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Abstract 

Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer’s disease 

(AD), having promising clinical benefit. However, all individuals with the same condition 

currently receive identical brain stimulation, with limited theoretical basis for this generic 

approach. In this study, we introduce a control theory framework for obtaining exogenous signals 

that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while 

reflecting patients’ biological variability. By considering nonlinearities in our model, we identified 

regions for which control inputs fail to correct abnormal activity. We also found that limbic system 

and basal ganglia structures constitute the top target locations for stimulation in AD. Patients with 

highly integrated anatomical networks are the most suitable candidates for the propagation of 

stimuli and consequent success on the control task. Other diseases associated with alterations in 

brain dynamics and the self-control mechanisms of the brain can be addressed through our 

framework.  
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Chapter One: Introduction 

1.1 Brain stimulation 

Since the late 1970’s, brain stimulation has been researched and applied for the treatment 

of several neurological and psychiatric disorders1–3, including epilepsy, stroke, schizophrenia, 

Parkinson’s disease, major depressive disorder and Alzheimer’s disease. Overall, stimulation 

consists in exciting neuronal populations by sending exogenous signals to specific targets in the 

brain. Amidst the most widely used brain stimulation techniques are transcranial magnetic 

stimulation (TMS)4, transcranial direct current stimulation (tDCS)5, and deep brain stimulation 

(DBS)6. A general, schematic representation illustrating the use of these brain stimulation 

technologies is shown in Figure 1-1. Current brain stimulation techniques differ in reach, design 

and degree of invasiveness. For example, electric signals are used in tDCS and DBS, whereas TMS 

employs magnetic inputs. In DBS, a device is inserted into the patient’s organism to produce 

electrical impulses, allowing the stimulation of subcortical structures. On the other hand, cortical 

structures are excited by means of TMS and tDCS. The use of one or the other technique for the 

treatment of a given clinical condition depends mainly on the mechanisms associated with the 

disorder and the understanding the researcher/clinician has on how to influence these mechanisms.  

In effect, brain stimulation aims to produce long-term corrections of pathological activity 

by steering (controlling) it towards a trajectory (pattern of brain activity) that is considered healthy. 

However, stimulation treatments are currently identical for all individuals with the same clinical 

condition2–6, disregarding biological variability which makes individuals display the signs of a 

disease and respond to therapies in different ways. Consequently, presently used stimulation 

therapies have limited success rates. Additionally, brain stimulation protocols are likely 
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suboptimal in their selection of the signal shape, amplitude, and stimulation sites, since they are 

set by trial-and-error. By optimal, we mean inputs that make the pathological state disappear while 

the energy used by the external controlling agent (cost) is minimal. A simplistic illustration of a 

DBS signal and the definition of the currently used stimulation parameters appear in Figure 1-2. 

Figure 1-1: Schematic representation for the application of brain stimulation. a) Transcranial 

magnetic stimulation (TMS). A focused magnetic field delivered by a wire coil excites neuronal 

circuits in the cortical area under the coil placement, causing long-term changes to brain activity4. 

b) Transcranial direct current stimulation (tDCS). A weak, direct current is applied to the brain via 

electrodes over the scalp, to increase or decrease excitability in selected areas. The distribution of 

current flow and the intensity of stimulation over the brain can be tuned by adjusting the location 

of the electrodes5. c) Deep brain stimulation (DBS). Unlike TMS and tDCS, DBS requires the 

surgical implantation of a device (the neurostimulator), which sends electrical impulses through –

also implanted– electrodes, to certain brain targets. This can modulate the pathological oscillatory 

activity between brain regions6,88. Several treatments using these technologies are approved by the 

Food and Drug Administration (FDA)1 and currently applied within different health systems.  
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1.2 Modeling the control of brain networks 

To address some of the above-mentioned issues regarding brain stimulation, computational 

modeling techniques have been previously used1,7–9. However, modeling brain stimulation requires 

the consideration of some known facts, such as the evolution of brain activity being intrinsically 

related to the subjacent anatomical network, and the interplay of various neuronal populations10. 

A network is usually represented as a graph in which the nodes correspond to the elements and the 

edges symbolize the existence of a connection (interaction) between elements11. As reported by 

several studies, both functional networks (given by the statistical dependencies between remote 

neurophysiological events) and effective connectivity (activity-dependent influences that a neural 

system exerts over another)12 correlate to the structural connections between conglomerates of 

neurons13,14, which are customarily computed from diffusion weighted magnetic resonance images 

Figure 1-2: Representation of a deep brain stimulation signal.  Continuous stimulation is 

delivered in the shape of pulses with defined amplitude and width. The number of pulses per 

second can also be adjusted. For example, Lozano et al.3 chose a 3.0–3.5 V stimulation, with a 90 

microseconds pulse width and a rate of 130 Hz.  
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(DW-MRI).  As in any other network, it is reasonable to assume some elements (or nodes) have 

an architectural leading role in the self-regulation of that neural system15,16. An input feeding into 

one of these elements has the potential to propagate through the network, influencing the system 

towards the state desired by the controller.  

The existence and characteristics of such input signals is then given by the dynamical 

structure of the system and the way its elements are coupled to the inputs. Systems in which those 

signals exist are known as controllable (as opposed to uncontrollable), relating to the property 

‘controllability’17. In the simple network in Figure 1-3a, a stimulus entering the element marked 

as ‘1’ would propagate and reach all the other nodes. In this case, the solution to the system is 

unique for each stimulus, independently of the detailed values of the couplings between the state 

variables, and the states and the controller. This system is controllable. Nevertheless, this does not 

hold for the network in Figure 1-3b: an input to node ‘1’ can never completely control the network 

because the existing structural couplings always yield the same dynamics (Figure 1-3c). Some 

studies have focused on identifying the most suitable sites for network controllability from a 

structural viewpoint only18 while simplifying the dynamical interactions occurring on top of the 

connectivity scaffold.  

Other studies1,7–9 used linear dynamics to model neural processes. However, most of the 

brain phenomena are known to be intrinsically nonlinear10,19–22. For example, the electrical activity 

of the brain, as recorded in the electroencephalogram (EEG), and its switching between dynamical 

states21 cannot be explained otherwise. As stated before, the effect of stimulation signals is indeed 

converting pathological dynamics into a healthy pattern of brain activity. Hence, the predictions 

on neural network control obtained from linear dynamics should be taken with caution. Neglecting 
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the nonlinear nature of the brain for the sake of mathematical simplicity might bias or corrupt the 

results therein obtained. 

Figure 1-3: The notion of controllability. a) The states associated with nodes ‘1’, ‘2’ and ‘3’ are 

uniquely determined by the input signal  𝑢𝑢1(𝑡𝑡) in the way the elements are connected. The linear 

system is controllable. The input to node ‘1’ reaches the subsequent nodes in the path and 

conditions their activity. b) The system is uncontrollable by stimulating node ‘1’ only, no matter 

how we tune the connectivity parameters. c) A linear system mounted over the network represented 

in b will always get stuck in the plane  𝜔𝜔12𝑥𝑥3(𝑡𝑡) =  𝜔𝜔13𝑥𝑥2(𝑡𝑡) in the state space. This is shown for 

two different inputs that ‘1’ receives (𝜔𝜔12 =  𝜔𝜔13 =  𝑏𝑏1 = 1, for simplicity).  Panels a and b are 

adapted from Liu et al.89. Examples of networks in which only a certain combination of the 

couplings yields uncontrollable systems can be found therein.  See Chapter 2 for further details on 

network theory and the notion of controllability.    
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Finally, the identification of optimal (electromagnetic) signals among the many that can be 

created4–6 has a paramount importance in terms of patient’s welfare and technological 

improvement. As such, modeling approaches should be able to predict the brain structures that 

better respond to targeted stimulation for achieving a control objective over the network. For 

instance, the surgical implantation of devices (for DBS) could be avoided if theoretical calculations 

envisage that stimulation of cortical neuronal conglomerates, with, e.g., tDCS, produces 

comparable results to what is achieved by means of DBS. In the same way, pinpointing optimal 

control signals likely translates to less exposure for the patient and to a reduction of procedure-

related costs in terms of number of sessions required, the shape and amplitude of the signals that 

are used, etc. 

1.3 Alzheimer’s disease 

Deep brain stimulation for Alzheimer’s disease (AD) is in clinical trial with promising 

results2,3. AD is a neurodegenerative disease that is diagnosed when cognitive impairment and 

behavioral derangement affect activities of daily living23. As of 2016, it affected 47 million people 

worldwide according to Alzheimer’s Disease International24. The Alzheimer Society of Canada 

reported the costs of dementia as $10.4 billion annually24. Because of the complex mechanisms 

and non-physiological factors that interact in an intricate manner25, our understanding of the 

disease and our ability to produce efficient therapeutic interventions has been limited. The 

relatively recent progress achieved in medical imaging has contributed to find quantitative 

measures for AD and to gain insight into the cascade of cognitive/clinical events leading to it25,26. 

Classic biomarkers of AD include vascular and glucose metabolism dysregulation, amyloid-𝛽𝛽 and 

tau deposition, white matter degeneration, functional impairment, and grey matter atrophy26.  
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One of the signatures of AD is its slowing down of the EEG (i.e. contains more low-

frequency power). An increase of power in the theta band (4.0-7.5 Hz) of the EEG spectrum, and 

a decrease of power in the alpha (8.0-12.5 Hz) and beta (13.0-32.0 Hz) bands27,28 were found in 

AD.  As reported by several studies, there is a correlation between cognitive impairment and the 

acuteness of EEG abnormalities29,30. Patients with stable EEG during a one-year follow up showed 

slower decline in praxic functions and a lower risk of institutionalization than AD patients with 

slower EEG29. Additionally, the use of cholinergic drugs (which can transiently shift the EEG 

spectra towards normality) was related to improved memory and attention performances in 

AD29,31. On the other hand, anatomical networks obtained from DW-MRI show abnormalities in 

AD16,32,33. Among these irregularities appear a decreased global efficiency for the transmission of 

information and an increase in the average distance from one node to any other in the network. 

Both these abnormalities affect the small-worldness property34 of the anatomical networks, which 

assures that most nodes can be reached from every other node by a small number of steps. Human 

brain anatomical networks are also considered scale-free15,  with some nodes having many more 

connections than the rest, for achieving robustness to failure.  

On the other hand, several attempts have been made to assess the potential brain stimulation 

has for treating AD35. Only DBS of the fornix has recently passed phase II trials2,3. Reversion of 

impaired glucose metabolism in the temporal and parietal association cortices along with slowing 

of cognitive indicators for the progression of AD confirmed the therapeutic effect of DBS. The 

stimulation protocol in these studies was set up according to previous experience the researchers 

had in the use of DBS treatments for Parkinson’s disease. However, unlike the case of Parkinson’s 

where a decrease in tremor constitutes a short-term measure for the success of the therapy, these 
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AD studies lacked such a biomarker. Consequently, they were unable to guarantee that the 

stimulation parameters were the optimal ones for their purposes. Additionally, only participants 

aged ≥ 65 years reported benefit. The results of the commented research highlight the need for 

clarifying the neural mechanisms of positive effects induced by stimulation and understanding 

ways of personalizing the application of stimulation protocols.  

1.4 Synthesis and rationale 

A review of the literature pertaining to brain stimulation and its recent application to AD 

as summarized in the previous sections reveals the existence of the following issues: 

1) Currently used brain stimulation treatments lack knowledge of the selection of target 

locations, of the generation of signals for correcting pathological activity and of how 

both these parameters relate to optimal signal propagation over the brain network. 

Additionally, patients respond differently to identical stimulation treatments, 

seemingly a consequence of  biological variability.  

2) Previous modeling approaches for stimulation have overlooked the nonlinear 

dynamical nature of the brain. They only partially solve, or do not solve the knowledge 

gaps stated in (1) whatsoever.  

Given the accelerated pace at which brain stimulation is being found as a safe long-term 

corrector of pathological activity, a proper framework that clarifies its underlying operative 

principles is necessary.  

