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Abstract

In this dissertation we study finite-dimensional multiparameter eigenvalue
problems. The main objects considered are multiparameter systems, i.e., systems of
n linear n-parameter pencils. To a multiparameter system we associate an n-tuple
of commuting matrices called an associated system. The main problem considered
is to describe a basis for the root subspaces of an associated system in terms of the
underlying multiparameter system.

In Chapter 1 we study general n-tuples of commuting matrices, the moti-
vation being the fact that the associated system is a special n-tuple of commuting
matrices. Without loss of generality we may assume that the commuting matrices
considered are nilpotent. We reduce an n-tuple of commuting nilpotent matrices to a
special upper-triangular form using simultaneous similarities. The main two proper-
ties of this form are that certain column cross-sections are linearly independent and
that certain products of row and column cross-sections are symmetric. This sym-
metry enables us to associate symmetric matrices and also symmetric tensors with
the special upper-triangular form. We discuss this in detail for nonderogatory and
simple cases, i.e., cases when the intersection of the kernels of the nilpotent com-
muting matrices has dimension one. The symmetric tensors appear as coefficients of
decomposable tensors in the expansion of root vectors of associated systems.

In Chapter 2 we introduce multiparameter systems and their associated
systems following the construction of F.V. Atkinson. We also describe a basis for
the second root subspace of the associated system for general eigenvalues. For two-
parameter systems this can be done in a canonical way. We describe this construction
in Chapter 3.

In Sections 1.6, 2.3 and 2.4 we consider at various times the problem of the

representation of commuting matrices by tensor products of matrices. This leads to



a similar problem of representation by the associated system of a multiparameter
system.

The main results of the dissertation appear in Chapter 4. We describe bases
for root subspaces of an associated system in terms of the underlying multiparameter
system for nonderogatory and simple eigenvalues. These are eigenvalues for which

the joint (geometric) eigenspace of the associated system is exactly one-dimensional.

w
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Chapter 0

Introduction

One way in which multiparameter eigenvalue problems arise is when the
method of separation of variables is used to solve boundary value problems for partial
differential equations. Each ‘separation constant’ gives rise to a different parameter.
The resulting equations are simpler boundary value problems, for example of Sturm-
Liouville type. Two-parameter problems of this type hé,ve been studied since the
earliest days of the subject, and the following formulation is, for example, the main

object of study in Faierman’s monograph [69] :

d dy; P
o (Pi (2:) d_x:) + (Mdi (@) + AeBi () — i () 3 = 0, 1 =1,2, (0.1)
where 0 < z; < 1, and boundary conditions are
i (0) cos o; — p; (0) %ﬁ (0)siney =0, 0 < o; <,

and
31 (1) o8 1 e (1) & (Vsinfi =0, 0< i <,

for 2 = 1,2. These and other problems have motivated the development of Multipa-
rameter Spectral Theory. Atkinson [10] laid the foundations of Abstract Multiparam-
eter Spectral Theory and he gave in [9] an overview of possible directions for further:
research that largely remain yet to be explored.

One of the main goals of Multiparameter Spectral Theory is to give com-

pleteness results for different multiparameter spectral problems. For example, one



could try to expand functions defined on the domain of the partial differential equa-
tion in terms of Fourier-type series involving the eigenfunctions of the separated (sa,y.
Sturm-Liouville) equations.
In the abstract theory, the main object studied is the n-tuple of n-parameter
pencils
Wi(A) =Y AVij =V, i=1,2,...,n (n>2),

also called the multiparameter system. Here V;; are, for all j, linear operators on
the Hilbert space H;. In applications like (0.1), Vi;, = 1,2,...,n, are multiplication
operators and Vjy are differential operators. In the multiparameter eigenvalue prob-
lem we first find n-tuples of complex numbers A such that all the operators W; (A)
are singular. This can be considered as a generalization of the ordinary eigenvalue
problem.

One fundamental tool of Abstract Multiparameter Spectral theory is a tensor
product construction. We consider the tensor product space H = H1Q Hy® ---Q H,
and certain determinantal operators associated with V;; acting in H. The concrete
construction for our presentation is developed in Chapter 2. We limit our interest
to so-called nonsingular multiparameter systems. Then we associate with a multi-
parameter system an n-tuple of commuting operators, called the associated n-tuple.
Now, the completeness problem is to find a complete system of eigenvectors and root
vectors for the associated system in terms of the underlying multiparameter system.
Again this can be considered as a generalization of the completeness problem for one
operator.

For example, it is well-known that, for an N X N matrix V, we can find a

(Jordan) basis of CV consisting of (Jordan) chains of vectors zy, 2y, . .., 2 such that

VZO = /\20,

(0.2)
Vz, = Az + 2z, i1=1,2,...,k.

Then the vector z, is called an eigenvector, the vector z; is called a second root
vector, the vector z; a third root vector, etc. Difficulties in proving multiparameter

completeness results arise when the eigenvalues are not semisimple, i.e., when root



vectors exist. Binding [23] gave the completeness result for real eigenvalues of self-
adjoint multiparameter systems. Also Faierman in [69] gave a completeness result for
real eigenvalues of the two-parameter spectral problem (0.1), while for the non-real
eigenvalues he conjectured the structure of the general root functions. We return to
his conjecture at the end of this dissertation.

Not much is known in the literature about nonself-adjoint multiparameter
eigenvalue problems or even about non-real eigenvalues of self-adjoint multiparameter
eigenvalue problems. Thus it seems natural first to consider the finite-dimensional
setting. Atkinson dedicated most of his book [10] to the finite-dimensional setting,
at the end generalizing it to compact operators on general Hilbert spaces using a
limiting procedure. Multiparameter eigenvalue problems on Hilbert spaces can be
approximated by finite-dimensional multiparameter eigenvalue problems using the fi-
nite difference method. Then results on Hilbert space can be proved using, as in
Atkinson’s case, a limiting procedure (see for example [66]). The germs of such
finite-dimensional approximation ideas are found already in Carmichael’s paper [50].
Another possible application of finite-dimensional results to the infinite-dimensional
case is in connection with the discretization described by Miiller [134, 135]. There are
other problems in finite-dimensional Multiparameter Spectral Theory that are con-
sidered in the literature. For example, Browne and Sleeman considered in a series of
papers [43, 44, 45] inverse multiparameter eigenvalue problem for matrices and Bind-
ing and Browne [26, 24] studied multiparameter eigenvalues for matrices, to mention
a few. Finally, we remark that Isaev [112] stated the problem of describing root vec-
tors of the associated system in terms of the underlying multiparameter system in
the finite-dimensional setting.

In this dissertation we assume that Hilbert spaces H; are finite-dimensional.
Then V;; can be considered as matrices. In the presentation we mostly use tools of
Linear Algebra. There are two main foci of study in this dissertation. These are the
structure of commuting matrices and the structure of root vectors. Even though both
structures were developed simultaneously, each helping to reveal the other, it turned
out that the understanding of the first one enabled us to construct root vectors, and

eventually to prove completeness results.



In Chapter 1 we study n-tuples of nilpotent commuting matrices. As men-
tioned before, the completeness results are to be proven for the associated system,
which is a special n-tuple of commuting matrices. This is our motivation to study
commuting matrices. Without loss we can assume that they are all nilpotent. Then
we can bring them to a special upper block triangular form (1.2). An important prop-
erty is that it is reduced, i.e., certain columus in it are linearly independent. This
linear independence ultimately enables us to prove the completeness result for sim-
ple eigenvalues. The commutativity of an n-tuple of nilpotent commuting matrices
{A1,As,...,A,} is reflected in the symmetry of certain products. We explore these
in further detail. For the simple case, i.e., when

n

dim (ﬂ kerA,-) =1,

i=1
we are able to reconstruct commuting matrices in the form (1.2) from a special col-
lection of symmetric matrices. Because (1.2) is reduced it follows that certain subma-
trices of these symmetric matrices are linearly independent. Later we prove that the
isomorphic images of the submatrices are elements of the kernels of special matrices
associated with the multiparameter system. Because we are also able to construct a
set of linearly independent root vectors associated with a basis of the kernel of the
special matrices, the completeness of root vectors follows.

It is the structure of these root vectors that is our second focus in this dis-
sertation. The structure of root vectors for nonderogatory eigenvalues is the same
as the structure of root vectors given in Binding’s paper [23]. For simple eigenvalues
the structure becomes more involved. The coefficients, that are all 1 in the non-
derogatory case, of the decomposable tensors forming a root vector are now given by

symmetric tensors that are associated with the special collection of symmetric matri-
| ces used to reconstruct a nilpotent n-tuple of commuting matrices. It turns out that
in the two-parameter case this is a finite-dimensional simplified version of the struc-
ture conjectured by Faierman in [69]. A crucial tool in the study of the structure of
root vectors is relation (2.7) that relates a multiparameter system with its associated
system. Relation (2.7) is found in [10, Chapter 6].

We present the structure of the general second root vectors in Section 2.5.



In the two-parameter case these vectors are simpler and we can choose them so that
"the associated system is in a canonical form. We show this in Chapter 3. In Chapter

4 we prove a completeness result for eigenvalues Ag = (Ao1, Ag2, - - -, Aon) such that
dimkerW; (Xo) =1, i =1,2,...,n.

These eigenvalues are of two types, nonderogatory and simple. (See page 78 for precise
definitions.) We consider them separately.

We also study problems of representations of n-tuples of commuting matrices
by tensor products (originally stated by Davis [57]) and by multiparameter systems,
in Sections 1.6 and 2.4, respectively.

Let us mention that the results on commuting matrices of Chapter 1 are a
major building block in the completeness results on root vectors for nonderogatory
and simple eigenvalues in Chapter 4. It was the ability to obtain new completeness
results that motivated us to work through some highly technical proofs. We include
several examples! to illustrate the ongoing discussion at various times, especially after
the technically involved proofs. At present we are not able to find a more elegant
way to prove our results, though it appears almost certain that the application of the
tools of Abstract Algebra should shed new light on them, and that the proofs might
then become shorter and more elegant. Perhaps one should carry out the project of

Atkinson motivated in [9].

1Examples in this dissertation which require longer calculations were done using the Mathematica
software. In very long examples we do not include all the steps done by computer in the discussion.



Chapter 1

Commuting Matrices

1.1 Introduction

In this chapter we study n-tuples of commuting matri;:es. To each multipa-
rameter system there is a special n-tuple of commuting matrices called the associated
system. (A formal definition is given on page 62. Here we refer to this n-tuple as
the associated n-tuple of commuting matrices.) This is our motivation to study the
general case of commuting matrices. Our aim is to describe an n-tuple of commuting
matrices by a special collection of matrices that reflect the commutativity in their
structure. ,

The main results of this chapter are Theorems 1.13 and 1.18. Theorem 1.13
is the first step towards the construction of a special collection of matrices associated
with an n-tuple of commuting matrices. Corollary 1.7 and Theorem 1.18 are used
later in the construction of bases for root subspaces for nonderogatory and simple
eigenvalues, respectively, of a multiparameter system.

A finite set of commutative matrices is considered as a cubic array. We
restrict our interest to nilpotent commutative matrices. The general commutative
case is easily deduced from the nilpotent one. In the next section we introduce some
notation and define a basis in which the commutative matrices are simultaneously

reduced to a special upper triangular form and so the corresponding cubic array is in



a special upper triangular reduced form (1.2). Properties of the form (1.2) described
in Proposition 1.2 and Corollary 1.3 are the main results of the section and as it
turns out they are fundamental for most of the further presentation. They tell us
that certain sets of columns in the reduced form (1.2) are linearly independent and
that commutativity of the matrices is equivalent to certain symmetries in the products
of these matrices. They also give rise to two sets of conditions that must hold for
a special collection of matrices used to reconstruct (or build) a commutative array
in the form (1.2). The two sets of conditions are the regularity conditions that are
equivalent to the properties of Proposition 1.2 and the matching conditions that are
equivalent to properties described in Corollary 1.3.

In Section 1.3 we study nonderogatory eigenvalues. It is well known that
commuting nilpotent matrices can be brought simultaneously to upper Toeplitz form
if one of them is nonderogatory (cf. [92, p.296] or [129, p.130]). This leads us to the
definition of a nonderogatory eigenvalue for an n-tuple of commuting matrices.

Auxiliary results concerning matrices whose products are symmetric are pre-
sented in Section 1.4. They are needed in the proofs of the main two results of this
chapter. We use a special collection of matrices to reconstruct the array in the form
(1.2) inductively from the top left corner adding a row and a column at each step.
The first important result in this direction is Theorem 1.13. It tells us how to recon-
struct the array in the form (1.2) when there are only 3 columns. It turns out that
the general case can be considered as a collection of cases with 3 columns which have
to satisfy further regularity and matching conditions. It follows from Theorem 1.13,
applied to the general case, that the entries on any block-diagonal of an array in the
form (1.2) lie in the linear span of the entries of the first block row. (See Proposition
1.15.) Thus in the simple case all the entries are in the linear span of the first row.
Furthermore, we can assume that all the nonzero entries of the first row are linearly
independent. We refer here to the matrix which has these nonzero entries for its
columns as the ‘condensed first row’. The product of any row and any column of a

commutative array in the form (1.2) is a symmetric matrix. In the simple case the



product of the first row and any column is equal to the product of the condensed
first row and the corresponding subcolumn. One result of Section 1.4 tells us that
then this subcolumn is a product of the condensed first row and a unique symmetric
matrix. Our goal is to expand this symxﬁetric matrix to describe the complete column
but to retain the symmetry and matching conditions. To prove the existence of the
expanded matrix turns out to be technically very complex. Because of the length of
this proof we include it in Appendix A. Theorem 1.18 and the preceding discussion
tell us how to reconstruct the array in the form (1.2) in the simple case. This result is
important in the construction of root vectors for the associated n-tuple of commuting
matrices in the case of simple eigenvalues.

Section 1.6 of this chapter is not related to the preceding discussion. Rather
it investigates the relation between an arbitrary and an associated n-tuple of com-

muting matrices.

1.2 Notation and Basic Properties of Commuta-

tive Arrays

Assuming that H is a Hilbert space we write L(H) for the algebra of all
linear transformations T : H — H and R(T) for the range of such a transformation
T. A finite dimensional Hilbert space H;, ¢ €n is equipped with a scalar product y}z;
for z;,y; € H;. The symbol n is used to denote the set of the first n positive integers,

son = {1,2,...,n}. The tensor product space H = H ® Ho ® --- @ H, is then a

Hilbert space under the scalar product defined by (z,y) = [T, yf=z; for decomposable
tensors 2 = 2 @2 @ - Qo and y = Y1 @ Y2 @ -+ @ y, and extended to all of
H by linearity. For a linear transformation V; € L(H;) we define the induced linear
transformation V,-" on the tensor product space H as follows: if 21 ® 2, ®...Qz, € H

is a decomposable tensor then

Vi@ ®2:9...02,) =2, 82:9...0 Viz; ®...® z,. (1.1)



The action on all of H is then determined by linearity.

Let A = {A;; s € n} be aset of n commuting matrices. Each matrix A, is a
N x N complex matrix. We also consider A as a cubic array of numbers of dimensions
N X N x n. Such an array is called commutative (since A, pairwise commute). Two
arrays (or two sets of commuting matrices) A and A’ are called similar if there is an
N x N invertible matrix U such that A, = U~YA'U for all s. For this collection of
equations we also use the notation A = U1A'U.

The vector in C" consisting of all the (i, 7)-th entries of matrices in A is

labelled
(A1)

(A2)ij

aj
(Aﬂ)ij

Then the row and column cross-sections of A are defined by

Ri=[ag ap ... an]

and
Cj= [ a5 az; -+ aAnj ],
where ¢,7 €N. These are n X N complex matrices.

Definition. A complex N X N matrix is called symmetric if A = AT, ie. if it is

equal to its transpose (without conjugation).

In this dissertation we reserve word ‘symmetric’ for above definition. A

matrix A such that A = A* will be called ‘self-adjoint’.

Lemma 1.1 The array A is commutative if and only if the products R.-C}' are sym-

metric for all 1,7 €N.

Proof. The (¢, j)-th entry of the product A,A, (r,s €n) is

N
(ArA,),; Z(Ar),k (Ao = 3 (Bi) i (C) o = (RCT)

k=1
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Thus A, 4, = A,A, if and only if (R:CT) = (RiCT) , that is, if and only if R,CT
rs8 sr

are symmetric. a
- Our first and the main concern in this chapter is the spectral structure of a
commutative array. For later reference we introduce our definitions of spectrum and
related notions for a commutative array.

Definition. An n-tuple A€ C" is an eigenvalue of a commutative array A if the
intersection of kernels N, ker (\;J — A;) is nontrivial. The set of all the eigenvalues

of A is called the spectrum of A and is labeled o (A).

For 1 € N we write

ker AI—A)' = [ ker (M — A)™ (Aol — Ag)™ -+ (AT — 4,)*).

n
E kj=ik; >0
=1

Note that ker (AI — A)Y = M, ker (L — A)™.
Definition. Suppose that X € ¢ (A). Then the subspace ker (AI — A) is called an
eigenspace (of A at A) and the subspace ker (AI — A)" is called a root subspace (of

A at X). We call a nonzero element z € N ker (\;J] — A;) an eigenvector and we

call a nonzero element z € N, ker (\:J — A;)" = ker (AI — A)" a root vector.

Note that according to the definition an eigenvector is also a root vector.

It is well known (see e.g. [92, p.298]) that commuting linear transformations
A, on C" reduce the space into the direct sum of root subspaces of A (obviously a
root subspace is invariant for all A,). Replacing A, by A\,J — A,, restricted to a root
subspace of A at ), yield that all A, have only one eigenvalue 0. Therefore we will
assume in this and following three sections that the commuting matrices A have only
one eigenvalue 0, or equivalently that they are all nilpotent.

Let M be the minimal number such that A% A5 ... A% = 0 for all collections
of k; > 0 such that jz::l k; = M + 1. There always exists a basis such that all the
matrices A, are upper triangular in this basis (cf. [92, Theorem 9.2.2, p. 303]).

Because A, are nilpotent they are strictly upper-triangular (i.e. the diagonal entries

are also 0). Since the product of N upper triangular N x N matrices with zero
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diagonal is 0, it follows that M < N. (This idea can be found in the proof of Theorem
2 in [137] due to H. W. Lenstra Jr.) For i € M + 1 we write D; = dimker A and
di=D;yy—D;fori=0,1,..., M. It is assumed that Dy = 0. We can choose a basis

_f .1 .2 d. ,1 ,2  _di. oLl L2 dy
B—{zo,zo,...,zo,zl,zl,...,zll, ooy B Bafr ey BN

for CV such that for every i = 0,1, ..., M the set

=11 .2 do, ,1 2 di. ..l 2 d;
B,-—{zo,zo,...,zo,zl,zl,...,zll, cee z,-,z,-,...,z,-'}

is a basis for ker A1,

Definition. The change of a basis B (corresponding to a commutative array A in
the above described way) to a basis B’ is called admissible if span B; = span B’; for

all 1.

If we now consider A as a cubic array with slices consisting of matrices A,,
s €n, then A has the following representation on ker AM*1 = C¥ in the basis B :
"0 AOL A02 ...  AOM 1
0 0 A2 ... ALM
A=|: : : (1.2)
0 o 0 ... AM-LM

0 0 o - 0

where
Kl Kl ko
531 Q13 0 Ay

Kl K ... okl
AR = | T " (13)

a’&i,l aﬁi,z i aﬁi,d, i
is a cubic array of dimensions dj X d; X n and a{-‘; € C". The array (1.2) is block upper
triangular with zero diagonal since A, (ker Af) C ker A*~1 for all 5. The last relation

follows from the definition of ker A‘. If we expand the vector A,2] in the basis B then
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kl

ajj, is the coefficient of P 'in this expansion, where
- o, .
akl = aii’l? : (1.4)
| afjn |

The row and column cross-sections of A¥ are

R =[alf aff - all),ied (19)
and y
Ci=lalj aff - all;],jed (1.9

These are matrices of dimensions n X d; and n X dy, respectively.

Definition. The array A in the form (1.2) is called reduced if the matrices C’f kL

j €dg4y are linearly independent for k¥ =0,1,...,M — 1.

In the above setting we have

Proposition 1.2 For a basis B as above the matrices Cf’kﬂ

, J €dry1 are linearly
independent for k = 0,1,...,M — 1, or equivalently, the array A corresponding to a

basis B is reduced.

Proof. Let us assume the contrary to obtain a contradiction. If the matrices

. . kg Kokl
are linearly dependent, i.e. Y o;C;

= 0 and not all o; equal 0, then there -
Jj=1

k,k+1
C;

diq1 .
exists a vector £ € ker AF*1\ ker AF, ie. z = ,1;1 21,1, such that A,z € ker AF1

for all s. But this yields x € ker A*¥ which contradicts x ¢ ker A*. a
The above result will be crucial in the ultimate step of the proof of the

completeness result for simple eigenvalues of a multiparameter system. Next we will

restate Lemma 1.1 for the case when A is in the form (1.2).
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Corollary 1.3 An array A in the form (1.2) is commutative if and only if the ma-

trices

-1 T
> R (cl),

h=k+1
k=0,1,.... M =2, l=k+2,k+3,...,M; i €dy; j €d;, are symmetric.

Note that there is no condition on A%. So an array A in the form (1.2) for

M =1 is always commutative.

In the examples we write a commutative array A as a two-dimensional array

of column vectors.

Example 1.4 We consider a pair of commuting matrices

010000
001000
000O0O0OTP O

A =
000010
000O0O071
000O0O0TO O
and , -
01 0 210
00 1 021
00 0 0O0 2

Ay =
00 -1 000
00 0 00O
00 0 00O

Then we find that dy = 1, d; = dy = 2 and d3 = 1. Suppose that {e;, i € 6} is the

standard basis of C®. Then in the basis B = {e; es,e4; €3,€5; €5} the commutative
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array A = {A;, Az} is in the form (1.2), i.e.,

(o) () () (o) (2) (C)

(o) (o) () () (2) (2)
GG G )G G)

(o) (o) (o) (3) (0) ()

(2) (o) () (o) (2) )

(o) () G) ) (2) (6).

1.3 Upper Toeplitz Form

The main results of this section are Corollaries 1.6 and 1.7. The preceding
discussion is of its own interest and is necessary to prove the corollaries. These
concern the nonderogatory eigenvalues that are the easiest special case of eigenvalues
we discuss later.

Definition. An eigenvalue A € o (A) is called nonderogatory if there exists an integer
k > 1 such that
n
dim (ﬂ ker(,\,-I-A,-)’) =1 forl=12,....k
i=1
and

dim(ﬂker(/\,-I—A,-)l)=k forl=k+1,k+2,...,N.
i=1

Let us remark again that we assume matrices A; are nilpotent, i.e., o (A) =

{o}.
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Definition. Assume that dy =d; =--- = dy = 1. Then A is in upper Toeplitz form
if AM = A*W-1{or k=1,2,...,M;l > k, and the other A¥ are 0.

Theorem 1.5 Assume that dj =1 for somel > 1. Thendy=diy1 =--- =dy = 1.
By an admissible change of basis we can assume that
F 0
0
Al-11 — :
0
Lag 1.

and the bottom right (M — 1+ 1) x (M — 1+ 1) block of A can be written in upper
Toeplitz form.

Proof. By Corollary 1.3 the matrices
T
Sp=ai"-(an™), iedu

are symmetric and by Proposition 1.2 they are not all 0. Thus there are complex

numbers €; not all 0 such that al7™ = e ald+. If we replace z;ii‘ll in the basis B by
di

the vector Y €;;2}_; we obtain a new basis in which the array a'~!/
i=]1

is of the required

form i
[0
0
Al—l,l =1
0
Lb.
where b # 0.

Now suppose that not all d; =1 for j > !+ 1. Then say that h (>1+1) is
the smallest number such that d, > 1. f h > 1+ 2 then for k=1,1+1,...,h —2 the
arrays A**+1 are nonzero and of dimensions 1 x 1 X n, so the}y can be considered as
n—vectors. Thus we identify A**+1 with a¥{**! and denote it a**+1. By Corollary

1.3 the matrices

S_1=b- (a1,1+1)T and Sj = ab*+1. (ak+1,k+2)T; k=11+1,... h—3
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are symmetric and since the vectors b and a***! are nonzero the ranks of the matrices
Sy are exactly 1. Therefore, there exist nonzero complex numbers ¢ such that ak*+! =
exb for k =1,l+1,...,h—3. Further, if h = I+ 1(resp. h > I+2) the matrices Sf_, =

T , T ,
b- (all’;-""l) (resp. S]_, = ah—2h-1. (a’l‘j l’h) ) are symmetric and of rank exactly 1 for

7 = 1,2. They are not zero since by Proposition 1.2 the vectors a®;"*are linearl
17 y
independent. Hence there exist nonzero numbers €}_, such that a{‘j_ Lh = €l _,b. The

vector €2_, 2} —e},_, 27 is then in the subspace ker A»~!, This contradicts the fact that
the vectors 2¥ with index ¢ < h— 1 form a basis for ker A"~ and the vectors z* with
index i < h form a basis for ker A", Thus d; = djyy = - - = dpy = 1.

Now we restrict the matrices A, to the quotient Q = CV |(D"‘x o) To finish
the proof it has to be shown that there is a basis for @ such that all the restricted
matrices A, |g are in upper Toeplitz form. In the first part of the proof we showed
that for k = I,/ +1,...,M — 1 all the a¥**! are nonzero multiples of b. Therefore
there is a number 7 between 1 and n such that A, |g has a Jordan chain of length
m — 1+ 1. Then by [92, p. 296] or [129, p. 130] we can find a basis ‘in which all
A, |g (and thus the bottom right (M — 1+ 1) x (M — [ + 1) block of A) are in upper
Toeplitz form. 0

The following are special cases of Theorem 1.5 and give another view of the

results for the nonderogatory case in [92, p. 296] and [129, p. 130].

Corollary 1.6 Assume that dy = dy = 1. Then for j =0,1,...,M eachd; =1 and

A has upper Toeplitz representation.

Corollary 1.7 The eigenvalue 0 of A is nonderogatory if and only if dy = 1 and
d <1.

Note that when 0 is nonderogatory eigenvalue at least one of the A, is similar
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to the N X N Jordan matrix

(01 0 0]
00 0

1
b 0-

and ker A® = N*_, ker A%,

1.4 Matrices Whose Product is Symmetric

Before describing the structure of A further we will prove some auxiliary

results which are of interest in themselves.

Lemma 1.8 Let R and C be p X q complex matrices where p > q and assume that
rankR = ¢q. Then RCT is symmetric if and only if there is a symmetric matriz

T € C?9 such that C = RT. The matriz T is unique.

Proof. Assume first that the product RCT is symmetric. Let Y € C9*? be
a left inverse for R. Then CT = YCRT or C = R (CTYT). Denoting T = (YC)7,
we have TT = YC = YRT =T, thus T is symmetric.

Conversely, let C = RT and T = T7. Then

RCT = RTTRT = RTRT = CRT

and thus the product RCT is symmetric.
It remains to show that T" is unique. Suppose that C = RT} = RTs. Then
by left invertibility of R it follows that T; = T5. ]
The next result will generalize Lemma 1.8 to the case where a set of k

matrices R;; j €k, is such that all the products R;CT are symmetric. We assume
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that kp > q and that

rank 1?2 =q. (1.8)
Ry

Let us remark that the set of row cross-sections of any of the arrays A*F—1*
of the form (1.2) and a column cross-section of the array A®*+1 fit into the setting

of the previous paragraph.
Next define 7 =rank [R;y Rs --- Ry]and let the columns of the matrix
R € CP*" form a basis for the space spanned by the columns of [R; Ry --- Ry -
Then for j € k there is a matrix S; € €™ such that R; = RS;. Moreover (1.8)

implies
S1

Sy
rank | [ | =gq. - (1.9)
Sk
For every vector  in the intersection of the kernels of S; it follows that R;z = RS;z =
0 whence z € N5_; ker R; = {0} and so = = 0. Property (1.9) implies that the matrix
S1
has a left inverse [Z1 Zs --- Z] where all Z; are ¢ X r matrices. Using
Sk
this notation we have
Lemma 1.9 Assume that C and R;; j €k are p X q¢ matrices, that kp > q and that
(1.8) holds. Then the matrices R;CT are all symmetric if and only if there exist k

symmetric matrices T; € C™" such that

[k T k
c=F (Z ij_l;-) and S (Z z,-Tj) =T; lek  (110)

j=1 j=1

Proof. Let R;CT be all symmetric. Then R;CT = CRT implies R(S;CT) =

(C’Sf ) RT, so matrices R and CST satisfy the conditions of Lemma 1.8. Then there
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are symmetric matrices T; € C™" such that C’S]T = RTj. From the proof of Lemma
1.8 we see that T; = S;CTYT where Y € C™7 is a left inverse of R. The above

equations can be put together as

Sy Ty
S2 T = I; AT
Sk T
Multiplying on the left by [Z1 Z, --- Z;] we get
k k 5
> Z;S; | CT = | X2 Z;T; | RT
j=1 i=1

and so
. T
C=R (Z Z,-T,-)
=1

Finally, a simple calculation gives the second part of (1.10), viz.

k k
S (Z ij,-) =5 ( z,-s]-) CTYT =5C"YT =1,

foralll=1,2,...,k.
Let us now prove the converse. We have symmetric matrices T; which satisfy
(1.10). Then

k —~
CRT =R (Z 7}2}‘5?) RT = RT,RT

j=1
and
R,CT = RS ( ij,-) RT = RTRT.
j=1
Hence the products R;C7T are all symmetric. m|

Suppose that ry = dy, r; < d;, for i > 2 and that R; , i € m are p X r;
matrices such that
rank R- = rank fZ,- =7;
where 7; = Z§=1 i,

Ri=[R1 Ry --- R,']
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is an p X 7; matrix,

R,-=[R1 (R; 0) (Rs 0)

(R o)]

is an p x d; matrix, d; = E;-=1 d; and the blocks ( R, 0 ) are of sizes p X d;. Thus
we suppose in particular that the columns of R, are linearly independent.

Let us remark that when a commutative array A is in the form (1.2) and
dp = 1 then its first row cross-section and any column cross-section can be assumed
to fit the setting of the previous paragraph.

In the above setting we have the following lemma :
Lemma 1.10 Suppose that C €CP*™ is such that RmCT is symmetric and that

R([Cm Cmi -+ Cmoina]) CR(R)) (1.11)

| where C = [ C; C Cn ] and C; €CP*% Then there exists a unique r X dp

matric
i T T2 Tlm—1 plm 7
T21 T22 T2,m—1 0
T=|T%" T% 0 0 (1.12)
| Tt 0 0 0 |

where T = [ Tii T ] €C™*% and T € C™*", such that
C=R,.T
and T4 = (Tj‘)T for alli and j.

Proof. Write C; = [ Cs C; ], where C;; €CPX™ and Cip €CPX@—7) and
C=[cu Cu Crmi |- Then the matrix ©7%; RiCT = RnCT = R.CT is
symmetric, the matrix R,, has full rank and hence we can apply Lemma 1.8 to

obtain a unique symmetric matrix T such that € = R,,T. We partition T blockwise
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according to the partition of R, viz.

Thw T2 -+ Tipm

Tyy Tpp -+ Tom

M)
Il

, Ty € €<,

-~

\_Tml Tma - Tmm_

The relations (1.11) imply that the blocks below the main antidiagonal in T are 0,
ie. TL-J- = 0if i+ j > m +1, and that there exist unique matrices T'; eQrix@i=ri)

t1=1,2,....,m,7=1,2,...,m —1-+ 1 such that

ST
~ Toi
Cio = Rpm—it1 )

| Tr—ig1,i |

The latter holds because every column of the matrix Cjy is linear combination of
columns of ﬁm_;+1 that are linearly independent. Then we write T = [ ’f‘,-j T,-j ]
ifi+j <m+1and T¥ =0ifi+j > m+1. The matrix T is then of the form (1.12),
and by the construction of T,-J- and T{j it follows that C = ﬁmT and the matrix T is

unique because the matrices T;; and T;; are unique. O

1.5 Structure of Commuting Matrices

This is the main section in this chapter. Theorem 1.13, proved in the first
subsection below, is the first important step towards the construction of a special
collection of matrices that is used to reconstruct a commutative array in form (1.2).
In the second subsection we give this collection for simple eigenvalues and discuss its
properties. In particular, a set of symmetric tensors can be associated with the special
collection of matrices. These tensors appear as an essential tool in the construction

of root vectors for simple eigenvalues of a multiparameter system.



22

1.5.1 General Case

Proposition 1.11 Denote the dimension of the span of the set
{aif*ieds j€d}

by ry, forl =0,1,...,M — 1. Then

% < r; < min{n, did41}
!

forl=0,1,.... M —1andr; 214y forl=0,1,...,M - 2.

Proof. The array Ah+! lils+(1:onstructed so that r; < min {n, didi;;}. Further-
Ry
Li+1
more, the rank of the matrix i € C"4*4+1 ig dp,; (cf. Proposition 1.2). Since
1i+1
B d d
r; = rank (R;-’H'l) < for j € d; and mnk(z1 R;) < 21 rank R; for any matrices
i= i=

R; of the same sizes it follows that

d;

dip1 <) m; < dimy
j=1

T
By Corollary 1.3 the matrices Ré’”’l (C’J{“"“) are symmetric for [ = 0,1,...,M -2
- R11,1+1 -

Rl,l+1
and by Proposition 1.2 the matrix 2, has full rank. So for every j the matrices

Rirae
C'JI-H’I+2 and RVt i e dy, satisfy the conditions of Lemma 1.9. Then by (1.10) the

rows of C]I-+1"+2 are in the span of the columns of Rf’“’l and so 17 > Ti4a. O
Let us now consider the case M = 2. Then
0 A01 A02
A={0 0 A2|, (1.13)
0 O 0
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Commutativity imposes conditions only on the arrays A% and A!2. So we are only
interested in these two arrays.

