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ABSTRACT: 

 

A mobile mapping system (MMS) is a three-dimensional reality capture system that collects georeferenced spatial data with integrated 

navigation and imaging sensors from a moving vehicle. Several imaging subsystems can be found on board an MMS, such as panoramic 

camera systems and LiDAR sensors. The data collected from a panoramic imaging system must be accurately georeferenced and the 

sensors must be rigorously calibrated to ensure accurate registration of images to the point clouds collected by the LiDAR sensors, and 

to ensure panoramic images are generated seamlessly. The panoramic imaging system studied in this work is the Ladybug5 (by FLIR 

Integrated Imaging Solutions), which is a spherical camera system comprised of six individual wide-angle cameras. Having accurate 

estimates of the interior and relative orientation parameters of these cameras is essential for integrating the camera system with other 

sensors in the MMS to generate georeferenced spatial data. However, field experience has shown that factory-provided calibrations 

may be insufficiently accurate for high-precision applications. An investigation of the geometric calibration of the Ladybug 5 system 

was conducted in a dedicated indoor calibration facility at the University of Calgary: an 11 m x 11 m x 4 m field comprising 291 

signalized photogrammetry targets. Multiple free-network, self-calibrating bundle adjustments were performed using different sets of 

constraints to model several systematic error sources. Weighted constraints were included in the adjustment to enforce the stability of 

the six relative orientation parameters between image pairs, and separate colour channel adjustments were used to compensate for 

chromatic aberrations. The overall fit of observations to the calibration model as measured by the root mean square error of the image 

point residuals was at the level of 0.3-0.4 pixels. Mean object point precision was at the 0.3 mm level. Rectified and ortho-rectified 

panoramas were also generated to verify the calibrations precision and observe how adjustments with constraints effect panorama 

generation. 

 

1.  INTRODUCTION 

1.1 Literature Review 

The Ladybug5 multi-camera system (Figure 1) is used for mobile 

mapping applications such as point cloud colouration and remote 

inspection. The Ladybug5 has six cameras: five horizontal and 

one vertical facing. Each camera, as well as the relative positions 

and orientations of the cameras, must be properly calibrated to 

maximize the accuracy of derived measurements. Factory 

calibration parameters may change over time, demonstrating a 

need for post-manufacture calibration. 

 

 
Figure 1. Ladybug5 multi-camera system mounted on a RIEGL 

VMX MMS (RIEGL, 2017) 

Panoramas generated from the Ladybug in certain environments 

have discontinuities that can be observed (Figure 2). In many 

applications such as point coloration remote measurement and 

feature detection, panoramas are required to be registered to 

underlying point clouds. In such situations, it is very important 

that panorama artefacts are minimized. 

 

 
Figure 2. Example of stitch line discontinuities in Ladybug 

SDK generated panoramas 

Calibration of Ladybug multi-camera systems has been reported 

by a few authors. Ikeda et al., (2003) calibrated a Ladybug system 

using a 2D calibration board and generated spherical panorama 

imagery by projecting onto a spherical surface at a large distance 

from the camera’s centre of gravity (single projection point). The 

generated panoramas were found to stitch together with an 

average angular error of 0.3°. SIFT points extracted from 

imagery taken in a room of known size were used to perform a 

self-calibrating bundle adjustment of a Ladybug3 system 

(Schneider and Forstner, 2013). It was noted that the relative 

orientation parameters (ROP) angles differ by up to 0.6° from 

manufacturer specifications and ROP positions change by 1 – 4 

mm. In Rau et al., (2016) calibration was performed with a coded 

target field to collect observations for a bundle adjustment. 

Separate calibration of the lenses and the relative orientation 



 

parameters (ROPs) was performed for using the camera system 

in a backpack MMS. Large amounts of uncompensated 

systematic error in cameras and cm-level object space errors were 

reported. 