1.5 A solution for optimal nonlinear network control 

There is a mathematical tool that deals with nonlinearities while optimizing input signals 

for controlling nonlinear dynamical systems. It is known as the State-Dependent Ricatti Equation 
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algorithm (SDRE)36–38. Any nonlinear dynamical system can be written, under some conditions, 

as a linear system in which the matrix for the interactions between the state variables is dependent 

on the states themselves (see Section 2.2.2 for further details). SDRE takes advantage of this 

abstraction and applies the robust linear optimal control theory17 to (locally) linear systems at each 

time instant, while solving for the feedback signal that controls the nonlinear system at the lowest 

possible energetic cost.  

SDRE has a vast set of applications in mechanical problems and aerospace engineering 

though few in the fields of biological and high-dimensional systems, where the above-mentioned 

simplistic linear approaches have been preferred. Such an application of SDRE could reconcile the 

theory of neural network control and the true nonlinear nature of the brain. It can also shed light 

on the development of efficient stimulation therapies for AD.  Consequently, we propose the 

development of a SDRE-based framework for searching optimal exogenous signals to control 

nonlinear brain networks in AD. 

1.6 Hypothesis and specific objectives 

1.6.1 Hypothesis  

The SDRE-control of realistic brain networks provides a theoretical framework for the 

optimal implementation of brain stimulation techniques in AD. 

1.6.2 Specific objectives 

Objective 1: To develop the modeling framework for obtaining optimal control signals that 

steer pathological brain activity to healthy activity.  
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Objective 2: To investigate different scenarios for optimally controlling networks with 

nonlinear dynamics. To accomplish this goal, exploratory control of oscillatory dynamics over 

synthetic scale-free and small-world networks will be performed.  

Objectives 1 and 2 pertain to a wider scope of this work. Several combinations of diseases 

and stimulation scenarios could be addressed by developing the framework alone. In effect, given 

any two trajectories, the application of the optimal control signals synchronizes one trajectory with 

the other. The analysis of such control inputs not only informs about therapies for a pathology, but 

can also be used to study healthy self-regulatory mechanisms in the brain. Therefore, trying the 

framework on network models provides insights into efficient optimal strategies (we would expect 

that the ‘better connected’ a node is in the network, the ‘easier’ is to control the network while 

stimulating it, for example). This thesis focuses on brain stimulation of AD given its tentative 

favorable impact to society, especially in healthy aging. 

Objective 3: To apply the SDRE-framework to the modeling of brain stimulation in 

Alzheimer’s disease. To accomplish this goal, we will: 

3.1- Define a dynamical system that mimics experimentally recorded EEG activity at 

the disease and in health. 

3.2- Use anatomical connection graphs obtained from individual DW-MRI data in AD 

as the scaffold for the interactions in the dynamical model.  

3.3- Obtain the signals that –placed over different brain regions– can steer the 

pathological state to the healthy one in an optimal way, for each subject. 

Objective 4: To characterize the optimal control signals obtained in Objective 3, in terms 

of network topology and cognitive-physiological implications. 
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Objective 5: To explore the parameter space and study the effect of the model parameters 

in the characteristics of the control signals.  

1.7 Structure 

The rest of this thesis is organized as follows. In Chapter 2, the body of theory to be used 

is presented. This includes important concepts in network theory, the notions of optimal control 

and nonlinear optimal control, and the numerical methods and tools used to solve the control 

problem. Additionally, a description of the data used in the study, and the processing they 

previously underwent, is included. Chapter 3 contains the original material in this thesis. First, the 

modeling framework for obtaining optimal control signals that steer pathological brain activity to 

healthy activity is introduced. Results over synthetic scale-free and small-world networks 

constitute the preamble to the analysis of controlling the AD network. The optimal inputs to steer 

pathological AD activity towards a healthy state, the differences between linear and nonlinear 

modeling and the effects of the topology in the results are characterized in the last section of 

Chapter 3. In Chapter 4, we discuss the obtained results, mostly in terms of the relevance they have 

for AD and how they relate to the brain’s function and anatomy, how to implement the delivery of 

our signals and the limitations that our solution presents hitherto.  Finally, the main MATLAB 

code we used to generate the optimal control signals is attached as an appendix to this thesis.  
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Chapter Two: Methods 

2.1 Connectivity networks 

A network is usually represented as a graph in which the nodes correspond to the elements 

and the edges symbolize the existence of an interaction between elements. Overall, the network is 

characterized by a set of 𝑁𝑁 nodes, Δ, and a set of edges, Γ: 𝐺𝐺 = [Δ, Γ].  If, additionally the edges 

take values other than 0 (no connection) and 1 (a connection exists), the network is said to be 

weighted and the values of the weight contain information about the connection strengths. The 

links can also be directed. However, current neuroimaging methods fail to detect anatomical or 

effective directionality11. Consequently, all the networks in this thesis are undirected (their matrix 

representation is symmetric).   

2.1.1 Scale-free networks 

The Barabási and Albert’s model39 (or “richer gets richer”) assumes that new nodes in a 

network are not connected at random but with high probability to those which already possess a 

large number of connections (have large degree). These nodes with large degree, also known as 

hubs, are thought to be key for the functioning of the network. The degree probability is the 

probability, 𝑃𝑃(𝑘𝑘), that a node in the network interacts with 𝑘𝑘 other nodes. In the Barabási and 

Albert’s model, 𝑃𝑃(𝑘𝑘) decays as a power law, which conduces to scale-invariance. Examples of the 

so-called scale-free (SF) networks are the World Wide Web, actors’ collaboration and airports 

networks. In the brain, there is preferential attachment to hubs15 as well, which is thought to be a 

consequence of optimization during evolution.   

We generate SF networks by using MATLAB’s toolbox CONTEST40. CONTEST’s 

function pref.m uses the algorithm proposed by Batagelj and Brandes41. Thus, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑁𝑁,𝑑𝑑) creates 
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a 𝑁𝑁 −dimensional SF network in which each node is given 𝑑𝑑 links on arrival. For sufficiently big 

networks, the mean degree is approximately 2𝑑𝑑. Figure 2-1a shows a SF network with 𝑁𝑁 = 78 

and 𝑑𝑑 = 4.  

2.1.2 Small-world networks 

In 1998, Watts and Strogatz34 found that many real-world networks are highly clustered 

like regular graphs –where each node has the same number of neighbors– yet have small average 

distance between nodes, like a random graph. This assures that most nodes can be reached from 

every other node by a small number of steps. Thus, the Watts and Strogatz model (SW) resembles 

the small-world phenomenon found in social networks: “we are all linked by a short chain of 

acquaintances”. Anatomical brain networks present small-world attributes for achieving efficiency 

in local and global communication15.   

We generate SW networks by using MATLAB’s function WattsStrogatz.m. The algorithm 

for generating a 𝑁𝑁 −dimensional SW network, starts by connecting each of the nodes to its 𝑑𝑑 

nearest neighbours on each side. Then, with probability 𝜎𝜎, each edge in the graph is rewired to a 

node chosen at random. Figure 2-1b shows a SW network created with 𝑁𝑁 = 78, 𝑑𝑑 = 4 and 𝜎𝜎 =

0.1. 
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2.1.3 Alzheimer’s anatomical networks 

2.1.3.1 Study participants 

This study uses 41 individual baseline data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). Structural magnetic resonance images (MRI) and diffusion weighted MRI 

(DW-MRI) were acquired for each of the ADNI subjects included in the study. We use the 

individual clinical diagnoses assigned by the ADNI experts, which were based on multiple clinical 

evaluations. The 41 subjects were diagnosed as Alzheimer’s patients. The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging, positron 

Figure 2-1: Example of connectivity matrices in network models. a) Scale-free network (𝑁𝑁 =

78, 𝑑𝑑 = 4). b) Small-world network (𝑁𝑁 = 78, 𝑑𝑑 = 4, 𝜎𝜎 = 0.1). The white squares denote the 

existence of a connection. 
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emission tomography, other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of mild cognitive impairment and early AD.  

See Table 2-1 for demographic characteristics of the included ADNI subjects. Data appears 

as mean (standard deviation) or number of subjects (percentage). 

Table 2-1: Demographic characteristics of the 41 ADNI subjects included in the study 

Characteristic Females Age(years) Education(years) APOE e4 (1 
copy) 

APOE e4 (2 
copies) 

Values  
(41 AD-patients) 

14(34.1) 
 

75.6(8.0) 15.3(3.0) 20(48.7) 5(12.2) 

 

2.1.3.2 Ethics statement 

The study was conducted according to Good Clinical Practice guidelines, the Declaration 

of Helsinki Principles, US 21CFR Part 50—Protection of Human Subjects, and Part 56—

Institutional Review Boards, and pursuant to state and federal HIPAA regulations 

(adni.loni.usc.edu). Study subjects and/or authorized representatives gave written informed 

consent at the time of enrolment for sample collection and completed questionnaires approved by 

each participating sites Institutional Review Board. The author obtained approval from the ADNI 

Data Sharing and Publications Committee for data use and publication, see documents 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, 

respectively. 

2.1.3.3 Data acquisition and processing 

2.1.3.3.1 Disclaimer 
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ADNI collected the data used in this study. All data is anonymous and available from 

ADNI’s database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to 

the design and implementation of ADNI and/or provided data but did not participate in analysis or 

writing of this thesis. A complete listing of ADNI investigators can be found at: 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 

Dr. Yasser Iturria-Medina at the Montreal Neurological Institute and Hospital processed the 

magnetic resonance images from ADNI. We acknowledge Dr. Iturria-Medina for granting us 

access to the processed data. Dr. Iturria-Medina did not participate in any other stage of the study.  

2.1.3.3.2 Structural MRI 

Brain structural T1-weighted 3D images were acquired for all subjects. For a detailed 

description of acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/. 

All images underwent non-uniformity correction using the N3 algorithm42. Next, they were 

segmented into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic maps, using 

SPM12 (www. fil.ion.ucl.ac.uk/spm). Grey matter segmentations were standardized to MNI 

space43 using the DARTEL tool44. Each map was modulated to preserve the total amount of 

signal/tissue. Mean grey matter density and determinant of the Jacobian (DJ)44 values were 

calculated for 78 regions covering all the brain’s grey matter45.  

2.1.3.3.3  Diffusion weighted MRI 

High angular resolution diffusion imaging (HARDI) data was acquired for 41 subjects. For 

each diffusion scan, 46 separate images were acquired, including 5 𝑏𝑏0 images (no diffusion 

sensitization) and 41 diffusion-weighted images (𝑏𝑏 = 1000 𝑠𝑠 𝑚𝑚𝑚𝑚−2). Other acquisition 

parameters were: 256 × 256 matrix, voxel size: 2.7 × 2.7 × 2.7 𝑚𝑚𝑚𝑚3, 𝑇𝑇𝑇𝑇 = 9000 𝑚𝑚𝑚𝑚, 52 
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contiguous axial slices, and scan time, 9 𝑚𝑚𝑚𝑚𝑚𝑚. ADNI aligned all raw volumes to the average 𝑏𝑏0 

image, corrected head motion and eddy current distortion.  

2.1.3.3.4 Anatomical networks 

The T1-weighted 3D anatomical images were registered to the 𝑏𝑏0 images using a normalized 

mutual information method46. Probabilistic axonal connectivity values between each brain voxel 

and the surface of each considered gray matter region (voxel-region connectivity) were estimated 

using a fully automated fiber tractography algorithm47 and the intravoxel fiber  distributions 

(ODFs) of 41 diseased subjects from ADNI. ODF reconstructions were based on Spherical 

Deconvolution48. A maximum of 500 𝑚𝑚𝑚𝑚 trace length and a curvature threshold of ±90° were 

imposed as tracking parameters. Based on the resulting voxel-region connectivity maps, the 

individual region-region anatomical connection density matrices47, 𝑾𝑾, were calculated. For any 

subject and pair of regions 𝑖𝑖 and 𝑗𝑗, the 𝑊𝑊𝑗𝑗𝑗𝑗 measure (0 ≤ 𝑊𝑊𝑗𝑗𝑗𝑗 ≤ 1,𝑊𝑊𝑗𝑗𝑗𝑗 = 𝑊𝑊𝑖𝑖𝑖𝑖) reflects the fraction 

of the region’s surface involved in the axonal connection with respect to the total surface of both 

regions. A network backbone, containing the dominant connections in the average network, was 

computed using a minimum-spanning-tree based algorithm11 and used as a mask for all the 

subjects’ connection maps. Visualization of the anatomical networks was partially performed by 

means of BrainNet Viewer49. The connectivity matrices corresponding to two subjects in ADNI’s 

database are shown in Figure 2-2 as an illustrative example.  