First we will discuss the special case when the row cross-sections of A%
span a one-dimensional subspace in €"*%. By an admissible change of basis B we

can assume that

all aff - o
0 0 --- o0

A=) , (1.14)
0 0 -~ 0

Then we have a simpler version of the main result :

Theorem 1.12 Assume that A is commutative with M = 2 and that A% has the
form (1.14). Then the array A'? is generated by a set of dy symmetric matrices of

sizes d1 X dl.

Proof. By Corollary 1.3 the products R (0}2)1' are symmetric and by
Proposition 1.2 the matrix R has full rank. Thus by Lemma 1.8 there exist sym-
metric matrices T; such that C}? = RI'T; for all j. m]

The above special case is important in the study of the simple eigenvalues
which are significant in applications to Multiparameter Spectral Theory.

Before we state the main result for the general case M = 2 let us introduce
some further constructioné. Proposition 1.11 makes the following definition sensible.
Definition. The set of integers D = {dy, dy,ds; r}, where all d; and r are positive,
is called an admissible set if

2 .
Zd,-:N, r<n and -diTH-SrSdzdz.H for I =0,1.
=0 1

For the set of matrices Tj; € C™°; ¢ € dy; j € dy we introduce the matrix
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and we denote by S the subspace in €%" spanned by the union of the ranges of T;

for all j. Similarly for a set of matrices {.S’,- eC™ i€ @} we write

S1
s= |
| Sdp
and
ST=[S S -+ 84].

Definition. For a given admissible set D the triple (1~2, T, P), where R is a full rank
n X r matrix, 7 = {T,-j; i€dp; jE @} is a set of r X r symmetric matrices and P
is a projection in Chrxdr s a structure triple (for D) if it satisfies the conditions :

(i) T;, j € dy are linearly independent

(i¢) the rank of P is d;

(iii) S is a subspace of R = R (P).

Theorem 1.13 Given a structure triple we can describe (to within similarity) the
arrays A% and A? of a commutative cubic array A with M = 2. (Commutativity
does not depend on the choice of the array A%2.)

Conversely, for a given commutative array A with M = 2 we can find a

structure triple which generates the arrays A% and A% of A.

Proof. Suppose we are given a structure triple (R, 7, P). Let ker P = K
and R (P) = R. The projection P can be written in the form

S1

P=|"121 2o - Z4] (1.15)
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J ,
where S;, ZF € C™%, 12—131 Z;S; = I and R(S) = R. The decomposition (1.15) can

S1 Su
: : 82 SZI rXrdg—d:
be obtained for example from the matrix X = | . ,Sjp €C ! where
Sdo Sdot
the first d; columns form a basis for R and the rest form basis for . Then we
choose [Zy Zy --- Zg4 ] to be the first d; rows of the inverse X1 Any other
decomposition of P as in (1.15) is given by
S1
S )
P=| " \UU([Zy Zy --- Zg)]
Sdy

for some invertible matrix U € C%*% . Then an array A is generated as follows. The
rows of A% are given by

R; = RS{, 1€ @
and the columns of A2 are given by

_ do
Cj=R) T;Z!, jed (1.16)

i=1
First, the columns of A% and A!? are linearly independent. The columns of A!2
are linearly independent since T; are linearly independent and the columns of A%
are linearly independent since the columns of S are linearly independent. In order
to prove that A is commutative it remains to show by Corollary 1.3 and Lemma 1.9

d
that S (E Z,-T,-j) =Tj; for all / and j. Since S C R we have PT; = T, or written
i=1

do
by blocks }° 5;Z;T;; = Tp; for all | and j, which proves commutativity.

=1
If we take another decomposition
U ]
SoU
Pp=|"" |z, U2, ... UZ,]

SaU

L -
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we will get a similar array Ay. The similarity transformation between A and Ay is

given by

0 0 I

Let us now explain how to obtain the structure triple from a commutative
array A. Since A is commutative the products R (C}z)T are symmetric for 7. € do;
j € dp by Corollary 1.3. For every j the matrices R{’, i € do and C}* satisfy the
conditions of Lemma 1.9. So there exist matrices ]~%, Tij,S1 and Z; as in Lemma 1.9.
We can choose the matrices I~%, Sy and Z; to be the same for all j since they depend only
on R%. Then the triple (R, T, P) is a structure triple where 7 = {’I‘ij; i€dy; j€E gg}
and P = SZT. We need to check conditions ()-(#44). Condition (i) holds since C;
are linearly independent. By the construction of S and Z the rank of P is equal to
rank S = d; and by the right-hand equations in-(1.10) the span of the ranges of T;
is a subspace of Im P. 0

To illustrate the preceding discussion we consider an example.

Example 1.14 Let

0
0
A= 0
0

= o O O

0
1
0
0

(=R e T e N
[ I I

000 0O

L -

Then the (nilpotent) matrices that commute with A; have the form

[0 a1 a2 az ax]
0 0 a1 0 ao
Ay ={0 0 0 0 0
0 a1 az2 0 ay
[0 0 a3 O 0

-

where all a;; are arbitrary. In order to construct the array A in the form (1.2) we need

to look at different cases depending if some of a;; are 0. There are two choices for
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M, 2 and 4. In the case M = 2 there are two choices for admissible sets : {1,2,2; 2}
and {2,2,1; 2}. If M = 4 then d; = 1 for all 7. We here presént the cubic array A as
a two-dimensional array of column vectors.

(¢) Let all a;; in Ay be nonzero. Then M =4 anddy=d, =dy =d3 =dy =

1. In the basis B = {ey, e4, €2, €5, €3} the array A is

(0 () () () (2
00 5@
-0 6B G
06 6@
6660 6

and in the basis B’ = {e;, e4, aes, aes + fBez, a’e3 + Pes + vea} where a = o, p=

%211- (@11 —aq), v = %gi- ((a11 — a41)? + agoas; — agia3z) the array A is in the upper

Toeplitz form . -

(o) () ) () ()

(o) o) () ) ()

=) (o) (o) () ()

W ) () () ()

(o) ) G G ()

e 5= ‘%‘?‘- n= Z_,;: (a2, + angaz — annag)

and

6= % (a21a12 + a11020 — gy + % ((as1 — 041)? + ang001 — 021a32)> .
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(43) Suppose now that ag; = 0 and the other a;; are nonzero. Then M = 2

and dg =2, dy =2 and dy = 1. In the basis B = {él,e4; es, €5; e3} we have

o) (o)

o ()
(o) ()
(o) (o) (o)

1

aii
0

a3

) (
)

We can choose the structure triple of A to be

Refy g
'—'01111_

and

P=SzT =

The array A% is

aiy

2
a7 + a203;

1

a

asi

A02 — (

ay

ag2

a41

1
—an

az22

)
Q12

0

0

G2
1

|

) (

agi

0 )
a12

0 as; ]

asi1(a1; + aq1)

000]

L o0 o]

a2

(434) The last case we will consider is ag; = 0 while the other a;; # 0. Then

M =2and dy =1, d; =2 and dy = 2. In the basis B = {e;; es, e4; €3, €5} we find

(o) (o) (o

O OO0 OO0 OO O
S N S e’

Q
]
—

NN STTTN TN
OO OO OO ©

[

S N e e

) o

aiz

&

TN
2
(%)

o8

NN

o

OO O
]

S’ N’

-t
~—— —
NN
I3 o

N [l %) o
- =

~— e e

) (an)




One possible choice for the structure triple is

~ 10 1 aii
R= ; Tu =
01 a1 afl + as a3

0 (1531
a1 021(011 - 041)

The decomposition (1.15) for P is

[ 1 0 :I [ 1 0
P =
ain ay ) - L

azi a1

and the array A% is

4=() (o)1
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a

Theorem 1.13 tells us that in the case M = 2 the array (1.2) is commutative

if the arrays A% and A!? are given through a structure triple. So we ensure that the

row-column products of Corollary 1.3 are symmetric. If M > 3 we can consider the

array (1.2) as a collection of MM-1) cases with M = 2. Namely, for every pair of
2

integers (k,1); 0 < k <1 —2 < M — 2 we have the problem

ARktl  ARKR2 L AkI-L
0 0 AkFLER2 0 ARHLI-L
0 0 .. AI~.2,I—1
0 0
L0 0

with

-2 11
Du = {Zdi, > didy; Tkz} .

i=k i=k+41
The number 7y is the dimension of the span of

{aﬁh,h=k+1,k+2,,l—l,Zeﬂcj]E_‘!ﬁ.}

(1.17)
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The array
Ak,k+1 Ak,k+2 ... Ak,l-—l
0 ARFLER2 . ARFLI-1
(1.18)
0 0 cee AF21-1
is acting as the array A% in the case M = 2 and the array
ARHLI
(1.19)
Al—l,l

as the array A'? in the case M = 2. The sizes of 0 and * in (1.17) are not important
when we generate the arrays (1.18) and (1.19) from a structure triple as described in
Theorem 1.13 for A% and A!'2. The row-column products of the arrays (1.18) and
(1.19) are exactly the products in Corollary 1.3. So A is commutative if and only
if these products are symmetric. Then the structure triples of the above problems
(1.17) (subject to appropriate matching conditions), together with an array A%
describe A.

Before we proceed with the discussion of the simple case we state an obser-
vation. It shows that all the entries of the arrays A¥ of a commutative array A in
the form (1.2) lie in the linear span of the entries of the first row of A. Precisely, if

we denote by Sj the linear span of the set
0j ,
{ar.g, ] E,’E, Te@_, segd_l}’
then we have :
Proposition 1.15 Fork=1,2,.... M -1, l=k+1,k+2,...,M, r€d, s€dq
it follows that a¥ € S_s. |

Proof. Theorem 1.13 and relation (1.16) imply that al? € S;. Similarly,
we can apply Theorem 1.13 and relation (1.16) to the arrays A*~1* and AR+l
k=2,3,...,M —1 and obtain

kk+1
a,, tl e Sik
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where S = span {a’:s‘l’k, r=1,2,...,dx_1, s=1,2,... ,dk+1}. Therefore it follows

abl e S C Sp1 C - C Sy = S;. Next we apply Theorem 1.13 to the arrays

A0l A02 Al
and . Then it follows al? € S,. Similarly as for | —k = 1 we

0 Al A28
have ak*+? € S, and proceeding in the above manner for I —k =3,4,..., M — 1 we
obtain that a¥ € S_y. 0

1.5.2 Simple Case

Definition. An eigenvalue A of a commuting n-tuple A is called simple if dy = 1
and d; > 2.

The above definition coincides with the terminology used in [23] except that
we added the condition d; > 2 because we are not interested in nonderogatory eigen-
values when studying simple ones. Though the statements for the simple eigenvalues
would remain valid if nonderogatory eigenvalues were included, we excluded them be-
- cause we developed a more simple approach for them which could not be generalized
for simple eigenvalues.

In this subsection we assume that the only eigenvalue A = 0 of A is simple.
After an admissible change of basis B we can assume for k = 2,3,..., M that R% =
[ R¥ 0 ] and 7}, = rank Ry = rank R; where R €™ ry < dy, 7 = Tt

By=[R" R®? ... RY | (1.20)
and

Ry=[R™ R® ... R%]. (1.21)
Proposition 1.15 implies that

—1,m m—2,m m—k,m 5
R([ c; Cy <o cpThm ) R (Re)

form=23,....M,k=1,2,....m—1and f =1,2,...,d,. Then it follows from
Lemma 1.10 that there exists a unique matrix T}" of the form (1.29) such that

[cim cpm ... op=im ] = R TP
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We write i () )
Fm(11 Fm(12 F=m(lym—1) 7]
Tf Tj “oe Tf
_ Fm@D)  Fm(22) 0
= " ! . (1.22)
TP o

—m m )d
and T (hlyy _ [ f((,fiifz))]:;‘:l'?hz:l for all l; and I; such that I; +1, < m and correspond-

ing hy €d;, and h; € d;,.We also have

I & iy o

m o 2 A

Apf = IZI hEI tf(h;hz)ahg' (1.23)
2= 2=

Thus the commutative array A in the simple case can be given by a matrix Ry of
the form (1.21) and matrices T}", m =2,3,...,M of the form (1.22) where Ry and
Tf”‘ have to satisfy the regularity and matching conditions. The regularity conditions
are :
— the matrix ﬁM has full rank and
m(1

~ the matrices T ’m_l), f € d,;, are linearly independent.
f Am

The matching conditions are equivalent to those of Corollary 1.3.

Example 1.16 Let us consider again the matrices A; and A; of Example 1.4. The
eigenvalue 0 is simple because dy = 1 and d; = 2. The columns of the first row of
the array (1.7) are not linearly independent, but to make them so we perform an

admissible change of basis substituting es; — %64 for the vector e5 in basis B. The
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array A in the new basis is

}
Il
TN TN TN TN T

O O O O O O O O o o

o O

AN TN AT TN TN T
L N Nl N
TN
Il o

-
~——

~— N N N N—e .
TN T TN TN T TN TN TN
O O O O O O O O O O N o
N e e N—e N— e
TN ST TN TN TN TN TN
O O 0 0 O O O N O O O
N TN TN T N TN T
OO O H N O O H OO O O

O O O O O O O O O O M= =

S———

I

We find that the unique matrices f’}" are :

~ 1 0 ~ 0 1 ~
Tf:[ :|,T22=[ }ande:
-1 1 _%

TN

=

2

R}? (0123)T=R?1[(1) (1)] [(1) ' ](R?l)T=R‘1’1[(1) ' }(R?I)T

and

Riﬁ(cza)%zz%l[ ’ ﬂH‘l’ 1}(R?1)T=R91[1 "%](R‘zl)T
2
are symmetric. : |

Before we state the next result we introduce some further notation. For
m = 3,4,..., M we denote by ®,, the set of indices {(I1,lo,13); L, > 1, L+l +13 <
m} and for 1 = (I1,l,13) € ®,, we define p =dy X1, X115 and x1 = dy, X dj, X dis.

We also write
m-— 13 d

k(l113) (13,k)
sfh = 3, Ztg(hlllzzz) tt(han) (1.24)
k=l 41z g=1
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where h = (hy, he, hg) € pj and f € dp,.
The following result then tells that a commutative array A in the simple
case can be reconstructed from the matrices B)s and ’f}" which satisfy the regularity

and matching conditions.

Proposition 1.17 Suppose that a matriz Ry and matrices ff}", m=2,3,...,.M, f€
dm are given in the form (1.22) and that an array A is described by relations (1.23).

Then A is commutative if and only if

Iy,lg)l m(ly,ls,l .
i) = S o) (1.25)

form =3,4,...,M, f €dn, 1 € &, and h € p1. The array A is reduced if and

Tm(l,m—l)

only if the matriz Ry has full rank and the matrices ¥ , [ € dm are linearly

independent for m = 2,3,...,M.

Proof. By Corollary 1.3 it follows that the array A is commutative if and

only if the matrices

m—1
> Rikckm (1.26)
k=l1+1
are symmetric for l; = 0,1,2,.... M -2, m =}, +2,[; +3,...,M, h; € 4, and

f € dp. The nonzero blocks of a matrix T}" are of the form f’}n(ij ) = [ T'f'" (&) T}n(ij ) ]
Py e qas ~ e T
where T}" @) g ¢ri*ri and " @) = (T}"(")) . Then the matrix

#m(11) =m(12) Fm(1l,m—1) T
7 1) o (22 T
N Tm 21 Tm 22 0
m=| d . (1.27)
[z o o

is symmetric. Therefore it follows that the matrices (1.26) for {; = 0 are equal to
~ ~ T s~ T -~ -~ o T
Rau (T7) (Br)” = RurTF (Bor)

and hence are symmetric. Here the matrix Ry is defined as in (1.21), i.e.,

~

RM=[R‘1)1 (Rtl)z 0) (RcllM 0)]
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It follows then from (1.23) that (1.26) are symmetric for I[; € M — 2 if and only if
Byt TS (Tr89)" Rpetymn
are symmetric or equivalently, if and only if
Thie) (Y (128

are symmetric. Here

P AL D) S h+2) ALl 43 ~1 (1,;m—1
Tg" ™ Tag"™® Tagh™ ... Tafm?
0 f}? (I%,II+2) T’llzl (I%all+3) . T’lll (Ig,m—l)
1 1 1
T’Iljl,(l‘;,n) 0 0 T}Id(3,l1+3) e TIl (3 m—l) ,
0 0 0 Tll(m—2 m—l)
i Fm (1,0 +1) =m(1,0142) Fm(l,m—2) Fm(l,m-1) 7
Ly (YA Ty Ty
T}"(2Jl+1) T}"(2,11+2) T}n(2,m—2) 0
~=m(l ~m(3,1+1 ~m (3,11 +2
T% 1) T}n( 1+1) T}n( 1+2) 0 0
i T}n(m—ll-l,ll'*‘l) 0 0 0 |
Tl (k) _ [k(lla) ™2 N ~m(lsk) _ [,m(sk)] 1%
Thr [tg(hlhz) ha=1,g=1 and Ty [ f(hag) | py=1,9=1"

We use the letters C' and R in the subscripts above to indicate which of

the matrices corresponds to a row cross-section of the array A and which one to the

column cross-section.

It follows from above that the matrices (1.28) are symmetric if and only if

m—l;,

2 Z AL

k=ly+lp g=1

m(ls k) _
f(hag) —

35 tyimma) £

gm(i2k)
f(h29)

k=ly+l3 g=1

and, by definition (1.24), if and only if relations (1.25) hold.

By definition, the array A is reduced if and only if the matrices C’""’"+1

f € dn, are linearly independent for m = 1,2,...

,M. Since a""‘ are given by (1.23)
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this holds if and only if R, has full rank and T} (m=1) ¢ ¢ d,, are linearly independent
form=2,3,...,M. O

In the next theorem we expand the matrices T}" to symmetric matrices T¢"

of sizes dys X dyr, where as before dyr = M, d;, and the form

m(11) m(12) m(l,m—1) 7
o (21) g (22) R
Tm 21 ™ 22 0
=\ 7 d _ (1.29)
e o o

where T

di, d
m(hla) [tm(lllz)] "™ It is crucial for the proof of the completeness

f(h1h2) ) p =1 hy=1
result in Chapter 4 that we prove that the expanded matrices Tf* are symmetric and

that the matching conditions 1.31 hold for them.

Theorem 1.18 Suppose that an array A is in the form (1.2), dy = 1 and the nonzero
elements in the set {a‘}"‘, meM, fedn } are linearly independent. Then there exist
symmetric matrices Tf*, m =2,3,...,M, f € dy in the form (1.29) such that the

relations -
m—ii
1 m(ll 20!
ag ;= Z Z tf(h;hz;) ap; (1.30)
la=1 ho=1
hold, where Iy € m —1, hy € d},, and also

m-l3 di

k(l) mlsk) _ k(ls)  m(lzk)
> Ztg(h’liz) ttihag) = Z Etgoiis) tt(hag) * (1.31)
k=l +lz g=1 +13 g=1

wherel1 € @, h € x1, k € m —2 and g € d,. Moreover the matrices T"‘(1 m=1) , f€
dm are linearly independent for m = 2,3,..., M.

The proof of this theorem is long and technically complicated. To preserve
continuity of the presentation we include it in Appendix A. Here we only explain how
the matrices T7" are constructed.

The matrices T"‘; are as in the previous proposition. Then the matrices T7"

m(l1,l2)

are constructed inductively. First we set 1y =0ifly +13 > m. Because d; =7,



we can define
17 = TP and 17 = (F7e0)7,

so the matrices TT" for m = 2,3 are determined.
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(1.32)

Next we inductively define matrices Tf'" ") for m >4, fednandli+1, <

m. Suppose that we already have matrices Tf'”' form’=2,3,...,m—1, f € dy and

thus we also know the matrices Tgk }({") for k € m — 2, g € di. where
" k(LR k(Lk+2 k(1,k+3 k(1,m—1
Tglgt ) TgI(Z +2) Tg}t ) .. Tg}(t )
k(2,k+2)  lk(2,k+3 k(2,m—~1
0 TEMD TEeMY L gkem-l)
k(m) __ k(3,k+3 k(3,m—1
TR = 0 0 TG ... e
k(m—2,m—1
0 0 0 Trer=2m=1) |

and

) _ [12(111:) dy dy,
gR h2(h19) ) py =1 hy=1

Note that it follows from Proposition 1.2 that the columns of the matrices

i 1(1,1+1) 7
Tietth

1(L,1+1
T

1(1,0+41)
Td1R

are linearly independent for / € m — 2 and therefore the matrix

T1 (m) T

I(m
TR™ =

is left invertible. We write

1(m) _ i(m 1(m 1(m
Zp )_[Z1§z) Zzz(z) de(R)]

(1.33)
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for a left inverse of TH™ where

" 1(12 1(13 1(1,m~1
Zg}(2 ) Zgl(% ) Zgl(i m-1)
1(23 1(2,m—1
i) _ 0 Zgl('t ) L. Zgl(i )
g9
1(m—-2,m-1
0 0 z8 )]

for g € d; and Z;,(éllz) € C%*%, Now we are ready to define the matrices T}"(I‘lz).
For l; =2,3,..., [%1] we write

dy T
T}n(ll,m—-h) — hz: Zigl—lﬂl)T}n(ll—117"—11'*‘1) (T’:I(Zm—ll’m_ll'*'l)) (1.34)
=1

where [E“-2ﬂ] is the integer part of the fraction =L, For [; = [%'i] +1, [%tl] +
T
2,...,m — 2 we write T}"(I“'"'I‘) = (T}"‘""I"I‘)) . Next we define inductively for

(i m—h—h)

la = 1,2,...,m — 4 matrices T . These matrices for Iy = 0 were just

defined above and matrices Tfm(”) are already known. Then we can define inductively
for ) =2,3,..., [m—’f,,fﬂ]

dy
lym=1) _ 1(:-1,1 1(hi—1,01+1 1 -1,
T}n(lm _Z[Zhgil 2 Zh§21 ) Zhgtl )]’

h=1
¥ T}n(ll—l,m—l+1) T}n(ll—l,m—l+2) T}n(h—l,m—11+1) 1r (T,}I(im—l,m_l_l_l) T -
m(lym—I+1 m(ly,m—1+2 Lm—=l,m—l+2N\T
rlm=bl)  pmlm-l42) 0 (Tign-tm-142)
I Tm(l—1,m—I+1) 0 0 1L (T;}(Zm—-l,m-—ll-f-l))T ]

Here we write | = Iy +15. For l; = [L"—“—QZLI] +1, [ﬂ'—gﬁl] +2,...,m—1Ily—2 we define
T}n(ll,m—l;l—lz) — (T}n(m—lj,-—lz,ll))T.

We continue inductively until m’ = M.
To illustrate the above construction we include three examples.
Example 1.19 Suppose that n = 2. We would like to find two nilpotent commuting

matrices Ay and Ay with dy = 1 such that the value of d;, ds and dj is the greatest

possible.
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Because rank B3 < 2 the greatest possible choice is d; = 2. Then we can

<-[(0) (0]

The array A'? is described by a set of 2 x 2 symmetric, linearly independent matrices.

take

Since the space of these matrices is 3 dimensional we have dy = 3. We choose

10 01 00
T? = , T2= and TZ= :
00 10 0 1

Next it follows from (1.23) that

The matrices Tl1 }(212)a,nd ng"’) are

100 010
i = [0 1 0] 2 Tig” =[ }

Since the products
T
T2 (T7%9) ", g=1,2, (1.35)

are 2 X 2 matrices and since the matrices T;,(im), g = 1,2, are linearly independent,

it follows that the space of 2 x 3 matrices Tfs(m) such that (1.35) are symmetric is

4-dimensional. We can choose

0 00O 100

T33(12) — 0 0 1 and ’1’43(12) = 0 0 0 ,
010 0 01
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00
and T?(ll) = [ 0 0 J for all f. Then all the matching and regularity conditions hold

and we have

The array

[¢
(;

&

0
0
0

0

)
) (6
) (6

A" 0 o
0 A2 o
0 0 A
0 o0 o

) {
) (
) (

)
')
)

(
(
(

0
0
0
0
0
1

,
)
)

is commutative and we have d; =¢+1,¢=0,1,2,3. In general, if n =2 and dy = 1,

it follows that d; <4+ 1. Ifd; =i+ 1 for ¢ = 0,1,..., M — 1 then the corresponding

commutative array A is similar to

0
0

A% 0
0 A12
0 0
0 0
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o 5 ()() _SM y and( y
(o) () (2) ()
() (2) ()~ (2)
() () G- () G).

We do not prove the last statement, but the proof is easy. Note that the array A for

o O O O

1
0
0
0

Ai,i+1 —

)
z)
)

O = = O
= O O O

M = 3 was constructed above. O

Example 1.20 Suppose that n = 3 and that dy =1, dy =2, dp =3, d3g = 2 and

dy = 1. We are given

1 0 000 ©0 0 O
Ri=| 0 -1 000 3 0 0|,
02 000 —-10 0

where the spaces indicate the partition according to the d;, and

1 0 01 00
T12= aT22= 1T32=
00 10 01

7302 - 310 7302 0 1 -1 and T30V = 730D _ 00 .
1 01 1 -1 0 00

It is easy to verify that the matching conditions (1.28) and regularity conditions

(described on page 32) hold for this collection of matrices for m = 2,3. So the above
collection describes the first three columns of a commutative array A. To illustrate

how the matching conditions work let us find a symmetric matrix 7} which will define
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the last column of A. The matrices T2(4)

R » 9=1,2,3, are
3 0 1 1 ' 0 -1
T2 = , T2 and T2 = .
1R 11 2R 0 3R 1

We write T14(13) _ [tu 12

T
. Then the products T:I(zw) (Tf (13)) are symmetric
o1 too

matrices if
tin + tie — 3ty = 0

tiz + taa + t2 = 0.
i + te = 0
There is a one-parameter family of solutions of this linear system of equations. The

matrix Tf (13) has to be nonzero, so we choose to; = 1 for convenience. Then it follows

2 1
that Tf 13 = [ } . Next we have

1 -2
(1000 0] (00100 0 |
0100 0 0010 0

TNW=10003 0 |adTiP=]00 0 1
0001 1 0000 -1
| 0000 —1| (0001 0

T
The symmetry of the matrices Tgll(z4 ) (T4(1)) , g =1,2, implies that

_ s 1 -
i = 3 _1 2
L —1 2 -
and, if we write
Tf(m) - [ Uy U2 U3 ]
| U2l Uz U3 |

then uge = w3 and u;p = uy;. Here we can choose 4 of the entries u;;, and we can
choose the symmetric matrix Tf (11), arbitrarily. We take, for example,

Tf(12)= 0 ""1 0 a,nd 'I'f(ll)= 0 0 .
-1 0 1 00
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Then the matrix T} is determined by symmetry. Finally we use the relations (1.23)
to find the array A = {A4;, Ag, A3} . The matrices

o O O O

A=

o O O O H W o O O

|
O O O O O O O o O
O O O O O O O O ==
O O O O O O O O o
O O O O O O O = O
O O O O O O = O O
O O O O O O O O O

r
O =N O
i

I
=
o
o
e
o

B

[\~

!
=== === ==

OO O O O O O O o©
O O O O O © O ©
o O O O O O O O o
o O O O O O O
S O O O =

L

and-

!

-

[SC I e N e BN -}
I
[N

i N
w
il
©O o 0o 0o o o o o ©

O O O O O O O O O
O O O O O O O O N
S O O O O O O O O
O O O O O O O NN O
O O O O© O O© NN O O
O O O O NN O O
O O O O

i

>
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then commute. a

Example 1.21 In this last example we are given 3 commuting matrices such that
dy = 1 and we will find the corresponding matrices Ry and T7*. The commuting

matrices, written in a basis {e;; i € 10}, are :

Jg 0 0
0 0 Js

where J; is ¢ X ¢ nilpotent Jordan matrix,

01 1 -11 0 0 10 0
001 1 01 0 01 0
00 0 1 00 1 00 1
00 0 0 0 O0 0 0O0 O

A2=00'—100—1112—3
00 0 -10 0 —-101 2
00 0 000 0 00 1
00 0 2 00 2 03 9
00 0 00 O0 0 00 3
(00 0 000 0 00 0|

and ) 3
02 2 0 2 0 0 00 0
00 2 2 0 2 0 00 0
00 0 2 00 2 00 0
00 0 0 00 0 00 O

A3___00—2—40—2—2200
00 0 -20 0 —-202 0
000 00O O 00 2
00 0 4 0 0 4 06 —4
00 0 0 0.0 0 00 6
00 0 000 000 0
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In a basis B = {e;; ez, €5; €3, €6, €3; €4, €7, €9; €10} the array A = {A;, As, A3} is in the
form (1.2). We have d; =2, dy =d3 =3 and dy = 1. The first row of A is :

0 1 0 0 0 0 0 0 0 0

0 1 1 1 0 1 -1 0 0 0

0 2 2 0 0 2 0 0 0 0
To make its nonzero columns linearly independent we substitute the vectors e; — e3

and ey + eg for e4 and ey, respectively, in B. Then we have

10000O0O0OO0OTO
Re={111000000
220000000
and ) )
(0} (o 1
0 1 1
AlZ — > 0< 2 2
0 1 0
1 -1 -1
\ 2/ -2 -2
So the matrices TZ, T2 and T2 are :
00 0 1 0
T? = , T2 = and T2 =
1 1 -2 0 -1
Next we find the matrices T3, T3 and T3 that are associated with the arrays
N o) [1)]
- 1 2 2
(o) (o) (o) X
4 4 6
1 0 1
9 0 0 0 1 0
AV = > < > < > {|andan=|| 2| || |1
1 0 0
-2 -2 2
2 2 2 >
1 0 0
[ \0/ \0/) \0/ 0
2 2 \ 0/
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They are
01 0 0 1 000 1 0 00100
TP=]1-12-10|,8=|002 21| BB=|00210
0 2 0 0 0 020 0 0 12000

Note that their top 2 x 3 right corner blocks are linearly independent and we use
symmetry to expand them to 5 X 5 symmetric matrices T, T3 and T§. Finally we
will find the matrix T3 which will describe the structure of the last column of A. The

arrays in this column are :

FERY [ (0]
RS 9 0
4 0
0 (o) >0<
Al = g A= 9 and A% = 1
0 2
'j >0< >1<
L ' 1 3
| \0/ | |\ 6/ |

Then we have
0 0 0 0O0O0OO0CT1

T¢=|{0 0 -2 000 12
0 -2 11 21000
In order to expand it to the matrix T} we need to find the matrix Tf(”), defined in
(1.34) by
T Z Z1(12)T4(13) ( 1(23)) ’ (1.36)

while the matrices Tf(m and Tf(al) are determined by symmetry. In our case we have

(0 0 1
rap [0 10
R 01 0
1 -2 -1




we choose its left inverse

1111
Z¥P=1010 0],
1000
and we have
0 01 2 2 2
=01 0| P =|-1 -2 1
100 0 1 0
From (1.36) it follows that
bl 001 ! b 0 01
T = | 0 1 0|+]0 0
012 01 2
10 0 00
11 2 1
=12 10
1 00
and so i i
0 0 00001
0 0 -20001 2
0 -2 11 21000
4 0 0 2 10000
T1=
0 0 1 00000
0 0 0 00O0O0OCO
0 1 0 00000
|1 2 0 0000 0]
Now it is easy to check the matching conditions, for instance
, o —2 1
01 0 1 0 0
0 0 2
1 -2 -1 -1 0 0 0 0 1
T .
LY (M) =10 0 0o 2 2 2
6 0 0
0 0 0 -1 -21
0 1 0
0 0 0 0 1 0
- “11 2 0

2 -1 0
2 —2 1
2 1 0
.

0
0_
NE
0

0..

47
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0 0 210
0 -2 6 01
=12 6 000},
1 0 000
(01 00 0]
ete. O

The commutativity of the array A implies further symmetries on the prod-
ucts of the elements of matrices T7". Thus we obtain symmetric tensors that will
play an essential role in the formulation of the joint root vectors for the associated
n-tuple of commuting matrices of a multiparameter system. First we need some fur-
ther notation. For m = 2,3,...,M and 2 < ¢ < m we denote by ®,,, the set of
multiindices {(l1,l3,...,1g); L =1, T L <m}. Forl = (Ig,lp,...,l;) € By we
define a set x1 = dj, X dj, X -+ - X di,. The set of all permutations of the set g is denoted
by II,. For a permutation o € II; and multiindices 1 € ®,, , and h = (hy, hs, ..., k)
we \;vritel = (la(l),l,,(g), la(q)) and h, = (ha(l),h,,(g), h,‘,(q)) Then we define
recursively numbers s7j; : for 1 € @52 and h € x) we write s7; fh = t}"(gi;fz)) and for

g>2andl € ®,,and h € x; we write

m_zl—s ¢
1 k(i1 Kol g eensly)
Sth= 2 Z%Ehﬂiﬂ) S ot (1.37)
k=li+lz g=1

Suppose that
{yfl; 1=1,2,...,.M, h= 1,2,...,r1}

is a basis of the vector space C™™. Then we define for every m, f and ¢ a tensor
1,1 I
qu Z Z Srfnhylll1 22 ®”'®thq'
leém ' hGX]

The first observation concerning the tensors SY, is :

Proposition 1.22 For m, f,q,1 and h as above it follows that

m- Z._r+1l d
sml Z Esk(hb, wlr) m(k o1l 2yesly)
fh= 9(h1h2yeeshs) S F(ghrs1 hrgasesh)
k= I

t—l
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where2 <r <q-—1.

