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Abstract

This dissertation sets out to explore a deep interconnection between highly

structured relational entities, various notions of grounding and ramified

typed systems. It is argued that together these three form a powerful

alliance that contributes to a unified picture of reality within which a

cluster of recent puzzles of ground and grain can be resolved.
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Preface

This manuscript-based thesis consists of four original papers composed by

the author, that are published, under review or in progress. The following

details the status of each paper and, if applicable, the permissions in using

them here.

Chapter 2. This paper marks the start of my project—both historically

and conceptually. While the paper could potentially be submitted for

publication, at the moment I’m working on the open problem of the paper

and will consider submitting it for publication when that’s resolved.

Chapter 3 of this thesis has been published in the journal Synthese,

volume 201, by Springer Nature, and reproduced here with their permission.

The published manuscript can be found at the following address:

Kiani, A. (2023). Structured Propositions and a Semantics for

Unrestricted, Extended Impure Logics of Ground. Synthese,

(4):141, https://doi.org/10.1007/s11229-023-04114-5

Chapter 4 is currently 5 months under review by Journal of Philo-

sophical Logic, and Chapter 5 is still and progress, as its open problem is

currently under investigation.
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Preface

Note that since these papers are independent in nature, yet standalone

and self-contained, some repetitions may occur throughout the thesis.
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5.3 Ramified Types and Krämer’s Puzzle . . . . . . . . . . . . . 153

5.4 Next-Door Puzzles . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Upper-Floor Puzzles . . . . . . . . . . . . . . . . . . . . . . . 161

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.7 Appendix - The Technical Appendix . . . . . . . . . . . . . 169

Ramified Type Theory . . . . . . . . . . . . . . . . . . . . . 169

Higher-Order Logic of Ramified Partial Ground . . . . . . 172

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

ix



Chapter 1

Introduction

This dissertation comprises four standalone papers that are interdependent

in nature. Together, these papers bring about a grand picture of reality

according to which propositions, as well as other relational entities, are

highly structured and come in a certain infinite hierarchy, and as a result

of this, a wide range of puzzles and paradoxes of ground and grain can be

settled.

The papers that form this dissertation contribute to several areas in

analytic philosophy, by relating to the relevant literature and their specific

needs and questions. Below is a breakdown of the different chapters, what

each one is about and how it relates to the existing literature.

In this chapter, I first lay down some necessary background and litera-

ture review, and map out the structure of the thesis.
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1. Introduction

Propositions and their Structures

Propositions are broadly used in contemporary philosophy. They’re of-

ten considered the primary bearers of truth-value, the objects of belief,

knowledge, doubt, and other propositional attitudes. They’re also usually

considered as the semantic value of sentences—what they refer to. For

example, the English sentence ‘the Sky is blue’ and its German equivalent,

‘der Himmel ist blau’, seem to say the same thing; that ‘thing’ is the

proposition that they both refer to.

A famous, widely used and formerly popular one is the possible-worlds

account of propositions, also known as intensionalism about propositions.1

This account treats propositions as sets of possible worlds in which they

are true and provides a framework for analyzing various modal claims,

such as necessity, possibility, and contingency.

One of the famous problems with the possible-worlds account of proposi-

tions is its coarse-grainedness: every pair of necessarily equivalent sentences

express the same proposition. For example, the proposition that 2+2=4 is

the same as the proposition that Kim is either bald or not bald, as they’re

presumably both necessary.

Alternatives to the flat-footed possible-worlds account of propositions

have been proposed in the literature to address this or various other issues:

its augmentation with impossible worlds (as in, e.g., Berto and Jago,

2019), truth-makers semantics (as in, e.g., Fine, 2017c), and Russellian

propositions (Kaplan, 1977; King, 2009).

According to the Russellian account, propositions are highly struc-

1For a survey of some of the accounts propositions, their advantages and flaws, see
King (2019); Berto and Jago (2019).
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1. Introduction

tured, somewhat reflecting the structure and identity conditions of the

sentences that express them. In recent decades, many seminal works in

the philosophy of language and metaphysics have assumed or argued for

Russellian propositions in various contexts, ranging from attitude opera-

tors to different kinds of metaphysical priority, such as essence, ontological

dependence and grounding (see, e.g., King, 1996, 2009; Soames, 1987;

Fine, 1995, 1980, 1994; Kaplan, 1977; Salmon, 1986; Kiani, 2023). This all

displays the influence and popularity of Russellian propositions in recent

analytic philosophy.

Despite their popularity and heavy usage in contemporary metaphysics,

Russellian propositions face a serious challenge: they contradict certain

principles of higher-order logic (as shown in, e.g., Hodes, 2015; Uzquiano,

2015; Goodman, 2016). This type of inconsistency goes back to Russell

(1908, Appendix B) and Myhill (1958), and is known in the literature as

the ‘Russell-Myhill’ result.

The Russell-Myhill result has influenced many of the recent works in

the metaphysics of propositions. In fact, a recent trend influenced by this

result has been the higher-order cousins of intensionalism under brands

such as Booleanism (Bacon, 2018; Dorr, 2016) and Classicism (Bacon and

Dorr, 2023). According to Booleanism, logically equivalent formulas (in

classical propositional logic) are identical and form the same relational

entities; according to its generalization, Classicism, the same holds for a

very expressive background higher-order logic. These trends embrace the

coarse-grainedness of propositions while taking advantage of the expressive

power of higher-order logic in the background to define modal notions

from scratch and apply them to various contexts, such as propositional

3



1. Introduction

attitudes, modality and grounding (see Goodman, 2022; Fritz, 2021; Dorr

et al., 2021; Williamson, 2013, for some recent developments in this area).

While we address some of these works in our thesis, our approach

takes a fundamentally different path by rejecting the design of the higher-

order logics that these works adopt altogether, and introducing certain

restrictions to them, along the lines of ramified type theory. See Chapters

2 and 4 for more on this.

Type Theory

Type theory is an umbrella formal framework for reasoning about the

structure and behavior of mathematical objects, programs as well as

various other kinds of entities. It provides a set of rules and principles

for classifying and manipulating expressions based on their types. The

central idea of type theory is that every term or expression in a system is

assigned a type, which describes the kind of object it represents and the

operations that can be performed on it.

There are several variants of type theory, each with its own features

and focus. Here are some notable ones:

Simple Typed Theory (STT): This is the simplest form of type theory,

where terms are classified into types, and the types ensure the validity of

operations performed on terms (see Ramsey, 1926; Church, 1940; Mitchell,

1996, for some formulations of STT). STT features a single type for each

term and allows the definition of functions and applications.

Due to its expressiveness compared to simpler logics, such as first-order

logic, STT has also lately found its way to the philosophical literature,
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1. Introduction

where an increasing number of works in the area adopt it for philosophical

training. We mentioned some of these works earlier (such as Williamson,

2013; Bacon, 2018, 2023; Dorr et al., 2021; Dorr, 2016; Bacon and Dorr,

2023; Fritz, 2016, 2021).

On several occasions in this thesis (such as in Chapter 2.2), we

introduce STT and its features.

Ramified type theory (RTT). RTT has old roots in the history of

modern logic and mathematics. In the wake of the twentieth century, a

cluster of paradoxes of similar nature emerged in mathematics and logic

(see, e.g., Russell, 1908, for a list and an extensive discussion of these

puzzles). One of the solutions offered for these paradoxes was to ban, in

systematic ways, all instances of ‘impredicativity’—a project that was

mainly pursued by Russell and Whitehead in terms of a ramified theory

of types (Russell, 1908; Whitehead and Russell, 1910). Loosely put, this

means to disallow entities that have themselves as their own ‘building

blocks’, so in effect, imposing some sort of hierarchy on the formation of

entities that controls that.

Ramified type systems have seen many variations: starting from semi-

formal presentation in Whitehead and Russell (1910, 1912), all the way to

Church (1976) and Hodes (2013, 2015). Throughout this dissertation, I

develop and work with a close cousin of Hodes’ systems, which I believe

to be more expressive and suitable for philosophical work, compared to

some of the other variants.

According to the RTT introduced in this thesis, relational entities, such

as propositions, properties and binary relations, come in certain infinitary

hierarchies of levels and quantification over entities of level-n type leads

5



1. Introduction

to an entity of type, at least, n + 1. For instance, the proposition that all

level-1 propositions are either true or false is itself a level-2 proposition.

On several occasions in this thesis (such as in Chapter 2.3), we

introduce RTT, its features and applications in metaphysics.

System F (Polymorphic Lambda Calculus): System F introduces poly-

morphism to type theory, allowing the definition and manipulation of

types that are parametric over other types (see, e.g., Girard et al., 1989;

Nederpelt and Geuvers, 2014; Mitchell, 1996, for some expositions of these

systems). This enables the development of reusable and generic programs.

In a recent, currently under progress manuscript (Kiani, MSa), I

argue that polymorphic type systems should be adopted for metaphysical

theorizing due to their expressive power. A footnote in one of the book

chapters discusses this in more detail (footnote 22, Chapter 4).

These are just a few examples of type theories, and there are many more

variations and extensions within each. Type theory has applications in

various fields, including programming language design, formal verification,

proof theory, the foundations of mathematics, and as far as the basic

systems are concerned, philosophy.2

Fact Grounding

Fact Grounding (hereafter, just ‘grounding’, unless otherwise specified)

2This is mostly it as far as philosophers have come in adopting type theories.
There are other, much more powerful variants that are more at the cutting edge of
mathematical research these days, such as Dependent Type Theory, Homotopy Type
Theory, and Intuitionistic Type Theory. We won’t be covering these here due to the
scope of our thesis, but we project that future philosophical research will lead towards
working with these type systems, though that may not happen anytime soon due to
their high level of technicality.
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1. Introduction

is a more recent notion in metaphysics, often taken to be a non-causal

relation that holds between certain truths or facts and certain others,

somehow reflecting a sense of ‘fundamentality’ or ‘explanation’ between

them (see, e.g., Rosen, 2010; Woods, 2018; Fine, 2012a; deRosset, 2013;

Sider, 2011; Maurin, 2019).

Various kinds of grounding relations, and their logics, are studied in

the literature. The conception of ground which takes the relata of the

grounding relation to be propositions is sometimes called representational

or conceptual ; the worldly conception concerns entities such as states of

affairs or situations (Correia, 2017, p. 508). The kind of logics that take

into account the logical structure of the relata of grounding relations are

often called impure; pure logics ignore such complexities (Fine, 2012a, p.

54).

There is another important set of distinctions between grounding

relations that has been studied in the literature, and we briefly introduce

here (see, e.g., Fine, 2012a, pp. 52-4 for a detailed discussion of these

variations and their differecnes). To start with, a number of truths are

said to fully ground a truth if the latter somehow holds completely in

virtue of the former and nothing else; a truth partially grounds another if

it does so fully, standalone or together with other truths.

Another distinction is between mediate and intermediate grounds.

Grounds of a truth are immediate if there’s no mediating truth between

them and what they ground; otherwise, they constitute mediate grounds,

as if there’s a ‘chain’ of immediate grounds involved. Finally, some truths

are strict grounds of some others if they are, in a sense, more ‘fundamental’

or ‘basic’; otherwise, the grounds are weak. Put in terms of explanation,

7



1. Introduction

we can think of strict ground as, in the words of Fine (2012a), as one

that “takes us down in the explanatory hierarchy,” whereas weak grounds

“may also move us sideways in the explanatory hierarchy” (ibid, p. 52).

Finally, the conception of ground that allows any proposition, regardless

of its truth value, as the relata of ground is called non-factive; the factive

variant only works with truths, i.e., true propositions.

Now, while the semantics of pure logics of ground has been well studied

and somewhat settled (see, e.g., Fine, 2012b), impure logics, and in

particular, their representational variants, remain fairly underexplored,

with only a few recent attempts on offer to semantically account for them

(Correia, 2017; Krämer, 2018; deRosset and Fine, 2023). But, even though

these works mark considerable progress in the study of the impure logics

of ground, all these semantic accounts suffer from certain expressiveness

limits, complying with the restricted languages or logics that they’re

supposed to capture.

In Chapter 3, I engage with this problem: I leverage Russellian

propositions to provide a very expressive and unified semantics for a wide

range of propositional logics of ground.

While this serves the propositional logics of ground at a large scale,

quantificational principles of ground face their own challenges. For example,

Fine (2010) and Krämer (2013) have put forward some puzzles regarding

the interaction of some impeccable principles of classical logic with certain

plausible principles of mediate partial ground. Other neighboring puzzles,

in richer languages and settings, have also emerged in the literature that

display similar behavior to Fine’s and Krämer’s puzzle (Donaldson, 2017).

Now, while there are a few proposals in the literature that are curated

8



1. Introduction

for one or more of these puzzles, they mostly fail or lose relevance when

applied to the other variants of these puzzles (see, e.g., Woods, 2018;

Krämer, 2013; Fritz, 2020).

In Chapter 5, I discuss the quantificational puzzles of ground in the

literature, and some new ones, and propose a novel, unified solution to

them by means of deploying ramified typed systems in the background.

Essentially, I show that all these puzzles are similar in nature, and a

hierarchy of relational entities (propositions, relations, etc.) reminiscent

of ramified type theory can circumvent the paradoxes. I also argue that

this type of resolution for the puzzles of quantificational ground is more

unified and powerful than most alternative proposals cited above.

Entity Grounding

The literature on metaphysical ground often conceives the relation of

grounding as only concerning facts or fact-like entities that hold ‘in virtue

of’ other such entities, manifesting the idea that the latter ‘explain’ or

are ‘more fundamental’ than the former. However, a few exceptions to

this tradition stand out, according to which entities of all kinds, such as

individuals, propositions, facts, properties and relations, are capable of en-

tering into grounding relations (as in, e.g., Schaffer, 2009; Wilhelm, 2020a;

deRosset, 2013)—what is sometimes called ‘entity grounding’ (Wilhelm,

2020a).

Entity grounding is a relation of metaphysical priority that can hold

between entities of any type. An individual may e-ground a proposition or

fact, a proposition may e-ground a property, a property may e-ground a

9



1. Introduction

relation or a proposition, and so on. To illustrate with examples along the

lines of the literature: ‘[for any entity i,] i = i is grounded in i’ (Wilhelm,

2020a), ‘Obama, the man in full, grounds the fact that Obama exists;

Obama grounds his singleton; the property being white grounds being

white or square; England grounds (in part) the property of being queen of

England ’ (deRosset, 2013).

In Chapter 4, I lay down and defend certain plausible principles of

entity grounding, along the lines of what’s been explicitly or implicitly

entertained in the literature, and argue that they require propositions,

properties and other types of relations each to come in infinite levels,

where, roughly put, the inhabitants of higher levels are obtained through

quantification over the ones from lower levels. I then rigorously propose

certain ramified type systems that best capture the talk of entity grounding

and the infinitary hierarchies it calls for. The ultimate goal of this

paper is to argue that certain considerations regarding entity grounding

and structure call for infinitary hierarchies of relational entities such as

propositions and properties and to rigorously devise a ramified type system

that captures them.

In Chapter 6, I report on the project’s accomplishments, and reiterate

some of its main open problems and our predictions about them.

10



Chapter 2

Ramified Types and

Metaphysical Structure

2.1 Introduction

According to the structured or Russellian picture of propositions (as

presented in, e.g., Soames, 1987; King, 2009, 1996, 2019) propositions are

structured entities that are built out of constituents such as individuals,

properties, and operators, somewhat resembling and reflecting the overall

syntactic structure of the sentences that express them.1

Structured propositions remain one of the main alternatives to the

possible-worlds accounts of propositions, avoiding oddities that are caused

due to the coarse-grainedness of possible worlds. They have also found

their way into a large pool of seminal work in the philosophy of language—

as in attitude operators—and metaphysics—as in the notions of essence

1Hereafter, I will use ‘structured propositions’ in the sense above, i.e., Russellian
propositions. This notion will be rigorously defined later in the paper.

11



2. Ramified Types and Metaphysical Structure

and ontological dependence (see, e.g., King, 1996, 2009; Soames, 1987;

Fine, 1995, 1980, 1994; Kaplan, 1977; Salmon, 1986, as some of these

works).

Recently there has been a renewed interest in questions of structure in

metaphysics. It has been increasingly argued in different forms and shapes

that flat-footed accounts of structured propositions face what is often

called the Russell-Myhill Paradox (Deutsch, 2008; Dorr, 2016; Goodman,

2016; Hodes, 2015; Uzquiano, 2015), originally going back to the Appendix

B of Russell (1908) and rediscovered in Myhill (1958).

This paper appeals to ramified type theory as a framework to put the

assumptions of structure on a sound footing. More specifically, it will be

argued that ramified type systems might have a chance of safeguarding

assumptions of structure from the Russell-Myhill paradox.

The paper is one of a series of four in which I set out to explore a

deep interconnection between the theory of structured propositions, the

theory of metaphysical ground (fact-grounding and entity-grounding) and

ramified type theory. The ultimate goal of the series is to show that these

three together bring about a unified, elegant picture of reality within

which a host of contemporary puzzles and paradoxes are resolved, and

rejecting either of them will make the picture collapse in its entirety.

The task of this paper, in particular, is to show how ramified type

theory can secure the notion of structured propositions from the Russell-

Myhill paradox. The other three papers will explore how ramified type

theory can settle some of the recent puzzles of the theory of fact-grounding

(Kiani, MSe, i.e., Chapter 5 of this thesis), how it can be motivated by

considerations of entity-grounding (Kiani, MSb, i.e., Chapter 4), and how

12



2. Ramified Types and Metaphysical Structure

structured propositions can provide a powerful and unified semantics for

a range of propositional logics of ground (Kiani, 2023, i.e., Chapter 3).

Here’s how the paper is organized: In §2.2 I will lay down a minimal

formal background on the syntax and the semantics of higher-order logic

based on simple type theory. I will then briefly introduce the structured

account of propositions and will give a diagnosis of the Russell-Myhill

paradox in terms of the so-called ‘impredicativity’ of simple type theory.

In §2.3 I will introduce a ramified type theory that is motivated by certain

considerations of metaphysical priority in Kiani (MSb), and argue that

it blocks the Russell-Myhill paradox. I will also prove the consistency of

the system in question by imposing a ramified structure on the class of

standard models of higher-order logic. In §2.4 I will explore the impact

of our ramified type system in the presence of the structured account of

propositions. The paper concludes in §2.5.

2.2 Simple Type Theory

To frame the problem of structured propositions with sufficient rigor, allow

me to introduce a simple type theory (STT). In this section, I will lay

down a minimal background on simple type theory and an assessment of

the Russell-Myhill paradox.

13



2. Ramified Types and Metaphysical Structure

Introduction

Simple types provide a way of tracking the grammatical categories of

expressions. They are defined rigorously as follows:2

Definition 2.2.1 (Simple Types). The set T s of simple types is recursively

defined as follows: (i) e ∈ T s, ⟨⟩ ∈ T s, and (ii) for any types t1, ..., tn (where

n ≥ 1), ⟨t1, ..., tn⟩ ∈ T s.3

Before defining terms of the system, we assume that for any t∈T s there’s

a denumerably infinite set of variables Vart of type t and a (possibly empty)

set of typed non-logical constants CSTt. For certain types there are also

logical constants to be introduced below. (We will reserve CSTt for the

set of all constants (logical or non-logical) of type t.) We define the

sets of all variables and constants respectively as Var ∶= ⋃t∈TrVart and

CST ∶= ⋃t∈TrCSTt.

Treating the logical vocabulary as constants is the prevalent approach in

higher-order logic (see, for example Church, 1940; Henkin, 1950; Mitchell,

1996; Bacon, 2018, 2019; Dorr, 2016; Dorr et al., 2021). Not only is

it more elegant than giving them separate clauses in the definition of

terms (e.g., “if p and q are terms of type ⟨⟩, then p∧q is a term of type

⟨⟩”; see Hodes, 2013, as an example), but, as we will see shortly, it also

has the metaphysical advantage of allowing us to intelligibly ask certain

2The type theories presented in this paper will be relational (as opposed to func-
tional). Also, for higher readability, the style of typing will by Church-typing (as
opposed to Curry-typing), where the types of variables are fixed and don’t depend on
‘contexts’. Alternative formulations are possible as well.

3In the literature, the second clause is sometimes more concisely expressed as this:
for any types t1, ..., tn (where n ≥ 0), ⟨t1, ..., tn⟩ ∈ T

s. In this presentation, ⟨t1, ..., tn⟩
for n = 0 is just ⟨⟩.
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2. Ramified Types and Metaphysical Structure

questions and theorize about the granularity of the logical connectives and

quantifiers—an option that is not available to the rival approach.

In any case, here’s the list of our primitive, typed logical constants:

negation, ¬, of type ⟨⟨⟩⟩, implication, →, of type ⟨⟨⟩, ⟨⟩⟩, and for any type

t, there is a constant for a (higher-order) universal quantifier ∀t, which

quantifies over properties of entities of type t; that is, ∀t is given the type

⟨⟨t⟩⟩. After we introduce the set of terms of STT, we will see how the

quantifiers function with the given type, and how other connectives will

be defined in terms of the primitive constants above.

Definition 2.2.2 (Simple Terms). The terms of STT are recursively

defined as follows: (i) if x is a variable of type t, then x is a term of type

t; (ii) if c is a constant of type t, then c is a term of type t; (iii) if ϕ is a

terms of type ⟨⟩ and for n ≥ 1, the variables x1, ..., xn are pairwise distinct,

and respectively of types t1, ... , tn, then λx
t1
1 , ..., x

tn
n .ϕ is a term of type

⟨t1, ..., tn⟩ ; (iv) if τ is a term of type ⟨t1, ..., tn⟩, where n ≥ 1, and for each

i = 1, ..., n, σi is a term of type ti, then τ(σ1, ..., σn) is a term of type ⟨⟩.

We call a term of type ⟨⟩ a formula, and when it contains no free

variables, a sentence. We use the letter t with or without subscripts

as metavariables for types, lower-case Greek letters τ, σ, ϕ,ψ, ... with or

without subscripts as metavariables for general terms, and lower-case or

capital English letters x, y, z, p, q,X,Y,Z,P,Q, with or without subscripts,

as metavariables for variables; other letters may be used as metavariables

for constants as well. Also, from now on, by convention, we write things

like ϕ∨ψ or x = y to indicate the application instances ∨(ϕ,ψ) or = (x, y),

and so on. The notions of free and bound variables of terms, substitutions

15



2. Ramified Types and Metaphysical Structure

of terms for variables, and being free for a variable, are defined as usual.

We denote the set of free variables in a term σ by FV (σ). Also, the set

of all terms of STT is denoted by TERMs.

Some examples: assuming that N e and E⟨e⟩ are constants respectively

standing for Napoleon and the property of being an emperor, the sentence

‘Napoleon is an Emperor’ is regimented in our language as E(N), which

is an instance of the rule (iv), also known as application. Now, suppose

we have the sentence ‘Napoleon is a young emperor’ regimented with

Y (N)∧E(N), where Y e is the constant standing for the property of being

young. Now, the predicate that stands for the property of being a young

emperor can be obtained by ‘abstracting away’ (using clause (iii), also

called abstraction) from ‘Napoleon’, as λxe. Y (x)∧E(x).

Finally, we understand the good old universal statements of the form

∀xtϕ as instances of term application (∀t)(λxt.ϕ); that is, by retyping

the universal quantifier, we can understand universal claims in terms of

abstraction and application, which is what we would need, when treating

the quantifier as a constant.

Now we define a set of other connectives in terms of the primitive

16



2. Ramified Types and Metaphysical Structure

constants ¬, → and ∀t and lambda-abstraction, as follows:4,5

∨ ∶= λp⟨⟩q⟨⟩.(¬p→ q) (2.1)

↔∶= λp⟨⟩q⟨⟩.(p→ q)∧(q → p) (2.2)

∃t ∶= λX⟨t⟩¬∀tx¬X(x) (2.3)

∧ ∶= λp⟨⟩q⟨⟩.¬(p→ ¬q) (2.4)

=t∶= λxtyt.∀⟨t⟩X(X(x)→X(y)) (2.5)

Notice that we’re not taking the interdefined connectives above as the

definitions of or shorthands for, say, the connectives disjunction, conjunc-

tion, etc.—although at the end of the day, they will produce propositions

that are truth-functionally equivalent with the Boolean connectives, we

would like to remain as neutral as possible regarding the status of the

granularity of the latter conncetives and quantifiers. For instance, we

would like to leave open the status of identities such as λp.¬¬¬p =⟨⟨⟩⟩ λp.¬p

or identifying disjunction, say, with λpq.¬(¬p∧¬q) or λpq.(¬p→q), and

intelligibly theorize about them.6

Our system is also relatively grain-neutral in another sense: for example,

it does not guarantee identities like ϕ∨ψ = ¬ϕ→ψ; for that, we need a
4See for example Dorr et al. (2021) and Bacon (2023) for such formulations.
5Notice that, strictly speaking, in STT we don’t need to consider a separate constant

for negation; we could define it as ¬ ∶= λp⟨⟩.(p → �), where �, the falsume, is itself
defined as, e.g., (∀⟨⟩)(λp⟨⟩.p)—the higher-order parallel of the proposition that every
proposition is true. The reason that here we took ¬ as a primitive logical constant
instead of taking the alternative approach just glossed is that in ramified type system
that we will be developing in §3.1 the latter may involve some extra delicacies regarding
� that can be avoided if we just take negation as a constant. See footnote 17 for more
on this.

6It’s also remarkable that asking such questions is not an option that is available
to the alternative path where the classic connectives are given separate clauses in the
term-construction rules—we are able to ask such questions or otherwise theorize about
the related identities only when we treat the connectives and quantifiers ¬, ∨ and ∀t as
constants. This is one of the advantages of treating the logical vocabulary as constants,
rather than introducing them via term-construction rules.
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2. Ramified Types and Metaphysical Structure

principle stronger than βE, where the equivalence involved is replaced with

an identity =⟨⟩. (We still have the very plausible equivalence ϕ∨ψ↔ ¬ϕ→ψ,

though.) Neither do identities like ϕ = (ϕ∧ψ)∨ϕ which are imposed upon us

by certain coarse-grained accounts of propositions necessarily hold.7 The

system, however, is not absolutely grain-neutral: as the following section

will show, fine-grained assumptions about the structure of propositions

will fail to hold.

Proof Theory (System H−)

In what follows, and as is expected, [σi/xi] stands for the simultaneous

substitution of σi’s with x’s in τ . Also, in each case, it’s been assumed that

the substitutants are free for the substitutees. Intuitively, that guarantees

that (i) no bound variable is allowed to be substituted (that is, the notion

of substitution only applies to free variables), and (ii) no free variable can

get bound after substitution.

Axioms:

1. ⊢ϕ→ (ψ→ϕ); ⊢(ϕ→ (ψ→γ))→ ((ϕ→ψ)→ (ϕ→γ));

⊢(¬ϕ→ ¬ψ)→ (ψ→ϕ). PC8

2. ⊢ (λxt11 , ..., x
tn
n .ϕ)(σ1, ..., σn) ↔ [σ1/x1, ..., σn/xn]ϕ, where the type

of σi is ti, for each i = 1, ..., n. βE

3. ⊢ ∀tF→F (σ), where F is a term of type ⟨t⟩, and σ or type t. UI

7See Bacon (2018) as an example of such a view.
8This choice of our axioms for propositional logic, which corresponds to the system

P2 found in Church (1956), is more suitable for our purposes, given our choice of
primitive Boolean connectives, namely, ¬ and →.
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2. Ramified Types and Metaphysical Structure

4. ⊢ ∀t(λxt. ϕ→ψ)→ (ϕ→ ∀t(λxt.ψ)), where x ∉ FV (ϕ) UD9

Rules of Inference:

5. If ⊢ ϕ and ⊢ ϕ→ψ, then ⊢ ψ. MP

6. If ⊢ F (x), then ⊢ ∀t(F ), where x is of type t, and F is a term of

type ⟨t⟩. GEN

The system H− is a natural generalization of the proof system of first-

order logic to higher types.10 The new principle βE is also an extremely

plausible principle that gives us equivalences such as this: Napoleon

was a French emperor iff Napoleon was French and Napoleon was an

emperor—formally: (λxe.F (x)∧E(x))(N)↔ F (N)∧E(N).

Consistency of H−

Now I will introduce Henkin models, originally coming from Henkin (1950).

Henkin’s underlying type theory is functional. So, we’ll have to introduce

a relation version for our purposes. In what follows, I will propose a

revised version of Gallin (1975)’s models which is based on a relational

type theory.11

9One can replace this with a more general rule: ⊢ ∀t(λxt.ϕ → F (x)) → (ϕ →
∀tF ), (where F is of type ⟨t⟩ and x ∉ FV (ϕ)). This is, in effect, stronger than
⊢ ∀t(λxt. ϕ→ψ) → (ϕ → ∀t(λxt.ψ)). But in what follows I’ll stick to the original
formulation.

10Note that in UI and GEN, choosing F to be λxt.ϕ will lead to the more common,
less general formulations of these principles: UI becomes “∀xt ϕ → ϕ(σ)”, and GEN
becomes “If ⊢ ϕ, then ⊢ ∀xt ϕ.”

11Gallin (1975)’s systems doesn’t have λ-abstaction, and he instead appeals to the
axiom schema of comprehension. I will stick to our λ-calculus and, similar to Henkin
(1950); Mitchell (1996) and others, do with λ-terms. Another difference with Gallin
(1975) is that here we’re taking the logical vocabulary as constants. See what follows
after Definition 1 and before Definition 2, for an overview of this approach.
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Definition 2.2.3 (Frames). Let D be a non-empty set. A frame based

on D is a set F ∶= {Mt ∣t ∈T s} such that:

(i) Me ∶=D,

(ii) ∅ ≠M⟨⟩ ⊆ ℘({∅}) = {0,1},

(iii) ∅ ≠M⟨t1,...,tn⟩ ⊆ ℘(Mt1 × ... ×Mtn), where n ≥ 1.

Definition 2.2.4 (Henkin Models). A Henkin model is a pair M = (F, d),

where F is a frame and d is a function d ∶ ⋃t CSTt → ⋃tMt such that

m(ct) ∈Mt. A model is logical if:

(i) d(¬) ∶= {0},

(ii) d(→) = {(0,0), (0,1), (1,1)}.

(iv) d(∀t) ∶= {Mt}.

An assignment function for a model is a function g ∶ ⋃tV art→⋃tMt

such that g(xt) ∈Mt for each xt ∈ Vart.

Definition 2.2.5 (Interpretations). An interpretation for an assignment

g based on a model M is a function [[.]]g ∶ TERMs → ⋃tMt, such that:

(i) [[ct]]g = d(ct), for ct ∈ CSTt,

(ii) [[xt]]g = g(xt), for ct ∈ Vart,

(iii) [[λxt11 , ..., x
tn
n .ϕ]]g ∶= the set X ⊆Mt1×...×Mtn , such that (d1, ..., dn) ∈

X iff [[ϕ]]g[x1↦d1,...,xn↦dn] = 1,

(iv) [[τ(σ1, ..., σn)]]g = 1 iff ([[σ1]]g, ..., [[σn]]g) ∈ [[τ]]g.

20



2. Ramified Types and Metaphysical Structure

Notice that in our Henkin models it’s not always granted to have

the interpretation of terms belong to their intended domains. For ex-

ample, there’s nothing in our definitions that would reassure us that

[[λxt11 , ..., x
tn
n .ϕ]]g belongs to M⟨t1,...,tn⟩, which itself could be a proper sub-

set of ℘(Mt1 × ...×Mtn). To avoid this uncertainty, we therefore only work

with the class of Henkin models that do grant the desired membership.

We say that a Henkin model is closed if for every assignment g and every

term σ of type t, we have [[σ]] ∈Mt.

For a model M , an assignment g based on M , and a sentence ϕ, we say

that M satisfies ϕ for the assignment g, and write M,g ⊧ ϕ, if [[ϕ]]g = 1.

Notions of validity, etc., are defined as usual.

Theorem 2.2.1 (Soundness). The proof system H− is sound with respect

to the class of all closed Henkin models. That is, for every sentence

ϕ ∈ TERMs, we have: if ⊢ ϕ, then ⊧ ϕ.

Proof. Easily verified. Also, see Henkin (1950); Mitchell (1996); Gallin

(1975) for different variants of the proof system presented in different

variants of the base type theory.

Remark 2.2.1. Notice that H− is not complete with respect to the class

of Henkin Models. For example, we can show that for every model and

every assignment function g, ∀p⟨⟩∀q⟨⟩(p↔q → ∀F ⟨⟨⟩⟩(F (p)↔F (q))) is true.

But this is not a theorem of the system H−. To derive the latter in our

system, we will need to add the above sentence as a new axiom to our

system—sometimes called the axiom of extensionality (Henkin, 1950) or

functionality (Bacon, 2018). For reasons of granularity, however, we won’t
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2. Ramified Types and Metaphysical Structure

adopt Extensionality.12

Remark 2.2.2. Following the previous remark, and since we’re only

considering the soundness of the system for our purposes, we could more

conveniently just consider the class of standard, instead of Henkin models:

the former replaces ⊆ with = in the clauses (ii) and (iii) of the definition of

frames. In fact, for reasons similar to the ones from the previous remark,

we will intentionally avoid the completeness of the proof system for RTT,

and due to a complication regarding proving even the soundness of that

system by using (ramified) Henkin models, there we’ll just appeal to

(ramified) standard models.

Structured Propositions and the Russell-Myhill

Paradox

Now we are in good shape to discuss the Russell-Myhill paradox. The

general principle that structured accounts of propositions commit to is

along the lines of the following (simplified) schema, called Structure:

F (a)=⟨⟩G(b)→ F=⟨t⟩G ∧ a=tb (2.6)

In effect, it says that from a proposition expressed by a predication F (a)

we can always recover a property and an entity eligible for that property

such that the former is uniquely attributed to the latter by the proposition.

Now, assuming ψ is a term of type ⟨⟩, then, by Definition 1, the term:

G ∶= λq⟨⟩.∃X⟨⟨⟩⟩((q=⟨⟩X(ψ)) ∧ ¬X(q)), (2.7)

12In effect, this will go against the principle Structure which plays a canonical
rule in this paper.
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is well-formed in STT and is of type ⟨⟨⟩⟩. Roughly, G stands for the

property of being a proposition that lacks a property which it attributes

to some proposition. By using βE twice we can see that for any ψ of type

⟨⟩, G(G(ψ)) is well-formed and is equivalent to the following:

∃X⟨⟨⟩⟩(G(ψ)=⟨⟩X(ψ) ∧ ¬X(G(ψ))) (2.8)

Now, in a broad-brush take, the known proofs of the paradox all assume

Structure and then prove G(G(ψ))↔ ¬G(G(ψ)), which is a contra-

diction, hence the paradox. The proofs in particular crucially rely on the

schemata UI and βE to go through. Accordingly, a general strategy to

avoid the paradox is to somehow weaken or perhaps even drop one or more

of βE, UI or Structure (or any of its consequences). A large portion

of the recent literature on the resolutions of the Russell-Myhill paradox

has especially shown interest in either rejecting or weakening Structure

and leaving the other axioms of the system intact (Dorr, 2016; Goodman,

2016; Bacon, 2019; Fritz, 2019).

These resolutions, however, are all squarely committed to simple types.

One could, however, take any of the paths above under a different picture

of types, namely ramified types. To understand what ramified types are we

need to first understand the motivation behind them. To start with, notice

that in the presence of simple types it’s possible to define predicates that

pick out properties of, say, individuals, by ‘assuming’ or ‘presupposing’

all properties of individuals, which include the former too—something

like a circular definition (a ‘vicious circle’), also called impredicative. For

example, the property of having all the properties that make a great

general (i.e., all properties of type ⟨e⟩ which are had by great generals) is
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itself a property of individuals (i.e., of type ⟨e⟩), and so is automatically

‘assumed’ by quantifying over all properties of individuals, in its definition.

Similarly, and more relevant to the Russell-Myhill Paradox, G belongs

to the properties that it assumes, or quantifies over, in its definition, i.e.,

properties of type ⟨⟨⟩⟩.

Having closely examined a cluster of paradoxes of a similar nature

(usually known as ‘paradoxes of impredicativity’), Russell proposed ram-

ified type theory as a means to block vicious circles all at once, as a

unified solution to all the relevant paradoxes (Russell, 1908; Whitehead

and Russell, 1912). The idea can be implemented in various ways, but the

main thought is to manipulate the background type theory by assigning

‘levels’ to simple types and requiring the quantifiers to raise those levels

in systematic ways: for example, if p is a sentential variable of level n,

then ∃pp stands for a proposition of level n+1. Moreover, properties of

propositions may only apply to a range of propositions restricted to certain

levels, not absolutely all of them. As a result, in the presence of ramified

types, and because of the quantifier present in the definition of G, the

proposition picked out by G(ψ) in G(G(ψ)) will be of a level that is

strictly higher than the level of propositions that G can possibly apply to,

hence the application instance G(G(ψ)) will be ill-formed, and the proofs

of the inconsistency won’t go through anymore.13

The next section explores this primitive idea in more detail, by intro-

ducing a modern, rigorous reconstruction of Russell’s implicit ideas of

ramified types.