The anatomical connection densities constitute a normalization to the number of “effective” 

voxels involved in a connection47, obtained from dividing it by the total number of superficial 

voxels of the two areas. Effective voxels are counted according to their maximum probability of 

being connected to the voxels in the surface of the second area. This magnitude alone provides an  
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Figure 2-2: Anatomical connectivity matrices. a) Corresponds to the ADNI subject identified as 

‘5119’. b)  Corresponds to the ADNI subject identified as ‘4494’. The grey-scale represents the 

strength (weight) of a connection. Non-dominant connections are assigned a null weight11. Brain 

regions45 appear in the following order, starting by the left hemisphere: caudal anterior cingulate, 

caudal middle frontal, cuneus, entorhinal, fusiform, inferior parietal, inferior temporal, isthmus 

cingulate, lateral occipital, lateral orbitofrontal, lingual, medial orbitofrontal, middle temporal, 

parahippocampal, paracentral, pars opercularis, pars orbitalis, pars triangularis, pericalcarine, 

postcentral, posterior cingulate, precentral, precuneus, rostral anterior cingulate, rostral middle 

frontal, superior frontal, superior parietal, superior temporal, supramarginal, transverse temporal, 

insula, accumbens area, amygdala, basal forebrain, caudate, hippocampus, pallidum, putamen and 

thalamus proper. 
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estimation of the potential information flow between any pair of regions and is proportional to the 

number of nervous fibers shared by these regions15. The further computation of the connection 

densities allows to know if a pair of regions has more or less connection density than another pair 

of regions with a different or equal number of superficial voxels15. For example, two regions of 

interest can present a high value of anatomical connection density if they contain a small number 

of superficial voxels (each voxel having an anatomical connectivity value close to 1 with the 

surface of the other zone)47. The anatomical networks based on connection densities were 

previously used in a study on multifactorial AD’s progression25.  

2.1.4 Topological measures  

Several quantities characterize the connectivity profiles of the elements and networks 

altogether. In this section, we briefly define the measures we use in this work. These measures are 

obtained by means of the Brain Connectivity Toolbox11. The quantities herein used are (generally) 

weighted15,50 since the anatomical connection densities can take any value from 0 to 1. A weight, 

𝑊𝑊𝑗𝑗𝑗𝑗, represents the fraction of a region’s surface involved in the axonal connection with respect to 

the total surface of both regions, 𝑖𝑖 and 𝑗𝑗. We assume that the physical length of an edge connecting 

𝑖𝑖 and 𝑗𝑗 is inversely proportional to 𝑊𝑊𝑗𝑗𝑗𝑗 (areas with high connectivities are physically closer)15. 

Thus, the shortest weighted path length between any two nodes in the graph, 𝑙𝑙𝑗𝑗𝑗𝑗𝜔𝜔, is their shortest 

weighted (geodesic) distance11. 

On the contrary, the synthetic network models are binary graphs. In the calculation of the 

topological measures for the SF and SW networks, the quantities below are modified so that all 

the weights are 1 if a connection exists. In binary networks, the sum of the weights for the 
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connections a node has, known as ‘strength’ (see below), reduces to its number of links, which is 

conventionally called ‘degree’. The rest of the quantities are called likewise.  

2.1.4.1 Local measures  

Important nodes in a network often participate in a high number of connections with other 

elements of the network. Most of the widely used local measures quantify the degree of centrality 

based on the idea that important nodes are involved in many short paths and have a key role for 

information flow in the network11. Other measures, like communicability9,51, account not only for 

the shortest path lengths communicating two nodes in a network, but also for indirect multiple 

connections that permit information to travel.  

List of local measures: 

Strength (𝑠𝑠𝑖𝑖): the sum of the weights of the edges connected to node 𝑖𝑖: 

𝑠𝑠𝑖𝑖 = �𝑊𝑊𝑗𝑗𝑗𝑗
𝑗𝑗∈G

 

Eccentricity (𝑒𝑒𝑖𝑖):  the maximal shortest path length between node 𝑖𝑖 and any other node in the graph: 

𝑒𝑒𝑖𝑖 = max
𝑗𝑗∈G,𝑗𝑗≠𝑖𝑖

𝑙𝑙𝑗𝑗𝑗𝑗𝜔𝜔 

Closeness centrality (𝑞𝑞𝑖𝑖):  the average distance between node i and every other node in the graph: 

𝑞𝑞𝑖𝑖 =
𝑁𝑁 − 1

∑ 𝑙𝑙𝑗𝑗𝑗𝑗𝜔𝜔𝑗𝑗∈G,𝑗𝑗≠𝑖𝑖
 

Betweenness centrality (𝑏𝑏𝑖𝑖): the fraction of all shortest paths in the network that contain node 𝑖𝑖: 

𝑏𝑏𝑖𝑖 =
1

(𝑁𝑁 − 1)(𝑁𝑁 − 2) �
𝜎𝜎ℎ𝑗𝑗(𝑖𝑖)
𝜎𝜎ℎ𝑗𝑗ℎ,𝑗𝑗∈G

ℎ≠𝑗𝑗≠𝑖𝑖
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𝜎𝜎ℎ𝑗𝑗 is the total number of paths from ℎ to 𝑗𝑗 and 𝜎𝜎ℎ𝑗𝑗(𝑖𝑖) is the number of these paths passing through 

node 𝑖𝑖. 

Clustering coefficient (𝑐𝑐𝑖𝑖):  the fraction of triangles around node 𝑖𝑖: 

𝑐𝑐𝑖𝑖 =
2𝑡𝑡𝑖𝑖𝜔𝜔

𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1) 

𝑘𝑘𝑖𝑖 is the degree of node 𝑖𝑖 (total number of edges connected to it) and 𝑡𝑡𝑖𝑖𝜔𝜔 is the weighted geometric 

mean of triangles around 𝑖𝑖, 𝑡𝑡𝑖𝑖𝜔𝜔 = 1
2
∑ �𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊𝑖𝑖ℎ𝑊𝑊ℎ𝑗𝑗�

1
3�

ℎ,𝑗𝑗∈G . 

Node communicability (𝑀𝑀𝑖𝑖):  the communicability counts (direct and indirect) paths of all lengths 

between two nodes and is defined by the operation: 𝑀𝑀𝑗𝑗𝑗𝑗 = ∑ �𝑯𝑯
𝑘𝑘

𝑘𝑘!
�∞

𝑘𝑘=0 𝑗𝑗𝑗𝑗
, where 𝑯𝑯 = 𝐃𝐃−12 𝐖𝐖 𝐃𝐃

1
2  and  

𝐃𝐃 ∈ ℝ𝑁𝑁×𝑁𝑁 is the matrix with diagonal elements 𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ W𝑗𝑗𝑗𝑗𝑗𝑗∈G . We use a node communicability 

instead, which is obtained from adding the communicabilities between node 𝑖𝑖 and every other node 

in the graph. Thus:  

𝑀𝑀𝑖𝑖 = �𝑀𝑀𝑗𝑗𝑗𝑗
𝑗𝑗∈G

 

2.1.4.2 Global measures  

When a network is looked at entirely, the interest is on characterizing the processing of 

information along it. Measures of integration (e.g., characteristic path length, global efficiency) 

quantify to what extent the network can rapidly combine the information coming from separated 

components in it, and they are related to the notion of short paths. On the other hand, measures of 

segregation (e.g., network clustering coefficient) characterize the network in terms of the existence 

of groups of nodes, or clusters, in which information can be processed independently. Brain 

networks, for example, seem to be both integrated and segregated for functional processing11.  
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List of global measures: 

Characteristic path length (𝑙𝑙):  the average shortest path length in the network: 

𝑙𝑙 =
1
𝑁𝑁
�

∑ 𝑙𝑙𝑗𝑗𝑗𝑗𝜔𝜔𝑗𝑗∈G,𝑗𝑗≠𝑖𝑖

𝑁𝑁 − 1
𝑖𝑖∈G

 

Radius (𝑟𝑟): the minimum eccentricity: 

𝑟𝑟 = min
𝑖𝑖∈G

𝑒𝑒𝑖𝑖 

Diameter (𝐷𝐷):  the maximum eccentricity: 

𝐷𝐷 = max
𝑖𝑖∈G

𝑒𝑒𝑖𝑖 

Average clustering coefficient (𝐶𝐶):   

𝐶𝐶 =
1
𝑁𝑁
�𝑐𝑐𝑖𝑖
𝑖𝑖∈G

 

Global efficiency (𝐸𝐸𝑔𝑔):  the average inverse shortest path length in the network: 

𝐸𝐸𝑔𝑔 =
1
𝑁𝑁
�

∑ �𝑙𝑙𝑗𝑗𝑗𝑗𝜔𝜔�
−1

𝑗𝑗∈G,𝑗𝑗≠𝑖𝑖

𝑁𝑁 − 1
𝑖𝑖∈G

 

2.2 State-dependent Riccati equation control 

2.2.1 The quadratic regulator. Cost function 

Control theory studies how to manipulate a system so it produces a certain desired 

response17. In optimal control, the system is steered in such a way that a defined cost function (also 

known as performance index) is minimized37. Let us assume a generic 𝑛𝑛 −dimensional dynamical 

system with state vector 𝒆𝒆 ∈ ℝ𝑛𝑛. An input vector, 𝑢𝑢(𝑡𝑡), feeds the system. We consider 𝑢𝑢(𝑡𝑡) ∈ ℝ, 

for simplicity. The evolution of 𝒆𝒆 is given by: 

 𝒆̇𝒆 = 𝒇𝒇(𝒆𝒆) + 𝑩𝑩𝑢𝑢(𝑡𝑡);𝒆𝒆(0) = 𝒆𝒆0 (1) 
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where 𝑩𝑩 is a vector whose components are only different from zero at the 𝑖𝑖 − th entry, as the input 

𝑢𝑢(𝑡𝑡) is applied over 𝑒𝑒𝑖𝑖.  

In regulator problems, the system is required to maintain a steady state. A quadratic cost 

index is to be minimized in a time interval far bigger than the system’s time scales (infinite time): 

 
𝐽𝐽 =

1
2
� [𝒆𝒆(𝑡𝑡)𝑇𝑇𝑸𝑸𝑸𝑸(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑇𝑇𝑹𝑹𝑢𝑢(𝑡𝑡)]
∞

0
𝑑𝑑𝑑𝑑 

 
(2) 

For 𝐽𝐽 to have a minimum, it is required to be bounded from below. The weight matrices 𝑸𝑸 

and 𝑹𝑹 must be positive semi-definite and positive definite, respectively17. These matrices are 

chosen based on the speed of the responses and distance from the equilibrium point –the origin– 

that are sought to be achieved by the controller. The first term in the integral accounts for the 

deviations from the equilibrium whereas the second term is associated with the energy used by the 

controller.  

