policy to guide
their deployment. This policy will be encoded into the
software that aims a pan-tilt-zoom (PTZ) camera, or
drives the robotic platform carrying the sensors.

For a surveillance system, aninterestingbehavior can be a
vulnerability, and we refer to this asemergent vulnerability.

To illustrate, consider a trivial example with a single PTZ
camera. The camera and associated software and process-
ing can track all it sees in its field of view. An intruder walks
into the field of view, activating a policy for the camera to
follow with its PTZ capability. This amounts to allowing the

intruder to steer the field of the camera, enabling a second
intruder to pass by undetected. While this vulnerability is
easy to predict, complex systems can easily surpass human
foresight and we must turn to other methods.

One option is to consider analyses emerging from the
field of computational geometry, which provides theoret-
ical results regarding sensor placement to protect a given
region [13, 5, 12, 4]. Such analysis can show theoretically
what sensor deployment is required to protect a region by
monitoring its borders. However, to make the analysis pos-
sible, it is necessary to restrict the scope of the system in
sensor variety, complexity, dynamic behavior, and policy.
Consequently, the conclusions do not transfer well to real
situations.

We describe a novel system that uses alearning multi-
agent systemto probe a surveillance system for emergent
vulnerabilities. Multiagent systems capture the innate com-
plexity of a surveillance system, and the combination of ma-
chine learning with multi agents gives us a powerful tool
for testing. Other such systems have been shown to re-
veal emergent weaknesses in other systems as complex as
a computer game and a search and rescue simulation sys-
tem [11, 2].

This work stems from our interest in harbor and border
surveillance and security. We consider a red-team-versus-
blue-team exercise in which the blue team defends a harbor
and a red team attempts to penetrate the harbour surveil-
lance to cause damage before the blue team can intercede.
We test the blue-team system by simulating it in as much
detail as possible. The red team is a multiagent system that
has a set of actions it can perform to attack. Through re-
peated trials, the red team probes the blue team to learn
blue-team vulnerabilities. The repetitive probing dictates
that the process must be simulated in software. With suit-
able simulation, we can predict emergent vulnerabilities in
a real system, as we demonstrate in this paper.

There are two important assumptions required for our
testing to succeed. First, our learning and simulation sys-
tems must have complete knowledge of the blue team.
While this may not always be the case in the real world, it
is a safe assumption – if we find no vulnerability when our
opponent knows everything, we should be safer when they
know even less. Second, the red team has a set of actions
available to it when testing. If a real-world opponent has
actions available that are not considered in testing, then a
real-world vulnerability may be overlooked. Thus, the test-
ing works best when we assume an opponent that is both
omniscient and omnipotent.

2. Background

2.1. Tracking System Performance

Most tracking systems are built around the well-known
Kalman and extended Kalman filters [8], and variants such
as the particle filter [10]. These algorithms produce trajec-
tories (state estimates over time) of a target from a tem-
poral sequence of measurements. This is sufficient for the
simplistic scenario where we have measurements for only a
single target. Tracking multiple targets requires data asso-
ciation, the mapping of measurements to trajectories [3].

Most challenges in tracking in surveillance systems can
be reduced to either acquiring accurate measurements for
trajectories and/or data association. Thus most testing is
built around metrics and data sets that focus on these is-
sues. A system that can acquire consistently accurate data
is bound to be better for surveillance, as is a system that can
correctly associate data to trajectories. For example, this
can be seen in the datasets for PETS 2009 [6]. The datasets
contain examples of crowded scenes. Successful systems
will accurately identify salient objects, such as people, i.e.,
they will measure well. Successful systems must also keep
track of the people, i.e., they will correctly associate mea-
surements for an individual to a single, contiguous trajec-
tory.

The emergent vulnerabilities likely to stem from large
scale deployment with various policies is largely unex-
plored.

2.2. Multiagent Systems

Multiagent systems have as one of their goals the study
of interactions between entities (calledagents) and creating
emergent properties, either by appropriate (human) design
of interactions or by learning by the agents, and is still a
key research topic [17]. Surprisingly, there have been few
works to develop concepts for testing multiagent systems
for emergent vulnerabilities. Some exceptions are Kidney
and Denzinger [11], Flanagan et al. [7], and Atalla and Den-
zinger [2]. These use techniques aimed at creating emer-
gent behavior, namely learning of cooperative behavior for
a group of agents, to reveal emergent vulnerabilities in an-
other group of agents – fighting fire with fire. Our following
approach is also based on this general idea, but goes further
by incorporating realistic sensor models and agent motion.
In so doing, we find vulnerabilities due to target detection,
tracking and data association, motion control and path plan-
ning policies that can be duplicated in a real physical sys-
tem.

