_2.
ABSTRACT

A logic using three truth values (true, false, undefined) is described together with its Horn
clause subset and a procedural interpretation. The resulting logic programming language
allows clauses to affirm both positive and negative information and can test whether a goal
is definitely false or is just not provably true (standard negation by failure) as well as other
possibilities including whether it is unknown (cannot be proven either true or false). The
major theoretical results characterizing classical logic programs can be carried over to this
context, including the equivalence of a programs answer set with the minimal Herbrand
universe and least fixed point semantics as well as the correctness and completeness of

SLD-resolution. The logic can be easily implemented within existing Prolog interpreters.

IINTRODUCTION

It is well known that expressing negative information in Prolog programs causes
difficulties. LLoyd [1984] discusses these in some detail. The basic problem is that the
negation of a condition cannot be inferred directly from the clauses of a Logic Program.
They provide only information about what is true, not about what is false. This can be
circumvented to a certain extent by using the negation as failure rule where a negation is
inferred when no positive solution to a goal can be found. The logical justification of
negation as failure (NAF) has caused some difficulties, see Flanagan[1986] for the current
state of this subject. This paper does not directly address the issue of the logical status of
NAF but provides a setting where the programmer can say what she really means by the
negation of a concept. The multivalued logic can effectively use NAF for showing that a
goal is unknown but its logical basis is no better than that of NAF in classical logic

programming.

This paper explores a technique for affirming negative information using a three valued

logic (true, false, undefined) rather than the classical true and false. The informal

-3-
interpretation given to these values is that true means can definitely be shown to be true,

false means can definitely be shown to be false, and undefined means cannot be shown to

be either true or false.

An example will show the type of programs which result from this approach. Consider a
program used by a tax department to check tax returns. This very likely includes logic to
check whether two tax payers are married and if so what their resulting tax category is. A
normal data-base expression of who is married might look as follows:

married(john,dorothy).
married(brian,sheila).

However, in many cases it can be deduced that a particular couple cannot possibly be
married, in the proposed system this can be expressed as follows:

~married(X,Y):- male(X), male(Y).

~married(X,Y):- female(X), female(Y).

~married(X,Y):- married(X,Z), Z#Y.

~married(X,Y):- age(X,N), N < 16.

~married(james,laura).
(there are many other clauses one might add here).
This still leaves some couples whose status is unknown. In these cases the truth of
married(X,Y) is assigned unknown just as in classical logic programming (using NAF)
anything not known to be true is assigned false. The negative part of the married predicate
can be considered to be an integrity constraint on the positive part of married (or vice

versa!). It is more useful than the usual integrity constraints because it can be used for

computing results.

This data can be used in a number of ways, for example some suspicious tax departments
assume that a couple who could possibly be married and who live at the same address are
effectively married. This can be expressed in the following rule where +married(X,Y)
means could possibly be married (that is, it cannot be proven that X and Y are not married):

cohabit(X,Y):- +married(X,Y), same_address(X,Y).

-4-
It is also possible to conclude that a couple definitely do not cohabit if they are provably not

married:

~cohabit(X,Y):- ~married(X,Y).

In some cases the tax department will want to make enquiries about a couples status if they
do not know their marital status and they are living at the same address. This is done using
?married(X,Y) which means that married(X,Y) is unknown (that is, it cannot be shown
that X and Y are either married or not married):

check_marital_status(X,Y):- ?married(X,Y), same_address(X,Y).

Conversely, if sufficient information is available then the tax return can be
processedwithout asking any further questions. Thus if a couple live at the same address
and their marital status is known then the return can be processed. The following rule
expressing this uses the goal !married(X,Y) which means married(X,Y) is known to be
either true of false.

process_tax_return(X,Y):- same_address(X,Y), !married(X,Y).

In a rare moment of generosity the department may also assume that the returns for a couple
can be processed if they are not known to be living at the same address. The goal
—same_address used in the rule means that same_address cannot be proven true (it may be
false or unknown).

process_tax_return(X,Y):- —same_address(X,Y).