13As we will see in §4, and as Bacon et al. (2016) have also observed, this will
essentially lead to a weakening of UI, only through manipulating the background type
theory.
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2.3 Ramified Type Theory

I will now lay out a formalization of the idea of type stratification based

on the system presented in Church (1976), but also heavily influenced

by the systems in Hodes (2013; 2015), where a λ-abstractor is at work

instead of a comprehension schema. A version of this system can be found

in Kiani (MSb), where it is argued that such ramified systems can be

motivated by a recently emerged notion of metaphysical priority, namely

entity-grounding.

Besides the conformity with our STT from the previous section, one

advantage of employing λ-abstractors is that we get to construct the

functions in our system (as opposed to merely claiming their existence),

and carefully monitor their behavior and interaction with variables and

the logical vocabulary and other terms—much like what is common in

all modern type systems. Our system also has expressiveness advantages

especially over Hodes’s systems (See footnotes 14 and 16 for this).

Introduction

As in the case of STT, we start off our ramified type theory (henceforth:

RTT) by introducing types. This is where all the difference begins: we

will no longer have types of propositions or propositional functions per

se, but ‘leveled’ such entities: each simple type will be assigned a level,

somehow locating the entities of that type in the type hierarchy. We will

see how term formation rules, especially quantification, interact with these

levels in order to allow or disallow the formation of certain terms that

proved troubling in the exposition of the Russell-Myhill paradox.
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Definition 2.3.1 (Ramified Types). The set T r of ramified types is

recursively defined as follows: e ∈ T r, ⟨⟩/m ∈ T r and ⟨t1, ..., tn⟩/m ∈ T r, for

t1, ..., tn ∈ T r, (n ≥ 1), for any m ≥ 1.14

Definition 2.3.2 (Levels). The levels of ramified types t, l(t), are de-

fined as follows: l(e) = 0, l(⟨⟩/m) = m, and l(⟨t1, ..., tn⟩/m) = m. A type

⟨t1, ..., tn⟩/k is directly lower than a type ⟨t1, ..., tn⟩/m iff k <m.

In effect, e is the type of individuals, ⟨⟩/m is the type of level-m

propositions, and for any types t1, ..., tn, where n ≥ 1, ⟨t1, ..., tn⟩/m is the

type of n-ary propositional functions of level m—functions that, as the

term-formation rules below show, take arguments of types identical or

directly lower than t1, ..., tn, and return a level-m proposition.15 As a

convention, from now on whenever we talk about the level of a term, we

mean the level of the type that is assigned to it. For example, we may

call a proposition ϕ of type ⟨⟩/3, a level-3 entity, and may represent this

with l(ϕ) = 3.

14In the definition of ramified types, Hodes (Hodes (2013, 2015)), as opposed to
Church (1976), adds constraints such as m > max{l(ti)} or m ≥ max{l(ti)} in his
systems (although our ‘levels’ conform to his ‘heights’), but such constraints only
impose expressive limits on the system which could otherwise be avoided. In particular,
by dropping such constraints we can retain some forms of application and iteration
that are not available in Hodes’s systems: for example, if ϕ is a term of type ⟨⟩/2 and
τ is a term of type ⟨⟨⟩/2⟩/1 (the latter is allowed in our system, but not by any of
Hodes’ systems), then we are allowed to form τ(τ(ϕ)), which would be of type ⟨⟩/1.
Or suppose τ is a term of type ⟨⟨⟩/m⟩/m and ϕ is a term of type ⟨⟩/m. Then τ(ϕ) is
of type ⟨⟩/m and the iterations τ(τ(ϕ)), τ(τ(τ(ϕ))), etc., are well-formed and of type
⟨⟩/m. But nothing like these are available for Hodes’s System ⇒r, and although his
System ⇒nr can express the latter iterations, it still cannot express the first instance
of application; so in that sense both of the systems ⇒r and ⇒nr are less expressive
than our system.

15Notice that, at least formally speaking, we have the option of stratifying the
individual type i too, as do Bacon et al. (2016). Here we don’t have any philosophical
applications for such a move, so we keep our system simpler without stratifying
individual-type entities.
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As before, for any ramified type t∈T r we assume there’s a denumerably

infinite set of variables Vart of type t and a (possibly empty) set of

typed non-logical constants CSTt. For certain types there are also logical

constants to be introduced below. (We will reserve CSTt for the set of

all constants (logical or non-logical) of type t.) We define the sets of

all variables and constants respectively as Var ∶= ⋃t∈Tr Vart and CST ∶=

⋃t∈Tr CSTt.

Also, for similar reasons about elegance and granularity that were

mentioned in the case of STT, we assign typed constants to our logical vo-

cabulary, instead of proposing separate clauses for them. In particular, and

as before, we choose negation, implication, and universal quantification as

our primitive constants, but now they need to be tailored to accommodate

the talk of levels, and the intuition behind ramified-quantification: for

example, we want a statement of the form ∀p⟨⟩/1p, which quantifies over

level-1 propositions, to be of a level 2. We also want the quantifier to

be treated as before, where higher-order quantification is understood in

terms of application and abstraction.

To illustrate in particular how the constant for ramified higher-order

quantification should be typed, suppose, instead of treating the quantifier

as constant and defining universally quantified statements in terms of

application and abstraction, we, much like Hodes (2013; 2015) wanted to

give a separate clause for the universal quantifier in the term-formation

rules. A suitable clause that would’ve satisfied our ramified picture is as

follows: if x is a variable of type t and ϕ is a term of type ⟨⟩/m, then ∀xtϕ

is a term of type ⟨⟩/max{l(t)+1,m}, where max{...} is the function that

picks out the maximum of the numbers in its scope. So, the corresponding
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constant for each level m, denoted by ∀tm, should (a) apply to terms of the

form λxt.ϕ, and (b) return propositions of type ⟨⟩/max{l(t)+1,m}. Given

the working of λ in the definition below, it’s easy to verify that the suitable

type for this constant would therefore be ⟨⟨t⟩/m⟩/max{l(t)+1,m}.

As for what the output level of the other connectives should be, first no-

tice that the only means to raise levels in our RTT is via quantification. So,

other operators can at most bring out the biggest levels in their arguments.

With these in mind, we choose our typed, logical constants in RTT, thus:

¬m is of type ⟨⟨⟩/m⟩/m; →m1,m2 of type ⟨⟨⟩/m1, ⟨⟩/m2⟩/max{m1,m2}; and,

to repeat, for any ramified type t, ∀tm is of type ⟨⟨t⟩/m⟩/max{l(t)+1,m}.

Definition 2.3.3 (Ramified Terms). The set of terms of type t are

recursively defined as follows: (i) If x ∈ Vart, then x is a term of type t;

(ii) if c ∈ CSTt, then c is a term of type t; (iii) if x1, ..., xn are pairwise

distinct variables of respectively types t1, ..., tn, where n ≥ 1, and ϕ is a

term of type ⟨⟩/m, then λxt11 , ..., x
tn
n .ϕ is a term of type ⟨t1, ..., tn⟩/m; (iv)

if τ is a term of type ⟨t1, ..., tn⟩/m, where n ≥ 1, and for each i = 1, ..., n, τi

is a term of type identical to or directly lower than ti, then τ(τ1, ..., τn) is

a term of type ⟨⟩/m.

The notions of free and bound variables of terms, substitutions of terms

for variables, and being free for a variable, are defined as usual. We show

the set of free variables in a term σ by FV (σ). Also the set of all terms

of RTT is denoted by TERMr.

The feature of application rule above (iv) that allows for applying

propositional functions to arguments of directly lower level is called the
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cumulativity condition by Church (1976), which adds to the expressive

power of our system.16

We adopt the previous conventions about metavariables for variables,

terms, and types, except that now we may attach levels to them. Also,

as expected, we understand the old-style ∀xtϕ as a shorthand for the

application instance (∀tm)(λx
t.ϕ), where m is the level of the proposition

ϕ. Finally, as before, we define a set of other connectives in terms of the

existing ones in the familiar fashion and as follows, with remaining loyal

to the previous caution that we don’t mean to take them as the definitions

of or abbreviations for disjunction, conjunction, etc. (Below, the types of

the defining connectives are omitted for higher readability):

∨m1,m2 ∶= λp
⟨⟩/m1q⟨⟩/m2 .(¬p→ q) (2.9)

↔m1,m2 ∶= λp
⟨⟩/m1q⟨⟩/m2 .(p→ q)∧(q → p) (2.10)

∧m1,m2 ∶= λp
⟨⟩/m1q⟨⟩/m2 .¬(p→ ¬q) (2.11)

∃tm ∶= λX⟨t⟩/m¬∀tmx¬X(x) (2.12)

Notice that all the connectives above are of the same type as →m1,m2 ,

namely, ⟨⟨⟩/m1, ⟨⟩/m2⟩/max{m1,m2}, and the constant ∃tm is of type

⟨⟨t⟩/m⟩/max{l(t)+1,m}, as expected.17

16In particular, thanks to cumulativity our is more expressive than Hodes’s: for
example, if τ is a term of type ⟨⟨⟩/2⟩/3 and σ is a term of type ⟨⟩/1, then τ(σ) is
expressible (and of type ⟨⟩/3) in our language, but not in Hodes’s systems. That is,
the least cumulativity does for us is that it retains certain forms of Application that
aren’t available in systems without cumulativity.

17As was mentioned in footnote 5, in STT we could in principle stop treating ¬ as a
primitive constant and define it in terms of λp.(p→�), where � is itself a proposition like
∀⟨⟩(λp⟨⟩.p). But defining � this way in RTT will make it a level-2 proposition, whereas,
it is customary (as in, e.g., Hodes, 2013, 2015) and plausible to let � to be of level
1: if not, then the Boolean operators may behave abnormally. Suppose, for example,
that � is of level 2, and assume ¬m ∶= λp⟨⟩/m.(p⟨⟩/m→�); then the negation ¬1p of a
level-1 proposition will be a level-2 proposition, and the negation ¬mq of a level-m
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2. Ramified Types and Metaphysical Structure

As for the identity operator in RTT, notice that we cannot define it

in the usual, Leibniz’s-law form. To see this, remember that we defined

higher-order identity in STT, as follows: =t∶= λxtyt.∀⟨t⟩X(X(x)→X(y)),

encoding Leibniz’s law of the identity of indiscernibles. But in RTT, we

can’t quantify over all properties. In other words: quantifiers in RTT

only apply to variables of certain levels. For reasons of this sort which

reveal the expressive weakness of RTT, Russell and Whitehead had to

introduce the reducibility schema in Principia, positing, in effect, that

any higher-level propositional function is coextensive with some level-1

propositional function:

∃X⟨t1,...,tm⟩/1∀yt11 , ..., y
tm
m (τ(y1, ..., ym)↔X(y1, ..., ym)), (2.13)

where τ is of type ⟨t1, ..., tm⟩/n, for any n ≥ 1.

Now, if we grant the reducibility schema, we can define the ramified

identity as sharing all level-1 properties:

=tr∶= λx
tyt.∀X⟨t⟩/1(X(x)→X(y)), (2.14)

which itself is of type ⟨t, t⟩/2. Now, if σ and τ differ in some higher-level

property, since by the reducibility schema there’s a level-1, coextensive

property with the higher-order property, σ and τ must differ in that level-1

property as well, hence, given the definition above, are not identical. And

vice versa: if two things differ in some level-1 property, they cannot be

identical, by definition.

proposition q will be of level m: so, ¬m sometimes will and sometimes will not raise
the level of propositions, manifesting a philosophically unmotivated picture. (Similar
stories hold for the other connectives as well.) So, if one chooses to define ¬ (and other
connectives) in terms of �, one will most likely have to assume there’s a level-1 falsum
� in the signature. But if one chooses to take ¬ as a primitive constant, as we have
done here, one need not worry about overcoming the glossed worries concerning �.
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2. Ramified Types and Metaphysical Structure

But in the interest of avoiding the long-standing complications and

allegations associated with the reducibility schema, we will not adopt it in

the present paper.18 Instead, I will take an alternative path and will take

(ramified) identity as a primitive constant in our system. As for what will

the level of identity statements have to be, first, remember that the only

logical constant operator that raises levels in our RTT is the universal

quantification (and its inter-defined dual), so we can take the level of the

identity statements to be the level of the entities flanking the relation (see

a related discussion for the connectives → and ¬ from earlier). But since

identity statements are essentially formulae, the minimum level they can

take should be 1. With these in mind, I propose that for any ramified

type t we reserve a constant =tr of type max{1, l(t)}.19

We can then consider the desired features of identity—reflexivity,

transitivity, and symmetry—as axiom schemata of the system, defined in

the usual ways. In what follows, I will omit the subscript r when it’s clear

from the context that we’re working with the ramified identity.

Proof Theory (System H−r )

In what follows I will use ‘ϕm’ to stand for any sentence of type ⟨⟩/m.

Also, for higher readability, I won’t write down the types of the classical

18Such as the one which says that adding the schema to RTT makes the hierarchy of
levels collapse into level 1, and the paradoxes of impredicativity will be reinstantiated
(Quine, 1971; Ramsey, 1926; Copi, 1950). For an attempted defense against this
allegation see Myhill (1979).

19If we had defined identity in the presence of the reducibility schema as having
the same level-1 properties, the level of every identity statement would’ve been 2. We
could alternatively take the statements containing our primitive identity relation to
always have level 2, but that won’t make any difference in the following discussions: in
fact, any level greater than or equal to 1 would do for us—see footnote 27 for more on
this.
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2. Ramified Types and Metaphysical Structure

connectives involved in the axiom schemata below (see the remark below).

Axioms:

1. ⊢ϕm → (ψn→ϕm); ⊢(ϕm → (ψn→γr))→ ((ϕm→ψn)→ (ϕm→γr));

⊢(¬ϕm → ¬ψn)→ (ψn→ϕm). PCr

2. ⊢ (λxt11 , ..., x
tn
n .ϕm)(σ1, ..., σn)↔ [σ1/x1, ..., σn/xn]ϕm, where the type

of σi is identical directly lower than ti, for each i = 1, ..., n. βEr

3. ⊢ ∀tmF→F (σ), where F is of type ⟨t⟩/m+, m+ ≤m, and the type of σ

is identical to or directly lower than t. UIr

4. ⊢ ∀tn∗(λx
t. ϕm→ψn) → (ϕm → ∀tn(λx

t.ψn)), where n∗ ∶= max{m,n},

and x ∉ FV (ϕm). UDr

5. ⊢ σ=trσ, Refr

6. ⊢ σ=trτ → (F (σ)→F (τ)), where F is of type ⟨t∗⟩ for any t identical

to or directly lower than t∗. LBZr

Rules of Inference:

7. If ⊢ ϕm and ⊢ ϕm→ψn, then ⊢ ψn. MPr

8. If ⊢ F (x), then ⊢ ∀tm(F ), where the variable x is of type t, F is of

type identical to or directly lower than ⟨t⟩/m. GENr

Notice that each of the axioms and rules of inference above are multiply

schematic. For example in PCr, the axioms hold for any sentence of any

level, and the relevant instances of ¬ and → may differ in type and should

be typed carefully. We will take such nuances into account when proving
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2. Ramified Types and Metaphysical Structure

the soundness of H−r with respect to the class of all closed ramified standard

models, which will be introduced shortly.

Notice also that the restrictions imposed on substitution instances in

UIr and βEr are quite natural. Take βEr for example. In RTT, this axiom

schema would be intelligible only if for each i = 1, ..., n, the level of σi’s

type is identical to or directly lower than that of xi’s—this is necessitated

upon us due to the constraints on the rule Application from Definition

2.3.3. As for UIr, consider for example instances of the schema where

we’re quantifying over level-1 propositional variables: ∀p⟨⟩/1 ϕ → [ψ/p]ϕ,

where ϕ is of type ⟨⟩/m. It would be implausible to expect, say, a level-2

proposition ψ to be ϕ just because all level-1 propositions p are ϕ, a

commitment that will be unavoidable if we don’t restrict the instances

of substitution in UI to cases where the level of ψ’s type is identical or

directly lower than that of p.20

Another way to motivate such restrictions might be along the lines of

aboutness.21 Here I will only sketch the strategy. Notice at first that, in

general, and regardless of the background type theory, there is a sense in

which a statement that contains quantification over entities of a particular

type is about (some or all of) those entities: thus, for instance, ∀p⟨⟩p, stating

that all propositions are true, is about all propositions, and ∃xe general(x),

stating that someone is a general (or in its dual form: that not everyone is

not a general), is about some individuals. In general, a plausible minimal

assumption about aboutness and quantificational statements is that the

20This may we why Church (1976) imposes the exact same restriction on UI. Bacon
et al. (2016) also offers a different systematic argument for the desired restriction: if we
don’t impose it, all quantifiers of different level imposed on simple types will collapse
onto each other.

21This line of thinking has instigated another paper of mine, Kiani (MSc).
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2. Ramified Types and Metaphysical Structure

legitimate instances of a quantified statement have to, at the very least,

belong to the entities that the statement is about.

Now, the rough idea to take home with us is this: if we put at work

this minimal principle in the context of RTT, a statement of the form,

say, ∃p⟨⟩/1p, if about anything, that thing should be a level-1 proposition.

But the quantified statement itself is a level-2 proposition, so it can’t

be about itself, hence cannot instantiate itself. Similarly, ∀p⟨⟩/m ϕ will be

about level-m propositions (and propositions of lower level, considering

the cumulativity), but the statement itself is at least of level m+1, hence

cannot be about itself. As a result, ∀p⟨⟩/m ϕ is not a legitimate instance of

itself, hence the restriction in UIr.

Consistency of H−r

Below, and for convenience in proving soundness of H−r , and our reluctance

to demand completeness with respect to the class of (ramified) Henkin

models (see the closing remarks of §2.1 for more on this) we will only

impose the ramified hierarchy onto the class of standard, instead of Henkin

models from STT.

In what follows, and for convenience, we write t′ ≪ t as a shorthand

for ‘the type of t′ is identical to or directly lower than t’.

Definition 2.3.4 (Ramified Frames). Let D be a non-empty set. A

cumulative ramified frame based on D is a set F ∶= {Mt ∣t ∈T r} such that:

(i) Me ∶=D,

(ii) ∅ ≠M⟨⟩/m = ℘({∅}) × {1, ...,m} = ⋃
i≤m
{(0, i), (1, i)},
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2. Ramified Types and Metaphysical Structure

(iii) ∅ ≠M⟨t1,...,tn⟩/m = ℘(Mt1 × ... ×Mtn) × {1, ...,m}, where n ≥ 1,

Clauses (ii) and (iii) grant that the domains of leveled propositions

and properties are cumulative (see the theorem below).

Lemma 1. For any t′, t ∈ T r, if t′ ≪ t then Mt′ ⊆Mt.

Proof. Induction on t.

Definition 2.3.5 (Ramified Standard Models). A ramified standard model

is a pair M = (F, d), where F is a ramified cumulative frame and d is a

function d ∶ ⋃t CSTt → ⋃tMt such that d(ct) ∈ Mt, and for all t ≠ e, if

l(t) =m then d(ct) = (X,m) for an appropriate X. A model is logical if:22

(i) d(¬m) ∶= ( ⋃
i≤m
{(0, i)},m).

(ii) d(→m,n) ∶= (⋃⋃
i≤m,j≤n

{((0, i), (1, j)), ((0, i), (0, j)), ((1, i), (1, j))},m∗),

where m∗ ∶=max{m,n},

(iii) d(=tr) ∶= (⋃
ti≪t
{(d, d)∣d ∈Mti},m

∗), where m∗ =max{1, l(t)},

(iv) d(∀tm) ∶= (⋃
i≤m
{(Mt, i)},m∗), where m∗ ∶=max{l(t)+1,m}.

An assignment function for a model is a function g ∶ ⋃tV art→⋃tMt

such that g(xt) ∈Mt for each xt ∈ Vart.

Definition 2.3.6 (Interpretations). An interpretation for an assignment

g based on a model M is a function [[.]]g ∶ TERMr → ⋃tMt, such that:

(i) [[ct]]g =m(ct), for ct ∈ CSTt,

(ii) [[xt]]g = g(xt), for xt ∈ Vart,

22Later on we will illustrate how we came up with these types of the logical constants.
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2. Ramified Types and Metaphysical Structure

(iii) [[λxt11 , ..., x
tn
n .ϕm]]g = (X,m), where X ⊆ Mt1 × ... ×Mtn is the set

such that (d1, ..., dn) ∈X iff [[ϕm]]g[x1↦d1,...,xn↦dn] = (1,m),

(iv) [[τ(σ1, ..., σn)]]g =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1,m) if ([[σ1]]g, ..., [[σn]]g) ∈X

(0,m) if o.w
, where τ is

of type ⟨t1, ..., tn⟩/m, for each i = 1, ..., n, σi is of type identical to or

directly lower than ti, and [[τ]]g = (X,m).

As before, we show interest only in closed models—ramified models

that for all assignments functions, the interpretation of all terms fall in

the relevant domains. For a model M , an assignment g based on M , and

an m-level sentence ϕm, we say that M satisfies ϕm for the assignment g,

and write M,g ⊧ ϕm, iff [[ϕm]]g = (1,m).23 Notions of validity, etc., are

defined as usual.

Let’s see an example of how the semantics works in practice.

Example 2.3.1. Let’s verify that, as expected, for any model M , an as-

signment g based onM , and an m-level sentence ϕm we haveM,g ⊧ ∀xtϕm

iff [[ϕm]]g∶[x↦d] = (1,m) for all d ∈Mt. First notice that by convention we

have ∀xtϕm as a shorthand for the application instance ∀tm(λx
t.ϕm). Now,

by clauses (iii) and (iv) of Definition 2.3.6 we have: M,g ⊧ ∀tm(λx
t.ϕm)

iff [[λxt.ϕm]]g ∈ X, where [[∀tm]] = (X,max{l(t)+1,m}). But by Defini-

tion 2.3.5 we have X = ⋃
i≤m
{(Mt, i)}, and by Definition 2.3.6, we have

[[λxt.ϕm]]g = (Y,m) in which Y ⊆ Mt such that d ∈ Y iff [[ϕm]]g[x↦d] =

(1,m). Therefore we have Y =Mt, and we get the desired result. Notice

further that due to the cumulativity in our system and the fact that ∀tm—

much like any other applicator—has encoded that in its interpretation,
23Notice that for any term ϕm of type ⟨⟩/m, and every pair of models and assignments

(M,g), we have: [[ϕm]]g = (1,m) iff [[ϕm]]g ≠ (0,m). (Proof: induction of ϕm.)
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we could apply ∀tm to propositions that are directly lower than ⟨⟩/m and

get a similar result. In other words, for any ψn of level ⟨⟩/n, where n ≤m,

we have: M,g ⊧ ∀tm(λx
t.ψn) iff [[ψn]]g∶[x↦d] = (1, n), for all d ∈Mt.

Lemma 2. Suppose τ, σi ∈ TERMr, for each i = 1, ..., n (n ≥ 0). We have

[[τ]]
g[x1↦[[σ1]]g ,...,xn↦[[σn]]g]

= [[[σ1/x1, ..., σn/xn]τ]]g.

Proof. Induction on the structure of τ .

Theorem 2.3.1 (Soundness). The proof system H−r is sound with respect

to the class of all closed ramified models. That is, for every sentence

ϕ ∈ TERM r, we have: if ⊢ ϕ then ⊧ ϕ.

Proof. We should prove all axioms of H−r are valid in all ramified stan-

dard models, and the inference rules preserve validity. The proofs are

straightforward, and I will only showcase some the items that represent

new restrictions or diversity of types, compared to their replicas from STT.

As expected, in what follows, we’re focusing only on closed models.

( PCr). Let’s just prove the validity of the rule ϕm → (ψn→ϕm). The

most general form of this axiom, with levels construed as liberal

as possible and cumulativity taken into account, is of the form

ϕm→m′,m∗(ψn→ϕm), where m′ ≥ m and m∗ ≥ max{m,n}. But for

convenience we’ll only prove the case where m′ = m and m∗ =

max{m,n}; the more general case can be proved in a similar man-

ner.

Let M and g be, respectively, an arbitrary model and an arbi-

trary assignment based on M . Then M,g ⊧ ϕm→m,m∗(ψn→ϕm)

(where, m∗ ∶= max{m,n}) iff [[ϕm→m,m∗(ψn→ϕm)]]g = (1,m∗) iff
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([[ϕm]]g, [[(ψn→ϕm)]]g) belongs to the first component of the or-

dered pair [[→m,m∗]]g iff ... iff [[ϕm]]g = (0,m) or [[ϕm]]g = (1,m)

or [[ψn]]g = (1, n). But the latter obviously holds. Therefore:

⊧ ϕm → (ψn→ϕm).

(βEr). Let M and g be respectively an arbitrary model and an arbitrary as-

signment based on M . We have: M,g ⊧ (λxt11 , ..., x
tn
n .ϕm)(σ1, ..., σn)

iff

([[σ1]]g, ..., [[σn]]g) ∈X, where [[λxt11 , ..., x
tn
n .ϕ]]g = (X,m) for the set

X ⊆Mt1 × ...×Mtn such that (d1, ..., dn) ∈X iff [[ϕm]]g[x̄i↦d̄i] = (1,m).

But the latter is equivalent to [[ϕm]]g[x̄i↦
¯[[σi]]g]
= (1,m), which,

thanks to Lemma 2, is equivalent to [[[σ̄i/x̄i]ϕ]]g = (1,m), which is in

turn equivalent to M,g ⊧ [σ̄i/x̄i]ϕm. Therefore: ⊧ βEr . Notice that,

given that X ⊆Mt1 × ... ×Mtn , then if for any i = 1, ..., n, σi is not of

a type identical to or directly lower than that of ti, then the n-tuple

([[σ1]]g, ..., [[σn]]g) falls out of the domain of the interpretation of

the λ-term, and we can’t get the desired result. (This in turn reflects

the ungrammaticality of such applications at the level of syntax.)

( UIr). Suppose that F is of type ⟨t⟩/m+, where m+ ≤ m. Now, for any

model M and assignment g, we have: M,g ⊧ ∀tm(F ) iff ... iff

[[F ]]g = (⋃
ti≪t
Mti ,m

+). Now suppose that the type t′ of σ is identical

to or directly lower than t, that is, t′ ≪ t. From above we have:

M,g ⊧ F (σ) iff [[σ]]g ∈Mt, so, if [[σ]]g ∈Mt, we’ll be done. But of

course [[σ]]g ∈ Mt, because [[σ]]g ∈ Mt′ , and, thanks to Lemma 1,

Mt′ ⊆Mt, so M,g ⊧ F (σ). Therefore: ⊧ UIr. (See Remark 2.3.1 for

a discussion of the restriction of substitution in UIr.)
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( UDr). As in the case of PCr, and for convenience, we’ll only deal with cases

of implication where the arguments of →m,n are of type ⟨⟩/m, and

⟨⟩/n, respectively, and not directly lower. For an arbitrary model

M , an assignment function g, and sentences ϕm and ψn, suppose

M,g ⊧ ∀tn∗(λx
t. ϕm→m,nψn) (n∗ ∶=max{m,n}). We will prove that

M,g ⊧ ϕm→m,m+∀tn(λx
t.ψn) (m+ ∶= max{l(t)+1, n}), if x ∉ FV (ϕm).

Now, we have: M,g ⊧ ∀tn∗(λx
t. ϕm→m,nψn) iff ... (see Example

2.3.1) ... iff for all d ∈ Mt, [[ϕm→m,nψn]]g[x↦d] = (1, n∗) iff for all

d ∈Mt, we have ([[ϕm]]g[x↦d], [[ψn]]g[x↦d]) ∈ Z, where [[→m,n]]g[x↦d] =

(Z,n∗). So, the initial assumption that M,g ⊧ ∀tn∗(λx
t. ϕm→m,nψn)

is equivalent to the following:

For all d ∈Mt, [[ϕm]]g[x↦d] = (0,m) or [[ψn]]g[x↦d] = (1, n) (*)

Now, on a separate note we have M,g ⊧ ϕm→m,m+∀tn(λx
t.ψn) iff

([[ϕm]]g, [[∀tn(λx
t.ψn)]]g) ∈ Z ′, where [[→m,m+]]g = (Z ′,m++), and

m++ ∶= max{m,m+}. So, M,g ⊧ ϕm→m,m+∀tn(λx
t.ψn) is equivalent

to the following:

[[ϕm]]g = (1,m) or for all d ∈Mt, [[ψn]]g[x↦d] = (1, n). (**)

Now, considering the (easily provable) fact that [[ϕm]]g = [[ϕm]]g[x↦d],

when x ∉ FV (ϕm), it’s easy to see that (*) implies (**). Therefore:

⊧ UDr.

( GENr). Let x be of type t, F be of type ⟨t⟩/n for some n ≤m, and suppose

⊧ F (x). Then, for all models and assignments M and g, we have:

M,g ⊧ F (x). So: for all M and g, g(x) =∶ [[x]]g ∈ Y , where [[F ]]g =
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(Y,n). But since by ranging over all assignments g, g(x) can take

any value d ∈ Mt, we have Mt ⊆ Y . So Y = Mt, and hence: [[F ]]g

belongs to the first component of the ordered pair [[∀tm]]g. So

[[∀tm(F )]]g = (1,max{m, l(t)+1}), which, by definition, is equivalent

to M,g ⊧ ∀tm(F ). Since the choice of M and g were arbitrary, we

have proved that ⊧ ∀tm(F ). Therefore, GENr preserves validity with

respect to the class of all closed ramified standard models.

Remark 2.3.1. It would be instructive to see why soundness fails if we

don’t impose the restrictions of substitution in principles of H−r . Take, for

example, UIr. I will now propose a way to construct a class of counter-

models to cases where the intended restriction isn’t in place: suppose

M,g ⊧ ∀tm(F ) and let t be directly lower than the type t′ of a term σ.

Then, although Mt ⊆Mt′ , there’s no more a guarantee that Mt′ ⊆Mt. In

fact, we have Mt′ ⊈Mt, due to clauses (iii) and (iv) of Definition 2.3.4. On

the other hand, by definition, we have M,g ⊧ F (σ) iff [[σ]]g is a member

of the first element of the pair [[F ]]g, which is just Mt (see the proof

of ⊧ UIr, above). Now, in cases where [[σ]]g ∈ M ′
t ∖Mt, we will have

M,g ⊭ F (σ), hence a counter-model to (the unrestricted) UI. It is also

easy to check that GENr won’t necessarily preserve validity, if x is of a

level directly lower than t.

To see our system at work, consider the following example originally

presented in Principia:24

24See Whitehead and Russell (1912), p.59.
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Example 2.3.2. Consider the sentence ‘Napoleon had all the qualities

that make a great general’. Examples of such qualities would perhaps

be brave, strategic, foresight, etc. Understanding these “qualities” of

individuals as propositional functions, they will all presumably have the

type ⟨e⟩/1, because they apply directly to individuals and no quantification

is included in their definitions.25 So does the quality of being a great

general. Suppose G is the constant for the property of being a great

general, i.e., has type ⟨e⟩/1. Now, the predicate standing for the quality

of having all the qualities that make a great general can be regimented as:

λxe.∀Y ⟨e⟩/1(∀ze(G(z)→Y (z))→ Y (x)),

which is well-formed and of type ⟨e⟩/2. Accordingly, taking N to stand

for Napoleon’s name (so, N has type e), the sentence ‘Napoleon had all

the qualities that make a great general’ will be obtained by the following

instance application:

(λxe.∀Y ⟨e⟩/1(∀ze(G(w)→Y (z))→ Y (x)))(N),

which, by the βEr is equivalent to:

∀Y ⟨e⟩/1(∀ze(G(z)→Y (z))→ Y (N)),

which is the closest regimentation of the original sentence in the language

of RTT, and has type ⟨⟩/2. It’s worth noting that the property of having

all the qualities that make a great general, if regimented in STT, would

25Of course, this is an oversimplification of the matter for illustrative purposes: one
might argue that among such properties is, say, the quality of thinking that one has
all the qualities that make a great general, in which case the property of having all
qualities that make a great general will become of a property of higher level than 2.

41



2. Ramified Types and Metaphysical Structure

be picked by the following:

λxe.∀Y ⟨e⟩(∀ze(G(z)→Y (z))→ Y (x)),

which would be of the type ⟨e⟩, that is, the same type that any other

quality that applies to someone has. As one can see, the definition of this

property quantifies over the totality of all properties in which it belongs,

displaying an instance of a vicious circle in the presence of simple types.

As the previous paragraphs show, ramified type theory avoids this vicious

circle by raising the level of the property with respect to the level of the

properties over which it quantifies.

It’s also easy to see how the ramified model theory prevents the

properties of different level above from collapsing onto each other.

2.4 Blocking the Proofs of the

Russell-Myhill Paradox

To close to section, we will now see how exactly RTT may help to disallow

the proofs of the Russell-Myhill paradox to go through by banning the

vicious circles involved in them. Before doing so, however, an important

clarification is in order: what will be presented here will not show that

RTT will block the paradox in all possible forms; all it shows is that the

usual, known proofs of the inconsistency won’t go through when naively

reconstructed in the presence of ramified types.26

26Notice that those (e.g., Myhill, 1979) who have claimed to have blocked certain
other paradoxes of impredicativity in the presence of ramified types in similar ways,
strictly speaking, also have not really proved anything more than the fact that the
proofs of those paradoxes won’t go through if we naively try to reconstruct them in
the presence of ramified types.
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So, in a sense what we will do here secures assumptions of structure

from the punch of the Russell-Myhill paradox, by avoiding a key feature

involved in the proofs—namely, the existence of certain impredicative

properties; for all we know, there may be ways of proving the paradox

that are unbeknownst to us and cannot be helped by type-stratification

techniques.

To show in full generality that the Russell-Myhill paradox is blocked

in RTT, one needs to first lay down a full axiomatization of RTT and then

establish its consistency with Structure, say, via models constructions.

As of this moment, this is an open problem of the paper; we hope to

attend to it in future work.

With that in mind, let’s see how RTT disallows the proofs of the

paradox to go through. Remember from §2.2 that the paradox arose in

the context of STT because terms like G(G(ψ)) were well-formed, in the

first place, where

G ∶= λq⟨⟩.∃X⟨⟨⟩⟩((q=⟨⟩X(ψ)) ∧ ¬X(q))

is of type ⟨⟨⟩⟩, and ψ is of type ⟨⟩. As we noticed before, the property

picked out by G has the same type of the properties that it quantifies

over—displaying an instance of a vicious circle in the presence of simple

types.

But notice that we’re now in the territory of ramified types, and

the types ⟨⟨⟩⟩ or ⟨⟩ no longer exist; accordingly, neither do G and ψ

exist anymore. So there’s a sense in which it’s obvious that the proofs

won’t go through in RTT when the original G and ψ and their simple

types are concerned. But nevertheless the worry is that in the new
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setting there might still be leveled variants of G and ψ, G′ and ψ′, such

that G′(′G′(ψ′)) ↔ ¬G′(′G′(ψ′)) is provable and hence the paradox is

reinstantiated. Below I will argue that that’s not the case: for any

intelligible candidates of G′ and ψ′, the term G′(′G′(ψ′)) will be non-well-

formed, due to avoidance of vicious circles.

The predicate G and its leveled variant G′ are defined as follows:

G ∶ = λq⟨⟩.∃X⟨⟨⟩⟩((q=⟨⟩X(ψ)) ∧ ¬X(q)), (2.15)

G′ ∶ = λq⟨⟩/m.∃X⟨⟨⟩/m⟩/m((q=⟨⟩/mX(ψ)) ∧ ¬X(q)), (2.16)

where ψ is a term of type ⟨⟩/m. Roughly, G′ stands for the property

of being a level-m proposition that lacks a level-m property which it

attributes to some level-m proposition. Admittedly, if instances of the

form G′(G′(ψ′)) (for a ψ′ being of type ⟨⟩/m) were available, one might

have succeeded to reinstantiate the paradox. But they aren’t. Here’s why:

notice that the type of

∃X⟨⟨⟩/m⟩/m((q=⟨⟩/mX(ψ)) ∧ ¬X(q)) (2.17)

is ⟨⟩/max{r,m+1}, where r is the level of the type of (q=⟨⟩/mX(ψ))∧¬X(q),

whatever that might be.27 Therefore, G′ will be of type ⟨⟨⟩/m⟩/max{r,m+1}.