3. System-Level Testing of Tracking and
Surveillance

3.1. Surveillance as a Multiagent System

Consider a multiagent system where a singleagent, Ag is
defined by the tuple, (Sit, Act, Dat, fag), where the elements
of the tuple are described as follows.

• Sit is the agent’ssituationas perceived by the robot.
I.e., it is the agent’s view of the world through its sen-
sors.

• Act is a set of actions that the agent can perform. In
the context of physical agents,Act is a set of things the
agent can do with its actuators.

• Dat is the agents internal data or state.

• fag : Sit×Dat → Act is adecision functionmapping
the agents perception of the world and its internal state
to actions – it is how the agentdecideswhat it will do.

A multiagentsystemas a tuple({Ag},Env), where{Ag} is
the set of agents, andEnvis the environment in which those
agents interact.

We test surveillance systems embedded in a hypothetical
military exercise in which a blue team conducts surveillance
on a region to defend against an intruding red team. Figure 1
shows the embedding. The surveillance system itself is is a
set ofm blue agents. A team ofn red agents attacks the blue
agents. All of this occurs in an environment,Env. An events
agent,Agevents acts independently to trigger changes in the
environment. In a physical system, this might correspond to
a change from daylight to darkness, or a change in weather.
Although we do not use this for the results presented in this
paper, it is possible to include agents representing neutral
parties,{Agother,i}. For example, in harbor surveillance,
this could be legitimate harbour traffic, or in border surveil-
lance in remote areas, other agents might be animals that
would show up on infrared sensors.

3.2. System Testing Method

The blue-team agents embody the surveillance system
we want to test. This includes sensor properties, mobile
platform capabilities, and deployment policies, all of which
are captured by the (Sit, Act, Dat, fag) tuples for the blue
agents.

A machine learnertests the policies represented by the
blue agents for weaknesses by learning behaviours for the
red agents to achieve a goal state in which they have de-
feated the surveillance. In effect, the red team learns deci-
sion functions (thefAg) that will beat blue (or more pre-
cisely, {Agred} learns parameters for its decision func-
tions).

E nv

blue,1
Ag

Simulation
System

Ag
other,1

Ag
other,k

Ag
events

Ag
red,1

Ag
red,n

Machine learner

.

.

.

blue,m
Ag

. . .

feedback

. . .

Figure 1. Blue-team-versus-read-team multiagent system simula-
tion: the machine learning module learns strategies that allow the
red agents to defeat blue.

The events agents must also be part of the learning pro-
cess so that red can exploit specific environmental condi-
tions. For example, if blue’s sensors do not work well in
rain, red can wait for rain until it mounts its attack. Note
that this does not mean the red team can change the en-
vironment, but that they can use environment changes to
advantage when they occur.

The learneruses feedback from simulations to learn the
decision functions. Typically, there are a large number of
behaviours for the red and event agents so that it is not pos-
sible to systematically try out all possibilities. Instead, simi-
lar to human decision makers, a learner evaluates the results
of simulation runs, adjust the behaviours of the agents and
repeats the cycle until a weakness is found or the maximum
number of iterations allowed is exceeded.

3.3. The Machine Learner

Our machine learner uses multi-objective particle swarm
optimization [18]. Each particle represents a possible so-
lution to a problem. Particles move through the solution
space with a combined tendency to move towards better so-
lutions (as determined by some metric), and a tendency of
the swarm to move together. When a particle achieves a
goal state in the solution space, the algorithm terminates.
Randomization of the particle initial states leads to differ-
ent possible solutions.

In our surveillance problem, the machine learner must
learn how to move the agents in{Agred} in a spatial envi-
ronment. The solution space consists of sequences of high-
level waypoints and speeds. Using standard path finding
techniques [9], the high-level waypoints are translated into
a series of low-level waypoints that take into account obsta-
cles in the environment. The learner then runs the simula-
tion, to determine severalevaluation numbersfor each se-

quence/swarm particle through various measures (e.g., the
number of surviving red agents, and the progress of agents
toward goals). Using the method outlined in [7], these eval-
uation numbers along with their associated swarm parti-
cles are placed into anordering structure. From theor-
dering structure, the learner creates new values for the se-
quences/swarm particles. Our instantiation of the particle
swarm defines a particle as a tuple consisting of the high-
level waypoints, aparticle velocity, and the set ofbest states
from the particle history. In each iteration of the swarm, af-
ter all the particles in the swarm have been evaluated, the
particle moves in two steps. First the particle velocity is
applied. Second, the particle ispulled into the direction
of other particles in the swarm that are considered better
based on theordering structures. Thus, the particles move
together, searching the solution space about a region of im-
proving options.

