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Abstract 

In this dissertation we study finite-dimensional multiparameter eigenvalue 

problems. The main objects considered are multiparameter systems, i.e., systems of 

n linear n-parameter pencils. To a multiparameter system we associate an n-tuple 

of commuting matrices called an associated system. The main problem considered 

is to describe a basis for the root subspaces of an associated system in terms of the 

underlying multiparameter system. 

In Chapter 1 we study general n-tuples of commuting matrices, the moti-

vation being the fact that the associated system is a special n-tuple of commuting 

matrices. Without loss of generality we may assume that the commuting matrices 

considered are nilpotent. We reduce an n-tuple of commuting nilpotent matrices to a 

special upper-triangular form using simultaneous similarities. The main two proper-

ties of this form are that certain column crosssections are linearly independent and 

that certain products of row and column cross-sections are symmetric. This sym-

metry enables us to associate symmetric matrices and also symmetric tensors with 

the special upper-triangular form. We discuss this in detail for .nonderogatory and 

simple cases, i.e., cases when the intersection of the kernels of the nilpotent com-

muting matrices has dimension one. The symmetric tensors appear as coefficients of 

decomposable tensors in the expansion of root vectors of associated systems. 

In Chapter 2 we introduce multiparameter systems and their associated 

systems following the construction of F.V. Atkinson. We also describe a basis for 

the second root subspace of the associated system for general eigenvalues. For two-

parameter systems this can be done in a canonical way. We describe this construction 

in Chapter 3. 

In Sections 1.6, 2.3 and 2.4 we consider at various times the problem of the 

representation of commuting matrices by tensor products of matrices. This leads to 

iii 



a similar problem of representation by the associated system of a multiparameter 

system. 

The main results of the dissertation appear in Chapter 4. We describe bases 

for root subspaces of an associated system in terms of the underlying multiparameter 

system for nonderogatory and simple eigenvalues. These are eigenvalues for which 

the joint (geometric) eigenspace of the associated system is exactly one-dimensional. 
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1 

Chapter 0 

Introduction 

One way in which multiparameter eigenvalue problems arise is when the 

method of separation of variables is used to solve boundary value problems for partial 

differential equations. Each 'separation constant' gives rise to a different parameter. 

The resulting equations are simpler boundary value problems, for example of Sturm-

Liouville type. Two-parameter problems of this type have been studied since the 

earliest days of the subject, and the following formulation is, for example, the main 

object of study in Faierman's monograph [69] 

(Pi (xi) dy') + (AiA (xi) + A2B1 (xi) - qj (xi)) Yi =0, i = 1, 2, (od) 

where 0 ≤ xi ≤ 1, and boundary conditions are 

O≤a,<ir, 
dxi 

and 

O</3,≤ir, 
dxi 

for i = 1, 2. These and other problems have motivated the development of Multipa-

rameter Spectral Theory. Atkinson [10] laid the foundations of Abstract Multiparam-

eter Spectral Theory and he gave in [9] an overview of possible directions for further 

research that largely remain yet to be explored. 

One of the main goals of Multiparameter Spectral Theory is to give com-

pleteness results for different multiparameter spectral problems. For example, one 



2 

could try to expand functions defined on the domain of the partial differential equa-

tion in terms of Fourier-type series involving the eigenfunctions of the separated (say 

Sturm-Liouville) equations. 

In the abstract theory, the main object studied is the n-tuple of n-parameter 

pencils 
n 

W(A)=>AVj—Vo, i=1,2,...,n (n≥2), 
j=1 

also called the multiparameter system. Here Vij are, for all j, linear operators on 
the Hilbert space H:. In applications like (0.1), Vij, j = 1,2,. . . , n, are multiplication 
operators and V0 are differential operators. In the multiparameter eigenvalue prob-

lem we first find n-tuples of complex numbers A such that all the operators W (A) 

are singular. This can be considered as a generalization of the ordinary eigenvalue 

problem. 

One fundamental tool of Abstract Multiparameter Spectral theory is a tensor 

product construction. We consider the tensor product space H = H1® H2 ®. . . ® H,, 

and certain determinantal operators associated with V1 acting in H. The concrete 

construction for our presentation is developed in Chapter 2. We limit our interest 

to so-called nonsingular multiparameter systems. Then we associate with a multi-

parameter system an n-tuple of commuting operators, called the associated n-tuple. 

Now, the completeness problem is to find a complete system of eigenvectors and root 

vectors for the associated system in terms of the underlying multiparameter system. 

Again this can be considered as a generalization of the completeness problem for one 

operator. 

For example, it is well-known that, for an N x N matrix V, we can find a 

(Jordan) basis of UJN consisting of (Jordan) chains of vectors z0, z1,. . . , zk such that 

Vzo = Az0, 

vzi = Az + z_i, i = 1,2,... ,k. 
(0.2) 

Then the vector z0 is called an eigenvector, the vector z1 is called a second root 

vector, the vector z2 a third root vector, etc. Difficulties in proving multiparameter 

completeness results arise when the eigenvalues are not semisimple, i.e., when root 
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vectors exist. Binding [23] gave the completeness result for real eigenvalues of self-

adjoint multiparameter systems. Also Faierman in [69] gave ,a completeness result for 

real eigenvalues of the two-parameter spectral problem (0.1), while for the non-real 

eigenvalues he conjectured the structure of the general root functions. We return to 

his conjecture at the end of this dissertation. 

Not much is known in the literature about nonself-adjoint multiparameter 

eigenvalue problems or even about non-real eigenvalues of self-adjoint multiparameter 

eigenvalue problems. Thus it seems natural first to consider the finite-dimensional 

setting. Atkinson dedicated most of his book [10] to the finite-dimensional setting, 

at the end generalizing it to compact operators on general Hubert spaces using a 

limiting procedure. Multiparameter eigenvalue problems on Hubert spaces can be 

approximated by finite-dimensional multiparameter eigenvalue problems using the fi-

nite difference method. Then results on Hubert space can be proved using, as in 

Atkinson's case, a limiting procedure (see for example [66]). The germs of such 

finite-dimensional approximation ideas are found already in Carmichael's paper [50]. 

Another possible application of finite-dimensional results to the infinite-dimensional 

case is in connection with the discretization described by Muller [134, 135]. There are 

other problems in finite-dimensional Multiparameter Spectral Theory that are con-

sidered in the literature. For example, Browne and Sleeman considered in a series of 

papers [43, 44, 45] inverse multiparameter eigenvalue problem for matrices and Bind-

ing and Browne [26, 24] studied multiparameter eigenvalues for matrices, to mention 

a few. Finally, we remark that Isaev [112] stated the problem of describing root vec-

tors of the associated system in terms of the underlying multiparameter system in 

the finite-dimensional setting. 

In this dissertation we assume that Hilbert spaces H1 are finite-dimensional. 

Then Vj can be considered as matrices. In the presentation we mostly use tools of 

Linear Algebra. There are two main foci of study in this dissertation. These are the 

structure of commuting matrices and the structure of root vectors. Even though both 

structures were developed simultaneously, each helping to reveal the other, it turned 

out that the understanding of the first one enabled us to construct root vectors, and 

eventually to prove completeness results. 



4 

In Chapter 1 we study n-tuples of nilpotent commuting matrices. As men-

tioned before, the completeness results are to be proven for the associated system, 

which is a special n-tuple of commuting matrices. This is our motivation to study 

commuting matrices. Without loss we can assume that they are all nilpotent. Then 

we can bring them to a special upper block triangular form (1.2). An important prop-

erty is that it is reduced, i.e., certain columns in it are linearly independent. This 

linear independence ultimately enables us to prove the completeness result for sim-

ple eigenvaiues. The commutativity of an n-tupie of nilpotent commuting matrices 

{A1, A2,... , A,} is reflected in the symmetry of certain products. We explore these 

in further detail. For the simple case, i.e., when 

dim (flkerAi)=1, 

we are able to reconstruct commuting matrices in the form (1.2) from a special col-

lection of symmetric matrices. Because (1.2) is reduced it follows that certain subma-

trices of these symmetric matrices are linearly independent. Later we prove that the 

isomorphic images of the submatrices are elements of the kernels of special matrices 

associated with the multiparameter system. Because we are also able to construct a 

set of linearly independent root vectors scociated with a basis of the kernel of the 

special matrices, the completeness of root vectors follows. 

It is the structure of these root vectors that is our second focus in this dis-

sertation. The structure of root vectors for nonderogatory eigenvalues is the same 

as the structure of root vectors given in Binding's paper [23]. For simple eigenvaiues 

the structure becomes more involved. The coefficients, that are all 1 in the non-

derogatory case, of the decomposable tensors forming a root vector are now given by 

symmetric tensors that are associated with the special collection of symmetric matri-

ces used to reconstruct a nilpotent n-tuple of commuting matrices. It turns out that 

in the two-parameter case this is a finite-dimensional simplified version of the struc-

ture conjectured by Faierman in [69]. A crucial tool in the study of the structure of 

root vectors is relation (2.7) that relates a multiparameter system with its associated 

system. Relation (2.7) is found in [10, Chapter 6]. 

We present the structure of the general second root vectors in Section 2.5. 
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In the two-parameter case these vectors are simpler and we can choose them so that 

the associated system is in a canonical form. We show this in Chapter 3. In Chapter 

4 we prove a completeness result for eigenvalues Ao = oi, A02. ... , Ao,) such that 

dim kerW1(Ao)=1, i=1,2,...,n. 

These eigenvalues are of two types, nonderogatory and simple. (See page 78 for precise 

definitions.) We consider them separately. 

We also study problems of representations of n-tuples of commuting matrices 

by tensor products (originally stated by Davis [57]) and by multiparameter systems, 

in Sections 1.6 and 2.4, respectively. 

Let us mention that the results on commuting matrices of Chapter 1 are a 

major building block in the completeness results on root vectors for nonderogatory 

and simple eigenvalues in Chapter 4. It was the ability to obtain new completeness 

results that motivated us to work through some highly technical proofs. We include 

several examples' to illustrate the ongoing discussion at various times, especially after 

the technically involved proofs. At present we are not able to find a more elegant 

way to prove our results, though it appears almost certain that the application of the 

tools of Abstract Algebra should shed new light on them, and that the proofs might 

then become shorter and more elegant. Perhaps one should carry out the project of 

Atkinson motivated in [9]. 

'Examples in this dissertation which require longer calculations were done using the Mathematica 
software. In very long examples we do not include all the steps done by computer in the discussion. 
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Chapter 1 

Commuting Matrices 

1.1 Introduction 

In this chapter we study n-tuples of commuting matrices. To each multipa-

rameter system there is a special n-tuple of commuting matrices called the associated 

system. (A formal definition is given on page 62. Here we refer to this n-tuple as 

the associated n-tuple of commuting matrices.) This is our motivation to study the 

general case of commuting matrices. Our aim is to describe an n-tuple of commuting 

matrices by a special collection of matrices that reflect the commutativity in their 

structure. 

The main results of this chapter are Theorems 1.13 and 1.18. Theorem 1.13 

is the first step towards the construction of a special collection of matrices associated 

with an n-tuple of commuting matrices. Corollary 1.7 and Theorem 1.18 are used 

later in the construction of bases for root subspaces for nonderogatory and simple 

eigenvalues, respectively, of a multiparameter system. 

A finite set of commutative matrices is considered as a cubic array. We 

restrict our interest to nilpotent commutative matrices. The general commutative 

case is easily deduced from the nilpotent one. In the next section we introduce some 

notation and define a basis in which the commutative matrices are simultaneously 

reduced to a special upper triangular form and so the corresponding cubic array is in 
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a special upper triangular reduced form (1.2). Properties of the form (1.2) described 

in Proposition 1.2 and Corollary 1.3 are the main results of the section and as it 

turns out they are fundamental for most of the further presentation. They tell us 

that certain sets of columns in the reduced form (1.2) are linearly independent and 

that commutativity of the matrices is equivalent to certain symmetries in the products 

of these matrices. They also give rise to two sets of conditions that must hold for 

a special collection of matrices used to reconstruct (or build) a commutative array 

in the form (1.2). The two sets of conditions are the regularity conditions that are 

equivalent to the properties of Proposition 1.2 and the matching conditions that are 

equivalent to properties described in Corollary 1.3. 

In Section 1.3 we study nonderogatory eigenvalues. It is well known that 

commuting nilpotent matrices can be brought simultaneously to upper Toeplitz form 

if one of them is nonderogatory (cf. [92, p.296] or [129, p.130]). This leads us to the 
definition of a nonderogatory eigenvalue for an n-tuple of commuting matrices. 

Auxiliary results concerning matrices whose products are symmetric are pre-

sented in Section 1.4. They are needed in the proofs of the main two results of this 

chapter. We use a special collection of matrices to reconstruct the array in the form 

(1.2) inductively from the top left corner adding a row and a column at each step. 

The first important result in this direction is Theorem 1.13. It tells us how to recon-

struct the array in the form (1.2) when there are only 3 columns. It turns out that 

the general case can be considered as a collection of cases with 3 columns which have 

to satisfy further regularity and matching conditions. It follows from Theorem 1.13, 

applied to the general case, that the entries on any block-diagonal of an array in the 

form (1.2) lie in the linear span of the entries of the first block row. (See Proposition 

1.15.) Thus in the simple case all the entries are in the linear span of the first row. 

Furthermore, we can assume that all the nonzero entries of the first row are linearly 

independent. We refer here to the matrix which has these nonzero entries for its 

columns as the 'condensed first row'. The product of any row and any column of a 

commutative array in the form (1.2) is a symmetric matrix. In the simple case the 
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product of the first row and any column is equal to the product of the condensed 

first row and the corresponding subcolumn. One result of Section 1.4 tells us that 

then this subcolumn is a product of the, condensed first row and a unique symmetric 

matrix. Our goal is to expand this symmetric matrix to describe the complete column 

but to retain the symmetry and matching conditions. To prove the existence of the 

expanded matrix turns out to be technically very complex. Because of the length of 

this proof we include it in Appendix A. Theorem 1.18 and the preceding discussion 

tell us how to reconstruct the array in the form (1.2) in the simple case. This result is 

important in the construction of root vectors for the associated n-tuple of commuting 

matrices in the case of simple eigenvalues. 

Section 1.6 of this chapter is not related to the preceding discussion. Rather 

it investigates the relation between an arbitrary and an associated n-tuple of com-

muting matrices. 

1.2 Notation and Basic Properties of Commuta-

tive Arrays 

Assuming that H is a Hilbert space we write £(H) for the algebra of all 

linear transformations T : •H —* H and 1Z(T) for the range of such a transformation 

T. A finite dimensional Hilbert space H, i En is equipped with a scalar product yx1 

for x, yj E H1. The symbol n is used to denote the set of the first n positive integers, 

so n = {1,2,.. . ,n}. The tensor product space H = H1® H2® 0 H, is then a 

Hubert space under the scalar product defined by (x, y) = ll 'Xj for decomposable 

tensors x = X1 0 X2 0 ... 0 x, and y = Yi 0 Y2 0 ... 0 y and extended to all of 

H by linearity. For a linear transformation V € £(H1) we define the induced linear 

transformation Vit on the tensor product space H as follows: if x1 Ox2®... 0 x, E H 

is a decomposable tensor then 

V  (XI Ox2® ... (9x)=x1®x2® ... ®V1x1® ... ®x. (1.1) 
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The action on all of H is then determined by linearity. 

Let A = {A3; S E al be a set of n commuting matrices. Each matrix A3 is a 
N x N complex matrix. We also consider A as a cubic array of numbers of dimensions 

N x N x n. Such an array is called commutative (since A3 pairwise commute). Two 

arrays (or two sets of commuting matrices) A and A' are called similar if there is an 

N x N invertible matrix U such that A8 = U'A'3U for all s. For this collection of 

equations we also use the notation A = U'A'U. 

The vector in Cn consisting of all the (i, j)-th entries of matrices in A is 

labelled 

aj3 = 
(A2)3 

(A) 13_ 

Then the row and column cross-sections of A are defined by 

and 

Ri = [a 1 aj2 ... aiNJ 

C3 {aij a23 
aNj] , 

where i,j E. These are n x N complex matrices. 

Definition. A complex N X N matrix is called symmetric if A = AT, i.e. if it is 

equal to its transpose (without conjugation). 

In this dissertation we reserve word 'symmetric' for above definition. A 

matrix A such that A = A8 will be called 'self-adjoint'. 

Lemma 1.1 The array A is commutative if and only if the products RCJ' are sym-

metric for all i, j E. 

Proof. The (i,j)-th entry of the product ArA8 (r, s Er.) is 

N N 

(ArA8)jj = (Ar)ik (A8)k3 = (Ri) (Cj)8k = (R1CT) 
k=1 k=1 
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Thus ArA8 = AsAr if and only if (R1cJ') = (RICfl , that is, if and only if R,CT 
rs 

are symmetric. 0 

Our first and the main concern in this chapter is the spectral structure of a 

commutative array. For later reference we introduce our definitions of spectrum and 

related notions for a commutative array. 

Definition. An n-tuple AE C' is an eigenvalue of a commutative array A if the 

intersection of kernels fl 1 ker (A21 - A1) is nontrivial. The set of all the eigenvalues 

of A is called the spectrum of A and is labeled o (A). 

For i E N we write 

ker (Al - A)z = fl ker ((A1' - Aj3IC1 (Al - A2)'2 ... (.XI - A)/c). 

k=i,k≥O 

Note that ker (Al - A)N = fl.1 ker (A11 - A1)' . 

Definition. Suppose that A E o• (A). Then the subspace ker (Al - A) is called an 

eigenspace (of A at A) and the subspace ker (Al - A)N is called a root subspace (of 

A at A). We call a nonzero element x E fl 1 ker (A11 - A1) an eigenvector and we 

call a nonzero element x E fl.1 ker (A11 - A1)N = ker (Al - A)N a root vector. 

Note that according to the definition an eigenvector is also a root vector. 

It is well known (see e.g. [92, p.298]) that commuting linear transformations 
A8 on C' reduce the space into the direct sum of root subspaces of A (obviously a 

root subspace is invariant for all A8). Replacing A3 by A81 - A8, restricted to a root 

subspace of A at A, yield that all A8 have only one eigenvalue 0. Therefore we will 

assume in this and following three sections that the commuting matrices A have only 

one eigenvalue 0, or equivalently that they are all nilpotent. 

Let M be the minimal number such that A' A 2 . . . A = 0 for all collections 

of kj ≥ 0 such that F, kj = M + 1. There always exists a basis such that all the 
j=1 

matrices A3 are upper triangular in this basis (cf. [92, Theorem 9.2.2, p. 303]). 

Because A3 are nilpotent they are strictly upper-triangular (i.e. the diagonal entries 

are also 0). Since the product of N upper triangular N x N matrices with zero 
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diagonal is 0, it follows that M < N. (This idea can be found in the proof of Theorem 

2 in [137] due to H. W. Lenstra Jr.) For i E M + 1 we write D, = dim ker A' and 

d, = - D, for i = 0,1,. . . , M. It is assumed that D0 = 0. We can choose a basis 

13={z,z,...,z'°; ... ; 

for C N such that for every i = 0, 1, . . . , M the set 

B, - {4,z d0. .. ,z'; . ; 4, 47 , d o , 
) 

- o,...,z i Zjj' 

is a basis for ker A'+l. 

Definition. The change of a basis B (corresponding to a commutative array A in 

the above described way) to a basis B' is called admissible if span 13, = span 13', for 

all i. 

If we now consider A as a cubic array with slices consisting of matrices A3, 

S En, then A has the following representation on ker AM+1 = C" in the basis B: 

where 

0 A°' A°2 

0 0 A'2 

0 0 0 •.. A m -1,m 

00 0... 0 

Adl = 

A 0,M 

Al,M 

ki ki hi - 

a11 a12 al,d, 

hi  a21 a2 h2i hi 

(1.2) 

(1.3) 

hi hi hi 
.adk,1 adk,2 a dk,d, 

is a cubic array of dimensions dk x d, x n and aj E C's. The array (1.2) is block upper 

triangular with zero diagonal since A8 (ker A') C ker A'' for all s. The last relation 

follows from the definition of ker A'. If we expand the vector A3z1 in the basis B then 
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aj3 4 is the coefficient of in this expansion, where 

2.1 

hi - a22 
a2 

The row and column cross-sections of Ak' are 

and 

R 1 = [aii  a ld i,dj i E dk 

C' a = [ kl a kl •.. a ,], j E d,. 

(1.4) 

(1.5) 

(1.6) 

These are matrices of dimensions n x d1 and n x dk, respectively. 

Definition. The array A in the form (1.2) is called reduced if the matrices C' 1, 

j Ed, are linearly independent for k = 0,1,. .. , M - 1. 

In the above setting we have 

Proposition 1.2 For a basis B as above the matrices C" 1, j Ed+ are linearly 

independent for k = 0, 1,. . . , M - 1, or equivalently, the array A corresponding to a 

basis /3 is reduced. 

Proof. Let us assume the contrary to obtain a contradiction. If the matrices 

C'"' are linearly dependent, i.e. = 0 and not all aj equal 0, then there 

exists a vector x E ker A 1\ ker A', i.e. x = E a2 +1, such that A3x E ker A' 
j=1 

for all s. But this yields x E ker Ak which contradicts x 0 ker Ak. 0 

The above result will be crucial in the ultimate step of the proof of the 

completeness result for simple eigenvalues of a multiparameter system. Next we will 

restate Lemma 1.1 for the case when A is in the form (1.2). 
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Corollary 1.3 An array A in the form (1.2) is commutative if and only if the ma-

trices 

R kh (C)", 
h=/c+1 

k-0,l, ... ,M--2; l=k+2,k+3,...,M; iedk; jEdi, are symmetric. 

Note that there is no condition on AOM. So an array A in the form (1.2) for 

M = 1 is always commutative. 

In the examples we write a commutative array A as a two-dimensional array 

of column vectors. 