So for any ψ′ of type ⟨⟩/m or lower, G′(ψ′) will be of type ⟨⟩/max{r,m+1}.

But notably max{r,m+1} >m, so the application instance G′(G′(ψ′)) is

not well-formed, because the level of G′(ψ′) is at least m+1, hence it is at

least one more than the level of expressions that G′ can possibly take as ar-

guments, namely m. So the parallel of the troubling propositions G(G(ψ))

27The way we defined ramified identity makes r = max{1,m} = m, and hence the
level of the existential statement as well as G′ is exactly m+1. However, as it should
be clear, any other r would’ve worked equally well for us. So, even if we had typed
ramified identities differently my arguments would’ve still gone through.
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from STT are not well-formed if we reconstruct G and ψ in the presence

of ramified types. Accordingly, under such a reconstruction we don’t need

to worry about contradictory equivalences like G′(G′(ψ′))↔ ¬G′(G′(ψ′))

either: they’re not even well-formed, let alone provable.28

In plain English: the property G′ of being a level-m proposition that

lacks a level-m property which it attributes to some level-m proposition

is itself at least of level m+1. So when we attribute G′ to a level-m

proposition, we will have a proposition of at least level m+1, and the latter

can no longer be attributed a property of level-m propositions, including

the property G′. This is a clear example of avoiding the vicious circle

inherent in the original G: unlike G, the property picked by G′ doesn’t

belong to the properties that it quantifies over in its definition.

Notice that the cumulativity of our typing systems allows for more

complicated reconstructions of the G, in RTT. Above, we chose the

simplest kind, which were expressions of the form G′, but a more general

reconstruction would be of the form G∗, as follows:

G′ ∶ = λq⟨⟩/m.∃X⟨⟨⟩/m⟩/m((q=⟨⟩/mX(ψ)) ∧ ¬X(q)), (2.18)

G∗ ∶ = λq⟨⟩/m.∃X⟨⟨⟩/n⟩/m((q=⟨⟩/mX(ψ)) ∧ ¬X(q)), (2.19)

for any n ≥m, where ψ is a proposition of any level s ≤ n.

But we’re still safe: ∃X⟨⟨⟩/n⟩/m((q=⟨⟩/mX(ψ)) ∧ ¬X(q)) will still be

of type ⟨⟩/max{r,m+1}, whatever r might be, and G∗ will be of type

28Notice that even if G′(G′(ψ′)) was grammatical, the problem would’ve come
back in unwelcoming ways: by the ramified βE (see §4), G′(G′(ψ′)) would’ve been
equivalent to ∃X⟨⟨⟩/m⟩/m((G′(ψ′)=⟨⟩/mX(p)) ∧ ¬X(G′(ψ′))), but the identity in the
latter is ill-formed, as G′(ψ′) is of type ⟨⟩/max{r,m+1}, whereas X(p) is of type
⟨⟩/m, hence a type mismatch is in place. In short: if G′(G′(ψ′)) was grammatical, we
would’ve encountered instances of extremely awkward equivalences that hold between
grammatical and ungrammatical expressions.
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⟨⟨⟩/m⟩/max{r,m+1}. But just as before, max{r,m+1} > m, so G∗(ψ′)

(for any appropriate ψ′) has a level strictly greater than m, hence cannot

be an argument to G∗.

2.5 Conclusion

I proposed a consistent ramified type system and argued that deploying it

as the background theory of relational entities, according to which they

come in infinite levels in the specific ways predicted by ramified type

theory, disallows the proof of the Russell-Myhill paradox to go through.

Admittedly, and as was noted, this falls short of rigorously establishing

the consistency of structured propositions (i.e., the schema Structure)

under the rein of ramified types. However, since there seems to be no

other way to re-instantiate the paradox, and since other people, such as

the original founders (Russell, 1908; Myhill, 1958), have speculated so,

we hypothesize that RTT does save structured propositions from Russell-

Myhill. As such, it remains open as to what models of RTT+Structure

would look like, assuming they exist; we hope to explore these in future

work.
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Chapter 3

Structured Propositions and a

Semantics for Unrestricted

Impure Logics of Ground

3.1 Introduction

There is a popular view in analytic philosophy, going back to Russell

(1903), according to which propositions are highly structured, somewhat

reflecting the structure and identity conditions of the sentences that

express them. Call the structured propositions along these lines Russellian

(King, 2019; Kaplan, 1977). In recent decades, many seminal works in

the philosophy of language and metaphysics have assumed or argued

for Russellian propositions in various contexts, ranging from attitude

operators to different kinds of metaphysical priority, such as essence and

ontological dependence (see, e.g., King, 1996, 2009; Soames, 1987; Fine,

1995, 1980, 1994; Kaplan, 1977; Salmon, 1986).

47



3. Structured Propositions and a Semantics for Unrestricted Impure
Logics of Ground

Grounding, on the other hand, is a more recent notion in metaphysics,

often taken to be a non-causal relation that holds between certain truths

or facts and certain others, somehow reflecting a sense of ‘fundamentality’

or ‘explanation’ between them (see, e.g., Fine, 2012a; Rosen, 2010; Audi,

2012, for comprehensive introductions to the notion of ground).1 The

conception of ground which takes the relata of the grounding relation to

be propositions is sometimes called representational or conceptual ; the

worldly conception concerns entities such as states of affairs or situations

(Correia, 2017, p. 508). The kind of logics that take into account the

logical structure of the relata of grounding relations are often called impure;

pure logics ignore such complexities (Fine, 2012a, p. 54).

There is another important set of distinctions between grounding

relations that has been studied in the literature, and we briefly introduce

here (see, e.g., Fine, 2012a, pp. 52-4 for a detailed discussion of these

variations and their differecnes). To start with, a number of truths are

said to fully ground a truth if the latter somehow holds completely in

virtue of the former and nothing else; a truth partially grounds another

if it does so fully, standalone or together with other truths. Another

distinction is between mediate and intermediate grounds. Grounds of a

truth are immediate if there’s no mediating truth between them and what

they ground; otherwise, they constitute mediate grounds, as if there’s

a ‘chain’ of immediate grounds involved. Finally, some truths are strict

1While the nature of grounding and its relations to other notions such as explanation
or fundamentality is an intricate issue that has been subject to extensive discussions
in the literature (see, e.g., Rosen, 2010; Woods, 2018; Fine, 2012a; deRosset, 2013;
Sider, 2011; Maurin, 2019, for different readings of ground based on explanation or
fundamentality, their relationships with one another, and some of the complications
involved in laying out those relationships), in this paper we stay fairly neutral in this
regard, and appeal to either of readings mainly for illustrative purposes.
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grounds of some others if they are, in a sense, more ‘fundamental’ or

‘basic’; otherwise, the grounds are weak. Put in terms of explanation,

we can think of strict ground as, in the words of Fine (2012a), is one

that “takes us down in the explanatory hierarchy,” whereas weak grounds

“may also move us sideways in the explanatory hierarchy” (ibid, p. 52).

Finally, the conception of ground that allows any proposition, regardless

of its truth value, as the relata of ground is called non-factive; the factive

variant only works with truths, i.e., true propositions.

In this paper, I study an intimate relationship between Russellian

propositions and impure logics of representational ground. The main focus

of the paper is on propositional logics of ground.2 More specifically, we are

concerned with strict partial grounding relations: non-factive immediate

(≺), factive immediate (≺f ), non-factive mediate (≺m) and factive mediate

(≺fm). (Hereafter we use ‘ground’ to indicate strict partial ground unless

stated otherwise; the specific type will be mentioned as needed.) We take

the notion of ground as a primitive, i.e., not reducible to any other notion.

I show that models of Russellian propositions can be used to seman-

tically accommodate an infinitude of grounding facts that follow from

unrestricted logics of impure ground, but are left unaccounted for in the

existing semantics, found in Correia (2017); Krämer (2018); deRosset

and Fine (2023), due to certain artificial restrictions inherited from the

languages they work with. Moreover, it is shown that our models, un-

like the ones in the literature, can be very easily extended to capture

certain distinct philosophical views about, e.g., iterated as well as identity

2Some of seminal the works on the quantificational logics of ground are as follows:
Fine (2012a); Korbmacher (2018b,a); Fritz (2019, 2021); Goodman (2022); Litland
(2022).
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grounding.3

The sensitivity of impure ground to the structure of propositions is

easily detectable once the naive principles are laid down (see Fine, 2012a,

Sections 1.6-1.7 for an early discussion of these principles). For instance,

it is often argued that a conjunctive truth ϕ∧ψ is grounded by each of its

conjuncts ϕ and ψ (temporarily call this CGf : ϕ ≺f (ϕ∧ψ) ∧ ψ ≺f (ϕ∧ψ)),

a disjunctive truth ϕ ∨ ψ by either of its true disjuncts ϕ or ψ (DGf :

(ϕ ≺f ϕ∨ψ) ∨ (ψ ≺f ϕ∨ψ)), a doubly negated truth ¬¬ϕ is grounded by

ϕ (NGf : ϕ ≺f ¬¬ϕ), and that no proposition grounds itself (IGf : ϕ ⊀f ϕ).

Now, from IGf and NGf it follows that ϕ and ¬¬ϕ can’t be the same

truth, and from CGf and DGf the same follows for any pair of sentences

from ϕ, ϕ ∨ ϕ and ϕ ∧ ϕ.4

So, we quickly get a few boundaries surrounding the issue of proposi-

tional granularity under considerations of ground. As a result, certainly,

coarse-grained accounts, such as the once-popular intensionalism which

identifies necessarily equivalent propositions (see, e.g., Montague, 1969),

and its close, more recently popularized cousin, Booleanism, which iden-

tifies propositions that are provably logically equivalent (see, e.g., Dorr,

2016) can’t be consistently adopted under the principles above.

In general, as we will see along the way, from the propositional logics

3It might strike the reader, at this point, that Russellian propositions, as favored by
the author cited earlier, have now been known to lead to the so-called Russell-Myhill
paradox (as shown in, e.g., Goodman, 2016; Dorr, 2016; Hodes, 2015; Russell, 1903),
and thus this might cast doubt on the conceptual value of the results to be explored
in this paper. This, however, shouldn’t worry us because (i) the Russell-Myhill result
doesn’t emerge at the level of propositional logic without quantification, so it shouldn’t
concern us in this paper, and (ii) the named paradox can be avoided under a different
background type theory which is more ground-friendly and which saves Russellian
propositions. We have discussed this issue at some length at the end of the paper.

4See Section 3.3 for more general formulations of these principles; the naming used
here is temporary.
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of impure ground, along with minimal principles of propositional identity,

it follows that propositions ought to be significantly structured—in fact,

sometimes as structured as Russellian propositions (see Theorem 3.3.1).

Moreover, recently Fritz (2021) has shown that higher-order formulations

of the principles of ground, in fact, entail certain higher-order instances of

Russellian propositions. It can be said that the propositional and higher-

order logics of immediate ground together portray a scattered picture of

propositions that is most straightforwardly and systematically captured

by Russellian propositions.5

Here’s how the paper is organized. In Section 3.2, I informally address

certain expressive shortcomings of the existing semantics of impure logics

of ground. In Section 3.3, I rigorously introduce the language and lay

down the immediate and mediate logics of ground, both non-factive and

factive variants. In the same section, I establish certain structural results

derived from logics of ground, lay down some identity principles for

Russellian propositions and show that the latter systematically capture

the former. Section 3.4 concerns semantics; it introduces propositional

models for Russellian propositions, uses them to provide a semantics

for the unrestricted logics of ground and discusses some meta-results

such as soundness, consistency and completeness. Section 3.5 proposes

various desirable extensions of logics of impure ground and their semantics

5Other works on the logic of ground that impose some kind of structural hierarchies
on propositions are Poggiolesi (2016) and Correia (2017), though both end up with more
relaxed structures on propositions in comparison to Russellian propositions. Poggiolesi
(2016) appeals to the notion of ‘g-complexity’ for this but it’s not clear if the resulting
account fully appreciates the level of complexity of propositions that naturally emerges
from the principles of grounding and the minimal principles of identity—i.e., the results
in theorem 3.3.1. It’s also unclear how Pogiolessi’s account will perform when it comes
to the semantic issues that are at stake in this paper. We will leave these open here.
We will discuss Correia (2017) in more detail later in the paper.
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and addresses some systematic difficulties of the existing semantics in

the literature in undergoing similar extensions. Section 3.6 concludes

the paper. The appendices collect all the principles of grounding and

propositional identity and establish some of the technical results in the

paper.

3.2 Present Semantics and their

Shortcomings

While the semantics of pure logics of ground has been well studied and

somewhat settled (see, e.g., Fine, 2012b), impure logics, and in particular,

their representational variants, remain fairly underexplored, with only a

few recent attempts on offer to semantically account for them (Correia,

2017; Krämer, 2018; deRosset and Fine, 2023). But, even though these

works mark considerable progress in the study of the impure logics of

ground, all these semantic accounts suffer from certain expressiveness

limits, complying with the restricted languages or logics that they’re

supposed to capture. To see this, we should first see what limits are

imposed on the languages and logics that these semantics attempt to

capture.

In general, there is a tendency in the literature on the impure logics of

ground to substantially impoverish the languages in which the principles

are expressed, mainly allowing for statements of grounding in which the

relata of ground contain truth-functional connectives, but not connectives

such as grounding itself or propositional identity (see, e.g., Schnieder, 2011;
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Krämer, 2018; Correia, 2017; Poggiolesi, 2020; Lovett, 2020; deRosset and

Fine, 2023). As a result, an infinitude of grounding truths which live

beyond these artificial restrictions are dismissed by these logics.

To illustrate this, suppose ϕ and ϕ are two sentences. Then, clearly,

ϕ ≺f (ϕ ∧ ψ) follows from CGf . But, by the same count, we would also

expect the proposition expressed by ϕ to ground the one expressed by

ϕ∧ (ϕ ≺f (ϕ∧ψ))—i.e., ϕ ≺f (ϕ∧ (ϕ ≺f (ϕ∧ψ))); after all, ϕ is a conjunct

of ϕ∧ (ϕ ≺f (ϕ∧ψ)). In a similar fashion, we can consider consequences of

CGf , DGf or IGf where the relata of the grounding symbol are statements

containing sentential identity ≈. For instance, by CGf , the proposition

expressed by ϕ ≈ ϕ grounds the one expressed by (ϕ ≈ ϕ)∧ψ, and by DGf ,

the latter grounds the proposition expressed by (ϕ ∨ ϕ) ∨ ((ϕ ≈ ϕ) ∧ ψ)—

thus: (ϕ ≈ ϕ) ≺f ((ϕ ≈ ϕ)∧ψ) and ((ϕ ≈ ϕ)∧ψ) ≺f ((ϕ∨ϕ)∨((ϕ ≈ ϕ)∧ψ)).

Finally, by IGf , none of the propositions expressed by these grounding

statements grounds itself. Clearly, an infinitude of examples such as these

and even more complex ones can be given.

Now, as natural and plausible as these are, the current model theories

(found in Krämer, 2018; Correia, 2017; deRosset and Fine, 2023) cannot

capture them. The main reason for this is that they, much like the other

works cited above, work with logics in which such grounding statements

are not grammatically well-formed, so the principles are consequently

restricted as well. But why impose such draconian, artificial restrictions on

language or logic? As mentioned by some of the authors, nothing other

than convenience in treatment seems to play role in such restrictions. In

fact, there is no trace of such restrictions in some of the pioneering works

that put forward and argue for these principles (e.g., Fine, 2012a).
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Finally, some philosophers have put forward certain distinct views about

iterated grounding and the grounds of identity statements. Consider, for

instance, the view endorsed by, e.g., Bennett (2011), according to which

a grounding truth like ϕ ≺f ψ is grounded by its ground ϕ; that is:

ϕ ≺f (ϕ ≺f ψ). Or consider the view due to Wilhelm (2020a), according to

which identity statements of the general form ‘a is a’ are (entity) grounded

by a, where a can be any entity, such as an individual, fact, proposition,

or relation. One might pick up this idea and apply it to the context of

fact-grounding (e.g., by arguing that fact-grounding is a special form of

entity-grounding, where the entities are limited to facts or propositions),

to come up with a similar principle according to which the truth expressed

by the (propositional) identity ϕ ≈ ϕ is grounded by the one expressed by

ϕ; that is, ϕ ≺f (ϕ ≈ ϕ).6

Again, the existing models all fall short of capturing such views simply

because their languages don’t even allow for forming them.

In Section 3.5 we discuss these restrictions in the existing semantics

and the prospects of lifting them in more detail.

3.3 Language and Logics

In this section, I lay down the language and logics of different variants of

ground in a rigorous way and establish some structural results derived

6Note that Wilhelm (2020a) argues for the adoption of entity-grounding, where
all kinds of entities can enter into grounding relations, over the more familiar notion
of fact-grounding that is at stake in this paper, not their coexistence. Moreover, one
might argue that fact-grounding isn’t a form of entity-grounding (see, e.g., Chapter
4 for an argument on this). Regardless of these, all that matters to us here is the
possibility of verifying or falsifying such principles at the level of semantics—something
that the existing semantics in the literature seem to fail to do.
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from the logics of ground. I also lay down some principles characterizing

Russellian propositions, and show that they entail all the structural results

derived from the logics of ground.

We assume that we have infinitely many sentential variables p1, p2, ...,

and show the set that contains them all with AT . Here’s a presentation

of our language L:

Definition 3.3.1 (Language L). The formulas of L are constructed as

follows:

1. pi is a formula, where i ∈ N,

2. If ϕ and ψ are formulas, then so are ¬ϕ and ϕ ○ ψ, where

○ ∈ {∧,∨,→,↔,≺,≺m,≈}.

Aside from the familiar Boolean cases, formulas of the form ϕ ≈ ψ, ϕ ≺ ψ

and ϕ ≺m ψ respectively represent statements of propositional identity,

immediate and mediate grounding.

Notice that our connectives are all given as primitive symbols of the

language; thus, e.g., we don’t have ϕ→ ψ as a shorthand for ¬ϕ ∨ ψ. (Of

course, as expected, from our logic it will follow that these are truth-

functionally equivalent.) We will return to the importance of this choice

at the end of Section 3.5.

We’ve mentioned since the beginning of the paper that our models

are going to treat propositional identity along the lines of Russellian

propositions, according to which propositions exhibit the same structure

and identity conditions that their underlying sentences do. Our background

logic of propositional identity, accordingly, would be expected to capture
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Russellian propositions, hence, e.g., considering all non-identities of the

form ϕ ≉ ¬¬ϕ, ϕ ≉ ϕ ∨ ϕ, ¬ϕ ≉ (ψ ∧ γ) and ¬ϕ ≉ (ψ ≺ γ), all reflecting

similar corresponding syntactic non-identities, as theorems.

We will eventually do so (Section 3.3), but for now, it’s worth seeing

that even under certain plausible, minimal principles of identity, in general,

the logic of immediate ground formulated above entails a considerable

amount of propositional structure, at times even conforming to Russellian

propositions. When put together with the higher-order parallel result

due to Fritz (2021), this portrays a picture of structured propositions

implied by considerations of ground, which is most straightforwardly and

systematically captured by Russellian propositions; a result that we will

establish shortly.

The principles of propositional identity that we endorse are schemati-

cally stated as follows:

Minimal Principles of Propositional Identity (MPPI)

1. ϕ ≈ ϕ Ref

2. (ϕ ≈ ψ)→ (ψ ≈ ϕ) Sym

3. ((ϕ ≈ ψ) ∧ (ψ ≈ γ))→ (ϕ ≈ γ) Tr

4. ((ϕ ≈ ψ) ∧ ϕ)→ ψ IdTr

5. (ϕ ≈ ψ)→ (¬ϕ ≈ ¬ψ) IdSt1

6. ((ϕ ≈ ψ) ∧ (γ ≈ θ)) → ((ϕ ○ γ) ≈ (ψ ○ θ)), where ○ ∈ {∧,∨,→,↔,≺

,≺m,≈}

IdSt2
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The principles will be given in the assumption of all theorems of

classical propositional calculus in the background, which we cite as PC.7

The first three principles are the standard principles of identity—reflexivity,

symmetry and transitivity. IdTr says if two propositions are identical the

truth of one implies the truth of the other, and the last two are schemata

take our connectives to be functional in behavior: for example, if ϕ and ψ

are the same propositions, their negations are the same as well.

Non-Factive Ground

We now introduce the notion of immediate grounding and its unrestricted

non-factive logic. After that, we state some structural results that follow

from the logic and the principles of identity stated above.

Immediate grounding concerns the relation of grounding that is inti-

mate and holds between two propositions without any other propositions

mediating this; mediate ground allows for such mediation and can be

defined in terms of ‘chains’ of immediate grounding statements (see Fine,

2012a, pp. 50-1, for a discussion of mediate and immediate grounding). To

illustrate, all the principles informally sketched in Section 3.2 (IG, CG, DG

and NG) exhibit principles of immediate, as well as mediate, grounding.

On the other hand, since, e.g., ϕ ≺ (ϕ ∧ψ) and (ϕ ∧ψ) ≺ ((ϕ ∧ψ) ∧ γ) are

both instances of immediate grounding obtained using CG, by forming a

‘chain’ one can deduce ϕ ≺m ((ϕ ∧ ψ) ∧ γ); though, in this case, a parallel

7Strictly, PC extends the theorems of the usual classical propositional calculus with
Boolean connectives by allowing to express identity as well as grounding statements.
So, for example, In PC, from ϕ ≈ ψ and (ϕ ≈ ψ) → γ follows γ, using Modus Ponens.
See Fritz (2021); Dorr et al. (2021) as examples of works that use extended versions of
propositional calculus, similarly or even more generally than here, in formulating logics
in languages with higher expressive power.
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immediate grounding relation doesn’t hold. As expected, mediate but not

immediate grounding is transitive.

Earlier we mentioned the distinction made between factive and non-

factive grounding. As is expected, factive grounding concerns only true

propositions, i.e., truths, or facts, whereas non-factive grounding allows

for the relata of ground to be false. While factive grounding is what the

literature is often interested in, non-factive grounding represents a more

fundamental notion in terms of which factive grounding can be defined,

but not necessarily vice versa (see, e.g., Fine, 2012a, pp. 48-50, for an

introduction to this distinction and a discussion their interdefinability).

Here’s the unrestricted logic of non-factive grounding (see, e.g., Wil-

helm, 2020b; Fritz, 2021; Correia, 2017, for factive variants of these):8,9

8It should be noted that not all of these works introduce new principles; for example,
Wilhelm (2020b) only works with some of these principles to derive certain inconsisten-
cies against a particular coarse-grained view of propositional identity. Nevertheless,
these are some of the works that embrace such principles in their analyses.

9One might take issue with CG with an instance such as the following: ϕ ≺ (ϕ∧¬ϕ).
It might be thought that even in non-factive grounding where we don’t necessarily
deal with facts, A grounds B if A would’ve grounded B, were they true, or that there
is a possible world where A is true and explains B, etc. While such readings seem
intuitive at first glance, it’s not clear if they can be developed consistently, or if we
should push for a factive interpretation of non-factive grounding in the first place.
In fact, Fine (2012a, p. 49) attempts to reduce non-factive to factive ground in a
similar way to the ones above and he runs into difficulties, which essentially leads
him to leave the notion of non-factive ground as a primitive notion (while he earlier
defines the notions of factive in terms of non-factive ground, somewhat like ours). In
general, the literature doesn’t seem to support such reductions. In fact, some explicitly
argue for a primitive reading of non-factive grounding. For instance, Litland (2017)
chooses non-factive over factive grounding as primitive and works towards solving
the so-called ‘problem of iterated ground’ using the notion of ‘zero-grounded’. One
might respond this way: “But inconsistencies cannot be grounded; why would one
want to account for such grounding relations? What would be the point?” Non-factive
grounding can perhaps be explained as a type of relation between propositions, as it
were, which could be explained in terms of facts whenever those propositions happen
to be true. In fact, this idea doesn’t seem too far-fetched; in the recent literature,
many take factive grounding as a relation between true propositions (Correia, 2017;
Fritz, 2021, 2019; Wilhelm, 2020b; Litland, 2022; Woods, 2018). It would only seem
plausible to consider non-factive grounding as a relation between propositions. Indeed,
Litland (2022, footnote 3) explicitly sketches a novel reading of non-factive grounding
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Unrestricted Non-Factive Immediate Ground (UNIG)

1. ϕ ⊀ ϕ IG

2. (ϕ ≺ (ψ ∧ γ))↔ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ)) CG

3. (ϕ ≺ (ψ ∨ γ))↔ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ)) DG

4. (ϕ ≺ ¬(ψ ∧ γ))↔ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ)) NCG

5. (ϕ ≺ ¬(ψ ∨ γ))↔ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ)) NDG

6. (ϕ ≺ ¬¬ψ)↔ (ϕ ≈ ψ) NG

Here is the unrestricted propositional logic of non-factive partial mediate

ground (see, e.g., Fine (2012a); Krämer (2018); Schnieder (2011) for these):

Unrestricted Non-Factive Mediate Ground (UNMG)

1. ϕ ⊀m ϕ IGm

2. ((ϕ ≺m ψ) ∧ (ψ ≺m θ))→ ϕ ≺m θ TRGm

3. (ϕ ≺m (ϕ ∧ ψ)) ∧ (ψ ≺m (ϕ ∧ ψ)) CGm

4. (ϕ ≺m (ϕ ∨ ψ)) ∧ (ψ ≺m (ϕ ∨ ψ)) DGm

exactly for the kind of suspicious cases such as ours along these lines and in terms of
“impossible grounds”: “One might want to work with a yet wider notion of non-factive
ground where contradictory propositions like p&∼p and q&∼q can be distinguished
by their having different impossible grounds—p,∼p and q,∼q respectively”. Finally,
if someone is still unhappy with principles like CG at a conceptual level due to such
cases, one can still appreciate them for their formal utility, as they can underlie the
other notions of grounding, such as factive and mediate grounding, and also a provide
a powerful formal semantics for the propositional logics of ground, which is our goal in
this paper. Essentially, one can consider developing a logic for this relation that fairly
behaves like the relation of fact-grounding but holds between propositions in order
to formally underlie and capture the logics of fact-grounding—whether or not such a
relation between propositions is metaphysically intelligible. Thanks to an anonymous
referee for drawing my attention to this issue.
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5. (¬ϕ ≺m ¬(ϕ ∧ ψ)) ∧ (¬ψ ≺m ¬(ϕ ∧ ψ)) NCGm

6. (¬ϕ ≺m ¬(ϕ ∨ ψ)) ∧ (¬ψ ≺m ¬(ϕ ∨ ψ)) NDGm

7. ϕ ≺m ¬¬ϕ NGm

We can now see how the immediate logic imposes a considerable amount

of structure on propositions.

Theorem 3.3.1. The followings are theorems of the non-factive logic of

immediate ground plus PC and the minimal principles of identity stated

above, where, in all cases ○ ∈ {∧,∨}. In other words, the following can be

derived from MPPI ∪UNIG:

1. ϕ ≉ ¬¬ϕ

2. ϕ ≉ (ϕ ○ ϕ)

3. (¬ϕ ≈ ¬ψ)→ (ϕ ≈ ψ)

4. (γ ≉ ψ)→ (¬ϕ ≉ (γ ○ ψ))

5. ¬ϕ ≉ (ϕ ○ ϕ)

6. ((ϕ ≉ ψ)∧((ϕ○ψ) ≈ (γ○θ)))→ ((ϕ ≈ γ)∧(ψ ≈ θ))∨((ϕ ≈ θ)∧(ψ ≈ γ))

7. ((ϕ ○ ϕ) ≈ (γ ○ γ))→ (ϕ ≈ γ)

Notice that these theorems all express cases of non-identities where

only conjunctive and disjunctive propositions are at stake (reflected by

the condition that ○ ∈ {∧,∨}). This is due to the fact that our logic only

posits principles of conjunctive and disjunctive grounds; if we had similar

principles regarding grounds of other types of propositions, we could’ve
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easily extended these results to retain even more structure and get closer

to Russellian propositions (we discuss extensions of this nature in Section

3.5).

Russellian Propositions

We now posit a set of principles that characterize Russellian propositions;

we will see all the non-identities above follow from these principles.10

Russellian Propositions (RP)

Axioms

1. Theorems of propositional calculus PC

2. ϕ ≈ ϕ Ref

3. (ϕ ≈ ψ)→ (ψ ≈ ϕ) Sym

4. ((ϕ ≈ ψ) ∧ (ψ ≈ γ))→ (ϕ ≈ γ) Tr

5. ((ϕ ≈ ψ) ∧ ϕ)→ ψ IdTr

6. ((ϕ ○ψ) ≈ (γ ○ θ))↔ ((ϕ ≈ γ)∧ (ψ ≈ θ)), where ○ ∈ {∧,∨,→,↔,≺,≺m

,≈} Str1

7. (¬ϕ ≈ ¬ψ)↔ (ϕ ≈ ψ) Str2

8. (ϕ ○1 ψ) ≉ (γ ○2 θ), where ○1 ≠ ○2 ∈ {∧,∨,→,↔,≺,≺m,≈} Str3

10It well may be the case that this isn’t a complete axiomatization of Russellian
propositions in our limited language, but the present principles arguably capture most
if not all possible cases that come to mind, and in any case, are more than enough for
our purposes here.
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9. ¬ϕ ≉ (ψ ○ γ), where ○ ∈ {∧,∨,→,↔,≺,≺m,≈} Str4

Inference Rules

10. If ⊢ ϕ→ ψ and ⊢ ϕ, then ⊢ ψ MP

Notice that IdSt1 and IdSt2 from earlier are encapsulated as the right-

to-left sides of the principles Str2 and Str1, respectively. Note also that

Str3 and Str4 are just generalizations of structured propositions that

the grounding principles entail with the minimal logic of identity in the

background; the only reason that we couldn’t derive the more general

form is that, at least as of now, we don’t have grounding principles for the

other connectives, such as → (see Section 3.5 for more on such principles).

As a result, this means that Russellian propositions, characterized by RP

above, prove all the cases of propositional identity and non-identity stated

in theorem 3.3.1, and of course many more. In other words, MPPI is a

strict fragment of RP. So we have:

Theorem 3.3.2. The unrestricted propositional calculus with identity

proves all theorems stated in theorem 3.3.1. That is, the latter can be

derived from RP ∪UNIG

Note that this observation holds at the level of propositional logics

of grounding, without quantifiers taken into account. A similar situation

holds for the higher-order logic of immediate ground (Fritz, 2021), where

many instances of a general, higher-order formulation of a schema rep-

resenting Russellian propositions are entailed. Thus, as it was claimed

before, these altogether suggest that the Russellian account of propositions

is the most systematic account that captures all the structure that emerges
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from the principles of grounding. In the future sections, We will officially

adopt RP as our logic of propositional identity to provide our semantics

for the logics of grounding explored in this section.

Factive Ground

As was mentioned before, factive immediate grounding statements are just

non-factive statements where the relata of the grounding relation are both

true; similarly for mediate grounding. That is, we have:

• ϕ ≺f ψ ∶= (ϕ ∧ ψ) ∧ (ϕ ≺ ψ)

• ϕ ≺fm ψ ∶= (ϕ ∧ ψ) ∧ (ϕ ≺m ψ)

The unrestricted logic of factive immediate ground is as follows (see, e.g.,

Wilhelm, 2020b; Fritz, 2021, for these principles):

Unrestricted Factive Immediate Ground (UFIG)

1. (ϕ ≺f ψ)→ (ϕ ∧ ψ) FGf

2. ϕ ⊀f ϕ IGf

3. (ϕ ≺f (ψ ∧ γ))↔ ((ψ ∧ γ) ∧ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ))) CGf

4. (ϕ ≺f (ψ ∨ γ))↔ (ϕ ∧ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ))) DGf

5. (ϕ ≺f ¬(ψ ∧ γ))↔ (ϕ ∧ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ))) NCGf

6. (ϕ ≺f ¬(ψ ∨ γ))↔ (¬(ψ ∨ γ) ∧ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ))) NDGf

7. (ϕ ≺f ¬¬ψ)↔ (ϕ ∧ (ϕ ≈ ψ)) NGf

The unrestricted logic of factive mediate ground is as follows:
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Unrestricted Factive Mediate Ground (UFMG)

1. (ϕ ≺fm ψ)→ (ϕ ∧ ψ) FGfm

2. ϕ ⊀fm ϕ IGfm

3. ((ϕ ≺fm ψ) ∧ (ψ ≺fm θ))→ (ϕ ≺fm θ) TRGfm

4. (ϕ∧ψ) → ((ϕ ≺fm (ϕ∧ψ)) ∧ (ψ ≺fm (ϕ∧ψ))) CGfm

5. (ϕ → (ϕ ≺fm ϕ∨ψ)) ∧ (ψ → (ψ ≺fm ϕ∨ψ)) DGfm

6. (¬ϕ → (¬ϕ ≺fm ¬(ϕ∧ψ))) ∧ (¬ψ → (¬ψ ≺fm ¬(ϕ∧ψ))) NCGfm

7. ¬(ϕ∨ψ) → ((¬ϕ ≺fm ¬(ϕ∨ψ)) ∧ (¬ψ ≺fm ¬(ϕ∨ψ))) NDGfm

8. ϕ → (ϕ ≺fm ¬¬ϕ) NGfm

It is easy to check that the principles of the factive logics are just

theorems of their corresponding non-factive logics. That is, we have the

following, where ⊢ stands for or basic propositional logic in the background

(PC), and ⋀ conjuncts all the principles of the relevant logics.:

Theorem 3.3.3. NFIG ⊢ ⋀UFIG and NFMG ⊢ ⋀UFMG.

Since these are straightforward (they only depend on the definition of

‘factive ground’ in terms of ‘non-factive ground’), we won’t provide proofs.

3.4 Semantics

We start by introducing our Russellian propositions, which, as expected,

perfectly mirror the structures of the sentences of our language (hereafter
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we sometimes drop the qualification ‘Russellian’). We use capital letters

P1, P2, ... to represent atomic propositions, as it were, and A,B,C, ... as

metavariables for general propositions. We also make bold the connectives;

thus, e.g., we have the propositional connective ≺≺≺ instead of the sentential

connective ≺.11

Similar to our language, we assume to have infinitely many atomic

propositions P1, P2, ..., and set the set of all of them with AT ∗. Here’s the

definition of our propositions:

Definition 3.4.1 (Propositions). Propositions are constructed as follows:

1. Pi is a proposition, where i ∈ N,

2. If A and B are propositions, then so are ¬¬¬A and A ○○○ B, where

○○○ ∈ {∧∧∧,∨∨∨,→→→,↔↔↔,≺≺≺,≺≺≺p,≈≈≈}.

We signify the set of all propositions constructed in this way with D⟨⟩,

and call it the propositional domain.12,13

11In effect, we could use our object language L in a new capacity now, but to avoid
potential confusion, we proceed as in here.

12Note that in both the definition of ‘language’ and ‘proposition’ we are constructing
the relevant entities recursively, with the implicit assumption that a pair of sentences
or propositions are identical if and only if they have the same structure. This really
is enough in laying out the idea of unique readability, as is common in logic as well
as philosophy texts. That said, the idea of unique readability can be more explicitly
encoded in both Definitions 3.3.1 and 3.4.1 by using the notion of sets and set identity;
we avoid this in the interest of simplicity. For example, one can take an approach along
the following lines: first, take the Pis (atomic propositions) and all the propositional
connectives (∧∧∧,≺≺≺, etc.) as constituting an appropriate set of pairwise distinct sets
(one suitable choice may be this: for each i ∈ N, define Pi ∶= N × i, ¬¬¬ ∶= R, ∧∧∧ ∶= R2,
∨∨∨ ∶= R3, ≺≺≺ ∶= R4, ...). Then, define the structured propositions using tuples—e.g., A ○○○B
as (A,○○○,B) and ¬¬¬A as (¬¬¬,A). From this, all the Russellian propositions follow. For
example, it follows that, e.g., A ○○○B = C ○○○D if and only if A = B and C = D, where
= is set identity. It also follows that no negative proposition of the form ¬¬¬A can be
identical to a composite proposition of the form B ○○○C, that is ¬¬¬A ≠ (B ○○○C); similarly,
no proposition is identical to its double negation, i.e., A ≠ ¬¬¬¬¬¬A, and no proposition is
identical to its composition with another proposition, i.e., A ≠ (A○○○B) and A ≠ (B ○○○A).

13Our models assume that we have infinity many distinct atomic propositions, which
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A crucial notion that plays role in our semantics of ground is that

of grounding constituency. As we noticed in the previous section, logics

of ground display certain structural patterns; grounding constituency

encapsulates these patterns in their most general forms.