Proof. It follows from definition (1.37) that

I _Es—sl' m—-E'_4 m- Zt--v'+1 L diy  di, .y Ky (lle)
m 1(l1l2
LD DD DRI DEND DD DENTCED DI s rw it
kh=litly ky=ki+l3 kr—1=kr—2+l- 1=1 g2=1 gr—1=1
k2 (k1l3) kr—1(kr—2ly) mkr—1dri1,drd2,e. ,lq)
A
92(g1hs) " * " Pgr—1(gr—2hr) © Fgr—1,hrt1,hrb2,0hg) "

Interchanging the order of summation we observe that

9 . q
m_z‘i1=r I" m~2t‘=r+1 I‘ m— i=r41 1 kr—1—~Ip

> > = X >

kr—ga=kp—3+lr—1 kr—1=kr—2+l- keer=ke_3+le—14lr kr—g=kr_3+r1

We obtain similar rules when interchanging the order of summation between k,_; and

ke—3,kp-4,...,k1 respectively. Thus it follows that

m_Zn?:r-}-l I'. d’r—l ( ) kr—l —Z:=3 l" kr-—-l—E:;‘ Ii
ml m(kr—1,lr41r+25000lg .
sfh - E Z sf(g,-_l,hr+1,hr+2,...,hq) Z E
ke—1=):_ li gr—1=1 ki=li+lp ky=k1+13

ke—1-Iy d"l d"2
E Z Z . Z tkl(lllz) k2 (krls) tkr—l(kr—21r)
g1 (h1hg) gz (91ha) * " " “gro1(gr—2he) —
kr—2=kpr_3+lr—1 g1=1 g2=1 gr—2=1
m—31 b4
i=r+1 k
—_ Zr Z m(k)lr+111r+21"-’lq) sk(IIIZr"’Ir)
- 8 £ (gshr41)hraz1mnsb) Sg(hrhz,eehr)*
k—El—'l l' g~
Hence the result follows. a

Using the same notation as above we have
Lemma 1.23 For every permutation o € I1, it follows that
ml ml, 1.38
Sfh = S¢h, (1.38)
or, equwalently, the tensors ST, are symmetric.

Proof. We prove the lemma by induction on ¢. For ¢ = 2 the result follows

by definition of T7" (cf. relation (1.32) ). Proposition 1.17 together with the relation
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(1.31) give the result for ¢ = 3. We suppose now that the result holds for g—1 (where
g > 4) and we prove it for ¢. Since every permutation is a product of transposition
it is enough to check (1.38) for transpositions and further more it is enough to check
the result for transpositions of the form (¢,7+1). From the definition of s}"ﬁ in (1.37)
and the inductive assumption it follows that the result holds if 7 = 1,3,4,...,4 — 1.
Therefore we only need to check (1.38) for the transposition o = (2,3). We showed
in Proposition 1.22 that

m=37 &

sl = z": p(iubaids)  m(plalsny)

Si(h1sha,ha) S F(G,hashs hg)*
p=li+la+l3 j=

Then by the inductive assumption the result follows also for the transposition o =
(2,3). a
Later we use the following two results that are consequences of Proposition

1.22 and Lemma 1.23.

Corollary 1.24 Suppose thatm >q¢>3,1€ ®p 4, f €dp andh € x1. Then :

(%)
m-z:a—:i m—. 11
E Ztk(llh) m (k3,04 ,000lg) Z Z k(l2,l3,005lg) m(kll)
g(h1h2) f(91h31h41 rh'q) = g(hzrhih 1hq) f(ghl)’
k=l1+iy g=1 HI
(%)
1 m=h k(2 sl3ylq) ym(KlL)
ml __ 29839000y m 1
Sfh = Z 2:139("2,’13, :Iq) f(ghi)*
k= l; 9=

1—2

Proof. By the defining relations (1.37) it follows that

m= Lo s K(lula) - mlils layenle) I
142 Jsbdyoeey m
Z Z tg(hlhz) f(.‘hhl,hz, )zq) - sfh (1'39)
k=hi+l; g=1

and by Lemma 1.23
STh = sTh (1.40)
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holds where o = (1¢) is the transposition of 1 and q. Next we apply Proposition 1.22

to give
1 = K(la s ale) (k)
Sty = 2 Z S(ha s o) L gha) (1.41)
k= r—2 I g=1
Now assertion (4) follows because (1.39) and (1.41) are equal and assertion () follows

because (1.40) and (1.41) are equal. 0

1.6 Representation of Commuting Matrices by

Tensor Products

The material in the previous sections of this chapter was mostly developed
for better understanding of the structure of commuting matrices. Our main motiva-
tion for this comes from Multiparameter Spectral Theory Whe;'e the main tool that
helps us understand the spectral structure of a given multiparameter system is a spe-
cial n-tuple of commuting transformations. In this section our study comes closer to
Multiparameter Spectral Theory. It will be seen later that the matrices we use to
represent an n-tuple of commuting matrices are a special case of commuting matrices
studied in Multiparameter Spectral Theory. For the definition of the induced linear

transformation see page 8.

Definition. An n-tuple of commuting operators A on a finite dimensional Hilbert
space K has a representation by tensor products if there exist finite dimensional
Hilbert spaces H;, operators B; € L(H;), i € n, a subspace M C H = H; ®
Hy®...® H, invariant for all induced transformations B;‘ € L(H) and an invert-

ible linear transformation T : K — M such that
A; =T BT fori € n.

The following result was proved by Davis [57]. He and later Fong and
Sourour [75] proved a similar result for a commuting n-tuple of operators in gen-

eral Hilbert space. We give the complete proof that was already outlined by Davis
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[57]. The reason for reproducing the proof of Davis is the close relation between the

representation by tensor products and multiparameter systems studied later.

Theorem 1.25 FEvery n-tuple A of commuting linear bpemtors on a finite dimen-

sional Hilbert space K has a representation by tensor products.

Proof. Assume that K = K1 ® K2 ®---® K,. This is not a restriction since
we can always take, for example, K1 = K and Ky = K3 = -.- = K,, = C. Let z;,
t € n be indeterminants. Then we write P; for the vector space of polynomials in
z;. Denote by ¢;(z;) the minimal polynomial of A;, by J; the ideal in P; generated
by ¢i(z;) and by Q; the quotient space P;/J;. Then we choose H; = £(Q;, K;) to
be the space of all linear transformations of Q; into K;. Write P for the space of all
polynomials in indeterminants z; z3, ..., 2, and J for the ideal in P generated by all
the polynomials ¢;(z;). Then the Hilbert space H can be identified with the space
L£(Q, K) where Q@ = P/J. The quotient projections are ¢; : P, — Q;, ¢ € n and
g : P — Q. Choose a transformation U; € H; and a polynomial p;(z;) € P:. Then
the transformation B; € L(H;) is defined by

Bi(U:) (g (pi(=:))) = Ui (¢ (zipi(:)) -

This transformation is well defined since for every p;(z;) € J; the product z;p;(z;) € J;
also. It is easy to verify that B; is linear. Let us mention that then the induced

transformation is

BI(U) (¢ (p(xhx?’ oo 7$n))) =U (q (zip(z1, 22, - -, T0)))

where U € H = L(Q, K) and p € P.
Next we define the transformation T': K — H by

(T'u) (g (p(@1,22,...,24))) =p (A1, Ag,..., A u

where v € K and p € P. It is well defined since for every p € J we can find
polynomials ¢; € P, ¢ € n, so that

p(:vl,xg, . ,IEn) = Z'l//'i(mi,x% ce ,LL',,)‘,O;‘(-'IH)
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and so p(A;, As,...,A;) = 0. It is an easy exercise to show that T is linear and
that it maps K into H. Now choose a véctor u € ker T. Then it follows that
(A1, Ag,...,A)u=0forallpe P including p = 1. Therefore Ju = u = 0 and we

have showed that operator T is one-to-one. It remains to prove that
TA; = BIT for i € n. (1.42)

Then it will follow that the subspace M = R(T') C H is invariant for all operators B,
that T : K — M is invertible and hence A has a representation by tensor products.
To verify relations (1.42) we choose a vector « € K and 3 polynomial p € P. Then

we have
(TAw) (¢ (p(21,22,. .., 20)) = p (A1, Ao, ... yAn) Aiu = Aip (A, A, ..., Ap)u =

(Tu) (q (w,-p(xl,:cg, - ,mn))) = B} (T) (¢ (p(z1, 2. ..,7,)) .
Therefore the relations (1.42) hold and the proof is complete. O

The dimension of the space H on which the above representing operators
B;' act equals (dim K )3. We will call it the dimension of a representation by tensor
products. The question of minimal dimension of representation by tensor products for
a given n-tuple of commuting matrices was already posed by Davis [57]. It remains
an open problem. To motivate the interested reader we give two examples where
the dimension of the space H is less than in the construction given in the proof of
Theorem 1.25. The first example is taken from the work of De Boor and Rice [37].
They studied the approximation of partial differential equations by partial difference

equations.

Example 1.26 A matrix A = [ai]; ;- is said to be connected if for every i =

2,3,...,n there exists a sequence of integers 1 = j1, 2, ..., jx; = i such that

ki
di =]l a5 #0. (1.43)

=2
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A matrix B = [Bij]i =1, Where Bi; € C™™ is said to be blockwise connected if for

every ¢ = 2,3,...,n there exists a sequence of integers 1 = jy, jo,. .., Jk; = i such that
ki

D; = IH Bjy_y.i (1.44)
=2

is nonsingular. Let P € C™*™" be the unique permutation matrix such that P(4A @
B)P~' = B® A for every A € C™™ and B € ¢™*".

Using the above notation we can state the result of De Boor and Rice [37,
Theorem 1] :

Proposition 1.27 Suppose that

(4, 0 .. 0 ] (¢, 0 ... o]
0 A : 0 C -+ 0
A=| _2 and B=[B,-j]::'j=1=P . .2 | P!
[0 0 - o4, [0 0 - G,

(1.45)
commute. Here we assume that A;, B;; € €™ and C; € C™*™, Suppose also that
A, is connected and B is blockwise connected. Then there exist a matriz E € C™X™

and a nonsingular diagonal matriz D € C™ ™" sych that
A=D1 (I®A))D and B=D"! (FI)D.

Proof. The commutativity of A and B implies A;Cyj = Ci;A; for all indices
¢ and j. The fact that B is blockwise connected yields A; = D;A; D! where D; = I

[DfY 0 .o 0 ]
. . 0 D! ... o
and other D; are given by (1.44). If we write D = ) : ) then
0 0 ... D3|

A = D1 (I® A;)D. Observe also that all the matrices B;;, and hence D;, are
diagonal. The last expression for A and commutativity implies A; (D,-‘ lB;,-D]-) =
(D,-" 1B{ij) A;. Since the matrix A; is connected and the matrices D;'By;D; are
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[ el 0 0 ]
- 1 0 e 0 k 1
diagonal, say D;'B;;D; = ‘ , We have ej; = d"ej;dy = e}, where
0 0 - e |

di are defined in (1.43). The blocks D;'B;;D; of the matrix DBD™! are scalar
multiples of identity e};/ and so B = D=1 (E ® I) D where E = [e}j] :-—1’ 0
The special matrices A and B defined in (1.45) then have a representation

by tensor products on the same space as they act on. (]

Example 1.28 It is a well known fact that the general matrix that commutes with
the Jordan block

_ . -
0
A=
1
I 0]
is an upper Toeplitz matrix

[ Q) as a3 -0 ]

0 o Qn_1

B=10 0 o " ap
i 0O 0 0 -~ o |

(See for example [129, pp. 130-131].) Now choose the Hilbert space H = C" @ C"
and the subspace M C H spanned by the set B = {xj = E{;ll €e;Qej_;, jE @}
where e; denote the standard basis vectors in C®. Then we have (A® Dxj= xj-1,
J=12,...,n, where xo = 0 and (] ® B)x; = E{=1 Qj_141Xj, € n. Next define a
transformation T' :C" — M by T (e;) = X;, j € n. Then A = T-1 (A® )T and
B =T"1(I® B) T is a representation by tensor products for A and B. It is minimal

since on the tensor product space C” ® C? where p <norq<n there do not exist
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two matrices C and D such that both C® I and I ® D have a Jordan chain of length
n. ‘ a

Proposition 1.27 states that the matrices 4 and B of Example 1.26 are a
special case of matrices that already have a representation by tensor products in the
space they act. The consequence of Example 1.28 is that in general we can not expect

the minimal dimension of a representation by tensor products to be of dimension less

than (dim K)>.

1.7 Comments

Commutative matrices have been studied since the second half of the last
century. Some of the related results were discussed in the works of Frobenius [79,
80, 81], Sylvester [158], Taber [159, 160], Plemelj [140] and Schur [148]. For a more
detailed discussion of the early developments compare [128, pp. 93-94]. It follows
from results of Voss [169] (see the remark about Schur’s lectures in [146]) that an n-
tuple of commuting matrices can be simultaneously reduced to upper-triangular form.
Rutherford [146] described further properties that can be attained by this upper-
triangular form. Also Trump [164] and Egan and Ingram [62] discussed simultaneous
reduction of pairwise commuting matrices. The reduced form (1.2) that we use in
our presentation often appears in works on algebras of commuting matrices. See, for
example, the monograph of Suprunenko and Tyshkevich [154]. The authors in [154,
p-66] also noticed that commutativity of matrices is equivalent to certain symmetries
in the products of these matrices. We explore this property in greater detail. It was
shown by Gel’fand and Ponomarev [87] that the problem of a canonical form for an n-
tuple of commuting matrices contains as a subproblem the description of a canonical
form for a (not necessarily commuting) m-tuple of matrices. By a canonical form for
n-tuples of (commuting) matrices we mean a collection of n-tuples of (commuting)
matrices such that every n-tuple of (commuting) matrices would be simultaneously

similar to exactly one n-tuple in the collection. Gel’fand and Ponomarev gave a
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canonical form for a class of pairs of commuting matrices in [86]. Though it would be
more elegant to have a canonical form for an n-tuple of commuting matrices at hand
it turns out that the reduced form (1.2) serves well for our purposes. We refer the
interested reader to (15, 77, 78, 88, 96, 121, 170] for other more recent discussions on
commuting matrices and on canonical forms for matrices.

Our motivation for studying commutative matrices comes from Multiparam-
eter Spectral Theory where a special n-tuple of commuting matrices is associated with
a multiparameter system. The results of this chapter were developed simultaneously
with the results on the structure of root vectors for the associated n-tuple of commut-
ing matrices. Some of the results here were suggested by the structure of root vectors
although they are independent from Multiparameter Spectral Theory and conversely,
now form a very important building block in the theory of root vectors developed
later in this dissertation.

Our discussion of nonderogatory eigenvalues gives a different view of the
previously known results (cf. [92, P.296] or [129, p.130]). Corollary 1.7 seems to be
an interesting new observation.

The matrices By and TF that appear in Theorem 1.18 can be described
as solutions of linear equations in terms of the underlying multiparameter system.
Commutativity implies further symmetries on the products of matriceg T, We as-
sociate with these products higher order tensors which are then symmetric as shown
in Lemma 1.23. These symmetric tensors appear as a coefficients in the expansion of
root vectors and their symmetry enables us to prove our main result on root vectors
for simple eigenvalues.

We remark that the results of the second section and subsection 1.5.1 to-
gether with the necessary auxiliary results are presented in [118]. We also remark
that it appears to be possible to reconstruct an arbitrary array in the form (1.2) (not
necessarily simple) from a matrix R, and matrices TP (which are now not neces-
sarily symmetric) where m = 1,2,...,M and f €d,,. These matrices have to satisfy

regularity and matching conditions similar to those in Theorem 1.18. Because the
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proof of the results in this case appears to be a lengthy exercise in simple calcula-
tions and because it seems highly technically involved to apply the eventual results
to the theory of root vectors for the associated n-tuple of commuting matrices we
do not proceed with this further discussion. Let us mention however that a possible
canonical form for the matrices IT or a canonical form for the symmetric tensors SP
could give a canonical form for the n-tuple of commuting matrices. (See [172] for a
canonical form for a special case of symmetric tensors.) The investigation of these
relations is beyond the scope of this dissertation.

In Section 1.6 we investigate the relation between an arbitrary and an asso-
ciated n-tuple of commuting matrices. Davis in [57] was first to consider the repre-
sentation of an n-tuple of commuting matrices by tensor products, which is a special
case of a representation by a multiparameter system that we define and discuss in
the next chapter. Also Fong and Sourour [75] studied the representation by tensor
- products on an arbitrary Hilbert space and De Boor and Rice [37] considered a re-
lated problem. As will be shown later not every n-tuple of commuting matrices is
an associated n-tuple of commuting matrices. It follows from the result of Davis [57,
Theorem 1] that every n-tuple of commuting matrices'is a restriction of an associ-
ated n-tuple of commuting matrices. The problem of the minimal representation by
tensor products was sfated by Davis in [57] and we will state later an analogue for
minimal representation by a multiparameter system. These problems have not yet

been solved.
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Chapter 2

Multiparameter Systems

2.1 Introduction

We begin our discussion in this chapter by introducing the finite-dimensional
abstract setting for Multiparameter Spectral Theory in Sections 2.2 and 2.3. We fol-
low Atkinson [10, Chapter 6] who laid the fundamental tensor space construction.
Partly we also follow Isaev [112, Lecture 1]. A set of determinantal operators on the
tensor product space is induced by a multiparameter system. We assume that a mul-
tiparameter system is nonsingular, i.e., one of the induced determinantal operators,
called Ay, is invertible. Then we associate an n-tuple of linear operators with a mul-
tiparameter system called an associated system. The basic property of the associated
system is that it is an commutative n-tuple. We also have the basic relation (2.7)
that connects a multiparameter system with its associated system.

At the end of Section 2.3 we include a discussion on some basic relations
between a general n-tuple of commuting matrices and the associated system of a
multiparameter system. This is closely connected with the presentation in Section
1.6. Also Example 2.13 in Section 2.4 is related to this discussion.

In Section 2.4 we define the notions of spectra, eigenvectors and root vectors
for multiparameter system. They are defined so that they correspond to the equivalent

notions for the associated system.
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In Section 2.5 we study root subspaces for multiparameter systems. Here we
describe a basis for the second root subspace. In the first subsection we focus on simple
and nonderogatory eigenvalues and in the second subsection we study the general
case. Relation (2.7) relating a multiparameter system with its associated system,
and commutativity of the associated system, play crucial roles in this development.
Relation (2.7) leads us to equalities of the type (2.13) and (2.23). In this way we find
vectors zi5 that are used to construct a basis for the second root subspace. Technically
the most difficult part is to prove that the vectors we construct are actually root
vectors. We perform a direct calculation using properties of determinantal operators
and relations that hold for the vectors wf‘l To prove completeness, i.e., the fact that
a particular collection of root vectors is a basis, we use the theory of commuting
matrices, developed in the first chapter, applied to the associated system. Certain
columns in an array in the form (1.2) are linearly independent. It turns out that they
are elements of the kernel of a special matrix that we associate with an eigenvalue of a
multiparameter system, that is the matrix B, in the simple case (or D in the general
case). Because we are able to associate with a basis for the kernel of By (or D) a set
of linearly independent vectors in the second root subspace it follows therefore that

this set is a basis for the latter.

2.2 Notation

Assume that H; (i € n) are finite dimensional Hilbert spaces, the dimensions

of H; are n; and that V;; € £ (H;) for j = 0,1,...,n. Then a system of operators
Wi) =2 A\Vii =V i€n
j=1

is called a multiparameter system and is denoted by W. Here XA = (A, ), ... yAn) €
C". We write U; (A) = ¥7%_; \;Vij. A multiparameter system is called diagonal if
Vii=0forl <ij<mn, iz J and it is called upper-triangular if Vij = 0 for
1 <j <i< n Asbefore (cf. page 8) the transformation V; € L (H;) induces
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Vi € L(H) where H=H, @ H, ® --- ® H,. Note that dim H = []%; n;. We write

dimH = N.

"The determinantal operator Ay € £L(H) is defined by

v v
Ay = Vi Vi
Vh Vi

Vi,
Vi,

Vh

(2.1)

'The operator Ay is well defined since the operators from different rows in above

determinant commute. It can be also written

Ao= 3 (1)) @ Vap @ - -+ ® Vao(n)

o€ll,

where sgn (o) is the signature of a permutation o.

Given a decomposable tensor z = 10 22Q...0x, € H we use the notation

o€ll,

Doz = 3 (1) B OVio0)21 @ Vao)22 ® - ® Vi) T =

Viizy Viem
Vaiza Vs
‘/nlxn ‘/;32wn

I/].nxl

V.“Zn$2

VanZn

®

(2.2)

Fy=1101% Q- - ®y, € H is another decomposable tensor then it follows that

(on 3 y) =

yiViz

Ya Vo172

Y1 Viazy

Ys Vaoo

YUnVarZn YiVaoZ,

(The scalar product (-,-) is defined on page 8.)

yrmnml

y;%nz?

YnVanTn
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We define further operators A; for i € n by

|ZVRRETR AP 7 A 7 AN 74

|2 SRR 7 PP 7 A 7 SR 7]

A= (2.3)

V;Il VJ,:‘—1 Vnto VJ,:'+1 -V
Definition. A multiparameter system W is called nonsingular if the associated
operator Ay is invertible in £(H).

In this dissertation we study nonsingular multiparameter systems. Let us
remark at this point that the assumption ‘A, is invertible in L(H)’ could be replaced
by the weaker assumption that ‘there exist n + 1 complex numbers 7; such that
the operator Y%, 7;A; is invertible’. Note that the latter case can be converted
to the former by a suitable substitution of parameters A = (A, Ay,...,),) in the

homogeneous formulation of the multiparameter system
VV; (A) = Z/\jV,-,-, 1€ n,
j=0

Le. substitution A = T\’ where T is an (n + 1) X (n + 1) invertible matrix. So our
theory can be applied also in the latter case with minor notational changes.
Definition. The set of operators I'; = AglA, €L(H), i € n, is called the associated

system (of a multiparameter system W), and is denoted by T'.

2.3 Determinantal Operators

Determinantal operators retain the properties of scalar determinants when

we perform column operations.

Lemma 2.1 (i) If two columns of a determinantal operator (2.1) are interchanged,
the operator is multiplied by —1.

(%) If two columns of (2.1) are identical, the operator equals 0.

(#i) The value of a determinantal operator is unchanged if a scalar multiple

of one column is added to another column.
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The proof uses the same method as in the scalar case. As a consequence
of Lemma 2.1 it follows that properties (4)—(#1) hold also for the tensor determinant
(2.2). Further we have (Laplace) expansion identities as in the scalar case. We will
use only the column versions. We write Ay (1=0,1,...,n; 5,k € n) for the cofactor
of Vk in A;.

Lemma 2.2 (i) For i,k € n we have

Ao, ifi=k

A -
Z:”k Z: o { 0, ifiskk

and
n

> VihAou =3 AV = Ax.

Jj=1 Jj=1

(ii) For i,k,l € n

Do, ifk=1=i
Ay ifktik=1
ST E T AL ifk=il i
0, if ksl ki

’

and when k =0

1
[

no n A, ifi=1
AaVih =Y Viag = .
Ao = 2 Vioi { 0, if il

The method used to prove this result is the same as in scalar case. In par-
ticular we use assertion (%) of Lemma 2.1. Before we proceed with further properties

of the multiparameter system we need the following definition :

Definition. The decomposability set R(W) of a multiparameter system W is defined
as the set of all vectors z € H for which there exist vectors Z1,%2,...,T, € H such
that

Xn: Vigi=Vje = forien (2.4)
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Lemma 2.3 Choose z € R(W) and z1,x,...,z, such that relations (2.4) hold. Put

2o = —z. Then we have the identities
Az = Aja; fori,j =0,1,...,n. (2.5)
Furthermore we have z; = T;z and so 2 V}}I‘,-:v = V;Bx fori=1,2,...,n and
AN Az = DA A , (2.6)

fori,j=1,2,... n.

Proof. By the definition of the decomposability set the vectors T0,T1y...,Tp
satisfy the relations
n
ZVJI:BI:O fork=1,2,... n.
=0
Now we apply the operator Ajr; on the left-hand side and sum over & to obtain
n n
S 3 AuiVia =0 fori,j=0,1,...,n.
k=11=0
Next the identities of Lemma 2.2 imply
n n
0= Z ZAikJ'V;:le = —A;.’L‘j + Aj.’E,'.
k=11=0
Since Ay is invertible we get from the above relations for J =0 that z; = Ay Nz =
Iz and 37, V,-;-I‘,'x = Vjz. It also follows that DA Az = Ajz; = Az =
A;AgtAjz. The proof is complete. i
The array

v v - v
Vh Vo VL

i v Vil - v, ]
defines a linear transformation D : H* — H™. Here we write H" for a direct sum of
n copies of space H. Suppose for the moment that transformation D is not invertible.
Then the following result describes the relation between the kernels of Ag and D. We

will consider this relation more closely for the special case n = 2 in Chapter 3.
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Lemma 2.4 Suppose that x = (21,20, ...,2,) €ker D. Then Zr € ker Ag for all k.

Proof. We have i1 :L'J = 0 for ¢ € n. From Lemma 2.2, (4) it follows
that

>3 AO:k = Doy

i=1 j=1
and the result follows. 0

II

Before we state the main result of this section we make an observation that

follows from the definition of the decomposability set.
Lemma 2.5 A vector z € H is an element of R(W) if and only if
(Vlt)a"’ %Bx’ AR anox) € R(D)

Theorem 2.6 Let H;, i =1, 2,...,n, be finite dimensional vector spaces and let W

be a nonsingular multiparameter system. Then R(W) = H, the associated operators

[ii=1,2,...,n commute and they satisfy the relations
n
S VL = v fori € n. (2.7)
J=1

Proof. We only need to show that R(W) = H. The other assertions then
follow from Lemma, 2.3.

The adjugate operator of D is defined as

| Aont Donz -+ Agan |

The equalities of Lemma 2.2 imply that

D-Bp=Bp-D=| ° T " (2.8)
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and hence the operator D is invertible. Then the equality H* = R(D) holds and thus
it follows from Lemma, 2.5 that 'R,(W) = H. The proof is complete. O

The following results are closely related to the discussion in Section 1.6. We
describe elementary relations between a general n-tuple of commuting matrices A
and the associated system I' of a multiparameter system. Further research on these
relations might give an interesting new view point on commuting matrices.

The following Corollary tells us that the n-tuple of commuting matrices that

satisfies the relations (2.7) is uniquely defined.

Corollary 2.7 If A;, As,..., A, is an n-tuple of commuting linear transformations
on a finite-dimensional vector space H and W is a nonsingular multiparameter system
such that

Z Vid; = forien (2.9)

then A; =T'; for j € n, where T is associated with W.

Proof. For any vector z € H the relations (2.7) and (2.9) imply
D((Al -—I‘]_)SZ?,(Az —Pg).’l),...,(An—Pn)!E) =0.

Since W is a nonsingular multiparameter system it follows from (2.8) that the oper-
ator D is invertible. Hence we have Ajx = Tz for j € n and the result is proved.
O

As a corollary of Theorem 1.25 we have the following result concerning an

n-tuple of commuting operators on an arbitrary finite-dimensional vector space.

Corollary 2.8 Every n-tuple A of commuting linear transformations on a finite di-
mensional vector space K is similar to a restriction of the associated system of a

multiparameter system.

Proof. By Theorem 1.25 there exists a representation by tensor products for

A. Using the notation of the proof of Theorem 1.25 we write

A;=T7'BIT or B! =TAT for i € n. (2.10)
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If we define the multiparameter system W by WiA)=IX\-B;,i=1,2,... , 7, then
it follows that I'; = B]. Therefore it follows from the relations (2.10) that A is similar

to a restriction of the associated system T. O

Corollary 2.9 Let A;, A,,... y An be an n-tuple of linear transformations on a finite-

dimensional vector space K. Then the Jollowing are equivalent :
(i) the transformations A; commute

(i) there exist a multiparameter system W, a common invariant subspace M for
associated transformations I'; and an invertible linear transformationT : K —»
M such that

n VITA; = ViT fori € n.

=1

J

Proof. It follows from the previous corollary that assertion (i) implies asser-
tion (4).

Now assume that (i) holds. As in the proof of Corollary 2.7 it follows
that TA;T~'z = Tz for all  and all z € M. So Aj are simultaneously similar to
restrictions I'; |4 and therefore they commute. 0

We say that an n-tuple A of commuting matrices on Hilbert space K has a
representation by a multiparameter system if there exist a multiparameter system W
with associated system I’ acting on a Hilbert space H, a subspace M C H invariant

for all I'; and an one-to-one map T : K — M such that
710 = A; fori € n.

Theorem 1.25 tells us that every n-tuple of commﬁting matrices has a representation
by tensor products which is actually a representation by a (special) diagonal multi-
parameter system. The natural question arises : what is the minimal dimension of
the space H on which A has a representation by a multiparameter system ? This
is still an open problem. Example 2.13 below shows that A does not always have a
representation by a multiparameter system on the original space K. First we need to

establish some more properties of multiparameter systems.
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2.4 Eigenvalues, Eigenvectors and Root Vectors

of a Multiparameter System

Definition. An n-tuple A = (A1sA2y.. X)) € €™ is an eigenvalue of a multipa-
rameter system W if all the operators —V, + 271 AiVij, © € n are singular. The
collection of all the eigenvalues of the system W is the spectrum of W and is denoted
by o(W).

The following proposition is a standard fact. We state it because we later re-

fer to it. It can be proved in the finite-dimensional case using a dimensional argument

(cf. Atkinson [10, pp. 72-73]).

Proposition 2.10 Suppose that V; € L(H;),i€n,and H=H, ® H,Q.---Q H,.
Then it follows that
Nker Vi = QkerV; .

i=1 i=1

Atkinson [10] proved the next important result connecting the spectrum

of a multiparameter system W and the spectrum of its associated system. It also
describes the eigenspace of the associated system I'. We include, for the completeness

of presentation, the proof following Isaev [1 12].

Theorem 2.11 The spectra of a multiparameter system W and its associated sys-
tem I' coincide. If X € o(W) then the space of common eigenvectors for T' at the

etgenvalue X is

(N ker (M —T;) = @ ker W;(]). (2.11)

i=1 i=1
Proof. Assume that A€g(W) and that y; € ker W\ {0}, ¢ € n. Write
T=Y®yp®...0y% and z; = )z ThenVoa:-— foJ—Oforallz

and hence z € R(W). Lemma 2.3 then implies that sz = z; = A\jz. So we have
A €o(l) and @, ker Wi(A) € N ker (AT — L.
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Now assume that A € o(T") and that a vector z € Nizy ker (A —T) \ {0}.
Then relations (2.7) yield

0=3 Viljz—Viz =3 Vio - Vo = Wi(A)tz.
Jj=1 7=1

Proposition 2.10 implies that (2, ker Wi(A) = @7 ker W;()) and therefore it fol-
lows that € @7 ker W;()) and X € o(W). O
Next we choose, for every i, a subspace H{ C H; such that H; = ker W, Ao

Hj. For later reference we also need the next lemma,

Lemma 2.12 Suppose that a vector z; € (ker W; (A))*. Then there esists a vector
Yi € H] such that z; = W; (X) ;.

Proof. Suppose that z; € (ker W; (A\)*)". Because
(ker W: (A)7)" = R (W; (A))

it follows that there exists a vector 2; € H; such that z; = W; (A) 2;. By the definition
of the direct sum of vector spaces we can find vectors ¥i € H] and w; € ker W; (A)

such that y; + w; = 2;. Then it follows that z; = Wi (A) ;. a

We now state the example, promised on page 67, of commuting matrices

that do not have a representation by a multiparameter system on the original space.

Example 2.13 Assume that

(000 0] (000 o |
0 000
a=|000 and B = 2
0001 000 a3
1000 0] 000 0
and that [QIJ # 0. It is easy to see that AB = BA = 0. We will show that A
(2%)

and B do not form an associated system of a (nonsingular) multiparameter system.
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Assume the contrary. Since A and B have a three-dimensional subspace of common
eigenvectors they could arise from a multiparameter system W only with n; = 1 and

ng = 4 (see Theorem 2.11). Write W as

Wi (A) =unA + Vo Ay — Vo
Wa(d) = Vidi + Vol — Vp

Then we have
Ty = (n1Va— V) 7! (wpV — vwVy) and Ty = (v1Va— W)™ (1 V, — W) .

The equation (2.7) for ¢ = 1 is v,y + val'y = vyl. If I't = A and 'y = B then it

follows that vy = 0, “
27

vy = 0. This contradicts the assumption that W is nonsingular. Hence the matrices

} v2 = 0 implies v, = 0 and also v; + azv, = 0 implies

A and B are not the associated system of a multiparameter system. O

'The main topic of our study is to describe a basis for the root subspaces
of the associated system of commuting matrices T' in terms of the corresponding
multiparameter system W. The results of Chapter 1 showed that two extreme cases
of commuting matrices that are easily understood are the case when the commuting
matrices are represented by tensor products (i.e., A acts on a space H; @ Hy, ®
-+ ® H, and A; = B,T where B; € L£(H;)) and the nonderogatory case. The first
case corresponds to a diagonal multiparameter system with identity matrices on the
diagonal (see Example 2.14) and is easy to deal with. The nonderogatory case is yet
to be defined, but for the moment we call an eigenvalue A € o (W) nonderogatory
if it is a nonderogatory eigenvalue for a commutative n-tuple I'. Later we will be
able to define a nonderogatory eigenvalue completely in terms of the multiparameter

system W,

Example 2.14 Assume that a multiparameter system is diagonal with V;; = I , for

all 5. Then we have I'; = V{§. Choose an eigenvalue A € ¢ (W) and suppose that
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{x,k 15 ki €y, L€ g } is a complete system of Jordan chains for Vg at \;. Proposi-
tion 2.10 implies

ﬂker Ml —=T)N ﬂker NI — VO"' ®ker MI — Vi)™

i=1 i=]1

and therefore
{wlkllkl ® Takath, @+ @ Tkt 5 Iy € Qyy ki Epyy i € ﬂ}

is a basis for N ker (\I —T;)™ . Write k = (ki k2, ..., kn) and 1 = (Iy,1s,...,1,).
The action of \;J — T; on 2 = Tikly ® Tokyl, @ +++ ® Tp,t, I8 (NI —Ty) 21q =
z1q Where I =(ly,...,l;_1,1; —Lli1,...,0,) and 2y = 0if l; = 1. Each I; has
20, joki % 1 q Jordan chains of lengths g, , k; € D at eigenvalue );. a

Before we state the next definition we recall that the subspace ker (AI — ')}
for a set of commuting linear transformation I’ was defined on page 10.
Definition. Suppose that A € ¢ (W). Then we call the subspace ker (MAI —I')V
the root subspace (of W at A). We call the subspace ker (AI-T)™ for m = 2,3,...
the m-th root subspace (for the multiparameter system W at the eigenvalue ) and
for m =1 the eigenspace of W at .