2.2.2 Solution to the optimal nonlinear control problem 

If the drift term, 𝒇𝒇, satisfies that i) 𝒇𝒇(𝒆𝒆) ∈ 𝐶𝐶𝑚𝑚,𝑚𝑚 ≥ 1 (being 𝐶𝐶𝑚𝑚 the set of functions with 

continuous derivatives up to the 𝑚𝑚−order) and ii) 𝒇𝒇(0) = 0 (the origin is an equilibrium point), 

it can be rewritten as the product of the state vector and a matrix that depends on the state itself, 

𝒇𝒇(𝒆𝒆) = 𝑨𝑨(𝒆𝒆)𝒆𝒆 (apparent linearization, from now on)37.  Under this transformation, (1) becomes:  

 𝒆̇𝒆(𝑡𝑡) = 𝑨𝑨(𝒆𝒆)𝒆𝒆(𝑡𝑡) + 𝑩𝑩𝑢𝑢(𝑡𝑡),   𝒆𝒆(0) = 𝒆𝒆0 (3) 

In what follows, we assume that the system presents state-independent terms. In this 

scenario, the apparent linearization cannot be straightforwardly found37.  However, a workaround 

solution52 consists of augmenting (3) with an new equation for a stable state 𝑣𝑣, so that 𝒆𝒆 ∈ ℝ𝑛𝑛+1, 
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and the matrices 𝑨𝑨(𝒆𝒆), 𝑩𝑩, and the weights 𝑸𝑸 and 𝑹𝑹, are extended consequently. The equation for 

𝑣𝑣 can be written as:  

𝑣̇𝑣(𝑡𝑡) = −𝜆𝜆𝜆𝜆(𝑡𝑡),   𝑣𝑣(0) = 1,   𝜆𝜆 = 1 

If the matrix 𝑨𝑨(𝒆𝒆) is treated as constant, the solution to (1) –with a generally nonlinear 

function 𝒇𝒇(𝒆𝒆)– subjected to the minimization of the cost index in (2), is found by mimicking the 

linear quadratic regulator formulation36–38. The optimal state-feedback controller is obtained in the 

form: 

 𝒖𝒖(𝑡𝑡) = −𝑹𝑹−1𝑩𝑩𝑇𝑇𝑺𝑺(𝒆𝒆)𝒆𝒆 (4) 

where 𝑺𝑺(𝒆𝒆) is the solution to the SDRE: 

 𝑺𝑺(𝒆𝒆)𝑨𝑨(𝒆𝒆) + 𝑨𝑨𝑇𝑇(𝒆𝒆)𝑺𝑺(𝒆𝒆) − 𝑺𝑺(𝒆𝒆)𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑺𝑺(𝒆𝒆) + 𝑸𝑸 = 𝟎𝟎 (5) 

2.2.3 Existence of solutions 

The optimal control signal 𝑢𝑢(𝑡𝑡) exists and is obtained from solving the so-called SDRE if 

system (3) is observable and controllable. This means that only under certain conditions, the 

system can be steered to the origin at a minimum cost. Observability is guaranteed if the matrix 𝑸𝑸 

is set to be positive definite. The apparent linearization yields a controllable system in a region 

℧ ∈ ℝ(𝑛𝑛+1) if the matrix �𝑩𝑩|𝑨𝑨(𝒆𝒆)𝑩𝑩|… |𝑨𝑨(𝑛𝑛)(𝒆𝒆)𝑩𝑩�  has rank (𝑛𝑛 + 1) for every 𝒆𝒆 ∈ ℧ (in other 

words, if it is pointwise controllable in the linear sense in ℧)37,38. Otherwise, the system is said to 

be uncontrollable and an infinite input would be required to steer the states towards the origin. 

Note how it is clarified inside the parenthesis that the dimension of the system is extended from 𝑛𝑛 

to 𝑛𝑛 + 1 to account for the possible presence of state-independent terms.    
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2.2.4 Numerical methods 

The system (3) is iteratively solved using a Local Linearization scheme, which is known 

to be stable and preserves nonlinearities20,53,54. Given the solution at the time instant 𝑚𝑚, 𝒆𝒆𝑚𝑚, the 

value of the apparent linearization, 𝑨𝑨𝑚𝑚(𝒆𝒆𝑚𝑚), and the solution to the SDRE, 𝑺𝑺𝑚𝑚(𝒆𝒆𝑚𝑚), at that same 

instant, the state vector at the next iteration is given by: 

𝒆𝒆𝑚𝑚+1 = 𝒆𝒆𝑚𝑚 + 𝑳𝑳𝑒𝑒𝑪𝑪𝑚𝑚∆𝑡𝑡𝑽𝑽 

where 𝑳𝑳 = �𝑰𝑰(𝑛𝑛+1)×(𝑛𝑛+1),𝟎𝟎(𝑛𝑛+1)×2�, 𝑽𝑽 = �𝟎𝟎1×�(𝑛𝑛+1)+1�, 1�
𝑇𝑇
 and the �(𝑛𝑛 + 1) + 2� × �(𝑛𝑛 + 1) +

2� matrix 𝑪𝑪𝑚𝑚 is defined by blocks as: 

𝑪𝑪𝑚𝑚 = �
𝒇𝒇�̇𝑚𝑚(𝒆𝒆𝑚𝑚) 𝟎𝟎(𝑛𝑛+1)×1 𝒇𝒇�𝑚𝑚(𝒆𝒆𝑚𝑚)

0 0 1
0 0 0

� 

in which, from (3) and (4): 𝒇𝒇� = [𝑨𝑨(𝒆𝒆) − 𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑺𝑺(𝒆𝒆)]𝒆𝒆, and 𝒇𝒇�̇ represents its derivative with 

respect to the variables, 𝒆𝒆. 

At each iteration, the solution to the SDRE is obtained by using MATLAB’s function lqr.m. 

In practice, the controllability condition is checked while the numerical integration of the system 

is performed. The parametrization  𝒇𝒇(𝒆𝒆) = 𝑨𝑨(𝒆𝒆)𝒆𝒆 conduces to locally linear systems at each time 

instant. Thus, the assessment of the controllability condition is also pointwise-managed through 

lqr.m, as it returns an error for uncontrollable systems. 
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Chapter Three: Results 

3.1 A framework for optimal nonlinear control of brain networks 

The brain behaves as a nonlinear system. Here, a framework for converting one state of 

brain activity into another is developed. This SDRE-based approach, not only considers the 

nonlinear nature of the brain, but also finds the least energy-consuming signal that can revert a 

pathological state. The interaction of the state variables in the dynamical model is built over 

connectivity matrices that are computed from real data. As such, the implementation of our 

framework conduces to reliable subject-specific information for controlling the activity.  

3.1.1 Dynamical model 

We chose a mathematical model that balances simplicity and physiological reliability. This 

consists of a set of Duffing-like oscillators55, linearly coupled through either the SF and SW 

network models or the anatomical connection density matrices, 𝑾𝑾 ∈ ℝ𝑁𝑁×𝑁𝑁. Here, 𝑁𝑁 is the number 

of nodes in the network (𝑁𝑁 = 78). The state variables 𝒙𝒙 are interpreted as excitatory postsynaptic 

potentials in a neural mass formulation54,56–58 (units: 𝑚𝑚𝑚𝑚). Neural mass models customarily include 

a sigmoid activation function with lumped (average) parameters over a macroscopic population of 

neurons58,59. In the low activity limit, the sigmoid function can be replaced by a third-order 

approximation60. Then, in the model we use, the dynamics in area 𝑖𝑖 is described by:  

                                                           𝑥̇𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 

                                                          𝑦̇𝑦𝑖𝑖 = −𝛼𝛼𝛼𝛼𝑖𝑖 − 𝛾𝛾𝑥𝑥𝑖𝑖3 + 𝛽𝛽�W𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 

                                               𝒙𝒙(0) = 𝒙𝒙0,   𝒚𝒚(0) = 𝒚𝒚0 
 

 
 

(6) 

where 𝒛𝒛 = [𝒙𝒙,𝒚𝒚]𝑇𝑇 ∈ ℝ𝑛𝑛,𝑛𝑛 = 2𝑁𝑁 is the state vector and 𝛽𝛽 is the strength of the coupling. The 

parameter 𝛾𝛾  is the strength of the nonlinearity. The limit case of a linear system is readily achieved 



 

27 

 

by making 𝛾𝛾 = 0. Additionally, we know that the amplitude of the solutions to system (6) grows 

with the initial conditions, 𝒛𝒛0 = [𝒙𝒙0,𝒚𝒚0]𝑇𝑇, and the frequency, with 𝛼𝛼, based on previous studies 

for the oscillations of Duffing equations with cubic nonlinearities55. 

3.1.2 Control tasks 

The solution to system (6) can be tuned to reproduce different patterns of brain activity. 

For example, a spectrum with high power in the theta band, established globally in all the nodes, 

is obtained with slightly high initial conditions 𝒛𝒛0 = [𝒙𝒙0,𝒚𝒚0]𝑇𝑇 and a parameter 𝛼𝛼 giving 

oscillations in that regime. This also stands for an alpha-band oscillation, and so on. Let us 

distinguish two different solutions to system (6): 𝒛𝒛1, if 𝛼𝛼 = 𝛼𝛼1, and 𝒛𝒛2, if  𝛼𝛼 = 𝛼𝛼2. The control 

task consists of steering the nonlinear system that results from making 𝛼𝛼 = 𝛼𝛼1 in (6) to the one 

obtained when 𝛼𝛼 = 𝛼𝛼2 by applying an input that enters only one node in the network.  Jayaram 

and Tadi38 previously introduced the idea of synchronizing two nonlinear systems by using SDRE 

though focused on low-dimensional generic systems and with no specific application.   

Let us write 𝒆𝒆 = 𝒛𝒛1 − 𝒛𝒛2, as the difference between the two solutions. Now, let us look for 

a stimulus 𝑢𝑢(𝑡𝑡) –the controller– that optimally makes 𝒆𝒆 as small as possible. Under the conditions 

in Section 2.2.2, the system for the difference can be written as equation (3), and SDRE control as 

explained in 2.2 can be applied. In this work, we choose the following apparent linearization: 

 

𝑨𝑨(𝒆𝒆) =

⎣
⎢
⎢
⎡
𝟎𝟎𝑁𝑁×𝑁𝑁 𝑰𝑰𝑁𝑁×𝑁𝑁 𝟎𝟎𝑁𝑁×1

𝑨𝑨� 𝟎𝟎𝑁𝑁×𝑁𝑁 �
−(𝛼𝛼1 − 𝛼𝛼2)𝒙𝒙

𝑣𝑣
� 𝑣𝑣

𝟎𝟎1×𝑁𝑁 𝟎𝟎1×𝑁𝑁 −𝜆𝜆 ⎦
⎥
⎥
⎤
 

 

                              𝐴̃𝐴𝑗𝑗𝑗𝑗 = �−𝛼𝛼1 − 𝛾𝛾(𝑒𝑒𝒙𝒙𝑖𝑖2 + 3𝑒𝑒𝒙𝒙𝑖𝑖𝑥𝑥𝑖𝑖 + 3𝑥𝑥𝑖𝑖2)                        𝑖𝑖 = 𝑗𝑗
𝛽𝛽W𝑗𝑗𝑗𝑗                                                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 
 
 
 

(7) 
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where the symbol 𝑒𝑒𝒙𝒙𝑖𝑖 represents the 𝑖𝑖 −th difference of the two solutions in the observable 

variables only, 𝑒𝑒𝒙𝒙𝑖𝑖 = (𝒙𝒙1 − 𝒙𝒙2)𝑖𝑖. Note that the right-most column in matrix 𝑨𝑨(𝒆𝒆) accounts for the 

state-independent terms resulting from subtracting the two solutions.  

New, different systems are generated if the connectivity matrices, 𝑾𝑾, are changed. Thus, 

the control task of converting one pattern of activity into the other is not only dependent on the 

dynamical model we choose for a neuronal population and its parameters, but also on the 

connections between the neuronal populations. For example, if these are anatomical connection 

density matrices, new results for the control tasks are obtained every time a new subject is 

considered. Additionally, by changing the position of the non-zero element in 𝑩𝑩, all possible 

‘stimulations’ to single nodes are covered. To be precise, there are as many control tasks and 

controllers in our model as combinations of networks and nodes receiving the control input in 

those networks.  

To classify the efficacy of the controllers, the energy associated with the controlling signal 

is used. Roughly speaking, the energy is defined as the time-integral of the norm of the control 

input, 𝑢𝑢(𝑡𝑡) (see Section 2.2.1), and constitutes a unique performance index per network and node 

receiving the input. 

3.1.3 Parameters and implementation 

Table 3-1 summarizes the set of parameters used throughout the study. The values for the 

global coupling strength, 𝛽𝛽, and the initial conditions are set to produce EEG-like activity. In the 

same way, the ‘time constants’, 𝛼𝛼1 and 𝛼𝛼2, are chosen so that the dynamics we obtain are basically 

oscillations at approximately 6.4𝐻𝐻𝐻𝐻 and 8.0𝐻𝐻𝐻𝐻, respectively. These constants are within the range 
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corresponding to theta-alpha activity, determined by Zavaglia et al.61. The control tasks are 

assessed for strengths of the nonlinearity, 𝛾𝛾, from 0 to 300, with incremented step size of 50. 

All the simulations and analysis in this work were implemented and performed within 

MATLAB R2017a (The MathWorks Inc., Natick, MA, USA). The function 

NLduff_ADNI_hd_subject.m (in the Appendix to this thesis) reflects the computational procedure 

that was carried on for the assessments of the control tasks in Section 3.3. 