 

To the authors’ best knowledge, Ladybug system calibration 

incorporating relative orientation stability constraints has not 

been reported. Calibrations using this methodology have been 

performed on other multi-camera systems. Single-step self-

calibrating bundle adjustments utilizing ROP stability constraints 

have been reported for other multi-camera systems (Detchev et 

al., 2018; Lichti et al., 2015; Tommaselli et al., 2013).  Single-

step self-calibration is done by calibrating the interior orientation 

parameters (IOPs) of all cameras in the system while 

simultaneously estimating the exterior and relative orientation 

parameters and the object space reconstruction in a bundle 

adjustment. Tommaselli et al., (2013) shows that the single step 

self-calibration of multi-camera systems give lower image space 

observation residuals and object space root mean squared error 

(RMSE) than two step calibration, in which the cameras are pre-

calibrated. Tommaselli et al., (2013) found that including ROP 

stability constraints increased image space observation residuals 

and object space RMSE, explained by the constraints keeping the 

EOPs from being correlated with intrinsic calibration parameters. 

The ROPs standard deviation is also decreased significantly by 

constraining the ROPs. In Lichti et al., (2015) and Tommaselli et 

al., (2013), the ROP stability is modelled using constraints as 

observations. Detchev et al., (2018) uses a model where the ROPs 

are considered as parameters that replace the exterior orientation 

parameters (EOPs) of the cameras.  Only the reference camera’s 

EOPs are determined and the rest are parameterized as relative 

transformations from the reference camera. 

 

 
 

Figure 3 a) Top: Longitudinal chromatic aberration, b) Bottom: 

Lateral chromatic aberration. 

Chromatic aberrations can also reduce the accuracy of a camera, 

and image quality. Chromatic aberrations occur in lateral and 

longitudinal forms due to wavelength-dependent refractions by 

the lens system (Figure 3). Longitudinal aberration causes each 

wavelength to have a different plane of best focus, and lateral 

aberrations cause lens distortions to be wavelength-dependent. 

The effect of lateral chromatic aberrations in Ladybug5 imagery 

can be seen in Figure 4. Modelling these errors in a self-

calibrating bundle adjustment that separates the three channels of 

a true-colour image can improve image space observation 

residuals and object space RMSE (Luhmann et al., 2006).  

Luhmann et al. (2006) also found that wavelength-dependent 

radial lens distortion was caused by lateral chromatic aberrations 

which was also seen in Robson et al., 2014.  Luhmann et al. 

(2006) also determined that positioning white targets is not 

affected by longitudinal chromatic aberrations.  

 

Robson et al., (2014) calibrated a camera system with 

illumination from 21 different narrow light bands to determine 

correlations between wavelengths and different IOPs. The 

principal distance and the radial lens distortions varied strongly 

with wavelengths, and some variations were also seen with 

decentring, affinity, and shear distortions. In some cases, 

modelling the lateral and longitudinal aberrations do not entirely 

resolve the visible chromatic aberrations (Van Den Heuvel et al., 

2006), at least in the case of fisheye cameras. In Luhmann et al. 

(2006), the EOPs of each of the three channels are constrained to 

be the same, and in Van Den Heuvel et al. (2006), each channel 

is modelled independently. 

 

 
 

Figure 4. Longitudinal Chromatic Aberrations in Ladybug5 

imagery. 

1.2 Contributions 

This paper provides a complete and rigorous calibration 

methodology for the Ladybug5 multi-camera panoramic imaging 

system. In this work, a single-step self-calibrating, free-network 

bundle adjustment is performed to find each camera’s IOPs and 

lens distortion parameters, utilizing relative orientation stability 

constraints to enforce the reality of the camera’s construction. 

This method also aims to resolve chromatic aberration by 

separating colour channels into three images and constraining 

EOPs between the three images within the bundle adjustment. 

Panoramas are generated using the estimated IOPs and ROPs to 

demonstrate the success of this calibration methodology. 

 

2. METHODOLOGY 

 

2.1 Collinearity Model 

The camera is modelled as a pinhole camera using the augmented 

collinearity equations. It was determined that the radial lens 

distortions on the cameras were severe enough to warrant more 

parameters than the standard set.  The model for radial lens 

distortion correction typically only extend to three parameters, 

but it was found that five are needed to accurately model 

observations at radial distances of greater than 1100 pixels. 