The next section provides a formal description of the logic used including the various
logical operators which can be derived and some useful tautologies between them. It also
shows how statements in the multivalued logic can be translated into (more complex)

statements in classical logic. Section III describes the Horn clause subset of the logic to be

-5-
used for programming. It establishes the equivalence of the answer set, the least Herbrand

model and the least fixed point. It also notes the importance of a program being satisfiable.
Section IV shows the correctness and completeness of an extended form of resolution.
Section V extends the execution rules to include the use of negation by failure. Section VI
considers how to show that a program is satisfiable. Section VII gives a detailed
comparison between the logical operators used here and those used in other three valued

logics and concludes by briefly exploring similar extensions to other multivalued logics.

I'THE LOGIC

Define a first order language as in [Lloyd, 1984, Chapter 2] with the usual notion of

function, predicate, constant and domain. The quantifiers for the language are V and 3, the
unary connectives are ~ and — (two different forms of negation) and the binary connectives
are A, v, and «. (A few more connectives will be introduced later). In constructing an
interpretation for this language the only difference from classical first order logic is that
each predicate is mapped into {true, false, undefined} abbreviated hereafter as {t, f, u}
respectively. The truth value of a formula in a particular interpretation can be calculated

using the following rules:

(a) VXA has the truth value:
t if for all values of x A has the truth value t;

u if for all values of x A is t or u and for at least one value of x A has the

truth value u;

f if there is at least one value of x for for which A has the truth value f.

(b) IxA has the truth value:

t if there is at least one value of x for for which A has the truth value t.

-6-
u if for all values of x A has the truth value f or u and for at least one value

of x A has the truth value u;

f if for all values of x A has the truth value f.

(©)~A,—A, AAB, AvB, A<B have the values determined by the following

tables:

A f Alt u f

~Al f u -Al f t t

A A A
AAB| t u f AVB[t u f A—B|t u f
t t u f t t t t B t t u f
u u u f B ul|t u u unlt t t
f f £ f f t u f f t t t

Given these computation rules for an interpretation the usual definitions can be made.
Definition

A closed formula is: valid if it has the truth value t in every interpretation (that is every
interpretation is a model); satisfiable if it has an interpretation which is a model;

unsatisfiable if it has no model.

Definition

Given two closed formulae A and B then A is a logical consequence of B if every model of
B is also a model of A.

A direct consequence of these definitions and the truth tables is that A is a logical
consequence of B

iff A« B is valid;

iff BA—A is unsatisfiable.

Implication and Equivalence
The operators introduced above are sufficient to construct a logic programming language.

However, it is useful to introduce a few more operators to help with developing the theory

of the logic. These are A«—>B, A=B, and A<B with the following truth tables:

A A A
ASB|t uw f A=B|t u f AeB|t u f
t |t u f t [t u f t |t u f
ufu t u B ul|t u u B uju t t
f|f u t f 1t t t £ f t t

<> can be interpreted as a weak form of equivalence, it will be particularly useful when
dealing later with statements in clausal form. It can be defined as (A<B) A (B<A). Itis
referred to as a weak equivalence because the validity of (the closure of) A& B is not

sufficient to ensure that A and B can be substituted for one another in all cases.

& is a strong form of equivalence and if A< B is valid then A and B can be interchanged
in any expression without altering the value of the expression. A< B is not equivalent to
(A<=B) A (B&<=A) although it is equivalent to (AAB) v (~AA~B) v (7AA?B) (? is defined a
little later). This is analogous to the classical equivalence between A<>B and

(AAB) v (~AA~B).

<= can also be interpreted as a strong form of implication, although as noted above it cannot

be used to generate <. It is equivalent to (Av~B).

The various quantifiers and connectives are not independent of one another. Some of the

-8-
useful equivalences are given below.

~VXA o IX~A VX~A & ~3XA

-VX A & 3IX-A VX -A & -3XA
~AAB) & (~Av~B) ~(AvB) & (~AA~B)
-(AAB) & (-Av—-B) «(AvB) © (-AA—-B)
A<B & Av-B

One consequence of this is that the entire logic could be defined in terms of say, V, ~, v

and —, the other quantifiers and connectives being derived from them.