Definition 3.4.2 (Grounding Constituency). We define grounding con-

stituency as the relation < on the propositional domain D⟨⟩, such that

A < B (read: A is a grounding constituent of B) if, and only if, one of

the following holds:

1. B = A ○○○C for some C ∈ D⟨⟩ and ○○○ ∈ {∧∧∧,∨∨∨},

2. B = C ○○○A for some C ∈ D⟨⟩ and ○○○ ∈ {∧∧∧,∨∨∨},

3. A = ¬¬¬A∗ & B = ¬¬¬(A∗ ○○○B∗), for some A∗,B∗ ∈ D⟨⟩ and ○○○ ∈ {∧∧∧,∨∨∨},

4. A = ¬¬¬A∗ & B = ¬¬¬(B∗ ○○○A∗), for some A∗,B∗ ∈ D⟨⟩ and ○○○ ∈ {∧∧∧,∨∨∨},

5. B = ¬¬¬¬¬¬A.

As was mentioned before, to capture mediate grounding, we can think of

statements of mediate grounding as obtained through ‘chaining’ immediate

grounding statements. To implement this idea into our semantics, we

define <∗ as the transitive closure of <.14,15

is a reasonable assumption, e.g., within a richer language that accommodates unary
predicates and under the common view that any sentence of the form F (a), where F
is a unary, non-logical, predicate and a is an object, is an atomic proposition. There is,
however, nothing crucial in what follows that hinges on this assumption; a finite base
of atomic propositions will equally do and grant unique readability.

14The transitive closure of a binary relation R on a set X, in general, is the smallest
relation R∗ on X that contains R and is transitive, i.e., if aR∗b and bR∗c, then aR∗c.
It’s easy to prove that every binary relation has a transitive closure.

15Note that here we’re not defining mediate grounding (≺m) as the transitive closure
of immediate grounding (≺) at the level of object language; we’re merely interpreting
the former as the transitive closure of the latter’s interpretation, that is interdefining
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Here’s how we specify the truth value of our propositions:

Definition 3.4.3 (Atomic Truth Function; Truth Function). An atomic

truth function is a function at ∶ AT ∗ → {0, 1}. We define the truth function

based on any atomic truth function at as the function Tat ∶ D⟨⟩ → {0,1}

based on at as follows:

1. Tat(Pi) = at(Pi), if and only if Pi ∈ AT ∗

2. Tat(¬¬¬A) = 1, if and only if Tat(A) = 0

3. Other Booleans as usual

4. Tat(A≈≈≈B) = 1, if and only if A = B

5. Tat(A≺≺≺B) = 1, if and only if A < B

6. Tat(A≺≺≺m B) = 1, if and only if A <∗B

Notice that the truth values of complex propositions are sensitive to the

truth value of their constituents only in the case of Boolean propositions;

them at the level of semantics. The connectives themselves are treated as primitives in
this paper, so aren’t to be interdefined (see Definition 3.3.1). One might suggest that
if we interdefine the connectives themselves, e.g., ≺m in terms of ≺, using the notion of
transitive closure, the principles of UNMG will presumably just follow from those of
UNIG. That might be true, but it would require higher-order quantification tools which
are unavailable in our propositional language. For instance, one might define ≺m as
follows: ϕ ≺m ψ ∶= ∃n ∈ N (ϕ = ϕ1 ≺ ϕ2 ≺ ... ≺ ϕn = ψ. Alternatively, one might suggest
just embracing the transitivity of mediate ground (i.e., TRGm), and the rest of the
principles of UNMG follow from that and UNIG. But even if some of the principles of
UNMG follow, not all will—IGm is an example. As for what is really the relationship
between ≺m and ≺, i.e., of immediate and mediate grounding at the level of the object
language, the answer seems unclear while we have no quantificational tools at our
disposal. Our goal in this paper is to find a semantics for the principles of immediate
and mediate ground, as entertained in the literature, and their interdefinability at the
level of semantics does that for us. Thanks to an anonymous referee for drawing my
attention to this issue.
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what determines the truth value of identity and grounding statements is

only the structure of the constituent propositions involved.

We now introduce our semantics by defining the ‘interpretations’ of

statements of our language, which are essentially the propositions they

denote.

Definition 3.4.4 (Assignment Function; Interpretation). An assignment

function is a function of the form a ∶ AT → D⟨⟩. For any such function we

define the interpretation based on a as the function [[.]]a ∶ L→ D⟨⟩, such

that:

1. [[pi]]a = a(pi), if pi ∈ AT ,

2. [[¬ϕ]]a = ¬¬¬[[ϕ]]a,

3. [[ϕ ○ψ]]a = [[ϕ]]a ○○○ [[ψ]]a, where ○ ∈ {∧,∨,→,↔,≺,≺m,≈} and ○○○ is the

corresponding (emboldened) propositional operator.

We call any triple (D⟨⟩, at, a) a propositional model, where D⟨⟩ is our

propositional domain, at is an atomic truth function and a an assignment

function. For a model M ∶= (D⟨⟩, at, a) and sentence ϕ ∈ L, we say that

ϕ is true with respect to M , written M ⊧ ϕ, if Tat([[ϕ]]a) = 1. We call ϕ

valid or a truth, written ⊧ ϕ, if it’s true with respect to every model.16

16Note that from the semantics it follows that atomic propositions cannot ground one
another. In particular, one might think “the fact that my shirt is maroon grounds the
fact that it is red” (e.g., see Audi, 2012, p. 693), but our semantics doesn’t accommodate
that. This might be considered as a shortcoming of the semantics, however, our concern
here is the logic of impure ground, with certain standard principles in mind. To the
author’s best knowledge, none of the alternative semantics in the literature (each
imposing some kind of structure on propositions) can accommodate such claims, so
even if they are correct, this won’t be a unique problem to our semantics. Moreover, one
might be able to somehow enrich the current semantics in a language where non-logical
predicates are allowed, and take into account the inter-definability of properties in
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Notice that in our models it’s possible to assign any proposition what-

soever to any sentential letter of the language. This marks an important

difference between our semantics with the one in Correia (2017): in the

latter, ‘crucially’, sentential variables of the language cannot be assigned

complex propositions. As Correia himself notes (see p. 517), this ‘un-

orthodoxy’ has a bearing on the applications of his logic to statements of

natural language, and thus ‘care is needed in order to apply the logic’.17

In any case, all of our logics of grounding, i.e., the unrestricted logic

of immediate and mediate logics, both non-factive and factive, as well

as Russellian Propositions, are sound with respect to our semantics (see

Appendix II for a proof). Suppose ⊢ stands for derivability from UNIG ∪

UNMG ∪UFIG ∪UFMG ∪RP.

Theorem 3.4.1 (Soundness). If ⊢ ϕ, then ⊧ ϕ.

It is worth noticing that, as the proof of this theorem (as well as other

soundness results from the next section) shows (see Appendix II ), the

fact that we are working with Russellian propositions plays a crucial role

in our results.

Now, consider, e.g., the assignment function a such that a(pi) = Pi for

all pi ∈ AT , and the truth function at such that at(Pi) = 0. (Or consider

any other pairs of assignment and truth functions, for that matter.) By

accounting for grounding statements containing them (Kiani, MSb, does this in a
rigorous way for the neighboring notion of entity grounding)

17To give an example similar to Correia’s: in natural languages, we can have the
sentence ‘Pluto is grue’ (call it ϕ) to express the disjunctive proposition that Pluto is
green or Pluto is blue. Assuming that the first and second disjuncts are respectively
expressed by ‘Pluto is green’ (ψ) and ‘Pluto is blue’ (γ), we would normally want to
consider the formal statements ψ ≺ ϕ and γ ≺ ϕ as true, but there’s no way to get
Correia’s semantics to validate this judgment.
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soundness, the induced model validates all the axioms of our logic. So, we

have:

Corollary 3.4.1 (Consistency). The unrestricted propositional logics of

immediate and mediate ground with identity, both non-factive and factive,

are consistent. In other words, UNIG ∪UNMG ∪UFIG ∪UFMG ∪RP is

consistent.

Notice that our semantics can capture the infinitely many theorems of

the kinds below which follow from our unrestricted logics, but which, as

was noted in Section 3.2, the existing semantics in the literature fail to

capture:

1. (ϕ ≺ ψ) ≺ ((ϕ ≺ ψ) ∧ ψ)

2. (ϕ ≈ ϕ) ≺ ((ϕ ≈ ϕ) ∨ ψ)

3. ((ϕ ≈ ϕ) ∧ ψ) ≺ ((ϕ ∨ ϕ) ∨ ((ϕ ≈ ϕ) ∧ ψ))

4. ((ϕ ≈ ϕ) ≺ ((ϕ ≈ ϕ) ∧ ψ)) ⊀ ((ϕ ≈ ϕ) ≺ ((ϕ ≈ ϕ) ∧ ψ))

⋮

These are declared as true statements by our semantics, simply because

[[ϕ ≺ ψ]]a < [[(ϕ ≺ ψ) ∧ ψ]]a, [[ϕ ≈ ϕ]]a < [[(ϕ ≈ ϕ) ∨ ψ]]a and so on, for

any assignment function a.

We conclude the section by shedding light on the question of complete-

ness. It’s straightforward to see that our logics are not complete with

respect to the proposed semantics. For instance, given the definition of

grounding constituency, no model can validate a grounding statement
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where the groundee is itself a grounding or identity statement, as they

don’t have the right structure to enter into the grounding constituency

relation. That is, any statements of the form ϕ ≺ (ψ ≺ γ) or ϕ ≺ (ψ ≈ γ) is

falsified by all models, no matter what propositions the schematic letters

stand for; so their negations ϕ ⊀ (ψ ≺ γ) and ϕ ⊀ (ψ ≈ γ) must be valid.

But there are no principles in our logic that would prove such statements.

At this point, one can choose between two options to achieve complete-

ness: (i) add certain principles such as the ones above to the logic and

make up for the gap, or (ii) extend the notion of grounding constituency

in a way that, e.g., a proposition like A is considered as a grounding

constituent of certain propositions like C ≺≺≺D and C ≈≈≈D, thus avoiding the

gap in a different way. (In the next section, we discuss some extensions

along both lines in more detail.)

To be clear, although both of these options lead to filling some gap

between our logic and semantics, that may or may not lead to completeness;

we leave open how the gap is to be fully closed, and hence completeness

achieved. However, we conclude the section by stating a close result,

stating that our semantics, in its current form, gets right all the positive

grounding claims (i.e., those that aren’t in forms of negation); for a proof

of this see Appendix II.

Theorem 3.4.2. Every positive grounding and identity truth is provable:

(i) If ⊧ ϕ ≺ ψ, then ⊢ ϕ ≺ ψ, (ii) If ⊧ ϕ ≺f ψ, then

⊢ ϕ ≺f ψ,

(iii) If ⊧ ϕ ≺m ψ, then ⊢ ϕ ≺m ψ, (iv) If ⊧ ϕ ≺fm ψ, then

⊢ ϕ ≺fm ψ,
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(v) If ⊧ ϕ ≈ ψ, then ⊢ ϕ ≈ ψ.

3.5 Extensions

We now discuss two kinds of desirable extensions of our logics and semantics

that aren’t available to the existing semantic projects (Krämer, 2018;

Correia, 2017; deRosset and Fine, 2023).18

Grounds of other Boolean Statements

There aren’t many works on grounds of Boolean statements other than

those that only contain instances of conjunction, disjunction and negation.

An exception to this is Schnieder (2011), where, in laying down certain

rules governing the logic of ‘because’ he proposes (the factive versions

of) most of the rules that we have listed before under the factive logic

of mediate ground, plus other Boolean cases. For instance, he offers the

following principles regarding the grounds of conditional statements:

• (¬ϕ ≺m (ϕ→ ψ)) ∧ (ψ ≺m (ϕ→ ψ)) CoGm

• (ϕ ≺m ¬(ϕ→ ψ)) ∧ (¬ψ ≺m ¬(ϕ→ ψ)) NCoGm

As expected, the following are the corresponding immediate principles:

• γ ≺ (ϕ→ ψ)↔ (γ ≈ ¬ϕ ∨ γ ≈ ψ) CoG

• γ ≺ ¬(ϕ→ ψ)↔ (γ ≈ ϕ ∨ γ ≈ ¬ψ) NCoG

18See Poggiolesi and Francez (2021) for a tentative logic of ‘exclusive’ and ‘ternary’
notions of disjunction. While it is likely that these notions can also be captured in our
approach as well, we don’t attempt to establish that in this paper, as this paper is
focused on the more urgent and widely used connectives that lack expressive semantics
as shown.
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To accommodate this, we can simply extend the notion of grounding

constituency in a way that the desired principles of conditional grounding

are accommodated. More specifically, we can add the following four clauses

to the definition of A < B (Definition 3.4.2):

• A = ¬¬¬A∗ and B = A∗→→→C for some A∗,C ∈ D⟨⟩,

• B = C→→→A for some C ∈ D⟨⟩,

• A = ¬¬¬A∗ and B = ¬¬¬(C→→→A∗) for some A∗,C ∈ D⟨⟩,

• B = ¬¬¬(A→→→C) for some C ∈ D⟨⟩

Note that the semantics of ground expanded in this way also captures

the logic of ‘because’ in Schnieder (2011), and in particular proves its

consistency.19 In general, assuming that we extend our models to ac-

commodate the extended notion of grounding constituency, we have the

following (see Appendix II for a proof):

Theorem 3.5.1. CoG and NCoG are both valid.

Consequently, the extended logics are all consistent as well.

Before moving on to the next type of extension, a remark is in order.

Note that in stating the definition of our language L (Definition 3.4.1),

we treated all the connectives from {∧,∨,→,↔,≺,≺m,≈} as primitives,

thus, in particular, avoided interdefining any of Boolean statements in

terms of other ones. One might suggest otherwise, to deduce the relevant

19The general guiding principle behind Schnieder’s logic is called ‘core intuition’,
which he defines as follows (p. 448): ‘A sentence governed by a classical truth-functional
connective has its truth value because of the truth values of the embedded sentences.’
The other Boolean cases dismissed here can be accounted for in a similar manner to
the case of conditional grounding.
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grounding principles from a smaller set of principles. For instance, it

might be suggested to interdefine ϕ→ ψ as, e.g., ¬ϕ ∨ ψ and deduce the

principles of conditional grounding laid out above in terms of the principles

of disjunctive grounds.

But this can’t be easily done. To get a sense of complications attached

to such identifications, suppose the identity above holds, thus ϕ → ψ ≈

¬ϕ ∨ψ is a theorem of our background identity logic. It then follows from

DG and Str1 that ¬ϕ ≺ ϕ→ ψ and ψ ≺ ϕ→ ψ. So far, so good: these in

fact follow from CoG. But note that by NCoG, we have ϕ ≺ ¬(ϕ→ ψ). So,

since from ϕ→ ψ ≈ ¬ϕ∨ψ we have ¬(ϕ→ ψ) ≈ ¬(¬ϕ∨ψ), by Str1 we have

ϕ ≺ ¬(¬ϕ ∨ ψ). However, from NDG applied to ¬(¬ϕ ∨ ψ) it follows that

the immediate grounds of ¬(¬ϕ ∨ ψ) are only ¬¬ϕ and ¬ψ, hence, given

that ϕ ≉ ¬¬ϕ, we must have ϕ ≈ ¬ψ. In other words, for any conditional

ϕ → ψ where ϕ ≉ ¬ψ, the identification of ϕ → ψ with ¬ϕ ∨ ψ leads to

the inconsistency of extensions of our logical system with the plausible

principles of immediate conditional ground due to Schnieder (2011).

In response to this, one might suggest rejecting one of the principles

of, e.g., conditional grounding. But why do so? They are no less plausible

than those governing conjunction or disjunction (also, see footnote 16 for

a unified motivation behind them all). More importantly, as we noted

above, the extended logic is provably consistent. So, the better option

seems to be one that leaves the connectives alone and avoids reducing

them to one another.
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Iterated and Identity Grounding

We mentioned in Section 3.2 that, according to some authors (e.g., Bennett,

2011), a grounding fact like ϕ ≺ ψ is grounded by its ground ϕ. If we take

the immediate ground of ϕ ≺ ψ to be only ϕ, then we have the following:

• γ ≺ (ϕ ≺ ψ)↔ γ ≈ ϕ IDG

We also mentioned another plausible principle regarding grounds of

statements of propositional identity: according to Wilhelm (2020a), e.g.,

identity statements of the general form a ≈ a are (‘entity-’)grounded by a,

where a can be any entity. Someone might pick up this idea and argue for

a fact-grounding counterpart of it, along the following lines (see footnote

5 for a proviso):

• ψ ≺ (ϕ ≈ ϕ)↔ ψ ≈ ϕ GG

Again, we can revise the notion of grounding constituency in a way

that this is accounted for in our semantics, by adding the following clauses

to the definition of A < B (Definition 3.4.2):

• B = A≺≺≺C for some C ∈ D⟨⟩,

• B = A≈≈≈A

Suppose we extend our conception of models to accommodate the extension

of grounding constituency with these. Then we have the following (the

proof is as straightforward as previous cases, so we omit them):

Theorem 3.5.2. DIG and GG are both valid.

As usual, the extended logics turn out to be consistent too.
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Extending the Existing Semantics in the Literature

We conclude the section by reflecting on the status of the existing semantics

(found in Correia, 2017; Krämer, 2018; deRosset and Fine, 2023) with

regards to extensions of the logics and semantics along the lines above. We

briefly noted in Section 3.2 that these semantics fail to accommodate an

infinitude of grounding facts that follow from unrestricted impure logics

of ground, as well as the distinct views on identity and iterated grounding

glossed above, due to the artificial restrictions imposed on the languages

in which the logics are formulated, where statements or propositions of

iterated and identity grounding aren’t allowed in the relata of ground.

Can these semantics be revised, though, to make up for these short-

comings? I charitably assume that given the same linguistic limits, all

these semantics can be extended without any trouble, to capture the

other Boolean extensions of their logics and semantics (though this really

depends on certain details at play, I ignore that).

But what about the extensions that lift the restrictions of the language

and logics to allow for statements of iterated and identity grounding to

appear in the relata of grounding statements? In the case of Correia

(2017), where he works with structured propositions of some sort, it might

be possible to make certain revisions and generalizations to allow for the

semantics to accommodate the unrestricted version of the principles he

works with, though it’s not clear if the semantic results in the paper that

heavily rely on these notions stay intact under such extensions.20 I leave

20The core notions upon which models are built in Correia (2017)—e.g., that of
‘propositional structure’ (which is the space of propositions and operators that construct
them), ‘degree’ (measuring the complexity of propositions) and ‘grounding relation’
(holding between members of the propositional structure) (see pp. 518-19)—simply
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this issue open here.

However, unlike Correia (2017), both Krämer (2018) and deRosset and

Fine (2023) work with the truthmaker content of propositions. The idea

of applying truthmaker semantics to logics of ground goes back to Fine

(2012b), where he provides an elegant, sound and complete semantics for

the pure logic of ground in terms of truthmakers. The original semantics

of Fine (2012b) takes the semantic value of a statement to be its set of

‘verifiers’, i.e., the set of ‘states’ or ‘facts’ that make true the statement.

But while truthmakers work perfectly well in the case of pure logic,

the impure logic soon displays various forms of resistance to the plain

truthmaker semantics that Fine works with (see Fine, 2012a, footnote

22 for some early notes on this issue). For example, in order for the

principles NG and IG to both go through, we need the truthmaker content

of a sentence and its double negation to be, at the very least, distinct.

Truthmaker semantics doesn’t provide this: what verifies ¬ϕ falsifies ϕ,

and what falsifies ¬ϕ verifies ϕ. So what verifies ¬¬ϕ verifies ϕ, and what

falsifies ¬¬ϕ what falsifies ϕ; so ϕ and ¬¬ϕ have the same truthmaker

content, hence are identical. A similar problem holds for disjunction

and conjunction: due to the standard way their truthmaker contents are

defined, it turns out that ϕ, ϕ ∨ ϕ, and ϕ ∧ ϕ also have the same content,

so the relevant instances of the principles CG and DG fail to hold.

So, to make truthmaker semantics work, certain revisions must be

made on its standard workings. In particular, some sort of structure must

exclude cases of the sort where the relata of grounding are grounding or identity
propositions. It’s not clear which, if any, of the semantic results that heavily rely on
these restrictions, such as soundness and completeness, can be retained under relevant
extensions of these notions.
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be imposed on the truthmaker content of sentences so that, e.g., ϕ, ¬¬ϕ,

ϕ ∨ ϕ and ϕ ∧ ϕ have pairwise distinct truthmaker contents; once that’s

done, the semantics of grounding must be given in a way that the desired

principles of the impure logics are accounted for. This is exactly what both

Krämer (2018) and deRosset and Fine (2023) do, though each in their own

way. Krämer (2018) designs his ‘mode-ified’ semantics of ground, where

his semantics relies on the ‘modes of verification’ of sentences—something

which, according to himself, ‘corresponds to a certain kind of answer to

the question of how a truth is verified by a fact’ (p. 786), and, in any case,

leads to the required distinctions of truthmaker contents.

deRosset and Fine (2023), on the other hand, do a deeper dive into

the semantics of a particular system of ground, called System GG, closely

related to the logical system originally proposed in Fine (2012a). The

semantics that this work proposes is both sound and complete, and

captures total, as well as, partial grounds. It is also, like the semantics

in Krämer (2018), based on a revised form truth-makers semantics which

accommodates the appropriate structure that propositions need for the

relevant principles of ground to go through. More specifically, deRosset

and Fine adopt two notions of fusion that are more fine-grained than the

usual one—‘combination’ (for conjunction) and ‘choice (for disjunction)—

and somehow elegantly capture the structured principles of System GG in

a sound and complete way.

But as nice as the semantics in deRosset and Fine (2023) is in com-

parison to the other works in the literature, it still suffers from the exact

same issue that the previous semantics do: the language is limited to the

usual Boolean connectives (see, e.g., pp. 12-13 of the mentioned paper)
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and the semantics is designed to exactly capture that, and nothing else.

It’s not clear when we extend the language, the semantics will be able to

catch up.

In fact, aside from the artificial limitations of language and how that

is built into the semantics, which is what all the existing semantics suffer

from, there is a more profound issue with the semantics that particularly

work with truthmakers. The issue is that even though it is straightforward

to determine the verifiers and falsifiers of Boolean statements in whatever

level of granularity, using truthmakers (in terms of ‘fusions’, ‘manners

of fusions’, ‘combination’ or ‘choice’ of states; see, e.g., Fine, 2017c,a,b;

Krämer, 2018; deRosset and Fine, 2023), it is, in general, not clear at

all how to account for the verifiers and falsifiers of grounding or identity

statements in terms of such fusions. This would require granting access to

the truthmaker content of identity or grounding statements, and that’s

where truthmaker semantics hits the bottom.

In general, truthmaker semantics is in its infancy, and, to the best of

our knowledge, there just isn’t any work in the literature that would tell

us what the truthmaker contents of statements other than Boolean, quan-

tificational or modal statements look like—certainly not the truthmaker

content of grounding or identity statements. And this problem doesn’t

seem to be easily resolvable: due to the hyperintensionality of ground

and identity, it’s very unlikely for the truthmaker content of grounding or

identity statements to be definable using the truth-functionally behaved

operation of ‘fusion’ on states, no matter how granular they are manipu-

lated to become. Further operations on state spaces are likely required,

and, as of now, it’s not clear what they would look like or if they can
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be philosophically motivated or formally developed in a plausible and

consistent way.

The semantics that we provided in this paper, however, has in its

premise the extreme flexibility that any extension of the language can ever

want, because it simply reflects the structure of sentences in the language

to the semantics, using the idea of Russellian propositions. Whatever

operator one adds to the language will be mirrored to the semantics; all it

takes for the semantics to capture the logic of the newly added connectives

is to simply revise the definition of ‘Grounding Constituency’, in the way

that was shown in this section.

3.6 Conclusion

I showed that models for sentence-like, Russellian propositions can be

used to provide a unified, simple and highly expressive semantics for

various unrestricted propositional logics of ground. I also showed that our

semantics can be extended to accommodate certain distinct philosophical

positions about grounds of grounding and identity statements. We noted

that the existing semantics in the literature (Krämer, 2018; Correia, 2017;

deRosset and Fine, 2023) fail to do either of these. More importantly, even

though we left it open whether Correia’s semantics is safely extendable

to accommodate these, we noted that the prospects of extending the

semantics in Krämer (2018) and deRosset and Fine (2023), and in general,

any truthmaker semantics of ground is bleak and dependent on unexplored

limitations of truthmaker semantics. Moreover, even though formally

satisfying (within the usual artificial boundaries of the language that my
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paper conveniently surpasses), it’s not clear how satisfying these revisions

of the truth-maker semantics are at a conceptual level, and how such

diversity of truth-maker semantics found in the literature (each serving a

specific philosophical purpose) and the levels of content granularity that

follow from them can be summed up and explained in a bigger picture.

Also, aside from the expressiveness and predictable high flexibility

of our semantics, there are certain advantages of our project over those

that assume less granular accounts of propositions in accounting for the

semantics of logics of ground (as in Correia, 2017) or addressing their

consistencies (as in Wilhelm, 2020b). For one, our assumption of grain is

much more systematic and widely entertained in the literature, ranging

from attitude contexts in the philosophy of language (as in, e.g., Kaplan,

1977; King, 1996, 2009; Soames, 1987), to the neighboring notions of

metaphysical priority, essence and ontological dependence (as in, e.g.,

Fine, 1995, 1980, 1994). Moreover, we noted that the Russellian view is

arguably the most straightforward and systematic account of propositions

that explains all the built-in structural commitments of the notion of

ground explored in this paper and in Fritz (2021).

But as popular and useful as Russellian propositions are, basic Canto-

rian reasoning about cardinalities reveals that their assumption leads to

certain inconsistencies—an issue that, interestingly, was first mentioned

in the original work of Russell (1903) himself (see Appendix II), and later

was re-discovered by Myhill (1958) (hence, the Russell-Myhill paradox),

but surprisingly has been completely ignored in most recent works that

assume or argue for Russellian propositions, as cited earlier (see Deutsch,

2008, on this ignorance and its consequences for philosophy). In fact,

81



3. Structured Propositions and a Semantics for Unrestricted Impure
Logics of Ground

only recently has this paradox been rediscovered within the background of

simple type theory, thus bringing to light the inconsistency of Russellian

propositions with the standard assumptions of higher-order logic (see,

e.g., Hodes, 2015; Goodman, 2016). Accordingly, this might be taken to

undermine the conceptual value of our project, suggesting that the models

to be presented are merely mathematical constructs that by no means

represent propositions.

The situation becomes even more dramatic when we realize that,

as Fritz (2021) notes, the instances of Russellian propositions that the

higher-order logic of immediate ground entails happen to be sufficient

to reconstruct the Russell-Myhill result, effectively establishing the in-

consistency of the relevant higher-order logic of ground in question. In

other words, not every proposition has to be Russellian for the paradox

to go through—a certain, smaller fragment of propositions that are so is

sufficient to reconstruct the paradox. The higher-order logic of ground

gives us just one such fragment and hence is inconsistent.

This portrays a rather bleak picture of the notion of ground when

coupled with considerations of granularity, and leaves one wondering if

there’s a way to save logics of ground from the troubles of grain.

In response to these issues, in a series of broadly related papers I

adopt a picture of propositions (as well as other relational entities, such

as properties and relations), reminiscent of Russell (1908); Whitehead and

Russell (1910), according to which they come in infinite levels, in a way that

roughly put, the inhabitants of higher levels are systematically obtained

through quantification over the ones from lower levels. We call this view

the ramified account of propositions (similarly for other relational entities).
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Once the ramified picture is deployed, one can consistently reformulate the

Russellian view and avoid the Russell-Myhill paradox, as well as ground’s

higher-order inconsistency result due to Fritz.21

Aside from establishing the consistency of the ramified Russellian

theory of propositions (explored in Kiani, MSd, i.e., Chapter 1), one

aim of the series is to show that this view can itself be independently

motivated via certain considerations having to do with a neighboring

notion of metaphysical priority, namely ‘entity grounding’ (as introduced

in, e.g., Wilhelm, 2020a; Schaffer, 2009; deRosset, 2013); this is shown

in Kiani (MSb) (Chapter 4). Another part of the series shows that

ramified Russellian propositions can be leveraged to semantically account

for and establish the consistency of various logics of ground—ranging from

propositional to higher-order—and provide a unified ‘predicative’ solution

to a cluster of paradoxes of quantificational ground that have emerged in

recent years (e.g., Donaldson, 2017; Fine, 2010; Krämer, 2013); a type of

solution that has long been predicted but remained fairly underexplored

(see, e.g., Fine, 2010; Krämer, 2013; Korbmacher, 2018a,b, for various

forms of these puzzles and some solutions to certain variants of them).

It is this latter part with which the present paper was concerned: while

higher-order logics of ramified ground, their semantics and consistency

results, as well as their contribution to puzzles of quantificational ground,

are all explored in Kiani (MSe) (Chapter 5), the task of this paper was

to only explore how the assumption of Russellian propositions alone can

21Other solutions to the Russell-Myhill paradox can be given that are not based on
ramified types. For instance, Deutsch (2014) proposes a solution that is based on set
theory. But it’s not clear how, aside from their mathematical use, such solutions fare
in the context of grounding and, in general, metaphysics; we leave that open here.
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be leveraged to semantically account for various propositional logics of

ground and establish their consistencies. The semantic contributions of

this paper prepare the groundwork based on which the more sophisticated,

higher-order logics of ground from Kiani (MSe) (that is, Chapter 5) are

semantically accounted for. As such, since here we only treat propositional

logics of ground without quantification, implementing ramification isn’t

needed, and the assumption of Russellian propositions suffices for our

purposes. As we have noticed, none of the results obtained in this paper

rely on the other works in the series.

I left the questions of completeness open. Also, throughout the paper,

I’ve only focused on strict partial grounds and their logics. As a result,

other variants of grounding relations, such as total and weak grounding,

as well as their logics, still need to be semantically accounted for. I wish

to attend to these issues in the future.22

3.7 Appendix I - Logics of Identity and

Ground

Here we repeat all the principles of grounding, as well as propositional

identity, that we explored in the paper, for their accessibility and use in

the formal proofs in the next appendix.

Minimal Principles of Propositional Identity (MPPI)

1. ϕ ≈ ϕ Ref

22Acknowledgments: I would like to thank Richard Zach for helpful commentary,
advice and directions at different stages of writing this paper. Special thanks to Peter
Fritz for many detailed and insightful discussions on various drafts of the paper.
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2. (ϕ ≈ ψ)→ (ψ ≈ ϕ) Sym

3. ((ϕ ≈ ψ) ∧ (ψ ≈ γ))→ (ϕ ≈ γ) Tr

4. ((ϕ ≈ ψ) ∧ ϕ)→ ψ IdTr

5. (ϕ ≈ ψ)→ (¬ϕ ≈ ¬ψ) IdSt1

6. ((ϕ ≈ ψ) ∧ (γ ≈ θ)) → ((ϕ ○ γ) ≈ (ψ ○ θ)), where ○ ∈ {∧,∨,→,↔,≺

,≺m,≈} IdSt2

Russellian Propositions (RP)

Axioms

1. Theorems of propositional calculus PC

2. ϕ ≈ ϕ Ref

3. (ϕ ≈ ψ)→ (ψ ≈ ϕ) Sym

4. ((ϕ ≈ ψ) ∧ (ψ ≈ γ))→ (ϕ ≈ γ) Tr

5. ((ϕ ≈ ψ) ∧ ϕ)→ ψ IdTr

6. ((ϕ ○ψ) ≈ (γ ○ θ))↔ ((ϕ ≈ γ)∧ (ψ ≈ θ)), where ○ ∈ {∧,∨,→,↔,≺,≺m

,≈} Str1

7. (¬ϕ ≈ ¬ψ)↔ (ϕ ≈ ψ) Str2

8. (ϕ ○1 ψ) ≉ (γ ○2 θ), where ○1 ≠ ○2 ∈ {∧,∨,→,↔,≺,≺m,≈} Str3

9. ¬ϕ ≉ (ψ ○ γ), where ○ ∈ {∧,∨,→,↔,≺,≺m,≈} Str4

Inference Rules
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10. If ⊢ ϕ→ ψ and ⊢ ϕ, then ⊢ ψ MP

Unrestricted Non-Factive Immediate Ground (UNIG)

1. ϕ ⊀ ϕ IG

2. (ϕ ≺ (ψ ∧ γ))↔ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ)) CG

3. (ϕ ≺ (ψ ∨ γ))↔ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ)) DG

4. (ϕ ≺ ¬(ψ ∧ γ))↔ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ)) NCG

5. (ϕ ≺ ¬(ψ ∨ γ))↔ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ)) NDG

6. (ϕ ≺ ¬¬ψ)↔ (ϕ ≈ ψ) NG

Unrestricted Non-Factive Mediate Ground (UNMG)

1. ϕ ⊀m ϕ IGm

2. ((ϕ ≺m ψ) ∧ (ψ ≺m θ))→ ϕ ≺m θ TRGm

3. (ϕ ≺m (ϕ ∧ ψ)) ∧ (ψ ≺m (ϕ ∧ ψ)) CGm

4. (ϕ ≺m (ϕ ∨ ψ)) ∧ (ψ ≺m (ϕ ∨ ψ)) DGm

5. (¬ϕ ≺m ¬(ϕ ∧ ψ)) ∧ (¬ψ ≺m ¬(ϕ ∧ ψ)) NCGm

6. (¬ϕ ≺m ¬(ϕ ∨ ψ)) ∧ (¬ψ ≺m ¬(ϕ ∨ ψ)) NDGm

7. ϕ ≺m ¬¬ϕ NGm

Unrestricted Factive Immediate Ground (UFIG)

1. (ϕ ≺f ψ)→ (ϕ ∧ ψ) FGf
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2. ϕ ⊀f ϕ IGf

3. (ϕ ≺f (ψ ∧ γ))↔ ((ψ ∧ γ) ∧ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ))) CGf

4. (ϕ ≺f (ψ ∨ γ))↔ (ϕ ∧ ((ϕ ≈ ψ) ∨ (ϕ ≈ γ))) DGf

5. (ϕ ≺f ¬(ψ ∧ γ))↔ (ϕ ∧ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ))) NCGf

6. (ϕ ≺f ¬(ψ ∨ γ))↔ (¬(ψ ∨ γ) ∧ ((ϕ ≈ ¬ψ) ∨ (ϕ ≈ ¬γ))) NDGf

7. (ϕ ≺f ¬¬ψ)↔ (ϕ ∧ (ϕ ≈ ψ)) NGf

Unrestricted Factive Mediate Ground (UFMG)

1. (ϕ ≺fm ψ)→ (ϕ ∧ ψ) FGfm

2. ϕ ⊀fm ϕ IGfm

3. ((ϕ ≺fm ψ) ∧ (ψ ≺fm θ))→ (ϕ ≺fm θ) TRGfm

4. (ϕ∧ψ) → ((ϕ ≺fm (ϕ∧ψ)) ∧ (ψ ≺fm (ϕ∧ψ))) CGfm

5. (ϕ → (ϕ ≺fm ϕ∨ψ)) ∧ (ψ → (ψ ≺fm ϕ∨ψ)) DGfm

6. (¬ϕ → (¬ϕ ≺fm ¬(ϕ∧ψ))) ∧ (¬ψ → (¬ψ ≺fm ¬(ϕ∧ψ))) NCGfm

7. ¬(ϕ∨ψ) → ((¬ϕ ≺fm ¬(ϕ∨ψ)) ∧ (¬ψ ≺fm ¬(ϕ∨ψ))) NDGfm

8. ϕ → (ϕ ≺fm ¬¬ϕ) NGfm

3.8 Appendix II - Technical Results

Proof (theorem 3.3.1). We only give proof for all items where ○ is ∧;

the cases where ○ is ∨ can be proved quite similarly. In the cases where
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we prove the theorem by contradiction, we specify the assumption that is

to be refuted in the end, for readability, and obtain a contradiction, �.23

• ϕ ≉ ¬¬ϕ

Proof.

(1) ϕ ≈ ¬¬ϕ Assumption (to be refuted)

(2) ϕ ≈ ϕ Ref

(3) ϕ ≺ ¬¬ϕ NG

(4) (ϕ ≺ ϕ) ≈ (ϕ ≺ ¬¬ϕ) IdSt2 1, 2

(5) (ϕ ≺ ¬¬ϕ) ≈ (ϕ ≺ ϕ) Sym 4

(6) ϕ ≺ ϕ IdTr 3, 5

(7) ϕ ⊀ ϕ IG

(8) � PC 6, 7

• ϕ ≉ (ϕ ∧ ϕ)

Proof.