Equations 1 and 2 are the collinearity equations augmented with 

lens distortion parameters. Equation 3 describes the formation of 

the rotation matrix between object and image space using Euler 

angles. Equations 4-7 describe the different lens distortion 

parameters that are corrected. The parameters solved for are the 

IOPs (𝑥𝑝, 𝑦𝑝, 𝑐), the EOPs (𝑋𝑗
𝑐 , 𝑌𝑗

𝑐 , 𝑍𝑗
𝑐 , 𝜔, 𝜙, 𝜅), and lens 

distortion parameters (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑝1𝑝2).   



 

 

𝑥𝑖𝑗 = −𝑐𝑗  
𝑚11(𝑋𝑖−𝑋𝑗

𝑐)+𝑚12(𝑌𝑖−𝑌𝑗
𝑐)+𝑚13(𝑍𝑖−𝑍𝑗

𝑐)

𝑚31(𝑋𝑖−𝑋𝑗
𝑐)+𝑚32(𝑌𝑖−𝑌𝑗

𝑐)+𝑚33(𝑍𝑖−𝑍𝑗
𝑐)

+ 𝑥𝑝 + Δ𝑥𝑖𝑗   (1) 

 

𝑦𝑖𝑗 =  −𝑐𝑗
𝑚11(𝑋𝑖−𝑋𝑗

𝑐)+𝑚12(𝑌𝑖−𝑌𝑗
𝑐)+𝑚13(𝑍𝑖−𝑍𝑗

𝑐)

𝑚31(𝑋𝑖−𝑋𝑗
𝑐)+𝑚32(𝑌𝑖−𝑌𝑗

𝑐)+𝑚33(𝑍𝑖−𝑍𝑗
𝑐)

+ 𝑦𝑝 + Δ𝑦𝑖𝑗     (2) 

 

𝐌 = 𝐑𝟑(𝜅)𝐑𝟐(𝜙)𝐑𝟏(𝜔)                        (3) 

 

𝛥𝑥𝑟𝑎𝑑 = 𝑥̄(𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6 + 𝑘4𝑟8 + 𝑘5𝑟10)              (4) 
 

𝛥𝑦𝑟𝑎𝑑 = 𝑦̄(𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6 + 𝑘4𝑟8 + 𝑘5𝑟10)               (5) 
 

𝛥𝑥𝑑𝑒𝑐 = 𝑝1(𝑟2 + 2𝑥̄2) + 2𝑝2𝑥̄𝑦̄                           (6) 

 

𝛥𝑦𝑑𝑒𝑐 = 𝑝2(𝑟2 + 2𝑦̄2) + 2𝑝1𝑥̄𝑦̄                        (7) 
 

Δ𝑥𝑖𝑗 =  𝛥𝑥𝑟𝑎𝑑 +  𝛥𝑥𝑑𝑒𝑐                            (8) 

 

Δ𝑦𝑖𝑗 =  𝛥𝑦
𝑟𝑎𝑑

+  𝛥𝑦
𝑑𝑒𝑐

                            (9) 

 
 

 

where  𝐑𝟑, 𝐑𝟐, 𝐑𝟏 = the rotation sequence matrices 

𝜅, 𝜙, 𝜔 = the Euler rotation angles between the object 

and image space 

 𝐌 = the rotation matrix 

 𝑥𝑝, 𝑦𝑝 = the perspective centre of the camera in mm 

 𝑐𝑗 = the principal distance of the camera in mm 

𝑥𝑖𝑗 , 𝑦𝑖𝑗 = the image space coordinates of point i in 

image j in mm 

 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 = the object space coordinates of point i 

𝑋𝑗
𝑐, 𝑌𝑗

𝑐, 𝑍𝑗
𝑐 = the object space coordinates of the 

perspective centre 

𝑘1−5 = the radial lens distortion parameters 

𝑝1, 𝑝2 = the decentring lens distortion parameters 

𝑥,̅ 𝑦̅ = the x and y distance from the perspective centre 

in mm  

𝛥𝑥𝑑𝑒𝑐, 𝛥𝑦𝑑𝑒𝑐= the decentring lens distortion correction 

𝛥𝑥𝑟𝑎𝑑, 𝛥𝑦𝑟𝑎𝑑= the radial lens distortion correction 

𝑟 = the distorted radial distance from the perspective 

centre of the image 

 