Table 3-1: Values of the parameters used. 

Parameter Description Value, units 

𝛼𝛼1 ‘Time constant’ for the 𝒛𝒛1-system  1935 𝑠𝑠−2 
𝛼𝛼2 ‘Time constant’ for the 𝒛𝒛2-system 2852 𝑠𝑠−2 
𝛽𝛽 Global coupling strength 150 𝑠𝑠−2 
𝛾𝛾 Strength of the nonlinearity [0: 50: 300] 𝑠𝑠−2𝑚𝑚𝑚𝑚−2 

(𝒙𝒙0,𝒚𝒚0)1 Initial conditions for the 𝒛𝒛1-system [0.2 ∙ 𝟏𝟏𝑁𝑁×1 𝑚𝑚𝑚𝑚;𝟎𝟎𝑁𝑁×1 𝑠𝑠−1𝑚𝑚𝑚𝑚] 
(𝒙𝒙0,𝒚𝒚0)2 Initial conditions for the 𝒛𝒛2-system [0.1 ∙ 𝟏𝟏𝑁𝑁×1 𝑚𝑚𝑚𝑚;𝟎𝟎𝑁𝑁×1 𝑠𝑠−1𝑚𝑚𝑚𝑚] 

𝑹𝑹 Weight for the influence the control 
signal has in the cost 𝐽𝐽  

1Ω−1 

𝑸𝑸 Weight for the influence the state vector 
has in the cost 𝐽𝐽 �

𝑰𝑰𝑁𝑁×𝑁𝑁 𝟎𝟎𝑁𝑁×(𝑁𝑁+1)
𝟎𝟎(𝑁𝑁+1)×𝑁𝑁 𝟎𝟎𝑁𝑁×(𝑁𝑁+1)

� Ω−1 

 

3.2 Exploring on synthetic network models 

As aforementioned, the human brain possesses scale-free and small-world properties. The 

study of the control tasks in SF and SW models constitutes an initial step in this work to provide: 

1) evidence on the viability of the optimal nonlinear network control framework in the way it was 

designed, and 2) insights into the performance of the controllers in synthetic networks that are 

similar to the real anatomical networks. Thus, we randomly generated SF and SW binary graphs, 

with the same number of nodes that the anatomical networks have (78 brain regions) and with 

parameters that ensured their similarity to the real networks (see Sections 2.1.1 and 2.1.2).  
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In this exploratory analysis, we set 𝒛𝒛2 = 𝟎𝟎 (𝒆𝒆 = 𝒛𝒛1), which, in other words, means looking 

for optimal stimuli that send all the oscillators to the equilibrium point. The effect of a controller 

over the activity produced in one of the SF (SW) networks is shown in Figure 3-1a (Figure 3-1b) 

for illustrative purposes. It is seen how the application of the input (obtained through SDRE) is 

followed by a decrease on the amplitude of the oscillations until they are considerably close to the 

origin by the end of the simulation.  

If the input was placed over a different node, the system might or might not be controllable. 

In effect, when moving the controller over all the nodes and networks, some cases of 

uncontrollable systems appeared. In those situations, a minimum energy signal that regulates the 

Figure 3-1: Controlling oscillations in synthetic networks. a) Scale-free network. b) Small-

world network. Initially, the model produces oscillations at approximately 6.4 Hz. A controller 

feeds one of the nodes in the system at 𝑡𝑡 = 100𝑠𝑠, with the objective of making all the oscillators 

to evolve towards the origin. All the state variables are shown. 
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system to the origin does not exist, so an infinite input signal would be required. Therefore, an 

uncontrollable system is associated with an infinite energetic cost of controlling (whereas the 

inverse of the cost will be zero). To overcome the presence of uncontrollable systems with proper 

visualization tools, we chose the inverse of the cost as the variable of interest for characterizing 

the performance of the controllers in our tasks. Thus, a node with high inverse of the cost is 

associated with enhanced optimal control (the full network can be readily controlled with an input 

entering such node).   

To gain further insight into the nodes offering the best optimal control perspectives, we 

studied the relationship between the inverse of the costs and the local topological measures. The 

chosen topological measures were node degree, 𝑑𝑑𝑖𝑖; eccentricity, 𝑒𝑒𝑖𝑖; closeness centrality, 𝑞𝑞𝑖𝑖; 

betweenness centrality, 𝑏𝑏𝑖𝑖; clustering coefficient, 𝑐𝑐𝑖𝑖 and communicability, 𝑀𝑀𝑖𝑖. In Figure 3-2a-f we 

show the above-mentioned dependences for 5 SF networks. Figure 3-3a-f present the same analysis 

for 5 different SW networks. The Pearson correlation coefficients, r, and the p-values, P, are 

inserted in each panel. The F-statistics for the regressions appear in the figure captions. The 

strength of the nonlinearity was set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2 in all the simulations in this section.  

These topological quantities classify the degree of ‘importance’ a node has in the network. 

For example, a low eccentricity denotes short paths from a node to the rest of the network, which 

is also interpreted as a high closeness centrality, whereas communicability counts direct and 

indirect paths of all lengths between two nodes. The strength accounts for both, the number of 

connections a node has and the value of the connection weights. On the other hand, high values of 

betweenness centrality relate to nodes that act as bridges in the network and a high clustering 

coefficient means tendency to form triangles, or cluster together. All the significant relationships 
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in Figures 3-2 and 3-3 suggest that the better-connected nodes are also the top targets for 

controlling the oscillatory dynamics.  

Figure 3-2: The effect of the local topological measures in the performance of the controllers 

– scale-free networks.   Relationship between the inverse of the cost and the node strength (a) 

(linear regression: F(1,388) = 11.05, P < 0.001), eccentricity (b) (linear regression: F(1,388) = 

41.48, P < 0.001), closeness centrality (c) (linear regression: F(1,388) = 52.98, P < 0.001), 

betweenness centrality (d) (linear regression: F(1,388) = 3.08, P = 0.080), clustering coefficient 

(e) (linear regression: F(1,388) = 4.43, P = 0.036) and communicability (f) (linear regression: 

F(1,388) = 21.26, P < 0.001); n = 390 nodes (5 networks), in all cases. The Pearson correlation 

coefficients, r, are inserted. The strength of the nonlinearity was set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 
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Figure 3-3: The effect of the local topological measures in the performance of the controllers 

– small-world networks.   Relationship between the inverse of the cost and the node strength (a) 

(linear regression: F(1,388) = 144.04, P < 0.001), eccentricity (b) (linear regression: F(1,388) = 

1.19, P = 0.270), closeness centrality (c) (linear regression: F(1,388) = 3.26, P = 0.072), 

betweenness centrality (d) (linear regression: F(1,388) = 22.08, P < 0.001), clustering coefficient 

(e) (linear regression: F(1,388) = 0.06, P = 0.800) and communicability (f) (linear regression: 

F(1,388) = 411.60, P < 0.001); n = 390 nodes (5 networks), in all cases. The Pearson correlation 

coefficients, r, are inserted. The strength of the nonlinearity was set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 
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3.3 Controlling the Alzheimer’s network 

We applied the SDRE optimal control framework to each of the 41 patients from the 

ADNI’s database, whose macroscopic electrical brain activity was given by the system of Duffing-

like oscillators coupled through the anatomical connection matrices (see Section 2.1.3). A 

pathological state, 𝒛𝒛1, was defined as one in which all oscillators presented high-amplitude theta-

band frequencies. Conversely, in a healthy state (𝒛𝒛2), they oscillated with an alpha-band frequency. 

This designation of the pathological and healthy states sought to match the slowing of the EEG 

induced by AD27–29. Moreover, there is a correlation between EEG abnormalities and severity of 

dementia; drug-induced transient restoration of EEG normality is related to improved attention 

and memory performances29,31. Therefore, the control tasks consisted of shifting the pathological 

activity of the nonlinear system to healthy activity, even though the damage the disease caused to 

the patient is irreversible. In effect, the underlying pathological system –given in the model by the 

parameter 𝛼𝛼1 and the affected anatomical networks, 𝑾𝑾– remained unchanged. The general scheme 

of our methodology is presented in Figure 3-4. 

3.3.1 Designing brain stimulation signals for Alzheimer’s: linear vs nonlinear modeling 
approaches 

In contrast to conventional ideas on brain stimulation where identical signals are applied 

regardless of subject-to-subject variability2–6, we calculated a broad set of patient-specific signals 

that revert AD pathological activity, and studied their performance on the control tasks. Figure 3-

5a,c,e show (respectively) the initial set-up of the temporal solutions of the nonlinear model, their 

behavior in the last five seconds of the simulated interval, and the optimal control signal, 𝑢𝑢(𝑡𝑡), 

that hypothetically enters the left pallidum, in this example, and produces a successful control task.  
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This corresponds to a specific subject in ADNI’s database. Figure 3-5b,d,f  present the same 

analysis for a second subject. In both cases, the strength of the nonlinearity was 𝛾𝛾 =

200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. This is a typical value among the strengths of the nonlinearity we tested.  

As seen from the temporal evolution of variable 𝑥𝑥, which represents the postsynaptic 

potential over one randomly chosen region in the model, the controlled trajectory almost 

identically matches the desired trajectory (low-amplitude alpha oscillation) by the end of the 

simulation (Figure 3-5c,d). Please, note the subtle differences in the signals the controller is set to 

deliver from one subject (Figure 3-5e) to the other (Figure 3-5f).  

These dissimilarities are mostly due to the generation of subject-dependent minimal-energy 

signals. The magnitudes of the calculated optimal signals (-0.1–0.1 V, approximately) were around 

one order lower than the signals that are currently used in deep brain stimulation for AD (3.0–3.5 

V)2,3. The magnitude generally decreased with time although the signals possessed complicated 

shapes. The energetic cost of controlling the full network of oscillators was also computed. We 

found that low magnitude signals are associated with reduced costs (Figure 3-5e,f).  

Several subject-dependent cases in which the optimal control framework failed to produce 

stimulation signals were obtained for nonlinear systems (see Figure 3-11). Figure 3-6 shows 

equivalent results to those in Figure 3-5, although obtained over linear systems (𝛾𝛾 = 0 𝑠𝑠−2𝑚𝑚𝑚𝑚−2). 

No case of uncontrollable systems for any subject was found for signals entering the linear variant 

of the model though, which seems unrealistic to occur in any practical implementation. 

Additionally, the magnitude of the control signals obtained was generally lower for linear than for 

nonlinear systems.  Manifestly, these results depend on the anatomical connection matrices and 

the dynamical model (coupled Duffing-like oscillators) we have used for the simulations. 
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Figure 3-4: Optimal nonlinear network control of Alzheimer’s. a) Anatomical connection 

density matrices (𝑾𝑾) for the interaction of 78 predefined brain regions were obtained for each of 

the patients in the study. The color code and size of the edges represent the weight of the 

connections. b) Duffing-like oscillators describe the activity in each brain region 𝑖𝑖, and are coupled 

through 𝑾𝑾. The parameter 𝛾𝛾 characterizes the nonlinearity of the system. By tuning 𝛼𝛼 and the 

initial conditions, 𝒛𝒛𝟎𝟎 = [𝒙𝒙𝟎𝟎,𝒚𝒚𝟎𝟎]𝑇𝑇, ‘pathological EEG activity’ (high-amplitude theta-band 

oscillations, 𝑓𝑓 ≈ 6.4 𝐻𝐻𝐻𝐻) and ‘healthy EEG activity’ (low-amplitude alpha-band oscillations, 𝑓𝑓 ≈

8.0 𝐻𝐻𝐻𝐻) are obtained. c) A hypothetical ‘controller’ is moved over all the regions. The controller 

applies the optimal (least energy-consuming) signal that steers the activity to the healthy state, and 

guarantees the shift of the EEG spectrum towards higher frequencies. Each stimulus depends on 

the region and patient receiving it through the dynamical system that is solved. 
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Figure 3-5: Controlling the Alzheimer’s pathological EEG activity (nonlinear case). a) Start 

of the simulations for the ADNI subject identified as ‘5119’. The evolution of the postsynaptic 

potential over one region is shown only. Others behave analogously. The desired trajectory 

corresponds to a ‘healthy’ low-amplitude alpha-band oscillation. The model can also produce 

‘pathological’ high-amplitude theta-band oscillations. A control signal feeds the left pallidum for 

reverting the pathological activity. c) By the end of the simulation, the controlled trajectory almost 

identically matches the healthy state although it was created with the ‘pathological parameters’. 