(1) ϕ ≈ (ϕ ∧ ϕ) Assumption (to be refuted)

(2) ϕ ≈ ϕ Ref

(3) ϕ ≺ (ϕ ∧ ϕ) CG

(4) (ϕ ≺ ϕ) ≈ (ϕ ≺ (ϕ ∧ ϕ)) IdSt2 1, 2

(5) (ϕ ≺ (ϕ ∧ ϕ)) ≈ (ϕ ≺ ϕ) Sym 4

(6) ϕ ≺ ϕ IdTr 3, 5

(7) ϕ ⊀ ϕ IG

(8) � PC 6, 7
23The proofs proceed in Hilbert-Style for higher rigor, where at each line the relevant

axiom and potentially the previous lines or theorems are cited. One can offer an
English reading of such proofs for higher readability, as is sometimes done in works of
metaphysics (see, e.g., Bacon, 2018; Dorr, 2016; Dorr et al., 2021).
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• (¬ϕ ≈ ¬ψ)→ (ϕ ≈ ψ)

Proof.

(1) ¬ϕ ≈ ¬ψ Assumption

(2) ϕ ≈ ϕ Ref

(3) ¬¬ϕ ≈ ¬¬ψ IdSt1 1

(4) (ϕ ≺ ¬¬ϕ) ≈ (ϕ ≺ ¬¬ψ) IdSt2 2, 3

(5) ϕ ≺ ¬¬ϕ NG

(6) ϕ ≺ ¬¬ψ IdTr 4,5

(7) ϕ ≺ ¬¬ψ → ϕ ≈ ψ NG

(8) ϕ ≈ ψ MP 6, 7

• (γ ≉ ψ)→ (¬ϕ ≉ (γ ∧ ψ))

Proof.

89



3. Structured Propositions and a Semantics for Unrestricted Impure
Logics of Ground

(1) γ ≉ ψ Assumption

(2) ¬ϕ ≈ γ ∧ ψ Assumption (to be refuted)

(3) ¬¬ϕ ≈ ¬(γ ∧ ψ) IdSt1 2

(4) ¬(γ ∧ ψ) ≈ ¬¬ϕ Sym 3

(5) ¬γ ≈ ¬γ Ref

(6) ¬γ ≺ ¬(γ ∧ ψ) NCG

(7) (¬γ ≺ ¬¬ϕ) ≈ (¬γ ≺ ¬(γ ∧ ψ)) IdSt2 5, 3

(8) (¬γ ≺ ¬(γ ∧ ψ)) ≈ (¬γ ≺ ¬¬ϕ) Sym 7

(9) ¬γ ≺ ¬¬ϕ IdTr 6, 8

(10) ¬γ ≈ ϕ NG 9

(11) ¬ψ ≺ ¬(γ ∧ ψ) NCG

(12) ¬ψ ≈ ¬ψ Ref

(13) (¬ψ ≺ ¬¬ϕ) ≈ (¬ψ ≺ ¬(γ ∧ ψ)) IdSt2 12, 3

(14) (¬ψ ≺ ¬(γ ∧ ψ)) ≈ (¬ψ ≺ ¬¬ϕ) Sym 13

(15) (¬ψ ≺ ¬¬ϕ) IdTr 11, 14

(16) ¬ψ ≈ ϕ NG 15

(17) ϕ ≈ ¬ψ Sym 16

(18) ¬γ ≈ ¬ψ TR 10, 17

(19) γ ≈ ψ Theorem 3.3.1 3 18

(20) � PC 1, 19

• ¬ϕ ≉ (ϕ ∧ ϕ)

Proof.
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(1) ¬ϕ ≈ ϕ ∧ ϕ Assumption (to be refuted)

(2) ¬¬ϕ ≈ ¬(ϕ ∧ ϕ) IdSt1 1

(3) ϕ ≈ ϕ Ref

(4) (ϕ ≺ ¬¬ϕ) ≈ (ϕ ≺ ¬(ϕ ∧ ϕ)) IdSt2 3, 2

(5) ϕ ≺ ¬¬ϕ NG

(6) ϕ ≺ ¬(ϕ ∧ ϕ) IdTr 4, 5

(7) ϕ ≈ ¬ϕ NCG 6

(8) ¬ϕ ≈ ¬¬ϕ IdSt1 7

(9) ϕ ≈ ¬¬ϕ TR 7, 8

(10) ϕ ≺ ¬¬ϕ NG

(11) (ϕ ≺ ϕ) ≈ (ϕ ≺ ¬¬ϕ) IdSt2 3, 10

(12) (ϕ ≺ ¬¬ϕ) ≈ (ϕ ≺ ϕ) Sym 11

(13) ϕ ≺ ϕ IdTr 10, 12

(14) ϕ ⊀ ϕ NG

(15) � PC 13, 14

• ((ϕ ≉ ψ)∧((ϕ○ψ) ≈ (γ○θ)))→ ((ϕ ≈ γ)∧(ψ ≈ θ))∨((ϕ ≈ θ)∧(ψ ≈ γ))

Proof.
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(1) (ϕ ≉ ψ) ∧ ((ϕ ∧ ψ) ≈ (γ ∧ θ)) Assumption

(2) ϕ ≉ ψ PC 1

(3) (ϕ ∧ ψ) ≈ (γ ∧ θ) PC 1

(4) ¬(ϕ ∧ ψ) ≈ ¬(γ ∧ θ) IdSt1 3

(5) ¬¬(ϕ ∧ ψ) ≈ ¬¬(γ ∧ θ) IdSt1 4

(6) ¬ϕ ≺ ¬(ϕ ∧ ψ) NCG

(7) ¬ϕ ≈ ¬ϕ Ref

(8) (¬ϕ ≺ ¬(ϕ ∧ ψ)) ≈ (¬ϕ ≺ ¬(γ ∧ θ)) IdSt2 7, 4

(9) ¬ϕ ≺ ¬(γ ∧ θ) IdTr 6, 8

(10) (¬ϕ ≈ ¬γ) ∨ (¬ϕ ≈ ¬θ) NCG 9

(11) (ϕ ≈ γ) ∨ (ϕ ≈ θ) PC, Theorem 3.3.1 3 10

(12) ¬ψ ≺ ¬(ϕ ∧ ψ) NCG

(13) ¬ψ ≈ ¬ψ Ref

(14) (¬ψ ≺ ¬(ϕ ∧ ψ)) ≈ (¬ψ ≺ ¬(γ ∧ θ)) IdSt2 13, 4

(15) ¬ψ ≺ ¬(γ ∧ θ) IdTr 12, 14

(16) (¬ψ ≈ ¬γ) ∨ (¬ψ ≈ ¬θ) NCG 15

(17) (ψ ≈ γ) ∨ (ψ ≈ θ) PC, Theorem 3.3.1 3 16

(18) ((ϕ ≈ γ) ∨ (ϕ ≈ θ)) ∧ ((ψ ≈ γ) ∨ (ψ ≈ θ)) PC 11, 17

(19) ((ϕ ≈ θ) ∧ (ψ ≈ γ)) ∨ ((ϕ ≈ γ) ∧ (ψ ≈ θ)) PC 2, 18

Note that, applying basic laws of propositional calculus we find

out that (17) is equivalent to ((ϕ ≈ γ) ∧ (ψ ≈ γ)) ∨ ((ϕ ≈ θ) ∧ (ψ ≈

γ)) ∨ ((ϕ ≈ γ) ∧ (ψ ≈ θ)) ∨ ((ϕ ≈ θ) ∧ (ψ ≈ θ)), but the first and the

fourth disjuncts from this disjunction will not be the case due to (2);

that’s how we get to (19) by PC.
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• ((ϕ ∧ ϕ) ≈ (γ ∧ γ))→ (ϕ ≈ γ)

Proof.

(1) (ϕ ∧ ϕ) ≈ (γ ∧ γ) Assumption

(2) ϕ ≈ ϕ Ref

(3) (ϕ ≺ (ϕ ∧ ϕ)) ≈ (ϕ ≺ (γ ∧ γ)) IdSt2 2, 1

(4) (ϕ ≺ (ϕ ∧ ϕ) CG

(5) ϕ ≺ (γ ∧ γ) IdTr 3, 4

(6) (ϕ ≈ γ) ∨ (ϕ ≈ γ) CG 5

(7) ϕ ≈ γ PC 6

Proof (Theorem 3.4.1). To save space, I mainly focus on the non-factive

logic immediate ground (UNIG) and prove the validity of IG, CG, NDG

and NG as samples; I also prove TRGm as a sample for mediate grounding

principles. The rest of the principles and logics are done similarly, by

direct use of the definitions.

IG. For an arbitrary model M = (D⟨⟩, at, a), suppose on the contrary

that M ⊧ ϕ ≺ ϕ. Then Tat([[ϕ ≺ ϕ]]a) = 1, hence [[ϕ]]a < [[ϕ]]a. Let

[[ϕ]]a ∶= A. According to Definition 3.4.2 (Grounding Constituency),

the following constitute all the possible cases: (i) A = A ○○○ C or

A = C ○○○A for some C ∈ D⟨⟩; (ii) A = ¬¬¬A∗ and either A = ¬¬¬(A∗○○○C) or

A = ¬¬¬(C ○○○A∗) for some A∗,C ∈ D⟨⟩; (iii) A = ¬¬¬¬¬¬A. All these cases

are impossible due to the unique readability of the propositions. In

other words, as was mentioned before (see footnote 10), since by
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Definition 3.4.1, our propositions are as structured as sentences, all

these five cases fail due to structural mismatch.

CG (⇐). For an arbitrary model M = (D⟨⟩, at, a), suppose M ⊧ ϕ ≈ ψ ∨

ϕ ≈ γ. Then M ⊧ ϕ ≈ ψ or M ⊧ ϕ ≈ γ. In the first case we

have Tat([[ϕ ≈ ψ]]a) ∶= Tat([[ϕ]]a ≈≈≈ [[ψ]]a) = 1, so [[ϕ]]a = [[ψ]]a,

thus [[ϕ ∧ γ]]a ∶= [[ϕ]]a ∧∧∧ [[γ]]a = [[ψ]]a ∧∧∧ [[γ]]a ∶= [[ψ ∧ γ]]a, and

hence [[ϕ]]a < [[ψ ∧ γ]]a, because [[ϕ]]a < [[ϕ ∧ ψ]]a. So, we have

Tat([[ϕ]]a ≺≺≺ [[ψ ∧ γ]]a) ∶= Tat([[ϕ ≺ ψ ∧ γ]]a) = 1. Similarly for the

second case. So, in either case we have M ⊧ ϕ ≺ (ψ ∧ γ). 2

CG (⇒). For an arbitrary model M , suppose M ⊧ ϕ ≺ (ψ ∧ γ). Then we have

[[ϕ]]a < [[ψ∧γ]]a. By Definition 3.4.2, one of the following must hold:

(i) [[ψ]]a ∧∧∧ [[γ]]a = [[ϕ]]a ○○○B or [[ψ]]a ∧∧∧ [[γ]]a = B ○○○ [[ϕ]]a, for some

○○○ ∈ {∧∧∧,∨∨∨} and B ∈ D⟨⟩; (ii) [[ϕ]]a = ¬¬¬A∗ and either [[ψ]]a ∧∧∧ [[γ]]a =

¬¬¬(A∗ ○○○B∗) or [[ψ]]a ∧∧∧ [[γ]]a = ¬¬¬(B∗ ○○○A∗), for some ○○○ ∈ {∧∧∧,∨∨∨} and

A∗,B∗ ∈ D⟨⟩; (iii) [[ψ]]a ∧∧∧ [[γ]]a = ¬¬¬¬¬¬[[ϕ]]a. All options packed

in (ii) and (iii) are immediately ruled out by the corresponding

propositional non-identities due to structural differences. That

leaves us with (i). Again, the only possible identity for (i) is when

○○○ = ∧∧∧. It follows that either [[ψ]]a = [[ϕ]]a or [[γ]]a = [[ϕ]]a. Hence

M ⊧ ψ ≈ ϕ ∨ γ ≈ ϕ.

NDG (⇒). For an arbitrary modelM , supposeM ⊧ ϕ ≺ ¬(ψ∨γ). Then we have

[[ϕ]]a < ¬¬¬([[ψ]]a∨∨∨[[γ]]a). From all the possible cases of constituency,

only the following are structurally possible:

(iii) [[ϕ]]a = A∗ and ¬¬¬([[ψ]]a ∨∨∨ [[γ]]a) = ¬¬¬(A∗ ∨∨∨ C) for some
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A∗,C ∈ D⟨⟩,

(iv) [[ϕ]]a = A∗ and ¬¬¬([[ψ]]a ∨∨∨ [[γ]]a) = ¬¬¬(C ∨∨∨ A∗) for some

A∗,C ∈ D⟨⟩.

So either of these two can hold. Now, from the first one it follows

that [[ψ]]a = A∗, so [[¬ψ]]a ∶= ¬¬¬[[ψ]]a = ¬¬¬A∗ = [[ϕ]]a, and thus M ⊧

(ψ ≈ ¬ϕ). In a similar manner, from the second one it follows that

M ⊧ (γ ≈ ¬ϕ). As a result, it follows that M ⊧ (ψ ≈ ¬ϕ) ∨ (γ ≈ ¬ϕ).

NDG (⇐). This side holds because for any given assignment function a, we have

[[ϕ]]a < [[¬(ϕ ∨ γ)]]a and [[γ]]a < [[¬(ϕ ∨ γ)]]a.

NG (⇒). For an arbitrary model M , suppose M ⊧ ψ ≺ ¬¬ϕ. The only struc-

turally possible case is that ¬¬¬¬¬¬[[ψ]]a = ¬¬¬¬¬¬[[ϕ]]a, thus [[ψ]]a = [[ϕ]]a,

and hence M ⊧ (ψ ≈ ϕ).

NG (⇐). This side holds, because [[ϕ]]a < ¬¬¬¬¬¬[[ϕ]]a for any assignment a.

TRGm. The aim is to show M ⊧ ((ϕ ≺m ψ) ∧ (ψ ≺m θ)) → ϕ ≺m θ for

an arbitrary model M = (D⟨⟩, at, a). That is, we need to show

that if M ⊧ ((ϕ ≺m ψ) ∧ (ψ ≺m θ)), then M ⊧ ϕ ≺m θ. Suppose

M ⊧ ((ϕ ≺m ψ) ∧ (ψ ≺m θ)). It follows that M ⊧ ϕ ≺m ψ and

M ⊧ ψ ≺m θ. From the first relation it follows that [[ϕ]]a <∗ [[ψ]]a,

where <∗ is the transitive closure of the grounding constituency

relation <; from the second it follows that [[ψ]]a <∗ [[θ]]a. Since <∗

is a transitive closure, it follows that [[ϕ]]a <∗ [[θ]]a (see Footnote

14), which means that M ⊧ ϕ ≺m θ.
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To prove Theorem 3.4.2, we need the following lemma:

Lemma. If a∗ ∶ AT → D⟨⟩ is the assignment function such that a∗(pi) = Pi,

the induced interpretation function [[.]]a∗ ∶ L→ D⟨⟩ is one to one.

Proof. Induction on the structure of propositions in D⟨⟩ (surjection) and

on the structure of formulas in L (injection).

We call the assignment function described in the lemma straightforward.

Proof (Theorem 3.4.2). (i) Suppose ⊧ ϕ ≺ ψ. Then [[ϕ]]a < [[ψ]]a for

every assignment function a. Consider, in particular, the straightforward

assignment function a∗. By Definition 3.4.2 there are 5 possible general

cases. We only prove the claim for one of them; the rest are proved

similarly, using the fact that a∗ is 1-1 function.

[[ψ]]a∗ = [[ϕ]]a∗ ○○○ B or [[ψ]]a∗ = B ○○○ [[ϕ]]a∗ for some B ∈ D⟨⟩ and

○○○ ∈ {∧∧∧,∨∨∨}. Consider the first case. By Lemma, B = [[γ]]a∗ for

some γ ∈ L. So we have [[ϕ]]a∗ ○○○ B = [[ϕ]]a∗ ○○○ [[γ]]a∗ , and hence

[[ψ]]a∗ = [[ϕ]]a∗ ○○○ [[γ]]a∗ = [[ϕ ○ γ]]a∗ . Since a injective (Lemma), we

have it that ψ is syntactically identical to ϕ ○ γ, hence by Ref,

we have ⊢ ψ ≈ ϕ ○ γ. Now, since by CG and DG (depending on

the choice of ○) we have ⊢ ϕ ≺ (ϕ ○ γ), it follows by Str1 that

⊢ ϕ ≺ (ϕ ○ γ) ≈ ϕ ≺ ψ. From propositional calculus (PC) and Str1

it follows that ⊢ ϕ ≺ ψ. 2

(iii) Suppose ⊧ ϕ ≺m ψ. Then [[ϕ]]a <∗ [[ψ]]a for every assignment

function a. So for every assignment a there are propositions A1,A2, ...An ∈

D⟨⟩ such that [[ϕ]]a < A1 < A2 < ... < An < [[ψ]]a. Now, consider the
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straightforward assignment function a∗. Due to Lemma, for each i = 1, ..., n,

we have Ai = [[γi]]a∗ for some formula γi. Thus our ‘chain’ of immediate

grounding relations turns into [[ϕ]]a∗ < [[γ1]]a∗ < [[γ2]]a∗ < ... < [[γn]]a∗ <

[[ψ]]a∗ . From the proof of case (i) above, we have ⊢ ϕ ≺ γ1, ⊢ γ1 ≺ γ2, ...,

⊢ γn ≺ ψ. By multiple applications of the transitivity schema (TRGm) and

modus ponens (MP), we obtain ⊢ ϕ ≺ ψ.

Proof (Theorem 3.5.1). Straightforward. I only prove the left-to-right

of CoG. For an arbitrary (extended) model M , suppose that M ⊧ γ ≺

(ϕ → ψ). Then we have [[γ]]a < [[ϕ → ψ]]a ∶= [[ϕ]]a →→→ [[ψ]]a. Given

the extended definition of grounding constituency and the sentence-like

structure of propositions, the only possible cases here are the following:

(i) [[γ]]a = ¬¬¬A∗ and [[ϕ]]a→→→ [[ψ]]a = A∗→→→C for some A∗,C ∈ D⟨⟩, which

results in [[γ]]a = ¬¬¬[[ϕ]]a, or (ii) [[ϕ]]a→→→[[ψ]]a = C→→→[[γ]]a for some C ∈ D⟨⟩,

which entails [[γ]]a = [[ψ]]a. Thus either of the identities [[γ]]a = [[¬ϕ]]a

and [[γ]]a = [[ψ]]a holds, hence M ⊧ γ ≈ ¬ϕ ∨ γ ≈ ψ.
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Chapter 4

Entity Grounding, Structure

and Ramification

4.1 Introduction

The literature on metaphysical ground often conceives the relation of

grounding as only concerning facts or fact-like entities that hold ‘in virtue

of’ other such entities, manifesting the idea that the latter ‘explain’ or

are ‘more fundamental’ than the former (see, e.g., Fine, 2012a; Rosen,

2010; Audi, 2012, for such construals of ground). A few exceptions

to this tradition stand out, however, according to which entities of all

kinds, such as individuals, propositions, facts, properties and relations,

are capable of entering into grounding relations (as in, e.g., Schaffer,

2009; Wilhelm, 2020a; deRosset, 2013)—what is sometimes called ‘entity

grounding’ (Wilhelm, 2020a).

In this paper, I lay down and defend certain plausible principles of

entity grounding, along the lines of what’s been explicitly or implicitly
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entertained in the literature, and argue that they require propositions,

properties and other types of relations each to come in infinite levels,

where, roughly put, the inhabitants of higher levels are obtained through

quantification over the ones from lower levels. I then propose certain

ramified type systems that best capture the talk of entity grounding and

the infinitary hierarchies it calls for. The ultimate goal of this paper is to

argue that certain considerations regarding entity grounding and structure

call for infinitary hierarchies of relational entities such as propositions and

properties, and to rigorously devise a ramified type system that captures

them.

Here’s how the paper is organized. In §4.2 I introduce the notion of

entity grounding and argue for some minimal principles that characterize

it. In §4.3 I argue that attempts in capturing the propositional fragment

of the talk of entity grounding naturally lead to the fragmentation of the

space of propositions into an infinite hierarchy of levels. §4.4 explicates

notions of structure and constituency for relational entities and argues for

stratification of all relational types. In §4.5 I introduce a general ramified

type system motivated by discussions taking place in the preceding sections.

The paper concludes in §4.6.

4.2 Entity Grounding and Its Principles

In this section, I introduce the notion of entity grounding and lay down

some plausible principles that characterize it. The next two sections will

utilize these principles and argue for the fragmentation of propositions, as

well as other relational entities, into certain infinitary hierarchies of levels
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that are best captured by ramified type systems.

Entity grounding (hereafter: e-grounding) is a relation of metaphysical

priority that can hold between entities of any type. An individual may

e-ground a proposition or fact, a proposition may e-ground a property, a

property may e-ground a relation or a proposition, and so on. To illustrate

with examples along the lines of the literature: ‘[for any entity i,] i = i

is grounded in i’ (Wilhelm, 2020a), ‘Obama, the man in full, grounds

the fact that Obama exists; Obama grounds his singleton; the property

being white grounds being white or square; England grounds (in part) the

property of being queen of England ’ (deRosset, 2013).1

The examples above, and many more in the literature, highlight an

implicit or explicit sense of structural complexity that statements of e-

grounding exhibit. Thus, correctly saying that a e-grounds b reflects

the fact that a is, as it were, a ‘building block’ of b, or b is somehow

‘constructed’ in part from a.2 It is this construction, it would seem, that

1Traces of the idea that Russell’s ramified type theory can be motivated by a sense
of ‘construction’, and the relation of this to vicious circle principles, can be found in
Gödel (1944) and Quine (1963), though the resolution there is that only a constructivist
worldview, according to which, e.g., mathematical entities are pure constructions of
mind, can accommodate ramified types (see, e.g., Gödel, 1944, p. 456). However,
Jung (1999) and Hylton (2008) argue through textual evidence that Russell’s notion
of ‘presupposition’ does exactly carry the relevant sense of construction, though in a
completely realist background. My notion of entity grounding is, in fact, motivated
by and close kin of Russell’s ‘presupposition’, and most of the principles applying to
the former (as introduced below) correspond to similar principles governing the latter
(as laid down in the references above). However, unlike entity grounding, Russell’s
‘presuppositions’ aren’t given primitively, and in fact are closer in nature to naive,
‘modal-existential’ conceptions of ontological dependence which have been heavily
criticized in the recent literature (see, e.g., Fine, 1995). Another difference is our
departure from Russell’s rather contentious assumptions on the nature of propositional
functions and how they’re related to presuppositions (see Hylton, 2008, for a discussion
of the latter). In what follows I will not address these historical remarks due to the
scope limits of the paper

2One might think the talk of ‘building blocks’ presupposes some sense of unique
decomposition of entities into parts—the parts that constitute them, as it were—and
that there might be more than one way to decompose a relational entity into parts,
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puts a prior to b in a metaphysical sense. We will explicate the sense of

construction at stake further, along the way.3

We mentioned that e-grounding is a relation of metaphysical priority.

One might wonder at the outset whether the notion of e-grounding is the

same as that of fact grounding (henceforth: f-grounding). But while there

are an infinitude of f-grounding examples that also establish instances

of e-grounding (for instance, a conjunctive fact is both f-grounded and

e-grounded by its conjuncts; more examples will become evident as we

further explore e-grounding), these relations are not the same. The

most straightforward reason for this is that, as was mentioned earlier,

f-grounding, as opposed to e-grounding, is much more restricted in its

scope, being only concerned with entities like propositions and facts.4

Also, and as it will become clear along the way, even if one narrows down

the scope of e-grounding to fact-like entities, the notion does not have

anything to do with the truth of the entities involved, but rather, somehow

with their structural complexity.

In what follows, I will argue for some plausible principles that charac-

terize the notion of e-grounding.5 We start by taking, along with Schaffer

much like there are many ways to cut a sphere into two hemispheres. While it well
might be so, the assumption of either a unique or plural decomposition of entities into
constituents would seem to serve our purposes in this paper equally well; in effect, we
can run our arguments for those decompositions that are relevant to our purposes.

3It is to be noted that while in this paper we mostly take interest in and focus on
structurally related entities in our explication of e-grounding, some of the examples
in the literature may not necessarily carry that sense. For instance, according to
Schaffer (2009), a Swiss cheese grounds its holes, or natural properties ground moral
properties. Whether or not such examples can count as instances of true e-grounding
statements, we find the ‘constructional’ intuition behind e-grounding plausible and
somewhat crucial in the discussions to follow.

4That said, however, it’s not at all obvious whether or not f-grounding is a special
kind of e-grounding. We will return to this point when we introduce the e-grounding
principle S, blow.

5As we will see, most of these principles are either explicitly or implicitly, and
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(2009), the notion of e-grounding as a primitive, that is not analyzable

in terms of any other notions. Also, following Schaffer (2009); deRosset

(2013), I take the relation of e-grounding to be transitive and irreflexive

(hence a strict order).

Thus we have our first two principles:

• Nothing e-grounds itself. IR

• If a e-grounds b and b e-grounds c, then a e-grounds c. TR

These requirements are especially natural when, as suggested earlier, we

come to think about the relation as somehow measuring the ‘constructional’

profile of entities. Surely nothing is a ‘building block’ of itself. Also, if a

is a ‘building block’ of b, and b is itself a ‘building block’ of yet another

thing c, then there is a sense in which a is a ‘building block’ of c.

Another principle that we would like to entertain is along the lines

of this: propositions, properties and relations are e-grounded by their

constituents, assuming that a suitable sense of relational constituency is in

place. For instance, the proposition that Joe drinks soda is e-grounded by

Joe, and the property of drinking soda, and the property of being friends

with Geoff is e-grounded by Geoff and the relation of friendship. As the

examples from the beginning of the section show, assumptions similar to

this can also be found, in implicit or explicit forms, in the literature.

We would like to entertain a principle along these lines, but since

one of the goals of this paper is to rigorously account for the talk of

in part or fully entertained by other authors in the literature, and otherwise quite
naturally build upon them. At the end of the paper, we will also mention a few works
where wider applications of entity grounding in metaphysics, particularly its power to
settle a wide range of puzzles of ground and grain, are explored. The results in this
paper, however, in no way depend on those, and this paper can be read independently.
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e-grounding in suitable formal languages, it would be desirable to recover

the constituents of propositions, properties or relations, from the syntactic

structure of the expressions that refer to them. That is, first we would

like to find a suitable notion of constituency for relational entities in our

formal language that captures our intuitions about the constituency of

relational entities (which we rigorously will at §5); once we have such a

notion pinned down, our principle will be as follows:

• Entities picked by expressions are e-grounded by the things that are

picked by the constituents of those expressions. S

Thus, for instance, we would like to say that the proposition Joe is sleeping

is e-grounded by Joe and the property of sleeping because the sentence

expressing that proposition—‘Joe is sleeping’—has as constituents the

name ‘Joe’ and the predicate ‘is sleeping’.

Some qualifications about S, and in particular its propositional frag-

ment, are in order. First, notice that in S we’re not taking the e-grounds

of an entity to consist only of the things denoted by its constitutive expres-

sions. (Call the version of S that does so the strong variant.) We’re only

including those things in the list of entities that e-ground the proposition,

but we are open, and in many cases, obligated to, allowing for more things

to count as e-grounds of the proposition. (Call the more liberal version of

S the weak variant.) We will return to the importance of this choice after

we introduce our next principle.

Second, consider the propositional instance of S, according to which

propositions are e-grounded by the denotations of the expressions which

constitute the sentences expressing them. This principle, in either of its
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strong or weak readings, clearly imposes some structure on propositions.

But how much structure do we really need for this to go through? The

most granular account of propositions available in the literature takes

propositions to almost exactly reflect the syntactic structure of the sen-

tences that express them, in a way that two propositions F (a) and G(b)

are the same only if F and G are the same, and a and b are the same;

call this identity condition Structure (see, e.g., Kaplan, 1977; Soames,

1987; Russell, 1903; King, 1996, 2009, for such structured accounts of

propositions). But endorsing the weak variant of S doesn’t necessarily lead

to Structure. For consider the pair of propositions Sarah lives in LA or

John is happy and John is happy or Sarah lives in LA. By Structure,

these two are different propositions (because Sarah lives in LA and John

is happy are different propositions), but by S, they have the same grounds;

there’s nothing else that tells us whether or not they are identical.6 So as

long as we adopt the weak variant of S, we don’t need to endorse highly

structured accounts of propositions along the lines of Structure.7

That said, however, even weak S would presumably require enough

6This is best explained by a categorematic reading of connectives, as is the common
reading in the literature in higher-order metaphysics (see, e.g., Bacon, 2018), where ‘and’
denotes a binary relation that takes propositions as arguments. A syncategorematic
approach can also be accommodated by Structure.

7On the other hand, it can be readily seen that the strong variant of S leads to the
highly granular picture of propositions manifested by Structure. For by strong S,
F (a) is e-grounded only by a and F , and G(b) is e-grounded only by b and G. Now,
if F (a) and G(b) are the same, they should have the same grounds; in particular,
F (a) also only has b and G as its grounds. It then follows that {a,F} = {b,G}, which,
only plausibly results in F being G, and a being b. (Other possibilities manifest type
mismatch in any language where predicates and names are considered as members of
different syntactic categories.) Now, it can be shown that Structure is inconsistent
with simple type theory due to the Russell and Myhill paradox (Myhill, 1958; Russell,
1903; Hodes, 2015; Uzquiano, 2015; Goodman, 2016). But even so, we can still argue
that Structure since it is consistent with the ramified type system which we will
eventually adopt in this paper. A rigorous consistency proof is yet to be found; a step
towards a proof can be found in Kiani (MSd).
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structure that coarse-grained views of propositions, such as Booleanism

(Dorr, 2016; Bacon, 2018), would become difficult to maintain. For ex-

ample, according to Booleanism, the sentence ‘John is happy’ and its

self-conjunction, ‘John is happy and John is happy’, express the same

proposition because they’re provably equivalent, but under any plausible

sense of syntactic constituency, the former sentence is a constituent of

the latter, so, by S, the proposition expressed by the latter is e-grounded

by the one expressed by the former, hence they have to be distinct due

to IR. This is one of the major conflicts of our project and some of the

rival views in recent metaphysics, where such coarse-grained accounts of

propositions stand out.8

So, if the instances of S that concern propositions are true, then

propositions cannot be too coarse-grained. That said, however, we will see

in the next two sections that it’s still possible to argue that propositions,

properties and relations have to come in levels, even if propositions aren’t

structured at all. In fact, in §5 we will see that it’s only essential for

non-propositional types of relational entities to be structured in certain

ways, for ramification to go through unless certain assumptions regarding

quantificational statements are in place (more on this shortly). In any

case, we find the propositional instances of S plausible, and in the rest

of the paper, we put them out in the open and leave it to the reader to

choose whether or not to accept it. We will revisit and discuss this choice

and its implications later in the paper.

8Another related conflict consists in the type systems that we use: while views
like Booleanism extract metaphysics from simple type systems, we cannot capture the
talk of entity grounding within such systems (as this paper shows) and have to deploy
ramified type systems, in the end.
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Finally, earlier we argued that due to scope differences, f-grounding

and e-grounding cannot be identified. But we also brought up the natural

question of whether or not f-grounding can be considered as an instance

of e-grounding. Our principle S answers to this negatively. Consider again

the fact that John is happy. Assuming that John is happy is a constituent

of John is not happy, from S it follows that the former e-grounds the

latter. But of course, we can’t say the same thing about f-grounding, not

at least under a factive conception of f-grounding, according to which the

relata of grounding statements should be true.9,10

The final assumption that we make about e-grounding is this:

• Quantificational propositions are e-grounded by all the entities they

non-vacuously quantify over. Q

For example, consider the proposition every individual is self-identical.

By Q this proposition is e-grounded by every individual. On the other

hand, we don’t want to say that every property of individuals is such

that Mike lives in Chicago is e-grounded by every property of individuals.

9Accordingly, non-factive grounding might have a different status in this regard, and
in fact, be a special kind of e-grounding. See Fine (2012a) for more on the distinction
between factive and none-factive grounding.

10This example also elaborates on another distinction between fact grounding and
entity grounding, in that the former, as is standardly assumed, seems to depict an
‘explanation’ element between facts, where a fact grounding another in certain ways
‘explains’ it. On the other hand, entity grounding, if understood as a reflection of
explanation, could lead to the counter-intuitive result that a fact explains its negation.
This is why despite the temptation we shouldn’t try hard to understand entity grounding
relations as depicting some sort of explanatory element (not to mention that such
reading wouldn’t make much sense when it comes to non-fact entities such as properties
and relations). The better intuition seems to be along the lines of ‘construction’, as
the examples suggest. Another potential reading of e-grounding is along the lines of
essentialist or definitional ‘dependence’, where certain entities depend on certain others
via their essences etc. While this reading seems plausible and particularly rooted in
Russell’s realist original motivations of ramified type theory, I won’t investigate this
reading here.
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There’s a sense in which Mike lives in Chicago in no way uses every

property of individuals as a ‘building block’. For instance, the property

of jumping off a cliff seems to play no contribution in the construction of

the proposition in question. This is why it’s important to assure that Q

concerns non-vacuous quantification.

A natural way to motivate Q is via construing universal and existential

quantification as ‘long’, possibly infinite conjunctions and disjunctions,

respectively. In that case, Q will become a special case of a more general

version of S, where structured propositions with infinite constituents are

allowed.11

Notice, however, that such construals aren’t necessary for committing

to Q. It just seems quite natural and intuitive to think of, e.g., universal

quantification as somehow built out of the things it quantifies over, even if

it’s not construed as a conjunction. Phenomena like this, where an entity

that uses up, as it were, all of a kind in its construction falls out of the

range of the things it uses, aren’t unheard of. Set theory is a good source

of such examples. For instance assuming that A is a set, the singleton {A},

which, in a way is ‘constructed’ out of A with a set-formation operation,

doesn’t belong to A.12

As another example, consider the way ordinal numbers are constructed in

11The idea of reducing quantificational sentences to infinitary conjunctions or
disjunctions goes back to the school of logical atomism (see, e.g., Russell, 1918, lecture
5, for an early objection to the idea). For some recent discussions of the problems such
construals face, in particular, what’s known as the ‘totality problem’, see Fine (2012a,
2017c). Throughout the paper, we sometimes make such reductionist assumptions about
quantification, but mainly heuristically; there are, however, ways to make rigorous
these assumptions. See the relevant remark at the end of Section 5, for more on this
comparison.

12This is a particularly suggestive example because singletons are canonically taken
to be e-grounded by their elements (deRosset, 2013; Schaffer, 2009). See Fine (1995)
for a similar view regarding the ontological dependence of singletons on their elements.

107



4. Entity Grounding, Structure and Ramification

set theory: ω is constructed through a union over all natural numbers, and

itself falls out of their realm; ω+ω is constructed by consuming all ordinals

of the form ω + i, for natural i, and itself falls out of them, and so on.

This hierarchical construction of transfinite ordinals by unioning over all

numbers beneath them needn’t be cashed out in terms of ‘infinitary sums’;

it is an independently plausible and useful construction. Yet another rich

source of such objects is category theory. In general accessible categories

are (possibly) large categories that are in a certain way constructed by

small categories; e.g., the objects of the former are colimits of small objects

from the latter and fall out of their range.13

In any case, now that we have introduced Q, we’re also in a position

to see why we chose the weak variant of S over its strong variant: this is

mandated upon us by Q. For example, by Q, every individual e-grounds

the proposition some individual is distinct from John. Now, it follows, for

instance, that Sarah e-grounds some individual is distinct from John, but

Sarah is not picked by any of the syntactic constituents of the sentence,

‘Some individual is distinct from John’. That said, however, if take Q as

an instance of S, then we end up committing to strong S.

To conclude the section, here’s a summary of the list of our principles

of e-grounding:

1. Nothing e-grounds itself. IR

2. If a e-grounds b and b e-grounds c, then a e-grounds c. TR

3. Entities denoted by expressions are e-grounded by the things that are

picked by the constituents of those expressions. S

13See, e.g., Adamek and Rosicky (1994) for an introduction to accessible categories.

108



4. Entity Grounding, Structure and Ramification

4. Quantificational propositions are e-grounded by all the entities they

non-vacuously quantify over. Q

4.3 Ramifying Propositions

I now argue that for the principles of e-grounding to be accommodated

we need an infinite hierarchy of propositions, where, roughly put, tenants

of each level are obtained through quantification from those of the lower

levels. In line with this, we develop a formal language and logic that

capture such a stratified universe of propositions as well as the talk of

e-grounding based upon it.