 

2.2 ROP Stability Constraints 

Each instance of the Ladybug’s image capture creates six images, 

one from each camera. Each set of these six images should have 

approximately the same relative positions and angles between 

them. This assumes that the multi-camera system is stable during 

image capture, and that the ROPs of the cameras remain constant. 

Thus, a weighted constraint can be used to enforce the ROPs 

stability between image positions. Equation 10 describes the base 

vector between two cameras (left and right).  Equation 11 

describes the relative rotation matrix between the image spaces 

of the left and right image pair. Equations 12 and 13 show the 

constraints added based on the base vector and relative rotation 

angles. This enforces that the differences between ROP at 

different image pairs must be the same.  The weighting refers to 

the relative contribution that the constraints will have to the 

adjustment.  

 

(

𝑏𝑋

𝑏𝑌

𝑏𝑍

)

𝐿𝑅

= 𝐌𝐿 (

𝑋𝑅
𝑐 − 𝑋𝐿

𝑐

𝑌𝑅
𝑐 − 𝑌𝐿

𝑐

𝑍𝑅
𝑐 − 𝑍𝐿

𝑐
)                         (10) 

 

Δ𝐌𝐿𝑅 = 𝐌R𝑴𝐿
𝑇 = 𝐑3(Δ𝜅𝐿𝑅)𝐑2(Δ𝜙𝐿𝑅)𝐑1(Δ𝜔𝐿𝑅)      (11) 

 

(

𝑏𝑋

𝑏𝑌

𝑏𝑍

)

𝐿𝑅1

− (

𝑏𝑋

𝑏𝑌

𝑏𝑍

)

𝐿𝑅2

= (
0
0
0

)                        (12) 

 

(
𝛥𝜔
𝛥𝜑
𝛥𝜅

)

𝐿𝑅1

− (
𝛥𝜔
𝛥𝜙
𝛥𝜅

)

𝐿𝑅2

= (
0
0
0

)                      (13) 

 
where  𝑏𝑋 , 𝑏𝑌 , 𝑏𝑍 = the base vector between the perspective 

centres of two cameras 

Δ𝜅, Δ𝜙, Δ𝜔 = the Euler rotation angles between the two 

cameras derived from 𝛥𝐌𝐿𝑅 

𝐌R = the rotation matrix from object to image space 

for the right camera in the pair 

𝑴𝐿
𝑇  = = the rotation matrix from image to object space 

for the left camera in the pair 

𝛥𝐌𝐿𝑅 = the rotation matrix between left and right 

camera in a camera pair 

 

. 

2.3 Chromatic Aberration Estimation 

To estimate the lateral and longitudinal chromatic aberration, the 

imagery is separated into three channels: red (R), green (G), and 

blue (B). Image point observations are extracted from imagery of 

each three channels. To model the longitudinal aberration, each 

channel has is parameterized with its own principal distance. To 

model the wavelength-dependent lens distortion caused by lateral 

chromatic aberration, each channel has its own radial and 

decentring lens distortion parameters. In addition to the ROP 

stability constraints, new constraints are added to the EOPs of the 

three channels. The images derived from each channel of the 

same image, should have the same perspective centre. The 

position and angle elements of the three channels from the same 

image are constrained so that they are equal or similar to each 

other; see Figure 5. Without this, the images from separate 

channels have different orientations.  

 

 
 

Figure 5. EOP constraints and variable principal distances for 

different colour channel imagery 

 

2.4 Self-Calibrating bundle adjustment 

The observations from all three channels are input to a bundle 

adjustment that simultaneously estimates the principal distances 

of each channel (red, green, blue) in each camera, along with lens 

distortions (𝑘1 , 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝑘4, 𝑘5) associated with each 

channel in each camera. This bundle adjustment also incorporates 

the ROP stability constraints to enforce the construction of 

camera across image pairs and the EOPs constraints between 

channels. Datum definition is performed by inner constraints 

(free network) imposed on the object points. 