This is the effect of the optimal control signal, shown in (e). Panels (b,d,f) present the same 

analysis for the subject identified as ‘4494’. The energetic cost of the control task is inserted in e 

and f.  A one-second zoom-in window of the control signal at  𝑡𝑡 = 200𝑠𝑠  is also inserted. The 

strength of the nonlinearity was set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 
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Figure 3-6: Controlling the Alzheimer’s pathological EEG activity (linear case). a) Start of the 

simulations for the ADNI subject identified as ‘5119’. The evolution of the postsynaptic potential 

over one region is shown only. Others behave analogously. The desired trajectory corresponds to 

a ‘healthy’ low-amplitude alpha-band oscillation. The model can also produce ‘pathological’ high-

amplitude theta-band oscillations. A control signal feeds the left pallidum for reverting the 

pathological activity. c) By the end of the simulation, the controlled trajectory almost identically 

matches the healthy state although it was created with the ‘pathological parameters’. This is the 

effect of the optimal control signal, shown in (e). Panels (b,d,f) present the same analysis for the 

subject identified as ‘4494’. The energetic cost of the control task is inserted in e and f.  A one-

second zoom-in window of the control signal at 𝑡𝑡 = 200𝑠𝑠  is also inserted. The strength of the 

nonlinearity was set to γ = 0 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 
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3.3.2 Selecting the target location for stimulation: ranking the areas based on the cost of 
controlling the brain network 

 We collected the results of all simulations to construct a general picture of the power 

regions (nodes in the networks) have to control the AD system. Results for the simulations using 

the same strength of the nonlinearity, 𝛾𝛾, were averaged across all the subjects in the study. Again, 

it is the inverse of the cost the variable we used for quantifying how well regions can propagate a 

stimulus, serving to construct a ranking.  

Figure 3-7a shows the brain areas’ ranking for the limit case of a linear system (mean 

inverse of the cost ± standard error of the mean). Top-ranked areas appear in the leftmost part of 

the panel. Figure 3-7b contains a graphical visualization of the brain sites where they are 

approximately located. The size of the spheres is directly proportional to the inverse of the cost. 

We found that several of the top-ranked regions are spatially close, with predominance over the 

left hemisphere. New rankings were obtained when the nonlinearities increased (see Figure 3-

7c,d). As the magnitudes of the costs generally grow with the strength of the nonlinearity, the 

upper limit of the vertical axis in Figure 3-7c, representing the maximum mean inverse of the cost 

registered for 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2, is smaller than the corresponding one in Figure 3-7a. 

 Additionally, we assessed the relationship between the rankings of the regions resulting 

from controlling systems with different nonlinearities. The statistical dependence between the 

rankings associated to the nonlinearities was measured in terms of Spearman correlation (Pearson 

correlation between the rankings). The Spearman’s rank correlation coefficient (Spearman’s rho) 

between the linear system’s order and the corresponding to a nonlinear system with 𝛾𝛾 =

100 𝑠𝑠−2𝑚𝑚𝑚𝑚−2   was   𝜌𝜌 = 0.98 (𝑝𝑝 < 0.001). It   decreased   to  𝜌𝜌 =  0.87 (𝑝𝑝 < 0.001)  when  the 
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 nonlinearity was increased to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2 and further down to 𝜌𝜌 =  0.59 (𝑝𝑝 < 0.001) for 

𝛾𝛾 = 300 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. The orders corresponding to two consecutive nonlinearities also differed more 

(Figure 3-8a).  

These ‘expected’ rankings, obtained from looking at the average inverse of the cost only, 

had similarities in their top and bottom-most components (Figure 3-8b), suggesting a global 

privileged/disadvantageous position of some areas in the brain network (see Section 3.3.3) that 

transcends the effects of the nonlinearities. We consider it important to note that individual cases 

of uncontrollable systems were ubiquitously reported when nonlinearities were considered. Only 

the individual calculation of the minimal-energy control signals, instead of an analysis over the 

main values as performed in this section, can conduce to a trustable selection of stimulation targets.  

Nevertheless, it is interesting to note how regions on the top of the mean control orders 

(Figure 3-7a,c) belonged to a clearly defined group with prevalence in the left hemisphere: the left 

pallidum, left putamen, left amygdala, left hippocampus, right thalamus proper, left insula, left 

basal forebrain, left fusiform and the caudate nuclei. Overall, these high-ranking regions belong to 

the limbic system and the basal ganglia. On the other hand, the worst-ranked areas included the 

right postcentral gyrus, both paracentral lobule, right inferior and superior parietal lobules, left 

cuneus and the right temporal lobe, which can all be classified as temporoparietal regions. 

Temporal and parietal cortical areas are affected in AD early in the disease course2. 
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Figure 3-7: Ranking brain regions according to the mean inverse of the cost of controlling 

the network. a) Order corresponding to the linear case. Given is the mean ± s.e.m. of n = 41 

subjects. Inputs entering regions in the leftmost part of the order control Alzheimer’s activity at a 

lowest cost. b) Graphical representation with the approximated location of the brain regions. The 

size of the spheres is directly proportional to the mean values in panel a. Panels (c,d) are analogous 

to (a,b) except that the strength of the nonlinearity has been set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2 and a new 

ranking is obtained. The red sphere represents the right postcentral gyrus, which yielded 

uncontrollable nonlinear systems for all the subjects in the sample. 
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3.3.3 Network topology helps to select stimulation candidates 

Identifying the most suitable candidates for a successful brain stimulation treatment remains 

a challenge. Even subjects suffering from the same condition are intrinsically different due to 

Figure 3-8: Nonlinearity-related changes to the average brain regions’ ranking. a) Rank 

correlations between the orders corresponding to different nonlinearities (paired t-test: large-

sample approximation, P < 0.001 in all the cases, n = 78 regions). As the nonlinearity increases, 

the Spearman’s rho coefficients for the correlation between a ranking and both, the order 

corresponding to the previous nonlinearity and to the linear case, decrease. b) The rankings for the 

nonlinearities 𝛾𝛾 = 0 𝑠𝑠−2𝑚𝑚𝑚𝑚−2 and 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2 are compared. These orders are similar in 

their top and bottom-most parts (inserted ellipses) and dissimilar in between. 
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genetic and environmental factors62.  Here, we aimed to create a gold standard for selecting both 

stimulation sites and individuals most likely to benefit from stimulation therapy based on the 

subject’s anatomical networks estimated from DW-MRI data. We looked at the relationship 

between the results of the control tasks and the topological characteristics of the networks, 𝑾𝑾′𝑠𝑠, 

over which they are performed.  

Figure 3-9 is analogous to Figures 3-2 and 3-3, except that it is the mean inverse of the cost 

that is shown. We found significant correlations between the mean inverse of the cost of controlling 

the brain network from a region and all the local measures (𝑠𝑠𝑖𝑖, 𝑒𝑒𝑖𝑖, 𝑞𝑞𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖 and 𝑀𝑀𝑖𝑖). The only 

decreasing relationship found was with the eccentricity, 𝑒𝑒𝑖𝑖, meaning that regions with a small 

shortest path length might constitute the more suitable targets for controlling the network. On the 

other hand, nodes with high 𝑠𝑠𝑖𝑖, 𝑞𝑞𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖 and 𝑀𝑀𝑖𝑖 were associated with high mean inverse of the 

cost.  Analyzing the strength of the correlations revealed an interesting pattern: the three 

correlation coefficients appearing on the top row of Figure 3-9 –for quantities strictly related to 

direct connections– were considerably higher than those on the bottom which relate to measures 

for quantifying relay nodes, segregation levels and indirect paths, respectively. This suggests that 

direct links (high weights, small shortest paths) between nodes are what makes a stimulus fully 

propagate over a network to reach the control objective at a low energetic cost.  

What is presented in Figure 3-9 stands for all the strengths of the nonlinearity we tested. 

However, the magnitudes of the correlation coefficients were higher as the strength of the 

nonlinearity decreased. The same analysis presented in Figure 3-9 can be found in Figure 3-10 for 

the linear systems. 
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Figure 3-9: The effect of the local topological measures in the performance of the controllers 

– Alzheimer’s anatomical networks (nonlinear case).   Relationship between the mean inverse 

of the cost across the sample and the mean node strength (a) (linear regression: F(1,76) = 55.95, P 

< 0.001), eccentricity (b) (linear regression: F(1,76) = 29.61, P < 0.001), closeness centrality (c) 

(linear regression: F(1,76) = 36.94, P < 0.001), betweenness centrality (d) (linear regression: 

F(1,76) = 20.90, P < 0.001), clustering coefficient (e) (linear regression: F(1,76) = 11.36, P = 

0.001) and communicability (f) (linear regression: F(1,76) = 10.87, P = 0.002); n = 78 regions, in 

all cases. The Pearson correlation coefficients, r, are inserted. The strength of the nonlinearity was 

set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 
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Figure 3-10: The effect of the local topological measures in the performance of the controllers 

– Alzheimer’s anatomical networks (linear case).   Relationship between the mean inverse of 

the cost across the sample and the mean node strength (a) (linear regression: F(1,76) = 105.72, P 

< 0.001), eccentricity (b) (linear regression: F(1,76) = 46.58, P < 0.001), closeness centrality (c) 

(linear regression: F(1,76) = 55.70, P < 0.001), betweenness centrality (d) (linear regression: 

F(1,76) = 25.20, P < 0.001), clustering coefficient (e) (linear regression: F(1,76) = 18.70, P < 

0.001) and communicability (f) (linear regression: F(1,76) = 18.26, P < 0.001); n = 78 regions, in 

all cases. The Pearson correlation coefficients, r, are inserted. The strength of the nonlinearity was 

set to 𝛾𝛾 = 0 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 
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As previously expressed, a set of inputs entering certain specific regions for each subject 

failed to convert theta activity into alpha activity. The number of successful signals thus provides 

a good estimate of how responsive the patients would be to the tentative treatment herein modeled. 

Therefore, we studied the relationship between the number of inputs resulting in controlling the 

systems and global measures of the subjects’ anatomical network.  This is shown in Figure 3-11a-

d (characteristic path length, 𝑙𝑙; radius, 𝑟𝑟; average clustering coefficient, 𝐶𝐶, and global efficiency, 

𝐸𝐸𝑔𝑔, in this order). We found that subjects with small average shortest path length (𝑙𝑙) of their 

anatomical networks were controlled by more inputs –in other words, from a high number of 

regions. In the same way, the lower the radius was, the more inputs were efficient in the control 

tasks. More clustered networks yielded the same result. Finally, the number of areas from which 

the AD brain can be controlled per subject was also proportionally related to the global efficiency, 

a measure that reflects how efficiently information can be exchanged over the network. We did 

not obtain any significant correlation between the number of controllable dynamical systems and 

the diameter of the networks. There are no linear systems-equivalent results to the ones in Figure 

3-11 as all the stimuli yielded controllable systems in that case. 

 

 

 



 

47 

 

   

Figure 3-11: The effect of the global topological measures in the success of the control tasks.   

Relationship between the number of successful control tasks per subject –the maximum possible 

value being 78– and the characteristic path length (a) (linear regression: F(1,39) = 6.08, P = 0.018), 

radius (b) (linear regression: F(1,39) = 5.60, P = 0.023), average clustering coefficient (c) (linear 

regression: F(1,39) = 7.77, P = 0.008), and global efficiency (d) (linear regression: F(1,39) = 6.39, 

P = 0.016); n = 41 subjects, in all cases. The Pearson correlation coefficients, r, are inserted. The 

strength of the nonlinearity was set to 𝛾𝛾 = 200 𝑠𝑠−2𝑚𝑚𝑚𝑚−2. 



 

48 

 

Chapter Four: Discussion 

In this thesis, we introduced a framework for calculating the optimal signals and most 

suitable regional targets in the brain for controlling AD activity, catered to individual subjects. 