We start with a simple, informal argument showing that our principles,

in fact, two of them, lead to an inconsistency. Then we argue that the

particular inconsistency involved is most naturally and efficiently resolved

if there are at least two kinds of propositions, where the members of the

second kind are obtained through quantification over all the members

of the first kind. Ensuing arguments suggest that there must at least

three kinds of hierarchical propositions, at least four kinds, ..., and for

any natural number n, at least n kinds of them. In general, we will

soon realize that the principles of e-grounding are most naturally and

efficiently captured, without running into those generic inconsistencies, if

propositions come in an infinite hierarchy of levels as described above.

Throughout this section, we focus only on the propositional fragment

of the principles above—instances that are concerned with the relation of e-

grounding between propositions. By doing so we can pinpoint the issues at

stake in a setting where there aren’t many types of entities available. Not
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only this avoids certain heavy-handed metaphysical commitments to all

sorts of higher-order entities, but it also helps us to see in the clearest way

why we need propositions to come in a ramified hierarchy, without being

distracted by other entities and the structural complexities associated

with them. Moreover, as we will see, capturing the propositional fragment

is considerably easier when it comes to developing formal languages and

logics for e-grounding. The next section will look up to this section as a

role model and argue for stratifying other relational types into infinitary

levels.

Before we start, there’s an important methodological remark that

needs to be explicated. Throughout this section, as well as the rest of the

paper, we assume that the principles of e-grounding from the previous

section articulate substantive constraints on e-grounding that we aim not

to abandon. In other words, we take these principles true by stipulation

and set out to explore their implications as well as the formal systems

that can capture them. Aside from the plausibility and naturality of the

principles, which we discussed in the previous section, it is this loyalty that,

as we will see shortly, quite naturally leads to hierarchical propositions,

and later on, other relational entities in a way that is best captured by

ramified type systems. On the other hand, and as has been advertised

several times, the latter is what provides a unified and natural solution to a

cluster of puzzles and paradoxes of ground and grain. The intuitive appeal

of our principles, espoused with other abductive, large-scale considerations

surrounding them, gives us enough confidence to hold onto these principles

as much as possible.

With this methodological remark out of the way, we now offer a series
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of arguments to the effect that there must be infinitely many kinds of

propositions that behave in the way explained earlier. The arguments

here are informal; a formalization of the talk propositional e-grounding

and the arguments here will follow later in the section.

We first start by giving an informal presentation of a paradox that

arises from our principles of e-grounding. By Q, any proposition p which

states that every proposition is such and such (e.g., is true or false) is

e-grounded by every proposition. So p cannot be among the propositions

in its range of quantification, otherwise, contradiction ensues by IR. So the

range of quantification in p consists of all propositions, and yet p cannot

belong to it, hence contradiction.

There are two choice options in response to this argument: (i) at

least one of IR or Q is false, or (ii) there is no such proposition as all

propositions are such and such, or rather, p doesn’t express any proposition.

In line with the methodological remark above, we avoid option (i). But

option (ii), with no further explanation attached to it, doesn’t sound

satisfactory either: the sentence ‘Every proposition is such and such’

supposedly denotes something. In fact, anyone who commits to second-

order quantification as a reliable source for doing metaphysics would admit

that p expresses a proposition (e.g., Williamson, 2013; Fine, 1970; Kaplan,

1970). So, something needs to fill in the gap if p is taken not to be express

a proposition.

To get around this tension, we could posit certain new types of en-

tities that behave very much like the good old propositions but aren’t

propositions, strictly speaking. That is, in line with option (ii), we take it

that p doesn’t denote to a proposition, but it does denote to something
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akin to a proposition, only more sensitive, in its nature, to quantification.

So, there should be at least two kinds of proposition-like entities, one of

which is obtained by quantification over all members of the other. Call

the latter level-1, and the former level-2 propositions. These namings

seem appropriate: as we will see later, leveled propositions interact with

each other, and exhibit truth-functional behaviors very similar to how the

good old propositions do. In fact, leveled propositions together will play

the theoretical roles that propositions are supposed to play alone, but (it

would seem) also accommodate the talk of e-grounding, without running

into inconsistencies. In light of this, if one still insists on keeping the term

‘proposition’ in their metaphysical vocabulary, one can then take the term

to ambiguously refer to either level-1 or level-2 propositions.

This segregation also gains support from our intuitions about the

notion of e-grounding in terms of ‘construction’ and the constructional

profile of entities: if a e-grounds b, then a is, in a sense, a ‘building block’

of b. In particular, we took quantificational propositions to be ‘constructed’

out of the things they quantify over. By considering ∀qq as a member

of the collection that it ranges over, however, we’d be treating ∀qq as

if it’s one of its own ‘building blocks,’ which doesn’t sit well with that

intuition.14

14Another helpful way to see the issue at stake is to revisit our heuristic way of
construing universal quantifications as infinitary conjunctions (similarly for existential
quantifications construed as infinitary disjunctions). Suppose ∀pϕ is just a ‘long’,
infinitary conjunction ϕ(ψ) ∧ ϕ(γ) ∧ ... in a language with infinitary conjunctions
and enough constants for all propositions. Then, in general, instantiating a universal
statement ∀pϕ with itself will amount to considering the long conjunction ϕ(ψ)∧ϕ(γ)∧...
as one of its own conjuncts. Under a sufficiently structured view of propositions, which
is presupposed by our principle S, it’s no more appropriate to consider the ‘long’
conjunction as one of its own conjuncts than it is to take the ‘short’ conjunction ϕ ∧ ψ
as one of its own conjuncts.
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But the satisfaction that a bi-level account of propositions brings is

only temporary. For we can similarly argue that there are at least three

kinds of propositions. Suppose, on the contrary, that there are exactly

two kinds of propositions, level-1 and level-2 propositions, as described

above. Suppose also that Q is naturally revised for the new propositions:

propositions that quantify over level-i propositions are e-grounded by all

level-i propositions (where i = 1, 2). Given our assumption, the proposition

p that every level-2 proposition is such and such should be either of level

1 or 2. Also, by Q, p is e-grounded by all level-2 propositions. Now,

suppose p is of level 1. But since at least one level-2 proposition q (e.g.,

the proposition that all level-1 propositions are true or false) is e-grounded

by all level-1 propositions, the proposition q must also be e-grounded by

p. By TR, p e-grounds itself, which goes against IR. And if p is of level

2, then again it e-grounds itself. So p must be denoting a third kind of

entity that’s akin to leveled propositions, but isn’t one of them; though

it’s obtained from level-2 propositions via quantification. Call this new,

proposition-like entity a level-3 proposition.

This line of argument clearly can be generalized to the effect that there

are at least four, five, ..., n levels of propositions, for any natural number

n, that behave expectedly, as explained above. So there must be infinitely

many levels of propositions with the expected hierarchical construction.

Notice that, given the similar e-grounding behavior of existential and

universal propositions (both being e-grounded by the things they quantify

over), similar arguments can be given, using existential propositions, to

the effect that propositions have to come in levels.

In the rest of this section, we aim at crafting formal languages that
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rigorously capture the propositional fragment of the talk of e-grounding

and the arguments above.15 Our starting point is the simple language

of second-order logic, where quantification over propositions (construed

as nullary predicates) is permitted. Formal languages that allow for

quantification into sentential position appear in a number of places in

philosophy, none of which have anything to do with notions of metaphysical

priority such as e-grounding (see Fine, 1970; Kaplan, 1970; Williamson,

2013, for some works along these lines). We, in particular, will be working

with a further impoverished language with propositional quantification,

where no first-order entities (i.e., individuals) play any role. So the only

instances of structured propositions are going to be Boolean combinations

of propositions, or when we add an operator for e-grounding, propositions

that say of e-grounding relations that hold between propositions; no

(non-nullary) predicates are available in the present language.

So, let L1 be the language of propositional logic with the addition

of propositional variables p, q, r... and universal quantification over them.

We assume that formulas are closed under Boolean connectives and, for

the sake of simplicity, that our language doesn’t have any non-logical

constants. Here’s the abstract syntax of L1 in Backus–Naur form:

L1 ∶∶= p ∣¬ϕ ∣ϕ ○ ψ ∣∀pϕ ∣∃pϕ, where ○ ∈ {→,↔,∨,∧}16

15The approach employed here is somewhat similar in spirit to the way Fritz (MS)
motivates, in a step-by-step manner, simple type theory as a way of capturing some
plausible talk of properties in English. What we will be doing, instead, is to motivate
certain formal languages, also in a step-by-step manner, that aim at capturing our talk
of e-grounding. There’s a slight difference in our approaches, though: Fritz (MS) works
with a more abstract sense of language, where he fixates upon certain desiderata that
his desired languages need to satisfy. We, on the other hand, start with some concrete
examples of languages that already exist in the literature and have gained traction by
some philosophers and start improving upon them, step by step.

16In this paper we assume that all Boolean and quantified statements come as
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Each legal term of this language is called a formula. Free and bound

variables are defined in the usual way, and represent the set of all free

variables of a formula ϕ with FV (ϕ). A formula with no free variable is

called a sentence.

Proof System ⊢L1:

Axioms:

1. Axioms of propositional logic PC

2. ∀pϕ→ ϕ[ψ/p] UI

3. ϕ[ψ/p]→ ∃pϕ EG

4. ∀p (ϕ→ ψ)→ (ϕ→ ∀pψ), where p ∉ FV (ϕ) UD

5. ∀p (ϕ→ ψ)→ (∃pϕ→ ψ), where p ∉ FV (ψ) ED

Inference Rules:

6 If ⊢ ϕ and ⊢ ϕ→ ψ, then ⊢ ψ MP

7 If ⊢ ϕ then ⊢ ∀pϕ UG

We add an entity grounding operator ≺≺ to L1, to be able to express

our desired principles of e-grounding in the extended language:

primitives, and not interdefined in terms of the other ones (e.g., defining ∧ in terms of
∨ and ¬). One reason for this is to remain maximally neutral about the nature and
granularity of logical connectives and quantifiers, without committing to any prejudices
about their granularity. Moreover, even though we keep our connectives insensitive to
the level of sentences in this section, this is mainly due to convenience; in later sections
we choose a categorematic approach to present the logical vocabulary (coming in the
form of constants, instead of clauses) and assign levels to them.
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L≺≺1 ∶∶= p ∣¬ϕ ∣ϕ ○ ψ ∣∀pϕ, where ○ ∈ {→,↔,∨,∧,≺≺}.

We can now express our informal principles of e-grounding from the

previous section in the language L≺≺1 .

Proof System ⊢L
≺≺

1 :

The extended proof system ⊢L
≺≺

1 is just ⊢L1 plus the following axioms:

1. (ϕ ≺≺ ψ ∧ ψ ≺≺ γ)→ ϕ ≺≺ γ TRp

2. ¬(ϕ ≺≺ ϕ) IRp

3. ϕ ≺≺ (ϕ ○ ψ) ∧ ψ ≺≺ (ϕ ○ ψ) ∧ (ϕ ≺≺ ¬ϕ), where ○ ∈ {→,↔,∨,∧,≺≺} Sp

4. ψ ≺≺ ∀pϕ ∧ ψ ≺≺ ∃pϕ, where p ∈ FV (ϕ) Qp

Notice that, in the statement of Sp, each choice of ○ amounts to a separate

schema of the logic; we have packed them all together only for convenience

and higher readability. Notice also that in all of the principles above, ϕ,ψ

and γ schematically stand for formulas.

We can now see rigorously where things go wrong in this system. (In

what follows, we replace the schematic ϕ with ∀q q.)

Theorem 4.3.1. ∅ ⊢L
≺≺

1 �

Proof.

(1) ∀q q ≺≺ ∀q q Qp

(2) ¬(∀q q ≺≺ ∀q q) IRp

(3) � PC 1, 2
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An immediate reaction to this contradiction is to undermine at least one

of the two principles of e-grounding that led to it, that is, IRp and Qp. But

remember the methodological remark from the beginning of the section:

we take our principles of e-grounding to articulate substantive constraints

on e-grounding that we should aim not to abandon. Instead, we try to find

suitable formal languages and logics that can accommodate them. In the

present case, we only started by assuming that L1, a relatively well-known

and simple language that seems suitable for our purposes, can do the job

when enriched with an e-grounding operator (hence the language L≺≺1 ),

and we faced an inconsistency using our minimal background logic. So,

we do not conclude that any of the principles of e-grounding involved are

false; rather, we question our choice of language in modeling the informal,

stipulatively endorsed IR and Q. But how do we improve on our languages?

Notice that Theorem 1 essentially formalizes the first informal paradox

that we proposed at the beginning of this section, in response to which

we posited two kinds of propositions—level-1 and level-2 propositions. An

improvement of the language that goes hand in hand with this solution,

therefore, is desirable. Since we have it that ∀q q expresses a level-2

proposition (obtained by quantification over all level-1 propositions), we

may impose a similar structure on the sentences of L1. More specifically,

if we assume that the sentential variable q is of level 1, then we can take

the level of the sentence ∀q q to be 2. Logical rules such as UI will need

to be revised accordingly, accommodating leveled sentences. As a result

of such level assignments to our sentences, we no longer will be able to

instantiate ∀q q, which ranges over all level-1 sentences, with itself, as it is

of level 2, and the proof of Theorem 1 breaks down in its second step.
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To accommodate all of this more rigorously in a formal setting, we

explicitly assign types to our sentences, along the lines of type theory.

In simple type theory (higher-order logic), it is a common practice to

distinguish different kinds of expressions by assigning to them types. For

example, individual terms are assigned type e, propositional terms type ⟨⟩,

and n-ary relational terms type ⟨t1, ..., tn⟩, where t1, ..., tn are themselves

types. For various reasons, however, we started our project with languages

that only have sentential types. That is, so far we have only worked with

terms of type ⟨⟩, so we didn’t need to write down the types of our terms.

But now we have found a basis for distinguishing two kinds of propositions

and sentences that correspond to them. On the other hand, if we hold

onto ⟨⟩ as the only symbol for types, we won’t be able to syntactically

distinguish sentences that stand for different levels of propositions.

So we extend our second-order language by adding a new sentential

type. More specifically, we now index the old sentential type with numbers

1 and 2 to explicitly indicate which kind of propositions they stand for. We

reserve the type ⟨⟩/2 for formulas that stand for level-2 propositions, i.e.,

ones that are ‘constructed from’ all members of the other kind propositions,

and ⟨⟩/1 for formulas that stand for the ‘building blocks’ of the former

kind of propositions. A corresponding revision of the proof system ⊢L1 is

also required. In particular, we replace UIp with two similar principles

UIi, one for each i, j ∈ {1,2}: ∀p⟨⟩/iϕj → ϕj[ψi/p], where ψi schematically

stands for any formula of level i. The logic ⊢L
≺≺

1 of e-grounding also needs

to be revised in such a way that leveled formulas are accommodated. In

particular Qp needs to be replaced by two parallel principles Qi, one for

each i, j ∈ {1,2}: ψj ≺≺ ∀q⟨⟩/i ϕj, where ϕj and ψj schematically stand for
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formulas of levels j and i, respectively.

Now, since we’re working with leveled formulas, it should be rigorously

decided by the syntax how the levels of Boolean and quantificational

formulas are determined by the level of their constituents. For example,

what is the level of the negation of a level-1 sentence, or the conjunction

of a level-1 and a level-2 sentence? We take any combination ϕ ○ ψ of two

leveled sentences ϕ and ψ to be of the maximum level of them. The reason

for this is that we motivated the talk of ‘levels’ directly via quantification:

for example, we took ∀p⟨⟩/1p to be of type ⟨⟩/2. So there’s no other way

for quantification to lift levels. As for quantified statements, we can say

that the type of ∀p⟨⟩/1ϕj , for a formula ϕj of level j, is of type ⟨⟩/max{2, j},

which is just ⟨⟩/2, where j ∈ {1,2}.

But what about formulas of the form ∀p⟨⟩/2ϕ, where we quantify over

level-2 sentences? For all we know at this stage, such formulas will have

to be either of level 1 or 2. But similar to before, it can be readily

verified that either of these options leads to inconsistencies like the one

above. Here’s why. (What follows is a more rigorous reconstruction of

the second informal argument that was given at the beginning of the

section.) Suppose, say, ∀p⟨⟩/2(p ∨ ¬p) is of level 2. Then since it quantifies

over all level-2 propositions, by Q2 it should be e-grounded by itself, which

contradicts irreflexivity. So ∀p⟨⟩/2(p ∨ ¬p) must be of level 1. But now on

the one hand, according to Q2, ∀p⟨⟩/2(p ∨ ¬p) is e-grounded by all level-2

propositions, and on the other hand, at least one of these propositions

(e.g., ∀p⟨⟩/1(p ∨ ¬p)) is, by Q1, itself e-grounded by all level-1 propositions,

including ∀p⟨⟩/2(p ∨ ¬p). By transitivity of e-grounding it follows that

∀p⟨⟩/2(p ∨ ¬p) e-grounds itself, which again contradicts irreflexivity.
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In line with the resolution of the informal, corresponding argument

at the beginning of the section, we posit a third kind of propositional

type to avoid the present inconsistencies. The syntax of the resulting

language, as well as the principles of the logic governing it, also need

revisions similar to the ones offered at the previous stage. It can easily be

seen that similar inconsistencies arise as before and that we need a fourth

kind of proposition-like entity to avoid the ensuing inconsistencies, and

so on. In general, as expected, this process goes on and on ad infinitum.

That is, at every level n, we are going to need to posit a sentential

type ⟨⟩/n+1 for level-n sentences. In general, continuing the process of

improving our languages and their logics leads to an infinite sequence

of language pairs L1,L≺≺1 ,L2,L
≺≺
2 ,L3,L

≺≺
3 , ... and corresponding logic pairs

⊢L1 ,⊢L
≺≺

1 ,⊢L2 ,⊢L
≺≺

2 ,⊢L3 ,⊢L
≺≺

3 , ..., all attempting to capture the notion of

e-grounding and its principles at a certain stage, but facing a familiar

inconsistency.

At this point, a minimal language L≺≺∞ and a corresponding proof

system ⊢L
≺≺

∞ that encompasses all the useful type distinctions and rules

that these languages had to offer, but without running into similar, generic

inconsistencies can be proposed here. I won’t introduce these here. Instead,

I leave this to Section 5, where I propose a much more general system

that captures not only these, but also systems designed to accommodate

similar e-ground considerations having to do with general relations, not

just propositions (see Systems R and G).

We conclude this section with an important remark concerning the

relationship between the principles Q and S. We mentioned earlier that

Q can be endorsed plausibly and independently from S. In other words,
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accepting Q doesn’t hinge on construing statements of quantification

as some ‘long’ Boolean sentences. If one is on board with us in this,

then one can be neutral about, or even against any structured picture of

propositions. But even if, for whatever reason, one accepts Q only as an

instance of S, we noticed in §3 that it’s still not necessary to commit to

highly granular propositions that are susceptible to paradoxes of grain,

such as the Russell-Myhill result. Either way, this puts those who reject

structured propositions based on such inconsistencies (e.g., Goodman,

2016; Uzquiano, 2015; Dorr, 2016) in an awkward position: they are now

offered independent reasons to admit a ramified reality, which, if they do,

they end up having access to the resources that allow for highly structured

propositions, as well.

In the next section, we will expand the scope of our project from the

propositional fragment of e-grounding to all that can be said about it.

Accordingly, we will expand our linguistic resources by adding, among

other things, variables and quantificational tools for individuals as well as

relational entities of different types and arities. In a similar way to this

section, we will also try to find appropriate languages that can capture

the talk of e-grounding and its logic.

4.4 Relational Structure and Ramification

We now extend the scope of our project by aiming at capturing the talk

of e-grounding in its entirety. In particular, we will allow for statements

of e-grounding that hold between entities of any pair of types: individuals

e-grounding properties, propositions e-grounding operators, relations and
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individuals grounding propositions, etc. We can argue that, as long as

properties and relations are properly structured, they should come in

infinitary hierarchies of levels. The argument is similar in its spirit to the

one from the previous section to the effect that propositions should come

in infinite levels. First, we assume in the background that properties and

other types of relations can have structure. For instance, it seems plausible

to say that the property of being loved by everyone has the relation of

loving as a constituent, or the property of being identical to Mike and

such that Mike has some property has both Mike and the proposition that

Mike has some property as a constituent.

Later in the section, we will propose a rigorous account of relational

structure and constituency, but for now, consider the latter property,

namely, being identical to Mike and such that Mike has some property. We

can argue that this property is e-grounded by itself. Here’s how: by S,

the property is e-grounded by its constituent proposition, Mike has some

property. On the other hand, by Q, that proposition itself is e-grounded by

all properties of individuals. So by TR, the property of being identical to

Mike and such that Mike has some property is e-grounded by all individual

properties, including itself, which goes against IR.

Similar to the case of the propositional fragment, and given our strong

commitment to the principles of e-grounding, it can be argued that the

most viable option to resolve this contradiction while retaining those

principles is to posit a new kind of individual properties whose inhabitants

are obtained through quantification over all members of the other kind.

The rest of the story is also similar to the one from before: we can run

analogous arguments to the effect that there has to be at least 3, at least
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4, and for any natural number n, at least n kinds of individual properties.

As before, and to make these kinds traceable, we assign levels to these

relations. Other relational entities can be argued to come in infinitary

hierarchies of levels.

Throughout the rest of this section, we will devise formal languages that

can rigorously express statements of e-grounding in their full generality and

capture the line of argument for segregating relational entities into infinitely

many levels. Now, while the spirit of the project here is quite similar to

the one from the previous section, the syntactic complexities involved are

considerably more complicated than the ones found there. In particular,

we will see that given the way many predicates are constructed via lambda

abstraction in higher-order languages, and certain complications attached

to free and bound variables in λ-terms, finding a notion of constituency that

properly and rigorously capture our intuitions of structure and constituency

for properties and relations is, by no count, a trivial task and deserves

special attention.

In what follows, we add variables and quantifiers of different types

into our language. In the previous section, we were only interested in

the propositional fragment of the talk of e-grounding, so we only focused

on propositional variables and quantifiers. But now we want to capture

everything that can be said about e-grounding. So, we add variables and

quantifiers for individuals, propositions and relations of different arities.

We start with types. Simple types provide a way of tracking the

grammatical categories of terms.17

17The type theories presented in this paper will be relational (as opposed to func-
tional). Also, for higher readability, the style of typing will by Church-typing (as
opposed to Curry-typing), where the types of variables are fixed and attached to
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Definition 4.4.1 (Simple Types). The set T s of simple types is recursively

defined as follows: e ∈ T s, and for any t0, ..., tn ∈ T s, ⟨t0, ..., tn⟩ ∈ T s.

When n = 0, the relational type is shown by ⟨⟩, which is the type of

propositions. We assume that for any t∈T s there’s a denumerably infinite

set of variables Vart of type t and a (possibly empty) set of typed constants

CSTt. We will reserve CSTt for the set of all constants of type t. We define

the sets of all variables and constants respectively as Var ∶= ⋃t∈T rVart and

Var ∶= ⋃t∈T rCSTt.

In the previous section, we introduced the logical statements of our

languages through clauses—what’s sometimes called a ‘syncategorematic’

representation of logical statements. For instance, in Definition 1 we took

it that whenever ϕ is a formula, then so is ¬ϕ (similarly for other connec-

tives and quantifiers). Introducing the logical vocabulary via clauses is

common in many textbooks and papers on logic, but there’s an alterna-

tive, categorematic approach that especially dominates the literature on

simple type theory (see, e.g., Church, 1940; Henkin, 1950; Mitchell, 1996;

Dorr, 2016). According to the alternative approach, logical connectives

and quantifiers are constants of certain types, and logical statements are

formed using a certain operation called application. For instance, we take

negation to be represented by a constant ¬ of type ⟨⟨⟩⟩, and a negative

statement like ¬ϕ to be a shorthand for application of the constant ¬ to

a term ϕ of the appropriate type ⟨⟩, which is shown by ¬(ϕ). (A similar

attitude can be taken for other connectives and quantifiers.) Below we

will discuss some of the advantages of treating the logical vocabulary

them as superscripts, instead of depending on ‘contexts’. Alternative formulations are
possible as well.
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categorematically, using typed constants.

In any case, here’s the list of our primitive, typed logical constants:

negation ¬ of type ⟨⟨⟩⟩, implication →, disjunction ∨ and conjunction ∧

each of type ⟨⟨⟩, ⟨⟩⟩, and for any type t, there is a constant =t for identities

between t-type entities and two constants for quantification, one for

(higher-order) universal quantifier ∀t and one for (higher-order) existential

quantifier ∃t, each being of type ⟨⟨t⟩⟩. Notice that our quantifier constants

apply to predicates of t-type entities, not those entities themselves. As

will become clear through the proof system, however, there won’t make

any difference in the truth-conditional behavior of the logical statements

in the constant-based and the clausal approach.

Definition 4.4.2 (Simple Terms). The terms of simple type theory (STT)

are recursively defined as follows: (i) if xt ∈ V art, then xt is a term of

type t; (ii) if c ∈ CST t, then c is a term of type t; (iii) if ϕ is a terms

of type ⟨⟩ and for n ≥ 1, the variables xt11 , ..., x
tn
n are pairwise distinct,

then λxt11 , ..., x
tn
n .ϕ is a term of type ⟨t1, ..., tn⟩; (iv) if τ is a term of type

⟨t1, ..., tn⟩, where n ≥ 1, and for each i = 1, ..., n, σi is a term of type ti,

then τ(σ1, ..., σn) is a term of type ⟨⟩.

The operations at (iii) and (iv) are called, application and abstraction,

respectively. We sometimes drop parentheses when no risk of ambiguity,

and write e.g., Fa instead of F (a). We call a term of type ⟨⟩ a formula,

and when it contains no free variables, a sentence. We use the letter t

with or without subscripts as metavariables for types, lower-case Greek

letters τ, σ, ϕ,ψ, ... with or without subscripts as metavariables for general

terms, and lower-case or capital English letters x, y, z, p, q,X,Y,Z,P,Q,
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with or without subscripts, as metavariables for variables. The notions

of free and bound variables of terms, substitutions of terms for variables,

and being free for a variable are defined as usual. We show the set of

free variables in a term σ by FV(σ). Also, the set of all terms of STT is

denoted by TERMs.

From now on, by convention, we write things like ϕ ∨ ψ or x = y

to indicate the application instances ∨(ϕ,ψ) or = (x, y), respectively.

Similarly, quantified statements of the forms ∀xtϕ and ∃xtϕ are now

construed as shorthands for application instances ∀t(λxt.ϕ) and ∃t(λxt.ϕ).

Before attending to the logic of our typed language, let’s briefly discuss

some of the advantages of our categorematic, constant-based approach to

logical statements. Not only this approach is more elegant than the alter-

native, syncategorematic approach, with fewer axioms or term-formation

rules in place and a unified way (i.e., application) to produce logical

statements, but it also has the metaphysical advantage of allowing us to

intelligibly ask certain questions and theorize about the granularity of the

logical connectives and quantifiers—an option that is not available to the

rival approach.

For instance, one could theorize about whether the operation of dis-

junction should be treated as a primitive relation or identified with truth-

functionally similar properties such as λpq.¬(¬p∧¬q) or λpq.(¬p→q). To

pre-theoretically settle this question is to prejudge matters of grain. But

more importantly, to be unable to even ask such questions rigorously

would be a loss of expressiveness. It is only the categorematic approach

that allows for expressing and defending any of the positions above. This,

in effect, constitutes our main reason to choose a categorematic vs. syn-
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categorematic treatment of logical statements in this paper.18

We now spell out the proof system for our simple type theory. In

what follows, expressions like σ̄i will stand for tuples like (σ1, ..., σn), and

[σ̄i/x̄i] stands for the simultaneous substitution of σi’s with x’s in τ .19

Also, in each case, it’s been assumed that the substitutants are free for

the substituent. Intuitively, that guarantees that (i) no bound variable is

allowed to be substituted (that is, the notion of substitution only applies

to free variables), and (ii) no free variable can get bound after substitution.

Proof System S:

Axioms:

1. Axioms of propositional logic PC

2. (λxt11 , ..., x
tn
n .ϕ)(σ̄i)↔ [σ̄i/x̄i]ϕ, where the type of σi is ti (i = 1, ..., n)

βE

3. ∀tF → Fσ, where F and σ are, respectively, of types ⟨t⟩ and t UI

4. Fσ → ∃tF , where F and σ are, respectively, of types ⟨t⟩ and t EG

5. ∀t(λxt.ϕ→Fx)→ (ϕ→ ∀tF ), where F is of type ⟨t⟩ and x ∉ FV (ϕ)

UD

18With that in mind, one can object to the categorematic approach by saying that,
in English, the talk of, e.g., identity, quantification and many other relations and logical
operators doesn’t seem to be bound to types—we seem to use the same locution of ‘is
identical to’ or ‘for all’ for most if not all claims regarding individual, properties and
relations. So, contra to the popular view, the thought goes, the categorematic might
fall short of capturing the talk of properties and quantifiers in English. See footnote 21
for a related discussion regarding the categorematic vs. syncategorematic treatment of
e-grounding statements, and a potential, novel reply to these sorts of objections.

19For a rigorous definition of substitution, see Mitchell (1996, p. 53). Mitchell’s
definition is given for functional type theory. Similar definitions can be given for
relational type theory.

127



4. Entity Grounding, Structure and Ramification

6. ∀t(λxt.Fx→ψ)→ (∃tF → ψ), where F is of type ⟨t⟩ and x ∉ FV (ψ)

ED

7. σ=tσ, where σ is of type t REF

8. σ=tτ → (Fσ→Fτ), where F is of type ⟨t⟩ LBZ

Rules of Inference:

9. If ⊢ ϕ and ⊢ ϕ→ ψ, then ⊢ ψ MP

10. If ⊢ Fxt, then ⊢ ∀tF , where F is of type ⟨t⟩ UG

Now that we have our primary language set up, we need to find a

way to rigorously define a suitable notion of syntactic constituency that

reflects the sense of constituency that we’ve seen earlier through examples

of structured properties and relations. In other words, we want a syntactic

criterion that, whenever applied to any relational term reveals the structure

of the thing denoted by the term.

For example, we want to find the constituents of the property of being

friends with Geoff by ‘scanning through’ the predicate that expresses it in

our language, namely λxe.F (x, g), where F is a constant standing for the

relation of friendship, and g is Geoff’s name. In this specific case, we want

to systematically recognize g and the F to be among the constituents of

the predicate, because that would reflect the fact that the property in

question has Geoff and the relation of friendship as a constituent. Such

rigorous syntactic specifications matter to us in particular due to the

way we have introduced our e-grounding principle S, as relying on the

syntax-semantics interplay. Recall that S, in its most general form, says
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that entities denoted by syntactic expressions are e-grounded by the things

picked by the constituents of those expressions.

In general, we take it that many properties and relations that are

expressible in our language by the lambda device are structured, and we

want to find a general way to specify their constituents through the λ-terms

that denote to them. But implementing the ideas of a structuredness and

constituency can be perplexing in the presence of λ. For example, even

though we may convincingly find the constituents of the property of being

friends with Geoff from the corresponding λ-term, λxe.F (x, g), it’s not

clear how we can pinpoint the constituents (if any) of the property of

having every property of individuals from its corresponding λ-term, i.e.,

the predicate λxe.∀Y ⟨e⟩Y (x). An immediate, though naive thought is to

take ∀Y ⟨e⟩Y (x) to be a constituent of that predicate. But that sentence

doesn’t express a unique proposition: depending on what value x takes by

an assignment function, it expresses a different proposition.

In general, it’s not clear what’s the contribution of abstraction or free

and bound variables involved in the determination of the constituency of

λ-terms. In the rest of the section, we will explore three main options

regarding constituency, and choose one of them as the correct definition

of constituency. But as will become clear in the end, all of them can be

used equally well to motivate examples where stratification of relational

types is needed. The rest of this section mainly attempts to find the best

account of relational constituency among the three options that will be

discussed.

We start with the broadest sense of relational constituency, which is

the same as being a sub-expression. The idea is to take constituents of
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terms, in general, just to be their sub-expressions. (Sub-expressions of

terms are the terms that contribute to the recursive definition of them, as

expressed for all terms in Definition 3.) For instance, by Sub we have it

that the predicate λxe.F (x, g) has F , g and x as constituents. Or that

λxt. ((∀yt
′

Fy)∧(x = a)) has as constituents the sentences (∀ytFy)∧(x = a),

∀ytFy, x = a; plus all of their constituents, i.e., ∧, x, a, ∀t, y, Fy and F ,

as well. Similarly, λxt.∀ztR(z, x) has as constituents, ∀ztR(z, x), ∀t,

z,R(z, x),R and x.

Thus here’s the first attempt:

● τ is a constituent of σ iff τ is a sub-expression of σ. Sub

Sub is the most liberal account of constituency. To motivate Sub,

remember that in the case of the propositional fragment of e-grounding

(see §4), the constituents of a Boolean expression were taken to be the

things connected by the relevant connectives: constituents of a conjunctive

sentence were taken to be its conjuncts, etc. We can generalize the idea for

applicational terms in STT, by taking the constituents of an application

term F (a) to be F , a and their respective constituents. One might further

expand the notion of constituency of terms, including λ-terms of the

general form λxt11 , ..., x
tn
n .ϕ, as well.

But the sub-expressional sense of constituency is too liberal, and

in some cases, unmotivated by our metaphysical considerations. While

it seems natural to say that the property of being friends with Geoff,

expressed by λxe.F (x, g), has Geoff and the property of friendship as

constituents, it seems implausible to say the same for the variable x, as

due to its boundness, none of the values assigned to it seem to have to do
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anything with the property of being friends with Geoff. For example, x

could be assigned Mike, but Mike doesn’t seem to have anything to do

with structure of the property in question—it certainly doesn’t seem to

be a constituent of it.20

So we need to impose some restrictions on our initial definition of

constituency, for the sake of metaphysical plausibility. The examples

above suggest that we need to rule out bound occurrences of variables as

constituents. More generally, they suggest that every free occurrence of a

variable in the constituent term should also occur free in the term that it’s

a constituent of. Clearly, limiting constituents to closed sub-expressions

satisfies this:

● τ is a constituent of σ iff τ is a closed sub-expression of σ.

Closed Sub

From Closed Sub it follows that the property of being an individual

such that Mike is drinking—expressed by λxe.Dm—has the proposition

Dm that Mike is drinking, and accordingly, both Mike and the prop-

erty of drinking as constituents. We will also have it that the property

20Of course, one may want to take, e.g., any property to be e-grounded by all the
propositions obtained from it. In that case, the property in question will in particular
be e-grounded by all propositions obtained from it, and that includes the proposition
that Mike is friends with Geoff. From S and propositional TR, it will follow that
Mike e-grounds the property of being friends with Geoff. But this option doesn’t
seem to sit well with our constructional intuitions of e-grounding. Remember that we
took e-grounding to somehow reflect the sense of ‘construction’ involved in entities;
clearly, no such sense can plausibly be given to justify the claim that Mike e-grounds
the property of being friends with Geoff, or the tentative principle that properties
are e-grounded by their propositional values. Similarly, it sounds unmotivated to
say that the property denoted by λxe.∀zeL(z, x) is e-grounded by ∀zeL(z, x): for any
assignment of values to variables, this formula returns an entirely different sentence.
Suppose L stands for the property of loving. Then for any value a of x, ∀zeL(z, a)
expresses the proposition that everyone loves a. But no such proposition seems to have
anything with the ‘construction’ of the property of being loved by everyone.

131



4. Entity Grounding, Structure and Ramification

λxe.∀Y ⟨e⟩Y (m) of being an individual such that Mike has every individual

property is structured and has as a constituent the proposition ∀Y ⟨e⟩Y (m)

that Mike has every individual property.

But the closed conception of constituency is somewhat too restrictive.

Consider, for example, σ ∶= λxt.L(y, x), where y is a variable of some type

t′ and L is a constant of type ⟨t′, t⟩. With Closed Sub we can say that

L is a constituent of σ, but we can’t say that about y. But we would want

the free variable y to be a constituent of σ, because for any value a that y

is assigned, a is in fact a constituent of the property picked by λxt.L(a, x).

For instance, if L stands for the relation of loving, the property of being

loved by Sarah, σ ∶= λxt.L(s, x), seems to have Sarah (s) as a constituent.