 

 

 
 

Figure 6. Ladybug Panorama projected onto cylinder 

 

2.5 Cylindrical Panorama Generation 

Using estimated parameters from the adjustment, panoramas can 

be generated and compared to imagery from the Ladybug 

software development kit (SDK). The SDK imagery shows 

significant discontinuities along stitches between images (Figure 

2). There are multiple possible error sources to cause these 

discontinuities such as: 

 

i. Projection centre disparity: where all images are 

projected from one approximated perspective centre, 

under the assumption that the true perspective centres 

are close enough together that they can be 

approximated by a single point (Ikeda et al., 2003). 

This is only true for images where objects are very far 

from the camera. This assumption is not true for all 

MMS environments, especially if close range objects 

like road signs, street lines, curbs, or powerlines are 

required to be surveyed. 

 

ii. Uncompensated geometric errors or lens distortion: 

any uncompensated lens distortions may be 

accentuated in the projected panoramic image where 

the images overlap, as they will not fit together 

properly. 

 

iii. Relief displacement: error due to large amounts of 

depth discontinuity between the projected surface and 

the object space 

To correct these problems, the following steps are taken: 

 

1. A canvas is generated in a size sufficient for imagery 

from the 5 horizontally oriented cameras. This can be 

visualized as an un-wrapped cylinder. Only the 5 

horizontal cameras are used to generate panoramas in 

this work.  

2. Each pixel in the canvas is projected onto the 3D model 

developed from the laser scan data (Figure 7). 

3. Then, each of those object-space coordinates are back-

projected into the space of each camera.  This back-

projected position is the rectified pixel position of the 

target.  

 

 
Figure 7. Geometric configuration for generation of Ladybug5 

Orthorectified Panorama  

To remove the effects of relief displacement, a 3D model of the 

object space was developed using laser scanning data. The model 

used in this experiment was rudimentary in construction, and a 

more detailed model would likely yield more accurate results in 

the future. Though a simple approximation of the calibration 

room, the model is sufficient to demonstrate the improvement as 

a result of the rigorous calibration and ortho-rectification. It is 

common in MMS to have integrated LiDAR and cameras on the 

same platform, which would allow for ortho-rectification of 

imagery captured of real-world environments. The five images 

are projected into the model of the object space, rather than a 

cylindrical or spherical approximation. Note that only geometric 

distortions were accounted for in the generation of the panorama. 

No photometric corrections such as alpha blending were 

considered at this time. In the future, the task of integrating the 

6th camera (upward facing camera) will be performed. 

 

3. EXPERIMENTS 

Each of the Ladybug5’s six cameras has a sensor size of 2448 x 

2048, a pixel pitch of 0.00345 mm, and a nominal principal 

distance of 4.4 mm. Imagery from the Ladybug5 camera system 

was captured in a calibration room having controlled lighting and 

temperature. This room has dimensions approximately 11 m x 11 

m x 4 m with 232 targets of 125 mm radius made from 4 mm 

thick BubbleX plastic, and 59 paper targets of 40 mm radius, 

which cover the walls, ceiling, and floor of the calibration space. 

Smaller targets also exist in the calibration space, but they are 

ignored in these experiments. Before data acquisition with the 

cameras was performed, the targets in the calibration space were 

imaged with a Faro Focus 3D laser scanner, and the centre 

coordinates of each target were extracted by fitting a circle to the 

edge points, as seen in Figure 8. (Lichti et al., In Press). 

 

Many images were captured to perform the calibration, with 262 

images being used from the six cameras. Images were taken from 

different heights and with orthogonal roll angles utilizing 

convergent geometry. Imagery in both landscape and portrait 

orientations were acquired. Images of the calibration space can 

be seen in Figures 2, 12, and 13. The images were taken in JPEG 

format to simulate image capture in a mobile mapping setting 

where buffering and speed are important factors.  