Example 1.4 We consider a pair of commuting matrices 

010000 

001000 

000000 

000010 

000001 

000000 

and 

01 

00 

00 

00 

00 

00 

1 

0 

—1 

0 

0 

210 

021 

002 

000 

000 

000 

Then we find that d0 = 1, d1 = d2 = 2 and d3 = 1. Suppose that {e, i E fl} is the 

standard basis of C 6• Then in the basis 5 = lei; e2, e4; e3, e5; e6} the commutative 
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array A ={A1,A2} is in the form (1.2), i.e., 

A= 

1.3 Upper Toeplitz Form 

0 

0 

1 

1 

0 

—1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

2 

1 

0 

0 

0 

(1.7) 

0 

The main results of this section are Corollaries 1.6 and 1.7. The preceding 

discussion is of its own interest and is necessary to prove the corollaries. These 

concern the nonderogatory eigenvalues that are the easiest special case of eigenvalues 

we discuss later. 

Definition. An eigenvalue A E ci (A) is called nonderogator'y if there exists an integer 

k ≥ 1 such that 

and 

dim (flker(AiI_Ai)1)=l for l=1,2, ... ,k 

dim (fl ker(A1I_Ai)1) =k for l=k+1,k+2, ... ,N. 

Let us remark again that we assume matrices A1 are nilpotent, i.e., ci (A) = 
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Definition. Assume that d0 = d, = = dM = 1. Then A is in upper Toeplitz form 

if Ak1 = Ak_i,l_l for k = 1,2,. . . , M; 1 > k, and the other Adl are 0. 

Theorem 1.5 Assume that d, = 1 for some 1 ≥ 1. Then d, = d,+i = = d, = 1. 

By an admissible change of basis we can assume that 

0 

0 

= 

and the bottom right (M - 1 + 1) x (M - 1 -F 1) block of A can be written in upper 

Toeplitz form. 

Proof. By Corollary 1.3 the matrices 

cij1 - a1-111 ( ,,,+l)T , 1a1 iEd1_, 

are symmetric and by Proposition 1.2 they are not all 0. Thus there are complex 

numbers ej, not all 0 such that aj" = If we replace zj' in the basis 13 by 
d,_1 

the vector E j,zJ_, we obtain a new basis in which the array a'-1,l is of the required 

form 

= 

0 

0 

0 

b 

where b 0 0. 

Now suppose that not all d = 1 for j ≥ 1 + 1. Then say that h (≥ 1 + 1) is 

the smallest number such that dh > 1. If h ≥ 1 +2 then for k = 1,1 + 1,... , h - 2 the 

arrays A+l are nonzero and of dimensions 1 x 1 x n, so they can be considered as 

n—vectors. Thus we identify Ak,1 with all  and denote it By Corollary 

1.3 the matrices 

S,_, =b . (a1u1+1)T and Sk = ak'l (a12)T; k =l,l+1,...,h-3 
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are symmetric and since the vectors b and a+i are nonzero the ranks of the matrices 

Sk are exactly 1. Therefore, there exist nonzero complex numbers Ek such that a +l = 

Ekb fork = 1,1+1,... ,h-3. Further, if h = l+1(resp. h ≥ 1+2) the matrices Sf_1 = 

b. (a +1)T (resp. S_2 = a12'11. (a 11&) T ) are symmetric and of rank exactly 1 for 

j = 1, 2. They are not zero since by Proposition 1.2 the vectors aij 1'1are linearly 

independent. Hence there exist nonzero numbers such that = eh-lb. The 

vector 6_1z) - €jj_1z is then in the subspace ker A's '. This contradicts the fact that 

the vectors 4 with index i ≤ h - 1 form a basis for ker A' 1 and the vectors 4 with 

index i <h form a basis for ker Az. Thus d1 = di+1 = = dM = 1. 

Now we restrict the matrices A8 to the quotient Q = CNI,_i x{O} To finish 

the proof it has to be shown that there is a basis for Q such that all the restricted 

matrices A8 1 are in upper Toeplitz form. In the first part of the proof we showed 

that for k = 1, l + 1,. .. , M - 1 all the are nonzero multiples of b. Therefore 

there is a number r between 1 and n such that A3 I has a Jordan chain of length 
m - 1 + 1. Then by [92, p. 296] or [129, p. 130] we can find a basis in which all 

A3 1 (and thus the bottom right (M 1 + 1) x (M - 1 + 1) block of A) are in upper 

Toeplitz form. 0 

The following are special cases of Theorem 1.5 and give another view of the 

results for the nonderogatory case in [92, p. 296] and [129, p. 130]. 

Corollary 1.6 Assume that d0 = d1= 1. Then for j = 0,1,...,M each d3 = 1 and 

A has upper Toeplitz representation. 

Corollary 1.7 The eigenvalue 0 of A is nonderogatory if and only if d0 = 1 and 

d1 ≤ 1. 

Note that when 0 is nonderogatory eigenvalue at least one of the A3 is similar 
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to the N x N Jordan matrix 

010 0 

001 0 

000 1 

000 0 

and ker A = fl1 ker A. 

1.4 Matrices Whose Product is Symmetric 

Before describing the structure of A further we will prove some auxiliary 

results which are of interest in themselves. 

Lemma 1.8 Let R and C be p x q complex matrices where p ≥ q and assume that 

rank R = q. Then RCT is symmetric if and only if there is a symmetric matrix 

T E CqXq such that C = RT. The matrix T is unique. 

Proof. Assume first that the product RCT is symmetric. Let Y E OJ'' be 

a left inverse for R. Then CT = YCRT or C = R (CTYT). Denoting T = (YC)T, 

we have TT = YC = YRT = T, thus T is symmetric. 

Conversely, let C = RT and T = TT. Then 

RCT = RTTRT = RTRT = CRT 

and thus the product RCT is symmetric. 

It remains to show that T is unique. Suppose that C = RT1 = RT2. Then 

by left invertibility of R it follows that T1 = T2. 0 

The next result will generalize Lemma 1.8 to the case where a set of k 

matrices R; j E, is such that all the products RCT are symmetric. We assume 
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that kp ≥ q and that 

rank R2 =q. 

Rk 

Let us remark that the set of row cross-sections of any of the arrays 

of the form (1.2) and a column cross-section of the array A' 1 fit into the setting 

of the previous paragraph. 

Next define r = rank [R1 R2 Rk ] and let the columns of the matrix 
R E C><r form a basis for the space spanned by the columns of [R1 R2 ••. Rk]. 

Then for j E k there is a matrix S E C,Iq such that R1 = RS. Moreover (1.8) 

implies 

rank 

S1_ 

S2 
=q. (1.9) 

Sk 

For every vector x in the intersection of the kernels of S it follows that Rx = RSx = 

o whence x E flL1 kerR1 = {O} and so x = 0. Property (1.9) implies that the matrix 
S1_ 

S2 
has a left inverse [Z1 Z2 ••• Zk ] where all Z3 are q x r matrices. Using 

this notation we have 

Lemma 1.9 Assume that C and R1; j ej are p x q matrices, that kp ≥ q and that 

(1.8) holds. Then the matrices R2CT are all symmetric if and only if there exist k 

symmetric matrices T1 E cr><' such that 

k 

c= ii f 1 >z1T 
)T k 

and Si(1 >Z1T,) =1'j; lek. (1.10) 
\i=i 

Proof. Let R1 CT be all symmetric. Then R1 CT = CRT implies (S1CT) = 

(CS3T) RT, so matrices R and CST satisfy the conditions of Lemma 1.8. Then there 
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are symmetric matrices Tj E c'<' such that CS?' = RT.. From the proof of Lemma 
1.8 we see that Tj = SCTYT where Y E C' <" is a left inverse of R. The above 

equations can be put together as 

-S' -

s2 T2 
CT = 

Sk Tk 

Multiplying on the left by [Z1 Z2 ... Zk] we get 

1k 1k 

(y zs.) CT = ZjTj) 
31 31 

and so 
1k 

\j=1 
ZjTj 

)T 

Finally, a simple calculation gives the second part of (1.10), viz. 

si ( Zji'j = s1 ( z1s5) CTyT = S1CTYT = 
for all l= 1, 2, .. . , k. 

Let us now prove the converse. We have symmetric matrices 1j which satisfy 

(1.10). Then 
1k 

cRr Tj ZTSr)i T =T1i T 
\j=1 

and 

RI CT = s1 ( z1 ) iiT = 

Hence the products RICT are all symmetric. 

Suppose that r1 = d1, r2 < d1, for i ≥ 2 and that R 

matrices such that 

where j = E 1 r, 

rank Rj = rank Pi = 

Pi =[R1 R2 •.. R.] 

0 

i E in are p x r 
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is an p x j matrix, 

(R2 o) (113 o) ( Ri o)] 

is an p x di matrix, cij = Ej=l d and the blocks ( Ri 0 ) are of sizes p x d. Thus 
we suppose in particular that the columns of L are linearly independent. 

Let us remark that when a commutative array A is in the form (1.2) and 

d0 = 1 then its first row cross-section and any column cross-section can be assumed 

to fit the setting of the previous paragraph. 

In the above setting we have the following lemma: 

Lemma 1.10 Suppose that C EC1><'m is such that LCT is symmetric and that 

where C={Ci C2 

matrix 

1?. ([ Cm Cm ....i Cm_i+i ]) C R () (1.11) 

Cm ] and Ci E1Y'>". Then there exists a unique rm x dm 

T= 

T" T'2 T' -1 

T2' T22 ... T2-' 

T'" 

0 

T31 T32 • 0 0 

Tm1 o •.. 0 0 

where V =  [jiii T J ECni>< di and Tj E C' ><', such that 

Ci mT 

(1.12) 

and i = (j7..)T for all i and j. 

Proof. Write Ci  [ C1 C2 ], where C1 ECPXri and C2 €Cp><(di_ni) and 
o = { C.1 C21 Cmi]. Then the matrix E R1CT = LOT = RmCT is 

symmetric, the matrix L has full rank and hence we can apply Lemma 1.8 to 
obtain a unique symmetric matrix T such that 0 = Imi. We partition T blockwise 
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according to the partition of im, VjZ. 

T11 T2 Tim 

T= 
T21T22 ... T2m 

Tmi Tm2 Tmm 

, 4 E CriXri 

The relations (1.11) imply that the blocks below the main antidiagonal in 14 are 0, 

i.e. IjJ = 0 if i + j > m + 1, and that there exist unique matrices Tij E C' x (di—ri) 

i=1,2,...,m,j=1,2,...,m—i+l such that 

Cj2 = Rm_i+i 

T1 

T2 

The latter holds because every column of the matrix C2 is linear combination of 

columns of Rm....i+i that are linearly independent. Then we write T1 = [ j Ti1 I 
if i + j ≤ m +1 and T11 = 0 if i + j > m +1. The matrix T is then of the form (1.12), 

and by the construction of ijj. and Tij it follows that C = LT and the matrix T is 

unique because the matrices Tij and Tij are unique. 0 

1.5 Structure of Commuting Matrices 

This is the main section in this chapter. Theorem 1.13, proved in the first 

subsection below, is the first important step towards the construction of a special 

collection of matrices that is used to reconstruct a commutative array in form (1.2). 

In the second subsection we give this collection for simple eigenvalues and discuss its 

properties. In particular, a set of symmetric tensors can be associated with the special 

collection of matrices. These tensors appear as an essential tool in the construction 

of root vectors for simple eigenvalues of a multiparameter system. 
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1.5.1 General Case 

Proposition 1.11 Denote the dimension of the span of the set 

{aJ' 1;iEdi; jEdi+i} 

byr1, for l=O,l,...,M—l. Then 

di+i ≤ ri ≤ min{n,didi+i} 
d1 

for l=0,1,...,M—1 and ri≥ri+i for l=0,1,...,M---2. 

more, the rank of the matrix 

Proof. The array A1' +1 is constructed so that r1 ≤ min In, didi+i}. Further-
- 

R 1111+1  

'2 

Dl,I+1 
R dl  - 

E ndjxdgj is d,+i (cf. Proposition 1.2). Since 

TIJ = rank (R'') r for j E d1 and rank (j R1) <,rank R1 for any matrices 

R1 of the same sizes it follows that 

d1 

d,+i ≤ Lrij ≤ d,r1. 
j=1 

By Corollary 1.3 the matrices R"' (cff1t1+2)T are symmetric for 1 = 0, 1,. . . , M - 2 

DZ,l+l 
'2 

1,1,1+1 

cff" 2 and R" 1, i E d1, satisfy the conditions of Lemma 1.9. Then by (1.10) the 

rows of C112 are in the span of the columns of R l+l and so r1 rl+l. 0 

Let us now consider the case M = 2. Then 

and by Proposition 1.2 the matrix has full rank. So for every j the matrices 

0 A°' 

A=0 0 

00 

A°2] 

A'2 

0 

(1.13) 
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Commutativity imposes conditions only on the arrays A°' and A'2. So we are only 

interested in these two arrays. 

First we will discuss the special case when the row cross-sections of A°' 

span a one-dimensional subspace in C><d1. By an admissible change of basis B we 

can assume that 

A°' = 

a a01 01 - 12 aid1 

0 0... 0 

0 0... 0 

Then we have a simpler version of the main result 

(1.14) 

Theorem 1.12 Assume that A is commutative with M = 2 and that A°' has the 

form (1.14). Then the array A'2 is generated by a set of d2 symmetric matrices of 

sizes d, x d,. 

Proof. By Corollary 1.3 the products R?' (c12 )T are symmetric and by 

Proposition 1.2 the matrix R?' has full rank. Thus by Lemma 1.8 there exist sym-

metric matrices T1 such that CJ2 = R?'T1 for all j. 0 

The above special case is important in the study of the simple eigenvalues 

which are significant in applications to Multiparameter Spectral Theory. 

Before we state the main result for the general case M = 2 let us introduce 

some further constructions. Proposition 1.11 makes the following definition sensible. 

Definition. The set of integers V = {d0, d,, d2; r}, where all d and r are positive, 

is called an admissible set if 

2 

d5=N, r≤n and 
j=0 

di+, 
d1 ≤ r≤ didi+i for 1=0,1. 

For the set of matrices T1 E C'"<8; i E ; j € d, we introduce the matrix 

T5= 

Tij 

T2 

T1 
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and we denote by S the subspace in Cdlr spanned by the union of the ranges of T2 

for all j. Similarly for a set of matrices {SiE C' 8; i E do} we write 

Si 

and 

s= 

ST = [S, S2 

S2 

Sd0 

Definition. For a given admissible set V the triple (R, T, P), where R is a full rank 

n x r matrix, 'T = {T1j; i E d0; j E d2} is a set of r x r symmetric matrices and P 
is a projection in C"°' >< "°'., is a structure triple (for V) if it satisfies the conditions: 

(i) T5, j E d2 are linearly independent 
(ii) the rank of P is d, 

(iii) S is a subspace of R = 1?.. (P). 

Theorem 1.13 Given a structure triple we can describe (to within similarity) the 

arrays A°' and Al2 of a commutative cubic array A with M = 2. (Commutativity 

does not depend on the choice of the array A°2.) 

Conversely, for a given commutative array A with M = 2 we can find a 

structure triple which generates the arrays A°1 and A'2 of A. 

Proof. Suppose we are given a structure triple (R, Y, P). Let ker P = .AC 

and 1Z. (F) = R. The projection P can be written in the form 

P= 

- Si -

S2 

Sd0 

[Z, Z2 Zd0] (1.15) 
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di 
where S, Z' E C.xd2 E ZS = land R(S) = R. The decomposition (1.15) can 

.1=1 

Si s11 -

be obtained for example from the matrix X = 
S2 S21 

Sd0 Sd0l 
the first d, columns form a basis for 7?. and the rest form basis for K. Then we 

choose [Z, Z2 ... Zd1] to be the first d1 rows of the inverse X 1. Any other 

decomposition of P as in (1.15) is given by 

P= 

Si -

S2 
U(7'[Z, Z2 •.. Z] 

Sfl E Cr><o_d1 where 

Sd0 

for some invertible matrix U E Cd1 xd1• Then an array A is generated as follows. The 

rows of A°1 are given by 

R1=.S, iEd0 

and the columns of Al2 are given by 

d0 

jEd2. (1.16) 
1=1 

First, the columns of A°' and A'2 are linearly independent. The columns of A'2 

are linearly independent since T3 are linearly independent and the columns of A°1 

are linearly independent since the columns of S are linearly independent. In order 

to prove that A is commutative it remains to show by Corollary 1.3 and Lemma 1.9 
do 

that S1 (zaa) = Tjj for all 1 and j. Since S C 7?. we have PTj = Tj or written 
do 

by blocks E SjZjTjj = Tj for all 1 and j, which proves commutativity. 

If we take another decomposition 

P= 

S,LJ 

S2U 

5d0U 

[U'Z, U'Z2 ... U'Zd0] 
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we will get a similar array Au. The similarity transformation between A and AU is 

given by 
100 

0Uo. 

001 

Let us now explain how to obtain the structure triple from a commutative 

array A. Since A is commutative the products R' (c12)T are symmetric for i, E d0; 

j E d2 by Corollary 1.3. For every j the matrices R?', i E do and Cl2 satisfy the 

conditions of Lemma 1.9. So there exist matrices R, Tij, S1 and Z1 as in Lemma 1.9. 

We can choose the matrices 1?, S1 and Zi to be the same for all j since they depend only 

on R'. Then the triple (R, 'TV, F) is a structure triple where 'T = {Tij; i E do; j E d2} 

and P = SZT. We need to check conditions (i)-(iii). Condition (i) holds since C3 

are linearly independent. By the construction of S and Z the rank of P is equal to 

rank S = d1 and by the right-hand equations in.(1.10) the span of the ranges of T5 

is a subspace of Im P. 0 

To illustrate the preceding discussion we consider an example. 

Example 1.14 Let 
O 1 0 0 0-

0 0 1 0 0 

.A= 0 0 0 0 0 

00001 

_0 0 0 0 0_ 

Then the (nilpotent) matrices that commute with A1 have the form 

A2= 

0 all a12 a21 a22 -

0 0 all 0 a21 

00 0 0 0 

0 a31 a32 

00 a31 

0 a41 

0 0_ 

where all aij are arbitrary. In order to construct the array A in the form (1.2) we need 

to look at different cases depending if some of aij are 0. There are two choices for 
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M, 2 and 4. In the case M = 2 there are two choices for admissible sets: {1, 2,2; 2} 

and {2, 2, 1; 2}. If M = 4 then di = 1 for all i. We here present the cubic array A as 

a two-dimensional array of column vectors. 

(i) Let all aij in A2 be nonzero. Then M = 4 and d0 = d1 = d2 = d3 = d4 = 

1. In the basis B = {ei, e4, 62, 65, 6} the array A is 

(1 (O (al2 ) 
0o) a2i) aii) a22)  

1 
(0'\ G) 3 
00o)  ai) ta4i ) a32 

10\ (1) fO\0\(all 
A (IIII\01 O '0) \a211  

(0•\ (1) 
(0\ (O' ( 0 

o) O o) k,o) \a31 

(0'\ (O" (0\ (0'\ (0 

- o) o) o) o) o - 

and in the basis 13' = {el, e4,ae2,ae5 +,862,a263 +i3e +'162} where a = - = a3 .' 

- (a11 - a41 ), 'y = 1. ((a11 - a41)2 + a22a31 - a21a32) the array A is in the upper 

Toeplitz form 

-(o••\ (0 (& (8' (-y 

'\0) \a21) k ) 77) çt 
(O' (O\ (O\\ (a'\ (/3 

'\0) \O) \a21) \5) 'Sj7 

10\ (')10\ f0\ (a).A.= II  III\0) 0 \0) \a21) ö 

(O\ (0\ (0\ (0) a2 

0o) o) o) o 1 

0(O(O'\(0'\(0 )o) o) o) o) tü. 

where 
- a1a2 / a21 2 
- = -r- a11 + a22a31 - a11a41) 

a31 a31 

and 

a21 ( all( = -b- a2a12 + a11a22 - a22a41 + - - a41)2 + a22a31 -  a2la32)) 
a31 a31 
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(ii) Suppose now that a21 = 0 and the other aij are nonzero. Then M = 2 

and d0 = 2, d1 = 2 and d2 = 1. In the basis B = {el, e4; e2, e5; e3} we have 

M (O (1\ (0\ (0 - 

o) aii) \a22) \a12 

(o'\ (0'\ (0\\ (1\ (0 

o) o) \a31) \a41) \ a32 

(0o) •\ ) (O\ (0") \ (0) \ (1 
o to o 

(0\ (O\ (0\ (1)a3 
0o) o o) o l 

(0\  (0) 
(0) 

(O\ ( 1 ) 

o) o o o) o - 

We can choose the structure triple of A to be 

- 10 1 a11 0 a31 
R= ; T11 = , T2 — 

0 1 all a1 + a22a31 a31 a31 (ajj + a41) 

A= 

and 

P = SZT = 

The array A°2 is 

1 0 

all 

0 

a22 

1 

a31 a41 

11 0 0 

.i.. 0 
a22 a22 

(0 

A 02_ _(0 

a32 
(iii) The last case we will consider is a31 = 0 while the other ajj 0 0. Then 

0 1. 