So perhaps the best idea is to just hold onto or sharpen the two restric-

tions that we had ended up with in discussing Sub, as what determines

a syntactic notion of constituency that suitably accommodates our favorite

sense of constituency that holds between real entities. Let’s see some

more examples. Suppose σ ∶= λyt
′

.((∀xtFx) ∧ Gx). We would like the

universal statement ∀xtFx to be a constituent of σ, because it’s a closed

term. But not Fx, because the free occurrence of x in Fx doesn’t occur

free in σ. Neither is the occurrence of x in Fx a constituent of σ, for the

same reason. On the other hand, Gx, G and the occurrence of x in Gx

are all to be construed as constituents of σ because, whatever value they

take, that value would seem to be a constituent of the property denoted

by σ. Accordingly, for any assignment of values to variables, the entities

picked by Gx and x will e-ground the property picked by σ, the latter in

virtue of x being a constituent of σ through its free occurrence in Gx.21

21This is plausible, especially because due to the principle of ‘α-conversion’, according
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Below is the general definition of constituency that suitably accom-

modates all the examples of relational e-grounding that we have been

discussing so far:

● An occurrence of a term τ in a term σ is a constituent occurrence of τ

in σ if τ is a sub-expression of σ and every free occurrence of a variable in

τ occurs freely in σ. The term τ is a constituent of σ, written τ ∈ c(σ), if

τ has a constituent occurrence in σ. Cons

Notice that this definition encompasses the sense constituency for

sentences as well. That is, a sentence of the form R(a1, ..., an) has as

constituents R and all ai’s, simply because they’re all sub-expressions of

R(a1, ..., an) and every free occurrence of a variable in each of them occurs

freely in R(a1, ..., an).

It can be shown that each of Sub, Closed Sub and Cons can

motivates the idea of type-stratification for relational types. This means

that as soon as we settle on a notion of syntactic constituency for λ-terms

from among these three major candidates, we can motivate our desired

type stratification. Of course, for the reasons given earlier, our favorite

account of constituency will be Cons and we will use examples along

those lines. First, we add to the terms language of STT entity grounding

statements between any pair of types t1 and t2, to obtain STT ≺≺. The

relevant clause is as follows:

● If τ and σ are terms then τ ≺≺ σ is a term of type ⟨⟩.

to which terms with corresponding bound variables of different names are the same, σ
is can be identified with λyt

′

.((∀ztFz) ∧Gx). In this α-equivalent variant of σ, x, but
not z, still plausibly is a constituent of the term. Such α-equivalent representations
of terms may well allow for redefining constituency in terms of variables, instead of
variable occurrences.
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Notice that here we are treating statements of e-grounding syncate-

gorematically. Alternatively, we could treat them categorematically and

take statements of e-grounding to be obtained by, e.g., typed constants

(standing for relations of e-grounding) that apply to entities of appropriate

types. More specifically, for any pair of types t1 and t2 we could associate

a constant ≺≺t1t2 of type ⟨t1, t2⟩ and construe statements of e-grounding

a ≺≺t1t2 b are in fact abbreviations for applications of the form ≺≺t1t2 (a, b),

similar to what we did for the logical vocabulary.

Our syncategorematic treatment of e-grounding statements is mainly

due to the fact that our pre-theoretic talk of e-grounding (as introduced

in §3) doesn’t discriminate against entities of different types; it appeals

to a unified notion that runs across reality. It’s the same locution all

over as if we are talking about the same relation that holds between

entities of different types. So a syncategorematic treatment of e-grounding

statements seems closer to our pre-theoretic conception and use of the

notion.22

22One might object to the syncategorematic formulation of e-grounding statements
by saying that there is no such relation out there in the reality, after all, that, e.g.,
would contribute to the truth of statements of e-grounding; at best, there are infinitely
many such relations that do the job (and that has to be cashed out on the alternative,
categorematic approach). In response to this, although one should admit the structure
of the type theories in this paper, and in general in the philosophical literature, don’t
allow for a unique relation that ignores type differences, that’s hardly a unique problem
for e-grounding, or any other notion of grounding, for that matter. The same issue
can be raised regarding categorematic vs. syncategorematic treatments of the logical
vocabulary or identity. This has to do with the design of the kind of type systems that
most philosophers use, such as simple and ramified type systems, where no cross-type
term can be expressed. There are, however, more recent type theories, though so far
mostly in the service of mathematicians and computer scientists, that allow for such
entities. For instance, λ2 or System F is among such type systems, otherwise known
as Dependent Type Theories. These type systems raise above the type restrictions built
into the kind of type theories entertained here, and in general by philosophers, and
allow for terms and their denotations that aren’t sensitive to the choice of simple types.
We believe that the notion of e-grounding, as well as various other notions of grounding
that call for ramification, and, in fact, many other relations outside the context of
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In any case, we can now express our desired principles of e-grounding

in the extended language, to obtain ⊢STT ≺≺ , which is just ⊢STT plus the

following axiom schemata:

1. (τ ≺≺ σ ∧ σ ≺≺ γ)→ τ ≺≺ γ TR

2. ¬(τ ≺≺ τ) IR

3. τ ≺≺ σ → ¬σ ≺≺ τ AS

4. τ ≺≺ σ, if τ ∈ c(σ) S

5. τ ≺≺ ∀xtϕ∧ τ ≺≺ ∃xtϕ, where τ is of type t and x ∈ FV (ϕ) Q

We can now see exactly why we need relational ramification. Consider,

for example, the property P of being Mike such that Mike has some

property, expressed by λxe.(x = m ∧ ∃Y ⟨e⟩Y (m)). We argued at the

beginning of this section that the structure of this property calls for

an infinitary hierarchy of individual properties. Using Cons and the

principles of e-grounding above, this can be shown more rigorously. Notice

that according to our definition of relational constituency, P has the

proposition ∃Y ⟨e⟩Y (m) that Mike has some property as a constituent, so

by S they are e-grounded by it. On the other hand by Q the proposition

itself is e-grounded by all properties of individuals. A contradiction follows

from applying UI and TR. Put formally, we have the following:23

metaphysical priority (e.g., identity and existence), are best captured by such general
systems. For a recent argument in favor of System F as the right framework to capture
the talk of identity, existence, quantification and various other typed relations, see
Kiani (MSa). For a general introduction to dependent type theories see Nederpelt and
Geuvers (2014). More detailed discussions of System F and their applications can be
found at Girard et al. (1989) and Mitchell (1996, Chapter 9).

23One who goes only as far as committing to the restrictive Closed Sub could use
the term P ∶= λxe.∃Y ⟨e⟩Y (m) and run similar arguments.
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Theorem 4.4.1. ∅ ⊢STT ≺≺ �

Proof.

(1) λxe.(x =m ∧ ∃Y ⟨e⟩Y (m)) ≺≺ ∃Y ⟨e⟩Y (m) Q

(2) ∃Y ⟨e⟩Y (m) ≺≺ λxe.(x =m ∧ ∃Y ⟨e⟩Y (m)) S

(3) λxe.(x =m ∧ ∃Y ⟨e⟩Y (m)) ≺≺ λxe.(x =m ∧ ∃Y ⟨e⟩Y (m)) TR 1, 2

(4) ¬[λxe.(x =m ∧ ∃Y ⟨e⟩Y (m)) ≺≺ λxe.(x =m ∧ ∃Y ⟨e⟩Y (m))] IR

(5) � PC 3, 4

This Theorem essentially formalizes the inconsistency result outlined

at the beginning of the present section. The rest of the story is similar

to the previous section. We have assumed that the language of simple

type theory can capture our stipulative talk of e-grounding. We have then

run into contradictions when formulating our desired principles in this

language. In line with our arguments at the beginning of the section, the

most e-ground-friendly resolution to the problem at stake is to segregate

the property picked by λxe.∃Y ⟨e⟩Y (m) and the ones it quantifies over, so

we implement similar revisions in our syntax.

More specifically, we replace the type ⟨e⟩ with two types ⟨e⟩/1 and

⟨e⟩/2, the first one assigned to predicates that pick the ‘building-block’

individual properties, and the second one for the predicates that pick the

‘buildings’. As a result, we will be able to revise our term-formation rules

in a way that, e.g., λxe.∃Y ⟨e⟩/1Y (m) will be of type ⟨e⟩/2, and so on. As

expected, the proof system needs to also be calibrated, accordingly.

As expected, this process improving upon languages and running into

inconsistencies leads to positing an infinite array of newer and newer

leveled types ⟨e⟩/1, ⟨e⟩/2, ⟨e⟩/3, ... for predicates that pick different kinds
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of individual properties, and ⟨⟩/1, ⟨⟩/2, ⟨⟩/3, ... for sentences that express

different kinds of propositions. In general, we can run similar argu-

ments for different expressions of different relational types of the form

⟨t1, ..., tn⟩, for any n ≥ 0, and end up with an infinite hierarchy of types

⟨t1, ..., tn⟩/1, ⟨t1, ..., tn⟩/2, ⟨t1, ..., tn⟩/3, ... that behave in the way expected.

In the next section, we propose a formal language and logic that fully

accommodates the syntactic changes glossed here.

4.5 Ramified Type Theory

We now introduce a system ramified types based on the previous discus-

sions, in its most general form. First, let’s introduce ramified types and

their levels:

Definition 4.5.1 (Ramified Types and Levels). The set T r of ramified

types t and their levels l(t) are simultaneously defined as follows: e ∈ T r

with l(e) = 0, and for t0, ..., tn ∈ T r and m ≥ 1, if l(ti) ≤ m for each

i = 0, ..., n, then ⟨t0, ..., tn⟩/m ∈ T r, with l(⟨t0, ..., tn⟩/m) =m.

In effect, e is the type of individuals, and for any types t0, ..., tn, where

n ≥ 0, ⟨t0, ..., tn⟩/m is the type of n-ary propositional functions of level m—

functions that, as the term-formation rules below show, take arguments of

types t0, ..., tn, respectively, and return an level-m proposition. The type

of level-m propositions is obtained as the limiting case of the relational

types, when n = 0, and is represented by ⟨⟩/m.

As before, for any ramified type t∈T r we assume there’s a denumerably

infinite set of variables Vart of type t and a (possibly empty) set of
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typed constants CSTt. We reserve CSTt for the set of all constants) of

type t. We define the sets of all variables and constants respectively as

Var ∶= ⋃t∈T rVart and CST ∶= ⋃t∈T rCSTt. We also represent the set of

t-type terms with TERMt.

As before, we choose the constant-based approach to introduce our logi-

cal vocabulary. In line with our discussions of levels from before, we choose

our typed, logical constants in RTT, as follows: ¬m is of type ⟨⟨⟩/m⟩/m;

→m1,m2 ,↔m1,m2 , ∨m1,m2 and ∧m1,m2 , each of type ⟨⟨⟩/m1, ⟨⟩/m2⟩/max{m1,m2};

and, to repeat, for any ramified type t, ∀tm is of type ⟨⟨t⟩/m⟩/max{l(t)+1,m}.

As for the identity operator in RTT, for any t we reserve a constant =tr of

type ⟨t, t⟩/max{1, l(t)}. Notice that since identity statements are essen-

tially formulae, the minimum level they can take should be 1. Notice also

that the type of the universal quantifier constant ∀tm is determined through

the convention ∀xt ϕ ∶= ∀tm(λx
t.ϕm) and level conventions of λ-terms (as

introduced below).

Definition 4.5.2 (Ramified Terms). The terms of RTT are recursively

defined as follows: (i) If xt ∈ V art, then xt is a term of type t; (ii) if

c ∈ CST t, then c is a term of type t; (iii) if x1 ∈ V ar
t1 , ..., xn ∈ V ar

tn are

pairwise distinct, where n ≥ 1 and l(ti) ≤ m for each ti, and ϕ is a term

of type ⟨⟩/m, then λxt11 , ..., x
tn
n .ϕ is a term of type ⟨t1, ..., tn⟩/m; (iv) if τ is

a term of type ⟨t1, ..., tn⟩/m, where n ≥ 1, and for each i = 1, ..., n, τi is a

term of type ti, then τ(τ1, ..., τn) is a term of type ⟨⟩/m.

The notions of free and bound variables of terms, substitutions of terms

for variables and being free for a variable are defined as usual. We denote

the set of free variables in a term σ by FV (σ), and the set of all terms

138



4. Entity Grounding, Structure and Ramification

of ramified type theory by TERMr.24 We also adopt similar conventions

about meta-variables for variables, terms and types as before.

We now introduce the proof system for our ramified language, which

we named System R.

Proof System R:

Axioms:

1. Leveled appropriate axioms of propositional logic25 PCr

2. (λxt11 , ..., x
tn
n .ϕm)(σ̄i)↔ [σ̄i/x̄i]ϕm, where the type of σi is ti βEr

3. ∀tmF→Fσ, where F and σ are, respectively, of types ⟨t⟩/m and t

UIr

4. Fσ → ∃tmF , where F and σ are, respectively, of types ⟨t⟩/m and t

EGr

5. ∀tn∗(λx
t. ϕm→Fx) → (ϕm → ∀t

nF ), where F is of type ⟨t⟩/n,

n∗=max{m,n} and x ∉ FV (ϕm) UDr

6. ∀tn∗(λx
t.Fx→ψm) → (∃tnF → ψm), where F is of type ⟨t⟩/n,

n∗=max{m,n} and x ∉ FV (ψm) EDr

7. σ=trσ, where σ is of type t Refr

8. σ=trτ → (Fσ→Fτ), where F is of type ⟨t⟩/m LBZr

24Notice that our ramified types and terms, as introduced here are very similar to
Harold Hodes’s System ⇒nr, as introduced in Hodes (2013). What we consider as
level here is called ‘order’ by Hodes, and that in our system, but not Hodes’s vacuous
lambda abstraction is possible.

25For instance, ϕm → (ψn→ϕm) in place of ϕ → (ψ→ϕ), where each indexed letter
doubly schematically stands for a formula of a certain level.
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Rules of Inference:

9. If ⊢ ϕm and ⊢ ϕm→ψn, then ⊢ ψn MPr

10. If ⊢ Fxt, then ⊢ ∀tmF , where F is of type ⟨t⟩/m UGr

Notice that each of the axioms and rules of inference above are multiply

schematic. For example in PCr, the axioms hold for any sentence of any

level, and the relevant instances of ¬ and → may differ in type and should

be typed carefully. In particular, notice that in UIr, LBZr and UGr are

all schematic in multiple ways: in the occurrence of the terms, types t and

the level m of the relational types ⟨t⟩/m.

Finally, we express the principles of e-grounding in RTT. To do this,

we first extend RTT to RTT≺≺ by adding the following clause:

● If τ and σ are terms, then τ ≺≺ σ if a term of type ⟨⟩.

The e-grounding system looks like what we introduced at the beginning

of this section, but now with the types being schematic for different types

(individuals, propositional and relational) and levels (1, 2, 3, ...). We call

the augmentation of R with the following axiom schemata, resulting in

R≺≺ or what we also call System G:

1. (τ ≺≺ σ ∧ σ ≺≺ γ)→ τ ≺≺ γ TRr

2. ¬(τ ≺≺ τ) IRr

3. τ ≺≺ σ, if τ ∈ c(σ) Sr

4. τ ≺≺ ∀xtϕ ∧ τ ≺≺ ∃xtϕ, where τ is of type t and x ∈ FV (ϕ) Qr
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We conclude the paper with some final remarks. First, notice that

in Definition 3 we assumed that the level of the arguments τ0, ..., τn of

a relational type ⟨τ0, ...τn⟩/m are no higher than the level of type, i.e.,

m. We can see now why we had to make this choice. Suppose, on the

contrary, that ⟨⟨⟩/3⟩/2 is a legit type and entities of this type could apply

to entities of type ⟨⟩/3 in order to produce ⟨⟩/2-type propositions. Now,

let F ∶= λp⟨⟩/3.ϕ2, where ϕ2 is any sentence of type ⟨⟩/2, and let ϕ ∶= ∀p⟨⟩/2p.

Then F (ϕ) will be of type ⟨⟩/2. But by S, we have ϕ ≺≺ F (ϕ), and by Q,

all level-2 propositions would e-ground ϕ. A contradiction then follows

from IR and TR: by TR all level-2 propositions would e-ground F (ϕ), and

that includes F (ϕ) itself, which goes against IR. Similar examples can be

given if types like ⟨⟨⟩/3⟩/1 were allowed, whereas types of the form ⟨⟨⟩/3⟩/n

for any n ≥ 3 are safe to inhabit.

The second remark has to do with Qr. One might think that it’s

intuitive, particularly along the lines of our ‘construction’ analogy of

e-grounding, to have a proposition of the form, say, ∀p⟨⟩/iϕj not only e-

grounded by all level-i propositions, but also by all propositions of levels

lower than i; yet Qr only considers i-level propositions. This is a valid

worry, but our system does accommodate it eventually. For example, ∀p⟨⟩/3p

is e-grounded by all level-3 propositions, but one of those propositions is

∀p⟨⟩/2p, which is e-grounded by all level-2 propositions. By the transitivity

of e-grounding, it follows that all level-2 propositions also ground ∀p⟨⟩/3p.

Similarly, all level-1 propositions ground ∀p⟨⟩/3p.

The third remark has to do with the proposed intuition of quantification

as ‘long’ conjunction or disjunction (hence considering Qr as an instance of

Sr), in a literal sense, which we offered earlier in the paper: the statements
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of quantification but not conjunction shift levels of sentences, so the

former cannot be construed or identified as the latter, strictly speaking.

Another reason one might resist such identifications is about aboutness:

for instance, one might think that differentiates an existentially quantified

proposition from the corresponding disjunction of instances is that the

disjunction is ‘about’ or depends on the disjuncts, but that this doesn’t

seem to be the case for the parallel quantified proposition. For reasons

like these, in this paper, we rely on the construal of Qr as an instance of

Sr mostly for heuristic purposes. That said, however, there are ways to

make the analogy more appropriate, at least from a technical standpoint,

without running into such level mismatches. For instance, instead of

taking the level of, say, the conjunction ϕi ∧ ψj of a level-i formula ϕi

and a level-j formula ψj to be max{i, j}, we could take it to have the

level max{i, j} + 1. In that case, we can add an infinitary conjunction

operation to our language and just generalize this level assignment to it

to get our desired level assignment for quantified statements. This won’t

have any serious effects on our path from entity grounding to ramified

type systems—the path only ends up with a slightly different ramified

system than what we did.

The next remark concerns our constant-based, categorematic presenta-

tion of the logical vocabulary in this section and the previous one. We

mentioned that there are advantages in this approach, both concerning

presentation (more elegance and convenience in defining terms and speci-

fying axioms) and expressiveness for metaphysical theorizing. That said,

however, one might be skeptical if the constant-based approach is the

best one when, in particular, it comes to ramified type systems principles.
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For instance, given the abundance of levels, the constant-based approach

requires a very big ontology, with infinitely many entities sitting out there

to just do the job of, say, negation. Similarly, we need considerably more

axioms, compared to the syncategorematic approach, each crafted for

certain levels, in laying out the proof system. These considerations might

make the constant-based approach in ramified type theory lose attraction

to sparser ontologies within certain big-picture considerations. This might

also be why most of the works in the literature on ramified type systems

(including Russell’s original works) choose the syncategorematic approach

to the logical vocabulary. Moreover, from a purely e-ground-theoretic

perspective, it may sound somewhat mysterious that some but not other

constants raise levels of the things they apply to.

One might think that these go against one of the primary motives

of adapting a categorematic approach towards ramified type theory, and

wonder if it’s possible to present our ramified system syncategoremati-

cally while somehow retaining the relevant formalizations regardless of

e-grounding. This seems possible. In fact, this is the approach we took

in §4 to build up our leveled languages, though mostly for convenience.

Here we can also associate in our term-formation rules separate clauses

for logical terms. But then we will have to make sure that the notion

of constituency (Cons) is also extended with enough clauses concerning

logical statements and their constituents. It should be noted, however,

that this approach will no longer allow for the attractive thought that

logical entities can enter into e-grounding relations. For instance, there

is no longer a relation of conjunction that can be said to e-ground a

conjunctive proposition. In any case, we leave it open which choice is
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more appropriate here, all things considered.

Finally, in this paper we argued that simple relational entities each

have to come in certain infinitary hierarchies of levels, for the principles of

e-grounding to go through without facing immediate inconsistencies. One

might wonder if individuals should also be fragmented into levels, similarly

to relations. Even though this is formally possible (for instance, Bacon

et al., 2016, do this), such a move seems unmotivated by the metaphysical

views that we have been appealing to, for if a propositional function

contains a proposition that quantifies over individuals, then whatever it

refers to is not an individual: it’s a proposition, property or relation. That

is to say, the type of propositional functions are already different from

the type e of individuals, whether or not they quantify over individuals in

their structure. That said, however, some might have independent reasons

to stratify individuals into levels, as well, e.g., by considering certain

mereological relations that hold between them as instances of e-grounding.

We also leave that possibility open for future investigations.

4.6 Conclusion

I argued that considerations of e-grounding, as presented in this paper,

naturally call for fragmentation of relational entities into certain infinitary

hierarchies of levels, in a way that is best captured by ramified type

systems. I proposed a natural ramified type system that nicely captures

the principles of e-grounding.

Several problems remain open, which we hope to attend to in the

future. We haven’t yet verified the consistency of the systems R and G. In
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particular, while the consistency of the former is proved in Kiani (MSd),

the consistency of the latter still remains open. Another issue concerns

the choice between categorematic vs. syncategorematic representations

of logical statements as well as e-grounding statements. Even though

throughout the paper, and for a combination of reasons, we made a certain

choice in this regard, namely, a categorematic treatment of logical, and a

syncategorematic treatment of e-grounding statements, we also mentioned

that alternative options are available, without any serious impact on our

arguments for the ramification of relational types, though, each choice has

its own pros and cons. We, however, leave it open which choice of options

is more appropriate under large-scale considerations.

We also only worked with entity grounding as if it is a partial relation

between entities, similar to how partial fact-rounding relations work: an

entity can be e-grounded by many entities, e.g., its constituents. This can

be compared to partial fact-grounding relations, where a fact is partially

grounded by some other fact, while could need other facts too, in order to

hold. It would be interesting to see how one can expand the notion to a

more general one that acts as a total relation between entities—again, the

way total fact-grounding relations work.

A somewhat larger open problem concerns the general choice between

ramified versus simple type theories as the ‘correct’ framework in pursuing

philosophical, and in particular, metaphysical inquiry. We noted that the

ramified approach is naturally motivated by considerations of e-grounding.

But ramified type theory can be shown to do much more. For one, as hinted

by Deutsch (2008), it can secure highly structured accounts of propositions

from paradoxes of grain, such as the Russell-Myhill paradox (see e.g.,
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Goodman, 2016; Hodes, 2015; Myhill, 1958; Russell, 1903; Uzquiano,

2015, for various versions of the paradox); this is shown in Kiani (MSd).

Moreover, Kiani (MSe) leverages the ramified hierarchy and takes a step

in settling some of the prominent puzzles of quantificational ground (as

explored in, e.g., Fine, 2010; Krämer, 2013; Donaldson, 2017; Fritz, 2021),

providing a unified solution to them in one sweep.26 Kiani (2023), on

the other hand, uses highly structured propositions to lay down a novel

and extremely expressive semantics for unrestricted impure propositional

logics of truth-functional, iterated and identity grounding (as explored in,

e.g., Wilhelm, 2020b; Fine, 2012a; Correia, 2017; Krämer, 2018; Bennett,

2011; Schnieder, 2011).27

Essentially, there seems to be a deep unexplored interconnection be-

tween structured views of reality, different notions of metaphysical priority,

and ramified type systems, in that together they bring about a uniform,

elegant picture of reality within which a cluster of puzzles and paradoxes

of ground and grain in contemporary metaphysics are settled. This speaks

to the immense and unified explanatory power of the ramified approach in

doing philosophy, and in particular, metaphysics. But simple type theory

has been proved more fruitful in certain other areas, such as in mathemat-

ics, where, r.g., those systems can be enriched with certain axioms to serve

as a foundation for classical mathematics (see, e.g., Church, 1940, as an

early work along these lines). Also, some major projects, especially in the

26In effect, our ramified approach can be said to constitute a ‘predicative’ solution
to these puzzles which has long been speculated but remained fairly underexplored;
see Fine (2010); Krämer (2013) for a brief mention of such solutions. See Korbmacher
(2018b,a) for a full-blooded account og predicative solutions to some of the puzzles of
quantificational ground along a hierarchical account of Tarskian ‘truths’.

27Others, such as Prior (1961) and Kripke (2011), have argued that ramified types
can provide solutions to certain paradoxes of intensionality as well.
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recent literature on the metaphysics of modality, have been carried out in

simple type systems and supposedly seriously rely on their full expressive

power (e.g., Williamson, 2013; Bacon, 2018).

Finally, we noted that unless we construe quantificational statements

as ‘long’ conjunctions or disjunctions, and accordingly the principle Q

as an instance of S (which we found reasons not to), one doesn’t need

to embrace structured propositions in order to be receptive to the idea

that propositions, along with properties and relations, have to come in

infinitary levels, as described by ramified type theory. All that’s needed is

that other, non-propositional types of relational entities are structured in

certain plausible ways and that principles of e-grounding are true. But,

and perhaps more importantly, we noted that even if propositions are

structured, the principles of e-grounding don’t require them to be too

structured to be susceptible to paradoxes of grain such as the Russell-

Myhill theorem. This makes it possible to have coarse-grained views about

propositions, and yet admit that they have to come in a ramified hierarchy.

It also puts those who reject structured propositions based on paradoxes

of grain in an awkward position, as they now have independent motives to

endorse a ramified space of propositions, which if they do, they can secure

highly structured propositions, as well.

Only future work on both ramified and simple type systems and their

large-scale metaphysical implications will determine which one, if any, is to

be preferred as the correct framework for pursuing metaphysical inquiry.
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Chapter 5

Towards a Unified Predicative

Solution to Puzzles of

Quantificational Ground

5.1 Introduction

In recent years, the theory of metaphysical ground (as presented in, e.g.,

Rosen, 2010; Fine, 2012a; Audi, 2012) has dominated a notable portion

of the work in contemporary metaphysics, trying to explain in principled

ways how certain facts or truths may hold ‘in virtue’ of certain others.

Numerous kinds of grounding relations have been introduced to the

literature.1 One important distinction is between partial and full grounds.

Partial grounds are truths in virtue of which a truth holds, but they don’t

necessarily suffice in doing so; otherwise, they constitute full grounds

of that truth. Another distinction is between mediate and intermediate

1See Fine (2012a) for more detailed discussions of the variants glossed here.
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grounds. Grounds of a truth are immediate if there’s no mediating truth

between them and what they ground; otherwise, they constitute mediate

grounds. Finally, some facts are strict grounds of some others if they are,

in a sense, more ‘fundamental’; otherwise, the grounds are weak. Put

in terms of explanation, we can think of strict grounds as, in the words

of Fine (2012a), ones that takes us “down in the explanatory hierarchy,”

whereas weak grounds “may also move us sideways in the explanatory

hierarchy.”

Recently, the theory of strict partial ground (henceforth: just ground,

if no risk of ambiguity) has faced a range of puzzles and paradoxes.

For example, Fine (2010) and Krämer (2013) have put forward some

puzzles regarding the interaction of some impeccable principles of classical

logic with certain plausible principles of mediate partial ground.2 The

variant put forward at Krämer (2013) is stated in a language where

quantification into sentence position is permitted, and principles of ground

are generalized to statements involving sentential variables. Quantifying

into sentential position not only simplifies Fine’s puzzles but also allows us

to straightforwardly apply the idea of type-stratification to the particular

entities at stake, namely propositions.3

In this paper, I discuss Krämer’s puzzle, along with some other neigh-

2Immediate strict partial ground has also been argued to face certain inconsistency
results (Fritz, 2021; Wilhelm, 2020b). This paper proposes a unified solution to the
puzzles of mediate partial ground. We will, however, mention at the end how our
solution may have the promise of addressing the latter, as well.

3Nothing in our discussions, however, will crucially hinge on the use of languages
with resources that allow for second- or higher-order quantification. In fact, Fine’s
original puzzles (as stated in Fine, 2010) are all stated in first-order languages. That
is, we can implement the same ideas explored in this paper in first-order languages,
as well. Similarly, Korbmacher (2018b) offers his predicative solution in a first-order
language.
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boring puzzles of quantificational ground, and propose a novel, ‘predicative’

solution to them by means of deploying ramified typed systems in the

background.

Here’s how the paper is organized. In §5.1, I discuss Krämer’s Puzzle.

§5.2 proposes a solution to this puzzle along the lines of ramified type

theory. In §5.3 I assess some of the alternative solutions to Krämer’s

Puzzle and in each case will reveal their shortcomings in comparison

to the ramified solution. §5.4 addresses some neighboring puzzles to

Krämer’s Puzzle, and shows yet again, ramified type theory has the upper

hand in resolving them than the typical solutions found in the literature.

§5.5 discusses a higher-order variant of Krämer’s Puzzle due to Thomas

Donaldson, the ramified solution to it, as well as a promising, recently

emerged resolution in the literature. The paper concludes at §5.6. The

technical appendix attends to the rigorous presentation of ramified types

and the theory of ground built on top of it.

5.2 Krämer’s Puzzle of Ground

This puzzle, as presented by Krämer (2013), is second order, in that it

allows for quantification in sentential position.

The puzzle has two assumptions. The first says that ground an irreflex-

ive relation: no fact grounds itself. Formally put:

¬(ϕ ≺ ϕ) IR

where ≺ is a binary sentential connective that stands for the grounding

relation, and ϕ schematically stands for any sentence.
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The other principle states that existential statements are grounded by

their true instances. Thus the fact that someone is the president of the

US is grounded by the fact that, say, Joe Biden is the president of the US.

In a setting where we can quantify into sentence position, a version of

the principle above will be thus: any true instance of the fact ∃pϕ that

some proposition is ϕ grounds it.4 Put formally:

[ψ/p]ϕ→ [ψ/p]ϕ≺∃pϕ, EG

where [ψ/p]ϕ stands for the uniform ‘substitution’ of all occurrences of p

in ϕ with ψ. Such a substitution presupposes that ψ is one of the things

in the range of the quantifier in ∃pϕ; that is, it belongs to the range of

the quantifier in question. Now, in particular, by replacing the schematic

ϕ and ψ with p and ∃pp, respectively, it follows that:

∃pp→ ∃pp ≺ ∃pp, EG′

which is to say that if there is a truth, then the fact that there is a truth

grounds itself.

But of course, there is a truth; that is, ∃pp holds.5 It follows then that

the fact that there is some truth grounds itself; that is ∃pp ≺ ∃pp, which

goes against IR. Call this Krämer’s Puzzle.

4In what follows I will take facts to be true propositions. This is not an entirely
uncontentious assumption (see, e.g., Fine, 1982), but is the assumption at play in
Krämer (2013) and some other recent responses to it (e.g., as in Correia, 2017; Fritz,
2021, 2019; Wilhelm, 2020b; Litland, 2022; Woods, 2018; Kiani, 2023). This, although
makes it much more convenient to treat the puzzle at hand, is not a substantial
premise for advancing predicative solution to the puzzle. In fact, and related to
the previous footnote, Fine (2010) himself works in a setting where facts and true
propositions are distinct entities, with their accommodating principles separately spelled
out, and, as mentioned before, he contends that the problem can nevertheless be treated
predicatively.

5That ∃pp is true is both extremely plausible and in any case, a theorem of our
background logic.
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Krämer’s Puzzle essentially shows that the set {EG, IR} is incon-

sistent, given the background propositional logic with quantification.

Two main options to reject the argument at Krämer’s Puzzle have

been pursued in the literature. They contain rejecting either EG or IR in

its full generality.

One way to implement the first option is due to Fine (2010) (originally

proposed for a close, first-order variant of it) which is to weaken EG to some

but not all instances. This, as Woods (2018) puts it, is an “inegalitarian

(and rather puzzling) thought”: it weakens EG in an ad hoc manner just

to avoid a contradiction. Moreover, as Fine (2010) himself observes, there

are other variants of the puzzle that would still go through even under

the tentative restriction in question. We will see two such variants later.

Woods (2018) pursues the second option. Woods’s approach rests upon

a construal of the grounding relation along the lines of ‘explanation’. The

idea is that in a genuine grounding statement, the particular content of

the grounding fact has to contribute to the explanation of the content of

the grounded fact. In such cases, the thought goes, grounding should be

irreflexive, as nothing can substantively explain itself; for instance, we

can’t convincingly say that ϕ holds ‘because’ ϕ holds. However, sometimes

the explanatory connection is lost, and any other fact could do in place

of the ground. In other words, the grounding relation holds “vacuously”.

For example, in Krämer’s Puzzle, any fact can ground the fact ∃pp

that some proposition is true: surely itself is a ground of it, but so is the

fact that monkeys like bananas. According to Woods (2018), in such cases

where the explanatory link is broken, instances of reflexive ground are

unproblematic.
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But this resolution, as Woods himself observes, at best applies only if

we construe grounding entirely in its explanatory capacity. In particular,

it doesn’t seem applicable to the construals of grounding according to

which grounds are “more fundamental” than the grounded, or that reality

comes in “grounding layers”—a very widespread construals of the notion

of ground.6,7

Another group of solutions propose predicative treatments of the

matter, which impose certain restrictions on what goes in the domain of

quantifiers (commonly known as predicativity). Both Fine (2010); Krämer

(2013) mention predicative solutions in passing, but never explore them.

Korbmacher (2018b) proposes one such solution in great detail, but only

for some of the original puzzles in Fine (2010) that only concern the

grounds of sentences and their truth.

In the next two sections, we propose a predicate solution to Krämer’s

Puzzle and some neighboring puzzles in terms of ramified type theory.

5.3 Ramified Types and Krämer’s Puzzle

I will now attend to an informal exposition of ramified type theory and

how it can block Krämer’s Puzzle, in two different ways.

While there is no consensus on what ‘predicativity’ exactly means in

the literature, typically, and loosely put, an entity that belongs to the

6As in, e.g.,(Rosen, 2010; Schaffer, 2009; Correia, 2021a,b; Leuenberger, 2020;
Werner, 2020)

7It is worth mentioning that even construing grounding purely in its explanatory
capacity doesn’t seem obviously sufficient in allowing for instances of reflexive grounding.
In fact, Fine (2010, p. 105) offers exactly an explanatory characterization of ground
and claims that all of his grounding principles (including IR and EG) will hold. See
also Trogdon (2013) for a similar view.
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range of a quantifier that occurs in its ‘definition’ or ‘construction’ is said

to be defined or specified “impredicatively”; otherwise it’s “predicatively”

defined or specified. Predicative definitions, in essence, impose some sort of

hierarchy to what constructs what, banning certain circularities that could

lead to certain inconsistencies similar to the case of the Liar’s Paradox.

Now, since in deriving EG′, we are instantiating a quantified proposition

(namely, ∃pp) with itself (by choosing ψ in [ψ/p] to be ∃pp), which means

that we are taking ∃pp to be one of the propositions that it quantifies

over in its definition, a predicative solution to the Krämer’s Puzzle

is to disallow just that, hence breaking the argument and avoiding the

contradiction.

As Krämer puts this point: “Thus we might say, firstly, that in the

sense that is relevant to EG, being an instance of quantification is not

a purely syntactic matter. Rather, the expression generalized upon also

has to satisfy a semantic condition: roughly, that of determining, or

picking out, a value in the range of the corresponding existential quantifier.

Secondly, we say that a sentence that itself contains a given sentential

quantifier does not determine a value in the range of that quantifier. A

simple implementation of that idea restricts [EG] to cases in which [ϕ]

is free of sentential quantifiers; a less restrictive option is to introduce a

hierarchy of sentential quantifiers and postulating a version of [EG] for

each of them, requiring in each case that [ϕ] contain only quantifiers lower

in the hierarchy.” (ibid ; p. 88)

Our solution to Krämer’s Puzzle and other neighboring puzzles

is closer to the second suggestion in the passage above and is cashed

out in terms of the theory of ramified types. According to the latter,
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propositions are stratified into a hierarchy of levels, in such a way that

high-level propositions are obtained via quantification over lower-level

ones. Moreover, quantified statements about propositions of a certain

level can only be instantiated with propositions of that particular level. It

then follows that the problematic instances of EG are no longer available

to the ramifier: if ∃pp is taken to range over, say, level n propositions,

and is itself of a higher level, e.g., n + 1, then ∃pp won’t be one of the

propositions quantified over, hence the instantiation of ∃pp with itself,

which leads to EG′, will be illegal.

As we mentioned, in general, predicative responses to the puzzles such

as Krämer’s Puzzle remain fairly underexplored in the literature. Both

Fine (2010) and Krämer (2013) gesture at such solutions, but none of

them explores them in detail. Korbmacher (2018b) seems to have taken

the first step in detailing such a solution to certain variants of the puzzle

that have to do with sentences and their grounds, and not worldly entities

such as propositions or facts, which is what is at stake as in Krämer’s

Puzzle (and the ones from the next section).