A nonzero element of ker (AI — I")" is called a ro0t vector. Also a nonzero
element of the m-th root subspace is called an m-th root vector if m > 1 and a nonzero

element of the eigenspace is called an etgenvector.

Note that a k-th root vector is also an I-th root vector if k < |.

2.5 A Basis for the Second Root Subspace

Our main objective in this dissertation is to describe a basis for the root
subspace using the multiparameter system W directly, i.e., without using the tensor
product constructions A; etc. This is particularly important in infinite dimensions,
but also for matrices it offers an advantage on dimensional grounds. In this section

we describe a basis for the second root subspace.
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2.5.1 Simple Case

First we consider the space ker (AI — T')? for eigenvalues that have one-
dimensional eigenspaces, i.e., when dy = dim ker (AI-T) = 1. By Theorem 2.11 we
have dy = 1 if and only if

dimker W; (A) =1 (2.12)

for all 4. Then we choose z; € ker W; (A)\ {0} and 3,y € ker W; (A)*\ {0}, so
WAz = 0 and YioWi(A) = 0. The vectors 2 = Z10 ® 20 ® -+ ® Z,0 and
Wo = Yo ® Yz ® -+ @ Yy are, respectively, right and left eigenvectors for all r;.
The following proposition gives some necessary and sufficient conditions for a root
vector of I', i.e. a vector 2; € H\ {0} such that ()] — ;) 21 = a;2y for each i and
not all a; € € are zero, to exist. As before (see page 69) we denote by H! a direct

complement of the kernel of W; (A) in H;.
Proposition 2.15 The following statements are equivalent :
(i) There are a € C™\ {0} and z; € H! such that
Ui(a)zip = W; (A) 21 (2.13)
forien. |
(it) There is a € C*\ {0} such that
VUi (@) zi0 = 0 (2.14)
forien,
(#ii) wilozg = 0.

(iv) There exists an indez i such that T'; has a root vector at \; corresponding to z.

(That is there ezists a vector z; € H\ {0} such that (NI —Ty) 2, = 2.)

(v) ker (AL —T') # ker (AI — I')2.
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(vi) There are a € €™\ {0} and y;1 € H; such that YoUi(a) = yiW: (A) fori e n.

Proof. It is easy to observe that (1) implies (i) and (vi) implies (4).

Assume (4i). Then it follows U; (a)z; € (ker (Wi (A\)*))* and then by
Lemma 2.12 there exists a vector z;; € H} such that U; (a) ;0 = W; (A) z;;. This
proves (i), and similarly (4) implies (v3). So (4), (%) and (vi) are equivalent.

The system of equations (2.14) has a nontrivial solution a if and only if the
determinant of the system
YioVuzio  yoViezio -0 yiVintio

YaoVarTao  YsoVarZao - Y3eVantao

= wyAg2g
YnoVn1Zno YnoVaaZuo - YsoVanZno
equals 0. Thus (%) and (i) are equivalent.
Suppose now that (i) holds. Write
n
2= 210@ ¢ ® Tin19 ® Ty ® Tit1,0 ® *+» ® Tpo. (2.15)

i=1
Using the properties established in Lemma 2.1 and assumption (7) we can make the
following calculation :
Vo Vi i)t vy, e W
Voo Vi Wa) Vi - WL

()\iAo bl A,) z = 5=
Vi o Vi wa ) Vi, - v
®
Vizo cee Vii—1z10 0 Vi, it1%10 . VinZ1o
‘/j—lflxj—l,o LIS .Vj—lyi_lxj_l’o 0 1/}_11£+1$j—1,0 co Vi—l,nxj—l,o

n
2| Vamn o Viowmp Ui@zjo Vigazpn - Vizj

Visr1i%ir0 ++ Vigic1Zig10 0 Vitrit1Zis10 -+ Vipia®itie

ValZao o Viis1zao 0 W,i+133n0 oo VanZago
(2.16)
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The value of the determinants above remains the same if we replace the terms Vj;z;;,
k=1,...,i—1,i+1,...,n, by Vitzjo. Then by Lemma 2.1 the sum (2.16) equals
®

Viizio -+ Vigeiz Ui (a) zy Viir1Z10 -0 Vipzpo

Vaizao +++ Vai_1zeg Uz (a) g Vat1Za0 -+ Vanzag
. . . =aiA020a

VaoZno ++ Vaic1Zno Uy (a) Zno Vai+1Zno <o+ VanZTmo

where a = [a;, ay, . .., a,]". Therefore z; € ker (AL —T)? / ker (AI — I'), i.e., (v) holds.

It is trivial that (v) implies (4v), so assume now that (4v) holds, that is
(Mo = A 21 = Agz.
We also have w§ (A\;Ag — A;) = 0 and hence property (iii) follows since
0=wy (Mo —Ay) 2z = wpAo2p.

The proof is complete because we have established the implications () =
(v) = (i) = (4ii) and the equivalence between (9), (41), (443) and (vi). O
Remark. .Suppose that the conditions of Proposition 2.15 hold. Because a # 0 there
is at least one index & such that a; # 0. Then (A, — Tn)z1 #0and (M —T4) 2 =0
and therefore the vectors z; from (2.15) and 2 are linearly independent. This cannot
be established when Aq is singular as shown in the following example. Therefore
the assumption that the multiparameter system W is nonsingular is essential for our

discussion. |

In the next example we identify the tensor product z; ® z5 of two vectors

T11%2;
T T2 . T11ZT22 . .
zT) = € C% and z, = € C? with the vector , and similarly
T12 T22 T12T21
| T12%22 _J

we identify the _tensor product Vj; ® Vo of two matrices Vii, Vag € €22 vy =

V1 v m1Vos v1aVs
[ 11 12] with the matrix [ a2 12va

Later we use this construction,
Vo1 U2 vaVos  vaaVao
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that is sometimes called the Kronecker product of two vectors and two matrices,
respectively, also for the tensor product of two vectors from arbitrary vector spaces

C" and C™ and for two arbitrary, k x I and m x n, matrices.

Example 2.16 Suppose that

won=[§ e[ o[ ]

and
10 -1 1 0 -1
WZ(A)"—" AL+ Ay — .
10 -1 0 0 -2
Then -
[0 101
0 00O
A0=
-1 110
101 0]

is a singular matrix and so W is a singular multiparameter system. Suppose that

Ao = (1,1) Then

W1(1\0)=l:1 Jande(/\o)=[g z:l,

and thus Ag € 0 (W). We choose

1 1 1 1
Ty = y Y10 = ,Top = and yq0 = .
1 -1 0 -1

a
The pair of equations (2.14) for a = [ ! J reduces to a single equation a; — ay = 0.

as

1 0 0
We choose a = [ L } The vectors z;; = [ 0 ] and z9; = [ 0 J are such that

- - -

[0

Ui (a) zi0 = W; (A) z;1 for i = 1,2, and then the vectors 2z = and z; =

1
0
1
0

are linearly dependent, but (Ag — A;) 2, = (Ag — Ag) 2, = Agzp. 0
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Suppose that A € o (W) is such that the relations (2.12) hold. We restrict

our attention to the root subspace N = ker (AI-T)" and we bring the restricted
transformations (A\;.J —1IY) |u, that are commuting and nilpotent, to the form (1.2),
ie.,
[0 A0 A2 ... poM ]
0 0 A2 ... AWM
AL-T) y=|: : - ;
0 0 0 AM-1.M
0 o o -.. 0

where the array A¥ has sizes dj x d; x n, and, by definition,

di = dimker (AI — T')**! — dimker (AI — T)* (2.17)

for £ > 1 and dy = dimker (AI — T). Because we assumed (2.12) holds for X it follows
that do = 1. We use the notation (1.3) for the arrays A¥ and the notation (1.4) for
the n-tuples af?}.

Next we write

By

I

[ YoV11T10  YioVizZ1o

YoVa1To0  Y3Varzag

5 y;OV;zlznO y:O‘/n%bnO

y;o‘/inxlo

y;() ‘/'211 Too

y:oV;m%o |

(2.18)

This n X n matrix will play an important role in the following proposition. We recall
that the subspace H; C H; is a direct complement of the kernel of Wi (). It was

introduced on page 69.

‘Proposition 2.17 Suppose that X € o (W) and that dimkerW; (A) = 1 for i =
L,2,...,n. Then d; = dimker By and the set {a,‘gl; k ec_il} is a basis for ker By.

Furthermore there exist vectors z¥ € H} such that

(@) Ui (adl) zi0 = Wi (X) 25,
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(b) the vectors zf =31 Z10® - ® Tim10® xf—“l QTit10Q - QTpng, k € dy together

with the vector zg form a basis for ker (AI-T)?, and

(C) (/\,I b F,) Z{c = aglzo.

]

Proof. Write dimker By = d and assume that a;,a,,...,a; € C" form a

basis for ker By. So we have
Zy?oVijaijio =0, forienandked.
—

Because the statements (i) and (i) of Proposition 2.15 are equivalent we can find
vectors =¥, € H! such that
Wi (X) zfy = U; () a0 (2.19)

for all ¢ and %.
The same calculation as in the proof of Proposition 2.15 which showed that

(4) implies (v) proves that

(A =Ty) 2F = ki 29, forienand ked.

Here 2§ =37 1210® - ® Ti10 @ TH @ Tiy10Q - @ Tng.

Let fozo + Tfog Arzt = 0. Then 0 = (\J—T ) (ﬁozo+21'f=1 ﬂsz) =
ELI ariPrzo implies B, = 0 for k € d, and then Byzy = 0 implies By = 0. So
{zo,zll, e ,zf} are linearly independent, whence d < d; and we can assume that
al = a, for k € d.

To complete the proof it suffices to prove the opposite inequality, i.e., d > d;.
We choose vectors 2}, 22, ..., 28 so that they form together with the vector 2, a basis

for ker (\I — I'). By Proposition 1.2 it follows that n-tuples

01 01 01 01 T
a =[a‘k1 Gry - a’kn] ]

k € d; are linearly independent. We also have

(A —T) 2F = all, fori€nand k€ d;. (2.20)
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The relation (2.7) proved in Theorem 2.6 implies that

n

Z P 21 ozf
=1

for all 7 and k. It follows then from (2.20) that

W (A =, (agl)f 2o. (2.21)

Now we choose for every ¢ an element u; € H; such that ufz;y = 1. This is possible

because Tio # 0. If we multiply the relation (2. 21) by
u’{®-~®u,‘-‘_1®y;-“0®u2‘+1®---®u:

on the left-hand side it follows that y%,U; (al) 7 = 0 for all 7 and k. This proves that

the n-tuples a',a’,... aJ! € ker B;. Since they are linearly independent it follows
that d > d; as required. a

An immediate consequence of Proposition 2.17 is the next corollary.
Corollary 2.18 An eigenvalue X € o (W) is nonderogatory if and only if
dimker W; (A) =1 forien

and

rank By > n—1.

Proof. Theorem 2.11 implies that dy = 1 if and only if dimker W; (A) = 1
for all 7 and Proposition 2.17 implies that d; < lif and only if rank By > n—1. From
Corollary 1.7 it follows that an n-tuple X is a nonderogatory eigenvalue for I' if and
only if dy = 1 and d; < 1. Hence the result is established. 0

Using the result of Corollary 2.18 we are able to make the following defini-
tions :

Definition. An n-tuple A € C" is called a nonderogatory eigenvalue for a multipa-
rameter system W if dimker W; (A) = 1 for all 5 and ‘

rank By > n — 1. (2.22)
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The matrix By is defined in (2.18).

Definition. An n-tuple A € C" is called a simple eigenvalue for a multiparameter
system W if dim ker W; (A) = 1 for all 5 and

rank By <n —2.

Note that an eigenvalue A is simple eigenvalue for a multiparameter system

W if and only if it is a simple eigenvalue for the associated system T'.

2.5.2 General Case

In this subsection we omit the assumption (2.12), i.e., the dimensions g =

dimker W; (A) are now arbitrary. First we need an auxiliary result.

Lemma 2.19 Let the vectors z;;, € H;, j; € G t=12,...,k—Lk+1,...,n be
linearly independent and suppose that
2=3 215 @ ®Th1,_, ®TL ® ThtLjus @ 000 © Tnj, =0
jl
where :1:{ € Hi and the summation runs over all multiindices V=01 5k,

Jittyeeesdn)s Ji € @i, i=1,2,...,k—1k+1,....n. Thenal =0 for all /.

Proof. Suppose that zi;,, ji € N is a basis for Hy. Write ¢, = n; and
o = Y ajzvkjk for every j’, where j = (ji, jo, . .. s Jk=15Jks Jk+1s + - » Jn). Then
2=3 002, @ @ Ty, ® Thjr @ Thtljigy @+ ® Tnj,,
i
where summation runs over all multiindices j € 41 X g2 X +++ X ¢y, and since vectors
Z1j, @ T2j, @+ @ Tnj,, Ji € gi, © €n are linearly independent it follows that od=0
for all j. Thus it also follows that 23 = 0 for all J. a

Let us introduce some notation. Assume that the vectors e e H, ke g

form a basis for the kernel ker W; (A), i € n. We define the set of integer n-tuples
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Q0=ﬂxggx-~x&andforiégwewriteQ,-:gx--~><£X&x---xg,i.
We call elements k = (ky, ks,...,k,) € Qg and I = Ciyeeslicty by, 0 0) € Q;
multiindices. The notation ¥ C k is used when ki =1ljforj=1,...,i—17+
1,...,n and for I € ¢; we write ' U;l = (1yeeoslict, L, o, 1) € Q. We introduce
vectors zf = M ® a?gﬁ ®--- ® 25, Next we choose vectors y,%' € H; , k; €¢; so
that they form a basis for ker W; (A)* and write X;p = [ zh z} .- 28 ] and
Yo = [ Yo vh oo o ] We restrict the transformations (\;I — I';) to the common
spectral subspace N = N ker (\;] —I;)%. Then the transformations AL =T |n
commute and are nilpotent. Hence we can choose a basis B for the subspace N as in
Section 1.2, page 11. By Theorem 2.11 we can assume that By = {z}f, ke Qo} and
we reduce AI—T' |y to the form (1.2). Then we have (\;J —I})z! = keQ, A 2K
for ¢ € n and I €d;. We write al = (a}") ke and we regard a! as an element of
Hy, where Hy, =C"* @ C* ® --- ® €%, and we regard al = (a’l,aé,...,af‘) as an
element of the n-tuple direct sum H}. Note that the n-tuple a’ corresponds to the
column cross-section C! of the array A%. See (1.6) for the definition of a column
cross-section.

We also use the notation V;} = Y§V;;X;p €C%*% for i, j € n. The matrix 44

induces a transformation VAt

i » which is defined by (1.1), on the tensor product space

H,. Finally, the array
[ /A A At T
Vit vl v
A A A
Val Ve e VR

v v vt
defines a transformation on space H}. This will play a very important role in the
construction of the basis B;.

The following theorem describes the general form of a root vector in the

second root subspace that is not an eigenvector, i.e., a vector

z €ker (AI-T)? /ker (AL -T).
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Theorem 2.20 4 vector z is in ker (AI — I')? [ ker (AL —T) if and only if there exist
n-tuples ak ¢ C", not all 0, for k € Qqy and vectors :1:}‘1' € H;, k € Q;, i € n such

that
g

- Ui (akVib) ol = Wi (1) 2K, (2.23)
k=1
and
Z2=3 3 @ @i @ @it e @ 2k, (2.24)
i=1k/eQ; :

It then follows for all i that
MNI=Ty)z= Y akzk (2.25)
keQo
Proof. Suppose that z is in the form (2.24). Then the following direct
calculation shows that (2.25) holds and since not all ak are 0 it then follows that
z € ker (AI - I')? / ker (AI — T'). In the calculation we use the elementary properties
of determinantal operators from Lemma 2.1 and relations (2.23), and proceed similarly

as in the proof of Proposition 2.12, () implies (v) :

Vux’fb 0 V;w’f(’)
n qj .
Mdo=A)z=3 3| 0 - YUK .. 0 |=
i=1keQ; kj=1
Vaaly - 0 v Vit
Vagdy .. U (ak)z{}, oo Viadl
Varhh - Up(ak)a ... Vpoi2
— E 21. 20 2( .) 20 2. 20 — Z GFA()Z(I)(.
keQo : : : keQo

Vazly o Up (a¥)ady v Vsl

Now assume that z € ker (AI — I')? / ker (AI — T'). Then we have (2.25) for
someaX € C, k€ Qpandi=1,2,..., 7. We alsowrite ak = [ a¥ a¥ ... ok ]T €
C". The relation (2.7) then implies

WAz = Vi -T)z= iy aff = 3 U,-‘(ak)f zX (2.26)
Jj=1 j=1 keQo keQo
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for all 1. After we multiply (2.26) with Y on the left-hand side it follows that

n
k ki1 kn
> $16®"‘®$il1,o®za ij,0®x,;ﬁ‘0®-~®xn0=0.
keQq Jj=1

Since xfd are linearly independent it follows from Lemma 2.19 that

for all k' € Q; and every i. Thus we have
g
2. Ui (a“h) aff € (ker Wi (A))*
i=1

and then, by Lemma 2.12, there exist vectors z¥ € H! such that relations (2.23)
hold. Here the subspace H] C H; is a complement of the kernel ker W: (A) as defined

on page 69. Now we can construct a vector

=2 Y Ho--- 00 e e 8 (2.27)
i=1k'eQ;

The same calculation as above shows that (A, — [y) 2 = Tkeq, a¥z¥. Then we have
z—2' € ker (AI —T') and thus there exist complex numbers Bk, k € Qq such that
2 = 2+ Tkeq, Pxzy. If we substitute the vectors 2+ 58, Brour, o5 for the vectors

2 in the expression (2.27) it follows that
) ‘
2= % O @iy @k @it ® - @l
=1k'eQ;
and, since (2.23) and (2.25) are unaffected by this substitution, the proof is complete.
0

The following theorem extends Proposition 2.17 to the general case. As
before we restrict our attention to the second root subspace N = ker (AL — I')® and we
bring the restricted transformations (\;J — I) |w, that are commuting and nilpotent,
to the form (1.2). See also page 76 for details. We also recall that the n x (T )

column cross-section of the array A% is regarded as an element of H? %. (Cf. page 80.)
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Theorem 2.21 Suppose that a' € H}, 1 =1,2,...,d; are the columns of the array
A°l, Then they form a basis of ker D).

Conversely, to any basis {a’, [=1,2,..., dl} C H} of ker D} we can asso-
ciate a set of vectors B' = {z{, 1=1,2,. dl} C H such that By U B' is a basis for
ker AI-T)? and (A —T) 2L = Y keQo af"z(l,‘ for alli and 1.

Proof. Suppose that {z{, 1=1,2,. dz} {z(l)‘, ke Qo} is a basis for
ker (AI —T")%. Then we have (A — T D4 = Tkeq, a'zf and the relations (2.7)
imply

n n

WA A =2 VENI-T) A =3V S alzk=

Jj=1 Jj=1 ker

=Y b ediie) d {Viel @ e ® - @ ol
keQo i=1

After we multiply the above expression with Y,-Ef on the left-hand side it follows that

n
t— ka‘ + n —
> e ® 5'3:—110 ® Y aX'YiVizhi ® $z++110 ® - Qzky =0.
kGQo Jj=

Since xf{j are linearly independent it follows by Lemma 2.19 that

g4 n
> Do vl = 0
ki=1j=1
for all k' € Q; and all I. This can be written as
2 Vi'ag =0.
j=1

Hence it follows that a’ € ker D} for all I. Proposition 1.2 implies that a’ are linearly
independent and so it follows that

di < dimker D}, (2.28)

Next we will show that to every a € ker D} we can associate a vector z; €
ker (AI — T')?\ ker (AI — I") such that

MI-T)zn= Y af (2.29)
keQo
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Because a is in the kernel of D} it follows that Y= V’\faj = 0 for all . This is

equivalent to
% id k . g k'U;k; ’k.
=Yt.3kydz a; ~6=Y,-3kZU,-(a Ui ')xid
;=1 j=1 =1

for all k' = (k1,...,ki_1,kit1,...,kn) € Q; and all . From the above equations it
follows that T _; U; (ak'u*'k‘) =% € (ker Wi (A\)*)*. Lemma 2.12 implies that there
exist vectors z¥ € H! such that
V qi
> Ui (k) off = Wi (V) o
ki=1

As in the proof of Theorem 2.20 it follows that the vector

n

foel n
A=Y ¥ e e 0,0 e a0

i=1k'eQ;
is such that relations (2.29) hold. Then, if {a a?, d} is a basis for ker D}, we
can associate with every a' a vector z; = #} as above. The vectors 2, 1=1,2,....d

are linearly independent because
NI =T) 2 = Y azé
keQo
and a' are linearly independent. Thus it follows d; > dimker D} and together with
(2.28) we obtain d; = dimker D}. The proof is complete. a

We illustrate the theorem with an example.

Example 2.22 Consider the two-parameter system

100 10 0 0 -1 0
WiA)=1010[M+|0 § -LfX-]j0 -} -1
011 01 1 0 0 0

and
100 000 00 -1

WaoA)=1000{M+]|01 1|X-|00 2
001 010 00 2
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Evidently the matrices V3o and Vj are singular. So A9 = (0,0) € o (W) and we have
dimker Vio = 1 and dimker V5g = 2. Hence dy = 2. We choose

1 0 1 0 2 2
T=|0|,Yo=|0|,25=|0]|,2%=|1|andYp=|1 0
0 1 0 0
Then it follows that vectors
F 1T o
0 1
0 0
0 0
z'=10] and 2{2=] 0
0 0
0 0
0 0
3 0 - L O .

form a basis for kerI' and we have
20 01
o = lz°=[o1,nz°=[20]andnzo=[ }

The space Hy, = C ® €% = C2? and we identify the direct sum H % © Hy, with C*.
Then

(000 0
0000
200 1
200 1|




r 1 -
0
Because the matrix DJ° has rank 1 it follows that d; = 3 and we choose al = o |
e —2 -
% o
1 0 )
a’ = . and a3 = X to form a basis for ker Dy. To construct a vector z}
0 0

corresponding to a! we need to find vectors z}i, 22

1 and z}] such that
Vuxlo = W1 (/\0) a:ﬁ, —2V12$10 = W1 (Ao) azﬂ and szlxéo - 2‘/222)%0 = W2 (Ao) xéi

A possible choice is

0 0 0
sii=| 1 |,sli=|~-2|andaj}=|0
-1 2 1
Similarly we find vectors
0
sit=| 1 |,sff=|0]| andafi=| 0
-1 0
that correspond to a2, and vectors
0 0
zi=|0|,efi=| 1 |andaji=]0



87

that correspond to a®. Then

- - o - - -

0 0 0
0 0 0
1 0 0
1 1 0
zi=|-2|,2=| 0 |andf=| 1 |,

0 0 0
-1 -1 0

0 -1

| 0 | | 0 | | 0 ]
and {z},22; 21,22, 23} is a basis for ker I'2. )

2.6 Comments

Multiparameter Spectral Theory has its origins in the work of Klein [117],
Bécher [32, 33, 34], Dixon [59] and Hilb [104, 105] late in the nineteenth century.
Also Hilbert [106] and his students considered problems in Multiparameter Spectral
Theory. When solving certain boundary value problems by the sep.a,ra,tion of variables
technique we are led to a system of differential equations that are linked only by
spectral parameters and this linkage is linear. This is the underlying motivation for
many of the developments in Multiparameter Spectral Theory. Some examples of
such boundary value problems are the classical ones of acoustic or electromagnetic
vibrations and different linearised parts of various bifurcation models involving several
parameters as in rotation, convection or explosion. The problem of oscillation of an
elliptic membrane is an example that yields two separate differential equations that
both contain two spéctral variables in a nontrivial fashion, while for example the
problem of oscillations for a rectangular membrane leads to a diagonal case and for
a circular membrane leads to an upper-triangular (also called mildly coupled) case.

The last two cases can be solved using only techniques from the one-parameter case.
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The example of the elliptic membrane and similar situations led to studies of special
functions at the beginning of this century. Erdélyi gathered such results in [64]. (See
also the book by Arscott [6].)

Carmichael [50, 51, 52] was the first to consider multiparameter eigenvalue
problems in an abstract setting. He studied, for example in [50], a finite-dimensional
multiparameter system generated by a difference equation approximating a system of
integral equations. It was Atkinson [10, 8] who laid the foundations of modern Ab-
stract Multiparameter Spectral Theory which led to a revival of the theory in the last
30 years. In the 70s Multiparameter Spectral Theory in an abstract Hilbert space
was developed by Binding, Browne, Faierman, Kéllstrém, Roach, and Sleeman, to
mention a few, in a number of contributions (see Browne’s review article [42] and also
the enclosed list of references for details). Many of these were brought together in the
book by Sleeman [153]. Work on extending multiparameter eigenfunction expansion
theorems in a number of directions and under various “definiteness conditions” has
been done recently by Binding, Faierman, Gadzhiev, Isaev, Roach, Volkmer and oth-
ers. Also the recent books of Volkmer [168], Gadzhiev [84] and Faierman [69] present
several results on eigenfunction expansion. We also remark that most of research
so far involved self-adjoint multiparameter eigenvalue problems. As an exception we
mention the paper of Allakhverdiev and Dzhabarzade [2] where they considered a
normal multiparameter system, i.e., a system where all the operators Vi; are normal
operators.

The fundamental tensor space construction that we introduce in this chapter
was given by Atkinson in [10, Chapter 6)]. In our discussion we partly follow also the
presentation of Isaev [112, Lecture 1]. For instance, the idea to use the decomposabil—
ity set to prove commutativity of the associated system and relation (2.7), is found
in [112] (cf. also [4]) where it is used in the infinite-dimensional setting. The notions
of*spectra, eigenvectors and root vectors for multiparameter systems are defined to
correspond to the equivalent notions for the associated system. The corresponding

notion of Taylor’s spectrum, introduced by Taylor in [161] for an n-tuple of commuting
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operators, was defined for multiparameter systems by Isaev and Fainstein [111] and
studied by Rynne [147]. See also Isaev’s Lecture 5 in [112]. In the finite-dimensional
setting the notion of Taylor’s spectrum for a multiparameter system coincides with
the spectrum as defined in Section 2.4.

The linear transformations associated with the square arrays of operators,
for instance our transformations D and D}, are an important tool in the presentation.
They were studied already by Atkinson in [10, Chapter 8]. He proved that if there is a
nonzero element in the kernel of such a transformation then there is a decomposable
element in that kernel (cf. [10, Theorem 8.5.1]). This enabled him to weaken the
regularity condition and still prove the expansion result ([10,. Theorem 10.6.1]). An
interesting related investigation is found in paper of Allakhverdiev and Dzhabarzade
[1). They discuss relations between vectors Vijri, 3 =1,2,...,k, where i =1,2,...,n
and k,n > 2, for which E';l Vij21 @ Vojzo ® - -+ @ Vyj, = 0. ‘

The structure of the second root vectors in the simple case (cf. Subsection
2.5.1) follows the one of Toot vectors in Binding’s paper [23]. In the general case the
transformation D} carries information about the second root subspace. This will be

examined in detail for two-parameter systems in the next chapter.
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Chapter 3

Two-parameter Systems

3.1 Introduction

In this chapter we use a matrix equation of Sylvester type to study two-

parameter systems
Wi (A) = Vadr + Vigdg — Vi, i =1, 2. (3.1)

First we briefly describe our main ideas.
We identify the tensor product space C* @ C? with the space of ¢, X ¢

complex matrices via the isomorphism Z : C#* ® C# — C%*% defined by

a1
Qg1
a12 ayy a2 o Qg
—_ Q21 Q22 -+ Q2g
= — (3.2)
Qg2
| g1 Qg2 " Ggyqp |
Q1q,
e aq1q2 -
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It was shown in Section 2.5, page 80 that we can associate a transformation D} with
an eigenvalue A € 0 (W). In the two-parameter case we view
A A
D} = [ ' vy }
A AL
Vol Vay
via the isomorphism Z, as a transformation acting on the vector space of pairs of

g1 X g2 matrices. We also consider the determinantal transformation
A
A=V ®Vy— Vi@ V3

as a transformation on the vector space of complex ¢; X go matrices. There is a close
relation between the kernels of D} and of A} as shown in Lemma 2.4. We restate it

here in the above setting.

X1

Corollary 3.1 Suppose that X = l: ], Xi1,Xp € CU*%2_ s an element of the

2
kernel ker D}. Then both X, and X, are in the kernel ker A}).

In Theorem 2.21 we showed how to associate a basis for the second root
subspace with a basis for the kernel of D}, the above result relates this kernel to the
kernel of A}, and a matrix X € ker A} if and only if VA XV} — VAXVJ} = 0. This is

our motivation to study the matrix equation
AXDT - BXCT =0. (3.3)

To do so we use the Kronecker canonical forms for pairs of matrices (A, B) and (C, D).
We describe this special block diagonal form for a pair of matrices in the next section.
-With every block in the Kronecker canonical form of a pair (A, B) we associate an
invariant and a chain of vectors called a Kronecker chain. The invariants are of three
different types. So, when we study equation (3.3) we would have. to consider nine
different cases, but because of symmetry with respect to the pairs (A4, B) and (C, D)
we only need to study six different cases. For any of these cases where there are

nontrivial solutions of equation (3.3) we give a basis for the subspace of solutions
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in terms of underlying Kronecker chains in Subsection 3.2.2. Similarly we study the

space of solutions of a pair of equations
AX1+BX; =0and X;CT + XoDT =0 (3.4)

in Subsection 3.2.3. Corollary 3.1 is used to relate this system to equation (3.3).
With every pair of invariants of (A, B) and (C, D) for which there is a nontrivial
solution of the system (3.4) we associate another invariant. We show in Section 3.3
that when a set of invariants is associated this way to pairs of matrices (Vf\l, Vfﬁ) and
(V2’\1, V2’\2) it is equal to the set of invariants of the pair of matrices (A}, 22). Here a
pair of commuting nilpotent matrices A; = (A —T') |ker( L) i = 1,2 is brought
to the form (1.2) and the matrices A; and A, form a subarray A% of the array A%
as described in Example 3.3. We also construct a basis for ker (A — I')? such that
the pair of matrices (A, A}) is in Kronecker canonical form and we illustrate the

construction with two examples.

3.2 Kronecker Canonical Form and a Special Ba-
sis for the Space of Solutions of the Matrix
Equation AXDT — BXCT =0

3.2.1 Kronecker Canonical Form

We refer to [85, Chapter XII] or [92, Appendix] for recent presentations of
the Kronecker canonical form. Our presentation is based on a disposition by Professor

H.K. Farahat in a private conversation.

Definition. A pair of complex m x n matrices (A, B) is equivalent to a pair of

matrices (C, D) if there exist invertible matrices P € C"**" and Q € C™*™ such that

C = PAQ and D = PBQ. (3.5)

First we introduce some special matrices needed in the construction of the
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Kronecker canonical form. The p x p identity matrix is denoted by I,. The ¢ x ¢

Jordan matriz with eigenvalue « is

-a . .
0 «
JQ(a)= ’
0 1
Q
where we shall omit « if @ = 0, and the matrices

(1 0 0 0] [0 1 0 0]
o1 . 0 0 0 0 1 0

B=1. . | and Gy = |
00 -~ 1 0] 00 0 - 1]

are p X (p + 1) matrices. Here p,q > 1. Later in the discussion we also use the p x p

matrix } _
0
0 10
H,= .
|1 .- 0 0

and p X g matrices I, , and H,, that are defined by
Lg=[0 5, | and Hpg=[0 H,]

if p< qand
I

P | and H,, =
0 0

if p > q. We write I, = I, and H,, = H,,.

Iy =

The pairs of building blocks of the Kronecker canonical form for a pair of
matrices are of three different types : (L, p), (M,p) and (J (a),q) where p > 0,¢>1
and @ € €C U {oo}. The building blocks of type (L,p) are of sizes p x (p+ 1), the
building blocks of type (M, p) are of sizes (p + 1) x p and the building blocks of type
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(J () ,q) are of sizes ¢ X g. Here the blocks of types (L,0) and (M,0) which are of
‘sizes’ 0 X 1 and 1 x 0, respectively, correspond to a column of 0’s and a row of 0’s,
respectively, in the Kronecker canonical form. Suppose that p > 1. Then the pairs of

building blocks and the corresponding types are :
(Fpy Gp), type (L,p),

(G, FT), type (M,p),

(I, Jp(a)), type (J (@) ,p)
if @ € C, and

(Jp, 1), type (J(o0),p).

The theorem of Kronecker (cf. [85, p. 37] or [92, Theorem A.7.3]) states that every
pair of m X n complex matrices (A, B) is equivalent to a pair of matrices in block
diagonal form with diagonal blocks of types (L,p), (M,p) and (J (@), q). We call
this block diagonal form the Kronecker canonical form of a pair (A, B). We call the

collection

I= {(L’ ll) 1t (L’lpt;) ) (M7m1) 10y (M7mPM) ) (J (al) ’jl) IARRE (J (aPJ) ’jp.r) ;}

of the types of the diagonal blocks the set of invariants of a pair (A, B). The elements
of the set Z are called the invariants. It is a consequence of the theorem of Kronecker
that two pairs of m X n matrices (A, B) and (C,D) are equivalent if and only if
they have the same sets of invariants. See [85, Theorem 5, p. 40] or [92, Corollary
A.7.4]. Note that in our discussion we view the initial u X v block of zeros in [92,
Theorem A.7.3] (in [85, expression (34), p.39] this is the initial A x g block of zeros)
as a collection of u blocks of type (L, 0) and v blocks of type (M, 0). This enables us
to absorb the initial block of zeros into the blocks of types (L,p) and (M, p).
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Example 3.2 The pair of matrices .