M = 2 and d0 = 1, d1 = 2 and d2 = 2. In the basis B = lei; e2, e4; e3, e5} we find 

(0\ ( 1 \ ( 0 (0\ (0 

o) a11 ) a21) ai2) tsa22 

(0•' (0" (0) 0(1'\0o) o)  \a21 

(0•\ (00) (00 (al o)  o) \a32) 4 

(0\ (0"\ (0\ (0"\ (0 

o) o) o) o) o 
(0'\ (0'\ (0' (0S (0 

-o) o) o) o) o * 

A= 
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One possible choice for the structure triple is 

1 0] 11 a11 1 

R= E all a ; T,1= ,+a2ia32 j' 0 1  

T12 = 
1 

0 a21 
a21 a21(a,, - a41) 

The decomposition (1.15) for P is 

and the array A°2 is 

0 

P= 

1 oir 1 

a11 a21j L 21 21 
1 

A02=[fl (°j. 
\a,2J \a22J 

0 

Theorem 1.13 tells us that in the case M = 2 the array (1.2) is commutative 

if the arrays A°' and A'2 are given through a structure triple. So we ensure that the 

row-column products of Corollary 1.3 are symmetric. If M ≥ 3 we can consider the 

array (1.2) as a collection of M(I-1) cases with M = 2. Namely, for every pair of 

integers (k, 1); 0 ≤ k ≤ 1 - 2 ≤ M —2 we have the problem - I Al+2 ... Ak_ \ 

0 A'" 2 ... 
0 * 

\ 0 0 •.. A' 2'1 ' j 
I 

o 0 

o 0 0 

with 
(1-2 1-1 

Dkl = d, E d, d1; rkz 
Ii=k i=k+1 

The number rkl is the dimension of the span of 

{a,h=k+1,k+2,...,l-1;iEdk;jEdh}. 
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The array 
I A'"' A'" 2 ... Ak,1_1 \ 

0 ... A"' 
(1.18) 

\ 0 0 •.. A'2"' , 

is acting as the array All in the case M = 2 and the array 

Al+h,l \ 

A 2" 
(1.19) 

A'" j 

as the array A'2 in the case M = 2. The sizes of 0 and * in (1.17) are not important 

when we generate the arrays (1.18) and (1.19) from a structure triple as described in 

Theorem 1.13 for All and A'2. The row-column products of the arrays (1.18) and 

(1.19) are exactly the products in Corollary 1.3. So A is commutative if and only 

if these products are symmetric. Then the structure triples of the above problems 

(1.17) (subject to appropriate matching conditions), together with an array 

describe A. 

Before we proceed with the discussion of the simple case we state an obser-

vation. It shows that all the entries of the arrays Ak! of a commutative array A in 

the form (1.2) lie in the linear span of the entries of the first row of A. Precisely, if 

we denote by Sk the linear span of the set 

{a, jEk, rEc1, sedj}, 

then we have: 

Proposition 1.15 For k = 1,2,.. . , M - 1, 1 = k + 1, k + 2,. . . , M, r E 4, S E d, 

it follows that a Ers  s,—k. 

Proof. Theorem 1.13 and relation (1.16) imply that a12 E S. Similarly, rs 

we can apply Theorem 1.13 and relation (1.16) to the arrays A'" and jc,jl, 

k = 2,3,. . . , M - 1 and obtain 

a +l E Slk 
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where Sik = span {a;11, r = 1,2,. .. , d,_,, s = 1,2,. .. , d,}. Therefore it follows 

rs E Slk C 81,k-1 C ... C Si, = S1. Next we apply Theorem 1.13 to the arrays 

A°' A°2 A'3 ( Al2) and (A23) Then it follows ars E 82. Similarly as for 1— k = 1 we 

have aj+2 E 82 and proceeding in the above manner for 1 - k = 3, 4,. . . , M - 1 we 

obtain that aki E Si-k.rs 0 

1.5.2 Simple Case 

Definition. An eigenvalue A of a commuting n-tuple A is called simple if d0 = 1 

and d, ≥ 2. 

The above definition coincides with the terminology used in [23] except that 

we added the condition d, ≥ 2 because we are not interested in nonderogatory eigen-

values when studying simple ones. Though the statements for the simple eigenvalues 

would remain valid if nonderogatory eigenvalues were included, we excluded them be-

cause we developed a more simple approach for them which could not be generalized 

for simple eigenvalues. 

In this subsection we assume that the only eigenvalue A = 0 of A is simple. 

After an admissible change of basis B we can assume for k = 2,3,. . . , M that R0k = 

[ R,° 0 ] and rk = rank Rk = rank -k where R?IC EC"', rk ≤ dk, Tk = 

R' R,°2 ... R?k 1 (1.20) 

and 

Rk=[Rol 

Proposition 1.15 implies that 

1z ([ c7', c7 2, 

R°2 R0']. 

1) C i (.k) 

(1.21) 

for m = 2,3,. .. IM, k = 1,2, . . . , m - 1 and f = 1, 2,. .. , dm. Then it follows from 
Lemma 1.10 that there exists a unique matrix 772 of the form (1.29) such that 

[Cm cm ... C71,m] = Rm..1T1. 
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We write 
rm(11) ,.m(12) 
.Lf .Lf 

.Lrrn(21) ,jm(22) 
f 

,m(rn-1,1) 
.Lf 

.L,fm(1,m-1) - 

0 

0 0 

(1.22) 

rn(1i12) - [t.(1,12) 1 r11,d12 for all l and 12 such that 11 + 12 ≤ m and correspond-and T1 - tf(hih2)j hl_lh2_l 

ing h1 Ed,, and h2 E d12 .We also have 

rn-li '2 

lrn  .rn(1i12) 012 
ah11 - f (hi h2) ah2 . 

12=1 h2=1 

(1.23) 

Thus the commutative array A in the simple case can be given by a matrix km of 

the form (1.21) and matrices Ti, m = 2,3,... , M of the form (1.22) where RM and 

T7 have to satisfy the regularity and matching conditions. The regularity conditions 

are 

- the matrix RM has full rank and 

- the matrices 7(1m1), f E dm are linearly independent. 

The matching conditions are equivalent to those of Corollary 1.3. 

Example 1.16 Let us consider again the matrices A1 and A2 of Example 1.4. The 

eigenvalue 0 is simple because d0 = 1 and d1 = 2. The columns of the first row of 

the array (1.7) are not linearly independent, but to make them so we perform an 

admissible change of basis substituting e5 - e4 for the vector e5 in basis B. The 
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array A in the new basis is 

A= 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

We find that the unique matrices T7 are : 

) 
) 

0 

0 

0 

2 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 
1 
2 

0 

0 

2 

1 

0 

0 

0 

0 2 
'I [Oil d T an - ' r0 101 

-  

-  L - 2 
-  

Note that the matrix T 11) is symmetric, and that also the products 

I ] 
R2 (c3) T = R i oj[o 1 1 ] (') = R' 1 0 1 1 

and 

1 
R 2 (C 3)T = R' 0 

L - 

1 0 

12 _] (R')T = R?' I T 1 (R1)T 
2 L 24] 

t 

are symmetric. 0 

Before we state the next result we introduce some further notation. For 

M  = 3,4,...,M we denote by m  the set of indices {(11,12,13); Ii ≥ 1, 11+12+13 ≤ 

m} and for 1=(11,12,l3) E we define P1= d11 x r12 x r13 and Xidi1 X d x d13. 

We also write 
M-13 4 

MI - %ç .k(1112) .m(13,k) 
sf h .jVg(h1h2) f(h3g) 
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where h = (h1, h2, h3) e P1 and f E d,. 

The following result then tells that a commutative array A in the simple 

case can be reconstructed from the matrices RM and Tfm which satisfy the regularity 

and matching conditions. 

Proposition 1.17 Suppose that a matrix RM and matrices TfM m = 2, 3,. . . , M, f E 

dm are given in the form (1.22) and that an array A is described by relations (1.23). 

Then A is commutative if and only if 

M(11,12,13) - m(11,13,12) 
5f(hi,h2,h3) - 51(h1,h3,h2) (1.25) 

form = 3,4,...,M, f E d,, 1 E 4 and  E p'. The array  is reduced if and 
Thz(1,m—i) 

only if the matrix RM has full rank and the matrices Tf , f E dm are linearly 

independent for m = 2,3,. . . , M. 

Proof. By Corollary 1.3 it follows that the array A is commutative if and 

only if the matrices 
rn—i 
V •' ,1ikpkm 
L ''hj ''f 

k=11+i 

(1.26) 

are symmetric for 11 = 0, 1, 2, . . . , M - 2, m = l + 2, 11 + 3,.. . , M, h1 E dj, and 
m(ij) f E dm. The nonzero blocks of a matrix T7 are of the form , = [y() Tm(uj) ] 

,çim(ij) m(ij) where .L E JY Xrj and Tf = (17M)T. Then the matrix 

rpm - 

.Lf - 

m(i1) m(i2) 

,fm(21) ,.m(22) 
.Lf .Lf 

rm(m-14) 
0 

(1.27) 

is symmetric. Therefore it follows that the matrices (1.26) for 11 = 0 are equal to 

RM (y)T ( M )T = RMT7 (iM) T 

and hence are symmetric. Here the matrix RM is defined as in (1.21), i.e., 

RM = [Rio' (Ro2 o) OM 0)]. 
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It follows then from (1.23) that (1.26) are symmetric for 11 E M - 2 if and only if 

Th(m) Rm_11_1ThiR (rn(li))T 

are symmetric or equivalently, if and only if 

are symmetric. Here 

,l1(l2k) - 

h1R - 

r5li(m) - 

h1R - 

rj4li(m) (,.jcm (Ii)\T 
.Lhi ) 

R y.fC  

r51i (l,Ii+l) 
£hiR 

0 

0 

0 0 0 

rm(1,lj+1) ,m(1,1i+2) 
.Lf .Lf 

,m(2,li +1) , .L m(2,1i+2) 
f 

,5 f  Lm(3,li +1) rfm(3,1i+2) 
.L  

- rn(m—li-1,li+1) 

rk(l112) 1r12,d11 and M(13k) 
L 9(hlh2)jh2= l,g=l 

0 

ç1 (m-2,m--1) 

m(1,m-2) ,.m(1,rn-1) 
Lf .Lf 

L m(2,m-2) 
f 

0 0 

- I.m(l3k)1'3'lk 
- f(h3g)j h3=1,g=1 

0 

0 0 

(1.28) 

We use the letters C and R in the subscripts above to indicate which of 

the matrices corresponds to a row cross-section of the array A and which one to the 

column cross-section. 

It follows from above that the matrices (1.28) are symmetric if and only if 

M-13 4 m-12 dk 
c' k(l112) 4m(13k) - c' k(l113) ,f.m(12k) 
L... 'g(h1h2) bf(h3g) - L_i 'g(hih3) 'f(h2g) 

k=11+12 g=1 k=11+13 g=1 

and, by definition (1.24), if and only if relations (1.25) hold. 

By definition, the array A is reduced if and only if the matrices 

f E dm are linearly independent for m = 1, 2,. . . , M. Since ahf 1 are given by (1.23) 
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m this holds if and only if R1 has full rank and T7 ("--'), f E dm are linearly independent 

for m=2,3,...,M. 0 

In the next theorem we expand the matrices Ti to symmetric matrices Ti 

of sizes dm x dm, where as before dm = E(1 d, and the form 

- ,.7-,m(11) q -,m(12) q-,m(l,m-1) - 

.Lf .Lf .Lf 

Tr 

rpm(21) rpm (22) 
.Lf .Lf 

rpm(m-1,1) 
.Lf 0 •.. 0 

(1.29) 

m(1112) d11 d1 
2 It is crucial for the proof of the completeness where T :l1l2) = {tf(h, h2)] hj=1,hz=1 

result in Chapter 4 that we prove that the expanded matrices Ti are symmetric and 

that the matching conditions 1.31 hold for them. 

Theorem 1.18 Suppose that an array A is in the form (1.2), d0 = 1 and the nonzero 

elements in the set {a01m, m E M, f E dm} are linearly independent. Then there exist 

symmetric matrices Ti, m = 2,3,... , M, f E dm in the form (1.29) such that the 

relations 
rn-li rj2 

jim m(1112) 012 
ah11 - - tf(hlh )ah2 

121 h2=1 

hold, where ii E m - 1, h1 E d11, and also 

m-13 dk m-12 4 
k(1il2) m(13k) - 'c' 'c W113)4.m(12k) 

L Ls 'g(h1h2) 'f(h3g) - L1 L.1 'g(h1h3) "1(h29) 
k=li+12 g=1 k=11+13 g1 

(1.30) 

(1.31) 

where 1 E m, h E xi, k E m - 2 and g E 4. Moreover the matrices T7i(lm_l), f E 

d. are linearly independent for m = 2,3,. . . , M. 

The proof of this theorem is long and technically complicated. To preserve 

continuity of the presentation we include it in Appendix A. Here we only explain how 

the matrices Ti are constructed. 

The matrices TTare as in the previous proposition. Then the matrices Ti 
m(11,12) are constructed inductively. First we set T1 = 0 if 11 + 12 > m. Because d1 = 
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we can define 

T7'1) = y(1I) and = (crn(ll))T (1.32) 

so the matrices TT for m = 2,3 are determined. 

Next we inductively define matrices T7(1112) for m ≥ 4, f E dm and l + 12 ≤ 

m. Suppose that we already have matrices T7' for m' = 2,3,. .. IM - 1,  f e and 

thus we also know the matrices IAm) for k E m - 2, g E dk where 

rpk(m) - 

gR 

and 

T k(l,k+2) T k(l,k+3) 
gR 

o T2"2 ri-tlk(2,k+3) 
gR 1 h1R 

o o ,-1-,k(3,k+3) 

0 0 0 

Tk(1112) - f.12(11k) v" 012 
gR - LVh2(hlg)J h11,h21 

rpk(1,m1) 
.L 9R 

,.7-,k(2,m-1) 

q-tk(3,m1) 

,-pk(m2,m 1) 
-tgR 

Note that it follows from Proposition 1.2 that the columns of the matrices 

.L1fl 

1 2R 

- 

are linearly independent for 1 E m .-  2 and therefore the matrix 

pl(m) 
L1R 

iji1(m) 
-L 2R 

p1(m) 
T diR  

is left invertible. We write 

r71(m) r I ,71(m) p71(m) Z 1(M) 
= 1'lR LI2R djR 

(1.33) 
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rr* 1(m) for a left inverse of j where 

,7 1(12) 1(13) 
£J9R gR 

A ql(23) 
'-' 

0 0 q l(m-2,m-1) 

for g E d1 and Z9lhl2) E Cd,2 "11 Now we are ready to define the matrices T7hhl2). 

For 11 = 2,3 .1 we write 
2  

d, 
fr t1(rn-lj T7(hl,mhl) = zl(hl_l,hl)T7(hl_h,m_hl+l)  (1.34) 

hR hR 
h=1 

is the integer part of the fraction For l = + 1, ['] + where [i 1]  

2,. .. , in - 2 we write T71"1 = (T,m(m_hl7hl))T. Next we define inductively for 

12 = 1,2,.. .,m —4 matrices Tyh1mh1l2). These matrices for 12 = 0 were just 

defined above and matrices T7'" are already known. Then we can define inductively 

lm-12+l forll=2,3,..., l [ 2 j 

d1 

= E [ z -1" ZhR 'hR 
l(li-1,li+l) ,,'l(li-1,l) ] 

h=1 

'rrl(m-1 T7(hl_l,m_t+1) Ty(h1_l,m_l+2) T71(hl_1,m_hl+l) - hR m_l+l))T 

Ty(h1m_l+l) ,-r,m(Ii,m-I+2) 0 f,-r,1(m-1,m 
1 (L hl 

Tm(l_1,m_l+1) 0 ... 0 T - 1rr1(m1rn1i+1)) 

lm-12+1 1 Here we write l=l1+12. For 11 = [m_+1]+1,L 2 j+2,...,m-12-2wedefine 
1 ,rn(11,m-11-12) (Tm(m_h1_12h1)) T 

We continue inductively until m' = M. 

To illustrate the above construction we include three examples. 

Example 1.19 Suppose that n = 2. We would like to find two nilpotent commuting 

matrices A1 and A2 with d0 = 1 such that the value of d1, d2 and d3 is the greatest 

possible. 
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Because rank R3 ≤ 2 the greatest possible choice is d, = 2. Then we can 

take 

The array A'2 is described by a set of 2 x 2 symmetric, linearly independent matrices. 

Since the space of these matrices is 3 dimensional we have d2 = 3. We choose 

T12  ], T=[0 I and T32=[0 o] 

Next it follows from (1.23) that 

A'2 = 

The matrices T 2 and T'2 are 

( 
( 
1 

0 

0 

0 

0 

0 

0 

1 

T 1(12) ,R = 1 1 0 0 1 and T21 = 1 o 1 0 1 
O i oj 2 too  ii• 

Since the products 

T''2 (T3(l2Y\T / , g=1,2, (1.35) 

are 2 x 2 matrices and since the matrices g = 1, 2, are linearly independent, 

it follows that the space of 2 x 3 matrices (12) such that (1.35) are symmetric is 

4-dimensional. We can choose 

Ii 0 01 1 1 o l 
1 m3(12) - 

T'2= o o oj' 2 - Li o 0]' 
T33(12)= [0 0 1   

010 
and1'2 = I, 

[0 0 o1 

0 0 ij 
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and T" = 0 0 for all f. Then all the matching and regularity conditions hold 

and we have 

A23 = 

The array 

o All 0 0 

o o A'2 0 
A= 

0 

0 

0 0 0 A23 

00 0 0 

is commutative and we have di = i + 1, 1 = 0,1,2,3. In general, if n = 2 and d0 = 1, 

it follows that d1 ≤ i + 1. If d1 = I + 1 for i = 0,1,. . . , M - 1 then the corresponding 

commutative array A is similar to 

0 

0 

0 

0 

0 

1 

OA°' 0... 0 

00 A'2 ... 0 

0 0 0 . A M -1,M 

00 0 ... 0 
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where A'' has dimensions (i + 1) x (i +2) x 2 and 

= 

(0 ... (0 (0 
o) o o )  

(0 (0\ (o 
i) o) o 

(o (o (o (o (0 

o) o) o) i) o 
(o  (o (o (i (0 

o) o) o) o ) i 

We do not prove the last statement, but the proof is easy. Note that the array A for 

M = 3 was constructed above. 0 

Example 1.20 Suppose that n = 3 and that d0 = 1, d1 = 2, d2 = 3, d3 = 2 and 

d4 = 1. We are given 

10 000 00 0 

0 —1 0 0 0 3 0 0 

0 2 0 0 0 —1 0 0 

where the spaces indicate the partition according to the d1, and 

T2 2 = [ 1 01 1 
1 = [ 

3(12) - 3 1 0 3(12) - 0 1 —1 d 3(11) - 3(11) - 0 0 
1 - '2 - a 1 2 - 

1 0 1 1 —1 0 0 0 

It is easy to verify that the matching conditions (1.28) and regularity conditions 

(described on page 32) hold for this collection of matrices for m = 2,3. So the above 

collection describes the first three columns of a commutative array A. To illustrate 

how the matching conditions work let us find a symmetric matrix T14 which will define 
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m 2(4) the last column of A. The matrices i , g = 1,2,3, are 

rp2(4) - 

1 1R 

We write T4'3 = 

matrices if 
t21 

,T2  =1 1 2(4) Ii 1 ] and = 

L iii -- jo—itil 

t12 I 
t22 

o —1 
10 

Then the products (1l3))T are symmetric 

tii + ti2 

42 +t21+ 

tll+ 

3t21 

t22 

t22 

=0 

=0. 

=0 

There is a one-parameter family of solutions of this linear system of equations. The 

matrix T14"3 has to be nonzero, so we choose t2j. = 1 for convenience. Then it follows 

21 
that 13 = I. Next we have 

1 —2 

rr'1(4)1R - 

.L - 

0 0 0 0 

01000 

00030 

00011 

0 0 0 0 —1 

and = 

1 0 0 

0010 

0001 

0000 

0001 

0 

0 

1 

—1 

0 

T 
The symmetry of the matrices (T4(1)), g = 1,2 implies that 

and, if we write 

then u22 = u13 and u12 

T422 = 

,4(i2) = 

U21 U22 

6 3 —1 

3 —i 2 

—1 2 1 

U13 I 
U23 

= U21. Here we can choose 4 of the entries u, and we can 

choose the symmetric matrix arbitrarily. We take, for example, 

1 0 —i 0 
T4"2 = —1 0 1 1 and T4"1 = [ I 
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Then the matrix TI is determined by symmetry. Finally we use the relations (1.23) 

to find the array A = {A1,A2,A3}. The matrices 

01000000 0 

00010000 0 

00001000 0 

00000030 0 

0 0 0 0 0 0 1 1 —1 

0 0 0 0 0 0 0 —1 0 

00000000 2 

00000000 1 

00000000 0 

0 

0 

0 

0 

A2= 0 

0 

0 

0 

0 

and 

0 —L 0 0 0 

0 0 0 —1 0 

0 0 0 0 —1 

00000 

00000 

0 0 0 0 0 —1 0 

0000000 

00000 

0 0 0 0 0 

0 0 2 0 0 0 —1 0 0 

0 0 0 0 2 0 0 0 —2 

0 0 0 0 0 2 0 0 —1 

0 0 0 0 0 0 2 2 —2 

300 

006 

003 

—1 —1 1 

010 

—1 

—1 

002 

000 

0 0 0 0 0 0 0 —2 0 

0000002 0 

0000000 0 

0000000 0 

0000000 0 0 

2 

2 

—4 
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then commute. 0 

Example 1.21 In this last example we are given 3 commuting matrices such that 

d0 = 1 and we will find the corresponding matrices RM and T71. The commuting 

matrices, written in a basis {e; i E 1Q}, are : 

A1= 

J4. 0 0 

o J3 0 
o o J3 

where Ji is i x i nilpotent Jordan matrix, 

A2= 

and 

0 1 1 —1 1 0 0 1 0 0 

001 

000 

000 

0 0 —1 

000 

000 

000 

000 

000 

101 0010 

100 1001 

000 0000 

0 0 —1 1 1 2 —3 

—1 0 0 —1 0 1 2 

000 0001 

200 2039 

000 0003 

000 0000 

0 2 2 .0 2 0 0 0 0 0 

002 202 0000 

000 200 2000 

000 000 0000 

0 0 —2 —4 0 —2 —2 2 0 0 

0 0 0 —2 0 0 —2 0 2 0 

000 000 0002 

0 0 0 4 0 0 4 0 6 —4 

000 000 0006 

0 0 0 0 0 0 0 0 0 - 
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In a basis B = { el; e2,e5;es,e6,e3;e4,e7,e9;eio} the array A = {A,,A2,A3} is in the 

form (1.2). We have dj=2, d2 = d3 = 3 and d4 = 1. The first row of A is 

- \0J 2) 2) \0) \0 \2) 0 ) 0) 0) \0 

To make its nonzero columns linearly independent we substitute the vectors 64 - 

and e7 + 66 for 64 and e7, respectively, in B. Then we have 

and 

o \ f\ 

0 1 1 1 0 1 —1 0 oj 

R4= 

A'2 = 

100000 

111000 

220000 

So the matrices T, T22 and T32 are : 

( 
0 

1 

2 

1 

—1 

—2 

000 

000 

000 

1 1 

1 

\ 2 

0 

—1 

—2 

i _I T12  o]T2=[o i —2] and T32 l 0 
_Lo —1 I. 