Unlike other studies1,7–9, ours considers the existence of nonlinearities in the modeling of brain 

dynamics by extending the use of the so-called state-dependent Riccati equation control to 

biological, high-dimensional systems. The calculation of the optimal signals that can propagate 

over the network and set its temporal dynamics to a desired state also provides insights into the 

way neural systems control themselves. If a network node associates with low cost for exogenously 

controlling the neural system, then that same element must have certain advantaged position for 

the self-regulation processes occurring there. 

4.1 Significance: beyond Alzheimer’s disease 

The goal of brain stimulation is to exogenously control (i.e., manipulate) the brain’s activity 

so that it follows a desired pattern associated with a healthy state63. The specific characteristics of 

the signals in brain stimulation experiments/therapies are usually overlooked. Square pulses are 

translated from the treatment of one condition to the other (e.g., from Parkinson’s to 

Alzheimier’s2,3), sometimes tuned in an exploratory way, and applied identically to every subject 

without considering individual differences. In a world where medicine is constantly becoming 

more personalized, treatments which are designed using broad statistical measures and account 

poorly for interpatient variability are inefficient62. Current approaches to modeling brain 

stimulation present major shortcomings (see the recent review by Bassett et al.10) and importantly, 

nonlinearities are known to characterize the brain’s dynamical behavior and should not be 
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excluded from any realistic modeling20. Our framework deals with all the above-mentioned 

limitations.  

Although focused on AD in this study, our methodology is not restricted to it. Any other 

clinical condition characterized by abnormalities in brain dynamics (and with existing meaningful 

neuroimaging data for using in the modeling process) could be addressed similarly with the 

following scheme:  

1) a model for the dynamics is assumed,  

2) the model is set to produce pathological and healthy activity,  

3) brain stimulation signals that revert pathological activity at the lowest possible energetic 

cost are found through SDRE.  

4.2 Analysis on synthetic network models as the initial step 

Given the novelty of the herein proposed framework, our first approach was to perform 

dummy control tasks over simulated connectivity networks. The SF and SW networks were chosen 

as binary to further simplify the calculations and avoid assigning connection weights without 

anatomical or physiological foundation. Therefore, the distribution of local topological measures 

over the 78 nodes (and 5 networks), achieved a few values in a small range. This conduced to 

relatively small correlation coefficients when the relationship between the topological measures 

and the inverse of the cost of controlling the entire network of oscillators from each of the nodes 

was studied.  Similarly, the number of uncontrollable systems obtained as the input entered the 

nodes in these networks with almost identical values of the global measures, was not sufficient to 

construct a picture of the dependence of the success of the control tasks on the global 

characteristics of the SF and SW networks. However, the observed trends in the identification of 
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the target regions suggested that better-connected areas were also the best candidates for receiving 

controlling inputs. Finally, steering the electrical activity of a neural system to the origin was 

chosen as a test method only, and not as a real brain stimulation objective. Consequently, we did 

not perform any further analysis on the implications these results had for brain stimulation, which 

was carried on for AD afterwards.  

4.3 Characteristics of the signals obtained for Alzheimer’s. Effects of network topology and 
the nonlinear modeling 

We modeled a stimulation-therapy for AD based on the correction of the EEG spectrum 

towards higher frequencies.  As such, we looked for inputs (control signals) to individual areas of 

the brain that revert pathological activity at the lowest possible energetic cost. Among all the 

possible signals that were obtained for each subject, the one producing the fastest, least energy-

consuming response, can be administered in a brain stimulation procedure. The controllers we 

designed have lower magnitude than what has been identified as the safety threshold2,3 in deep 

brain stimulation for AD (3.0–3.5 V) and are still successful in the reversion of pathological 

activity.  

We also studied the dependence of the optimal control tasks on the anatomical networks 

conditioning the dynamics. In essence, we found a strong relationship between the success of the 

control tasks and the topological features of the anatomical connection density matrices that served 

as scaffold for the interaction of the cortical and subcortical ‘pyramidal neuron’ populations in the 

model. Overall, the significant correlations existing between the mean inverse of the cost and the 

local topological measures suggest that nodes with high connectivity associate with low cost of 

controlling the full network of oscillators. Our results agree with previous findings that stimulation  
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to strongly connected nodes in brain networks produces low-energy transitions1,9.  For each 

subject, we found that the better connected a network is –namely, a network having low average 

shortest path length, high clustering coefficient and/or high global efficiency–, the more inputs to 

individual nodes success on the control task and make the system evolve to the predetermined 

healthy state. Small average distance between the nodes in the network and high clustering 

coefficient are attributes associated to the small-worldness property34, a concept that relates the 

fast spread of stimuli to the existence of ‘shortcuts’ in a network. The concept of small-worldness 

is represented in terms of efficiency on the information flow as well64. In short, subjects having ‘a 

better-connected network’ are seemingly the optimal candidates for AD’s effects-reverting 

protocols. However, these indications relating optimal nonlinear control and network measures are 

only an approximation (based on average values), and we recommend the calculation of the 

optimal signals and targets for each subject to undergo our proposed brain stimulation for AD.  

The inclusion of nonlinearities in our model causes several control tasks to fail for a subject, 

a fact that, to the best of our knowledge, has not been reported for linear brain dynamics. However, 

we do not expect that inputs to every neuronal conglomerate in real stimulation experiments are 

able to steer the (AD) brain to the desired state, given its complexity and nonlinear character20–22. 

The order in which areas were ranked according to the energy used for controlling the network, 

changed with the strength of the nonlinearity. Interestingly, as the strength of the nonlinearity (𝛾𝛾) 

increased, the linear dependence of the expected cost of controlling from a region on its topological 

characteristics was less obvious (see Figure 3-9 and Figure 3-10) –the higher the 𝛾𝛾 is, the less the 

systems look like sets of linear (harmonic) oscillators coupled through the anatomical connection 

density matrices. This likely denotes competition between the effects of the nonlinearity and the 
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structure of the network for the dynamical interaction, and warrants further investigation. Overall, 

our findings reveal the importance of using nonlinear realistic modeling to better understand brain 

stimulation and its accurate design. 

4.4 The Alzheimer’s brain influences the results 

When ranking the regions in the brain according to the average cost of controlling the 

network with a single stimulus, we found that the lowest energetic cost was associated with limbic 

and basal ganglia areas, or strongly connected to them, such as the thalamus. The role of these 

areas in motor control, learning, memory and relay of information65,66 engages them in a wide 

number of connections, and consequently (see Figure 3-9), makes them highly desirable targets 

for stimulation. The globus pallidi send basal ganglia information to the thalamus which projects 

back to the cortex66. Specifically, the left pallidum –at the top of the nonlinear systems ranking– 

has been previously identified as having the least overall multifactorial damage by AD26. The 

caudate nuclei and putamen receive and process cortical and thalamic information which is later 

transmitted to the globus pallidi66. On the other hand,  the large-scale brain network topology 

seems to be organized to concentrate information flow in the hippocampal formation67, structure 

with a key role in memory processesing68, and also among those associated to better optimal 

nonlinear network control in this work.  Finally, the amygdala has a broad pattern of anatomical 

connections, especially with other subcortical structures69, making it another of the top targets for 

achieving successful control tasks.  

The bulk of the poorly-ranked areas comprised temporal and parietal association cortices 

and sensory and motor cortices structures. Interestingly, most of these bottom-ranking areas are in 

the right hemisphere. Some experimental evidence supports this finding, such as reports of 



 

53 

 

increased vascular and AD burden (amyloid-β and tau deposition) in the right hemisphere, 

compared to the left70. Additionally, in one of the studies that inspired this work2, no downstream 

evoked response in the right hemisphere was recorded for one patient out of six. They performed 

DBS of the fornix, an axonal bundle that acts as a major output and input tract for the hippocampus 

and the temporal lobe. The absence of a right-sided response in some subjects while indirectly 

stimulating several regions simultaneously, along with the recorded worsening of AD in the right 

hemisphere may explain the low performance of right hemisphere controllers in our work. 

4.5 Towards implementation 

Most top-ranked regions were subcortical structures (e.g., pallidum, amygdala, thalamus 

proper, hippocampus). However, other similarly-ranked areas, such as the insula, are cortical.  

Current brain stimulation techniques differ in reach, design and degree of invasiveness. In 

therapeutic practice, either one (subcortical structures) or the other (cortical structures) are 

targeted4–6. In a recent work, non-invasive deep brain stimulation of the hippocampus in living 

mice was achieved by Grossman et al. while applying alternating high frequency currents at 

slightly different frequencies over the scalp71. The envelope resulting from the superposition of 

those two fields was set to reach maximum amplitude at a site deep in the brain, consequently 

driving deep-lying neurons only. They were also able to produce different motor responses by 

changing the set of currents delivered to the mice brain. Although the pattern of currents used by 

Grossman et al. (sinusoidal-like) is simpler than the ones we have obtained (Figure 3-5), their work 

shows the possibility of stimulating neuronal sets at any depth by using superficial devices. As 

such, the most suitable regional target for each patient (either subcortical or cortical) could be 

reached by using a single device. In a previous study, Terney et al. introduced current stimulation 
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by high-frequency noisy signals72 with positive results, including enhanced corticospinal 

excitability. The temporal profiles of the signals administered in that study somehow resembles 

the ones we obtained, although theirs have higher frequency, amplitude and seemingly noisier 

components. Together, these works indicate the feasibility of our proposal in terms of designing a 

device that delivers tailored signals to any location in the brain. We predict an eventual merging 

of our theoretical approach with cutting-edge stimulation technology like the ones proposed in the 

referred studies. 

Another issue regarding the future development of optimal nonlinear network control of AD 

is the possibility of the spilling of stimulation to adjacent nuclei73,74 as we propose to target single 

localized regions.  Nonetheless, the lack of focality of brain stimulation techniques might be an 

advantage for their clinical application74. Several of the regions from which the desired trajectory 

was achieved at low energetic cost in our model have physical proximity (see Figure 3-7b,d), and 

could be reached in a target-specific experiment73. We hypothesize that simultaneous stimulation 

of different structures would produce faster optimal control of the pathological activity.  

On the other hand, the recently-introduced adaptive deep brain stimulation (aDBS) is gaining 

support for replacing the conventional constant-parameters brain stimulation in the treatment of 

Parkinson’s75–78. aDBS uses the subthalamic local field potential (LFP) activity recorded directly 

from the DBS electrode itself as a feedback for tuning the stimulation signal in real time. The level 

of beta frequency band oscillations in the LFP correlates with motor impairment, in the presence 

or absence of therapeutic interventions75. A brain–computer interface system uses this biomarker 

to control when the stimulation is applied. Thus, aDBS is a closed-loop technology77. Such 

procedure delivers less energy to the patient (with fewer side effects) and is clinically superior to 
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standard continuous DBS, according to the results reported in several studies75,76. Our framework, 

designed without knowledge of the existence of aDBS, aims to obtain stimulation protocols that 

are also assembled over the analysis of a feedback signal related to the patient’s clinical condition 

(see equation (4)). The successful application of aDBS constitutes evidence on the favorable 

energetic effects of the stimulation signals for AD obtained through our approach and starts to 

pave the way towards its experimental validation.  

4.6 Limitations 

Finally, we would like to point out the pioneering nature of our work and list its 

methodological limitations in what follows. Further work is to be done in solving those before 

proceeding to demonstrate the efficacy of our approach in actual brain stimulation experiments for 

AD. The main issue that needs to be addressed is replacing the parameters in our model with real 

values estimated from the analysis of a patient’s electrical activity. The selection of the dynamical 

model used in this work was based on its relative mathematical simplicity (it offers the possibility 

of assessing both linear and nonlinear cases by switching a single parameter) while still resembling 

broadly used electro-physiologically-inspired neural mass models20,54. Several techniques for 

estimating its parameters are available, with outstanding results emerging from the use of the 

innovation method based on local linearization filters79,80. However, the estimation of the effective 

connectivities12 mediating the interaction between neuronal populations (78 × 78 values in our 

case) might constitute a computationally costly problem. This is why, inspired by previous 

approaches1,8,9, we  focused on the ‘structural side’ of connectivity for optimally controlling the 

AD’s brain.  Both functional and effective connectivity correlate to structural connectivity13,14.  
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In this work we assumed that the strength of the structural connectivity was proportional 

to a measure derived from diffusion MRI tractography –the anatomical connection densities47. 