(f100000] [010000])
000O0O00O0 001000
001000|,[000O0O0CO
000100| |[000210

\L0OOO10] [000020])

has the set of invariants T = {(L,0),(L,1),(M,1),(J (2),2)} and the pair of ma-
trices
([oooo] [ooo o]
0000 0000
000O0Y(,]0100
0010 0 001
\[0001] [0000]
hasthesetofinvariantsl':{(L;O),(M,O),(M 0),(J(0),2),(J(c0),1)}. O

Example 3.3 Suppose that A; and Ay are commuting nilpotent N x N matrices,
that they are brought to the form (1.2) and furthermore, we have kerA% = CV. (Here
we use the notion introduced in Section 1.2.) We can further assume that the row-
cross sections RJ', j € rg are linearly independent and R = 0, j = 7o + 1,79 +

2,...,do, where 7y is the dimension of the subspace of 2 X d; matrices spanned by

0 Xm
A=| ,

where A% has dimensions 7o X d; X 2, and A% = (AO1 A°1) Suppose that (E‘l’l, Bgl)
is the Kronecker canonical form of the pair (A1 ,Agl) and that matrices P and @

R}, j € dy. Then we write

are such that
B! = PAYQ and BY = PAYQ.
PO 0
], where U = | 0 I 0 | and B® =
0 0 Q! |

0 ﬁOl

Then the array UAU™! = [
0 0
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(B?l, Bgl) , is a canonical form for the pair of commuting matrices A; and A;. We
remark that for similar, and also for more general, pairs of commuting matrices a

canonical form is given by Gel’fand and Ponomarev in [86, Chapter II]. m]

Next we introduce the notion of Kronecker basis for a pair of matrices (4, B).
With every invariant in ¢« €Z we associate a Kronecker chain C, of linearly independent
vectors as follows :

If t=(L,p) then C, = {u,-, i€Ep+ 1} and

By, = 0,
Bu; = Au;;, 1=2,3,...,p+1,
0- = Aup+1 .

If . = (M,0) then C, =@ and if : = (M,p), p> 1 then C, = {u,-, ie;g} and
BU,‘ = A’u,'_l, i=2,3,...,p.
If o = (J(),p), aec,thena:{u,-, i € p} and

(tA—B)u; = 0,
(tA—Byu; = Auiy, 1=2,3,...,p.

And finally, if ¢ = (J (c0) ,p) then C, = {u.-, i € 2} and

Au1 = 0,
Au; = Bu,-_.l, i=2,3,...,p.

The union of all Kronecker chains of a pair of matrices (A, B) is called a Kronecker
basis of (A, B).

Remark. Note that if (C, D) is the Kronecker canonical form of a pair of matri-
ces (A, B), and the matrices P and @ are such that relation (3.5) holds, then the
columns of the matrix Q! form a Kronecker basis of (4, B). They are partitioned
into Kronecker chains according to the sizes of diagonal blocks of the canonical form

(C, D). Note also that if m = n and A = I then the notions of Kronecker canonical
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form and Kronecker basis coincide with the usual definition of Jordan canonical form

of a matrix B and its Jordan basis. O

Suppose that C, = {u,-, 1E€Ep+ 1} where ¢ = (L,p) and @ € CU{oo}. Then
we define vectors u; (@) so that
P P ;
> Nuiyga (@) = > (A =a) uy,
i=0 i=0

ifax € C, and
P

p . .

2 Nugp (00) = Y W uy,

i=0 =0
where A is an indeterminate. Then we call a chain C, (o) = {u,- (@), iep+ 1} the
a-shift of a Kronecker chain C,. Note that the chains C, and C, (a) span the same

subspace.

3.2.2 The Matrix Equation AXDT — BXCT =0

Next we consider the homogeneous matrix equation (3.3) where A and B
are mj; X mg matrices, C and D are n; X ny matrices and X is the unknown mg X ng

matrix. We define the transformation A: C™?*"? — ™ %™ by

~

A(X)=AXDT — BXCT. (3.6)

Then the kernel of A is the space of solutions of (3.3). Suppose that Z; and Z, are
the sets of invariants of the pairs (A, B) and (C, D), respectively, and C; and C, their
corresponding Kronecker bases.

An approach using the Kronecker canonical form to study the matrix equa-
tion

AXDT -BXCT =F (3.7)

was outlined by Rézsa in [144]. We include the following detailed discussion on the
matrix equation (3.3) because we later need precise eipressions for the solutions of
the homogeneous equation (3.3). We sketch the proofs using our setting and following
[144].
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Suppose that ¢; € Z; and ¢o € I and that Cy,, and Cy,, are the corresponding
Kronecker chains. Now we define a set J of pairs of invariants (¢1,¢0) € Z; X Tp. A

pair (t1,¢2) is in the set J if one of the following holds :

() 1= (L) and 1o = (L2,

(ifa) ¢ = (L,p1), to = (M, p2) and p; < po,
(iib) «u = (M,p1), t2 = (L,p2) and p1 > pa,
(ilia) ¢ = (L,p1) and ¢p = (J (@) ,p2),
(iiib) « = (J(@),p1) and ¢, = (L, ps) and
(ific) ¢ = (J(a),p1) and 2 = (J (a),p2).

Then we associate with a pair of invariants (¢1,10) € J a set A(,,,) of

matrices as follows :

(i) if vy = (L,p1), t2a = (L,p2), C1,y = {um 1€Ep1+ 1} and Cy,, = {u2:’, 1€ py+ 1}
then

'A(Ll,Lz) = AI; A= Z ulﬁug‘ig’ le P1+p2+ 1}1
. f14ia=I+41

(ifa) if & = (L,p1), 12 = (M,ps), where py < ps, C1,, = {us;, i€py+1} and
Cg,,z = {U2,’, i e ]_9_2_} then

p1
A(u,tz) = {Al; A= Zul,m+1—iug,i+b le D2 _pl};

=0

(iib) if u = (M,p1), t2 = (L,ps), Where p1 > ps, C1y = {uns, i € p1} and Ca, =
{’dgi, 1 Eps+ 1} then

D2
A = {Az; A=Y uug s LE D —-Pz} ;
i=0
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(ifia) if ¢ = (L,p1), t2 = (J (@), p2), where & € C U {o0}, Cy,, (@) = {usi (@), i €
p1+1} is the a-shift of the Kronecker chain Cy,,and Cai, = {ua;, i € pa} then

Al o) = {Au A= Zl lulil () ug;,, 16&};
f1+ig=l4

(iiib) if ¢; = (J (@) ,p1), where @ € C U {oo}, ta = (L,p2), C1,, = {ul,-, i€ 2_1_} and
Ca, (@) = {uz,- (@), i€p+ 1} is the a-shift of the Kronecker chain Cs,, then

i1+i2=I+1

A2) = {Az; A= Y wu, (@7, Le ﬂ};

(ific) if 11 = (J (@) ,p1), 12 = (J (@), p2), Cry = {ws, i € p1} and Cop, = {upy, i €
22_} then

{
AQri) = {Al; Al=3 uig,, o, L€ f_nEiPl’_Pﬁ} :

i=1

Using the above setting we have the next important result.

Theorem 3.4 A basis A of the kernel ker A, i.e., a basis for the space of solutions of
the matriz equation AXDT — BXCT =0, consists of the union of all the sets A, ,,)

for pairs of invariants (11,t9) in the set J.

Proof. Suppose that (A, B') and (C", D') are the Kronecker canonical forms
of the pairs (A, B) and (C, D), respectively, and that there are invertible matrices
P, @, R and S such that

A=PA'Q, B=PB'Q, C =RC'S and D = RD'S. (3.8)
Then equation (3.3) is equivalent to the equation

Ax' (DY - B X' (¢ =0, (3.9)
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where X’ = QXST. Because the matrices A, B', C' and D' are block diagonal,
equation (3.9) becomes a collection of equations, one for each pair of invariants ¢; € Z;
and ¢ € Zp. The invariants ¢; and ¢, are of three’different types. So we would have
to consider nine different cases but because of the symmetry we only need to consider
six different situations. We write Y for a block of the unknown matrix X in each of

the cases considered :
(a) If v = (L,p1) and ¢o = (L, ps) then we have the equation
F,YG;, — G, YFL =0. (3.10)
Then a direct calculation shows that the matrices in the set
A1) = {JII’:-ll-al1+1,p2+la lep +15 Hpq1p041 (J,I;g)T7 le Ez} (3.11)

solve (3.10). They are linearly independent. By a dimension argument it follows

that the set (3.11) is a basis for the space of solutions of (3.10).
(b) If ¢y = (L,p1) and 12 = (M, ps) then we have
F, YF,, — G, YG,, =0. (3.12)

If p1 > po then this equation has the only solution Y = 0. If p; < ps then the

set
I(sz) = {HPIH'WJII’;I’ le 22___1)1}
is a basis for the space of solutions of (3.12).

(c) Suppose now that ¢; = (L,p;) and ¢5 = (J (@) ,ps). Using the a-shift Cy,, ()
instead of Cy,, we may assume without loss that @« = 0. So we suppose that
t1 = (L,p1) and ¢2 = (J (0),p2). Then we have

FYJL -G, Y =0 (3.13)

and the set
AT
l(Ll,Lz) = {HP1+1,172 (J;l)z 1) , L€ 122_}

is a basis for the space of solutions of (3.13).



101

(d) If ¢y = (M, p1) and 12 = (M, ps) we have
FIYG,, —GLYF,, =0.
Thisrequa,tion has no nonzero solutions.

(e) If ¢y = (M,py) and ¢2 = (J (), p2) then we have

T T
F, Y, (a)" — GZ;Y =0.
This equation also does not have a nonzero solution.

(f) Finally we consider the case ¢; = (J (a),p1) and ¢z = (J (8),ps). First suppose
that a, 8 # oo0. Then we have

YJ,, (8)F = J,, (@)Y =0. (3.14)
If o # [ then this equation has the only solution Y = 0. If @ = f then the set

i) = { T Ty 1 € min {py, p2}} (3.15)

is a basis for the space of solutions of (3.14). Similarly it follows that there is
no nonzero solution when a # f and either of @, is 0. If @ = # = oo then

the set A, . is as above in (3.15).

By definition we have that X = Q~1X’ (S~)T. The columns of the matrices
Q™! and S~ form Kronecker bases for (A, B) and (C, D), respectively. Then it follows
from (a) that the set Ay, ,,) defined in (%) is a basis for the subspace of solutions of
the equation (3.3) associated with a pair of invariants ¢; € Z; and 1y € T, of types
u= (L,p1) and 1o= (L, ps). Similarly, it follows from (b) that the sets A, ,,) of (iia)
and, by symmetry, also of (éib), span the subspaces of the equations associated with
the corresponding pairs of invariants. Case (c) implies a similar conclusion for the sets
of (iiia) and (4b), and case (f) implies a similar conclusion for the set of (iiic). Then
it follows that the union A of all the sets A, ,.,) corresponding to pairs of invariants
(¢1,42) € J form a basis for the space of solutions of the equation (3.3) and therefore

also a basis of the kernel ker A. a
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Corollary 3.5 The matriz equation AXDT—BXCT = 0 has only the trivial solution
X =0 if and only if either

(i) there are no invariants of type (L,p) in the sets I and T, and there is no pair of

invariants (J (o) ,p1) € Iy and (J(B),p2) € Ir witha = f, or

(ii) one of the sets of invariants T;, where i is either 1 or 2, consists only of in-
variants of the type (M,p,), while there are invariants of the type (L,ps) in

the other set of invariants but any of them is such that py > p, where p =

min {p1, (M,p1) € Z;}.

3.2.3 The System of Matrix Equations AX; + BX; = 0 and
X1CT +X,DT =0

Next we consider the system of matrix equations (3.4). We define the trans-

formation £ on the space C™**™2 @ C"**™2 by

X AX, + BX.
c = 1+ 58 (3.16)
Xs X;CT + X, DT

Suppose that A = U, .,)e7A(,0) 18 @ basis for the kernel of A as described in
Theorem 3.4. The transformation A is defined by (3.6) and the set of invariants
J is defined in the discussion thereafter. Then we write J' for the set of all the
pairs (i1,t2) € J that are different from the cases (i1,t2) = ((L,p),(M,p + 1)) and
(¢1,82) = (M,p+1),(L,p)). Now we associate with every pair of invariants (¢1,¢5) €
J' a set of pairs of matrices A, ) as follows. Here the matrices A; are defined in

(¢)-(##ic) on pp. 98-99 for different cases of pairs (1, ¢2) :

(i) If ¢4 = (L,p1) and ¢2 = (L, p2) then

_AI
A?tx,t2)={[AI 1]’ l€p1+p2+2} '

where Ao = Ap1+p2+2 = 0,
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(ii) If o3 = (L,p1), t2 = (M,p2) and p; +2 < ps or 13 = (M, p1), t2 = (L,p2) and

p1 = pa + 2 then
—Ai
A%H,Lz):{[ * ]’ le‘pl—p2|_l},
Al —

(iii) In cases (iiia), (iiib) or (iiic), if @ € C, then

—A
'A%Ll 12) = : ’ le P
’ aAr+ Ay -

where p = p; if 11 = (L, p1) and 42 = (J (@) ,p2), p = p1 if 4 = (J (@) ,p1) and
ta = (L,p2) and p = min {p1,pa} if 11 = (J (@) ,p1) and 13 = (J (@), ps). Here
we write Ag = 0. If @ = co0 then

, le 2}

—A
C("I)LZ) = {
In the above setting we have the following result :

i

where p is defined as above and Ay = 0.

Theorem 3.6 The kernel of L, i.e., the space of solutions of the pair of matriz
equations AX1+BXs =0 and X;CT + X,DT = 0, has a basis A2 = U(LI,LZ)GJ/A%HM),

where the sets .A%Mz) are given above.

Proof. Let the matrices A, B',C',D',P,Q,R and S be as in the proof of

X3

Theorem 3.4. We write X! = QX;S7 for i = 1,2. Then [ J € ker £ if and only if

X2
A'X] 4+ B'X5=0and X (C)T + X5 (DT = 0. (3.17)

It is enough to consider the equations (3.17) blockwise because the matrices A’, B,
C' and D' are block diagonal. It follows from Corollary 3.1 that there might exist
nontrivial solutions of a particular block of the equations (3.17) if and only if the

corresponding pair (¢1,t2) belongs to J. Suppose that sets A/ are defined as
{e1022)
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in the proof of Theorem 3.4. We write Y; and Y3 for the blocks of X; and X,
respectively, considered in each of the cases. First we have the case 4 = (L,;)
and tg = (L,ps). Then we write Y] = Z”‘+”2+1 TA; and Yy = Y02 pripa+l 8,A;, where
A= T i, 1 € pi+1and A = Hyq1,41 (J,I,;”‘_l) y L=p1+2,p +
3,...,p1 +p2 + 1 are the elements of the set A{, ). It follows from the equations
(3.17) that v + &141 = 0 for I € p1 + ps. Thus the set

—A
A?Lllytz)-: {I:A/ I:I’ l€p1+p2+2},
-1

where Ay = A}, ;5,10 = 0, is the basis of the block of the equations (3.17) correspond-
ing to the pair of invariants (¢1,¢2). Because the columns of the matrices Q! and
S~ form Kronecker bases for the pairs (4, B) and (C, D), respectively, it follows that
-A(u 12) » as defined in (7) above, form the basis of the subspace of ker £ corresponding
to the pair of invariants (¢1, ¢2).

Using the same method as for the case ¢; = (L,p;1) and.ty = (L, p2) above,
we prove that the sets Af,  in cases (i) and (#i) form bases for the corresponding

subspaces of ker £. Then the proof is complete. O

Now we define a mapping 7 on the set of pairs of invariants J’ by

[ (L,p1+p2+1), if  (u,00) s asin (4),
(M,p2—p1), if  (t1,00) is as in (#a),
(M,p1 ~p2), if (u1,t2) is asin (idd),

L1,09) = 3.18
i) = (7 () ,p2), if  (e1,02) is as in (diia), (3.18)
(J (@) ,p1), if  (1,00) is as in (4iibd),
| (J(a),min{ps,p}), if (u,22) isasin (sic),

where the cases (i)-(iiic) are defined on page 98. Then the set of invariants Z =
{n (t1,¢2) , (t1,t2) € J'} is called the set of invariants of the kernel of L. We write
A2 = A, .,y if ¢ = 1 (21, 42). We will use the set of invariants T and the corresponding
basis A% = U,e7.A% to describe a special basis of the second root subspace of the

two-parameter system.
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3.2.4 Remark on the Matrix Equation AXDT —- BXCT = F

and Root Subspace for Two-parameter Systems

Let us now consider a particular eigenvalue XA = (A1, A2) € 0 (W). Then we
write

T; =W; (A) = =Vig + A Vi + AoVio fori=1,2.
From the properties of determinantal operators in Lemma 2.1 it follows that
MA—A1=T1 @V —V12®Th
and
Ml — Do =V11 QT —T1 ® Vay.

Again we view the above transformations as acting on the space of n; X no complex
matrices. Suppose that Xp, X3,...,X, € C™ ® C™ (identified with C™*" via the
isomorphism = defined by (3.2), only replacing n; for ¢;) form a Jordan chain for I'y,
ie.,

(MI-T) X; =X;1

or equivalently
(Ale - A]_) Xj = A()Xj...l (319)

for j =0,1,...,p and X_; = 0. These are equivalent, via the isomorphism Z, to the

recursive system of matrix equations
T X;Vi — Vo XiTy = Vi X;1Vas — Vie X1 V. (3.20)

We have a similar system for the second associated operator I's. If X, X},

..., X, is its Jordan chain then
VXTI — TiXVor = VX1 Vap = VieXjoa Vi (3:21)

for 7 = 0,1,---,p and X_; = 0. At every stage of this recursive system of matrix

equations we have to solve a matrix equation of the type

AXDT - BXCT = E. _ (3.22)
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This equation can be studied using the Kronecker canonical forms for pairs (4, B)
and (C, D) similarly as for the homogeneous equation (3.3). For every type of a pair
of invariants we could give solvability conditions and a particular solution when it
exists. Then we could apply this result to the recursive system (3.20) (or (3.21) ). We
would have to solve simultaneously the recursive system (3.20) and a similar system
corresponding to A;J — I'{. The weakness of the eventual procedure is that it would
only give a basis for the root subspace for one of I'; (or I's) and would not necessarily
give a basis for the root subspace ker (A\I — I')". In the procedure we would use ideas
developed in the theory of marked invariant subspaces in order to prove completeness
(see [72] and [73, Section 4.4]). We state the definition of a marked invariant subspace

below, but we do not develop the procedure in further detail.

Definition. A subspace N’ C CV is called a marked invariant subspace for a trans-
formation A : C¥ — C if A is invariant for A and if there exists a Jordan basis B

for A on €V such that a subset of B spans N.

Marked invariant subspaces were introduced in [92, Section 2.9]. For further
developments see [46, 47]. An earlier related disposition was given by Cater in [53,
Lecture 4-3] where he proves a finite-dimensional version of results of Vilenkin [165,

pp. 102-106] and: Kaplansky [116, Chapter 18].

3.3 A Special Basis for the Second Root Subspace

of Two-parameter Systems

We saw in the previous section that we can build a natural basis for the
kernel of £ from Kronecker bases of the pairs of matrices (4, B) and (C, D). This
result can be applied to the kernel of the transformation D} in the two-parameter case.
We use the setting of Subsection 2.5.2 with n = 2. A special basis for ker D} can be
given using Kronecker bases for the pairs of matrices (V,’l\, V,’2\), i = 1,2. Suppose that

Z; is the set of invariants of the pair (V,-’l\, V,’2\) and C; = U,¢z,C;, is the corresponding



107

Kronecker basis where C;, is a Kronecker chain associated with the invariant ¢ € Z;.
We write Z for the set of invariants of the kernel ker D} and A2 for the subset of the
basis .A? of ker D} corresponding to the invariant + € Z. We described in Theorem
2.21 a correspondence between elements of a basis for ker (AI — T')? / ker (AI — I") and
elements of a basis for the kernel of D}. Therefore a special basis for ker D} induces
a special basis for ker (AL — T")%. The exact correspondence is described later in this
section. We have three different types of invariants in the set of invariants Z for the
kernel ker D}. It will turn out that they correspond to the three different types of
invariants of a pair of matrices A% = (A%, A1), as defined on page 92.

In the rest of this éection we describe the construction of a special basis for
ker (AI — I')? using the basis A2 for ker D). We discuss each of three different types

of invariants ¢ € Z separately.

3.3.1 Basis Corresponding to an Invariant . = (L, p)

Theorem 3.7 Suppose + = (L,p) = n(t1,t2) where vy = (L,py) € Iy and 15 =
(L,p2) € Iy and that Cy,; and Cs,, are the associated Kronecker chains. Then there
exist vectors zy, € H;, 1 = 1,2 and l; = 1,2,...,p; + 1 such that

Vazjy = Wi (A) =}, (3.23)
Vazh + Ve T =W; (N 2k for l;=2,3,...,p (3.24)
and

Viazl§ = Wi (A) 2%+, (3.25)

The the vectors .
2= w,®z5,  kep (3.26)

and . -
A=) (sl @b +aly0a5), kept1 (3.27)

I=1

are linearly independent. It also follows that

(MI—T)2F =2k (3.28)
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and
(Aol —Tg) 2F = 251 (3.29)
for k € p, where z) = z§ =0 and z¥ = 0 for k <0 and k > p; + 1.

Proof. Suppose that C;,, = {u,-k; k€ p;+ 1} , ¢ =1,2. Because ¢; = (L, p;)

it follows from the definition of a Kronecker chain that

Vaua = 0,
V:':?\uil = ‘/ii\ui,l—l’ l= 2) 3, ey Di 17
— A
0 - I/ilut',p,'-}-l .

Then we have by a standard argument involving Lemma 2.12 that there exist vectors
z¥ € H/ such that (3.23), (3.24) and (3.25) hold. We can construct vectors (3.26)
and (3.27), and then it follows that

®
k I !
MAs— A ZF = W1 (A) =y Viazig
(MBo—Ay) 2z = Z k11 k11
i=1| W2 (X) z5] Vaaz3g
® ®
! I - ! !
_ Viizyg Viaz1o A Vierly  Vied, N
= k+1-1 k11 +2 k-1 k-t | T 20%
1=1| Vaizgy Vaozsg 1=1| Vaazgg® Vaozgg
and ' ®
k I I
MoAn — As) 25 = Vizy, Wi (M) 2, _
(A2lo—Ag) 27 =) k11 A ghH-t | T
1=1] Va1zsg Wa (A) z37
® ®
! I - ! I
ko Vaal, Viizig A= Vagly Vil -1
= k11 k11 kel vt | =807
1=1| V1254 Va1zag 1=1| Va1zgy"  Vaazgg

for k = 1,2,...,p. Hence (3.28) and (3.29) hold. Here we assume 2] = 2§ =

The vectors z§, k = 1,2,...,p — 1 are linearly independent because the vectors
zt, k =1,2,...,p; are linearly independent. Then it follows from (3.28) and (3.29)
that the vectors {z{,‘; ke Q} U {zf s keEp+ 1} are linearly independent. m]

If we restrict the transformations A\;/—I'; and AoJ—T'5 to the joint invariant

subspace N spanned by the vectors {z{,‘ i ke 2} U{z{c s kEp+ 1} then they commute
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and we have

0 F : 0 G
(MI=TY) |v= P | and (Aol —Ty) |p= P .
0 0 0 0

Note that the invariant of the pair of matrices (Fp, G,) is (L,p).

3.3.2 Basis Corresponding to an Invariant . = (M, p)

Suppose that ¢ = (M,p) = 7 (t1,¢2) where ¢; = (L,p1) € Iy, ta = (M,p2) €
Z and p = py — p; > 1, and that Cy,; and Cy,, are the associated Kronecker chains.
The basis for the case ¢; = (M,p1) € T4, tg = (L,p2) € Ty and p = p; —py > 1 is

obtained symmetrically, interchanging : = 1 and ¢ = 2.

Theorem 3.8 If v = (M,p) € T is as above then there exist vectors =¥, € H;, k =
L,2,...,pi+1 (x%l =gt = O)such that

Vllxio =W (A) mil,
Vazh) 4+ Vipahl = W () b, k=2,3,...,p

and
Vigzlh = Wy (A) 233t

Then the vectors

3

1

k-l .
=z, @t kep+1, i=1,2,
=1
and
k pl+ll NP <N k=41
_ +h-l+ uy+k—I+

2= Ty @5 + D71 ® 5 , kEp

=1 =1

are linearly independent. Furthermore, we have
(MI =Ty) 2f = zk+t (3.30)

and
(Aol —T) 2F = 2k (3.31)

fork € p.
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Proof. The vectors z¥ exist similarly as in the proof of Theorem 3.7 using
the definition of the Kronecker chains C;,; and Lemma 2.12. To prove the theorem

we need to establish relations (3.30) and (3.31). These follow by a straightforward

calculation :
p1+1 i i ®
Mo — Ap) 2t = ‘z: W1 (A) 73, V1273 _
(Mo — A1) 21 = pr+k—l+1 prtk—l+1 [ T
1=1 | Wa () zh) Vaozhy
I I ® ! I ®
_3 Vg Via%10 + f: Viazyg V12719
- +h—l+1 k=141 +k=1 +k=1
=1| Vo125 Vaohh 1=1| Vogzhh Vaaht
= Aoz(’)”'l
and
1 I I
Cato—Ag) =5 | Vit i)
- i ek—l41 k=141
1=1 | Va1zhy Wy (A) zhi
) I ® I I ®
& Vg Viizyg + i Yz Viazyg _
- +k—1+1 +h—=I1+1 K +k—1 +k—1 -
1=1 | VoyzB} Vor2h) 1=1| Varzhy Vaozhh
= AQZ(,; .

Then we argue as in the proof of Theorem 3.7 to complete the proof. m]

If we restrict the transformations A\; I—I'; and ApI—I'5 to the joint invariant
subspace N spanned by the vectors {z{,‘; k€p+ 1} U {zf i ke 1_)}, described in the

above proof, then we have

T
0‘ (Fp) ] and (oI —T3) |y= [0
0 0

(MI —T1) |v=
Note that the invariant of the pair of matrices ((F,,)T , (G,,)T) is (M,p).

3.3.3 Basis Corresponding to an Invariant = (J (a),p)

Suppose that ¢ = (J(a),p) = n(u1,t2) where 1 = (J(a),p1) € Iy, ta =
(J(a),p2) € Iy and p = min{py,ps}, and that Cy,; and C, are the associated
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Kronecker chains. The basis for the case ¢; = (L,p;) and ¢ty = (J () ,ps) is obtained
using the same arguments as in the case ¢; = (J () ,p1) and ¢3 = (J (@) ,ps) using
the a-shift Cy,, (o) = {ul,- (o), i€ p_l-l_-_l} and writing uy; () = 0 for ¢ > p; + 1 if
P2 > p1+1. The case y; = (J () ,p1) and 1o = (L, po) is analogous, only interchanging

t=1andi=2.

Theorem 3.9 If vy = (J () ,p1) and 1o = (J (@) ,p2) then there ezist vectors z¥, €
H;, k=1,2,...,p such that

Ui (@) zip = Wi (A) z};
and
Ui (@) o5+ Vazt =W, (N 2k £ =2,3,...,p.
Then the vectors .
=3 2,0z, kep
I=1
and

k
k | o pktll § o o k+l-l
2 -Z(xn@xzo + 739 ® Ty) ) , kep
=1

are linearly independent and furthermore
(MI —Ty) 2F = azf + 251 (3.32)
- and
(Aol —T'g) 2F = 2f (3.33)
for k € p.

Proof. The theorem follows as the previous two given the relations (3.32)
and (3.33). These are established using a simple calculation :
Bl Wi(A)zy Vi

MAg — A) 2F =
oo = A)A = e i Vi
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®
= alozg + DozE™?

- ! !
Al Vizyy,  Viezyg

k—1 k1
Varzag® Vaarsg

i U (@) 5’310 V12x’10
Us (@) x2+1 - v 2:1:"3" 1-1

=1

and
iz, Wi (A) 2l

k
(Molo — Ag) 2 =
IZ Vst Wy () obft

k=1

1 ! 1
Vi1zio U1 (o) 239 an’m Vi1

k11 k11
Var25¢ Us (@) x5

=1

k
- AOZ() .

Varesy' Vaasy!
a

If we restrict the transformations A\;I—I'; and AoJ—T"5 to the joint invariant
subspace N spanned by the vectors {z{,‘; ke Q} U {z{‘; ke g} given in the above

proof. Then we have

_ 0 Jp (a) an _ _ 0 Ip
(MI—R)W—[O X ] d (ol mnﬂ_[o 0].

The invariant of the pair of matrices (J, (a),[) is (J (a),p).

Suppose that for every element in the set of invariants Z of the kernel of
D} we construct vectors 2§ and zF as explained in the proofs of Theorems 3.7-3.9.
Note that they are linearly independent. We denote the set of these vectors by
B, and by N’ the subspace they span. The linear transformations (A;I — I';) and
(Aol — T'y) restricted to the subspace N = ker (AI — I')? commute and are nilpotent.
Furthermore N' C V. If N’ # N we complete the set B} by a set of vectors, say B”,
to the basis B, for N. We write N = £ (B"). Because the vectors 2 are as many as
dimker D) and are linearly independent it follows from Theorem 2.21 we can assume
that N C ker (AI — I'). We write the pair of restricted transformation (A\:I — T%) |w,
that are nilpotent and commute, in the form (1.2) using the basis B,. It follows from

Theorems 3.7-3.9 that the array A% has the form

A |
ME[O], (3.34)
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where
afl 0 0
01
0 a, 0 0
o1
0 A4
A0 — : . (3.35)
: : 01
a1'1+1‘2
© 01
A 4yl 0
01
| 0 0 0 ar1+7‘2+7‘3 J

The first 7; blocks al" in the array (3.35) correspond to the invariant (L,p;) in the
set Z, the next r; blocks correspond to the invariants (3, p;) in the set Z and the last
r3 blocks aJ' correspond to the invariants (J (c),p;). The rows of 0 at the bottom
in (3.34) are as many as there are vectors in the set N”. Note that the array A,
where A% is in the form given by (3.34) and (3.35), is in a canonical form described
in Example 3.3. Note also that the set of invariants of the pair of matrices (.Z‘ln, 231)
equals 7.

To illustrate the preceding construction we discuss two examples.

Example 3.10 Consider again the two-parameter system of Example 2.22. The sets
of invariants for the pairs (V{\f, 1’\2°) and (V2’\1°, V2'\2°) that correspond to the eigen-
value Ag = (0, 0) are {(L,0), (M,0)} and {(L,1),(M,0)}, respectively. A Kronecker

0 -1
chain that corresponds to the invariant (L, 1) is [ ) } , [ 02 ] . The set of invariants

for the kernel ker D% is then {(Z,2)}. We find that vectors

0 0 0 0
gy =rhn=| 1 andzg; = |0 |,z3,=] 0 |,a5 =10
-1 0 - 0

are such that

Viizio = Wi (Xo) 211, Viszio = Wi (Xo) 22
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and

1

' 1
2V21$§o =W, (Ao) 23, and — ’2-V21$§o = Wa (Ao) z3;.

1 1 2
VaaTgg = Wa (Ao) 231, Vaowgy —

Then it follows from Theorems 2.21 and 3.7 that the vectors

(1] o] [o] ] o] [ 0 ]
0] |1 0 0 0
0| |o 0 -1 0
ol |o 1 1 0
01,]0]{; 0 {,] 1 and 1
0] |o 0 0 0
o |o 1] | -1 0
0} |o 0 ~1 -1
o] o] o] | o] | 0 |

form a basis for ker (AI — I')2. Note that the above method to construct a basis differs
from the method given in the proof of Theorem 2.21 and used in Example 2.22, hence

also the bases constructed in the two examples are not the same. ]

Example 3.11 Suppose that we are given matrices

(10000 0] (01000 0]
010000 001000
V1*1=000000,V1*2=000100,
000100 000010
000010 000001
(000001 (000000
(1000 0] (0100 0]
00000 00100
Va=|00100|andVi=|0000 0],
00010 00021
(0000 1] (0000 2]
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and we write Iy for £ X k identity matrix. Then we form a two-parameter system
Iy V) 0 V3 0 0
ZAYCVE IRl DR IR PV
0 Is | 0 0 Is 0

0 V) Is Vi 00
Wa (X) = i+ % 2 - .
0 0 0 Iy Is 0

It follows from the structure of the above two-parameter system that it is nonsingular

and

and that A = (0,0) is an eigenvalue. We also find that the matrices V1

ij Wl = 1,2, are

0 I
the entries of the corresponding matrix D} if we choose X9 = [ ] , Y1 = l: (;5 } ,
6

X = 0
20 I

(Vl’\l, 1/1’\2) and {(L,1),(M,1),(J(2),2)} the set of invariants for (Vz'\p Vg}) . The set
of pairs of invariants J’ has three elements {(L,2),(L,1)}, {(L,2),(J(2),2)} and
{(M,3),(L,1)}. Applying the mapping 7 defined by (3.18) we find that the set of
invariants of the kernel of D} is {(L,4), (M, 2),(J (2),2)}. 0

I
] and Ya = [ ; } Then {(L,2),(M,3)} is the set of invariants for

3.4 Comments

Kronecker in [119] developed his canonical form as the answer to the prob-
lem posed by Weierstrass of finding a canonical form for a pair of bilinear forms.
The Kronecker canonical form is usually stated in terms of matrix pencils A\ + B.
Because we use the Kronecker canonical form for a pair of matrices A% = (A]}, AJ)
in a commutative array in the form (1.2), we have chosen to state it in terms of
pairs of matrices to keep in tune with our preceding discussion. For an early version
of Kronecker’s result adapted to matrix pencils see Dieudonné’s work [58]. We can
also find chapters on the Kronecker canonical form in recent monographs on Linear
Algebra, for example [85, 92]. This topic is also of current interest in various appli-

cations, e.g. in Control Theory (see {113, 125]), and various further developments :
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Van Dooren [61] gave a computational algorithm to find the canonical form, Atkinson
[11] extended it to a special class of tensors and Thompson [162] studied it for pairs
of self-adjoint matrices. The study of matrix and operator pencils AX + B and also
multiparameter pencils 3°7.; A;\; + B motivated by multiparameter eigenvalue prob-
lems is found in several papers. For example, Blum [31], Fox, Hayes and Mayers [76]
and Hadeler [98], considered numerical methods to find eigenvalues of these pencils,
and Binding [22] gave a canonical form for self-adjoint operator pencils A\ + B on
Hilbert space. Also Bohte in [36] studied numerical methods to calculate eigenvalues
of a two-parameter system of pencils.