The algorithm stops when a particle has reached a goal
state representing a possible solution. Multiple solutions
can be found by re-initializing the swarm with randomized
starting points.

4. Demonstration

4.1. Overview

While our testing technique is built on simulation, it is
worthwhile to demonstrate its validity with a physical sys-
tem. To that end, we created a model surveillance system
from several small robots with cameras in a laboratory en-
vironment. We model the same system in software and
test for vulnerabilities using the multiagent/learning system
described in the previous section. Finally, we verify that
the learned vulnerabilities do indeed exist by demonstration
with the physical system.

The model surveillance area is a flat floor, indoors, about
six meters square. We place someterrain features(boxes)
on the floor to make the surveillance task more interest-
ing (Figure 2(a)). The area is equipped with fixed cricket
motes [16] for positioning. We have two types of agents:

1. small mobile platforms(orunmanned vehicle) with dif-
ferential steering, carrying a netbook computer, cricket
motes, and sensors as required (Figure 2(b)), and

2. stationary platforms with pan-tilt (PT) cameras and a
netbook for processing and communication.

Blue uses a mixture of mobile and stationary agents while
the red team uses mobile agents exclusively.

Figure 3 shows the surveillance region and agent tasks
schematically. Two red agents start in the lower right-hand
corner of the region and attempt to get one of them to their
goal in the upper left-hand corner. The blue team uses five
agents to defend their region. Two agents are stationary

Stationary
camera agents

obstacle obstacle

Goal

Interceptors in
patrol loop

Attackers in
staging area

(a)

(b)
Figure 2. Elements of the physical system: (a) the testing area, and
(b) one of the physical agents. The tape marking the patrolling
pattern on the floor is not used by the agents and is for debugging
only.

with PT cameras. They coordinate their motions to have the
two cameras (for triangulation) cycle their coverage over
the shaded surveillance region. Three mobile interceptor
agents have cameras (the cameras look in the direction of
travel only). They are deployed by the policy described in
the following sub-section. We say that an interceptor has
successfully stopped a red agent when it has 9000 pixels
identified on-target (corresponding to about3% of the im-
age area, or about 0.5mfrom the target). While this distance
is arbitrary in our simulation, it mimics alock on a target
that is sufficient to assure the destruction of an intruder.

After the physical implementation of the blue team, we
port the code to the simulation environment so that the blue
team runs as it would but with simulated sensor input and
modelled physical dynamics. Then we use our testing sys-
tem to learn emergent vulnerabilities that the red team can
use to defeat blue, and verify with the physical system.

stationary

PT

stationary

PT

*
Red

Goal

obstacle

obstacle

Red

Start

Blue Patrol

Pattern

Figure 3. Schematic diagram of the surveillance exercise shown in
Figure 2(a). The blue agents (stationary PT cameras and patrolling
interceptors) defend the upper left-hand corner of the region. The
mobile red agents start in the lower right-hand corner and attempt
to reach their goal in the upper left before blue can intercept.

4.2. Blue Team

Our blue team is not astate-of-the-artsurveillance sys-
tem. It is a compromise between cost and complexity, and
the need for a demonstration system with representative
functions including: motion, data acquisition, tracking and
data association, and policy.

Motion: Mobile agents get position data from the cricket
motes, which provide feedback to the motion control, al-
lowing the agents to drive to assigned way-points. We esti-
mate an agent’s speed and heading from differences in po-
sition data, low-pass filtered to compensate for the instabil-
ities of the cricket mote measurements.

Data Acquisition: All tracking is done visually via the
two stationary agents with PT cameras situated at the pe-
riphery of the surveillance area. For simplicity, we assume
that the red team will oblige and wear a large red marker,
so chroma-keying is sufficient to detect intruding objects.
The agent reports all large objects to a base station that ul-
timately does the tracking. The report includes the agents
position, and the bearing of the red objects computed from
the position in the image, and the pan setting on the camera.

Tracking and Data Association: A base station collects
data from the stationary blue-team agents to track the red
objects. The tracking is done by Kalman filters with:

• four-dimensional states (two-dimensional position in
the surveillance region and corresponding velocities),

• a constant velocity dynamic model.