Next we find the matrices T13, T and T33 that are associated with the arrays 

A'3 = 

0 0 0 

1 0 1 

2 0 0 

1 0 0 

2 2 2 

0 0 0 

and A23 = 

'0 1 

2 2 3 

\ 4 6 

/1 0 

—1 —1 1 

2 

0 0 

1 1 0 

2 2 0 

63 
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They are 

01001 

1 —1 2 —1 0 ,2= 

02000 

00010 

0 0 2 —2 1 

02000 

00100 

00210 

12000 

Note that their top 2 x 3 right corner blocks are linearly independent and we use 

symmetry to expand them to 5 x 5 symmetric matrices T, T23 and T. Finally we 

will find the matrix Tji' which will describe the structure of the last column of A. The 

arrays in this column are 

A'4 = 

—2 

0 

0 

0 1 

0 

Then we have 

A24 = and A34 = 

00 000001 

T14  0 0 —2 0 0 0 1 2 

0 —2 11 2 1 0 0 0 

In order to expand it to the matrix T,4 we need to find the matrix r(22), defined in 
(1.34) by 

2 
T422 j.71(12) = L "hR (T,J3))T , 

h=117 

(1.36) 

while the matrices 71(21) and 31) are determined by symmetry. In our case we have 

rril(12) 

001 

010 

010 

1 —2 —1 
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we choose its left inverse 

and we have 

,.,,1(23) - 

- 

From (1.36) it follows that 

1 

T422 0 1 0 0 1 
012 

10 

and so 

z 1('2) - R - 

1111 

0100, 

1000 

0 0 ii 
,,-,1(23) - 

0 1 0 1 2R - 

1 0 0] 

222 

—1 —2 1 

010 

001. 11 

010 + 00 

1 0 0 _0 0 

11 2 1 

= 210 

100 

001 

012 

00 000001 

0 0 —2 0 0 1 2 

0 —2 11 2 1 0 0 0 

00 210000 

00 100000 

00 000000 

01 000000 

1 2 0 0 0 0 0 0 

Now it is easy to check the matching conditions, for instance 

- 0 —2 11 2 1 

2 —1 0 

2 —2 1 

210 

01 01 00 
00 210 

1 —2 —1 —1 0 0 0 0 1 0 0 

T21 (714(l))T = 0 0 0 2 2 2 0 0 0 0 0 

0 0 0 —1 —2 1 0 1 0 0 0 

_0 0 0 0 1 1 2 0 0 0 
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0 0 2 1 0 

0 —2 6 0 1 

= 26000 

10000 

0 1 0 0 0 

etc. 0 

The commutativity of the array A implies further symmetries on the prod-

ucts of the elements of matrices Ti. Thus we obtain symmetric tensors that will 

play an essential role in the formulation of the joint root vectors for the associated 

n-tuple of commuting matrices of a multiparameter system. First we need some fur-

ther notation. For m = 2,3,. .. , M and 2 ≤ q ≤ m we denote by 'm,q the set of 

multiindices {(l, 12,. . . , l) ; li ≥ 1, E7-1 li ≤ m}. For 1 = (li, 12,... , l) E m,q we 

define a set xi = d11 x di, x ... x d,. The set of all permutations of the set q is denoted 

by 11q• For a permutation or E 11q and multiindices 1 E m,q and h = (h1, h2,. . . , 

we write i = (&,.(1),l(2),... ,lo(q)) and h, = (h(l))h(2) ,. . . ,h(T(q) ). Then we define 

recursively numbers s4 : for 1 € m,2 and h E Xi we write s = tf(hiI) and for 

q> 2 and 1 € m,q and h € Xi we write 

m—E!3 1j dk 
MI - 'ç' 4k(1112) m(k,13,14,...,Iq) 

S/h.— L L 1'g(h1h2) Sf(g,hi,h2,...,hq)• 
k=li+12 g=1 

Suppose that 

(1.37) 

{yi; l=1,2, .... M, h=1,2, ... ,ri} 
is a basis of the vector space CM. Then we define for every m, f and q a tensor 

S = > SY 1 0 y22 0 .. . 0 
lEm,q hEX1 

The first observation concerning the tensors S7q is: 

Proposition 1.22 For m, f, q, 1 and h as above it follows that 
v -'q 

' dk 
MI - 'c' V' k(1112,...,lr) m(k,lr1,lr2,...,1q) 

S1 h - .L Sg(h1h2,...,hr) 5/(g,hr+1,hr2 ,...,hq) 

k=E1 Ii g=1 
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where 2 ≤ r < q - 1. 

Proof. It follows from definition (1.37) that 

m-E3 li m_4 l m_E_r+i l d, 1 dk2 dir_i 
mi_ .k1(112) 

Sf h -
kili +12 k2=ki+13 kr_ikr_i+lr gi=i g=1 9r_11 

tk2 (k313) (k,-21r) m(kr_i ,1r+i ,lr+2 ,...,Iq) 
92 (gi h3) • 9r-i (9r-2 hr) Sf(gr_i ,hr+i ,hr+2 ,...,hq) 

Interchanging the order of summation we observe that 

m-E! I m_Ldj_r+l Ii m_L_r+i 1 kr_i 1r 

kr-2 kr_3 +lr—i kr_i kr_2 +lr kr_i =kr_3 +lr—i +Ir kr_s kr3 +lr-1 

We obtain similar rules when interchanging the order of summation between kr_i 

kr_3, kr_4,. .. , kj respectively. Thus it follows that 

m _E7_r+j l dir_i kr_i E _s 1 kr._i_E_4 ii 
MA - m(k._i ,lr+i ,lr+2 ,...,1) 

Sf h - 8f(gr_i,hr+i,hr 2,...,hq) 
kr_i=E_i li 9r-i=1 ki=11+12 k2k1+13 

kr_i1r dk1 dk2 dl,--2 

E t d1 (hil2) tk2(d113) • . t/_1(_2h1.) 
gi(h1h2) g2(91h3) gr_i(gr_2hr) - 

kr_2kr_3+lr_i 9i 1 921 9r-21 

m_E_ 1 1 4 
- m(k,lr+i,lr+2, .... lq) k(1112,.,.,lr) 
- Sf(g,h1,h2,...,hq) Sg(hih2,...,hr)• 

k=E_1 g=1 

Hence the result follows. 

Using the same notation as above we have 

Lemma 1.23 For every permutationo, E flq it follows that 

ml_. m1 
S1 h - 

or, equivalently, the tensors S7q are symmetric. 

and 

0 

(1.38) 

Proof. We prove the lemma by induction on q. For q = 2 the result follows 

by definition of Ti (cf. relation (1.32) ). Proposition 1.17 together with the relation 
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(1.31) give the result for q = 3. We suppose now that the result holds for q —1 (where 

q ≥ 4) and we prove it for q. Since every permutation is a product of transposition 

it is enough to check (1.38) for transpositions and further more it is enough to check 

the result for transpositions of the form (i, i + 1). From the definition of s in (1.37) fh 

and the inductive assumption it follows that the result holds if i = 1,3,4,. . . , q - 1. 

Therefore we only need to check (1.38) for the transposition o = (2, 3). We showed 

in Proposition 1.22 that 

rn-E4 lj 
rnl - 11 P(1"1"1,)m(p,14,15,...,lq) 
Sfh - Sj(h1,h2,h,) Sf(j,h4,h5, .... hq) 

pr41+12+13 .?1 

Then by the inductive assumption the result follows also for the transposition o = 

(2,3). 0 

Later we use the following two results that are consequences of Proposition 

1.22 and Lemma 1.23. 

Corollary 1.24 Suppose that m ≥ q ≥ 3, 1 E m,q, f E dm and li E XI. Then: 

(i) 

--E3 dk rn-I, d, 
•k(l,12) rn(k,13,14,...,Iq) k(l,lj,...,lq) ,rn(kl,) 
g(hih2) 81(g,h3,h4,...,hq) = Sg(hz,hi ,.,hq)tf(ghi) 

k=li+12 g=1 k=E2 Ii g=1 

S rn-I, 4 
rni - tm (khl) 
fh - Sg(hz,h3,...,hq) f(ghi) 

-E1=2 1$ 

Proof. By the defining relations (1.37) it follows that 

rn-E3 1i dk 
c t'''" rn(k,13,14,...,lq) m i 
L.... g(h1h2) Sf(g,h,,h2,...,h) = Sf Ii 

k=li+I2 g=1 

and by Lemma 1.23 

mi rn!0. 
Sfh - sf h 

(1.39) 

(1.40) 
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holds where o = (lq) is the transposition of 1 and q. Next we apply Proposition 1.22 

to give 
rn-li 4 

M1 a k(12,13,...,lq) .rn(kli) 
S 71; = Sg(h2,h3,...,hq)l;f(ghi). 

k=E?2 ji g=1 

Now assertion (i) follows because (1.39) and (1.41) are equal and assertion (ii) follows 

because (1.40) and (1.41) are equal. 0 

(1.41) 

1.6 Representation of Commuting Matrices by 

Tensor Products 

The material in the previous sections of this chapter was mostly developed 

for better understanding of the structure of commuting matrices. Our main motiva-

tion for this comes from Multiparameter Spectral Theory where the main tool that 

helps us understand the spectral structure of a given multiparameter system is a spe-

cial n-tuple of commuting transformations. In this section our study comes closer to 

Multiparameter Spectral Theory. It will be seen later that the matrices we use to 

represent an n-tuple of commuting matrices are a special case of commuting matrices 

studied in Multiparameter Spectral Theory. For the definition of the induced linear 

transformation see page 8. 

Definition. An n-tuple of commuting operators A on a finite dimensional Hubert 

space K has a representation by tensor products if there exist finite dimensional 

Hubert spaces H, operators Bi E .C(H), i E a , a subspace M C H = H1 0 

112 0 ... 0 Hi invariant for all induced transformations Bt E .C(H) and an invert-

ible linear transformation T : K —+ M such that 

At. =T'13T for iEn. 

The following result was proved by Davis [57]. He and later Fong and 

Sourour [75] proved a similar result for a commuting n-tuple of operators in gen-

eral Hilbert space. We give the complete proof that was already outlined by Davis 
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[57]. The reason for reproducing the proof of Davis is the close relation between the 

representation by tensor products and multiparameter systems studied later. 

Theorem 1.25 Every n-tuple A of commuting linear operators on a finite dimen-

sional Hubert space K has a representation by tensor products. 

Proof. Assume that K = K1 0K2 0 .0 K,. This is not a restriction since 

we can always take, for example, K1 = K and K2 = K3 = ... = Kn = C. Let x, 

i E n be indeterminants. Then we write P for the vector space of polynomials in 

x1. Denote by (x1) the minimal polynomial of A, by J2 the ideal in P2 generated 

by çj(xj) and by Q2 the quotient space P2/J2. Then we choose Hi = £(Q, K) to 

be the space of all linear transformations of Q2 into K2. Write P for the space of all 

polynomials in indeterminants xi,x2,. . . , x,, and J for the ideal in P generated by all 

the polynomials çoj (xi). Then the Hilbert space H can be identified with the space 

.C(Q, K) where Q = P/J. The quotient projections are qj : P2 —+ Q, i E n and 

q: P —+ Q. Choose a transformation Ui E Hi and a polynomial pi(xi) e P2. Then 

the transformation Bi E £(H1) is defined by 

B1 (U1) (qj (pj(Xj))) = U (qj (Xjpj(Xj))). 

This transformation is well defined since for every pi (xi) E Ji the product Xjpj(Xj) E .J 

also. It is easy to verify that Bi is linear. Let us mention that then the induced 

transformation is 

Bt (U) (q(p(xi,x2,... ,x))) = 

where U E H = £(Q, K) and p E P. 

Next we define the transformation T: K —+ H by 

(Tu)(q(p(x1,x2,...,x))) =p(A1,A2,..., A n) u 

where u E K and p E P. It is well defined since for every p E J we can find 

polynomials E P, i E n, so that 
n 

P(X1,X2,...,Xn) =''j(xj)x2, ... ,xfl),(xj) 
i=1 
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and so p(Ai, A2,- .. ,A.)  = 0. It is an easy exercise to show that T is linear and 

that it maps K into H. Now choose a vector u E ker T. Then it follows that 

p(A1, A2,... , A,)u = 0 for all p E P including p = 1. Therefore lu = u = 0 and we 

have showed that operator T is one-to-one. It remains to prove that 

TA1 = B7T for in. (1.42) 

Then it will follow that the subspace M = fl(T) C H is invariant for all operators BI, 

that T : K - M is invertible and hence A has a representation by tensor products. 

To verify relations (1.42) we choose a vector u E K and a polynomial p E P. Then 

we have 

(TA1u) (q(p(x1,x2,. . . ,x,)) =p(A1,A2,. . . , An) A1u = A1p(A1,A2,. . . ,A)u = 

(Tu) (q (Xjp(Xl, x2) . . . , Xn))) = Bit  (q (p(x1, x2,... , 

Therefore the relations (1.42) hold and the proof is complete. 0 

The dimension of the space H on which the above representing operators 

BI act equals (dim K)3. We will call it the dimension of a representation by tensor 

products. The question of minimal dimension of representation by tensor products for 

a given n-tuple of commuting matrices was already posed by Davis [57]. It remains 

an open problem. To mofivate the interested reader we give two examples where 

the dimension of the space H is less than in the construction given in the proof of 

Theorem 1.25. The first example is taken from the work of De Boor and Rice [37]. 

They studied the approximation of partial differential equations by partial difference 

equations. 

Example 1.26 A matrix A = [a1] 1 is said to be connected if for every i 

2, 3, .. , n there exists a sequence of integers 1 = ji, j2, jj = i such that 

ki 

d1 = Haj,_,j, 0 0. 
1=2 

(1.43) 
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A matrix B = [B]._1, where e C <' is said to be blockwise connected if for 

every i = 2,3,. . . , n there exists a sequence of integers 1 = jj,j2,. . . ,j, = i such that 

ki 

Di = flBj,1,, 
1=2 

(1.44) 

is nonsingular. Let P E CmXmn be the unique permutation matrix such that P(A 0 

B)P-1 = B 0 A for every A E Ctm <m and B E C' <'. 

Using the above notation we can state the result of De Boor and Rice [37, 

Theorem 1] 

Proposition 1.27 Suppose that 

A= 

A1 0 •.. 0 

0 A2 0 

0 0 Am 

and B = [B} 1 = P 

commute. Here we assume that A, By 

Ci 0 ... 0 

0 C2 •.. 0 

00 

E C' and Ci E jmxm 

P-i 

cn 
(1.45) 

Suppose also that 

Al is connected and B is blockwise connected. Then there exist a matrix E E cm<m 

and a nonsingular diagonal matrix D E Cm7<mn such that 

A=D'(I®A1)D and B=D'(E(&J)D. 

Proof. The commutativity of A and B implies AiCij = CijAj for all indices 

i and j. The fact that B is blockwise connected yields Ai = DAiD1' where D1 = I 

Di' 0 ... 0 

0 Di'... 0 
then 

0 0 ...J 1 
A = D' (I 0 A1) D. Observe also that all the matrices B1, and hence D, are 

diagonal. The last expression for A and commutativity implies A1 (Di 1B11D) = 

(Di 'BD) A1. Since the matrix A1 is connected and the matrices Di 'B 3D are 
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diagonal, say D1'B1D = 

e1 '.1 0 0 

0 ej 0 
we have A = d'edk = e, where 

0 0 ••. e 

dk are defined in (1.43). The blocks DT'BD1 of the matrix DBD' are scalar 

multiples of identity eI and so B = D 1 (E 01) D where E = [et]. 
The special matrices A and B defined in (1.45) then have a representation 

by tensor products on the same space as they act on. 0 

Example 1.28 It is a well known fact that the general matrix that commutes with 

the Jordan block 

A 

is an upper Toeplitz matrix 

010 0 

001 0 

000 1 

000 ...0 

a1 a2 a3 

0 a1 a2 an..1 

.8= 0 0 a1 

0 0 0 •.. a1 

(See for example [129, pp. 130-131].) Now choose the Hubert space H = C'2 0 Cn 

and the subspace M C H spanned by the set B = {x1 = ej ® c5...1, j E 111 

where ej denote the standard basis vectors in C,2. Then we have (A 0 I)x,= x 1, 

j = l,2,...,n, where x0 = 0 and (I(9B)x5 = EL1as_i+ixs, j € z. Next define a 

transformation T :C'2 — p M by T(e5) = x1, jE a. Then A = T' (A (9 1) T and 

B = T' (1 B) T is a representation by tensor products for A and B. It is minimal 

since on the tensor product space C" 0 C" where p < n or q < n there do not exist 
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two matrices C and D such that both C 01 and 10 D have a Jordan chain of length 

n. 
0 

Proposition 1.27 states that the matrices A and B of Example 1.26 are a 

special case of matrices that already have a representation by tensor products in the 

space they act. The consequence of Example 1.28 is that in general we can not expect 

the minimal dimension of a representation by tensor products to be of dimension less 

than (dim K)2. 

1.7 Comments 

Commutative matrices have been studied since the second half of the last 

century. Some of the related results were discussed in the works of Frobenius [79, 

80, 81], Sylvester [158], Taber [159, 160], Plemelj [140] and Schur [148]. For a more 

detailed discussion of the early developments compare [128, pp. 93-94]. It follows 

from results of Voss [169] (see the remark about Schur's lectures in [146]) that an n-

tuple of commuting matrices can be simultaneously reduced to upper-triangular form. 

Rutherford [146] described further properties that can be attained by this upper-

triangular form. Also Trump [164] and Egan and Ingram [62] discussed simultaneous 

reduction of pairwise commuting matrices. The reduced form (1.2) that we use in 

our presentation often appears in works on algebras of commuting matrices. See, for 

example, the monograph of Suprunenko and Tyshkevich [154]. The authors in [154, 

p.66] also noticed that commutativity of matrices is equivalent to certain symmetries 

in the products of these matrices. We explore this property in greater detail. It was 

shown by Gel'fand and Ponomarev [87] that the problem of a canonical form for an n-

tuple of commuting matrices contains as a subproblem the description of a canonical 

form for a (not necessarily commuting) m-tuple of matrices. By a canonical form for 

n-tuples of (commuting) matrices we mean a collection of n-tuples of (commuting) 

matrices such that every n-tuple of (commuting) matrices would be simultaneously 

similar to exactly one n-tuple in the collection. Gel'fand and Ponomarev gave a 
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canonical form for a class of pairs of commuting matrices in [86]. Though it would be 

more elegant to have a canonical form for an n-tuple of commuting matrices at hand 

it turns out that the reduced form (1.2) serves well for our purposes. We refer the 

interested reader to [15, 77, 78, 88, 96, 121, 170] for other more recent discussions on 

commuting matrices and on canonical forms for matrices. 

Our motivation for studying commutative matrices comes from Multiparam 

eter Spectral Theory where a special n-tuple of commuting matrices is associated with 

a multipararneter system. The results of this chapter were developed simultaneously 

with the results on the structure of root vectors for the associated n-tuple of commut-

ing matrices. Some of the results here were suggested by the structure of root vectors 

although they are independent from Multiparameter Spectral Theory and conversely, 

now form a very important building block in the theory of root vectors developed 

later in this dissertation. 

Our discussion of nonderogatory eigenvalues gives a different view of the 

previously known results (cf. [92, p.296] or [129, p.130]). Corollary 1.7 seems to be 

an interesting new observation. 

The matrices RM and Ti that appear in Theorem 1.18 can be described 

as solutions of linear equations in terms of the underlying multiparameter system. 

Commutativity implies further symmetries on the products of matrices Ti. We as-

sociate with these products higher order tensors which are then symmetric as shown 

in Lemma 1.23. These symmetric tensors appear as a coefficients in the expansion of 

root vectors and their symmetry enables us to prove our main result on root vectors 

for simple eigenvalues. 

We remark that the results of the second section and subsection 1.5.1 to-

gether with the necessary auxiliary results are presented in [118]. We also remark 

that it appears to be possible to reconstruct an arbitrary array in the form (1.2) (not 

necessarily simple) from a matrix RM and matrices T7 (which are now not neces-

sarily symmetric) where m = 1, 2,. . . , M and f Ed,,,. These matrices have to satisfy 

regularity and matching conditions similar to those in Theorem 1.18. Because the 
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proof of the results in this case appears to be a lengthy exercise in simple calcula-

tions and because it seems highly technically involved to apply the eventual results 

to the theory of root vectors for the associated n-tuple of commuting matrices we 

do not proceed with this further discussion. Let us mention however that a possible 

canonical form for the matrices T7 or a canonical form for the symmetric tensors S7 

could give a canonical form for the n-tuple of commuting matrices. (See [172] for a 

canonical form for a special case of symmetric tensors.) The investigation of these 

relations is beyond the scope of this dissertation. 