 



 

 

 

 
 

Figure 8. a) Left: Display of object space coordinate survey 

using laser scan data b) Right: close up of laser scanned targets 

centre being determined in the laser scan data 

Automated target measurement was performed using the 

algorithm described by (Jarron et al., In Press). It is briefly 

summarized here. In each image, the circular targets were 

detected using adaptive thresholding and robust ellipse fitting.  

Labelling of the targets was performed next. First, the exterior 

orientation parameters of the image were estimated using a one-

point pose-estimation approach, where a list of possible 

orientation and target labels was used, along with approximate 

camera height, to calculate the camera position. The estimated 

position and orientation of the camera combined with the interior 

orientation parameters (IOPs) were then used to back-project the 

known object-space coordinates of the targets into the image 

space. These targets were then matched against the targets 

detected in the image, and the list entry with the best fit is chosen 

as the solution  

 

The panoramas were generated using the methodology described 

in Section 2.5. The cylindrical panoramas were made on a canvas 

of 10240 x 2448 pixels. Each pixel in the panorama was projected 

onto the surface of a 3D model. This model was developed using 

the same laser scanning data that the target data was extracted 

from. To ensure observed discontinuities were not caused by 

projection centre disparity or relief displacement, cylindrical and 

ortho-rectified cylindrical panoramas were generated from both 

the factory and the estimated parameters.  Rectified and ortho-

rectified panoramas were generated using both the estimated 

parameters and the factory parameters, both with and without the 

use of ROP stability constraints. These panoramas were used to 

verify the quality of the calibration procedure. 

 

4. RESULTS 

4.1 Calibration of Ladybug5 using different constraints 

A series of different types of adjustments was performed and 

compared. The greyscale imagery is generated using the 

conversion defined in Equation 14. The three main adjustment 

types are the un-constrained adjustment using the greyscale 

imagery only (1986 unknowns, 10649 degrees of freedom), an 

adjustment with ROP stability constraints using greyscale 

imagery only (1986 unknowns, 11903 degrees of freedom), and 

an adjustment with both ROP stability constraints and EOP 

stability constraints using imagery broken into red, green, and 

blue images, with much higher weights for the ROP constraints 

(5250 unknowns, 40531 degrees of freedom).  

 

𝐺𝑟𝑒𝑦 = 0.2125𝑅 + 0.7154𝐺 + 0.0721 𝐵              (14) 
 

where  𝑅, 𝐺, 𝐵 = the colour intensity of the channel 

 

Table 1. RMS of pixel space residuals, mean object space 

reconstruction precision (𝜎̅), and RO stability of 3 adjustments: 

Unconstrained greyscale adjustment (A), Greyscale Adjustment 

with ROP stability constraints (B), RGB combined adjustment 

with ROP and EOP stability constraints (C) 

Adjustment 

Type 
A B C 

RMS x (pixels) 0.25 0.26 0.39 

RMS y (pixels) 0.29 0.33 0.45 

𝜎̅𝑋 Object Space 

(mm) 
0.32 0.30 0.30  

𝜎̅𝑌 Object Space 

(mm) 
0.34 0.31 0.38 

𝜎̅𝑍 Object Space 

(mm) 
0.21 0.20 0.42 

RMS RO 

position (mm) 
4.92 0.43 0.001 

RMS RO 

angle(") 
227 15 0.036 

 

The unconstrained adjustment has the lowest observation 

residuals of any adjustment. This is similar to results described in 

other works (Detchev et al., 2018; Lichti et al., 2015), where 

RMS values increase when ROP stability constraints are utilized.  