The base station converts the vehicle position and target
bearing data to a measurement that is a two-dimensional
estimate of the target position. Since it is impossible to
resolve a two-dimensional position from a single bearing,
the base station assumes the target is at a range of 0.5m
in front of the camera. The measurement covariance rep-
resents the uncertainty in range. Therefore, the tracking
system cannot correctly resolve the target position until it
has associated data from other cameras. The data associ-
ation uses abest hypothesisthat matches measurements to
tracks, optimizing for the quality of match (based on the in-
novation covariance), and requiring unique measurement-
to-target correspondences. The measurement rate is 4Hz,
one round of measurements from all cameras four times per
second. Any unassociated measurement causes the tracking
system to initiate a new track. Tracks that are not updated
for longer than 8sdue to a lack of associated measurements
are dropped.

Policy: It is not possible for us to use actual policy for
real-world systems from official sources because these are
generally not disclosed to the public. Therefore, we contrive
our own policies.

Our contrivedmobile agent policy has three modes of
behavior. First, under normal conditions, the blue team
drives through a programmed set of way-points while scan-
ning for red objects, i.e., a patrol pattern. As long as no
red objects are found, this behavior is maintained. Second,
when the tracking system (with data from the stationary
agents) detects a red object the nearest blue-team mobile
agent (interceptor) drives directly towards the location in-
dicated by the tracker. Third, when the patroller sees a red
intruder with its own forward-facing camera, it enters a pur-
suit mode and steers towards the intruder.

The policy of the stationary cameras is to work together
so that the region of overlap of the fields of view (the region
where triangulation in track is possible) cycles around the
surveillance region. When they find a red object, the central
control initiates an intercept action by the interceptors.

4.3. Red Team

For verification, we break the red-team strategies into
two categories: naı̈ve and learned. The purpose of the
naı̈ve strategies is to show that the blue team is a plausi-
ble surveillance system. If the blue team could be defeated
naı̈vely, then learning emergent vulnerability is irrelevant.
The learned strategies are the result of the multiagent sys-
tems testing to reveal an emergent vulnerability as described
in Section 3.

*

Red

Start

(a)

*

Red

Start

(b)
Figure 4. Naı̈ve red team strategies: (a) with a single attacker, and
(b) with two attackers.

Naı̈ve Strategy – Single AttackerFigure 4(a) shows a
naı̈ve attack by a single red intruder. The attacker starts
from the staging area and drives directly towards its goal.

Naı̈ve Strategy – Two AttackersFigure 4(b) shows a
naı̈ve attack by two coordinated red intruders. The attacker
on the left moves to the left of the obstacle and then to the
goal, while the right attacker moves directly towards the
goal. The intention is that one of the two attackers will draw
the attention of the tracking system and mobile interceptors,
while the other will make it to its goal.

Learned Strategy I: Figure 5(a) shows the first learned
strategy. In this strategy (discovered by the learner), at-
tacker 1 moves to the right of the obstacle, then moves to-
wards the goal. Attacker 2 lingers in the area to the right
of the left-most obstacle, slowly moving toward the center
of the test area. At about the same time attacker 1 is inter-
cepted (the learner anticipates this), attacker 2 turns towards
the goal and drives to it at its maximum speed.

Learned Strategy II: Figure 5(b) shows the second
learned strategy. Attacker 2 drives directly towards the cor-

*

Red

Start

A

B

C

1

2
slow

(a)

*

Red

Start

A

B

C

1

2
slow

(b)
Figure 5. Learned red-team strategies: (a) strategy I and (b) strat-
egy II.

ner of the right-most obstacle. Meanwhile, attacker 1 moves
first to its left, then slowly moves across the surveillance
area before turning towards the goal.

4.4. Results

Naı̈ve Strategies: We ran the two described naı̈ve at-
tacks (and others) with the physical system. In all cases,
the blue team defended successfully. We found that we ei-
ther had sufficient interceptors to spot intruders, serendipi-
tously initiating the pursuit mode, or the tracking by station-
ary agents would lead an interceptor to the correct position,
thus initiating pursuit when the intruder is spotted.

It is important to note that our goal in this research is not
to build the best blue team possible. Our blue team needs
only to present a plausible surveillance and interception sys-
tem that uses elements typically found in real surveillance
systems. The naı̈ve attacks verify that our blue team is plau-
sible. However, if blue has flaws, so much the better, be-
cause we want to know that we can find them.