In Section 1.6 we investigate the relation between an arbitrary and an asso-

ciated n-tuple of commuting matrices. Davis in [57] was first to consider the repre-

sentation of an n-tuple of commuting matrices by tensor products, which is a special 

case of a representation by a multiparameter system that we define and discuss in 

the next chapter. Also Fong and Sourour [75] studied the representation by tensor 

products on an arbitrary Hubert space and De Boor and Rice [37] considered a re-

lated problem. As will be shown later not every n-tuple of commuting matrices is 

an associated n-tuple of commuting matrices. It follows from the result of Davis [57, 

Theorem 1] that every n-tuple of commuting matrices is a restriction of an associ-

ated n-tuple of commuting matrices. The problem of the minimal representation by 

tensor products was stated by Davis in [57] and we will state later an analogue for 

minimal representation by a multiparameter system. These problems have not yet 

been solved. 
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Chapter 2 

Multiparameter Systems 

2.1 Introduction 

We begin our discussion in this chapter by introducing the finite-dimensional 

abstract setting for Multiparameter Spectral Theory in Sections 2.2 and 2.3. We fol-

low Atkinson [10, Chapter 6] who laid the fundamental tensor space construction. 

Partly we also follow Isaev [112, Lecture 1]. A set of determinantal operators on the 

tensor product space is induced by a multiparameter system. We assume that a mul-

tiparameter system is nonsingular, i.e., one of the induced determinantal operators, 

called AO, is invertible. Then we associate an n-tuple of linear operators with a mul-

tiparameter system called an associated system. The basic property of the associated 

system is that it is an commutative n-tuple. We also have the basic relation (2.7) 

that connects a multiparameter system with its associated system. 

At the end of Section 2.3 we include a discussion on some basic relations 

between a general n-tuple of commuting matrices' and the associated system of a 

multiparameter system. This is closely connected with the presentation in Section 

1.6. Also Example 2.13 in Section 2.4 is related to this discussion. 

In Section 2.4 we define the notions of spectra, eigenvectors and root vectors 

for multiparameter system. They are defined so that they correspond to the equivalent 

notions for the associated system. 
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In Section 2.5 we study root subspaces for multiparameter systems. Here we 

describe a basis for the second root subspace. In the first subsection we focus on simple 

and nonderogatory eigenvalues and in the second subsection we study the general 

case. Relation (2.7) relating a multiparameter system with its associated system, 

and commutativity of the associated system, play crucial roles in this development. 

Relation (2.7) leads us to equalities of the type (2.13) and (2.23). In this way we find 

vectors x that are used to construct a basis for the second root subspace. Technically 

the most difficult part is to prove that the vectors we construct are actually root 

vectors. We perform a direct calculation using properties of determinantal operators 

and relations that hold for the vectors x. To prove completeness, i.e., the fact that 

a particular collection of root vectors is a basis, we use the theory of commuting 

matrices, developed in the first chapter, applied to the associated system. Certain 

columns in an array in the form (1.2) are linearly independent. It turns out that they 

are elements of the kernel of a special matrix that we associate with an eigenvalue of a 

multiparameter system, that is the matrix B0 in the simple case (or DOA in the general 

case). Because we are able to associate with a basis for the kernel of B0 (or D) a set 

of linearly independent vectors in the second root subspace it follows therefore that 

this set is a basis for the latter. 

2.2 Notation 

Assume that H1 (i E ) are finite dimensional Hubert spaces, the dimensions 
of H1 are ni and that Vj E £ (H1) for j = 0, 1 ... , n. Then a system of operators 

is called a multiparameter system and is denoted by W. Here A = (A1, A2,... , A) E 

C. We write U1 (A) = E 1 AT' j. A multiparameter system is called diagonal if 

Vj = 0 for 1 ≤ i, j ≤ n, i 54 j and it is called upper-triangular if Vj = 0 for 

1 ≤ j < i ≤ n. As before (cf. page 8) the transformation V € £ (H1) induces 

i E n 
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Vt E £ (H) where H = H1 0 H2 0... 0 H. Note that dim  = 117 n. We write 

dimH = N. 

The determinantal operator Ao E £(H) is defined by 

L0= 

itt 
"11 

itt 
"21 

itt 
"12 

itt 
"22 

'1 '2 nfl 

(2.1) 

The operator AO is well defined since the operators from different rows in above 

determinant commute. It can be also written 

AO = E (_1)3n()V1q(1) 0 V202 0•• 0 Vncy(n) 
EH 

where sgn (ci) is the signature of a permutation ci. 

Given a decomposable tensor x = X1 0 x2 0... 0 Xn E H we use the notation 

i0x = E 0 V22 x2 0••• 0 Vn,()x = 
o.€nn 

V11x1 V12x1 ... Vix1 

V21x2 V22x2 ... V2flX2 

vnixfl Vn2xn •.. Vnnxn 

0 

(2.2) 

If y = Yi 0 Y2 0•• 0 yn e H is another decomposable tensor then it follows that 

(i ox,y) = 

yV11x1 

*V VTJ 21X2 

yV12x1 

Y2 '222 

yVnixn yVn2xn ... yVx 

(The scalar product (.,•) is defined on page 8.) 
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We define further operators /j for i E 21 by 

V1t1 ... Vt. 11 

41 ... V2i 

V t. ito Vii+i 

v2t0 v21+1 
(2.3) 

v0 v +1 •.. vj 
Definition. A multiparameter system W is called nonsingular if the associated 

operator A0 is invertible in £(H). 

In this dissertation we study nonsingular multiparameter systems. Let us 

remark at this point that the assumption 'L o is invertible in £(H)' could be replaced 

by the weaker assumption that 'there exist n + 1 complex numbers Tj such that 

the operator TA is invertible'. Note that the latter case can be converted 

to the former by a suitable substitution of parameters A = (A0) A1, ... , A,) 

homogeneous formulation of the multiparameter system 

n 

W(A) = LA1 Vii , i E n, 

in the 

j=0 

i.e. substitution A = TA' where T is an (n + 1) x (n + 1) invertible matrix. So our 

theory can be applied also in the latter case with minor notational changes. 

Definition. The set of operators ri = L 1/ EC(H), i E z, is called the associated 
system (of a multiparameter system W), and is denoted by F. 

2.3 Determinantal Operators 

Determinantal operators retain the properties of scalar determinants when 

we perform column operations. 

Lemma 2.1 (i) If two columns of a determinantal operator (2.1) are interchanged, 

the operator is multiplied by —1. 

(ii) If two columns of (2.1) are identical, the operator equals 0. 

(iii) The value of a deterininantal operator is unchanged if a scalar multiple 

of one column is added to another column. 
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The proof uses the same method as in the scalar case. As a consequence 

of Lemma 2.1 it follows that properties (i)—(iii) hold also for the tensor determinant 

(2.2). Further we have (Laplace) expansion identities as in the scalar case. We will 

use only the column versions. We write Ljk (i = 0, 1,.. . , n; j, k E i) for the cofactor 
of 1' in L. ik 

Lemma 2.2 (i) For i, k E n we have 

OjkV=ET'LOjk= o, ifi=k 
j=1 j=i 1 0, if ik 

and 

'Ojk = = k. 
j=1 

(ii) For i,k,l En 

and when k = 0 

.7t ij1Vjtk T/tjL 5i= 

o, if k=l=i 

, if ki,k=l 

— Al, if 154 

0, if Ic j4l,k 54 i 

= = ' 1 
j=1 :1=1 1. 0, if il 

The method used to prove this result is the same as in scalar case. In par-

ticular we use assertion (ii) of Lemma 2.1. Before we proceed with further properties 

of the multiparameter system we need the following definition: 

Definition. The decomposability set R(W) of a multiparameter system W is defined 

as the set of all vectors x E H for which there exist vectors x1, x2,. . . ,x, E H such 

that 
n 

yvxj = Vio x 
j=1 

for i€n. (2.4) 
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Lemma 2.3 Choose x € R(W) and xj, x2,. .. , x, such that relations (2.4) hold. Put 

xo = —x. Then we have the identities 

for i,j=O,i,....,n. (2.5) 

Furthermore we have xi = r1x and so E 1 = T'x for i = 1,2,. .. , n and 

= (2.6) 

for i,j=1,2,...,n. 

Proof. By the definition of the decomposability set the vectors x0, x1,. . . , 
Xn 

satisfy the relations 

VkX1= 0 for k=1,2,...,n. 

Now we apply the operator Ljkj on the left-hand side and sum over k to obtain 

EE z ikIVkx1 = o for i,j=0,1,...,n. 
k=1 1=0 

Next the identities of Lemma 2.2 imply 

o = E = —1jx5 + Aix. 
1=0 

Since zo is invertible we get from the above relations for j = 0 that xi = 

r1x and EL1 = x. It also follows that L 1Lx = Ix = = 

jL 1/.x. The proof is complete. 0 

The array 

v1t1 v1t ... v1Y 
V2f'V2t2 ... V2tn 

vjlvnt2 ... Vt fin 

defines a linear transformation V : H'2 —+ H". Here we write H" for a direct sum of 

n copies of space H. Suppose for the moment that transformation V is not invertible. 

Then the following result describes the relation between the kernels of zo and V. We 

will consider this relation more closely for the special case n = 2 in Chapter 3. 
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Lemma 2.4 Suppose that x = (xi,x2,. . . ,x,,) EkerD. Then Xk € kerz 0 for all k. 

Proof. We have E 1 Ox = 0 for i e . From Lemma 2.2, (i) it follows 

that 

o = LO1kVXj = OXk 
i=1 j=1 

and the result follows. 
0 

Before we state the main result of this section we make an observation that 

follows from the definition of the decomposability set. 

Lemma 2.5 A vector x E H is an element of R(W) if and only if 

(Vjtx, V2tx,... 7 'OX) € 

Theorem 2.6 Let H, i = 1,2,. . . , n, be finite dimensional vector spaces and let W 

be a nonsingular multiparameter system. Then R(W) = H, the associated operators 

r1, i = 1, 2,.. . , n commute and they satisfy the relations 

Er= to v 
j=1 

for iEn. (2.7) 

Proof. We only need to show that 7Z(W) = H. The other assertions then 

follow from Lemma 2.3. 

The adjugate operator of V is defined as 

011 'O12 AOIn - 

O21 'O22 A02n 

On1 AOn2 Onn - 

The equalities of Lemma 2.2 imply that 

D.I3D=BD.V 

L0 0 ... 0 - 

0 zo ... 0 
(2.8) 
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and hence the operator V is invertible. Then the equality H'2 = R(D) holds and thus 

it follows from Lemma 2.5 that R(W) = H. The proof is complete. o 

The following results are closely related to the discussion in Section 1.6. We 

describe elementary relations between a general n-tuple of commuting matrices A 

and the associated system r of a multiparameter system. Further research on these 

relations might give an interesting new view point on commuting matrices. 

The following Corollary tells us that the n-tuple of commuting matrices that 

satisfies the relations (2.7) is uniquely defined. 

Corollary 2.7 If A1, A2,. . . , A,, is an n-tuple of commuting linear transformations 

on a finite-dimensional vector space H and W is a nonsingular multiparameter system 

such that 
n 

5=1 

then A5 = F5 for j E a, where r is associated with W. 

for i E 11 (2.9) 

Proof. For any vector x E H the relations (2.7) and (2.9) imply 

Since W is a nonsingular multiparameter system it follows from (2.8) that the oper-

ator V is invertible. Hence we have A3x = F5x for j E n and the result is proved. 
0 

As a corollary of Theorem 1.25 we have the following result concerning an 

n-tuple of commuting operators on an arbitrary finite-dimensional vector space. 

Corollary 2.8 Every n-tuple A of commuting linear transformations on a finite di-

mensional vector space K is similar to a restriction of the associated system of a 

multiparameter system. 

Proof. By Theorem 1.25 there exists a representation by tensor products for 

A. Using the notation of the proof of Theorem 1.25 we write 

Ai = T'B7T or BtI = TA1T' for iEn. (2.10) 
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If we define the multiparameter system W by W1 (A) = IA, - B1, i = 1,2,.. . , n, then 

it follows that F, = BI. Therefore it follows from the relations (2.10) that A is similar 

to a restriction of the associated system r. 0 

Corollary 2.9 Let A1, A2,... , A, be an n-tuple of linear transformations on a finite-

dimensional vector space K. Then the following are equivalent: 

(i) the transformations A, commute 

(ii) there exist a multiparameter system W, a common invariant subspace M for 

associated transformations F1 and an invertible linear transformation T K - 

M such that 
n 

T'TA5 = VT for  to 
2=1 

Proof. It follows from the previous corollary that assertion (i) implies asser-

tion (ii). 

Now assume that (ii) holds. As in the proof of Corollary 2.7 it follows 

that TA5T'x = T5x for all j and all x E M. So A5 are simultaneously similar to 
restrictions rj Im and therefore they commute. 0 

We say that an n-tuple A of commuting matrices on Hubert space K has a 

representation by a multiparameter system if there exist a multiparameter system W 

with associated system r acting on a Hubert space H, a subspace M C H invariant 

for all F1 and an one-to-one map T: K —+ M such that 

T'F1T = A1 for i E i. 

Theorem 1.25 tells us that every n-tuple of commuting matrices has a representation 

by tensor products which is actually a representation by a (special) diagonal multi-

parameter system. The natural question arises what is the minimal dimension of 

the space H on which A has a representation by a multiparameter system ? This 

is still an open problem. Example 2.13 below shows that A does not always have a 

representation by a multiparameter system on the original space K. First we need to 

establish some more properties of multiparameter systems. 
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2.4 Eigenvalues, Eigenvectors and Root Vectors 

of a Multiparameter System 

Definition. An n-tuple A = (A,, A2,. . . , A,) E C" is an eigenvalue of a multipa-

rameter system W if all the operators —V + E., AV2j, i E n are singular. The 

collection of all the eigenvalues of the system 1W is the spectrum of W and is denoted 

by 0(W). 

The following proposition is a standard fact. We state it because we later re-

fer to it. It can be proved in the finite-dimensional case using a dimensional argument 

(cf. Atkinson [10, pp. 72-73]). 

Proposition 2.10 Suppose that V E £(H), i € n, and H = H, 0 H ®... ® H,,. 

Then it follows that 

flkerT/t =®kerV 

Atkinson [10] proved the next important result connecting the spectrum 

of a multiparameter system W and the spectrum of its associated system. It also 

describes the eigenspace of the associated system r. We include, for the completeness 
of presentation, the proof following Isaev [112]. 

Theorem 2.11 The spectra of a multiparameter system W and its associated sys-

tem r coincide. If A E o(W) then the space of common eigenvectors for r at the 

eigenvalue A is 
n n 

flker (AI—r) =ØkerW(A). (2.11) 
i=1 i=1 

Proof. Assume that A€a(W) and that yi € ker W\ {0}, i E R. Write 
X = Yi ®Y2O...O n and xj = Aix. Then = 0 for all  

and hence x E R.(W). Lemma 2.3 then implies that rjx = xj = Aix. So we have 

A E o(F) and ØL1 ker W1(A) C fl., ker (AI - ri). 
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Now assume that A E cr(r) and that a vector x E fl 1 ker (A11 - r1) \ {o}. 
Then relations (2.7) yield 

0 VAx — Vx = T4T.(A)tx 

Proposition 2.10 implies that fl 1 ker W1(A)t = Ø ker W1 (A) and therefore it fol-

lows that x E Øt=1 ker W1(A) and A E o(W). 0 

Next we choose, for every i, a subspace Hil C H1 such that H, = ker W1 (A) e 
H,'. For later reference we also need the next lemma. 

Lemma 2.12 Suppose that a vector x1 E (ker W1 (A)*)±. Then there exists a vector 

Yj E H such that x1 = W1 (A) y. 

Proof. Suppose that x1 E (ker W (A)*). Because 

(kerWj(A)*)i = fl.(W1(A)) 

it follows that there exists a vector z1 € H1 such that x1 = W1 (A) z1. By the definition 

of the direct sum of vector spaces we can find vectors Yl E H and wi E ker W1 (A) 

such that y + wi = z1. Then it follows that x1 = W1 (A) y. El 

We now state the example, promised on page 67, of commuting matrices 

that do not have a representation by a multiparameter system on the original space. 

Example 2.13 Assume that 

A= 

0000 

0000 

0001 

_0 0 0 0_ 

and B= 

0 0 a1 

0 0 0 a2 

0 0 0 a3 

0000 

and that a1 154 0. It is easy to see that AB = BA = 0. We w ill show that A 
I a2 I 

and B do not form an associated system of a (nonsingular) multiparameter system. 
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Assume the contrary. Since A and B have a three-dimensional subspace of common 

eigenvectors they could arise from a multiparameter system W only with n1 = 1 and 

n2 = 4 (see Theorem 2.11). Write MT as 

W1 (A) = v1)1 + v2)2 -  VO 

W2(A)=V1A1+V2A2_V0 

Then we have 

F1 = (viV2 - v2Vi)' (voV2 - v2Vo) and r2 = (viV2 - v2Vi)' (viVo - voVi). 

The equation (2.7) for i = 1 is v1F1 + v2F2 = v01. If F1 = A and F2 = B then it 

follows that v0 = 0, a, v2 = 0 implies v2 = 0 and also v1 + cx3v2 = 0 implies 
I a2 

vj. = 0. This contradicts the assumption that W is nonsingular. Hence the matrices 

A and B are not the associated system of a multiparameter system. 0 

The main topic of our study is to describe a basis for the root subspaces 

of the associated system of commuting matrices r in terms of the corresponding 

multiparameter system W. The results of Chapter 1 showed that two extreme cases 

of commuting matrices that are easily understood are the case when the coinmuting 

matrices are represented by tensor products (i.e., A acts on a space H1 0 H2 ® 

(D H, and A1 = B7 where B1 E £ (H1)) and the nonderogatory case. The first 

case corresponds to a diagonal multiparameter system with identity matrices on the 

diagonal (see Example 2.14) and is easy to deal with. The nonderogatory case is yet 

to be defined, but for the moment we call an eigenvalue A E c (W) nonderogatory 

if it is a nonderogatory eigenvalue for a commutative n-tuple F. Later we will be 

able to define a nonderogatory eigenvalue completely in terms of the multiparameter 

system W. 

Example 2.14 Assume that a multiparameter system is diagonal with Vii = I, for 

all i. Then we have F1 = V. Choose an eigenvalue A e o (W) and suppose that 
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{ X ; ki E pj, 1 E qki is a complete system of Jordan chains for Vo at A,. Proposi-

tion 2.10 implies 

fl ker (A11 - = fl ker ((A11 -' = Øker (A11 - 

and therefore 

{x1,lk1 øX2k21k2 0••• 0 xflkfl Ik ; 1ki E q, k1 E pi, i E Al 

is a basis for fl .1 ker (Ail - T1 )N . Write k = (k1, k2,. .. , k,) and I = (li, 12,... , la). 

The action of A,I -  ri  011 k1 = X1k1 11 ® X2k2 12 0 0 Xnkn 1n is (AI - F1) zkl = 

4 where 1' =(l,... , lj, i - 1, l.i,... , li,) and zk1 = 0 if 1i = 1. Each F1 has 

q Jordan chains of lengths qk1 , k1 E pi at eigenvalue A. 0 

Before we state the next definition we recall that the subspace ker (Al - 

for a set of commuting linear transformation r was defined on page 10. 

Definition. Suppose that A E o• (W). Then we call the subspace ker (M\I - 

the root subspace (of W at A). We call the subspace ker (Al - r)m for m = 2,3,... 
the m-th root subspace (for the multiparameter system W at the eigenvalue A) and 

for m = 1 the eigenspace of W at A. 

A nonzero element of ker (Al - r)r is called a root vector. Also a nonzero 
element of the m-th root subspace is called an m- th root vector if m ≥ 1 and a nonzero 

element of the eigenspace is called an eigenvector. 

Note that a lc-th root vector is also an l-th root vector if k < 1. 

2.5 A Basis for the Second Root Subspace 

Our main objective in this dissertation is to describe a basis for the root 

subspace using the multiparameter system SAT directly, i.e., without using the tensor 

product constructions Lj etc. This is particularly important in infinite dimensions, 

but also for matrices it offers an advantage on dimensional grounds. In this section 

we describe a basis for the second root subspace. 
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2.5.1 Simple Case 

First we consider the space ker (Al - )2 for eigenvalues that have one-

dimensional eigenspaces, i.e., when d0 = dim ker (Al - = 1. By Theorem 2.11 we 

have d0 = 1 if and only if 

dim ker W 1 (A) = 1 (2.12) 

for all i. Then we choose x0 E ker W1 (A) \ {O} and yo E ker W1 (A)* \ {O}, so 
W1(A)x10 = 0 and yW1(A) = 0. The vectors zo = x10 0 x20 0 ... 0 x 0 and 

Wo = Yo 0 0 0 are, respectively, right and left eigenvectors for all 

The following proposition gives some necessary and sufficient conditions for a root 

vector of r, i.e. a vector z1 E H\ f 0 such that (.\I - r1) z1 = a1z0 for each i and 
not all a1 E C are zero, to exist. As before (see page 69) we denote by H a direct 

complement of the kernel of W1 (A) in H1. 

Proposition 2.15 The following statements are equivalent: 

(i) There are a E C'3\ {0} and x11 E H such that 

= W (A).Til 

for i E 22. 

(ii) There is a E C'\ f 0 such that 

for i E n. 

(iii) wL 0z0 = 0. 

(2.13) 

yUj (a) x10 = 0 (2.14) 

(iv) There exists an index i such that r, has a root vector at A1 corresponding to z0. 
(That is there exists a vector z1 E H\ f 0 such that (A11 - T1) z1 = zo.) 

(v) ker(AI — F) 0 ker (AI —F)2. 
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(vi) There are a E C\ {O} and Yii E H1 such that yU1(a) = y1Wj (A) for i E n. 

Proof. It is easy to observe that (i) implies (ii) and (vi) implies (ii). 