Starting from this base twelve different unary operators can be derived. These are
generated by taking all possible truth tables where u is mapped to t, f or u and t and f are
mapped to t or f. Figure 1 lists them together with some of the logical equivalences
between them. The Figure includes the three unary operators, !, ?, and +. These can be
defined in terms of the others:

1A Av-~A

A & -Ar—A

+A & —~A
It will be seen later that these three as well as the original operators ~ and — have useful

procedural interpretations and so are singled out with unique names.

These operators can be interpreted informally as follows:

~A A is falsifiable

-A A is not provable (usual negation by failure)

7A A is unknown (is neither provable nor falsifiable)
1A A is known (it is either provable or falsifiable)

+A A is not falsifiable

-9.
A «B if B is provable then A is provable.

A, V, V, and 3 can be interpreted in the usual way as and, or, for all and there exists.

Translation to Classical Logic

It is possible to interpret any sentence in the multi-valued logic as a sentence in ordinary
classical logic. This can be done by recognizing that the truth value of a formula can be
interpreted as the truth or falsity of two statements in classical logic. Thus t can be
interpreted as the pair <true, false> (it is provable but not falsifiable), u can be interpreted

as <false, false> (it is neither provable nor falsifiable) and f as <false,true> (it is not

provable but is falsifiable). To realize this translation each predicate p(ty,...,t;) can be
renamed to one of two predicates p,(ty,....t) or p_(ty,...,t;) in the classical logic. These

two correspond respectively to the idea that p is provable or that p is falsifiable.

The translation can be carried out by three mappings €, and ¥ from the multivalued
logic to the classical logic. Informally € ensures that no atom is assigned to both true and
false simultaneously and $(A) means A is provable and F(A) means A is falsifiable. The
mappings and J are defined recursively by:

B Etyeenrtn) = Poltyeenty)

PA)=F@A)

P-A)=~B(A)

P(AAB) = B(A) A B(B)

P(vxA) = Vx P(A)

FOtyestp) = pltyyensty)
F(~A)=B(A)
F(-A)=~F(A)
FAAB)=FA) v FB)

-10-
F(vx A)=Ix F(A)

€(A) is the formula obtained by the conjunction of the statements:

VXpseorXp ~(P4(X1e0sXp) A PL(X15eeesXp)
for each n-ary predicate symbol p which appears in A.
Theorem:
A is unsatisfiable (in the multivalued logic) iff (€(A) and $(A)) is unsatisfiable (in the
classical logic).
Proof:
Every multivalued model of A has a corresponding interpretation where both €(A) and
P (A) will evaluate to true. Conversely any model of € (A) can be mapped to an
interpretation of A and if the interpretation is a model of 38(A) then it will be a model of A.
0
This result will be useful both in justifying the procedural implementation of the logic

described in section IV and in establishing the fixed-point results of the next section.

IIT HORN CLAUSE SUBSET
A "Horn clause” subset for the logic can be built up as follows (following [Lloyd, 1984]).

Definition
A literal is any term of the form A, ~A, —A, A, 1A, +A, ~!A, —+A, ——A, or =?A where

A is an atom.

This definition allows all the ten possible unary operators in Figure 1 (excluding the trivial
true and false). After arriving at the final Horn clause form it will be seen that the

compound literals (e.g. —+A) can be eliminated.

-11-
Definition

A clause is a formula of the form V(L v ... v L)) where each L is a literal.

It is convenient to rewrite clauses in the more familiar form:

L Lia.. ALy

which using the definition of « is equivalent to the clause:

V(L \% ﬂLl V..V —|Lm)

L is referred to as the head of the clause and L; A ... A Ly, as the body of the clause.

This rewriting requires more justification than in the classical case. It is not clear for

example that any clause can be so rewritten. The following results justify the procedure.

Definition
Given some formula C which contains an occurrence of the formula A, then A is said to
occur positively in C if the translation 38(C) contains only formulae of the form $(A) (and

not of the formff (A)).

Informally a positive occurrence is one which is not nested inside an odd number of
occurrences of the ~ operator (or of any occurrences of other operators such as ?, ! or +).
For example A occurs positively in the following formulae: A v B, ~(~A v B); and does

not occur positively in the following formulae: ~(A v B), ?A.