The matrix equation AXDT — BXCT = E has been studied for a long
period of time (see [156, 157, 171]). The special cases XDT — BX = F and also
AXDT — X = F have been thoroughly examined. See [128, Chapter VIII] for early
references, some later works being [107, 142, 145, 173]. In [143] Roth gave conditions
for existence of a solution of X DT —BX = E. Different proofs of his results were given

later in [74, 102]. The authors in [100, 101, 120, 123, 124, 127] suggested different
| approaches to find explicit solutions of XDT — BX = E. This matrix equation is
associated through Roth’s results with extensions of block matrices [114, 174] and
with the Kronecker sum / ® D — B @ I. The latter was already known to Sylvester
(he calls it ‘nivellateur’) in [156], see also [i3, 14, 126]. Eigenvectors and root vectors
for the Kronecker sum were given by Trampus in [163]. See also [132, Section 1.2] for
a thorough presentation.

The applications of these matrix equations are diverse. Barnett and Storey
in [14] discussed problems in stability theory where the equation XDT — BX = E
arises. Epton [63] gives an example of a numerical method for implicit differential
equations where solving the equation AXDT — BXCT = E is essential. See also
[17, 127] for some other applications. The general equation AX DT — BXCT = E was
studied in [54, 63, 103]. Chu [54, Theorem 1] gave conditions for existence of a unique
solution. He also proposes a numerical algorithm to compute this solution. The idea

to use the Kronecker canonical forms of two pairs of matrices (A4, B) and (C, D), in
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order to solve this matrix equation, was brought forward by Rézsa in [144].
Two-parameter spectral problems were considered since the early days of
Multiparameter Spectral Theory. For example, two-parameter oscillation theorems
were proved by Klein [117], Bécher [32, 33, 34] and Richardson [141]. Dixon [59]
studied expansions of functions in terms of eigeﬁfunctions of a pair of coupled two-
parameter differential equations of Sturm-Liouville type. Also Camp [48, 49] and
Doole {60] proved various two-parameter expansion theorems. Pell [138] studied a
two-parameter system of integral equations of Fredholm type. In the 1950s Cordes
[65, 56] developed an abstract Hilbert space setting for a special class of two-parameter
spectral problems (cf. also [131] for a modern presentation of Cordes’s work). Later
Arscott considered particular classes of two-parameter spectral problems in [5, 7).
Among recent publications we find work of Binding, Browne, Faierman, Isaev, Sed-
dighi and many others. Most of the early references discuss the right definite case
where eigenvectors alone are complete, while Binding and Browne [26] consider the
dimensions of root subspaces for general eigenvalues of self-adjoint two-parameter

systems.
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Chapter 4

Bases for Root Subspaces in

Special Cases

4.1 Introduction

In this chapter we study the finite-dimensional completeness problem, i.e.,
the problem of finding a basis for root subspaces, for special cases of eigenvalues of
multiparameter systems.

In the second section of this chapter we consider nonderogatory eigenvalues.
Theorem 4.4 is the main result in this case. The method used to prove this result is in
part different from the method used to prove the completeness result for simple eigen-
values and can not be directly generalized. When an eigenvalue A is nonderogatory

the restricted transformations A; = (A, — IY) | 5 i € n, that are commuting

Al-
and nilpotent, are assumed to be in upper Tolcj;)rl(itzI flt;rm. With corresponding root
vectors we associate monic matrix polynomials. It turns out that the n-tuples of the
first row of the array A, consisting of matrices A4;, ¢ € n, form Jordan chains for these
matrix polynomials. A chain of vectors zg,z1,...,2, is a Jordan chain for a matrix

polynomial L (i) at an eigenvalue yy if

k
3 %L‘J” (o) Th—j =0, fork=0,1,...,p. (4.1)

=07}
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(For further definitions concerning matrix polynomials see [89, 90].) We also give an
algorithm for the construction of a basis for a root subspace. As an application we
consider self-adjoint multiparameter systems. We obtain a new result for the real
simple eigenvalues of weakly-elliptic multiparameter systems.

Our main results are Theorem 4.18 and Algorithm 4.19 in the third section.
We use the same ideas as we did in Section 2.5 when we constructed a basis for the
second root subspace. We use essentially one more important fact, that we can sep-
arate for all ¢ the kernels of the matrices W; (A) and subspaces spanned by vectors
z%, for k > 1, that are used in the construction of root vectors in addition to the
vectors z;p € ker W; (). We ensure this by choosing vectors z,, from a direct com-
plement H] C H; of ker W; (A). This fact is used along with relation (2.7) to obtain
equalities of typé (4.26). The matrix S,, plays a role similar to that of the matrices
By and D} before. It acts on a space isomorphic to the space spanned by matrices

T (l’m-l), f € dn. These were the matrices introduced in Section 1.5. The matrices

T}"(l’m_l), [ € dn, are linearly independent and their isomorphic images are elements
of the kernel of S,,,. Next we can associate with every element in the kernel of S,, an
m-th root vector that is not an (m — 1)-th root vector. Our proof that this vector is
actually a root vector is technically very complicated. We do this in Lemma 4.17. We
also prove that we can associate in the same fashion a set of linearly independent root
vectors with a basis of the kernel of S,,,. We prove by induction that this procedure
gives a basis for the root subspace. In the first subsection we establish a basis for
the third root subspace and in the second subsection we prove the inductive step. In
the third subsection we give Algorithm 4.19 and consider the special case of simple,
completely derogatory eigenvalues. Simple eigenvalues in the two-parameter case are
always completely derogatory. We also discuss the relation between our expressions
for the root .vectors for simple eigenvalues of the two-parameter system and the con-
jecture of Faierman [69, Conjecture 6.1] on the structure of root functions for a class

of Sturm-Liouville boundary value problems (0.1).



120

4.2 Nonderogatory Eigenvalues

In this section we assume that A € ¢ (W) is a nonderogatory eigenvalue.
The next result is a well known biorthogonality property between right and left Jordan
chains. We write it in the following form for future reference. We assume that index

¢ is fixed.

Definition. A Jordan chain 2p,21,...,2, (as in 0.2) is called mazimal for a linear

transformation V' at an eigenvalue Ag if z, ¢ R (Aol — V).

Lemma 4.1 Suppose that 29,21, ..., 2, is a mazimal Jordan chain for T'; at the eigen-
value X\; and wy is a left eigenvector at the same eigenvalue. Assume also that
dim (ker(\: —T;)) = 1. Then it follows that w§Aozx = 0 for k = 0,1,...,p—1
and wyAgzp # 0.

Proof. For k < p—1 we have 0 = w§ (Mo — A;) 2zk41 = wiAo2g. Sup-
pose now that wjAgz, = 0. Then it follows that Agz, € (ker (\iAg — A,-)*)J' =
R (XA — A;) and so there is a vector z,4; such that (AJ —T%) zp41 = 2,. This
conﬁradicts the assumption that zy, 21, ..., 2, is maximal Jordan chain. The proof is

~complete. O

In this section we will denote the family of multiindex sets

{(jl’j2)°°'ajn); 0 <7, Z]tzk} (42)

i=1

by ¥ for k =0,1,...,p. Here p is a fixed nonnegative integer.

Lemma 4.2 Let {Bk = [b{Fj]?j_l ,k=0,1,..., p} be a set of matrices and assume
that rank(By) = n — 1. Choose a vector zy € ker (By) \ {0}. Then there exist vectors
zi,t=1,2,...,p such that E§=ijx;_j =0 fori=1,2,...,p if and only if

oy by oo b
> o b - B

jey;

=0 (4.3)

by by - bis
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fori=1,2,...,p.
Proof. We construct a matrix polynomial

L(p) = IpP*' + B + Bp_1pP ™ + -+ + By = [bi5 ()7 -

Then
LW@O) =k By, k=0,1,...,p (4.4)

and because dim (ker L(0)) = 1 the polynomial L (1) has only one elementary divisor
at £ = 0. Then by [90, Corollary 1.14, p.35] it follows that u = 0 is a root of degree
p + 1 for the scalar polynomial d (1) = det L (1) if and only if matrix polynomial
L (u) has a Jordan chain xg,z1,...,z, of length p+ 1 at 4 = 0. That is, if and only

if the vectors zg, z1,...,%p, Zg # 0, are such that
ko1
3 ﬁLU) (0)z_; =0, fork=0,1,...,p, (4.5)
— ! ,
or if we use (4.4), if and only if
k
ZBjmk_j=0, fork=0,1,...,p.

j=0

If the polynomial d (1) has = 0 as a root of degree p+ 1 then d(0) =d' (0) =... =
d® (0) = 0. Finally the relations

b (0) 3 (0) - V) (0)
W)= —H b3 (0) b (0) .. bl (0)
jev JI'JZ! te ]n' . . .

%) (0) b%5) (0) -+ G (0)

o by - O
|

jev,

bjﬁ bz;"z ver bin

nn

hold and the result follows. 0
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The above lemma is used in the proofs of the main results in this section
concerning bases for root subspaces for nonderogatory eigenvalues. For the definition

see page 78. Let us recall that H C H; is a direct complement of the kernel of W; (X).

Proposition 4.3 Assume that the eigenvalue A € C" is nonderogatory. Then the

following statements are equivalent :

(i) There exist n-tuples aj,as,...,a, € C", a; # 0 and vectors z;1, Tia, . . ., Tip €

Hi,i=1,2,...,n such that

k-1
S Ui(ar—j)zij =Wi( XNz  fork=1,2,...,p; i=12,...,n. (4.6)
j=0

(ii) There exist n-tuples a;,ay,...,a, € C*, a; # 0 and vectors z;1, Tiz, ..., T; p—1 €

H!,i=1,2,...,n such that

k=1
Zy}‘oU; (ag—j) zi; =0 fork=1,2,...,p; 1=1,2,...,n.
—

(tii) There exists an indez h such that dimker (A, —T}) = 1 and T, has a Jordan
chain of length p + 1 at eigenvalue Ap.

(iv) There exists a set of linearly independent vectors {2, 21,...,2,} C H such that
ML —=T)) 2z = Ef;&a,-,k_jzj for k =0,1,...,p; i = 1,2,...,n and not all
a1 = 0.

Proof. If we multiply (i) by yf on the left then (i) follows. Assume now that
(41) holds. In Proposition 2.15 we have already proved that (i) and (i) are equivalent
for k£ = 1. Suppose now that we have already found vectors z;1, z;o, ..., %; -1, Where
0 <k < p, such that (4.6) holds. Then ¥-5=5 U; (a—;) z; is orthogonal to the kernel
ker W; (A)* and so it follows from Lemma 2.12 that there exists a vector zy € H!
such that Ef;l U; (ag—j) i = W; (A) zi,. We can continue this procedure until ¥ = p.
Therefore () follows.

It is easy to observe that (iv) implies ().



Suppose now that (i) holds. We define vecto

2 = E T15, @25, Q- ®
jev,

IS

.'I}nj"

for k=0,1,...,p. It follows then from (i) and Lemma 2.1

Vih Vi Wi
Vo oo Vi Wa()
(Mo = A 2 = :u 2,.1 1 2.( )
Vi o Vi wa !
a-1
iz, -0 Vigioazag, zonl (aj-1) Ty
1=
Ja—1

3 Varzej, -+ Vo172, IEOUz (aj,—1;) Tau,
— 2=

Jn—1
VaiTnj, oo Vaic1Znj, IEOUn (aj,-1,) Zni,
”=

Viic1z15, 0

n o1 o Vgrii%e-1je, 0
=2 20 2 Ggter| o Vi@, Vg,
Jjev, or=11=0
Vor1,i-1%g4+1jen O

Va,i-1Znj, 0

Vlti+1 Vlfn
V21;i+1 1/2fn

Vi - Vi

Vi-ai'*'lxljl

Véai+1x2j2

Va,it1Znj,
‘/17‘.4'13;1.7'1

Vo-1,i+1%g-1,j,
Va,i+1%4j,

VarLit1Zg+1,041

Va,it1%nj,

123

Zp =

VinZ1j,

VanTaj,

Vnnmnj,.

(4.7)

(4.8)

In the displayed determinant (4.8) the first ¢ — 1 and the last n — ¢ — 1 columns

are the same as in the determinant displayed in (4.7). The vectors Vg,aq, , r =

L...,i—=1i+1,...,n,in (4.8) can be substituted for Vi x4, without changing the
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determinant. The sum (4.8) is then equal to

o Vo0 Yy - W

n Jg—1 V:]T"l,l T Vj—l,i—l 0 V:]T—I,i+1 ce ‘/qf—l,n
'ez\p qrzl IZO ajll_lq)r .V-q"i b 1/q1;£_1 V;;. 1/;1;‘_*-1 oo V'qt‘
JEW L @T=1 ig=

q Vs = Vg 0 Vit o Vs

Vh oo Vi o0 Vi o VL

“T1j ® 0 @ By—1,jg 1Tty ® Tatljgr ® @ Ty, (4.9)
For every multiindex j € ¥, where [ < k, the vector z;; ® x2;, ® - - - ® z,;, appears
exactly n times in the summation (4.9), once for every ¢ = 1,2,...,n. Then we sum

in (4.9) over ¢ and because a determinant with two equal columns is zero it follows

that the sum (4.9) equals

Vizy;, Vw0 Viemyy,
k-1 Va1zoj, Vaoxgj, -+ Vauoj, k-1
2D G| . . =D @180
1=0 e, : : : =0

lexnj,, V;12$nj,. e Vnnxnj,.

This establishes (iv).
To complete the proof we will show that (#7) implies (¢¢). This implication
was proven in Proposition 2.15 for ¥ = 1. Assume now that we have already found

aj,ay,...,ar1 and Z;1, Tig, ..., Tik—2; ¢ =1,2,...,n where k < p such that
-1

Zy;-"OU,- (az._j) Tij = 0; = 1,2,...,]9— 1. (410)
j=0
It remains to show that we can also find a, and z;4—1, ¢ = 1,2,...,7n such that
k=1 -
> YioUi (ak—j) 35 = 0,
J=0 .

Since (i) and (#) are equivalent we can find z;4_1, i = 1,2,...,n such that

k-2
> Ui (ak-5) zi5 = Wi (X) 2ije-r.

§=0
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Next we build the vectors 21 = ey, 15, ® 25, ® -+ @ Zpj,, I = 0,1,...,k— 1. In

the proof of Proposition 2.15 we showed that
2 € ker AT —T)? /ker (AL -T).

In the Remark following that proof we pointed out that a;; # 0 for some h € n. The
same calculation used to show that (i) implies (iv) also proves that (\,JJ —T}) z =

Yizboujizi 1 =0,1,...,k—1. Then the vectors u, = [§~1~"

Zp-1,7=0,1,...,k-1
form a Jordan chain for I', of length & (< p+ 1). Because dimker (A, —T}) = 1,
every Jordan chain can be extended to a maximal one (cf.[§2, Theorem 2.9.2(b), p.
85]). Lemma 4.1 implies that wiA¢y; = 0, = 0,1,...,k — 1 and then, because
LH{u; 1=0,1,...,k—=1}) = L({z; 1 =0,1,...,k —1}) = ker (\u — )%, it also
implies that

wilozy =0, 1=0,1,...,k—1. (4.11)

Next we form the n X n matrices B; = [bf-j] :]__1, [=0,1, .. , k—1 where bﬁ-j = Yo VijTi.
The relations (4.10) are equivalent to Zé;{] Bjaj_;j=0forl=1,2,...,k —1 and the

relations (4.11) are equivalent to

-t 1 1
R

j1 1 1
Z bJZl b%2 te b’%n

jey,

=0, for [=0,1,...,k—1.

by bly oo bR

nn

Since A is nonderogatory rank By = n — 1 and then Lemma 4.2 implies that there

exists an n-tuple a; such that E;?; ! Bjai_; = 0 or, equivalently, such that

k—1
> YU (ak—j) 335 = 0

=0
fort=1,2,...,n. O
Remark. Suppose that the conditions of Proposition 4.3 hold. Then for every index
h such that a;, # 0 (there is always at least one such h because a; # 0) the vectors

u = (Agl =T Py , 1 =0,1,...,p form a Jordan chain for [, at eigenvalue Ap.
7
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This implies that the vectors 2g,2i,...,2, are linearly independent and they span
N2, ker (AT —Ty)P*H. O

As an immediate consequence of Proposition 4.3 we have

Theorem 4.4 Suppose A € C" is a nonderogatory eigenvalue for a multiparameter
system W such that dim (ﬂ?=1 ker (A — I‘,-)N) = p+1. Then there ezista;,ay,...,a,
€ C" a; #0, and zi1,%s,...,%ip € H], i =1,2,...,n such that

k-1
> U; (ak—j) Tij = Wi (A) zax fork=1,2,...,p; i=1,2,...,n.
7=0
Moreover the vectors
2k = Z L1y ®x2.1'2 DEEE ®xﬂjn1 k =0,1,°",p
jew,

where ¥}, is defined in (4.2), are such that

k-1
()\;I — F,’) R = Z ak_.]-,,-z_,-
=0

and they are a basis for the root subspace (., ker (\J — )™ .
Algorithm to Construct a Basis for the Root Subspace of a Nonderogatory
Eigenvalue

In the proof of Proposition 4.3 we can also find an algorithm for the con-
struction of vectors 2z, k¥ = 0,1,...,p that form a basis for the root subspace of a
nonderogatory eigenvalue. The construction uses only data from the multiparameter

system W.

Algorithm 4.5 Step I. For i =1,2,...,n find ;0 # 0 and yio # 0 such that
Wi () zio = 0 and yiW; (X) = 0.

Choose a direct complement H; of ker W; (X) for alli. Form zy = 210 @220 ® -+ ® Tng
and set k = 0.
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StepII. Find a matriz polynomial Ly, (u) = IpF++ Byy*+- - -+ By and its determinant
dy (p) = det Ly (p). If
d0)=0 (4.12)
then set k = k 41 and go to Step III, otherwise quit the algorithm.
Step III. Find a, € C*,a; # 0, such that
k
> Bruay =0
=1

where By = [yjVijzal!._,. Fori=1,2,...,n find vectors zy € H} such that

n
Hl=

k=1
> Ui (ak-1) za = W; (A) za.
1=0

Form z, = 3 %1j, @ Zaj, @ +++ ® Tnj,. Repeat Step II.
jev,

It follows from Corollary 4.6 that the vectors zp, 21, ..., 2; obtained in the
above algorithm form a basis for the root subspace ker (AI — I')", i.e., they satisfy
the relations

-1 ‘
(M =Tz = E ay-ji2j forl =0,1,...,k.
—

Definition. The smallest integer k such that the sum on the left-hand side of the
condition (4.12) is not 0 is called the ascent of T' at the eigenvalue A.

The next result is the immediate consequence of Lemmas 4.1 and 4.2.

Corollar}; 4.6 The ascent of I' at the eigenvalue X is equal to

dim (("] ker (\:J — 1‘,-)”) :

i=1

Let us now demonstrate Algorithm 4.5 with an example :

Example 4.7 We consider a multiparameter system

100 10 0 0 -1 0
WiA)=1010|M+|0 % —L|X=|0 0 0
011 01 1 0 0 0
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and -
100 000 1 0 -1
WaA)=100 0| AM+}{0 1 1|Ad—-|-1 -1 -1
0 01 010 0 -1 -3

Because Ay is invertible it is nonsingular. The spectrum is

o (W) = {(1,—1), (_‘?—_-‘g—z) <_£ _\/_§>}

2’2

We consider the eigenvalue Ag = (1,—1). Then we have

010 0 01
W1 (Ao) =10 % % and W2 (Ao) = 100
0 00 0 0 4

We observe that dimker Wi (Ag) = dimker W5 (o) = 1. To complete Step I of
Algorithm 4.5 we choose

1 0 0 4
Tw=|0|,20=|1|,y0=|0]| andypy=| 0
0 0 1 -1
0
We also set H] = al|,abeCy) and H) = 0|, a,b € C ;. The matrix
b
0 ) .
By = 0 _1 has rank 1 and therefore Aq is a nonderogatory eigenvalue. We have
1 0 .
20=]0|® | 1 |. Then we go to Step III. We choose a; = [ 0 ] and
0 0
0 0
zyu=| 1 | andagy=1{ 0
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since Vi1z10 = Wi (Xo) 211 and Vayzeg = Wo(Ao) 2o;. Then it follows that z; =

0 0
00 w 2(,2
1 |®|1],B1= and Ly (p) = ysody (p) = p? (p?+1).
. . 0 0 p+1

0
Because d} (0) = 0 we repeat Step III. Now we choose a; = [ . ] and vectors

0 0
Zigo=| 0| andzo2a=| 0
2 0
0 0
so that V121, = W) (Ao) 12 and Vo129 = Wo (Ao) Tog. Wehave o= | 0 | ®
2 0
2 2 S 2
and By = . The matrix polynomial Ly (1) = et o # has deter-
0 0 p3+1

minant da () = p? (u +2) (43 +1). Because d (0) # 0 we quit the algorithm. The
root subspace at the eigenvalue Ag is three-dimensional and has a basis {z, 21, 22}.
O

4.3 Self-adjoint Multiparameter Systems

4.3.1 Elementary Properties

Definition. A multiparameter system W is called self-adjoint if all the transforma-
tions Vi3, 1 = 1,2,...,n, j =0,1,...,n are self-adjoint, i.e. V}; = Vi

In this section we study self-adjoint muli:iparameter systems. It is an easy
consequence of the definition that also all the associated transformations A;, i =
0,1,...,n are self-adjoint in H with (-,-). The scalar product (-,-) is defined on page
8. For a self-adjoint multiparameter system W we define a new bilinear form on H by

[z,y] = (Aoz,y) for all z,y € H. The bilinear form |-, ] is an indefinite nondegenerate



130

scalar product because A is invertible.

Definition. An operator T € £ (H) is Ag-self-adjoint if [Tz,y] = [z,Ty] for all
z,y € H.

Lemma 4.8 The associated transformations T';, i = 1,2,...,n are Ag-self-adjoint.

Proof. For any two z,y € H it follows that

[Pix,y] = (A,—m,y) = (27, Aty) = [:1:,I‘,~y] .

O

Lemma 4.9 Suppose that A € 0 (W) and that A\; €R for an indez i. Then A €R".

Proof. Assume that z € H is an eigenvector for I' at A. Consider now a
subspace N = (& ker (M — T;)". Because N is invariant for I'; and T; is Ag-self-
adjoint it follows from [91, Theorem 3.3] (see also [91, Section 3.4, pp. 37-38]) that N/
is nondegenerate for [-,-]. Now suppose that A\; €C/R for some j # i. Then it follows
from [91, Corollary 2.6] that AV is neutral in [-,-]. This contradicts the assertion that
N is nondegenerate for [-,-]. Hence it follows that A; €RR for all j. 0

Definition. A self-adjoint multiparameter system W is called right-definite if A is

a positive (or negative) definite matrix in H.

Definition. An eigenvalue A € o (W) is called semisimple if
dimker (AL — I')? = [ dimker W; (1),
i=1
or equivalently, if the eigenvectors span the root subspace at .
When W is right-definite the bilinear form [+, -] (or — [-,]) is actually a defi-
nite scalar product and therefore o (W) CIR® and each T'; has a basis of eigenvectors.

Then we have the following completeness result (see [10, Theorem 10.6.1]). We state

it to make this dissertation more complete.
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Theorem 4.10 Assume that W is right-definite. Then the spectrum o (W) is real.
Furthermore all the eigenvalues are semisimple and there exists a basis for H consist-

ing of decomposable eigenvectors for I,

Proof. Because Ay is a positive (or negative) definite operator the scalar
product [+, ] (or —[+,]) is definite. The transformations I'; are self-adjoint in [+, -] and
hence R™ D ¢ (T') = 0 (W). Also all the eigenvalues of I'; are semisimple. Therefore
it follows from Theorem 2.11 that there exists a basis of decomposable tensors for

miker (AT —Ty) for all A € o (W) and so for

H= @ ((n] ker (A — r,-)) :

A€o (W) \i=1

4.3.2 Weakly-elliptic Case

Definition. A self-adjoinﬂ multiparameter system is called weakly-elliptic if there

exists a cofactor Ag;; of Ag that is a positive definite operator on H.

As an immediate consequence of Theorem 4.4 we have :

Theorem 4.11 Assume that A is a real eigenvalue for a weakly-elliptic multiparam-
eter system W and that dimker W; () = 1 for all i. Then X is nonderogatory and
there exist n-tuples ai,as,...,a,, a; # 0 and vectors xy; € Hl, t =1,2,...,n, j =
0,1,...,p such that

-1 '
VV,(A) Ty = ZU,(aJ) Tii—j fOT l= 0,1,...,p.

j=1

The vectors z; = Yjeq, T1j, ® T2j, ® *++ ® Tnj, are such that

-1
(A;I - F,-) 2= E Arilk.
k=0

Moreover, if p+ 1 is the ascent of A then the vectors z;, | = 0,1,...,p form a basis

for a root subspace of W at .
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Proof. Suppose that z;p € ker W; (A) are nonzero vectors. Then we only

need to show that

zoV1z0  z3VieTio0 z1oVinT10
TaoVo1T20  T55V2aT20 T30 VanT20
rank ) >n—1.
| x:oaniL'no m:o‘/n2xn0 x:OVnnan i

The result then follows from Theorem 4.4. By definition of a weakly-elliptic multipa-

rameter system it follows that z§Ag;;29 # 0 for some ¢ and j. Since
T A M
290ij20 = TipTi0 ' |20 0ij %0 »

where 75' = 210 Q- - *®Ti1,00Ti41,0® - - ® Tng, it follows that the cofactor of 23, V;;zio

in the matrix

-

Vi 7ioVieZio Z1oV1aT10
T5Va1To0  T5oVarTa0 T50Van 20
By =
| ZhoVr1Zno  ThoVa2Tao ZnoVanTno |
is nonzero and so rank By > n — 1. 0

Remark. A special case of the weakly-elliptic case is the elliptic case. A multipa-
rameter system is called elliptic if Ag;j, ¢ = 1,2,...,n are positive definite operators
on H for some j. A special case of Theorem 4.11 for the latter case was first proved
by Binding [23, Theorem 3.1} in a more general setting with a different method. We

remark that we do not generalize his main result [23, Theorem 3.2].

4.4 Simple Eigenvalues

4.4.1 A Basis for the Third Root Subspace

Suppose that A is a simple eigenvalue and that ad!,adl,...,
for ker By and bY!, b",..., bl a basis for ker Bj. We write by = [b$,bg!,...,b%].
We restrict our attention to the root subspace N = ker (\I — ')V and we bring the

al! form a basis
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restricted transformations (A\;J —TI';) |u, that are commuting and nilpotent, to the
form (1.2). We refer to (1.3), (1.5) and (1.6) for the definitions of the arrays A* and
their row and column cross-sections, respectively. It follows from Theorem 1.12 that
for every Ci2%, k € d there exists a unique symmetric matrix T} such that R{'T} =
C}. We choose vectors 25, k = 1,2,...,d; such that B; = {zo,z},zf,...,zf‘}
is a basis for ker (AI —T')? and (\J —T) 28 = aQz. Further we have that zy =
T10 ® To0 ® +++ ® T,9 and we showed in Proposition 2.17 that there exist vectors
.xf?l € H!, where H; C H; is a direct summmand of the kernel ker W; (1), such that
=0 12109 - @2k @+ @ zno and U; (adt) zip = Wi (X) k.
Now we define matrices By, € C"*", k € d; by

[ k * k * k]
Yozl YioVieTin v ¥ioVinZin

* k * k * k
B YooV21%5  YaoVerTsy ++¢ YapVenZ5y
1k = . ) . )

* k * k * k
_ynOVﬂlxnl YnoVn2Zn1 *** YnoVanTn i

and then we define a matrix S € C**@+14/2 55 follows : for p € % we can
uniquely choose numbers k& and [ so that ¥ > 7> 1 and p = Lk_—il)ﬁ + 1 . Then the
p-th column of S is equal to By zal* + By al if k # ! and to By 4a)' otherwise. The
matrix S is called a symmetrization of the array A%. We also write S, = b}S.

Further we identify the subspace © of symmetric d; X d; matrices with the
space C(@+141/2 Note that © is a vector subspace over the complex numbers because
oI? = (aT)T if  €C and T is symmetric. The isomorphism 3 : © — @ +D4/2 i
defined by

T
’P(T):[tu tia top tiz ta3 t3z ... lig, toq - tdldl] (4.13)

tiy tiz -+ tia

tig tag -+ 1t
where T'=| = " leo.
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" Theorem 4.12 Suppose that t € ker 82\ {0} and T =1 (t). Then there ezists an
n-tuple a% € C" such that

d;
Z tkIBlka?l + B0a°2 =0. (4.14)
k=1
Furthermore there exist vectors xy € HY, for i =1,2,...,n, such that
dy
U; (aoz) Tio + Y Us (a,lf) 8 =W;(A) 250 (4.15)
k=1 -

where a2 = Y tyall. Then the vector.

di n—1

Z$10® QT2 ®: - QTpo+ Z 17%] Z E z10®-- ®$31® ®xt1® “QTno
g=1 k=1 s=1 t=s+1
(4.16)
is in ker (\I — T')® / ker (AI - T')? and
. d
(AT —Ti)zo = Y ak2ef + a2z, (4.17)
k=1

Conversely, if zp € ker (AL — I')® / ker (AI - T')? and (4.17) holds then if T
is the unique symmetric matriz such that C'? = [a{2 aj?2 .- alf } = RIT it
follows that v (T') € ker Sy and there exist vectors z;3 € H;, 1 =1,2,...,n, such that
(4.15) and (4.16) hold.

Proof. Because t € ker S; and T = ¢~ (t) it follows that
& dy

Z ZtklbOBllak = 0.

k=11=1
Hence Y0, T% t1uByal € (ker BY)' and therefore there exists a® € C” such that
the equality (4.14) holds. By definition of the matrices By and By, it follows that

dy di n n

xv7 01 1 . 02 _
DD tuy YioVijay;Ti + > YioVijioa;” =0
k=11=1 j=1 j=1

for i = 1,2,...,n. Then U; (a%) z; + T8, U; (al2) 28, € (ker W; (z\);‘)J' and so it
follows from Lemma 2.12 that there exist vectors z;; € H} such that (4.15) hold for

a2 = T, tal. Next we form the vector z; as in (4.16) and we have

(Ao — Ay) 22 =
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®
Vg - WVii1Zio 0 Vi+1Z10 -+ ViaZuo
2| Ve-11Zs10 00 Vem1,ic1%s-10 0 Vor1,i+1%s-10 *** Vec1n®s-10
Y| Vaze ce VeiniTez . Wo(A)zee  ViipiZea  -o- VenToa |+
s=1
Ver1,1%s41,0 *° Vai1,i—1%s41,0 0 Vot i+1%s410 *** Vag1,0%s4+1,0
Va1Tno cor Vaic1Zao 0 Va,i+1Zng - VanZno
®
Viizyo --- Vl,i—lxlo 0 Vl,i+1$10 «oo VinTio
k k k k k
d n-1 n Vazg 0 Vein1zg We(A)zg Vegnzs o0 Veazh
+ 2 tm) D, ; : : =
k=1 s=1 t=s+1
I ! I ! !
Vazy - Vaga We(M) oy Vignzy o0 Vi,
Va1Zao o+ Vaic1Zao 0 Vo,i+1Zno o VanZno
®
Viizre Viezio -+ Viazio
02| Vo1Zao Vaoao -+ VanZao
= q . +
V;zlxno 1/112"1711.0 e ‘/rmmno
( ®
Viizie -+ 0 -+ VinZ1o
d1 n '
k o1\ .k k
+ ztkl Z V;lzsl vt UB (al )xsl V‘?ﬂxsl +
k’l=1 s=1 . .
\ ValZno -+ 0 «+ Van®no




Vi1z10

V. zk

n—=1 =n s1%s1
+3, 2
s=1 t=g+41

Vi

\ Mxlmno

Viizwe .- 0

Wlmil N 0

VaiTng - 0

Viiz1o

dy n '
02
=0 Doz + ) tu )| Vazk
k,I:l s=1 .

anxno

U (af') x40

Vs1$‘so s Us (algl) Ts0

0

anno
k
V‘?Tlxsl

Vznxto

Vnnw n0

®
‘/inan \ \
V.;nwso

!
VinZy

Vrman } )

Up (@) zp ++- Vipmio

Us(a?l)xlscl V;n“’fl

Un (a?l) Zno *°° meno

dy
— 02 127k
= a’No2g + Y, aj Aozt

Conversely, suppose that z, € ker (AI — ') / ker (

T tie

. . . tiz o2
exist a symmetric matrix T =

| tidg,  Tog

such that

k=1

tldl

tod,

tdydy )

di
A =Tz = ai?zF + a2z

k=1

136

AI -T2 Then there

€C%*% gnd a vector a2 € C*

(4.18)
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for all 7 and 4
2
ai? = tuafl. (4.19)

Relation (4.19) is a consequence of Theorem 1.12. Next it follows from (2.7) that

j=1
and from (4.18)
n di
Y Vi (Z aj;7t + af Zo) =W; (M) z. (4.20)
= =
For ¢ = 1,2,...,n we choose vectors v; € H; so that v}z, = 1 and vfz¥ = 0 for

k € di. This is possible because £ {z;o} N H; = {0}. After multiplying (4.20) by
Vi Q®--- Qv QYjp ® Vi ®--- @ vy, on the left-hand side we get

Z YioVij Z a12 i+ Ey,OV,Ja Tip=10 (4.21)

=
for all 7 and therefore there exist vectors z;; € H] such that (4.15) hold. Now we

form the vector

n—-1 =n

Z$10® ‘RT2®: - ®~’Bno+z ta Yy, Y, 2109 @25 ® - ®2L,® - QT
s=1 k=1 s=1t=s+1

The same calculation as above shows that
di
NI =T3) 25 = a2zt + aPz.
k=1
Hence it follows that z3 — 25 € ker (A\I — I') and so there exists a number § €C such
that 2, = 24 + 629. Without loss we can use the vector 15 + 0219 in place of z;s.