Learned Strategy I: Figure 6(a) shows the result of

learned strategy I. Attacker 1 follows its route to the left of
the obstacle and turns toward the goal. Interceptor A sees
attacker 1 and pursues, eventually meeting the requirement
to remove the attacker from the scene. With attacker 1 re-
moved, interceptor A is then free to return to its patrol, or
assist another interceptor.

While attacker 1 takes these actions, attacker 2 quickly
moves behind the obstacle, then moves slowly toward the
center of the area. As it makes this movement, it is not seen
by interceptors B and C (A is already occupied). The sta-
tionary camera at the top of the area sees attacker 2, and ini-
tiates a track. However, because the other stationary camera
cannot see the attacker, the tracker cannot correctly triangu-
late the attacker’s position, and the system cannot dispatch
an interceptor to the correct location.

Eventually attacker 2 emerges to where both stationary
cameras can see it. It is quickly identified and tracked cor-
rectly by the system, and interceptor B is dispatched. Also,
interceptor A sees the attacker as it returns to its patrol pat-
tern, and A and B both start to pursue attacker 2. However,
due the decoy action of attacker 1, and the timing to get
interceptor B in a distant position of the patrol pattern, at-
tacker 2 reaches the goal before an interceptor can catch it.

We were able to duplicate this strategy with the physical
system and see it succeed. The decoy behavior of attacker 1
is essential. We repeated the attack, but without the decoy.
In that case interceptor A easily catches the attacker.

Learned Strategy II: Figure 6(b) shows the result of
learned strategy II. Here, thepurposeof attacker 2’s curi-
ous path becomes clear. The blue team quickly finds at-
tacker 2 and dispatches interceptor B. Interceptor B stops
the attacker, but ends up in close proximity to the obstacle
and is unable to maneuver away - it hits a dead end, at least
in the context of its path planning algorithm - and is thus
removed from participation.

As this happens, attacker 1 moves toward the center of
the area, drawing interceptor A in pursuit. A fails in its
pursuit as it nears thestuckinterceptor A. This happens due
to the collision-avoidance policy used by the interceptors
- A waits for B, B is stuck, so neither moves. Interceptor
C continues on its patrol, not seeing the attacker with its
forward-facing camera, leaving the attacker an unimpeded
path to its goal.

We did not duplicate this strategy in our physical system
because the attackers and interceptors cooperate for colli-
sion avoidance (for obvious pragmatic reasons), and all the
agents would get stuck by the obstacle. Given the time to
rewrite some software to free the attacker from respecting
the wide berth and cooperation implemented in the collision
avoidance policy, we could have duplicated this attack too.

*

Red

Start

A

B

C

1

2

(a)

*

Red

Start

A

B

C

1

2

(b)
Figure 6. Outcomes from the learned red-team strategies.

5. Discussion

The two learned attacks revealed vulnerabilities in our
blue-team’s surveillance and intercept system. Fundamen-
tally, all components of the blue team did their jobs cor-
rectly including path finding, target detection, tracking,and
collision avoidance. Furthermore, the overall deployment
was sufficient to defeat naı̈ve attacks. Therefore, we con-
clude that the vulnerabilities were emergent, due to the in-
teractions among components, not within the components
themselves.

The learner succeeded in usingtiming to find a vulner-
ability. The naı̈ve strategy with two attackers is superfi-
cially similar to the first learned strategy, but whereas the
naı̈ve strategy moves attackers at full speed throughout, the
learned strategy slows down one attacker in a key position
until there is a large gap in blue’s defences. This would be
impossible to test with a single component.

Exploitation of deployment policy is evident in the
learned strategies. A successful attack only required one
agent to reach the goal, so other agents could be sacrificed.

Policies to pursue under certain conditions then allowed an
attacker to force the blue agents into a predictable action.
The second learned attack exploited a collision avoidance
policy to succeed. This attack also used a pursuit policy that
ignored the possibility of a dead end to eliminate a defender
from further action.

The interaction of vision components with other aspects
of the system were evident in the successful attacks. At its
simplest, the learner could know how far an attacker should
remain from an interceptor. More interestingly, in the first
learned attack, the successful attacker is in the view of one
of the stationary cameras in the tracking system during the
entire attack. Nevertheless, the tracker could not triangulate
from a single camera and the attacker remained free of pur-
suit until it was much closer to the goal. We believe it would
be possible to find attacks that deliberately try to confound
the tracker’s data association, although we did not find any
examples in our trials.

Beyond the obvious application in testing for vulnerabil-
ities, our approach could be used to tune parameters in a
surveillance system. Given that any component has a num-
ber of parameters that affects its behavior, testing could re-
veal parameter selections that yield a vulnerable system.