Nevertheless, there is a consensus on the limited performance of tracking algorithms and 

anatomically-imposed difficulties that suggests prudence in making such assumption81. An 

inherent limitation of DW-MRI is its inability to detect the direction of nervous fibers47, which 

extends to all current neuroimaging methods11. However, a substantial proportion of reciprocal 

connections has been identified82, justifying the ubiquitous use of undirected anatomical networks. 

Variability across DW-MRI studies and methods does constitute a major issue to deal with for 

achieving generalization. For example, there are several definitions of connection weights and 

normalizations for them47,83–85, all indistinctively used.  

On the other hand, real EEG activity is a mixture of oscillations in different frequency 

bands, with low-frequency rhythms being spread all over the cortex and high-frequency rhythms 

being more localized68. To assume all nodes in our network oscillate at approximately the same 

frequency (~6.4 Hz for the ‘pathological state’, 8.0 Hz for the ‘healthy state’) is a big 

approximation. However, given the novelty of our method, this assumption works as a simple 

approach to provide insights into the optimal stimulation protocols for reverting disease 

consequences. Our ultimate goal is to design controllers for efficiently and realistically reverting 

pathological states of each patient’s brain.  

4.7 Future directions 

Our future research intends to use multimodal neuroimaging data to overcome the above-

stated imperfections. ADNI is currently registering simultaneous images and working for making 

this data available (http://adni.loni.usc.edu/study-design/ongoing-investigations/). Estimation 
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algorithms will likely require further optimization and the use of computing clusters 

(http://hpc.ucalgary.ca/quickstart/helix) for obtaining the effective connectivities and parameters 

in the model that produce the activity recorded for each subject. However, once these issues are 

solved, the framework can be applied to dynamical diseases86 in general. We have identified 

Parkinson’s86,87 and epilepsy8, among others that can be addressed.  

In the short term, the possibility of spilling over other brain areas as stimulation focally 

targets a region, will be studied by using our framework in its current state. Additionally, the 

intentional stimulation of selected structures with different signals is one modeling alternative that 

can be associated to faster and less-exposing control of impaired activity. We will assess several 

combinations of simultaneous stimulations in a separate work. 

4.8 Conclusions  

In this study, we sought to obtain optimal signals to be used in brain stimulation therapies 

for AD. Given the knowledge gap between theory and experiment in brain stimulation, as well as 

the usual neglect of the nonlinear nature of brain dynamics in its modeling, and the need for 

personalizing treatments in medicine, we started by developing a framework that embodies and 

solves all these limitations in a simplistic way, by using the so-called state-dependent Riccati 

equation control. 

We used anatomical networks obtained from DW-MRI acquired by ADNI as mediators for 

the interaction between Duffing-like oscillators. This ensured our modeling approach included 

both subject-specific information and nonlinearities. Inspired by previous findings of cognitive 

improvement in AD through EEG abnormalities correction, we looked for control inputs to 

individual regions of the brain that reverted pathological activity (high-amplitude theta-band 
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oscillations) at a minimal energetic cost. Considering nonlinearities in our model changed the 

landscape of optimal network control: signals were intrinsically different from their linear system 

equivalents, inputs to neuronal populations in certain regions and subjects did not propagate to the 

rest of the network to accomplish the control objective, and there were changes to the way 

stimulated regions were ranked in terms of the energetic cost of controlling the entire network. We 

also obtained insight into the relationship between optimal nonlinear network control and the 

topological characteristics of anatomical brain networks (better connected means better 

controlled), and identified top target regions and subjects to successfully undergo our proposed 

stimulation procedure. 

This is the first time, to our knowledge, that optimal nonlinear network control of AD has 

been addressed. Tailored stimulation signals to control pathological electroencephalographic 

activity induced by AD were obtained based on individual neuroimaging data and innovative 

modeling. Additionally, the framework we introduced can be applied to any other clinical 

condition with associated alterations in brain dynamics, and shed light on both healthy and 

pathological self-regulatory mechanisms in the brain. Even with limitations in the modeling at this 

very primary stage of our work and the need of experimental validation, the results herein reported 

constitute a progress, and overall, this thesis might represent a change to the methodology for 

addressing the control principles of the brain.    
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Appendix: MATLAB codes 

function 
NLduff_ADNI_hd_subject(subject,b,ah,ad,Qweight,g,node) 
%   NLDUFF_ADNI_HD_SUBJECT(SUBJECT,B,AH,AD,QWEIGHT,G,NODE) 
%   creates a file containing the results of controlling 
the pathological  
%   activity of a AD-subject from a given node 
% 
%   This function will generate two solutions, a 
pathological EEG (expected 
%   to be a theta rhythm) and healthy EEG (alpha rhythm). 
The initial 
%   conditions are set for the pathological solution have 
higher amplitude 
%   and, consequently, more spectral power (see, e.g., 
Bennys 2001). Then, 
%   the optimal input that reverts the pathological 
activity in the  
%   nonlinear system is computed (see Cimen 2008; Jayaram & 
Tadi 2006). The 
%   difference between the pathological (Z) and healthy 
solutions (X),  
%   e = Z - X goes to the equilibrium  
% 
%   Inputs: 
%   subject: Subject's ID according to ADNI's database 
(adni.loni.usc.edu) 
%   b: Global coupling strength 
%   ah: ‘Time constant’ for the computation of the 
‘healthy’ solution 
%   ad: ‘Time constant’ for the computation of the 
‘pathological’ solution 
%   Qweight: weight on the cost function for the separation 
of the states 
%            from the equilibrium 
%   g: Strength of the nonlinearity 
%   node: index corresponding to the node that receives the 
input 
% 
%   Notes: 
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%   - All the inputs must be string arrays  
%   - The file Conn_matrices_backbone.mat contains the 
network backbone,  
%   with the dominant connections in the average network. 
The file AD_DTI.mat  
%   summarized demographic information of the subjects in 
the study 
%   (including their ID's - this is how the networks are 
tagged) and the 
%   anatomical networks calculated from DW-MRI for each 
subject in ADNI by  
%   Yasser Iturria-Medina. (see, e.g., Iturria-Medina et 
al. 2017) 
%   - The non-feedback system is defined in the auxiliary 
function 
%   F_Duffing_simplecoupling_1Dpars and solved with 
MATLAB's ode45 
%   - The feedback system is solved following: 
%   1) solve SDRE with MATLAB's lqr, obtain K 
%   2) use that the optimal input is u = -R^(-1)*B'*S*e = -
K*e (see Cimen 2008) 
%   3) obtain the next iteration's e by using Local 
Linearization  
%   (see, e.g., Biscay et al. 1996) 
%   - Controlling a linear system can be studied by means 
of this same 
%   function, making g = 0. 
%  
%   example: 
NLduff_ADNI_healthydis_subject('5119','150','2852','1935','
1','200','37') 
  
%  converting the inputs to double 
Qweight = str2double(Qweight); 
b = str2double(b); 
g = str2double(g); 
node = str2double(node); 
ah = str2double(ah); 
ad = str2double(ad); 
subject = str2double(subject); 
d = 0; 
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% loading the connection network for the desired subject 
type = 'AD'; 
load('Conn_matrices_backbone.mat') 
load('AD_DTI.mat') 
AD_ids_all = cell2mat(demog_AD(:,1)); 
subject_idx = find(AD_ids_all == subject); 
C = AD_conn_ACD(1:78,1:78,subject_idx).*Matrix_backbone; 
  
% definitions for calculating 
N = length(C); 
X0 = [0.1*ones(1,N),zeros(1,N)]; 
Z0 = [0.2*ones(1,N),zeros(1,N)]; 
dt = 0.01; 
t = 0:dt:500; 
  
% obtain the healthy solution  
thetah = cat(2,d,ah,g,b); 
options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
[~, X] = 
ode45(@F_Duffing_simplecoupling_1Dpars,t,X0,options,thetah,
C); 
% obtain the pathological solution  
thetad = cat(2,d,ad,g,b); 
options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
[~, Z] = 
ode45(@F_Duffing_simplecoupling_1Dpars,t,Z0,options,thetad,
C); 
  
% the difference between the two solutions before 
controlling (for comparison) 
e_nocont = Z - X; 
  
% constructing control matrices 
A = zeros(2*N+1); A(1:N,N+1:2*N) = eye(N); 
A(N+1:2*N,N+1:2*N) = -diag(d); 
A(end,end) = -1; 
B = zeros(2*N+1,1);B(N+node) = 1e2; 
Q = Qweight*eye(N); Q(2*N+1,2*N+1) = 0; 
R= 1; 
Nt = length(t); 
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% calculating 
u = zeros(Nt,1); 
Cost = zeros(Nt,1); 
Cost_u = zeros(Nt,1); 
e = zeros(Nt,2*N+1); 
e(1,:) = [(Z0 - X0)';1]; 
S_JC = zeros(2*N+1,1); 
for tf = 1:1:Nt-1 
     
    elocal = e(tf,:)'; 
    Acool = diag(b)*C; 
    Acool(eye(N)~=0)= -ad - g.*(elocal(1:N)'.^2 + 
3*elocal(1:N)'.*X(tf,1:N) + 3*X(tf,1:N).^2); 
    A(N+1:2*N,1:N) = Acool; 
    A(N+1:2*N,end) = -(ad-ah).*X(tf,1:N); 
     
    try 
        K=lqr(A,B,Q,R); 
    catch 
        save(sprintf('ADNI_%s_%i_%i-
Cont_Q=%i_R=%i_GlobCoup=%.2f_g=%.1f_ah=%i_ad=%i_FAILED.mat'
,type,subject,node,Qweight,R(1,1),b,g,ah,ad)); 
        return 
    end 
     
    u(tf) = -K*elocal; 
    Cost(tf) = elocal'*Q*elocal + u(tf,:)*R*u(tf,:)'; 
    Cost_u(tf) = u(tf,:)*R*u(tf,:)'; 
     
    fe = f_duff_LL(elocal,A,B,K); 
    Jfxe = Jfx_duff_LL(elocal,A,B,K); 
    e(tf+1,:) = elocal + DLLscheme_JC(dt,fe,Jfxe,S_JC); 
       
end 
efinal = e(end,:)'; 
Acool(eye(N)~=0)= -ad - g.*(efinal(1:N)'.^2 + 
3*efinal(1:N)'.*X(tf,1:N) + 3*X(tf,1:N).^2); A(N+1:2*N,1:N) 
= Acool; 
Kfinal=lqr(A,B,Q,R); 
u(end,:) = -Kfinal*efinal; 
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Cost(end) = efinal'*Q*efinal + u(end,:)*R*u(end,:)'; 
Cost_u(end) = u(end,:)*R*u(end,:)'; 
  
% obtaining the cost of controlling  
totCost = trapz(t,Cost); 
totCost_u = trapz(t,Cost_u); % (part corresponding to the 
energy used by the controller) 
  
%saving results 
save(sprintf('ADNI_%s_%i_%i-
Cont_Q=%i_R=%i_GlobCoup=%.2f_g=%.1f_ah=%i_ad=%i.mat',type,s
ubject,node,Qweight,R(1,1),b,g,ah,ad),'C','Qweight','Q','R'
,'t','X0','Z0',... 
    
'X','Z','u','e','e_nocont','totCost','totCost_u','norm_xx',
'controlled_LL','-v7.3'); 
  
  
function f = F_Duffing_simplecoupling_1Dpars(t,x,theta,C) 
N = length(x)/2; 
d = theta(1); 
a = theta(2); 
g = theta(3); 
b = theta(4); 
f = zeros(2*N,1); 
f(1:N) = x(N+1:end); 
for i = 1:N 
    f(i+N) = -d*x(i+N) - a*x(i) - g*x(i)^3 + 
b*sum(C(:,i).*x(1:N)); 
end 
  
function y = DLLscheme_JC(h,f,fx,ft) 
n=size(f,1); 
CC=[fx, ft, f; zeros(2,n+2)]; 
CC(n+1,n+2)=1; 
M=expm(h*CC); 
y=M(1:n,n+2); 
  
function f = f_duff_LL(x,A,B,K) 
f = (A - B*K)*x; 
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function Jfx = Jfx_duff_LL(x,A,B,K) 
Jfx = A - B*K; 
  
  
  
 
 
 