Constraining the ROPs enforces the structure of the camera, 

forcing error to propagate elsewhere in the network. Including 

the ROP stability constraints increases the object space 

reconstruction precision, as can be seen in Table 1 between the 

unconstrained and ROP stability constrained greyscale 

adjustments, A and B, respectively. This indicates that even 

though the observation residual RMS increases, the 3D 

reconstruction is slightly more precise. The RO values of 

adjustment A show that in an unconstrained adjustment the ROPs 

vary considerably. The adjustment that separated the RGB 

channels into separate images for the adjustment has higher RMS 

observation residuals and the worst object-space reconstruction 

precision. One reason for this may be that separating the channels 

into different imagery effectively cuts the amount of information 

in those images based on the Bayer pattern of the sensor, 

lowering the precision of target detection. Another likely reason 

is this adjustment has the most rigidly enforced constraints, 

forcing any errors out of the EOPs and elsewhere in the 

adjustment. Separating the channels into imagery allows for the 

compensation of chromatic aberrations but appears to influence 

the precision of the object space reconstruction negatively. This 

may mean that chromatic aberrations should only be corrected if 

their effect on the image quality is severe enough to warrant the 

resulting drop in precision. It remains to be tested how each of 

these adjustments’ errors reflect on check points. 

 

Figure 10 demonstrates how the principal distance varies across 

the red, green, and blue channels. In theory, blue should be the 

shortest, and red the longest. For cameras 3-5 this holds true, but 

not with cameras 0-2. For almost all cameras, each principal 

distance is within the 95% confidence interval of the other 

channels. The variance in the principal distances is relatively 

small in effect, compared to the large difference in the radial lens 

distortions indicated in Figure 10. This indicates that the lateral 

chromatic aberration has a larger effect than the longitudinal 

chromatic aberration on the image quality.  

 



 

 
 

Figure 10. Principal distance in pixels with 95% error bars, 

variance across different channels 

 

Modelling the radial distortion as being wavelength-dependent 

can improve the image quality at the edges of the images 

significantly. Figure 11b shows how large the differences 

between the red and green radial lens errors are at the edge of the 

image. The difference between them is close to 30 pixels, which 

would be easily visible. This error increases quickly, with the 

radial error at the radii of 1000 pixels only resulting in 1 pixel of 

difference between red and green channels. The difference in the 

corrections between the factory and estimated parameters can be 

seen in Figure 11c. This large difference indicated that near the 

edge of the image, the radial distortion is modelled differently, 

and the correction made are much different. 

 

 
 

Figure 11. Radial lens distortion profile of Ladybug 5 camera 0, 

separate based on colour channel. a) Top: full distortion curve. 

b) Middle: expanded area of curve, from area highlighted with a 

black box in top graph. C) Bottom: Difference in radial 

distortion correction between factory and estimated parameters 

Table 2. Difference in ROP base vectors between estimated 

(adjustment C) and factory parameters 

Cameras Factory - Estimated Length 

from to bX 

(mm) 

bY 

(mm) 

bZ 

(mm) 

|b| 

(mm) 

0 1 -0.1 -1.4 1.3 -0.4 

0 2 0.1 -3.3 0.9 -0.2 

0 3 0.2 -4.1 -1.3 0.0 

0 4 0.0 -1.7 -1.8 0.3 

0 5 0.4 1.3 -0.3 -0.5 

 

The results in Table 2 are similar to those found in Schneider and 

Forstner, (2013) where it was found that RO position varies by 

1-4 mm. Table 3 shows that the difference between the estimated 

ROP angles are very large, on average 0.2°. This is also quite 

similar to the results of Schneider and Forstner, (2013).   

 

Table 3. Difference in ROP angles between estimated 

(adjustment C) and factory parameters 

Cameras Factory - Estimated 

from to Δ𝜔 (°) Δ𝜙 (°) Δ𝜅 (°) 

0 1 0.01 0.36 0.07 

0 2 0.02 0.17 -1.37 

0 3 0.02 -0.79 -0.56 

0 4 0.05 -0.55 -0.07 

0 5 14.25 -179.38 -260.08 

 

4.2 Comparison of Rectified Panoramas generated with 

estimated parameters and factory parameters 

To examine the need for post-factory calibration of devices such 

as the Ladybug5, the factory-derived parameters were used to 

generate panoramas, and these are compared to the panoramas 

generated from the newly estimated parameters from the RGB 

separated channel adjustment. Both cylindrical projection 

panoramas show significant discontinuities (Figures 12a and 

12b). The panorama generated using the factory parameters has 

large errors due to uncompensated lens distortion, while the 

panorama generated using the estimated parameters does not. 