As a result, and importantly, the formal system that Korbmacher

relies on only works if the relata of the grounding relation are literally

sentences, and not the real entities such as facts or propositions which

are expressed or represented by sentences. Although interesting on its

own right, as we’ve noticed our puzzles of interest concern grounds of

facts or propositions, and in any case, the majority of work on ground

seems to conceive the relation as something that holds between facts or

propositions, not their syntactic representations.8

8Here’s the puzzle that Korbmacher (2018b) is concerned with: assuming that
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5.4 Next-Door Puzzles

There are various other puzzles in the vicinity that are often overlooked in

the discussions of Krämer’s Puzzle and solutions to it. In this section

I will introduce two such puzzles and show that, just as in the case of

Krämer’s Puzzle, ramified types block the inconsistencies involved in

them. I will then discuss some potential ways to resolve these puzzles,

including the responses to Krämer’s Puzzle, glossed above, and will

argue that most of these options are either irrelevant or implausible. This

highlights the superiority of our ramified approach to most alternative

approaches in the literature.

Our first puzzle is a simplified version of one of the puzzles in Fine

(2010), called “Universal Argument for Propositions”, that concerns

grounds of universal statements. It’s a simplification in the same way that

Krämer’s Puzzle is a simplification of another related puzzle in Fine’s

paper which relates grounds of existential statements. In particular, we

the truth of a sentence S grounds the truth of a sentence which says that S is true
(S → S ≺ T(⌜S⌝), where T is a truth predicate and ⌜S⌝ is the name of the sentence
S), then the true sentence ∃xT(x) which says that there is at least one true sentence
grounds T(⌜∃xT(x)⌝). That is: ∃xT(x) ≺ T(⌜∃xT(x)⌝). On the other hand, by the
sentential version of the principle EG, ∃xT(x) is grounded by any of its true instances,
including T(⌜∃xT(x)⌝). That is: T(⌜∃xT(x)⌝) ≺ ∃xT(x). By the transitivity for
sentential grounds, we get to contradiction with irreflexivity. Korbmacher resolves
this puzzle by appealing to a Tarskian hierarchy of truth: if we take truth predicates
to come in levels, and that no truth predicate of any given level can appear in its
scope, this puzzle can be shown to block the contradiction. While we don’t treat these
kinds of puzzles in our system, it remains an intriguing question whether ramified
type theory can straightforwardly be used in resolving them. This sounds possible,
especially because there seem to be intimate relations between ramified type theory and
Tarskian hierarchies of truth—something that has been explored in detail at Church
(1976). In any case, even if the ramified approach falls short of accommodating such
variants of the puzzles, we may consider it as a complement rather than a competition
to Korbmacher’s approach, both living under the same roof, namely “predicative”
solutions to the puzzles of mediate ground. We wish to leave investigating these
matters for another occasion.
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continue working in Krämer’s setting where quantification into sentential

is allowed, and assume that the principles of ground apply there.

The first assumption involved is one that usually comes in the same

package with EG: a true universal claim is partially grounded by each and

every one of its instances. Thus the fact that everyone eventually dies

is grounded by each and every one of the facts that John will eventually

die, Marry will eventually die, etc. In our setting this is formally put as

follows:

∀pϕ → [ψ/p]ϕ≺∀pϕ UG

The next assumption is about the grounds of true disjunctions, and is

structurally very similar to EG. The idea is that a true disjunction is

grounded by each of its true disjnucts. Thus the fact that either 2 + 2 = 4

or Vancouver is located in Brazil is grounded by the fact that 2 + 2 = 4.

Formally put, we have:

ϕ∨ψ → (ϕ → ϕ ≺ ϕ∨ψ) ∧ (ψ → ψ ≺ ϕ∨ψ) DG

Finally, mediate grounding is taken to be transitive. This is, in particu-

lar, plausible if we take (along with Fine, 2012a) statements of mediate

grounding as chains of statements if immediate grounding, in the sense

that ϕ ≺ ψ stands for a chain like ϕ ≺≺ ϕ1 ≺≺ ... ≺≺ ϕn ≺≺ ψ, where ≺≺ stands

for the relation of immediate ground.9 Thus we have:

(ϕ ≺ ψ) ∧ (ψ ≺ θ)→ ϕ ≺ θ TR

9In general, from σ being an immediate ground of τ (in symbols: σ ≺≺ τ) it follows
that no fact is needed in between the latter two to make τ hold in virtue of σ.
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Now the puzzle, which we call Finean Puzzle after Kit Fine, goes as

follows:

Finean Puzzle. (1) from UG it follows that the fact that every

proposition is either true or false is grounded by its self-instantiation.

That is, if we substitute ϕ and ψ with p∨¬p and ∀p (p∨¬p)∨¬∀p (p∨¬p),

respectively, we have: [∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] ≺ ∀p (p ∨ ¬p). (2) From

DG it follows that the fact that every proposition is either true or false is

grounded by its self-instantiation. That is, if we substitute ϕ and ψ with

p ∨ ¬p and ∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p), respectively, we have:

[∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] ≺ ∀p (p ∨ ¬p).10 (3) By TR it follows both

that the fact that every proposition is either true or false grounds itself

(∀p (p ∨ ¬p) ≺ ∀p (p ∨ ¬p)), and also that the fact that every proposition is

either true or false, or every proposition is either true or false grounds

itself. That is: [∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] ≺ [∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)].

Both of the latter are counterexamples to IR.

Finean Puzzle essentially shows that {UG, DG, TR, IR} is inconsis-

tent. Now, clearly weakening or even rejecting EG, which was inspired by

Fine (2010) as a potential response to Krämer’s Puzzle, is orthogonal to

this puzzle (Fine (2010) himself makes a similar point). To invalidate this

argument, one has to now weaken or reject one of the principles involved

in deriving the contradiction, i.e., DG, UG, TR and IR.

But as Fine (2010) observes, weakening DG (e.g., to a principle which

states that some true disjuncts ground a true disjunction, not necessarily

10That every proposition is either true or false (∀p (p∨¬p)) is just the logical law of
excluded middle, and in any case a theorem of our background propositional logic with
quantification.
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all) is unhelpful in such situations because even if not all true disjuncts

ground a true disjunction, in the case where there is only one true disjunct

(as in all instances of ϕ ∨ ¬ϕ), that disjunct will be a ground, and that’s

enough to preserve the puzzle.

Weakening UG is also implausible because, as Fine (2010) puts it,

“we cannot properly take a universal truth to be grounded by some of

its instances to the exclusion of others.” In other words, the truth of

all instances is needed to account for the truth of a universal statement.

Rejecting either DG or UG completely is also implausible, and ad hoc.

There seems to be, therefore, only two plausible options to potentially

avoid the inconsistency in Finean Puzzle: to reject transitivity (TR),

or irreflexivity (IR) in their full generality. Despite its intuitive appeal,

some people have, in fact, cast doubts on the transitivity of ground, and

this might be a good time to leverage such results or add to them.11 We

already discussed proposals for rejecting reflexivity in its full generality in

the case of Krämer’s Puzzle.12

But let’s assume these two options are properly defensible anyway.

This would mean that rejecting either TR or IR might still be a viable

option to some people, as a response to Finean Puzzle or Krämer’s

Puzzle. That may be. But there’s a puzzle closer to Finean Puzzle that

will go through even in a weaker system where irreflexivity and transitivity

are both rejected. The idea is to trade irreflexivity and transitivity together

11See Tahko (2013); Schaffer (2012) for some works along these lines. See Litland
(2013) for a defense of transitivity.

12For example, we learned that Woods (2018) allows for instances of reflexivity in
cases of “vacuous” grounding statements. In particular, someone like Woods might
still be able to claim that given all the new assumptions in Finean Puzzle, the
grounding statements ∀p (p ∨ ¬p) ≺ ∀p (p ∨ ¬p) and [∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] ≺
[∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] hold ‘vacuously’.
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with asymmetry—a principle that seems to enjoy a more robust status in

the literature than the pair of irreflexivity and transitivity with all the

noise surrounding them. Asymmetry would disallow ϕ to be a ground of

ψ, under the assumption that ψ is a ground of ϕ. Formally put:

(ϕ ≺ ψ)→ ¬(ψ ≺ ϕ) AS

The new puzzle is simple. It borrows the same first two lines from Finean

Puzzle, but line (3) just highlights the contradiction of lines (1) and (2)

with AS. Call the resulting puzzle New Puzzle.

New Puzzle. (1) from UG it follows that the fact that every

proposition is either true or false is grounded by its self-instantiation.

That is, if we substitute ϕ and ψ with p∨¬p and ∀p (p∨¬p)∨¬∀p (p∨¬p),

respectively, we have: [∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] ≺ ∀p (p ∨ ¬p). (2) From

DG it follows that the fact that every proposition is either true or false is

grounded by its self-instantiation. That is, if we substitute ϕ and ψ with

p ∨ ¬p and ∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p), respectively, we have:

[∀p (p ∨ ¬p) ∨ ¬∀p (p ∨ ¬p)] ≺ ∀p (p ∨ ¬p).13 (3) By AS lines 2 and 3

contradict.

This puzzle essentially shows the inconsistency of {UG, DG, AS}. This

means that none of the plausible options for rejecting Finean Puzzle or

Krämer’s Puzzle are available for rejecting New Puzzle.14

13That every proposition is either true or false (∀p (p∨¬p)) is just the logical law of
excluded middle, and in any case a theorem of our background propositional logic with
quantification.

14In particular, and concerning the resolution of Woods (2018), notice that by
rejecting transitivity, there seems to be no way to say that ∀p (p ∨ ¬p) ≺ ∀p (p ∨ ¬p)
holds vacuously, because for that to be the case one needs to say that any fact can be
replaced with the ground on the left-hand side of the statement in question; that is, that
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Finally, note that Finean Puzzle and New Puzzle can both be

resolved by our ramified approach with the exact line reasoning as in the

case of Krämer’s Puzzle. The former two both rely on the principle UG,

which, in the presence of ramified types, should be restricted on the same

grounds as before. That is, assuming that in UG the quantifier ranges

over propositions of level n, only level-n propositions can instantiate UG.

In particular, this implies that ∀p⟨⟩/n (p ∨ ¬p) cannot be an instance of

itself because if p is of level n, then ∀p (p∨¬p) will be of level n+1, which

makes it an illegitimate instance of itself.

5.5 Upper-Floor Puzzles

Donaldson (2017) proposes a variant of the puzzle close to Krämer’s

Puzzle, in a second-order language that is richer than what we’ve been

working with so far, where variables for properties are available and

predicate-making devices such as lambda abstraction are available. In this

section, I introduce a higher-order variant of puzzles of that sort that really

encompass any relational entities, including propositions (as in Krämer’s

Puzzle) and properties (as in Donaldson, 2017). (Donaldson’s puzzle

will fall under this more general variant.) I will, in particular, consider

for any fact γ we need γ ≺ ∀p (p∨¬p) to follow from ∀p (p∨¬p) ≺ ∀p (p∨¬p). Notice the
reason that we could correctly say this in in the case of Finean Puzzle was that for
our arbitrary fact γ, by DG we had γ ≺ γ ∨ ¬γ and by UG we had γ ∨ ¬γ ≺ ∀p (p ∨ ¬p),
which then by TR we could get γ ≺ ∀p (p ∨ ¬p). But TR is no longer available, so
the link that would connect the arbitrary γ to ∀p (p ∨ ¬p) is broken. Therefore, the
resolution of Woods (2018) is also inapplicable to this puzzle. In fact, the damage
to Woods’s strategy seems to be even more serious: the whole distinction of vacuous
vs. non-vacuous grounding statements was supposed to allow for some unproblematic
instances of irreflexivity, the one present at Krämer’s Puzzle being such a case. But
now that we have also rejected irreflexivity, it’s not at all clear how the mentioned
distinction is still relevant, or if it can be generalized to the case of asymmetry.
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the variant that goes through with AS, instead of the pair of IR and

TR. We will see that the ramified approach will, just as conveniently and

naturally as before, will settle this puzzle as well. All that is needed is

to use richer ramified languages that have the relevant resources such

as all the relational types as well as term-forming rules such as lambda

abstraction.

Some background regarding higher-order quantification first. (See the

appendix for the rigorous presentation of the higher-order ramified system

at use in this section.) We assume there are entities such as individuals,

properties of individuals, propositions, polyadic relations between such

entities, and all sorts of properties and relations that hold for or between

these things, etc. We distinguish these entities at the level of syntax of

associating types to the relevant terms that stand for them: type e for

individuals, ⟨⟩ for propositions and ⟨t1, ..., tn⟩ for n-ary relations (n ≥ 1)

that between entities of types, t1, ..., tn, respectively.

One way to form sentences in higher-order logic is through application:

for any given type t, if F and a are, respectively, terms of type ⟨t⟩ and t,

then F (a) is a term of type ⟨⟩, i.e., a formula. Similarly any relational

term of type ⟨t1, ..., tn⟩ can simultaneously apply to entities of types t1,

..., tn, respectively, to create sentences. Another way to create terms in

higher-order logic is through abstraction, which creates predicates out of

sentences. For instance, from the sentence ‘Someone likes John’, formally

represented by ∃xeL(x, j) (with L being a constant of type ⟨e, e⟩ standing

for the relation of loving, and j of type e a name for John), we can create

the predicate ‘being loved by someone’ by abstracting from the name

of John (j), using lambda abstraction: λye.∃xeL(x, y). The predicate
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is taken to stand for the property be being loved by someone. We can

similarly create predicates with regards entities of any arbitrary type

t. Thus the property of being a proposition that has all properties of

propositions can be said to picked by the predicate λp⟨⟩.∀X⟨⟨⟩⟩X(p), which

itself has type ⟨⟨⟩⟩.

Now, in higher-order logic (simple type theory), besides very natural

generalizations of the principles of ‘lower’-order logics. In particular, for

the first-order logic and the axiom schema Existential Introduction—EI:

[a/x]ϕ→ ∃xϕ—the higher-order version is this:

[a/x]ϕ→ ∃xt ϕ EIt

where a is any term of type t.

We have a principle that governs λ-terms:

(λxt.ϕ)(ψ)↔ ϕ[ψ/x] βt
E

This principle is extremely plausible that gives us equivalences such as

this: Napoleon was a French emperor if and only if Napoleon was French

and Napoleon was an emperor: (λxe.F (x)∧E(x))(N) ↔ F (N)∧E(N),

with the relevant conventions regarding the constants used in place.

As for the grounds of sentences encompassing λ-terms, a principle that

is commonly used is as follows (Fine, 2012a; Dorr, 2016):

[a/x]ϕ→ ([a/x]ϕ ≺ (λxt.ϕ)(a)) λGt

Thus granting that to be a bachelor is to be an unmarried man (i.e.,

B ∶= λxe.(M(x) ∧ U(x))), this principle implies that the fact B(g) that

Gary is a bachelor is grounded by the fact M(g) ∧U(g) that Gary is an

unmarried man: (M(g) ∧U(g)) ≺ (λxe.(M(x) ∧U(x)))(g).
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Finally, to get the contradiction, we need that EG is generalized to

existential quantification over types of any entity (including propositions,

as before). Thus for any type t we have the following principle:

[a/x]ϕ→ [a/x]ϕ≺∃xt ϕ, where a is a term of type t, EGt

The puzzle, which I call Donaldsonian Puzzle for obvious reasons,

goes as follows:15

Donaldsonian Puzzle. (1) Consider an arbitrary true sentence like

F (a), where F is of type ⟨t⟩ and a is of type t.16 (2) By EIt we have

∃X⟨t⟩X(a). By βE, the latter is equivalent to λyt.∃X⟨t⟩X(y), which then

has to be also true. (3) By λG: ∃X⟨t⟩X(a) ≺ (λyt.∃X⟨t⟩X(y))(a). (4)

Independently, given that λyt.∃X⟨t⟩X(y) is of type ⟨t⟩, from (2) and EGt

it follows that (λyt.∃X⟨t⟩X(y))(a) ≺ ∃X⟨t⟩X(a). (5) (3) and (4) together

go against AS.

Now, in a language where all relational entities are stratified into levels

(including propositions, as in the previous sections) the ramified solution

can accommodate this puzzle by a similar restriction on EGt: we should

only allow for subsitutees a that are of the same level with x. But then

Donaldsonian Puzzle will be unfounded: assuming X is of level n,

then (λyt.∃X⟨t⟩X(y)), now represented as (λyt.∃X⟨t⟩/nX(y)) will be of

type ⟨t⟩/n+1, and (λyt.∃X⟨t⟩/nX(y))(a) of type ⟨⟩/n+1. So the latter won’t

be an instance of the existential statement ∃X⟨t⟩/nX(a).

15The original puzzle in Donaldson (2017) or the ones close to it are special instances
of the following, for t being ⟨e⟩

16For instance, let t be ⟨⟨⟩⟩, F stand the property of knowablity and a be the truth
constant ⊺; then F (a) stands for the proposition that ⊺ is knowable, which is true.
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Before concluding the paper, notice that in what passed, we didn’t dis-

cuss the kind of strategy gestured at Fritz (2020) for resolving Krämer’s

Puzzle. This is mostly due to the generally different approach that he

takes, which appeals to the kind of higher-order systems, which we briefly

introduced here and now have the muscles to engage with.

The idea is to treat, as common in higher-order logic, quantificational

statements not as unanalyzable terms of the language (given by e.g., a

clause like this: “if ϕ is a term of type ⟨⟩ and x a variable of type t, then

∀xt ϕ is of a term of type ⟨⟩”) but as instances of the application of certain

constants standing for existential or universal quantifiers to λ-terms. For

instance, therefore, a universal statement like ∀xt ϕ would be a shorthand

for the application (∀t)(λxt ϕ), where ∀t is constant of type ⟨t⟩, which is

reserved for quantification over t type entities as above.

With this change of our construal of quantification, EG is replaced by

the following:

(Fψ → (Fψ ≺ ∃⟨⟩F )), ∃G

where F and ψ are, respectively, of types ⟨⟨⟩⟩ and ⟨⟩

Now if we define T ∶= λp⟨⟩.p (the property of being true), by (higher-

order) Universal Instantiation (UIt: ∀xtϕ→ ϕ[a/p]), where a is of type t)

we have:

T (∃⟨⟩T )→ (T (∃⟨⟩T ) ≺ ∃⟨⟩T ) (∗)

and since T (∃⟨⟩T ) is true (it’s true that there’s a truth), then T (∃⟨⟩T ) ≺

∃⟨⟩T . But this is not necessarily an abuse of irreflexivity, unless, in general,

we have something stronger than βR, where the material equivalence ↔ is
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replaced with identity =. In the simple type theory that we’ve endorsed

here, there is no such strong principle. One might, therefore, think that

that’s all it takes to avoid the variant of Krämer’s Puzzle in a higher-

order language with EG replaced by ∃G. But that’s not the case. For

even λG⟨⟩ itself accompanied with (∗) goes against IR: since T (∃⟨⟩T )

is true, from λG⟨⟩ it follows that ∃⟨⟩T ≺ T (∃⟨⟩T ), which together with

T (∃⟨⟩T ) ≺ ∃⟨⟩T (obtained from (∗)), go against AS.

Throughout the paper, Fritz (2020) tries to motivate rejecting λG⟨⟩ (as

well as a strengthening of βE where ↔ is replaced by =; something that

hasn’t been endorsed here) in systematic, independent ways. Fritz himself

observes, his solution to Krämer’s Puzzle is applicable to puzzles where

grounds of universal statements are dealt with (and admittedly, that

includes our Finean Puzzle as well as New Puzzle). Clearly, his

approach also would avoid the inconsistency involved in Donaldsonian

Puzzle. This puts Fritz’s approach in much better position to most of

the rivals approaches that we glossed in previous sections, and certainly

this strategy is worth further exploring. Goodman (2022) takes a step in

exploring Fritz’s ideas in more detail.

Lastly, recently Fritz (2021) has argued that the notion of immediate

ground is somewhat too fine-grained, in a way that its principles make

it susceptible to paradoxes of structured propositions along the lines of

Russell-Myhill paradox, an issue that goes back to Russell (1903) and

Myhill (1958), and has recently been revived and initiated new debates

about the granularity of reality.17

17For some of the recent works along these lines, see Hodes (2015); Goodman (2016);
Uzquiano (2015); Dorr (2016).
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Since, as was mentioned before, ramified type theory also blocks the

Russell-Myhill result in its most general form in simple type theory (as

argued for in Chapter 2, i.e., Kiani, MSd), one would expect the particular

instances found in Fritz (2021) would as well be rejected; all that is needed

is to find the relevant models for the ramified versions of the principles of

immediate ground. We leave this for future investigation. But importantly,

as Fritz (2020) observes, the ideas he sketches for resolving his higher-

order version of Krämer’s Puzzle seem to also resolve the paradox of

immediate ground introduced in Fritz (2020)—at least the one that is

obtained using simple type theory in the background.

To conclude: the proposal sketched at Fritz (2020), and explored in

Goodman (2022), might well be the most promising alternative to the

ramified approach: they both offer unified solutions to a range of neigh-

boring puzzles of mediate and immediate ground. The main advantage

of Fritz’s approach is that its background logic, which is based on simple

types, is more expressive than the higher-order logic-based ramified types.

The ramified approach, however, has other advantages over this ap-

proach: first, we can maintain the attractive and plausible schemata λGt

while resolving higher-order puzzles of mediate ground. Second, and as has

been mentioned on several occasions, the ramified system used in resolving

all the puzzles in this paper has independent metaphysical motivations

along the lines of entity grounding Kiani (MSb). Finally, as is historically

known, the ramified approach has the capacity to resolve a host of other

paradoxes of intensionality.
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5.6 Conclusion

We noticed that ramified type theory offers an elegant, unified approach

to solve four neighboring puzzles (and clearly different variants of them

expressed within similar languages) that concern the relationship between

mediate partial ground and logical operators (as presented, e.g., in Fine,

2010; Krämer, 2013; Donaldson, 2017) in a way that most of the rival

accounts in the literature don’t. This on its own, we believe, shows the

superiority of the ramified approach. But as we’ve mentioned several times,

ramified type theory itself can be motivated as a way to accommodate a

neighboring, much vaster notion of metaphysical priority, namely entity-

grounding (Kiani, MSb). Finally, we briefly mentioned that the ramified

approach could potentially be used in proving the consistency of the notion

of immediate ground, against the kind of paradoxes explored in Fritz

(2021)—something that we conjecture but leave for future investigation in

future works.

We noticed a particular solution to the puzzles, sketched by Fritz

(2020), where he construes the existential quantification along the lines of

higher-order logic (as instances of applications of quantificational constants

to λ-terms), which, when implemented, the ensuing principle of existential

grounds (∃G) will avoid the puzzles—at least as long as principles like

λG⟨⟩ are rejected. While the proposal of Fritz’s remains to be further

explored, it seems the strongest contender of the ramified approach, in

that they both, if properly laid down, cover a range of puzzles of mediate

and immediate ground in systematic ways. We mentioned that while

the Fritzian approach enjoys the more expressive language of simple type
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theory, the ramified approach retains attractive principles such as λGt (for

any type t), and has independent metaphysical motivations along the lines

of the neighboring, much broader notion of entity grounding—something

that has been explored in a sequel to this paper (that is, Chapter 4). Only

future work on both approaches will, hopefully, will shed light on their

status and the ‘correct’ choice between them.

Finally, it is of utmost importance for the reader to understand that,

while all the principles of higher-order logics of ramified ground can be

properly formalized (as in the appendix), all the arguments in favor of

ramified type systems in the context of grounding puzzles that were given

throughout the paper were semi-formal, or rather informal. In other words,

we argued but didn’t exactly prove that the inconsistency proofs won’t go

through if we replaced propositions with leveled propositions, in the way

predicated by ramified type theory. However, to show rigorously that the

inconsistencies are in fact blocked in the presence of ramified types, one

would have to prove the consistency results for the ramified versions of

the principles above, e.g., through model constructions. We leave this as

the open problem of our paper and hope to investigate it in the future.

5.7 Appendix - The Technical Appendix

Ramified Type Theory

Here we introduce a formal, R, which underlies our informal discussions

in the paper.18

18See Kiani (MSd) for a comprehensive study of R and related consistency results.
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First, let’s introduce ramified types and their levels :

Definition 5.7.1 (Ramified Types and Levels). The set T r of ramified

types t and their levels l(t) are simultaneously defined as follows: e ∈ T r

with l(e) = 0, and for t0, ..., tn ∈ T r, if l(ti) ≤ m for each i = 0, ..., n, then

⟨t0, ..., tn⟩/m ∈ T r, with l(⟨t1, ..., tn⟩/m) =m.

For any ramified type t∈T r we assume there’s a denumerably infinite

set of variables Vart of type t and a (possibly empty) set of typed non-

logical constants CSTt. For certain types there are also logical constants

to be introduced below. (We will reserve CSTt for the set of all constants

(logical or non-logical) of type t.) We define the sets of all variables and

constants respectively as Var ∶= ⋃t∈T rVart and CST ∶= ⋃t∈T rCSTt.

We now define the language of R. Later we will equip R with a

grounding operator ≺, and propose a logic of higher-order ramified partial

ground, which is the formal system that underlies the solution to the

puzzles that were discussed in §§5.1-5.4.19

Definition 5.7.2 (Terms of R). The terms of R are defined as follows:

1. If σ is a variable or constant of type t, then is a term of type t,

2. If x1, ..., xn are pairwise distinct variables of respectively types

t1, ..., tn, where n ≥ 1 and l(ti) ≤ m for each ti, and ϕ is a term

of type ⟨⟩/m, then λxt11 , ..., x
tn
n .ϕ is a term of type ⟨t1, ..., tn⟩/m,

3. If τ is a term of type ⟨t1, ..., tn⟩/m, where n ≥ 1, and for each i = 1, ..., n,

τi is a term of type ti, then τ(τ1, ..., τn) is a term of type ⟨⟩/m,

19In this definition we’re proposing separate clauses for the logical vocabulary. That
is, we’re treating the logical vocabulary asyncategormatically. This is mostly for
convenience, but also in line with the common works in the theory of ramified types.
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4. If ϕ is of type ⟨⟩/i, then ¬ϕ is also a formula and of type ⟨⟩/i,

5. If ϕ and ψ are respectively formulas of types ⟨⟩/i and ⟨⟩/j, then ϕ→ ψ

is a formula and is of type ⟨⟩/max{i, j},

6. If ϕ is a formula of type ⟨⟩/j, then ∀xtϕ is of type ⟨⟩/max{l(t)+1, j},

The notions of free and bound variables of terms, substitutions of terms

for variables, and being free for a variable, are defined as usual. We denote

the set of free variables in a term σ by FV (σ), and the set of all terms of

ramified type theory by TERMr.20

We can now introduce the proof system ⊢Rp . In what follows, sub-

indexing a formula is intended to mean that the formula schematically

stands for any sentence of that level. Thus ϕi schematically stands for any

level-i sentence.

Proof System ⊢Rp:

Axioms:

• ϕi → (ψj→ϕi); (ϕi → (ψj→γk))→ ((ϕi→ψj)→ (ϕi→γk));

(¬ϕi → ¬ψj)→ (ψj→ϕi). Tautr
21

• ∀xtϕj → ϕj[a/p], where a is of type t UItr
20Notice that our ramified types and terms, as introduced in the definitions above,

are very similar to Halod Hodes’s System ⇒nr, as introduced in Hodes (2013). The
main differences are that what we consider as level is called “order” by Hodes, and
that in our system, but not Hodes’, vacuous lambda abstraction is possible.

21Theorems of classical propositional logic can be derived with these axioms (ob-
viously with levels dropped) (See system P2 in Church, 1956). Or choice of these
axioms over other existing axiomatizations of propositional logic is due to our choice of
primitive Boolean connectives, namely, ¬ and →.
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• (λxt11 , ..., x
tn
n .ϕm)(σ1, ..., σn)↔ [σ1/x1, ..., σn/xn]ϕm, where the type

of σi is identical to ti, for each i = 1, ..., n. βt
Er

Inference Rules:

• ϕi, ϕi → ψj/ψj MPr

• ϕi → ψj/ϕi → ∀xtψj, where x doesn’t occur free in ϕj UGt
r

Notice that each of the axioms and rules of inference above are multiply

schematic. For example in Tautr, the axioms hold for any sentence of any

level, and the relevant instances of ¬ and → may differ in type and should

be typed carefully. Also, notice that UItr is schematic in its occurrence of

the terms, types t and the level m of the relational types ⟨t⟩/m involved.

Higher-Order Logic of Ramified Partial Ground

I will now lay down a tentative formulation of the logic of partial ground

under ramified type theory that accommodates the hierarchical structure

of reality imposed upon us by type stratification. The principles are just

the ones standardly attributed to the notion, many of which are familiar

from earlier sections in the paper.22 I will only take into account the

notion of strict, mediate partial ground, which is the one that’s at work

in our favorite puzzles.

We first need to introduce the language. We only add the following

clause to our ramified language R, to obtain the language R≺:

22See also Fine (2010); Fritz (2021); Fine (2012a) for those and the rest of the
principles below.
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If ϕ and ψ are formulas respectively types ⟨⟩/m and ⟨⟩/n, then ϕ ≺ ψ

is a formula of type ⟨⟩/r, where r ∶=max{m,n}.

Here’s the logic of ramified partial ground. As expected, the system

builds upon ⊢R, so it encompasses the latter with the addition of the

following principles. We call the resulting system Gf .

1. ¬(ϕm ≺ ϕm) IRr

2. (ϕm ≺ ψn) ∧ (ψn ≺ θr)→ ϕm ≺ θr TRr

3. (ϕm ≺ ψn)→ ¬(ψn ≺ ϕm) ASr

4. ϕm∧ψn → (ϕm ≺ ϕm∧ψn) ∧ (ψn ≺ ϕm∧ψn) CGr

5. ϕm∨ψn → (ϕm → ϕm ≺ ϕm∨ψn) ∧ (ψn → ψn ≺ ϕm∨ψn) DGr

6. [a/x]ϕm → [a/x]ϕm ≺ ∃xtϕm, where a is of type t EGt
r

7. ∀xtϕm → [a/x]ϕm ≺ ∀xtϕm, where a is of type t AGt
r

8. ¬ϕm → ¬ϕm ≺ ¬(ϕm∧ψn) NGr,1

9. ¬ψn → ¬ψn ≺ ¬(ϕm∧ψn) NGr,2

10. ¬ϕm → ¬ϕm ≺ ¬(ϕm∨ψn) NGr,3

11. ¬ψn → ¬ψn ≺ ¬(ϕm∨ψn) NGr,4

12. ϕm ≺ ¬¬ϕm NGr,5

13. ¬[ψn/p]ϕm→¬[ψn/p]ϕm ≺¬∀p⟨⟩/nϕm NGr,6

14. ¬∃p⟨⟩/nϕm → ¬[ψn/p]ϕ≺¬∃p⟨⟩/nϕm NGr,7
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15. [a/x]ϕm → [a/x]ϕm ≺ (λxt.ϕm)(a). λGt
r,1

16. ¬[a/x]ϕm → ¬[a/x]ϕm ≺ ¬((λxt.ϕm)(a)). λGt
r,2

We learned in §5.3 Krämer’s Puzzle essentially shows that the set

{IR, TR, EG} is inconsistent. We also noticed in §5.4 that Finean Puz-

zle and New Puzzle show that {IR, TR, DG, UG} and {AS, DG, UG}

are, respectively, inconsistent. Similarly, for any type t, the higher-order

Donaldsonian Puzzle shows the inconsistency of {EGt, λGt, βt
E,AS}.

While we argued rather informally, showing rigorously that Krämer’s

Puzzle, Finean Puzzle and New Puzzle are all blocked in our rami-

fied setting, in particular, amounts to proving that the sets {IRr,EG
⟨⟩
r },

{IRr,TRr,DGr,UG
⟨⟩
r } and {ASr,DGr,UG

⟨⟩
r } are, respectively, consistent.

Similarly, for any type t, showing that Donaldsonian Puzzle is blocked

amounts to proving the consistency of {EGt
r, λG

t
r, β

t
Er
,ASr}.

In general, all of these will follow by showing that the theory Gf of

ramified ground proposed above is consistent—a result that we conjecture

but leave for future work to explore.
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Conclusion

In this thesis, which is a bundle of four interconnected papers, we took

the first step in exploring certain deep relationships between ramified

type systems, highly structured relational entities, and various notions of

grounding.

While these efforts are hoped to shed light on these topics, their

relationships to one another and the picture of reality that they bring

about, we would like to acknowledge the fact that a lot more work needs

to be done for this picture to achieve a higher resolution, and for the

doctrine to reach to an industry-level adoption.

Particularly, we believe some of the open problems that we encountered

throughout these papers first need to be settled for these works to have

the intended impact in the philosophical community.

Some of these open problems were as follows:

1. While models of ramified-type systems have been offered (Chapter

2), we only informally argued that the Russell-Myhill result won’t
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hold once we adopt ramified types. Models of these systems have

yet to be explored to count as decisive proof for this claim.

2. Models for the formal system of entity-grounding (Chapter 4) need

to be found in order to prove the consistency of the system.

3. Models of higher-order ramified logics of partial ground (Chapter 5)

need yet to be explored.

In summary, we have proposed several well-motivated and seemingly

well-behaving formalisms that have intuitive and systematic motivations

and applications in philosophy, and the typical ways their alternative,

simple-typed, systems lead to inconsistency seem to be unavailable for

them, but the relevant models yet have to be explored.

We leave these as the open problems of this thesis, conjecturing that

all these models exist and await discovery. In fact, if this conjecture is

true, it implies that there is one ‘mega-model’, so to speak, that captures

ramified type theory plus all the logical relevant logical augmentations

explored in this thesis.

Our recent attempts suggest such a model may not be far from our

reach, only requiring carefully implementing certain twitches in some of

the recent simple-typed models proposed in the literature on ground and

grain—the question seems to be about what twitches need to be made,

mainly. We hope to have the opportunity to explore these in the future.
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Gödel, K. (1984 [1944]). Russell’s mathematical logic. In Putnam, H. and

Benacerraf, P., editors, Philosophy of Mathematics: Selected Readings,

pages 447–469. Cambridge University Press, 2 edition.

Henkin, L. (1950). Completeness in the Theory of Types. The Journal of

Symbolic Logic, 15(2):81–91.

Hodes, H. T. (2013). A Report on Some Ramified-Type Assignment Sys-

tems and Their Model-Theoretic Semantics. In The Palgrave Centenary

Companion to Principia Mathematica, pages 305–336. Springer.

Hodes, H. T. (2015). Why Ramify? Notre Dame Journal of Formal Logic,

56(2):379–415.

Hylton, P. (2008). The Vicious Circle Principle. In Propositions, Functions,

and Analysis: Selected Essays on Russell’s Philosophy. Oxford University

Press.

Jung, D. (1999). Russell, Presupposition, and the Vicious-Circle Principle.

Notre Dame Journal of Formal Logic, 40(1):55–80.

181



Bibliography

Kaplan, D. (1970). S5 with quantifiable propositional variables. In Journal

of Symbolic Logic, page 355.

Kaplan, D. (1989 [1977]). Demonstratives: An Essay on the Semantics,

Logic, Metaphysics and Epistemology of Demonstratives and Other

Indexicals. In Almog, J., Perry, J., and Wettstein, H., editors, Themes

From Kaplan, pages 481–563. Oxford University Press.

Kiani, A. (2023). Structured Propositions and a Semantics for Unrestricted,

Extended Impure Logics of Ground. Synthese, (4):141.

Kiani, A. (MSa). Categorematicity and Type-Insensitive Relations: To-

wards Polymorphic Metaphysics and Beyond. Unpublished Paper

Manuscript.

Kiani, A. (MSb). Entity grounding, Structure, and Ramification. Unpub-

lished Paper Manuscript.

Kiani, A. (MSc). A puzzle about quantificational aboutness. Unpublished

Paper Manuscript.

Kiani, A. (MSd). Ramified Types and Metaphysical Structure. Unpub-

lished Paper Manuscript.

Kiani, A. (MSe). Towards a Unified Predicative Solution to Puzzles of

Quantificational Ground. Unpublished Paper Manuscript.

King, J. (1996). Structured Propostions and Sentence Structure. Journal

of philosophical logic, 25(5):495–521.

King, J. C. (2009). The Nature and Structure of Content. Oxford University

Press.

182



Bibliography

King, J. C. (2019). Structured Propositions. In Zalta, E. N., editor,

The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, summer 2019 edition.

Korbmacher, J. (2018a). Axiomatic Theories of Partial Ground I. Journal

of Philosophical Logic, 47(2):161–191.

Korbmacher, J. (2018b). Axiomatic Theories of Partial Ground II. Journal

of Philosophical Logic, 47(2):193–226.
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