Assume (ii). Then it follows U1 (a) x10 E (ker (W1 (A) *)) -' and then by 
Lemma 2.12 there exists a vector x11 e H' such that U1 (a) x10 = W1 (A) x11. This 

proves (i), and similarly (ii) implies (vi). So (i), (ii) and (vi) are equivalent. 

The system of equations (2.14) has a nontrivial solution a if and only if the 

determinant of the system 

Yb* liXbO 

y0V21x20 

y0V12x10 

y0V22x2g 

* 
Yb vTi lnXbO 

Yov2nx2o 

Yn*O flflXfloj 

= W/0Z0 

equals 0. Thus (ii) and (iii) are equivalent. 

Suppose now that (i) holds. Write 

=X10 ® 0 Xil 0 ... 0 x. (2.15) 

Using the properties established in Lemma 2.1 and assumption (i) we can make the 

following calculation: 

(A1zo - z1) z1 = 

vifi ... Vii,_i W 1 (X) v1 ... v1t7 
V2i,_i W2 (A) t V21+1 ... Vt 

n.j—i W (A) i'ç j+1 

V11x10 ... 0 

• vj_i,i_ixj_i,o 0 

Vj,i_ixji (J (a) x0 V,11x1 

0 

vn,i_ixno 0 V,1+1x0 

vnfn 

zi = 

V1nX1O 

Vi—i,nxj—i,o 
vjnxji 

T/+i,nxj+i,o 

vnnxno 

0 

(2.16) 
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The value of the determinants above remains the same if we replace the terms 

k = 1,. .. , i - 1, i + i,... , n, by Vjkxjo. Then by Lemma 2.1 the sum (2.16) equals 

V11x10 

V21x20 V2,-1x20 

U1 (a) x10 

U2 (a) x20 

Vi,1+ixio Vi,x10 

v2,i+1x20 v2nx20 

vnoxno ... Vn.i_ixno U, (a) XnO V1x0 ... vnnxno 

0 

= aL.0z0, 

where a = [a1, a2,... , an IT Therefore z1 E ker (.XI - F)2 / ker (U - F), i.e., (v) holds. 

It is trivial that (v) implies (iv), so assume now that (iv) holds, that is 

(Az0 - z) z1 = L0z0. 

We also have w t7jo - j) = 0 and hence property (iii) follows since 

O *f\ —wo vi 0_ Ai) Zi=W0* 0Z0. 

The proof is complete because we have established the implications (i) = 

(v) (iv) = (iii) and the equivalence between (i), (ii), (iii) and (vi). 0 

Remark. Suppose that the conditions of Proposition 2.15 hold. Because a 54 0 there 

is at least one index h such that ah 54 0. Then (XhI - r'h) z1 0 0 and (AhI - rh) ZO = 0 

and therefore the vectors z1 from (2.15) and z0 are linearly independent. This cannot 

be established when Ao is singular as shown in the following example. Therefore 

the assumption that the multiparameter system W is nonsingular is essential for our 

discussion. 0 

In the next example we identify the tensor product x1 0 X2 of two vectors 

x11x21 

FS11 1 2 F 21 1 2 11 22 
= I I E C and 2 = I E C with the vector , and similarly 
[ 12 ] I 22 J 1221 

1222 

we identify the tensor product V11 0 V22 of two matrices Vii, V22 E C 2x2 = 

[V11 V12 J with the matrix I 11V22 v12V22 1 V  

V21 V22 [ v1V22 v22V22 j Later we use this construction, 
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that is sometimes called the Kronecker product of two vectors and two matrices, 

respectively, also for the tensor product of two vectors from arbitrary vector spaces 

C' and cm and for two arbitrary, k x 1 and m x n, matrices. 

Example 2.16 Suppose that 

1 
W, (A)  IA1+I [1 0] _i _1] 0 —1 

and 

W2(A)= I I 
Ii ol A, I —1 ii x2 1 —11 —1 
1 0] [_1 OJ [0 —2 

Then Then 

101 

0000 

—1 1 1 0 

—1 0 1 0 

is a singular matrix and so W is a singular multiparameter system. Suppose that 

A0 = (1, 1). Then 

Wl(Ao)=[1 i] and W2(Ao)_[0 2] 
and thus A0 € o (W). We choose 

111 F 1 1 Iii 11 
Xçj = I I Yio = I I , x20 = and 1120 = 

LoJ 1-1 I . 

The pair of equations (2.14) for a = ai 1 reduces to a single equation a1 - a2 = 0. 
L a2 J 

We choose a = The vectors x11 = and X21 =  0 [] are such that 
U (a) xo = W (A) x1 for i = 1, 2, and then the vectors z0 = 

are linearly dependent, but - z1) z1 (Lo - L2) z1 = 

1 

0 

1 

0 

0 

and z1 = 

0 

0 

0 

0 
0 
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Suppose that A E o (IV) is such that the relations (2.12) hold. We restrict 

our attention to the root subspace A/ = ker (Al - F)N and we bring the restricted 

transformations (\I - r2) -, that are commuting and nilpotent, to the form (1.2), 

i.e., 

0 A°' A°2 ... AOM - 

0 0 A'2 ... Aim 

(AT - F) LV= 

o 0 0 •. A m-1,m 

00 0... 0 

where the array Aki has sizes dk x d1 x n, and, by definition, 

= dim ker (Al - F)'' - dim ker (Al - p) /C (2.17) 

for k ≥ 1 and d0 = dim ker (Al - r). Because we assumed (2.12) holds for A it follows 

that d0 = 1. We use the notation (1.3) for the arrays Ak1 and the notation (1.4) for 

the n-tuples aii . 

Next we write 

B0= 

* Yb* llX lO Yi*o 12XlO .. YlO lnxbo 

y0V21x20 y0V22x20 ... y0v2nx2o 

yoVn1xno y:ov2i;o ... 

(2.18) 

This n x n matrix will play an important role in the following proposition. We recall 

that the subspace H C Hi is a direct complement of the kernel of W (A). It was 

introduced on page 69. 

Proposition 2.17 Suppose that A E o (W) and that dim ker W (A) = 1 for i = 

1, 2,. . . , n. Then d, = dim ker B0 and the set {a'; k E d,} is a basis for ker Bo. 

Furthermore there exist vectors x, E H such that 

(a) U (ag') xio = W (A) 4, 
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(b) the vectors 4 = E 1 x10 0... 0 x_1,o 0 x 0 x.j,0 0 0 x,, k E d1 together 

with the vector z0 form a basis for ker (Al - F)2, and 

(c) (A21 - r) 4 = aJzo. 

Proof. Write dim ker B0 = d and assume that a1, a2,... , ad E Cn form a 

basis for ker B0. So we have 

yjT/akJxo =O, for iEfl and kEd. 
j=1 

Because the statements (i) and (ii) of Proposition 2.15 are equivalent we can find 

vectors x e H such that 

W (A) Xk ii = U (ak) XiO (2.19) 

for all i and k. 

The same calculation as in the proof of Proposition 2.15 which showed that 

(i) implies (v) proves that 

(AI - r) 4 = aklzo, for i E a and k E d. 

Here 4 = E1 x10 a... ® Xj1,0 0 Xj 0 Xj14,0 ®... X,. 

Let 180z0 + EL /3k4 = 0. Then 0 = - r) (10z0 + ,84) = 

E=1 akI3kz0 implies /3k = 0 for k E , and then /30z0 = 0 implies PO = 0. So 

{ zo, z11,... , z} are linearly independent, whence d < d1 and we can assume that 
a1 = ak for k E d. 

To complete the proof it suffices to prove the opposite inequality, i.e., d ≥ d1. 

We choose vectors z11, 4,... , z so that they form together with the vector z0 a basis 
for ker (Al - F)2. By Proposition 1.2 it follows that n-tuples 

Z101 = { a a2 ... a T 

k E d1 are linearly independent. We also have 

(I - r) 4 = for i E z and k E d1. (2.20) 



78 

The relation (2.7) proved in Theorem 2.6 implies that 

n 

Or = 

j= 1 

for all i and k. It follows then from (2.20) that 

W1 (A) z1k - U - (2.21) 

Now we choose for every i an element u E H1 such that ux10 = 1. This is possible 

because x10 0 0. If we multiply the relation (2.21) by 

on the left-hand side it follows that yU1 (a2') x10 = 0 for all i and k. This proves that 

the n-tuples a?', a1,. . . , a E ker B0. Since they are linearly independent it follows 

that d ≥ d, as required. 0 

An immediate consequence of Proposition 2.17 is the next corollary. 

Corollary 2.18 An eigenvalue A E 0 (W) is nonderogatory if and only if 

and 

dim ker W1(A)1 for iEn 

rank Bo≥n-1. 

Proof. Theorem 2.11 implies that d0 = 1 if and only if dimkerWj (A) = 1 

for all i and Proposition 2.17 implies that d, 1 if and only if rank B0 ≥ n — i. From 

Corollary 1.7 it follows that an n-tuple A is a nonderogatory eigenvalue for r if and 
only if d0 = 1 and d1 1. Hence the result is established. C1 

Using the result of Corollary 2.18 we are able to make the following defini-

tions 

Definition. An n-tuple A E C is called a nonderogatory eigenvalue for a m'altipa-

rameter system W if dim ker W1 (A) = 1 for all i and 

rank B0 ≥ n — 1. (2.22) 
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The matrix B0 is defined in (2.18). 

Definition. An n.-tuple A E C is called a simple eigenvalue for a multiparameter 

system W if dim ker W1 (A) = 1 for all i and 

rank B0 ≤n-2. 

Note that an eigenvalue A is simple eigenvalue* for a multiparameter system 

W if and only if it is a simple eigenvalue for the associated system F. 

2.5.2 General Case 

In this subsection we omit the assumption (2.12), i.e., the dimensions qj = 

dim ker W1 (A) are now arbitrary. First we need an auxiliary result. 

Lemma 2.19 Let the vectors xiji E H1, ji E qj, i = 1,2,... ,k - 1,k + I,— , n' be 

linearly independent and suppose that 

Z = x111 (8) ... 0 Xk_1,jk_l 0 
jl ® Xk+1,jk+l (8) ... 0 xnj = 0 

where xk € 11k and the summation runs over all multiindjces j' = (ji, . .. , 

.Jk+1  ... ,3n),iiEqi,i=1,2,...,k_1,k+1,..,n  Then xJ'.._o for all jF 

Proof. Suppose that Xkjk, .1k E nk is a basis for Hk. Write q,, = nk and 

= E 1 &Xkjk for every j', where j = (jl,j2,. . ,3k-1,jk,jk+1,. . . , in) . Then 

= C•Xljl 0• ® Xk_1,jkl ® X kjk0 Xk+1,jk+l (D ... 0 
j 

where summation runs over all multiindices j E q x q2 x ... x q,2, and since vectors 

0 x22 0 xnjn, ii E qj, i E n are linearly independent it follows that Qi = 0 
for all j. Thus it also follows that xj,' = 0 for all Y. 0 

Let us introduce some notation. Assume that the vectors x E H1, k E q1 

form a basis for the kernel ker W (A), i E A. We define the set of integer n-tuples 
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Qo = qi x q2 x ... X q and for i e n we write Qt = q1 x xq1_1 x qj x x q,. 

We call elements k = (k1, k2,. .. , k,) E Qo and 1' = (ii, . . . , ,in ) E Q 

multiindices. The notation 1' C k is used when k1 = ij for j = 1,. . . , i - 1, i + 

1,..., n and for i E qj we write 1' Ui = (ii,. . . . . . ,l) E Qo. We introduce 

vectors z = ® x ® 0 x. Next we choose vectors y3 E H1 , k1 Eqj so 

that they form a basis for ker W1 (A)* and write X10 = { x 4 ... Xiqi o J and 
Yio =  [Yio y •.. y7 J. We restrict the transformations (A11 - F1) to the common 
spectral subspace Al = flL, ker (A11 - r)2. Then the transformations AI - ri I.v 
commute and are nilpotent. Hence we can choose a basis B for the subspace Al as in 

Section 1.2, page 11. By Theorem 2.11 we can assume that Bo = {z, k E Qo} and 

we reduce Al - F Jr to the form (1.2). Then we have (A21 - 1) z = kEQ0 a1z 

for i E and 1 Ed,. We write a = (a 1)kQ and we regard all as an element of 

HA, where H), =C" ® 0 jjq and we regard a1 = . . ,a) as an 

element of the n-tuple direct sum H. Note that the n-tuple a1 corresponds to the 

column cross-section C' of the array A°'. See (1.6) for the definition of a column 

cross-section. 

We also use the notation = Yio V2jX10 E' for i,j E 22. The matrix 
13 

induces a transformation T'13 , which is defined by (1.1), on the tensor product space 

H),. Finally, the array 

Do'= 

V1t V,.t ... V1 n 

V2t V2  't ... V2 
nt 

TI n1 "M TI n2M  TIM 
'  

defines a transformation on space H. This will play a very important role in the 

construction of the basis B,. 

The following theorem describes the general form of a root vector in the 

second root subspace that is not an eigenvector, i.e., a vector 

E ker (Al - F)2 / ker (Al - 
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Theorem 2.20 A vector z is in ker (AT - F)2 / ker (Al - F) if and only if there exist 

n-tuples ak E C", not all 0, for k E Qo and vectors x E H, k' E Q, i E z. such 

that 

and n 

qj 

>2 U (ak'uu1) x = W (A) xh') 
k=1 

(2.23) 

Z =>2 >2  k. 40... ® ® x ® (9) ... ® x. (2.24) 
i=1 k'EQ 

It then follows for all i that 

(A11 - r) z = >2 (2.25) 
kEQ0 

Proof. Suppose that z is in the form (2.24). Then the following direct 

calculation shows that (2.25) holds and since not all ak are 0 it then follows that 

z E ker (AT - F)2 / ker (Al - F). In the calculation we use the elementary properties 

of determinantal operators from Lemma 2.1 and relations (2.23), and proceed similarly 

as in the proof of Proposition 2.12, (i) implies (v) 

V114 ... 

n 
(AiLo — Ai) z=E >2 

j=1 k'EQJ 

v14 

Qi 
0 ... ± j(a1c)4 ... 0 

V ix,j 0 •.. V,,,x nno 

Viix U1 (ac) x v17,x 

= >2 V21x U2 (a1) X'2f) V2 n XJ220 = >2 aL0z. 
kEQO : : k€Q 

v1x U,, (ak) x Vfl,,4,J 

Now assume that z E ker (AT - F)2 / ker (AT - r). Then we have (2.25) for 

some aik E C, k E Qo and i = 1,2,. . . , n. We also write ak = [a a a jT E 

C". The relation (2.7) then implies 

W (A) z = >2 VA (Ail - r) z = >2 >2 az = >2 U (ak) t z (2.26) 
3=1 i=1 kEQo k€Qo 
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for all i. After we multiply (2.26) with i') on the left-hand side it follows that 

E x 0... ®ki  0 > 0 x ' ® 0 x2 =0. 
kEQO j=1 

Since x are linearly independent it follows from Lemma 2.19 that 

gin 

> = 0 
k1=1 j=1 

for all k' E Q, and every i. Thus we have 
qi 

u (ak'i) x E (kerW (A)*) 
k=1 

and then, by Lemma 2.12, there exist vectors x E Hi such that relations (2.23) 

hold. Here the subspace H C if1 is a complement of the kernel ker W1 (A) as defined 

on page 69. Now we can construct a vector 

= X 0•• 0 Xjbo 0 x 0 0... 0 x. (2.27) 
j=1 k'EQ3 

The same calculation as above shows that (A11 - r1) z' = EkEQO Then we have 

z - z' E ker (Al - F) and thus there exist complex numbers /3k, k € Qo such that 

Z = z' + EkEQO /3kz. If we substitute the vectors x + E =1 I3k'uk1 x for the vectors 

A11 in the expression (2.27) it follows that 

1=1 k'EQ, 

and, since (2.23) and (2.25) are unaffected by this substitution, the proof is complete. 

0 

The following theorem extends Proposition 2.17 to the general case. As 

before we restrict our attention to the second root subspace .A/ = ker (Al - F)2 and we 

bring the restricted transformations (A21 - r1) Jg, that are commuting and nilpotent, 
to the form (1.2). See also page 76 for details. We also recall that the n x (fl qi) 

column cross-section of the array A°1 is regarded as an element of H. (Cf. page 80.) 
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Theorem 2.21 Suppose that a1 E H, 1 = 1,2, . . . , d1 are the columns of the array 

A°'. Then they form a basis of ker D. 

Conversely, to any basis {al, 1 = 1,2,. .. , d} C H of ker V we can asso-

ciate a set of vectors B' = {z, 1 = 1,2,. . . , d1} c H such that Bo U /3' is a basis for 

ker (AT - F)2 and (AI - 1'1) z'l = EkEq0 a,•'zok for all i and 1. 

Proof. Suppose that {Zj, 1= 1,2,... ,d2} u {z, k E Qo} is a basis for 
ker (AT - F)2. Then we have (A11 - 1'1) zl = EkEQO a•, 'zok and the relations (2.7) 

imply 

W (A) z = v (A31 - r) = > = 

j=1 i=1 kEQQ 

n 

= E 
keQ0 1=1 

After we multiply the above expression with 1' on the left-hand side it follows that 

E x 0••• øxj ØEa'YVjjx ki (9 9)  nO = 0. 
kEQO 1=1 

Since x are linearly independent it follows by Lemma 2.19 that 

= 0 
k=1 j=1 

for all k' E Q, and all 1. This can be written as 

>Vta1 = 0. 
j=1 

Hence it follows that a1 € ker DA for all 1. Proposition 1.2 implies that a1 are linearly 

independent and so it follows that 

c1 ≤ dim ker D. (2.28) 

Next we will show that to every a E ker D we can associate a vector z1 E 

ker (AT - F)2 \ ker (Al - F) such that 

(AI - r1) zi = (2.29) 
kEQO 
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Because a is in the kernel of V it follows that T'a = 0 for all i. This is 

equivalent to 

Y .  
o = io  Vjja'Uulx = : u (a''i ) ki 

k1=lj=1 k=1 

for all k' = (k1, . . . , k1_, k1+1,. . . , k,) E Qj and all i. From the above equations it 

follows that U1 (akh1J1) x E (kerW1 (A)*) -L. Lemma 2.12 implies that there 

exist vectors x E H such that 

qi 

u a k'Uiki  x = TV1 (A) il x. 
k=1 

As in the proof of Theorem 2.20 it follows that the vector 
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Zi 

3=1 k'Q1 

is such that relations (2.29) hold. Then, if {a1, a2,... , ad} is a basis for ker V, we 

can associate with every a1 a vector z1 = as above. The vectors z, 1 = 1, 2, . . , d 

are linearly independent because 

(A1I—r)z= az 

k€Q0 

and al are linearly independent. Thus it follows d1 ≥ dim ker V and together with 

(2.28) we obtain d1 = dimkerV. The, proof is complete. 0 

We illustrate the theorem with an example. 

Example 2.22 Consider the two-parameter system 

and 

W1(A)= 

W2(A)= 

100 

010 

011 

100 

000 

001 

A1+ 

100 

0 1 1 
2 2 

01 1 

000 

A1+ 0 1 1 

010 

A2 - 

A2 - 

0 —1 0 

0 1 1 
2 2 

000 

0 0 —1 

002 

002 
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Evidently the matrices V10 and V20 are singular. So Ao = (0,0) E U (W) and we have 

dim ker V10 = 1 and dim ker V20 = 2. Hence d0 = 2. We choose 

X10 = 

1 

0 

0 

Y10 = 

0 

0 

1 

Then it follows that vectors 

zOlb — 

- 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

2_ 
X20 - 

and z2 = 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

and Y20 = 

22 

10 

01 

form a basis for ker r and we have 

V10=V10 __[O], V0= [ °] and4 0=[ 1• 
The space HH,\H,,,\,, = C 0 C2 and we identify the direct sum H.\0 ED H, with C4. 

Then 

01 
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1 

Because the matrix V° has rank 1 it follows that d1 = 3 and we choose a1 = 

a2 = 

0 

1 

0 

0 

and a3 = 

0 

0 

1 

0 

0 

0 

—2 

to form a basis for ker V. To construct a vector z11 

corresponding to a1 we need to find vectors x11 , x and Al21 such that 

V11x10 = W1 (.Xo) x, —2V12x10 = W1 (A0) x11  and V2jx0 - 2V22x0 = W2 (A0) x. 

A possible choice is 

Similarly we find vectors 

that correspond to a2, and vectors 

0 

0 

0 

21 - 

ii - 

22 - 

ii - 

23 - 

ii - 

0 

—2 

2 

0 

0 

0 

and x = 

and x = 

and x1321  

0 

0 

1 

0 

0 

0 

0 

0 

0 
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that correspond to a3. Then 

0 

0 

1 

1 

—2 

0 

—1 

2 

0 

zi = 

0 

0 

0 

1 

0 

0 

—1 

0 

0 

and {z0', 4; z, 4, 4} is a basis for kerr2. 

2.6 Comments 

and 4 = 

0 

0 

0 

0 

1 

0 

0 

—1 

0 

0 

Multiparameter Spectral Theory has its origins in the work of Klein [117], 

Bôcher [32, 33, 34], Dixon [59] and Hilb [104, 105] late in the nineteenth century. 

Also Hilbert [106] and his students considered problems in Multiparameter Spectral 

Theory. When solving certain boundary value problems by the separation of variables 

technique we are led to a system of differential equations that are linked only by 

spectral parameters and this linkage is linear. This is the underlying motivation for 

many of the developments in Multiparameter Spectral Theory. Some examples of 

such boundary value problems are the classical ones of acoustic or electromagnetic 

vibrations and different linearised parts of various bifurcation models involving several 

parameters as in rotation, convection or explosion. The problem of oscillation of an 

elliptic membrane is an example that yields two separate differential equations that 

both contain two spectral variables in a nontrivial fashion, while for example the 

problem of oscillations for a rectangular membrane leads to a diagonal case and for 

a circular membrane leads to an upper-triangular (also called mildly coupled) case. 