Then it follows that

dg n-1 =n
22—23710@ ‘®T2® @Tno+ Y. bt Y, I, T10® - QTH® - QTh @+ ®Tng.
s=1 k=1 s=1 t=8+1

It remains to be shown that 9 (T") € ker S;. The equalities (4.21) can be written in
matrix form as
Z Blka + BoaO2 = 0.
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Multiplication on the left-hand side by the matrix b} yields

dy
Z baBlka,lf =0

k=1
and then also
d d
> biBuallty = 0. (4.22)
k=11=1
Finally, we note that the relation (4.22) is equivalent to ¥(T') € ker S,. g

Corollary 4.13 Suppose that T = {tq,ts,...,ts} is a basis for ker Sy and that vec-
tors z3,22,...,2% are associated with t,ts,...,t4, respectively, as described in the

first paragraph of Theorem 4.12. Then
{zo;z%,zf,...,zf‘;z%,z%,...,zg} (4.23)

is a basis for ker (AI — 1")3. We can choose a basis T so that the nonzero n-tuples,
associated with basis (4.23), in the set {agk, k=12 g€ gii} are linearly indepen-
dent.

Conversely, if z3,23,...,25 are such that {zo; PO AU LIP 3 ,zgz}
is a basis for ker (AI — I‘)3 and Ty, Ts, ..., Ty, are symmetric matrices such that Ci? =

RV, k € dp then {¢ (Th) , ¥ (T3) ,...,% (T4,)} is a basis for ker So. In particular,
it follows that d = ds.

Prdbf. The corollary follows using the correspondence between h and 2, as
described in Theorem 4.12 and the fact that 2% are linearly independent if and only
if Tj are linearly independent. We only need to show that the n-tuples al? can be
chosen so that the nonzero n-tuples in the set {ag", k=12 g€ _c_lﬁ} are linearly -
independent. Suppose that 77 = {t},t5,...,t}} is a basis for the kernel of b}S;.
Then there exist n-tuples a’%, g € d, so that Sit/, + Byal? = 0. Because al! € ker By,
k € d; we can substitute basis 7" for a basis 7 = {t;, ts, ..., t4} such that the n-tuples

ay?, satisfying relations Sit, + Boal? = 0, are as required. O

Let us now consider an example.
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Example 4.14 Suppose that

100 10 0 -1 00
Wi(A)=101 0|+ 0%—% A—| =100
011 01 1 0 00
and
010 100 0 2 0
WaA)=|1 1 0[M+]000[X=-]1 1 o
00 0 001 0 -1 —1

Because the matrix Ag is invertible W is nonsingular. We consider the eigenvalue

Ao = (1,-1). The matrices

1 00 -1 -1 0
Wido)=|1 1 2 | andWa(Re)=| 0 0 O
0 00 0 1 0
both have rank 2. We choose vectors
0 0 0 0
tio=| 1 |, Z0=|0|,%0=|0| andyp=|1
-1 1 1 0
a a
We also assume that Hj = b |, a,beC} and Hj = b |, a,b€ C;. Then
b 0
0 0
wehave zp=| 1 | ®| 0| and By = [ 00 ] So the eigenvalue Aq is simple.
= ) 00
We take afl = ! ,adl = 2 | and by = [ (1) (1) ] . Next we choose vectors
[0 ] 0 ~1
sp=sh=|1|,2=|0|andaf=| 1
1] 0 0




140

such that U; (a‘}l) 0 = W; (o) 2} for i, f = 1,2. Then we have
0 0 [ 0 ~1 0
z=|1|®|0|andZ=|1|®| 1 |+]1]|®]0
1 1 -1 0 1
and also 3
2 2 2 4 2
Bn = Bm = and 82 = .
0 0] 000
1
Hence dy = dimker S, = 2. We choose 0, | -1 for a basis of ker S,.
-1 1
) 0 1 0 0 1 -1
Then it follows that Tf = 0 _1 and T5 = . and so

| () (2
) [

1
1

5 ()

Next we have to find vectors :1:{2 € Hf, for i, f = 1,2, so that

Vazh — Viezd = W; (Aq) 2k

and
(Vi — Vi) ziy + (Vi1 + Via) 24 = Wi (Xo) 25
They are
0 0 -1
gp=1|,2sh=|0]|,2h=] 0 | andz?, =
1 0 0
Then the vectors
0 -1 0 0 0 -1
B=|11® +l1|ejo|l-|1]®

AR
-
—
-
o
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0 2 0 -1 0 -1
Z=| 1 |®lo]l-l1]|®] 1 |+|1]|®] 1
-1 0 1 0 1 0

together with 2, 2! and 2? form a basis for the third root subspace ker (A\I — I')%. O

4.4.2 A Basis for the Root Subspace

By Theorem 1.18 we can conclude that the root subspace at a simple eigen-
value A, and the action of the n-tuple of matrices I on it, is completely described by
vectors zf,, m =0,1,..., M for f € d,,, corresponding n-tuples a?"‘, m=12,...,.M
for j € rp and symmetric matrices T{", m = 2,3,..., M, for f € dy, that satisfy the
regularity and matching conditions. For m = 0,1, 2 we have already seen in Theorem
4.12 that we can describe the vectors z/, using vectors x,-o,z{'{,zf%, J1 € di, Jo € d,
where ¢ € n, and matrices Tl, J1 € di. Our aim is to find an inductive procedure,
i.e., an algorithm, to construct the vectors zZ, for all m and f.

In what follows we again use the sets of multiindices ®,, 4 and x; as defined
on page 48. The symbol £, 1 < g < n, stands for the set of all multiindices
u = (uy,U,...,U) suchthat 1 < u; <up < --+ < uy < n. Now we state the inductive
assumptions. We suppose-that we have vectors z;9, =& € H;,i€n,l€m—1; h € di,
n-tuples aY, | € m —1; h € d; and symmetric matrices T} € C%-1%di-1 ip the form

(1.29), where dj_; = ¥/z d; and [ = 2,3, — 1, h € d;, such that :

(i) the matrices Th(“ 1) h € d; are linearly independent for all / and the matrices
T} satisfy the matching conditions (1.25), i.e.,
1-13
k(hla) (k) _ k(hls) 4(1zk)
2 Etg(h’xiz) thihsg) = E Etgoflin th(iag) (4.24)
k=l +i g=1 k=lg+l3 g=1

where 1 = (ll,lg,l;;) € @1,3 and h = (hl,hg,hg) € X1

(ii) the n-tuplesa,!=1,2,...,m —1; h € r; are linearly independent and a) = 0
fori=2,3,....m—land h=nr+1,7+2,...,d;.
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(iif) if we define
1K
all = lelt,fgeg)) a¥ (4.25)
j=le=
forl =2,3,...,m—1;h €d; k€l —1 and g € d;, then the relations

-1 d;
kX: 2:1 U,' (a’;;‘) .'L‘,qk + Ug (a?f) Tipo = VV, (A) .’I}Z (4.26)
=] g=

hold for all ¢, [ and h.

(iv) the vectors 2, 21,22,...,2{" together with the vectors 23, 22,...,2%, ..., 22

m—1
22_1,..., 75 that are defined by

min{k,n}

A=z + >, D D sghxlh

=2 le®;, hexg

form a basis for the kernel ker (AI — I')™. Here the numbers s* gh are defined as in
(1.37) for k =2,8,...,m—1; ¢=2,3,...,min{k,n}; g€ d; 1€ ®1q, h € x1.
A vector 28, ,forl1 € @, 4, h € x1,¢=1,2,...,min{m — 1,n} (here &y =k
and x; = dj) and u € Q,, is a decomposable tensor z&; = 21 @ 72 @ -+ ® z,
where z; = :L'Z; if ¢ = u; for some j and z; = z;p otherwise. Then we write

=2 T0m (4.27)

ue,

forl € ®pm_14, h € x1and ¢ =1,2,...,min{m — 1,n}. We also write

dm—

Bp_1 = {zo; R IR S A A T s
By Corollary 4.13 it follows that there exist vectors z;p, %, n-tuples a) and
matrices T} for | = 1,2, h € d; such that the conditions (%) to (iv) are satisfied. Now
we assume that the above conditions are satisfied for/ =1,2,...,m—1 (m > 3) and
we will prove that we can find vectors z/, i € n, f € dmm, n-tuples a?"‘, f € dn and

symmetric matrices Tf*, f € dm, so that (4) to (iv) hold. We first introduce some

notation.
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For k=1,2,...,m —1 and g € d; we define an n X n matrix

g * g * g
YioVuziy YioV12Zik o0 YioViaZix

50V2175,  ysoVaord, <oc s Vauzd
By, = Y20 ?1 2% Y20 ?2 2k Y20 ?n % | (4.28)

g g g
i YnoVa1Zor YnoVa2Zuk ** YnoVanTok i

For the purpose of calculation we write 77" for unknown symmetric matrices 77" in the

form (1.29) and ad™ for unknown n-tuples a?’“. The entries of the d,,_; X d,,_; matrix

T™, where dp_; = Y77 d;, are written t?;‘gl,‘li’)). They must satisfy the matching

conditions y
m-l{3
k(lul2) ym(isk) k(ls) m(bk) _
2 Etg(hllfzz) tihsg) — E Ethhﬂil) thagy =0 (4.29)
k=l +i3 g=1 ) k=ly+13 g=1

for 1 € @, 3 and h € x3. We write the d; X d,;,—; matrix

?;g]).,m—l) tzrltg,m—l) . tgl(ll,m—)-l)
tm(l,m—l) tm(l,m—l) . tm(]’.':r—r'zl—l)
Tm(l’m—l) — (21) (22) (2dm-1)

tm(l,m—l) tm(l,m-—l) tm(l,mj—l)
(d11) (d12) (didm-1)

also as a column ) .
tm(l,m—-l)
1)

tm(l,m—l)
(d11)

tm(l,m—l)
(12)

= ey |- (4.30)

(d12)

m(1l,m—1)
t1dm_1)

m(l,m—1)

L (dl dm—l) J

The matrix T;* is in the form (1.29). For every column we define a column vector

kg» B €Em —1, g € dy, of the size v = min {Z d + g, E"“kd } by taking the first
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v entries in the (Ek"l d; + g) -th column of T!™. Note that t;, are defined so that
they consist of all the entries above and including the main diagonal of T;* that are

not 0 in the form (1.29). We define a column vector ™ as

m
t11

m
ldi

m
21

n=| L (4:31)
2d2

m
tm—2,1

7 s |

We split the entries of a matrix T}" into two column vectors f}‘ and f}" The
mapping I — Y ( ¥ ,tm) is a generalization of the transformation v defined by
(4.13). It is bijective and therefore it has an inverse. The inverse maps two vectors
%}" and f}" into a matrix Tf* in the form (1.29). We use this inverse mapping in
Lemma 4.16.

Now we write the system of equations (4.29) in matrix form as
S2m 4 §22%m — (4.32)

where the entries of the matrices SZ' and S22 are determined by the system (4.29).
These entries are given because we assumed that the matrices Tg’c were given for
k < m — 1. Further we want the entries of the matrix 7™ and the n-tuple a?™ =

T
[ ™ am ... g0m ] to satisfy the scalar relations

m—1 di m—k n
> (Z D20 Dty b viaVisah + y?o‘/}jxeoa?"‘) =0 (4.33)

j=1 \ k=1 g=1 I=1 h=1

for all <. These can be written equivalently in matrix form

SHE™ 4 S22™ 4 Byad™ = 0. (4.34)
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Again the entries of the matrices S& and S12 are determined by the equations (4.33).

We multiply the equation (4.34) by the matrix b} on the left-hand side and we obtain
b SLt™ 4 bySi%t™ = 0. (4.35)

We choose a matrix b,, so that its columns form a basis for the kernel

b 12 *
ker[ 05m :I .
52

Then we define a matrix

b*Sll
sm=b:,,[ 0~m }
Sp

The equations (4.32) and (4.35) then yield S,,t™ = 0.

We now choose vectors 2f, € H, f € d, so that By U {z,fn, fe _dﬂ} is a
basis for the space ker (AI — I‘)m+1. By Corollary 1.18 there exist n-tuples a?"‘ and
symmetric matrices T7" in the form (1.29) for f € dy, such that (4) holds and for all

1 € n we have

m—1 di
MNI=T)z =3 Yol + a7 2 (4.36)
k=1 g=1
where a¥ o are given by
m—k
Kl
abm = 3~ th}"(gh)) a¥ (4.37)
=1 h=

for k € m —1 and g € di. Next we prove three auxiliary results.
Lemma 4.15 In the above setting it follows that dimker S,, > d,,.

Proof. By Theorem 1.17 it follows that ‘the entries of the matrices T/
satisfy the matching conditions (4.29). We put the entries of these matrices into two
columns T7 and T as in (4.30) and (4.31) via the isomorphism 9,,. Then we have
SHET — SZH™ = 0. Relation (2.7) implies

n

S VENI=Ty) 2, =w; W) 2,

i=1
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for all ¢ and then it follows from relations (4.36) that

m—1 d;

U (a’_j?‘)f 2]+ U; (aj)r’"")lr =W, AN 2. (4.38)

k=1 g=1
Because we assumed zf, € H} and H] N L{z;} = {0} it follows that there exist
vectors v; € H; such that vjzp = 1 and vfzj, = 0for k € m—1 and g € dp. We
multiply the equality (4.38) by a vector v} ® -+ @ v}, @ Yy} ® v},; ® --- @ v} on
the left-hand side. Then it follows, using the structure of vectors z{, k < m —1, in

condition (7v), that

m—1 di
kZ 21 YU (a’gc}n ) o + yioUi (a(}m) Zio =0 (4.39)
=1 g=

for all ¢ and all f. Now we apply the relations (4.37) to obtain

j=1 \k=1 g=1 I=1 h=1

n m—1 dp m—k
> (Z S22 3 viaVisadh af g + i Visio afa) =0

and then it follows that the vectors E'f", f}" and the n-tuple a‘}m are such that equation
(4.34) holds for all f. Therefore the vectors 7, f € dy, are elements of the kernel of
the matrix S,, and because they are linearly independent we have d,, < dimker S,,.

a

Lemma 4.16 Suppose that t7* is an element of the kernel ker S,,. Then there ezist
a vector T® and an n-tuple ad™ such that (4.32) and (4.34) hold. Furthermore there

exist vectors z}, € H!, i € n, such that

m—1 di
> 2. U (aI;in) o+ Ui (a?m) zi0 = Wi (A) 7, (4.40)
k=1 g=1

where a7 are given by (4.37) for f =1 and T = ;! (~i",fi").

Proof. From the structure of the matrix S,, it follows that for an element
T € ker S, there exist a vector t7* and a n-tuple al™ such that relations (4.32) and

(4.34) hold. We associate with the pair of vectors t* and t}*, using the inverse of
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the isomorphism ¥;;!, a symmetric matrix T/*. The relations (4.34) can be written

equivalently in the form (4.39) for f = 1. Then it follows for every i that

mz_l % Ui (algcin) zh + U; (a?"‘) zi0 € (ker W; (,\)"‘)‘L
k=1 g=1

and hence it follows from Lemma 2.12 that there exists a vector z},, such that (4.40)
holds. O

Lemma 4.17 Suppose that we have the same setting as in the previous Lemma. We

construct a vector
min{n,m}

m= T+ Z > Y st

where the numbers sT are defined in (1.37) and the vectors =5, are defined in (4.27).
Then it follows that

m-—1 dg

AT =Ti)zp = Z alt 2f + ad 2 (4.41)
k=1 g=1

for all s,

Because the proof of this lemma is long and technically complicated we

include it in Appendix B. Next we state and prove our main result.

Theorem 4.18 Suppose that {E”‘, fe d} is a basis for the kernel of S,, where d =
dimkerS,,. Then there exist vectors m{m, matrices Tf* and n-tuples a‘}m so that
conditions (%) to (iv), on page 141, hold also for l = m. In particular the union of the

set of vectors

min{n,m}

sh=snrt 2 3 3 shof, fedn

9=2 led;, hex)

and the set By,—1 forms a basis for the (m + 1)-th root subspace ker (AI — F)'f‘+1.

Proof. Suppose that we are given a basis 7 = {E’“, fe d}. Then by Lemma,

4.16 it follows that we can find vectors x{m, symmetric matrices Tf" and n-tuples a?"‘
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such that (i) and (#) hold for | = m. We define r,, as the difference between
the number of linearly independent n-tuples in the set {agk, kem, g€ ﬂ} and
the number of linearly independent elements in the set {agk, kem—-1, g€ @}
By a change of a basis 7, similar to the one in the proof of Corollary 4.13, we
can assume that a basis 7 is chosen so that the corresponding n-tuples a?m, fe
Tm are such that agk, k € m, g € 7 are linearly independent and a?m = 0 for
f=rm+1,7m+2,...,dn. So condition (it) holds. From Lemma 4.17 it follows
that the vectors zf, € ker (\I — I')™*! /ker (AI—T)™ for f € d. They are linearly
independent because E?‘ are linearly independent. It follows that d < d,, and, because

d > d,, by Lemma 4.15, we have d = d,,,. Then also (iv) holds for m. O

4.5 Further Discussions

4.5.1 Algorithm to Construct a Basis for the Root Subspace

of a Simple Eigenvalue

From the above lengthy discussion we can extract an algorithm which ex-
plains how to construct a basis for the root subspace of a simple eigenvalue of a
multiparameter system W. It follows from Theorem 4.18 that for every m we have
dimker S, = d,,. When dimker S,,» = 0 but dimker S,/_; # 0 for some m/' it follows
that M = m'—1 and the vectors 2/, constructed for m =0,1,2,...,M, f € d, are a
basis for the root subspace. This is used in the following algorithm. We assume that
A € 0 (W) is such that dimker W; (A) = 1 for all 3.

Algorithm 4.19 Step I. Fori € n find vectors x;9, yio € H;\ {0} such that
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Find subspaces H! C H; so that H; = ker W; (A) @ H,. Form 2y = £10®Z20® - ®Tno

and i i
yoVuuzrio YioVieTio -0 Y1oVinTio
B ysoVo1zoo  YsgVaoZ2o 0 YsoVenZao
6= . .
L ynoVn1$no ynovn2xn1 e ynOV;znmnO

If rank By = n then set M = 0 and quit the algorithm, if rank By = n — 1 then go
to Step II, Algorithm 4.5 (for nonderogatory eigenvalues), else write d; = dimker By
and go to Step IL

Step II. Find bases {a?el, fe gil} for ker By and {bo, fe @} for ker B;. For all i
find vectors zf; € H!, f € dy such that

U; (a(}l) zi0 = Wi (A) 2.

n
Form vectors z{ = 21 Z1® - QTi—10® a:{l ® Zi+1,0 ® -+ - @ Tnp and matrices
=
i‘/fovllel onV12${1 yfovlnw{l
?/;0V21x£1 y§0V22x{1 e y§0Vn2$£1
By = . .
i y:;oanmil y;OVn2x£1 y:;ovnn$£1 i
and S = b}S, where by = [ b b ... bY ] and S is the symmetrization of
AV = [a‘l)1 adl ... al ] as defined on page 133. Write dy = dimkerS,. If

do = 0 then set M = 1 and quit the algorithm else set m = 2 and go to Step III.

Step III. Find a basis {t!,t2,...,t%} for kerS,, symmetric matrices T} (via the
f

isomorphism ) and n-tuples a?,ad?, ... af such that

dy
(a) g§1 B, al2 o T Boaf =0, where

ag; = th‘((lggagl’ g€d, fE€ED

and
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(b) the nonzero n-tuples in the set {a‘g’k , k=12, g€ @} are linearly independent.

Next find vectors zly € H! such that

d
Zl U; (aﬁ) zh + U (822) zio = W; (X) 7.
g=1

Form vectors

n-1 n
=me® -QTH®: - - @Tn+ Z o Y Y T10® - @Th®- - BT @ - -®Tng

=1 i=1 j=i+1
and matrices Bos, S3t, S¥2, S22 and by as in the displayed formula (4.28) and the
discussion that follows it. Note that S3' = 0. Then we find a matriz Sz and write
d3 = dimker Ss. If d3 = 0 then set M = 2 and quit the algorithm else set m = 3 and
go to Step IV.

Step IV. Find a basis {E’{‘, ... ,Efinm} for ker Sy, associated symmetric matrices T}

and n-tuples a , as described in Lemma 4.16, so that

(2) E EBkg of +Boaf = 0, where

(k1) N
a,f = 21 th}"(gh) By

and
(b) the nonzero n-tuples in the set {aOk kem, g€ dk} are linearly independent.

Then find the numbers s'f"}{, defined by the recursive relation (1.38), forl1 € @,,4, ¢=
2,3,...,m and h € x; and vectors =i, € H so that

ZZU( ™) 2%+ Us (a¥™) zi0 = Wi (A) o,

k=1 g=1

Next form vectors zf, as described in (iv), page 142, and matrices B, 5 S,';’;+1, t,] =
1,2, b1 and Sp41 as in the displayed formula (4.28) and the discussion that follows
it. Write dppy1 = dimkerSpyqy. If dpy1 = 0 then set M =m and quit the algorithm
else set m = m + 1 and repeat Step IV.



151
To shed some light on Algorithm 4.19 we consider an example.

Example 4.20 The two-parameter system

(100 0] (10 0 0] (100 0 |
Wi (A) = 0100 M+ 03 —30 N — -100 -1
0110 01 1 1 0 00 0
|00 0 1| 00 0 2| | 0 0 0 —1|
and
010 100 0 2
WaA)=[1 1 0[M+]|000]d—-|1 1
000 001 0 -1 —1
is nonsingular because matrix |
1 -1 0 0 0 0 0 0 0 0 0 0]
-1 =10 0 0 0 0 0 0 0 ©0 0
0 0 1 0 0 0 0 0 0 0 0 O
o 0 0 1 =200 L 0 o0 00
o 0 o0 - -1o f I 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 O
Bo=l G 6 001 —10 1 —10 0 —1 0
0 0 0 -1 -1 0 -1 -1 0 -1 -1 0
0o 0 0 0 0 1 0 0 1 0 0 O
0 0 0 0.0 0 0O 0 0 1 —-20
0 0 0 0 0 0 0O 0 0 -2 —20
0 0 0 0 0 0 0 0 0 0 0 1]

is invertible. Here we identify the tensor space C*® C? with the vector space €2 via
P

the Kronecker product. (See page 75.) The spectrum is

o (w) ={(0,-1), (%—g) (1,-1),(1,-2)}.

We will find a basis for the root subspace at the eigenvalue Ag = (1,-1).
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We begin with Step I of Algorithm 4.19. It follows from above that

[1 00 0] L1 o

33 1
W1 (o) = 0 0 _1 and Wa(Xo)=| 0 0 0
0 1 0

(000 0

Observe that dimker W; (Ag) = dimker W5 (Ag) = 1 and therefore dy = 1. Then we

choose ) ) L
0 0
0 0
1 0
Zio = . y Y10 = 0 yZ0=|0| andyp=|1 |,
1 0
=3 0 - e 1 -
¢ T a h 3 ( 0 h
b ¢ 1
and Hj = ¢ ; , a,b,ce C} and H) = bl,abeC}. So z= . ®
0
. L ¢ - / L 0 .
0 00
0| and By = [ 0 0 ] Hence it follows that d; = 2 and the eigenvalue Aq is
1
simple.

1 0
We proceed with Step II. We choose al! = [ . ] and al! = l: . ] We also

0
choose by = I: 0 1 ] and, because it does not influence further calculations, we will

omit it. Vectors zf; € HY, 4, f = 1,2, such that Uj (a‘}l) zi0 = W; (Ao) o are

o]
) 0 -1
oy =25 = ) , Ty =|0| andaf = 1
0 0

-0-



Then

00 000
and we find By; = By = . S0 8y = and therefore dy = 3.
00 0 00

NS
N
Il

O O O B O O = O O O o O
L

and 22 =

1)
oS O O =

We continue with Step III choosing matrices

10
.Tf:[

01
] T2 [ } and T2 = [
0 10

0

Then

A12 =

I
(

1
0
0
0

) (3)
) ()

)
')

01
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while A% = 0. Vectors zf, € H!, f =1,2,3 and i = 1,2, such that U; (alf) L+
Ui (aZf) o} = Wi (Ao) ol are

-




and
T =| 0
0
Next we find vectors
[0
0
0
0
0
d=|°
0
0
3
0
0
| —2

and matrices

2 —4

By = :I ’
0

. t

We now write 7312 = [
4

S3' = 0. Then

Tix) = [

and the matrices Tll ,‘,12’ (Tf'(m)

it follows that

S3 =

e
, Tag = and z3, =
L O -
-2
1
, 7= ° and 23 =
0
1
5
0
0
- .—4- L

—4 -8
ng= and 323—-
‘ -1 0
ta 13
. Because B11 = B12
ts tg
100 01
AT =
010 00
1

)=

[ 2 —4 —4 -8 —2 —4]
0 0 -1 0 1 0
0 1 -1 0 0 0
0 0 0 1 -1 0

o O

N = O O O O
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and then we have d3 = 2. Therefore we continue with the Step IV.

We choose a basis for the kernel of S5 so that

00 -1 1 1 —4

00
We can also choose T13 1) T2?’ ) - [ 0 0 ] . Then the array

o) (7)
(%) (%)

and the arrays A3 and A% are 0. Vectors zf; € HY, i, f = 1,2, such that

Ui (a}) ol + U; (a3}) ok + U (a8}) 2%y = Wi (o) oy

are 3 3 ) }
0 0
16 14 ! 5
1 2 1 2
Tig = , Tz = , Zog3=| 0| and z5;=| 0
13 16 13 14 23 23
0 0
| —10 | | —10 |
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Next we find vectors

0 0
0 0
0 0
0 0
2 0
, | 16 2 | 14
23 = s and 23 = 10
2 0
16 | 14
2 —2
-2 2
| —10 | | —10 |
and matrices
By = [ ~10 —20] and By — [ —~10 —20 ] .
1 0 5 0

Now we will find the matrix S4. We are looking for a symmetric matrix

V1 Uy Uy U3 us by t3
Vg Uz Uy Uy Ug L9 14
Uy U W1 We W4
T: = Uz Ug Wo W3 Ws
Us U W4 W5 We
1 to 0
t3 t4 0 0 O

o O O O O
o O O O O

00
Because By = Byjg = [ 0 0 ] and there is no symmetry condition on the entries of

00
00

v V2

the matrix 72D = [ } we can assume that T?(u) = [ } . So we omit

Vo ’1)3
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the entries v; and write

U
U2
w1
ug
(31 Uq
o t3 and t* = ZZ

14 us

Ug
Wy

Ws

We

Matrices Tg2 ) (Tf@))T, forg=1,2,3,and Tg1 () (T;‘(l))T, for g = 1,2, are symmetric
if g —ty—ty =0, t3—ts =0, ty +dtg +t4 = 0, up —uz = 0, 2; —t3 — w; = 0,
t3—wy=0,20 -ty —wo=0,t4—w3 =0,y —ws =0, uy —us =0, t3 — w3 =0,
ty +4t3 +ws = 0, t4 — wy = 0 and ¢ + 4t4 + we = 0, and so we find matrices S3!
and S7? such that SPt2 + S3%t? = 0. Next, the matrices S}' and S}? such that

S1Et + S%tt = 0 are

11 _
Sy =

-10 -20 -—-10 -20
1 0 5 0

and

—2 —4 0 —4 =8 00 -2 —4 0 0 0
0 0 0 -1 0 00 1 0 00O0]
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We find that ) _
1 0 4 1
0 0 -1
0 2 -1 -1
0 0 1 -1
S4=|1 0 4 1
0 0 1 -1
0 0 -1 1
0 -2 1 1
| 0 2 -1 -1

Because d4 = dimker Sy = 1 we have to repeat Step IV. First we choose an element

-5 1
in the kernel ker 4 so that Tf 13) — [ L1 } , and then we find that the matrix

000 0 0 -51
000 0 0 1 1
0 011 -1 =1 0 0
T¢=]10 0 -1 -1 -1 0 0
0 0-1 -1 5 00
-51 0 0 0 0 0
|1 1.0 0 0 0 0]

Therefore we have 7

A34 — 1
1

i 1

and the arrays A24, A and A% are 0. It also follows that

t T
We write T5(14) = [ ' | . Then the matrices T;’ (5) (Tf(14)) are symmetric if t; —tp =
12

0 and t; 4 5¢3 = 0. The only solution of this system of equations is t; = t, = 0. This
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implies that ker S = {0} and therefore ds = 0. So we will quit the algorithm after
completing Step IV for m = 4. It remains to find vectors rl, € H!, i=1,2, such that

Ui (au) z3 + Ui (321) = Wi (Xo) zly.

They are ) _
0
—42 N
Ty = 4 and zoy = | 0
L. 92 .
and so i i
0
—18
30
= —42
—6
30
—42
’ 8
-20
= 92 s

The root subspace at A¢ has dimension 9 and its basis is

1
B = {30,21,21,22,22,22,23,z3,24}

4.5.2 Completely Derogatory Case

A special case of a simple eigenvalue is a completely derogatory eigenvalue.
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Definition. A simple eigenvalue A of a multiparameter system is called completely

derogatory if By = 0. The matrix By is defined by (2.18).

We write {ex; k € n} for the standard basis of C*. Then the next observa-

tion follows :

Proposition 4.21 Suppose that X € 0 (W) is completely derogatory. Then d; = n,

Tm = 0 for m > 2 and we can choose a! = e, for k € n.

Proof. 1t follows from Proposition 2.17 that d; = n and we can choose

ad! = e;. In the previous subsection we established property (ii), page 141. Thus it
also follows that r,,, = 0 for m > 2. |

Note that it follows from the above proposition that we can assume Ry =

[I o --- O]andthén

m(1l) __ m m
T = [alp afy - al |

forlem—1.

4.5.3 Two-parameter Simple Case

For n = 2 an eigenvalue A € ¢ (W) such that dimker W; (A) = 1, for¢ = 1,2,
is either nonderogatory if By # 0 or completely derogatory if By = 0, i.e., a simple
eigenvalue is completely derogatory. The basis constructed in Algorithm 4.19 has

simpler form for » = 2. It consists of vectors

(3] m-—
m(kl
2, =z, ® T2 + 710 ® T, + E Z Z Z tf(;h)) (x!llk ® zh + 23 ® wgk) (4.42)

for m =0,1,...,M and f € d,,. Faierman conjectured [69, Conjecture 6.1, p. 122]
the structure of root functions for nonreal eigenvalues of a two-parameter eigenvalue
problem arising from class of Sturm-Liouville boundary value problems (0.1). The set-

ting of these problems implies that all the eigenvalues are such that dimker W; (A) = 1
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for both i. Therefore the eigenvalues are either nonderogatory or simple. Our formu-
lae (4.42) for simple case are finite-dimensional simplified versions of his expressions

for root functions. Our constants s’fn((gl,’:)) , that are a counter-part of the constants cf-;’-,rf

in the expressions for the root functions ug',g in [69, Conjecture 6.1], carry further
structure that, when used in conjunction with the construction in [69], might lead to

a solution of Faierman’s conjecture.

4.6 Final Comments

Completeness results form an essential part of Multiparameter Spectral The-
ory. They were studied since the beginning of the theory. In 1968, in a modern revival
of the theory, Atkinson [9] posed a completeness question in terms of the structure
of root subspaces. This problem remains unsolved to this day, although partial so-
lutions can be found in the literature cited below, and in this dissertation. (See also
Comments to the previous two chapters.)

A basis for the first root subspace (that is the subspace of joint eigenvectors)
and a theorem on the decomposition of the space H into a direct sum of root subspaces
was given by Atkinson in [10, Chapter 6]. Isaev [109] discussed a general relation
that holds for root vectors, similar to the relation (2.7). He also stated the problem
of describing root subspa-ces of the associated system in terms of the underlying
multiparameter system [112, Lecture 6, Problem 4].

In [93, Section V.9] Gohberg and Krein proved that a vector function z (t) =
eyl %xk is a solution -of a differential equation L (%) z (t) = 0, where L is an
operator polynomial, A its eigenvalue and g, 21, ..., 2, is a Jordan chain at A, Jordan
chains for an operator polynomial being defined by (4.1). (One can find a version
of this result for matrix polynomials in [122] and a version for holomorphic operator
functions in [133].) Gadzhiev in [83] and also [84, Chapter 3] studied a multiparameter

generalization of this setting. He found a set of linearly independent vectors in a root

subspace, but he did not discuss completeness.
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Binding [23] proved an important completeness result for real eigenvalues of
elliptic multiparameter systems. A special case of his result in finite-dimensions is
generalized in Subsection 4.3.2, but we do not recover his full result. The structure
of root vectors he gave remains the same as for nonderogatory eigenvalues in our
presentation.