Would it be possible to find these learned attacks without
the assistance of the learner? Possibly, but we think not.
While the first learned attack might have been seen with
a bit of experimentation, the second learned attack seems
unintuitive, exploiting a subtlefeatureof the agent’s control
system.

6. Conclusions

Over $1 billion has been spent on thevirtual fencealong
the US-Mexico border [1]. It is obvious that security and
surveillance systems can be large, complex, and expensive.
This combination of cost and complexity mean new meth-
ods of testing are needed. We have presented one such
method.

References

[1] R. C. Archibold. Budget cut for fence on u.s.-mexico border.
Retrieved August 30, 2010, from http://www.nytimes.com/-
2010/03/17/us/17fence.html, March 2010.

[2] M. Atalla and J. Denzinger. Improving testing of multi-
unit computer players for unwanted behavior using coor-
dination macros. InCIG’09: Proceedings of the 5th In-
ternational Conference on Computational Intelligence and
Games, pages 355–362, Milano, Italy, 2009.

[3] Y. Bar-Shalom and T. E. Fortmann.Tracking and Data As-
sociation. Academic Press, Boston, Massachusetts, 1988.

[4] B. Bhattacharya, M. Burmester, Y. Hu, E. Kranakis, Q. Shi,
and A. Wiese. Optimal movement of mobile sensors for bar-
rier coverage of a planar region.Theoretical Computer Sci-
ence, 410:5515–5528, 2009.

[5] A. Chen, S. Kumar, and T. H. Lai. Designing localized algo-
rithms for barrier coverage. InMobiCom ’07: International
Conference on Mobile Computing and Networking, pages
63–74, Montréal, Québec, Canada, 2007.

[6] J. Ferryman and A. Shahrokni. Pets2009: dataset and chal-
lenge. In IEEE Workshop on Performance Evaluation of
Tracking and Surveillance 2009, pages 1–6, Snowbird, UT,
2009.

[7] T. Flanagan, C. Thornton, and J. Denzinger. Testing harbour
patrol and interception policies using particle-swarm-based
learning of behaviour. InProc. CISDA-09, pages 1–8, Ot-
tawa, Canada, 2009.

[8] A. Gelb, editor. Applied Optimal Estimation. MIT Press,
Cambridge, Massachusetts, 1974.

[9] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths.IEEE Trans.
Systems Science and Cybernetics, 4(2):100–107, 1968.

[10] M. Isard and A. Blake. Condensation - conditional den-
sity propagation for visual tracking.International Journal
of Computer Vision, 29(1):5–28, 1998.

[11] J. Kidney and J. Denzinger. Testing the limits of emergent
behavior in mas using learning of cooperative behavior. In
Proceeding of the 2006 conference on ECAI 2006, pages
260–264, Riva del Garda, Italy, August 2006.

[12] E. Kranakis, D. Krizanc, L. Narayanan, and K. Xu. In-
approximability of the perimeter defense problem. In21st
Canadian Conference on Computational Geometry, Vancou-
ver, British Columbia, August 2009.

[13] S. Kumar, T. H. Lai, and A. Arora. Barrier coverage with
wireless sensors. InMobiCom ’05: International Confer-
ence on Mobile Computing and Networking, pages 284–298,
Cologne, Germany, 2005.

[14] H. Kwong and C. Jacob. Evolutionary exploration of dy-
namic swarm behaviour. InCongress on Evolutionary Com-
putation, volume 1, pages 367–374, Canberra, Australia, De-
cember 2003.

[15] E. Lipton. U.s. project to secure borders will begin
in arizona desert. Retrieved August 30, 2010, from
http://www.nytimes.com/2006/09/22/us/22border.html,
September 2006.

[16] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
cricket location-support system. InMobiCom ’00: Pro-
ceedings of the 6th Annual International Conference on Mo-
bile Computing and Networking, pages 32–43, Boston, Mas-
sachusetts, United States, August 2000.

[17] P.Stone and M. Veloso. Multiagent systems: a survey
from a machine learning perspective.Autonomous Robots,
8(3):345–383, 2000.

[18] M. Reyes-Sierra and C. C. Coello. Multi-objective particle
swarm optimizers: A survey of the state-of-the-art.Int. Jour.
Comp. Int. Res., 2(3):287–308, 2006.

[19] C. Reynolds. Flocks, herds, and schools: A distributedbe-
havioral model.Computer Graphics, 21(4), July 1991.