The last two cases can be solved using only techniques from the one-parameter case. 
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The example of the elliptic membrane and similar situations led to studies of special 

functions at the beginning of this century. Erdélyi gathered such results in [64]. (See 

also the book by Arscott [6].) 

Carmichael [50, 51, 52] was the first to consider multiparameter eigenvalue 

problems in an abstract setting. He studied, for example in [50], a finite-dimensional 

multiparameter system generated by a difference equation approximating a system of 

integral equations. It was Atkinson [10, 8] who laid the foundations of modern Ab-

stract Multiparameter Spectral Theory which led to a revival of the theory in the last 

30 years. In the 70s Multiparameter Spectral Theory in an abstract Hilbert space 

was developed by Binding, Browne, Faierman, Källström, Roach, and Sleeman, to 

mention a few, in a number of contributions (see Browne's review article [42] and also 

the enclosed list of references for details). Many of these were brought together in the 

book by Sleeman [153]. Work on extending multiparameter eigenfunction expansion 

theorems in a number of directions and under various "definiteness conditions" has 

been done recently by Binding, Faierman, Gadzhiev, Isaev, Roach, Volkmer and oth-

ers. Also the recent books of Volkmer [168], Gadzhiev [84] and Faierman [69] present 

several results on eigenfunction expansion. We also remark that most of research 

so far involved self-adjoint multiparameter eigenvalue problems. As an exception we 

mention the paper of Allakhverdiev and Dzhabarzade [2] where they considered a 

normal multiparameter system, i.e., a system where all the operators Vij are normal 

operators. 

The fundamental tensor space construction that we introduce in this chapter 

was given by Atkinson in [10, Chapter 6]. In our discussion we partly follow also the 

presentation of Isaev [112, Lecture 1]. For instance, the idea to use the decomposabil-

ity set to prove commutativity of the associated system and relation (2.7), is found 

in [112] (cf. also [4]) where it is used in the infinite-dimensional setting. The notions 

of-spectra, eigenvectors and root vectors for multiparameter systems are defined to 

correspond to the equivalent notions for the associated system. The corresponding 

notion of Taylor's spectrum, introduced by Taylor in [161] for an n-tuple of commuting 
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operators, was defined for multiparameter systems by Isaev and Fainstein [111] and 

studied by Rynne [147]. See also Isaev's Lecture 5 in [112]. In the finite-dimensional 

setting the notion of Taylor's spectrum for a multiparameter system coincides with 

the spectrum as defined in Section 2.4. 

The linear transformations associated with the square arrays of operators, 

for instance our transformations V and V, are an important tool in the presentation. 

They were studied already by Atkinson in [10, Chapter 8]. He proved that if there is a 

nonzero element in the kernel of such a transformation then there is a decomposable 

element in that kernel (cf. [10, Theorem 8.5.1]). This enabled him to weaken the 

regularity condition and still prove the expansion result ([10,.Theorem 10.6.1]). An 

interesting related investigation is found in paper of Allakhverdiev and Dzhabarzade 

[1]. They discuss relations between vectors V3x, j = 1, 2,. . . ,k, where i = 1,2, .. . , m 

and k, n > 2, for which E V1x1 0 V25x2 0 0VnjX,, = 0. 

The structure of the second root vectors in the simple case (cf. Subsection 

2.5.1) follows the one of root vectors in Binding's paper [23]. In the general case the 

transformation V carries information about the second root subspace. This will be 

examined in detail for two-parameter systems in the next chapter. 
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Chapter 3 

Two-parameter Systems 

3.1 Introduction 

In this chapter we use a matrix equation of Sylvester type to study two-

parameter systems 

W1(A)=V1A1+V2X2—Vo, i=1,2. (3.1) 

First we briefly describe our main ideas. 

We identify the tensor product space Cq, ® jJt72 with the space of q x q2 

complex matrices via the isomorphism : CO Xq2 defined by 

all 

aq1l 

a12 

aq12 

alq2 

aq1 q. 

all a12 alq2 

a21 a22 a2q2 

aqil aq12 • aq1q2 - 

(3.2) 
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It was shown in Section 2.5, page 80 that we can associate a transformation V' with 

an eigenvalue A E ci M. In the two-parameter case we view 

ç7iiAt 
v 

- 

tiM 
V21 

tiM 
"12 

T/M 
V 22 

via the isomorphism , as a transformation acting on the vector space of pairs of 

qi x q2 matrices. We also consider the determinantal transformation 

L = ViAiØV2 _ViA2ØV2)i 

as a transformation on the vector space of complex q1 x q2 matrices. There is a close 

relation between the kernels of DA and of z as shown in Lemma 2.4. We restate it 

here in the above setting. 

Corollary 3.1 Suppose that X = X1 , xi, x2 E C q,xq2 is an element of the 
x2 

kernel ker D. Then both X1 and X2 are in the kernel ker. 

In Theorem 2.21 we showed how to associate a basis for the second root 

subspace with a basis for the kernel of V, the above result relates this kernel to the 

kernel of AA , and a matrix X e ker L if and only if V/jXT4 - VjXV = 0. This is 

our motivation to study the matrix equation 

AXDT - BXCT =0. (3.3) 

To do so we use the Kronecker canonical forms for pairs of matrices (A, B) and (C, D). 

We describe this special block diagonal form for a pair of matrices in the next section. 

With every block in the Kronecker canonical form of a pair (A, B) we associate an 

invariant and a chain of vectors called a Kronecker chain. The invariants are of three 

different types. So, when we study equation (3.3) we would have to consider nine 

different cases, but because of symmetry with respect to the pairs (A, B) and (C, D) 

we only need to study six different cases. For any of these cases where there are 

nontrivial solutions of equation (3.3) we give a basis for the subspace of solutions 
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in terms of underlying Kronecker chains in Subsection 3.2.2. Similarly we study the 

space of solutions of a pair of equations 

AX, + BX2 =0 and X1CT + X2DT =0 (3.4) 

in Subsection 3.2.3. Corollary 3.1 is used to relate this system to equation (3.3). 

With every pair of invariants of (A, B) and (C, D) for which there is a nontrivial 

solution of the system (3.4) we associate another invariant. We show in Section 3.3 

that when a set of invariants is associated this way to pairs of matrices (va, v) and 
(va, v2) it is equal to the set of invariants of the pair of matrices (Al, A2). Here a 
pair of commuting nilpotent matrices A2 = (A21 - r) Ik (AIr)2' i - 1, 2  is brought 

to the form (1.2) and the matrices A1 and A2 form a subarray A' of the array A°' 
as described in Example 3.3. We also construct a basis for ker iI - F)2 such that 

the pair of matrices (A?1, A') is in Kronecker canonical form and we illustrate the 

construction with two examples. 

3.2 Kronecker Canonical Form and a Special Ba-

sis for the Space of Solutions of the Matrix 

Equation AXDT - BXCT = 0 

3.2.1 Kronecker Canonical Form 

We refer to [85, Chapter XII] or [92, Appendix] for recent presentations of 

the Kronecker canonical form. Our presentation is based on a disposition by Professor 

H.K. Farahat in a private conversation. 

Definition. A pair of complex m x n matrices (A, B) is equivalent to a pair of 

matrices (C, D) if there exist invertible matrices P E C'2<' and Q E Cm<m such that 

C = PAQ and D = PBQ. (3.5) 

First we introduce some special matrices needed in the construction of the 
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Kronecker canonical form. The p x p identity matrix is denoted by I. The q x q 

Jordan matrix with eigenvalue a is 

Jq(a) = 

alO ... 

0a 1••0 

000 1 

000 a 

where we shall omit a if a = 0, and the matrices 

10 00 

01 00 

00.• 10 

and G = 

010 0 

001 0 

00 0.•1 

are p x (p + 1) matrices. Here p, q ≥ 1. Later in the discussion we also use the p x p 

matrix 
0...01 

0...10 

1...00 

and p x q matrices 'p,, and Hp,q that are defined by 

if p < q and 

Ip,q [0 I] and Hp,q [0 H] 

11 1H 
p,q = I, ] and Hp,q = 0 

if p> q. We write 1p,p = I, and Hpp = H. 

The pairs of building blocks of the Kronecker canonical form for a pair of 

matrices are of three different types : (L, p), (M, p) and (J (a) , q) where p ≥ 0, q ≥ 1 

and a E C U loo}. The building blocks of type (L,p) are of sizes p x (p + 1), the 

building blocks of type (M, p) are of sizes (p + 1) x p and the building blocks of type 
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(J (a) , q) are of sizes q x q. Here the blocks of types (L, 0) and (M, 0) which are of 

'sizes' 0 x 1 and 1 x 0, respectively, correspond to a column of 0's and a row of 0's, 

respectively, in the Kronecker canonical form. Suppose that p ≥ 1. Then the pairs of 

building blocks and the corresponding types are: 

(Fr, G), type (L,p), 

(G, F'), type (M,p), 

(I, J, (a)), type (J (a) ,p) 

if a E C, and 

(Jr, I), type (J(oo),p). 

The theorem of Kronecker (cf. [85, p. 37] or [92, Theorem A.7.3]) states that every 

pair of m x n complex matrices (A, B) is equivalent to a pair of matrices in block 

diagonal form with diagonal blocks of types (L, p), (M, p) and (J (a) , q). We call 

this block diagonal form the Kronecker canonical form of a pair (A, B). We call the 

collection 

1= {(L,ll),...,(L,lPL);(.AII,ml),...,(ivl,mPM );(J(al),jl),...,(J(aPJ),jPJ);} 

of the types of the diagonal blocks the set of invariants of a pair (A, B). The elements 

of the set I are called the invariants. It is a consequence of the theorem of Kronecker 

that two pairs of m x n matrices (A, B) and (C, D) are equivalent if and only if 

they have the same sets of invariants. See [85, Theorem 5, p. 40] or [92, Corollary 

A.7.4]. Note that in our discussion we view the initial u x v block of zeros in [92, 

Theorem A.7.3] (in [85, expression (34), p.39] this is the initial h x g block of zeros) 

as a collection of u blocks of type (L, 0) and v blocks of type (M, 0). This enables us 

to absorb the initial block of zeros into the blocks of types (L, p) and (M, p). 
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Example 3.2 The pair of matrices 

/ 100 
000 

001 

000 

0 0 0 

000 

000 

000 

100 

010 

Th 1 0 0 0 0 \ 
001000 

, 0 0 0 0 0 0 

000210 

_0 0 0 0 2 0_j 

has the set of invariants I = {(L, 0), (L, 1), (M, 1), (J (2) , 2)} and the pair of ma-

trices 
/ 0000 

0000 

0000 

0010 

\0 0 0 1 

0 0 0 0 

0000 

0 1 0 0 

0001 

0000 I 

has the set of invariants I = {(L,0) , (M, 0), (M, 0), (J (0), 2), (J (co) , 1)}. 0 

Example 3.3 Suppose that Al and A2 are commuting nilpotent N X N matrices, 

that they are brought to the form (1.2) and furthermore, we have kerA2 = CN. (Here 

we use the notion introduced in Section 1.2.) We can further assume that the row-

cross sections R', j E r0 are linearly independent and R30' = 0, j = ro + 1, r0 + 

2, . . . , do, where ro is the dimension of the subspace of 2 x d1 matrices spanned by 

R?', j E d0. Then we write 

0 A°' 
A= 

1.0 0 ]' 
where has dimensions ro x d1 x 2, and A°' = (A?', A2°'). Suppose that (.?', ') 
is the Kronecker canonical form of the pair (A?', A1) and that matrices P and Q 

are such that 

= PAQ and = PA IQ. 

Then the array UAU1 = [0 o1] 

00 
where U --

P 0  0 

010  fBol 

0 0 Q-' 

and = 
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(ñ1, 1) , is a canonical form for the pair of commuting matrices A1 and A2. We 

remark that for similar, and also for more general, pairs of commuting matrices a 

canonical form is given by Ge1'fand and Ponomarev in [86, Chapter II]. 0 

Next we introduce the notion of Kronecker basis for a pair of matrices (A, B). 

With every invariant in t El we associate a Kronecker chain C of linearly independent 

vectors as follows 

Ift=(L,p) then CL={ul,iEp+1} and 

Bu1 = 0, 

Bu1 = Au1_1, i=2,3,...,p+1, 

0. = Au,,+1. 

Ift=(M,0) then CL.=O and ift=(M,p),p≥l then CL={ul,iEp} and 

Bu1 = Au1_1, i=2,3,...,p. 

Ift.=(J(cr),p),ctEC, then C,={u1,iEp} and 

(cA — B)ui = 0, 

(aA—B)u1 = Au1_1, i=2,3,...,p. 

And finally, if t = (J (oo) ,p) then C = {u, i Epj and 

Au1 = 0, 

Au1 = Bu1...1, i=2,3,...,p. 

The union of all Kronecker chains of a pair of matrices (A, B) is called a Kronecker 

basis of (A, B). 

Remark. Note that if (C, D) is the Kronecker canonical form of a pair of matri-

ces (A, B), and the matrices P and Q are such that relation (3.5) holds, then the 

columns of the matrix Q4 form a Kronecker basis of (A, B). They are partitioned 

into Kronecker chains according to the sizes of diagonal blocks of the canonical form 

(C, D). Note also that if m = n and A = I then the notions of Kronecker canonical 
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form and Kronecker basis coincide with the usual definition of Jordan canonical form 

of a matrix B and its Jordan basis. 0 

Suppose that C = {u, i E p + i} where L = (L,p) and a € C U fool. Then 

we define vectors u (a) so that 

>2 A1u+1 (a) = (A - a)1uj+i, 

if a E C, and 

A1u 1 (oo) = >2 Au1+i, 

where A is an indeterminate. Then we call a chain CL (a) = {u1 (a), i E p + i} the 

a-shift of a Kronecker chain CL. Note that the chains CL and CL (a) span the same 

subspace. 

3.2.2 The Matrix Equation AXDT - BXCT = 0 

Next we consider the homogeneous matrix equation (3.3) where A and B 

are m1 x m2 matrices, C and D are n1 x n2 matrices and X is the unknown m2 x n2 

matrix. We define the transformation A: C2 xn2 Cml xnj by 

A (X) = AXDT - BXCT. (3.6) 

Then the kernel of A is the space of solutions of (3.3). Suppose that _Tj and 12 are 

the sets of invariants of the pairs (A, B) and (C, D), respectively, and C1 and C2 their 

corresponding Kronecker bases. 

An approach using the Kronecker canonical form to study the matrix equa-

tion 

AXDT - BXCT = E (3.7) 

was outlined by Rózsa in [144]. We include the following detailed discussion on the 

matrix equation (3.3) because we later need precise expressions for the solutions of 

the homogeneous equation (3.3). We sketch the proofs using our setting and following 

[144]. 



98 

Suppose that 11 E Ii and 12 E 12 and that C1L1 and C22 are the corresponding 

Kronecker chains. Now we define a set Y of pairs of invariants (ti, 12) e Ii x 12. A 

pair (11, 12) is in the set Y if one of the following holds 

(1) t = (L,pi) and 12 = (L,p2), 

(ha) 11 = (L,pi), 12 = (M, P2) and Pi <P2, 

(fib) bl = (M,p1), 12 = (L, P2) and p > P2, 

(iiia) 1 = (L,pi) and t2 = (J (a) ,p2), 

(hub) b, = (J(a) ,pi) and 12 = (L, P2) and 

(iiic) t = (J (a) ,pi) and £2 = (J (a) ,P2). 

Then we associate with a pair of invariants 

matrices as follows 

(11, 12) E J a set A( 112) of 

(i) if 11 = (L,pi), 62 = (L)p2), C1 1 = {u1, i E P1 + i} and c2 = {u21, i E P2 + i} 

then 

= {Ai; A1 = E 1 E Pi +P2 +  
ii+i2=l+1 

(iia) if tj = (L,pi), 12 = (kf,p2), where pi < P2, C11 = 

= {u2, i e P2} then 

= {Ai; Al = 
P1 

u1,p1+1i+l, 
i=O 

1 

iEpi+1} and 

(fib) if 11 = (M,p1), 12 = (L, P2), where Pi > P2, C1 l = {u1, i E pi} 

{u21, i E P2 + i} then 

A(L1,L2) = Al; Al = 2,p2+1—i' 1' 1 E Pi - P2  
i=O 

and C2 2 = 
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(iiia) if t1 = (L, pi), t2 = (J (a) ,p2), where a E C U fool, C11 (a) = {u1 (a), i E 

Pi + i} is the a-shift of the Kronecker chain Ci 1and c22 = {u2, i € P2} then 

= Al;-Al = u1 1 (a) U2i2, 1 € P2}; 
ii+i2=l+1 

(iiib) if t1 = (J (a) ,pi), where a E C U fool, t2 = (L, P2), Ci1 = {u11, i E p, and 

C2L2 (a) = {u21 (a), i E P2 + i} is the a-shift of the Kronecker chain C22 then 

= Al; Al = u1j1u2j2 (a), 1 € Pi} 
+i2=1+1 

(iiic) if t1 = (J (a) ,pi), L2 = (J (a) ,p2) , Ciq =  {u11, i € pi} and C2 2 = {u21, i E 

P2} then 

= Al; Al = Lu liu2,p2 i+1 
i=1 

1€ min {P1P2}}. 

Using the above setting we have the next important result. 

Theorem 3.4 A basis A of the kernel kerA, i.e., a basis for the space of solutions of 

the matrix equation AXDT - BXCT = 0, consists of the union of all the sets A(Ll,2) 

for pairs of invariants (4, t2) in the set J. 

Proof. Suppose that (As, B') and (C', D') are the Kronecker canonical forms 

of the pairs (A, B) and (C, D), respectively, and that there are invertible matrices 

P, Q, R and S such that 

A = PA'Q, B = PB'Q, C = RC'S and D = RD'S. (3.8) 

Then equation (3.3) is equivalent to the equation 

A'X' (D1)T - B'X' (Cl)T = 0, (3.9) 
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where X' = QXST. Because the matrices A', B', C' and D' are block diagonal, 

equation (3.9) becomes a collection of equations, one for each pair of invariants t1 E Ii 

and L2 E 1 2. The invariants ti and t2 are of three different types. So we would have 

to consider nine different cases but because of the symmetry we only need to consider 

six different situations. We write Y for a block of the unknown matrix X in each of 

the cases considered 

(a) If t1 = (L,pi) and t2 = (L,p2) then we have the equation 

F1YG T 
- G 1YF =0. (3.10) 

Then a direct calculation shows that the matrices in the set 

A'( 1,2) = IJlHp,+j,P +1, 1 E P1 +1; H1•1,1 (j, )T ' } (3.11) 
solve (3.10). They are linearly independent. By a dimension argument it follows 

that the set (3.11) is a basis for the space of solutions of (3.10). 

(b) If t1 = (L,pj.) and t2 = (M,p2) then we have 

F1YFJ, - GP1YGZ =0. (3.12) 

If Pi ≥ P2 then this equation has the only solution Y = 0. If P1 <P2 then the 

set 

4142) = {Hp1 +i,p2J 1, 1 E P2 - Pi} 

is a basis for the space of solutions of (3.12). 

(c) Suppose now that tj = (L, p1) and t2 = (J (a) ,p2). Using the a-shift Cl,, (a) 

instead of Cl,, we may assume without loss that a = 0. So we suppose that 

tj = (L, pi) and t2 = (J (0) ,p2). Then we have 

and the set 

F YJT_GY0 (3.13) P1 ......  P2 

= I H1•1 (z_i\T E Za} 
P2) 

is a basis for the space of solutions of (3.13). 
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(d) If t1 = (M,pi) and £2 = (M,p2) we have 

FYGP - GYF1, =0. 

This equation has no nonzero solutions. 

(e) If t  = (M, pi) and 12 = (J (a) ,p2) then we have 

FTYP1 7P2 (a)T _G y PT GY =0. 

This equation also does not have a nonzero solution. 

(f) Finally we consider the case tj = (J (a) ,pi) and 12 = (J (/3) ,p2). First suppose 

that a,,3:0 oo. Then we have 

(3.14) 

If a 54 /3 then this equation has the only solution Y = 0. If a = /3 then the set 

4142) = {JLuI1,, 1 E min {pi,p2}} (3.15) 

is a basis for the space of solutions of (3.14). Similarly it follows that there is 

no nonzero solution when a 54 /9 and either of a, /3 is oo. If a = = oo then 

the set A1,2) is as above in (3.15). 

, 
By definition we have that X = Q -'X ' (S_1 T . . The columns of the matrices 

Q' and 5' form Kronecker bases for (A, B) and (C, D), respectively. Then it follows 
from (a) that the set A( 1,L2) defined in (i) is a basis for the subspace of solutions of 

the equation (3.3) associated with a pair of invariants tj E 11 and 12 E 12 of types 

11=  (L,pi) and 12= (L,p2). Similarly, it follows from (b) that the sets A(Ll,L2) of (iia) 

and, by symmetry, also of (iib), span the subspaces of the equations associated with 

the corresponding pairs of invariants. Case (c) implies a similar conclusion for the sets 

of (iiia) and (iiib), and case (f) implies a similar conclusion for the set of (iiic). Then 

it follows that the union A of all the sets A( 1,2) corresponding to pairs of invariants 

(ti, 12) e J form a basis for the space of solutions of the equation (3.3) and therefore 
also a basis of the kernel ker A. 0 
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Corollary 3.5 The matrix equation AXDT_BXCT = 0 has only the trivial solution 

X = 0 if and only if either 

(i) there are no invariants of type (L, p) in the sets 11 and 12 and there is no pair of 

invariants (J(a),pi) E 1 and (J(/3),p2) E 1 with cr=fl, or 

(ii) one of the sets of invariants Z, where i is either 1 or 2, consists only of in-

variants of the type (M,pi), while there are invariants of the type (L, P2) in 

the other set of invariants but any of them is such that P2 ≥ p, where p 

min {pi, (M, pi) E Z}. 