 

4.3 Comparison of Ortho-rectified Panoramas generated 

with estimated parameters and factory parameters 

The ortho-rectified panorama using the newly estimated 

parameters shows a significant improvement, with most 

discontinuities being reduced to a few pixels (Figure 13b). 

However, the ortho-rectified panorama generated using the 

factory parameters (Figure 13a) still shows significant distortions 

and discontinuities. This demonstrates that the factory 

parameters are no longer valid for the camera that was tested in 

this experiment, and that new parameters may need to be 

determined periodically. It is also worth noting that the factory 

calibration parameters only use 4 parameters for radial lens 

calibration, in comparison to the 5 used in estimated parameters. 

Determining the stability of the camera system in  

 



 

 

Figure 12. Rectified Image panoramas with 5 horizontal images 

a) Left:  Using factory IOPs and ROPs projected onto a 

cylinder. b) Right: Using newly estimated IOPs and ROPs 

projected onto a cylinder. Areas of extreme discontinuity or 

uncompensated lens distortion circled in red. Green circle 

shows area of improvement over factory parameters 

the future could provide insight into how often calibration is 

necessary. For the Ladybug5 system, ortho-rectification seems to 

be necessary for the generation of a reasonably accurate 

panorama with no discontinuities along the stitch lines between 

its component images.  

 

4.4 Effect of ROP constraints using different panoramas 

A more qualitative method for evaluating each adjustment is 

examining their resulting panoramas. As can be seen in Figures 

14 and 15, in adjustments without imposed ROP stability 

constraints, there is an angular discontinuity along the seam lines 

of the panorama. Imposing ROP constraints seems to reduce 

these discontinuities. This implies that the ROP constraints 

positively affect the 3D reconstruction and panorama generation 

of the camera. 

 

 
 

Figure 13. Ortho-rectified image panoramas with 5 horizontal 

images a) Left:  Using factory IOPs and ROPs. b) Right: Using 

newly estimated IOPs and ROPs. Areas of extreme 

discontinuity or distortion circled in red. 

5.  CONCLUSION 

In this work, a complete methodology has been developed for the 

calibration and accurate panorama generation for the Ladybug5 

multi-camera system. Using ROP stability constraints and 

separating the colour channels into separate images, a more 

accurate calibration can be performed, generating sub millimetre 

object space reconstruction precision and image space 

observation residuals in the range of 0.3-0.4 pixels. Combining 

this new adjustment with ortho-rectification techniques, a more 

accurate panorama has been produced. This panorama will be 

more effective for site inspection and other common uses of 

panoramic imagery in mobile mapping. A comparison of these 

results and those generated using the factory calibration 

parameters show that the newly generated results outperform the 

factory calibration in the quality of generated panoramas. The 

panoramas generated by the factory calibration, even when ortho-

rectified, showed significant distortions and discontinuities along 

the stitch lines. Integrating the sixth camera into the panorama 

generation still needs to be completed 

 



 

The stability of the camera remains to be determined. The factory 

parameters for the camera used in this work were no longer 

effective. Temporal stability analysis could be performed to 

determine how often calibration should be done. It would also 

determine how reasonable it is to constrain the ROPs. If the ROPs 

change regularly, using ROP stability constraints in the 

calibration may not be a worthwhile technique. 

 

 
 

Figure 14. Close up of a stitch line of generated panoramas. a) 

Panorama generated from adjustment using ROP stability 

constraints. b) Panorama generated from adjustment without 

stability constraints 

 
 

Figure 15. Another Close up of a stitch line of generated 

panoramas. a) Panorama generated from adjustment using ROP 

stability constraints. b) Panorama generated from adjustment 

without stability constraints 

In addition, utilizing the collinearity model for this camera may 

not be the optimal approach. Using five radial lens distortion 

parameters results in very high correlations between the 

parameters and may be overfitting the observations. Future work 

will consider alternate models, such as a fisheye lens model, for 

modelling the Ladybug5 and other similar wide-angle lens 

cameras. 
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