Proposition
If (the closure of) A& B is valid then B can replace any positive occurrence of A in C

without affecting the unsatisfiability of C.

-12-
Proof:

Consider the corresponding replacement in the classical translation of C. It is only
necessary to consider any interpretation which is a model of €(C). Then B(A) will
evaluate to true iff A evaluates to t. But if A< B is valid then A evaluates to t iff B
evaluates to t (by inspection of the truth table). So B(A) iff I(B). But the unsatisfiability
of (C) is affected only by B(A) so the truth value of P(C) will be unaffected by the
replacement. So the unsatisfiability of (£(C) and (C)) and hence of C is unaffected.

0

Corollary

If A& B is valid then any occurrence of A as a literal in a clause can be replaced by B
without affecting the validity of the clause.

Proof:

Each literal in a clause is a positive occurrence.{

Figure 2 shows how any clause can be translated to an equivalent clause using the
appropriate weak equivalences. Note that the ten possible unary operators can be translated
to just those 6 operators with simple names (fulfilling the earlier promise that compound

unary operators can be dispensed with).

I will now show the equivalence of the least Herbrand model, the least fixed point and the
answer set for multi-valued programs. Many of the theorems are essentially identical to
those in [LLoyd, 1984] and their proofs are omitted. I will note these by putting the

reference number from Lloyd in brackets.

Theorem
If S is a finite conjunction of clauses then there is a finite conjunction of (classical) clauses

which is unsatisfiable iff (€(S) and (S)) is unsatisfiable.

-13-
Proof:

It is nearly true that (€(S) and 3 (S)) is itself a conjunction of clauses. By inspection

€ (S) is a conjunction of clauses and (S) will be a conjunction of clauses except when one

of the literals is of the form !p(ty, ..., ty). Given a clause L Lj A ... AL, it will be
translated to (L)~ P@L) A ... A P(L,,) . The translation of the six possible literals
which can occur in a clause is given by the following table (p is an abbreviation for some

n—ary predicate):

Po= o,
Pep= p
P-p) = ~p,
Pep = ~p.
Pp)= p,vp.

POD)= ~p.Ap,
The required clauses can be obtained whenever !p occurs by using the (classical) rule that
L« AVB can be split into two equivalent clauses L« A and L«B .
0
Although not germain to the development here similar reasoning to the theorem above
shows that any multi-valued formula can be translated to a clausal form. This is easily seen
by translating the original formula to its classical equivalent, reducing that to clausal form
and then translating back to the multi-valued logic. Needless to say this can be done more
directly.
Definition
The Herbrand base for a (multivalued) language can be obtained in the same way as in a
classical logic by constructing all possible ground terms from predicates, functions and
constants occurring in the language. A Herbrand interpretation(model) can also be
identified with an extended subset of the Herbrand base. Let the extended Herbrand base

be all terms of the form A or ~A where A is some ground atom taken from the Herbrand

-14 -
base. A Herbrand interpretation I can be identified with a subset of this extended Herbrand

base by mapping the term A to t if A€l , to fif ~AeI and to u otherwise. For this to be
well-defined A and ~A cannot both occur in I.

Theorem (3.2)

If S is a finite set of clauses then if it has a model it has a Herbrand model.

Proof:

Because of the result above that S has a classical clausal translation, a Herbrand model of
the translation can be constructed and used to generate a (classical) Herbrand model and
from this a multi-valued Herbrand model.

0

Theorem (3.3)

A finite set of clauses is unsatisfiable iff it has no Herbrand models.

0

Definition

A program clause is a clause of the form:

L LI A .../\Lm

where L is of the form ~A or A for some atom A

and each of the L; is of the form B, ~B, !B for some atom B.

It will be seen that a program clause can be executed without invoking any negation by
failure rule. The operators —, +, and ? allowed in a general program clause in general

require a negation by failure rule.

Definition

A goal is a clause of the form:

—LjAa..ALy

where each of the L; is of the form B, ~B, !B for some atom B.

-15 -
Definition

A program is a finite conjunction of program clauses.

Theorem (6.1)

If P is a program and {M;};e | a non-empty set of Herbrand models for P then mjc [M; is a
Herbrand model for P.