In this chapter we prove completeness results for nonderogatory and simple

eigenvalues of finite-dimensional multiparameter systems, i.e., eigenvalues A such that
dimker W; (A) =1

for all ¢. We also give a method for constructing a basis for the second root subspace
in Subsection 2.5.2. The general completeness problem, i.e., the problem of finding

bases for root subspaces for eigenvalues A when
dimker W; (A) > 2 (4.43)

for at least one of 7, still remains unsolved. We see no immediate obstacle, as far as
the overall reasoning is concerned, to generalizing our method to (4.43). On the other
hand, it seems technically very complicated and it would require an extensive amount
of calculation, as already exhibited in the case of simple eigenvalues. So, we would
suggest considering use of other algebraic constructions to model multiparameter
eigenvalue problems in order to understand the structure of root vectors better. The
paper of Atkinson [9] could be used as the sign-post for the possible directions of
research.

There are other immediate questions awaiting to be answered. For exam-
ple, we already mentioned open problems of representations by tensor products and
by multiparameter systems in the Comments section of Chapter 1. Another exam-
ple is the question of the relation between the root subspaces ker (AI — I‘)N and
ker (XI - I‘*)N, where X is the n-tuple of complex conjugate numbers ;. This ques-
tion is of special interest in connection with non-real eigenvalues for self-adjoint mul-

tiparameter systems. And finally, certainly the most important question for applica-
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tions is to generalizing finite-dimensional completeness results to infinite-dimensional

multiparameter eigenvalue problems.
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Appendix A

Proof of Theorem 1.18

Theorem 1.18 Suppose that an array A is in the form (1.2), dy = 1 and the nonzero
elements in the set {a‘}"‘, meM, fe _CL,E} are linearly independent. Then there exist
symmetric matrices ITf*, m =2,3,...,M, f € dn in the form (1.29) such that the

relations
i o m(hly) 20!
1m 2 2
A5 = 12:1 hE  f(hahgy @b (A1)
2= 2—'

hold, wherel; € m —1, h; € dy,, and also

m—l;;
k(i1 Isk k(ly 1 Iok)
> Zt s gnten S Zt i) Er(hag) (A2)
k=l 412 g=1 k=h+1; g=1

where1 € ®,,, h € x1, k € m — 2 and g € di. Moreover the matrices Tm(l’m Y e
dm are linearly independent form = 2,3,..., M.

Proof. The matrices Tf}" of Proposition 1.17 are such that relations (A.1)
hold and matrices T}" of (1.27) are symmetric. We construct matri;:es T}" induc-
tively as described on pages 36-38. To prove the theorem we need to establish three

properties of matrices T}"', m' =2,3,...,M, f € dp. These are :
(i) the matrices TP are symmetric, i.e.
m!(hla) _ (' ()T
Tf i2) _ (Tf 21 )

for all /; and Iy such that l; + 1, < m/,
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(ii) the products ,
m' () (il (m)\T
776" (To% N, (A.3)

g

where T;gnl) is defined from (1.33) and

T}n'(l,l+1) T}n’(l,l+2) . T}n'(l,m—l) 7
m'(2,{+1) m'(2,1+2)
Tf I(I) Tf Tf M 0
. . . )
- T}nl(m—z+1,1+1) 0 . 0 -

are symmetric for all/ € m — 2 and g € d;, and

iii) the matrix T™ ") coincides with the matrix

f
’“m'(lllz) ,(1112)
7 ™ }

, T
(T}" (1,11)> .

in the entries other than ones denoted by *, for all [; and I5 such that ;41 < m/'.

First note that condition (%) holds for I/; and I such that l; # Iy and all
m’ and f from the definition of matrices Tfml(l‘l’). Condition () is equivalent to the

condition

m(111213) — m(l; I3l2)
S f(h1hahs) = S f(hahaha)

for1 € ®,, and h € x;. From Proposition 1.17 it follows that the matrices

1(12) (T3(12) )

3(11 .
(11) are symmetric

are symmetrlc for g € d; and f € d3. Because we also have that T¥

and T}’(m) = T}3 12 = (T?(m)) the conditions () — (4i%) hold for m’ = 2,3. We proceed
by induction on m’. Suppose that (¢) through (%) hold for m’ = 2,3,...,m —1. We
want to prove them also for m’ = m. By Proposition 1.17 and definition (1.32) we

have

m—=1(1,m-2) m(l,m-1) _ m(Q,m-21) _ m(l,m-2, 1) m(l,m-1) ;m~-1(1,m—2)
2 Ui LG T Sila = S5(ei) Z Eiw)  Chiia)
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for all 4,5 € d; and therefore the matrix Ty

T
m—2(1,m—1) (T}"(l’m 1)) is symmetric for all

g € dm-2. Now we proceed with backwards induction on ¥’ to prove that products

Thm™ (Tof)" (A.4)

g

are symmetric matrices for all g € dw. We suppose then that matrices (A.4) are
symmetric for ¥ = m —2,m —3,...,k+ 1, (k > 1) and we prove that they are

symmetric also for ¥’ = k. Consider first the product

k(rk+r m(m—k—rk+r T
Tg}g +)(Tf( +)) _ (A.5).

forr € [’—"—-2‘—’3] It is equal to

dy - T T
Z T:}{’k"”)T (ig’;l'ﬁk+r+1)Tm(m—k—r—l,k+r+1)) (Z,l,l(’;'k“'_l’m'k")) ) (A.6)
h1=1

By the inductive assumption for m' < m — 1 we have

Z tk+r(rk) k+r+1(k+r,1) k+r+1(rk1) k+r+1(1kr) Z 7,’,Ic+1(llr»:) k+r+1(k+ryr)
hz(ig) 3(hzh1) i(igh1) 55(h1gi) ha(ha1g) J(hzt)

and therefore the product (A.6) is equal to

di
k+1(1k) 1(k+r,k+r+1) m(m—k~—r—1,k+r+1) 1(m—k-r—1,m—k—r) T
hEI hzl tha(mag) ThoR (77 ) (77 )
1=1 ho=

Next we use the inductive assumption for k' > k + 1 to show that (A.6) is equal to

k
k+1(1k k+rm—k— k+1(m—=k—r—1,m— m—k—r—1m—k—r)\T
3 3% g apermsed (i) (gl e
1= 2—

_ rrm(k+rym—k—r) K+L(1R) (kL (m—k—r—1,m~r) 1(m—k—r—1,m—k—r)\ T
Tm rm r hzl hzl thz(hlg) ( P m m—r ) (Zh;}g m r)
1=1 hp=

(A7)

We use again the inductive assumption on m’ < m — 1 to show that

Z tk+1(1k) m—r(m—k—r—1,k+1) _ m—r(1, k,m—k-—r—l)
ha(hg) Litiha) " Zi(ha1gd)
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m—k—-
_ m—r(lm—k—r—1 k) m—r(m—k—-rk) ;m—k—r(1, m—k-r—-l)
= Si(hig) E Lilhag) thz (h14)

Then it follows that (A.7) equals to

Tm(k+r,m-—k-—-r) Z ( k(m—r—k m—r)) (T;(r}rzx—k—r—l,m—k—r))T (Z’];(rg—k-—r—l,m—k—r))T —
1 1

m(k+rm—k— k(m—r—km—r T
= pptnmkon) (T N (A.8)

So the products (A.5) and (A.8) are equal and therefore the product of the r-th
(block) row of the matrix T,y km) and ¢-th (¢ = m — r) column of the matrix T}"(k)
is the transpose of the product of the ¢-th row of the matrix T: ,({") and r-th column
of the matrix T}”(k). Now we proceed by backward induction on ¢ to prove that the
above is true also for the products of the other rows and columns. Suppose now that

for every r € ["‘—;ﬁ] and ¢ =m—r,m—r—1,...,g+1 (where ¢ > ['—“2;’°]) we have

Z Tk(rp)( m(qp)) Z Tm(rp)( k(qp)) . (Ag)

p=k+r p=q'+k
We want to prove the relation (A.9) for ¢ = ¢. By the definition of the matrices
T}"(qp ) it follows that

Z TP (T, m(qp)) - Z THCP Z[ Thertl) Tieet?) .. qilem-eil) .

p=k+r p=k+r hi=1
r (T}n(q—l,pﬂ)): (T}n(q,pu))z (T}n(m-p—l,pm)T 1T (Z,if‘ﬁ;l'q)):
(Tfm (q—l,p+2)) (T}n(q,p+2)) 0 ( Zilz 1(gz--l,q)) _
_ (Tm(q—l,m-q+1))T 0 0 _ (Zl“" ,m—p>) _
_;,Zl "‘Z: TP [0 ..o 0 THeFD Tl . pllmee) ).
1=1 p=Rk+r .
) (Tfm(q—l,k+r+1))z: (T}n(q,k+r+1)): (Tm(m—k—r—l k+r+1))
(T}n(q—l,k+r+2)) (T}n(q,k+r+2)) 0

_ (T}n(q—l,;n-qﬂ))T 0 . 0
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(z5)

(Zif‘f{l'q))T (A.10)

( Z’{(%—l,;n—k—r))T
L. 1 -

Next we have

k(r‘ ) 1 p+1 1(p,p+2 1(pym—q+1 —
P [0 e (PP ) ’l'l(P ) e 'l'I(P q )]
p—k+r

— Tk(r,k+r) Tl (k+rk+r+41) k+zr:+1 Tk(rp) Tl (p,k+r+2) +i+2 Tk(rp) Tl (p,k+r+3)
gR A pny IR

mz: Tk(f‘P)Tl(P,m q+1) (A.11)
p=k+r
and by the inductive assumption for m’ < m — 1 it follows that

k+r4l y

tp(rlc) k+r+I+1(p1) k+r+I+1(rk1)
Zk hzl k2 (ig) J(hzhl) i(igh1)
p= +r ho=

k+i+1 dp
— Sk+r+l+1(1kr) Z E tp(lk) k+r+I+1(pr)
j{h1gi) ha(h1g) ](hzt)
p=k+1 hy=1

Therefore the expression (A.11) is equal to

[d"E“ (LR kLR r4+1) kiz & AN )

h R
a1 ha(h1g) ~h2R pFor] ka1 ha(h1g) ~h2

—g— d
TR R R ppnm—atl)
pokrl hymy r2(hag) Thar

m—g=r+1 dp

= (lk) yrt ror4ptl m—g+1
= X D thag |0 - 0 TP qpGraety L qplmeet) |
p=k+1 ho=1

Using this last calculation and the inductive assumption for m’ < m — 1, respectively,

we'show that the expression (A.10) is equal to

G omogTrtl & ) rp(rrptl 1

X r,r m—qg-+
S OX T #lRglo 0 TRt qeredy L ppme) ]
hi1=1 p=k+1 hy=1
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i (T}n(q—l,k+r+1))T (T}n(q,k+r+l))T (Tm(m—k-r—-lk+r+1)) .
(T}n(q—l,k+r+2))T (T}n(q,k+r+2))T 0
i (T}n(q—l,;n-qﬂ))’f 0 0 -
[ (Z;(%—l,q))T T
1
@) | _
(g
= i m_qz_:m i £(1R) [ Tmngtk)  pm(rg+k+1) pm (rym—r) ]
2 a2 ha(h1g) | *f f f
[ 0 0 0 0 0]
0 0 0 0 0
(Tplgramreo) 0 0 0
()" (mee)” 0 0 - 0
- (Tiz:z(tg-l.m—r)) (Tp(q,f.n—-r)) (T,;:Z(z-r.:.p,m—r))T 0 OJ

(zs)”
(Z;%—l,q))T
1

( Z}f (%—1,;71—1:4)) T
= 1

By the assumption for m’ < m — 1 it follows that

z E 7fu(lk) q—1+p(q—1,u)
ha(h1g) '(th) -

u=k+1 hz=1
q—-14+p—k d
— sq-1+p(q LLk) Z -
i(jh1g)
u=q hz=1
and therefore
m—q—r+l dp

2.

p=k+1 ho=1

(A.12)

sq—1+p(1 kg-1) _
i(h1gj)

Z 75(1—1+p(uk) u(g—1,1)
i(hag)

hg(jh;)

(1K)
Z tzz (h19)’



0
0
()" (@)

0
(T’fz(gz—l,q—lﬂ)) T

@) )
I (T:}(iq,q+k))T 0

(T:}({q,q+k+1))T (T;}(zq+1,q+k+1))T /

i (Tgkl(zq,;n—r) (T:}(aq+1.,m—r))T

)T

-+
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0 0 .- 0|
0 0 .- 0
0 0 ... 0=
0 0 --- 0
m—r—pm—r)\T . .
(TG 7) 0 - 0]
; ]

0

Tk(m-—r—k,m—r)

T
gR ) J
(Talg )" 0 0 "
- T T
(T;il(gz 1,q+1)> (T,fl(}’i”l)) 0 (A.13)
i (T}}fgi_l,m_r—k))T (Tii_l(qgm—r—k))T . T’%I(Z—r—k—l,m—r—k)
Since Zh(m) is a left inverse of T%m) it follows that
(T;ff‘z’{l"’))TT 0 0
dy (T’}I(gz—l,q-*-.l)) (T}:I(?iq+1)) 0
2 . . .
hi=1 . : :
—1,m—r—k\T m—r—k)\T m-—r—k—1,m—r—
i (T}i(}z2 1, k)) (TI},(%’ k)) ces T}}I(R k—1,m—r—F)
(2"
( Z}ll(q—l,q))T
1R = (A.14)

| (7o)
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Now we use the equalities (A.13) and (A.14) to show that the expression (A.12) is

equal to

(Tgk}gq,qw)T
(Tk(q,q+k+1))T

(ryg+k) m(r,g+k+1) (rym—r) gR
[ Tpeat®) e e Tpem |

Z Tm(r,p)( k(qp)) )

p=g+k

()

g

Thus we proved that the relation (A.9) holds also for ¢ = ¢. We proceed with

the induction until ¢ = [m‘k] Then it follows that the matrix Tm(k) (T:}({"))T is

symmetric for all g € di. Hence we proved the inductive step for &' = k. We stop the
induction process when k = 1. Then it follows that the products (A.3) are symmetric
and this proves condition (i%) for m’' = m.

It remains to prove that the matrices T}"(”) are symmetric for [ = 2,3,...,

[’—g—] and condition (#%) for m’ = m. First we prove by backwards induction on ! that

m (1)

the matrices T/ are symmetric. Suppose first that m is even and write | = %.

2
Then we define for every g,k € d; a matrix

Z:T Tm(l-—l 141) (Tgl(l,l+1))q (Tl(l—l,l))q
For every 1€ d1+1 and 7' € d1_1 we have

Z AHL0D) JO=-11) _ J+10-1,11) _ H10-1L1) _ Z AH101) J0-1,1)
i(hag) Tha(h) = Si(jhg) Si(igh) i(hah) Chy(ig)

and therefore

Ul = U, (A.15)

Next it follows from condition () for m’ = m proven above that

. ,
f:’ Z’ FPU=L1) J4100) JG-11) Z m(L11-1) J-1,1) _ mil=LLL) {JU-L1)
k=1 F(ihs) ha(hzg) hz(Jh) 5 f(hagi) hz(-’h) = Z 5fGihag) hz(jh) B
3—

dm-1 d;

m(m-1,1) ;)m~1(l-1,1) I(I -1,1) __ m(m—1,1) s 1(1-1,1 I—l)
hzl hzl fhsg)  Pha(iha)  Cha(i) Z hag)  Sha(ihi)
3= 2=
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Similarly we show that

diyr d

S Z FPU=Li4+1) 4101 J0=-11) _ Z gmm=1,1) m=1(I-1,11-1)

= f(Ghs) Cha (hag) hz(ih) fhag)  Sha(ihj)

-
and then because we assumed (#) for m' = m — 1 it follows that s;:;(i(;) LLEL)
shmsal,ff)“ L1 and therefore every matrix U,{g is symmetric. This fact together with

(A.15) imply that the sum

fo SN ia-gf (o 0-1)T
Vi=33 Zp Uig (ZhR )

h=1g=1

is a symmetric matrix, but

dy dy

1(1-1, 1-1,0+1 10+N\T 1(0-1,)1(-1, m(ll

vi= ’;Zh% )T}"( )(Thﬁl )) }_; (Z ( )T ( )) Tf ()
- =

m(ll) .

and hence T, is symmetric.

Next we assume that m is odd. For every g,h € d; we define matrices

m(=1,1+1) m(l-1,+2) 1+ T
Ufh g (1,1+1) g (TgR )T X T
g m(l+1 1(1,1+2) 1(14+1,142)
T; 0 (T2™*?) (1,8 )

10-1,0\T
: (TM(Q )) T ° T
1(1-1,41 (L (4L ’
(@) (@)
where 2! 4+ 1 = m. Similarly to the case of even m we show that Ugh = U,{y and that

the matrices Ugfh are symmetric. Thus also the matrix

(-1, 1(1—1 I+1) 1 r7f (Zlg_l,l))T
vf= }; gg_:l [ Zrath | U, (Z;J(Z‘l" +1))T

m(a) also the latter matrix is symmetric.

is symmetric and because V/ =
Now we proceed by backward induction on ! until / = 1. For every g,h € d;

we define matrices
m(l-1,1+1) m(l—1,14+-2) m(l—1,m—I+1) 7]
I; Ty e Ty .

m(l,141) m(l,1+2)
vl = Ty Ty 0

T}n(m-—l-i-l,l-—l) 0 . 0
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I (T1g,1+1))T L0 0 -
91(1,z+2) T 10+1,04+27\T
(Tor™)" (1™ 0
- (T;g,m-z))T (Tgl}(il+1,m—l))T (Tgl}(im—l,m—l+1))t ]
(T 0 o 0 '
1(-1,0+10NT 1+ T
@) (@R™) 0

_ (T}Z.g—l,r.n—l—l))T (T,f,(é’m.""l))T (Tii.i(im—l;l,m—l))T _

As before in the case of even m we show that Ugf,fl) = U,{g(l) and by the same method

using also the inductive assumption on /! we prove that the matrices U;,fl) are sym-

metric. Finally the matrix

I 10-1,0\T 1
()"
1(-1,+1

(Za2)

dy di
N 1(1-1,1 1(1-1,1+1 1(I-1,m~I F{
VIO =3[ 25 B g o)
— g=

(@i
m(ll)

is symmetric and since V) = Ty also the latter matrix is symmetric.
To complete the proof of the inductive step for m it remains to prove con-

dition (#4t) for m’ = m. We write

m(lyl
e _ | Tiv' ) ] :

T}':g(lllz)

where T}'}é"h) € C™*¥ and Iyl € m — 1, and

Tffﬂ]\gll) T}";\;l,l-{-l) e T}I;\gl,m—l) T
- 21 m(2,l+1
0 W T 0
N — .
T o o

for I € m — 1. Similarly we have

k(11
Tk(lllz) — Tg}(ZIIVZ)
gR Tk(lllz)
gRS
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where Tk(lllz) € C™*% By Proposition 1.17 we have

3 409 (Fmio)7 5= gmoo (T

p=k+1 p=k+q

forallk€m—2, g€ m—k—1and g € di. Let us recall that the matrices Ty ")

are given (cf. the beginning of this proof). Because we already showed that condition

() holds for m' = m it follows that
m—1 T
E Tk(lp) ( (qp)) Z T} (1p) (T:#Izé))
p=k+1 p=k+q

Because T} (r) — T}"(lp ) and because we assumed that condition (iii) holds for m' <

m — 1 it follows that

S gpan (46m)” = $= g (Txe)”
p=k+q p=k+tq

and therefore

m m—q - T m-q m T
E Tk(lp)( (qp)) _ }: T:I(ilp) (T}n(qp)) — Z T;}(zlp) (TN}‘"’)) . (A.16)
p=k+1 p=k+1 p=k+1

Next we define for every k € m — 2 a (dydi) x (Zﬂiil dz) matrix

- Tﬁ(il’k.*-l) T{c}({l,k+2) . Tk(l m—1) 7]

R(LE+L)  rpk(lk4+2 k(1,m—1
Tk(m) T21(z ) Tzz(z ). T(m )

k(Lk+1)  k(LE+2) - k(1,m—1
Td,fn ) sz(n ) Tdk(R )

and a (dy T7% dr) x (T3 dr) matrix

Tl(m)
0 T2(m)
Tid=| o T8 |,

0 T m

L -
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where the sizes of the 0 blocks are determined by the sizes of matrices T,’;E;”X The
matrix Tg':i) is left invertible because the columns of the matrix
[ k(l,k4+1) T
Tip
k(1,k+1
Tyr ™+

k(Lk+1)
| Ty.R

are linearly independent for k € m — 2. From the equalities (A.16) it follows that
m) (FmA)\T m m T
i (77) = T ()

and because Tg’g is left invertible it follows that T}n(l) = T}'fél). Because we showed

that the matrices 77" are symmetric it follows then that the matrix T}" (1) osincides

with the matrix

f}n(lllz) T}"(’llz) ]
T’fn(lzll)

in the entries other than *. Therefore condition (iz) holds also for m’ = m and so the
proof of the inductive step for m’ is done. We proceed by induction until m = M,

and this completes the proof. O
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Appendix B

Proof of Lemma 4.17

- Lemma 4.17 Suppose that we have the same setting as in Lemma 4.16. We construct

a vector

min{n,m}

L=+ Y Y Y shaf

=2  le®m,q thl
where the numbers syl are defined in (1.37) and the vectors = are defined in (4.27).
Then it follows that

m—1 di

NI =T3)zp = > Z alt 2l + il 2 (B.1)

k=1 g=1
for alli.
Proof. We use a direct calculation to show (B.1). First we have

min{m,n}

(/\,'Ao - A,) Z,ln = (AiAo - A;) xﬁl + Z Z Z Z (/\;Ao - A,) sﬁ}xﬁlh.

9=2 ueQ, led,,., hGXl
(B2)

From the basic properties of the operator determinants it follows that

Vii o0 Viier WA(Q) Vi ---. Vin

. V e Vi— W A Vi . Vn
(AiAO"‘A,') = .21 2’. 1 2-( ) 2,.+1 2

Var o0 Vaict Wa(A) Vig o+ Vs



and hence (M8 — &) 28, =

V,i-1210 0
. Va-1,i-1Tu-1,0 0
=2 Viim1%hm  Wu(A)z
u=1
Vat1,i+1Tut1,0 0
Vn,i—l£n0 0
Viizwe --- 0
n m—1 d; : :
_ km\ .9
- Z 0 Uu (agl,ln) Tuk
u=1 k=1 g=1 . .
ValZng --- 0

by virtue of (4.40).

Vl,i+1$10

Va—1,i+1Tu—1,0
1
Viit1Zym

Vot 1,i41%u+1,0

Vn,i+1xn0

®
V1n$10

0 + Aoatl),f”zo

Vnnan
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(B.3)

Next we consider the right most summation in (B.2). The relations (4.26)

and (4.37) show that

q Ip""l dkl Ip—kl rkz

MBo—A) szl =2 > 3 3 > it

p=1k1=1 g1=1 ko=1 g2=1

Vi Wit 0 Vi
Vip—1,1 Vip—1,i-1 0 Vip—1,i41
Ok2
0 0 Uy, (ag2 ) , 0
Vapt+1,1 Vip+1,i-1 0 Vip+1,i+1
Va1 Va,iz1 0 Vai+1

Vin
Vu,—l,n
0

Vup+1 ) n

Vnn

lp(kaka)
hp(g192)

®

x ~ —
u,lPUpky ,hru,gy

(B.4)
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Vi o Vi 0 Viti o+ Vi
. Vap-11 *++ Va,—1,i-1 0 Vip-1i41 -+ Vip—im
ml 01,,) ®
¥ pz—:l i 0 0 Vs, (a"v 0 0 RS
Vipr11 o0 Vip1i1 0 Viprtirr oo Va41,n
Vai o0 Vi 0 Vajr1 - Van
(B.5)

Here we use the symbols 17’, h? and @ to denote omission of the component with the
index p in multiindices 1, h and u respectively. The symbols Ir Up k1 and hp Up g1
indicate the replacement of the component [, in 1 with k; and the replacement of
the component h, in h with g, respectively. For 1 € &, , we write L = Y1, [; and
Ly, = Y% ;4,li. The symbol L, is well defined also for I7.

For q = 2 the sum of terms (B.5) over u € Qp, 1€ &,,, and h € x; equals

Vi - 0 cee Wi

2 : : :
sy st w0 b

uez led 2 thl p=1

an 0 coo Van

In the following calculation we use the relation (4.37) and the definitions of the sets
of multiindices. Note that ¥jeq,,, = )}ty ZZ‘;{‘ =ypro) E;f;{’. Then the above

expression is equal to
Vii - 0 oo Vin
m—1 dll

22| 0 e Uy (aly) - 0 f28umt

uedy =1 h1=1
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m—1 dlz

+ Z Z Z o .- Utu (aﬁfgnll) =+ 0 :U?z,lzhz =

uesls la=1 hy=1

V;zl 0 Vrm
Vrll ces 0 e V?ln
n 7 m=1 dj ) ) )
—_ I} ®
=> X 0 - Uy (afr) -+ 0 |28,
ur=l up=lus5#u; I=1 h=1 . . .
an N 0 . Vnn

Now we add the expressions (B.3) and the above one. The sum is
Ve Vg U (af,'i‘) Viipn -0 Via
X": mld |\ Vig oo Vo Uy (aﬁ’i’) Vot -o0 Vau

u=l I=1 h=1

0
28 + Aoalzo =

Var oot Vagcr Un(@f2) Vagsr = Van

m-1 d;
=Y ) Aoappiaf, + Aoallzo. (B.6)
I=1 h=1

From the definition of the sets of multiindices it follows that

m—Ly dlp

2 2= X X XX (B.7)

16<I>m,q hGXl i;e(bm—-l.q—l B\pexi; I‘,=1 hp=1

In the summation Yjeq,,_, , Y™} avalue k = k' appears exactly for those 1 € D1,

that have L < k'. Thus .

> ¥-Fy. B9

lGQm_l'q k=L k=g lerb,,,,,
Applying relation (B.7), Corollary 1.24, (¢) and relation (B.8), respectively, it follows
that

-1 dk]_ lo—k1 Tko 1 I(k ka)
IIDIDID I NDIE T i (B.9)

I€®m,q hexy li=191=1 k2=1 g2=1



m—Lp—1 dk; m—Ly,—k; Tk,

i;eQm—l,q—lhpexl’; k=1 @1=1 ko=1

m~L Tk m—ko dk

2 ZZZZZS

l€®m-1,4 hex] k2=1g2=1 k3=L g3=1

—1 9k, m—ks Tky

zzzizz

ks=p g3=11€®;, , hex] ka=1 g2=1
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m—Ly

2 ZZZZZEZ

g2=1 Ip-—-kl +ko hp—l

ml Ip(kxkz)
Sih?t hp(g192) —

m(kg k3) _

h l(gags) = (B.10)
(k2ks3)
gsh nyzjis:; (B'll)

In the step (B.10) of the above calculation we wrote I, instead of k; and h, instead

of g1. Next we sum the terms (B.4) over 1 € ®,,, and h € x;. From the result of the

previous calculation it follows that the sum is equal to

Vi1
m—1 di; m—ks Tky
DD ISV Zs oy | 0
gsh 1(9293)
ks=p ga=11e®;, o hex) k2=1 g2=1
an

0 Vin
Uy, (agf ’) 0 | 231n-
0 Van

Here we write [, instead of k; and h, instead of g; as in (B.10). Using the relation

(4.37) it follows that the above sum is equal to

Vi1 0
m—1 dks :
k
Z Z Z Z sgsh 0 U"p (a.‘lﬁn)
ks=p ga=11€®y;,q hex)
an . 0

Via

Van

.'L'fil,h . (B.12)

Similarly to when we showed that (B.9) equals (B.11) we now show, using

Corollary 1.24 and relation (B.8), that for any index p € ¢ (¢ > 3),

m—l, dig

ZESm—EZZE

le®, hex 1€®.m,q hexy ka=Lp g3=1
1 1

m—1 9k m—ks ™

S S YTYY Y

Pedm_1,-1 hpexf ky=Ly gs=1 lp=1 hp=1

k3 lP m(ks lp) _

gah? l(gshp)

kal" m(k31,)
gsh? 1(g3hp)
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=l & bF & W mliah)
TMAR3
Z 2. 2 20 sim Y Y Highy-
ki=qg3=11; 1”64’1:3 -1 hPExlA lp=1h,=1
We use this equality to show that the sum over 1 € @,,, and h € x; for ¢ > 3 of the
terms (B.5) is equal to

nl & P S5 A miksly)
3
PID DD IEEDD S;Zp;lhzltl(gsh:)'
P P

k3=qg3=1 i;eq’ka,q-l E;EXi;

‘/il 0 ‘/ln
0l ® —
0 U“P (ah:) o 0 xﬁ?,i;,rl; -
V'nl 0 Vnn
V'll ‘e 0 ‘e V’ln

m—1 dks

=X ¥ Y| 0 U, (a7) - 0 2%, (B.13)

k3=qg3=1le®s; 41 hexy

Vog -e- 0 e Voo
Next the sum of the expressions (B.13) over ¢ = 3,4,...,min{m,n} and u € Q, is
min{m,n} m—1 kg

Y XXX X Xsw

g=3 uweQR k3=qgz=1 1€®;,,,-1 hexg

Vi - 0 oo Vin

ksm ® —
0 .- Uu,(a;fl) e 0 2=

g,

Vg - 0 oo Von

min{m,n}-1 n m—1 9

= X X X XX ¥ Ysuw

q=2 ueQ v=1v¢uks=qg3=11ed;, ., hex;



Vi1 0
0 U, (alsT)
Vil - 0

Vﬂﬂ

®
ZTylh -

If we reverse the order of summation over q and k3 we have

min{m,n} m—1 m—1 min{ks,n}

2, =2 2

q=2 k3=q k3=2 ¢q=2

and

min{m,n}-1 m—1

m~1 min{k3 n—1}

2, 2= 2

k3=2

k3=q

=2
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(B.14)

From (B.12), (B.14) and the last relation it follows that the sum of terms (B.4) for
g > 2 and terms (B.5) for ¢ >3 overue Q,,1€ @,,, and h € x; is

m—1 dk; min{ksn}

> Y DY Y T

k3=2gs=1 ¢=2 u€Q,p=lledy,, hex)

m—1 Gk, min{ks,n—1}

+2.2 X X

k3=2gs=1 q=2
Vi - 0
0 U, (afsr
Vi -+ 0

m—1 9k; min{ks,n}

=22 X

Vig «--

Uy, (a

g31

Vor +--

SR,

cor Vin

k3=2g3=1 ¢=2
Vi Vi1 Uh ( g31) W,i+1
Via V2,£—1 Uz( 931 ) Voit1
an V n,i—1 U ( g31 )

Vajit1

0

kam

ue,; v=1,v¢u lE‘I’ks,q hexl

Z Z Z sgsh

ueQ, l€<I>k3 q hGXl

)

-+ Vin

gsh’

® _
Tyulh =

® _
Tulh =

®
xu,l,h+
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m—1 Gk; min{ks,n}

=30 > > 2 s::%lea’Igc:ﬁxlh (B.15)

k3=2g3=1 q=2 lG(I’ka'q hexl
Then it follows from the equality (B.2) and the calculations that followed it that
(MiAg — A;) 2L, is equal to the sum of the expressions (B.6) and (B.15), and thus

(/\;Ao - A,) Zfln =

m-—1 di m—1 di min{kn}
= > 3 Aoagliafy + Aoaffzo + Y Z > X X samboagliaf,
k=1 g=1 k=2 g=1 ¢=2 le®; hex
m—1 min{k,n}

d
ZZ 0t |28+ 3 X Y shhaf | + Acadra =

9=2  le®:,q hexy

m-1 d

— km _g om
= E > Doagy; 2z + Doas] 20-
k=1 g=1
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A
admissible set, 23
array

commutative, 9

reduced commutative, 12
arrays

similar commutative, 9
ascent

of an eigenvalue, 127
associated system

of a multiparameter system, 62

C
change of basis
admissible, 11
commutative array, 9
reduced, 12
commutative arrays, 9
similar, 9
cross-section
column, 9, 12

row, 9, 12

D
decomposability set, 63
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decomposable tensor, 8

E

eigenspace
of a commutative array, 10
of a multiparameter system, 71
eigenvalue
completely derogatory, of a multi-
parameter system, 160
nonderogatory, 14
nonderogatory of a multiparameter
systeﬁ, 78
nonderogatory, of a multiparameter
system, 70
of a commutative array, 10
of a multiparameter system, 68
semisimple, 130
simple, 31
simple of a multiparameter system,
79
eigenvector, 71

of a commutative array, 10

I

invariant, 94
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J determinantal, 61
Jordan chain induced, 8

of a matrix, 2

P

of a matrix polynomial, 118 . .
pair of matrices

maximal, 120 .
equivalent, 92

K

Kronecker basis, 96

R

regularity conditions, 32
Kronecker canonical form, 93-94
, representation by a multiparameter
Kronecker chain, 96
system, 67
Kronecker product, 75 .
, representation by tensor products, 51

M dimension , 53
matching conditions, 32 minimal dimension , 53
matrix root subspace
blockwise connected, 54 of a commutative array, 10
connected, 53 of a multiparameter system, 71
self-adjoint, 9 root vector, 71
symmetric, 9 for a commutative array, 10

multiparameter system, 60

S

diagonal, 60
scalar product, 8

elliptic, 132

on a tensor product space, 8
nonsingular, 62
right-definite, 130

self-adjoint, 129

set

decomposability, 63
set of invariants, 94

of the kernel ker £, 104

a-shift of a Kronecker chain, 97

upper-triagonal, 60
weakly-elliptic, 131

O spectrum
operator of a commutative array, 10

Ag-self-adjoint, 130 of a multiparameter system, 68



structure triple, 24
subspace
marked invariant, 106
symmetrization
of the array A%, 133
system
associated of a multiparameter sys-
tem, 62
multiparameter (see also multipa-

rameter system), 60

T
tensor

decomposable, 8
tensor product space, 8
transformation

induced linear, 8

U
upper Toeplitz form, 15
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