0

At this point the theory for multivalued programs differs from classical programs because it
is possible that a program has no model (is unsatisfiable). For example the program

~p&e
pe

has no model. The standard results apply only when the program has some model.

Theorem

If a program P is satisfiable then it has a least Herbrand model denoted Mp.

Proof:

The set of Herbrand models is not empty so the intersection of all of them is the least
Herbrand model.

0

Theorem(6.2)

If a program P is satisfiable then Mp equals the set of all members of the extended

Herbrand base which are logical consequences of P.

0

A mapping Tp on Herbrand interpretations can be defined as in the classical case.

Definition
Let P be a program and I a Herbrand interpretation. Then A is a member of Tp(I) iff

A<Ay, .., A, is a ground instance of a clause in P and {Ay, ..., Ap}J< L

-16 -

Theorem

If a program P is satisfiable and I is a Herbrand interpretation then Tp(I) is a Herbrand

interpretation.

0

Theorem (6.5)
If a program P is satisfiable then Mp equals the least fixed point of Tp which equals TpTw

0

While Tp is defined for any program it gives nonsensical results unless P is satisfiable.

This places the onus on the programmer to ensure that her program is satisfiable. The

practicalities of this are discussed in section VI. It is also interesting to note that Tp need

not have a greatest fixed point. The entire extended Herbrand base is not a model (unlike
the classical case) so a greatest fixed point cannot be constructed by applying Tp. For
example the program:

p<p

~p—-~p
has the empty set as its least Herbrand model, other models are {p} and {~p} but no model

can contain both p and ~p.

IV PROCEDURAL ASPECTS
In order to give a computational reading to a program it is necessary to describe the

multivalued analog of resolution.

-17 -
Theorem

Given a satisfiable program P containing a clause L&~ Ly A ... AL; then
P A & Mj A ... A M, is unsatisfiable if
PA & LyA..ALjAM;, A ... AM)0 is unsatisfiable
provided M6« L6 is valid and is a unifier for M and L.
Proof:
It is only necessary to consider the propositional case which can be verified by exhaustion

of the truth tables.0

The situation here is a little more complex than in the classical case. There are many more
resolutions which are possible because both A and ~A can occur in a head as well as 3

different operators in the body. The relevant tautologies are:

AeA

~A—A

A<lA

~Ae!A
Figure 3 illustrates the resolution steps permitted by these tautologies as well as some
others permitted for other literals than those allowed in a program clause. Note that A
represents "is known" that is "is provable or falsifiable" and can be resolved against either

A or ~A. These resolution steps are mirrored by comparable resolutions which can be done

in the translation of the program. Thus p will translate to p, in a body and can resolve
against p, in a head, similarly, for ~p and p.. !p translates to pv~p and so can resolve

against either p, or p.. This observation can be formalized in the following theorem.

Theorem
Every goal G has an (SLD-)refutation using a program P iff (G) has a classical
(SLD-)refutation using 3 (P).0

-18 -
Finally the correctness and completeness results for classical SLD-refutations can be carried

over to the multi-valued case by the following result.

Theorem
Given a satisfiable program P and a goal G
PAG is unsatisfiable iff
PP)AP(G) is unsatisfiable
Proof:
1) Assume P(P)AP(G) is unsatisfiable then EPAGAB(P)AP(G) is unsatisfiable soPAG
is unsatisfiable.
2) Assume that (P)AP(G) has a model, then it must have a Herbrand model (which is

also a model of B(P)). But any subset of a model of P(G) is also a model of P(G) so
My p is a model of P(P)AP (G). By the premise & (P)AP(P) has a model and so a

Herbrand model. But any subset of a model of € (P) is still a model of €(P) so Mpp)isa
model of £(P)AP(P). But, apart from the trivial case when G contains predicates not
occurring in P, &(P) = £(PAG) s0 My p, is a model of E(PAG)AP P)AP(G) and so0PAG
has a model.

0

VNEGATION BY FAILURE

The upshot of the last section is that a normal Prolog execution strategy can be followed
provided the program is consistent and so long as the program clauses contain only goals
of the form A, ~A and !A. However, some other strategies can be followed because it is
known that both A and ~A cannot be simultaneously be true. For example, before
executing a goal, say p(ty, ..., t;), it may be worthwhile to execute ~p(ty, ..., t,) and fail
the original goal if this succeeds. If ~p fails however it is still necessary to execute p. This

the same as the negation as failure rule used in Prolog for handling all negative goals.

-19-
Whether this is useful will depend on whether the goal ~p(ty, ..., t,) can be executed more

or less efficiently than the original goal. Similarly if ~p is the original goal then p could be
checked and ~p failed if p succeeds. The goal !p is more straightforward as it should

succeed if either of p or ~p succeeds.

If the literals in the body of a clause are allowed to range over the other operators +, —, and
? then many more possibilities are raised. Basicly these operators require an NAF rule for
their execution. For example —p should succeed if p evaluates to u or f. This can be
determined by checking that p fails. That is —p has the same execution rule as not in
Prolog. However, —p can also be proven if ~p succeeds. This is justified by the tautology
—p<~p and the earlier resolution theorem (see Figure 3.). So one execution strategy
would be to first execute ~p, if this succeeds then so does —p and nothing further need be
done. If ~p fails then it is necessary to further check p to see if it succeeds. Similarly +p
should succeed if ~p fails and can first be checked by seeing if p succeeds. Finally the goal
7p succeeds only if both p and ~p fail. Figure 4 summarizes the various execution
strategies which can be used. Of course the usual care must be exercised when using
NAF. Lloyd [1984, Chapter 3] gives a good explanation of when it can and cannot be

used correctly.

VISATISFIABLE PROGRAMS

One of the major differences between the approach to negation used here and the standard
approach is that it is possible for programs to be unsatisfiable and hence useless. The
theoretical foundations for the approach and the execution strategies explored above both
require that the program be satisfiable. This is very similar to the idea of integrity
constraints in data bases which are usually expressed as a set of conditions which must
hold in any possible form of the data-base. The basic constraint that nothing can be

simultaneously asserted true and false is a very convenient way of expressing such integrity

-20 -
constraints. For not only does it provide a way of checking the validity of the database it

also enables the 'constraints' to be used for doing useful computation during program

execution.

There does remain the problem of actually checking when a program is satisfiable. One
way to do this is to attempt the execution of the goal «p(xj, ..., Xp)A~P(X1, ..., X,) for
each predicate p in the program P. If each such goal finitely fails then P must be
satisfiable. This procedure in effect executes the clauses in € (P). Unfortunately the
procedure does not always terminate and then other more general program proof

procedures must be resorted to. Consider for example the following program:

pf(x))& p(x)
p(a)
~p(f(x)) &= ~p(x)
~p(b)e

This has a model {p(a), p(f(a)), ..., ~p(b), ~p(f(b)), ...} but the goal

« px)A~p(x)
will never terminate.
VII OTHER 3-VALUED LOGICS
Parts of the multivalued logic used here were originally described by Kleene[1938] who
had the same interpretation of the truth values as provable, falsifiable and unknown.
Lukasiewicz[1920], Bochvar[1939] and Slupecki[1946] described other fragments of the
logic. Rescher[1969] provides an accessible description of all these works. Figure 5 lists
various operators used here and the equivalent operators and languages using Rescher's
[1969] notation. The propositional part of the logic has been used by Cleary[1987] to

solve some problems in knowledge acquisition for expert systems.

A three valued logic with some of the operators used here was used by Fitting [1985] to

produce a semantics for standard logic programming. His techniques applied in the current

-21-
context would lead to a four-valued logic. The only other use of multi-valued logics of

which I am aware in the context of logic programming are the real-valued logics used by
Shapiro [1983] and van Emden [1986] for uncertain reasoning, although in both these

cases only the Horn clause fragment of the logic is described.

The techniques used here would seem to be applicable to many multi-valued logics. The
major requirement is that one of the truth values not be expressible in the head of a clause,
and then anything not otherwise forced can be assigned to this 'left-over' truth value.
Cleary[1982] shows that there is an analogue to resolution in any multi-valued logic. So, it
may be that the results of this paper can be extended to any such logic. This possibility is

currently being investigated.

-22.

ACKNOWLEDGEMENTS
This work was supported by the Natural Sciences and Engineering Research Council of

Canada.

REFERENCES
Bochvar, D.A. (1939) "On a 3-valued Logical Calculus and its Application to the Analysis
of Contradictions," (in Polish) Matematiceskij sbornik, 4, 165-166.

Cleary, J.G. (1972) "Resolution Theorem Proving in Multi-valued Logics," M.Sc. thesis,
Dept. Mathematics, University of Canterbury, Christchurch, New Zealand.

Cleary, J.G. (1987 - in press) "Acquisition of Uncertain Rules in a Probabilistic Logic,"
Int. J. Man-Machine Studies, also in Proc. Knowledge Acquisition for Knowledge Based
Systems Workshop, Banff, Canada, November, 1986.

van Emden, M.H. (1986) "Quantitative Deduction and its Fixpoint Theory," J. Logic
Programming, 3(1), 37-53.

Fitting, M. (1985) "A Kripke-Kleene Semantics for Logic Programs," J. Logic
Programming, 2(4), 295-312.

Flannagan, T. (1986) "The Consistency of Negation as Failure," J. Logic Programming,
3(2), 93-114.

Kleene, S.C. (1938) "On a Notation for Ordinal Numbers," J. Symbolic Logic , 3, 150-
155.

Lloyd, J.W. (1984) Foundations of Logic Programming . New York, Springer.

Lukasiewicz, J. (1920) "On 3-valued Logic," Ruch Filozoficzny, 5, 169-171. Translated
in McCall, S. ed., Polish Logic: 1920-1939, Oxford (1967), 16-18.

Rescher, N. (1969) Many-Valued Logic. New York, McGraw-Hill.

Shapiro, E.Y. (1983) "Logic Programs with Uncertainties," in Proc. 8th I1.J.C.A.L
Bundy, A. (Ed). 529-532. William Kaufman.

Slupecki, N. (1946) "The Complete Three-valued Propositional Calculus,” (in Polish)
Annales Universitatis Mariae Curie-Sklodowska, 1, 193-209.

Truth Table | Operator| Logically Equivalent Expressions
Name

tuf

f ff f

fuf ~1A AA-~A

fut ~A

fft ——A ~rA

ftf 7A —AA—~A A S 2A ~2A

ftt —A ~——A

t ff -—A ~~A

t uf A ~~A

t ft ~7A A

tut 1A AV ~A

ttf +A —~A

ttt t

Figure 1. Logical and Procedural Descriptions of Unary Operators.

Original clausal Weak equivalence Final clausal

form used form
LvA A=A L—-A
Lv~A ~Ae+A Le+A
Lv-A LA
Lv?A A 1A LA
Lv!A 1A =7A Le?A
Lv+A +Ae -~A Le~A
Lv~!A ~1Ae —f L«
Lv—+A L—+A
Lv—--A Le-A
Lv-?A L&7A

Figure 2. Standard form for program clauses.

Classical resolution

A ...
N\
s A,
Multivalued resolution
A ... A .. Ai- ...
N\ N\ N\
-A, ... - 1A, .. - +A,
~A:i- ... ~Ai- ... ~A:- ...
N\ N\ N\
- ~A, - 'A, - —|A,

Figure 3. Allowed resolution steps.

......

Goal Basic Rule Alternate possible rule

P execute p execute ~p if it succeeds fail the original goal
else execute p

~p execute ~p execute p if it succeeds fail the original goal
else execute ~p

'p execute p or ~p

—p execute p, succeed if it fails execute ~p succeed if it succeeds
else execute p and succeed if it fails

+p execute ~p, succeed if it fails execute p succeed if it succeeds
else execute ~p and succeed if it fails

g execute p and ~p, succeed if
they both fail

Figure 4. Possible execution strategies.

Operator used

Operator and language(s)

in this paper ~ using notation of Rescher[1969]
“— « Slupecki [1946]

= « Ky

© > BE

A A 1_3 K3

v v L3 K3

~ - L3B;

+ W L3W

? T [Rescher, 1969, p57]
o A L3W

- O L3

Figure 5. Summary of equivalent operators in other 3-valued logics.