3.2.3 The System of Matrix Equations AX, + BX2 = 0 and 

X1CT+X2DT = o 

Next we consider the system of matrix equations (3.4). We define the trans-

formation £ on the space ED Cfl2Xm2 by 

AX, +BX2 

X2 ) X1CT+X2DT 
(3.16) 

Suppose that A = U(L1,L2)Ej-A(1,2) is a basis for the kernel of A as described in 

Theorem 3.4. The transformation A is defined by (3.6) and the set of invariants 

J is defined in the discussion thereafter. Then we write J' for the set of all the 

pairs (t1, t2) E J that are different from the cases (t1, t2) = ((L, p) , (M,p + 1)) and 

(4, t2) = ((M,p + 1), (L, p)). Now we associate with every pair of invariants (4, 12) E 

a set of pairs of matrices A 1,2) as follows. Here the matrices A1 are defined in 

(i)-(iiic) on pp. 98-99 for different cases of pairs (ti, 12) 

(i) If tj = (L,p1) and 12 = (L,p2) then 

(I—A11 

where A0 = A 1+,,2+2 = 0, 
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(ii) If tj = (L, pi), 12 = (M,p2) and Pi + 2 ≤ P2 or tj. = (M,pi), 12 = (L, P2) and 

P1 ≥ P2+ 2 then 

A1,2) I -Al JP1 —P21  

1 
= Li 

(iii) In cases (iiia), (iiib) or (iiic), if a € C, then 

(1 

1  Al LAi+A1_' A(,, 12) = -  1 E 

where p = P2 if t = (L, pi) and 12 = (J (a) ,p2), p = p' if 11 = (J (a) ,Pi) and 

12 = (L, P2) and p = min {pi,p2} if ti = (J (a) ,pi) and 12 = (J (a) ,P2). Here 

we write A0 = 0. If a = oo then 

Al-1 EP 
C(112) { [ 1 = 

A1 

where p is defined as above and A0 = 0. 

In the above setting we have the following result: 

Theorem 3.6 The kernel of £, i.e., the space of solutions of the pair of matrix 

equations AX1+BX2 = 0 and X1CT+X2DT = 0, has a basis A2 = U(LI,L2)ey'A lL2), 

where the sets Al,L2) are given above. 

Proof. Let the matrices A', B', C', D', P, Q, R and S be as in the proof of 

Theorem 3.4. We write X = QXST for i = 1, 2. Then X1 € ker £ if and only if 
X2 
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in the proof of Theorem 3.4. We write Y1 and Y2 for the blocks of X1 and X2, 

respectively, considered in each of the cases. First we have the case tj = (L, pi) 

and t2 = (L, P2). Then we write Y1' = '!i'' 'y1A and Y = 'i ' öJA'Y, where 
= 1 E pi + 1 and A = H1•1,•1 (j11_1 )T I = + 2,Pi + 

3,. . . ,pi + P2 + 1 are the elements of the set A1,2). It follows from the equations 

(3.17) that -y + i+i = 0 for 1 E Pi + P2. Thus the set 

A 21 { I ] 
= lEPi+P2+2} 

A 1 

where A'0 = = 0, is the basis of the block of the equations (3.17) correspond-

ing to the pair of invariants (ti, 12). Because the columns of the matrices Q-1 and 

S' form Kronecker bases for the pairs (A, B) and (C, D), respectively, it follows that 

as defined in (i) above, form the basis of the subspace of ker £ corresponding 

to the pair of invariants (ii, 12). 

Using the same method as for the case tj = (L, p1) and .62 = (L, P2) above, 

we prove that the sets Al2) in cases (ii) and (iii) form bases for the corresponding 

subspaces of ker £. Then the proof is complete. 0 

Now we define a mapping ij on the set of pairs of invariants J' by 

?7 (11, 12 

(L,pi+p2+1), 

(M, P2 - P1), 

(M, P1 - p2), 

(J (a) ,P2) 

(J(a),pi), 

(J (a) ,min {pi,p2}), 

if 

if 

if 

if 

if 

if 

is as in (i), 

is as in (iia), 

is as in (iib), 

is as in (iiia), 

is as in (iiib), 

is as in (iiic), 

(3.18) 

where the cases (i)-(iiic) are defined on page 98. Then the set of invariants I = 

{ii (ti, 12), (ti, 12) E J'} is called the set of invariants of the kernel of L. We write 

= A,,L2) if I = i (ti, 12). We will use the set of invariants I and the corresponding 

basis A2 = UEIA to describe a special basis of the second root subspace of the 

two-parameter system. 
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3.2.4 Remark on the Matrix Equation AXDT - BXCT = E 

and Root Subspace for Two-parameter Systems 

Let us now consider a particular eigenvalue A = (A1, A2) E o (W). Then we 

write 

T2=W1(A)=—V,o-i-A1V,1-i-A2V2 for i=1,2. 

From the properties of determinantal operators in Lemma 2.1 it follows that 

and 

A2z02 —V11 ØT2—T1®V21. 

Again we view the above transformations as acting on the space of n1 x n2 complex 

matrices. Suppose that X0, X1,... , X, E CT ® tjJfl2 (identified with Cfh><n2 via the 

isomorphism E defined by (3.2), only replacing ni for qj) form a Jordan chain for r1, 
i.e., 

(A11 - r1) x1 = x1_1 

or equivalently 

(A1zo - ) X = (3.19) 

for j = 0, 1, . . , p and X_1 = 0. These are equivalent, via the isomorphism E, to the 

recursive system of matrix equations 

T1XV - V12XT" = V1X 1V - VX 1V. (3.20) 

We have a similar system for the second associated operator r2. If X0, X1, 
X,, is its Jordan chain then 

V11XT' - T1X V21 = V11X_14 - V12X_1V (3.21) 

for j = 0, ,p and X_1 = 0. At every stage of this recursive system of matrix 

equations we have to solve a matrix equation of the type 

AXDT - BXCT = E. (3.22) 
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This equation can be studied using the Kronecker canonical forms for pairs (A, B) 

and (C, D) similarly as for the homogeneous equation (3.3). For every type of a pair 

of invariants we could give solvability conditions and a particular solution when it 

exists. Then we could apply this result to the recursive system (3.20) (or (3.21)). We 

would have to solve simultaneously the recursive system (3.20) and a similar system 

corresponding to 3I - r. The weakness of the eventual procedure is that it would 
only give a basis for the root subspace for one of r1 (or 1'2) and would not necessarily 
give a basis for the root subspace ker (Al - T)N. In the procedure we would use ideas 

developed in the theory of marked invariant subspaces in order to prove completeness 

(see [72] and [73, Section 4.4]). We state the definition of a marked invariant subspace 

below, but we do not develop the procedure in further detail. 

Definition. A subspace Al C CN is called a marked invariant subspace for a trans-

formation A: 1yV . JN if A1 is invariant for A and if there exists a Jordan basis 5 

for A on C' such that a subset of 5 spans X. 

Marked invariant subspaces were introduced in [92, Section 2.9]. For further 

developments see [46, 47]. An earlier related disposition was given by Cater in [53, 

Lecture 4-3] where he proves a finite-dimensional version of results of Vilenkin [165, 

pp. 102-106] and Kaplansky [116, Chapter 18]. 

3.3 A Special Basis for the Second Root Subspace 

of Two-parameter Systems 

We saw in the previous section that we can build a natural basis for the 

kernel of £ from Kronecker bases of the pairs of matrices (A, B) and (C, D). This 

result can be applied to the kernel of the transformation V in the two-parameter case. 

We use the setting of Subsection 2.5.2 with n = 2. A special basis for ker V can be 

given using Kronecker bases for the pairs of matrices (v, 'ç), i = 1, 2. Suppose that 

I, is the set of invariants of the pair (va, v) and C = UtECjL is the corresponding 
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Kronecker basis where Ci, is a Kronecker chain associated with the invariant i. E 

We write I for the set of invariants of the kernel ker V and A for the subset of the 

basis A2 of ker DO, corresponding to the invariant t E I. We described in Theorem 

2.21 a correspondence between elements of a basis for ker (Al - F)2 / ker (Al - F) and 

elements of a basis for the kernel of D. Therefore a special basis for ker DOA induces 

a special basis for ker (Al - F)2. The exact correspondence is described later in this 

section. We have three different types of invariants in the set of invariants I for the 

kernel ker V. It will turn out that they correspond to the three different types of 

invariants of a pair of matrices A°' = (A?1, A 1), as defined on page 92. 

In the rest of this section we describe the construction of a special basis for 

ker (Al - F)2 using the basis A2 for ker D. We discuss each of three different types 

of invariants t E I separately. 

3.3.1 Basis Corresponding to an Invariant t = (L,p) 

Theorem 3.7 Suppose i = (L, p) = 77 (t1, 62) where z = (L, p1) E .I. and 62 = 

(L, P2) E 12 and that C11 and C2L2 are the associated Kronecker chains. Then there 

exist vectors x11 E H, i = 1,2 and li = 1,2,... ,p + 1 such that 

and 

The the vectors 

and 

io = W (A) x1, 

ViX'o + V2xb = W (A) x for l= 2, 3, . .. 

V12XPj4 = W (A) x. 

k 
kç 1 ,, k+1—1 
ZO_Z_1XiOX2O 

1=1 

z = (x 1 0 x' 1 + x0 ® 

are linearly independent. It also follows that 

kEp 

k ep+l  

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(A11 - r1) 4 = 4 (3.28) 
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and 

Ni \ k k—i 
- J. r 2) Z1 = 

for kEp, where zoo =4=0 and x1=0fork<Oandk>p+l. 

(3.29) 

Proof. Suppose that C = {uk; k E p + 11  i = 11 2. Because i.j = (L, pi) 

it follows from the definition of a Kronecker chain that 

= 0, 

= T/u i,i_i, 

T/ 
- A 
- yiiui,pi+i 

Then we have by a standard argument involving Lemma 2.12 that there exist vectors 

x1 E H such that (3.23), (3.24) and (3.25) hold. We can construct vectors (3.26) 

and (3.27), and then it follows that 

and 

k 

1=1 

Vjia40 V12x0 
k+i—i TI k+1—1 

v21X20 V 22 20 

k 

(1\2o - Li2) z = 

V11x0 

v2ix -i—i 
20 

1=1 

V11x0 

V21x' 1 

Wi (A) x' 1 

W2 (A) xt'' 
V12x0 

TI k+i—i "22X20 

V12x0 V12x0 

V22x20 1 V22X20  

V11x0 Wi(A)x 1 

V21x'' W2 (A) 21 

V11x0 V12x0 
k—i k—i 

2iX2o 22X20 

0 

0 

for. k = 1,2,...,p. Hence (3.28) and (3.29) hold. Here we assume z00 - — zo - 0. 

The vectors 4, k = 1,2, - . . ,p - 1 are linearly independent because the vectors 

x, k = 17 2, ... ,pi are linearly independent. Then it follows from (3.28) and (3.29) 

that the vectors {4; k E u {z; k E p + i} are linearly independent. 0 

If we restrict the transformations A11—T1 and A2I- 2 to the joint invariant 

subspace JV spanned by the vectors {4; k € p} u{4; k E p + i} then they commute 



109 

and we have 

I0G1 

[0 0 0 
(All —ri)Ig= I and (A2I—r2)lg= I [ ] 

Note that the invariant of the pair of matrices (Fr, G) is (L, p) 

3.3.2 Basis Corresponding to an Invariant t = (M,p) 

Suppose that t = (M,p) = i (ti, 62) where tj = (L, pi) E I, 62 = (M,p2) E 

12 and p = P2 - Pi > 1, and that C1L1 and C2 2 are the associated Kronecker chains. 

The basis for the case t 1 = (M, pi) E I, 62 = (L, P2) E 12 and P = Pi - P2 > 1 is 

obtained symmetrically, interchanging i = 1 and i = 2. 

Theorem 3.8 If 1. = (M, p) E I is as above then there exist vectors x E H, k = 

1,2,... ,p + 1 (x 1 = x' = 0)such that 

V11x0 = W1 (A) x1, 

k=2,3, ... ,p 

and 

V12x1 = W1 (A) 

Then the vectors 

4=x 0®x, kEp+1, i=1,2, 
1=1 

and 
P1+l P1 

= x1 0 x 11 + xo 0 xf' 1 ', k E p 
1=1 1=1 

are linearly independent. Furthermore, we have 

(A11 - 1) z = (3.30) 

and 

Ni 112) z: = 4 (3.31) 

for k E 2 
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Proof. The vectors x exist similarly as in the proof of Theorem 3.7 using 

the definition of the Kronecker chains Cii, and Lemma 2.12. To prove the theorem 

we need to establish relations (3.30) and (3.31). These follow by a straightforward 

calculation 

and 

P1+l 

(A10—z1)z=: > 
1=1 

Wi (A) x1 

A) pi+k-1+1 W2 (  

V11a40 V12x0 
V2iX 1+II+l T t pi+k—l+1 

20 

(A2o - 

V11x0 V11x0 
tr i+k—l+1 TI pl+k—l+1 
v21X20 V21 X20 

= L0z. 

TI 1 v12X10 

i,22X2 p0i+k-1+1 v  

0 

V12x0 V12x0 

V22x 1 V22x 

W1 (A) X11, 
W2 (A) 21 pi+k_1+1 

TI I 
v11X 10 

V2jx'' 20 

V12c40 
TI pl+k—1 
Y22X2O 

0 

0 

Then we argue as in the proof of Theorem 3.7 to complete the proof. 0 

If we restrict the transformations x1I—r1 and A2I- 2 to the joint invariant 

subspace .A/ spanned by the vectors {4; k E p + 1  u {4; k E p}, described in the 
above proof, then we have 

(A11—r1) I= 
0 (F)T 

00 
and (A21 - r2) jg= 

0 (G)T 

0 0 

Note that the invariant of the pair of matrices ((F) T, (G)T) is (M,p). 

3.3.3 Basis Corresponding to an Invariant b= (J (a) ,p) 

Suppose that t = (J (a) ,p) = ij(t1,t2) where t1 = (J (a) ,pi) E Ii, t2 = 

(J (a) ,p2) E 12 and p = mm {pl,p2}, and that C1L1 and C2L2 are the associated 
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Kronecker chains. The basis for the case tj= (L, p1) and 12 = (J (a) ,P2) is obtained 

using the same arguments as in the case t = (J (a) ,pi) and 12 = (J (a) ,P2) using 

the a-shift Cl,, (a) = {u (a) , i e Pi + i} and writing u11 (a) = 0 for i ≥ pi + 1 if 

P2 > P1+l. The case tj = (J (a) ,Pi) and 12 = (L, P2) is analogous, only interchanging 

i = 1 and i = 2. 

Theorem 3.9 If ti = (J (a) ,pi) and 12 = (J (a) ,p2) then there exist vectors Xk E 

H, k = 1, 2,. . . ,p such that 

U1 (a) xto = W1 (A) xti 

and 

Then the vectors 

and 

U(a)x+Vix' =W1 (A) x1 k=2,3, ... ,p. 

k 

4=Lxoøx' 1, kEp 
1=1 

4 = (x 1 ® x' 1 + x0 xt''), k E 

are linearly independent and furthermore 

(A1I - r1) 4 = a4 + 4' (3.32) 

and 

Ni - 1'2) 4 = 4 (3.33) 

for k E p. 

Proof. The theorem follows as the previous two given the relations (3.32) 

and (3.33). These are established using a simple calculation: 

k 

(A1zo - ) 4 = 
l=1 

Wi (A) 

W2 (A) x21 1 ' 

V12x0 
T k+i-1 V22X20 

0 
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k 

=>: 
l=1 

and 

U1 (a) xo V12x0 

) k+1-I V22x'1 U2 (a x20 

k 

(A2zo - 2) z = 
1=1 

V1x0 U1 (a) x0 

V2x20 '1 U2 (a) 

V11x0 Vi2x'0 
i, k-i TI k-i 
v21X20 v22X20 

V1x0 Wi(A)a41 

V2x' 1 W2 (A) 21 

= aL.0z' + Loz 1 

0 

V11x0 
k-i 

21X20 

0 

= AO ZOk. 

0 

If we restrict the transformations A1J—T1 and A2i—F2 to the joint invariant 

subspace Al spanned by the vectors {4; k E u {4; k E P1 given in the above 
proof. Then we have 

l 
(A11—r1) = o JP (a) 

to o ] and (A21 - r2) kr 
00 

54 

The invariant of the pair of matrices (J (a) , I) is (J (a) ,p). 

Suppose that for every element in the set of invariants I of the kernel of 

we construct vectors 4 and z as explained in the proofs of Theorems 3.7-3.9. 
Note that they are linearly independent. We denote the set of these vectors by 

1% and by Al' the subspace they span. The linear transformations (A11 - F1) and 

(A21 - I'2) restricted to the subspace Al = ker (Al - F)2 commute and are nilpotent. 

Furthermore Al' C Al. If Al' Al we complete the set 5 by a set of vectors, say 13", 

to the basis 52 for Al. We write Al" = £ (5"). Because the vectors z are as many as 

dim ker V and are linearly independent it follows from Theorem 2.21 we can assume 

that Al" c ker (Al - r). We write the pair of restricted transformation (A11 - r) , 

that are nilpotent and commute, in the form (1.2) using the basis 132. It follows from 

Theorems 3.7-3.9 that the array A°' has the form 

A A°' 01= 
0 

(3.34) 
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where 

a101 ... 0 

o a 01 0 ,.1 

o •.. Q a 01 ,.1 +1 
0i = 

(tl 

a;  +r2 
01 a,.1 +r2 +1 

0 

0 

0 

01 
an +r2+r3 

(3.35) 

The first r1 blocks a1 in the array (3.35) correspond to the invariant (L, p) in the 

set I, the next r2 blocks correspond to the invariants (M, p1) in the set I and the last 

r3 blocks a1 correspond to the invariants (J (a) , ps). The rows of 0 at the bottom 

in (3.34) are as many as there are vectors in the set Jsf". Note that the array A, 

where A°' is in the form given by (3.34) and (3.35), is in a canonical form described 

in Example 3.3. Note also that the set of invariants of the pair of matrices (A?', Ag') 
equals I. 

To illustrate the preceding construction we discuss two examples. 

Example 3.10 Consider again the two-parameter system of Example 2.22. The sets 

of invariants for the pairs (vfjo, v1°) and (v2°, v2o) that correspond to the eigen-
value A (0,0) are {(L, 0), (M, 0)} and {(L, 1), (M, 0)}, respectively. A Kronecker 

chain that corresponds to the invariant (L, 1)is [] , []. The set of invariants 
for the kernel ker V"° is then { (L, 2) }. We find that vectors 

0 

xh=x,= 1 

—1 

are such that 

and x1 = 

0 

0 

0 

9 ,x 1 = 

1 
2 

V,ix,o = W, (A0) xi,, V,2x,0 = W1 (A0) 

0 

0 

0 
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and 

10 V22x0 = W2 (A0) 4, V224 - = W2 (A0) 4 and - V214 = W2 (A0) 4. 

Then it follows from Theorems 2.21 and 3.7 that the vectors 

1 0 

o 1 

o 0 

o 0 

0,0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

1 

0 

0 

—1 

0 

0 

0 

0 
1 
2 

1 

0 

and 

0 

0 

0 

0 

1 

0 

0 

—1 

0 

form a basis for ker (Al - )2. Note that the above method to construct a basis differs 

from the method given in the proof of Theorem 2.21 and used in Example 2.22, hence 

also the bases constructed in the two examples are not the same. 0 

Example 3.11 Suppose that we are given matrices 

T1\11 - V - 

1 0 0 0 0 0 

010000 

000000 

000100 

000010 

000001 

1 00 0 0 

00000 

0 0 1 0 0 and V22  

00010 

0 0 0 0 1 

LrX 
, V12 - 

010000 

001000 

000100 

000010 

000001 

000000 

0 1 0 0 0 

00100 

00000, 

00021 

0 0 0 0 2 
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and we write 'k for k x k identity matrix. Then we form a two-parameter system 

and 

W1 (A) = 
16 

A 
vii 

16 0 
TI  

V 1 00 
A2 - 

0 '6 0 

IOVlA+II5V2lA 1001 
W2(A)L 0 j to 15 ] L15 0] 

It follows from the structure of the above two-parameter system that it is nonsingular 

and that A = (0,0) is an eigenvalue. We also find that the matrices Viit  i,j = 1,2, are 

the entries of the corresponding matrix DA if we choose x10 = [ y 0 10 = 16 

16 0 = []  0 and ,20 = 15 ] .  Then { (L, 2), (M, 3) } is the set of invariants for 
15 0 

(v1, v1) and {(L, 1), (M, 1), (J (2) ,2)1 the set of invariants for (v2, v2). The set 
of pairs of invariants J' has three elements {(L, 2), (L, 1)}, {(L, 2), (J (2) ,2)1 and 

{(M, 3), (L, 1)}. Applying the mapping 77 defined by (3.18) we find that the set of 

invariants of the kernel of V is {(L, 4), (M, 2), (J (2) , 2)}. 0 

3.4 Comments 

Kronecker in [119] developed his canonical form as the answer to the prob-

lem posed by Weierstrass of finding a canonical form for a pair of bilinear forms. 

The Kronecker canonical form is usually stated in terms of matrix pencils AA + B. 

Because we use the Kronecker canonical form for a pair of matrices A°' = (Ag', A) 

in a commutative array in the form (1.2), we have chosen to state it in terms of 

pairs of matrices to keep in tune with our preceding discussion. For an early version 

of Kronecker's result adapted to matrix pencils see Dieudonné's work [58]. We can 

also find chapters on the Kronecker canonical form in recent monographs on Linear 

Algebra, for example [85, 92]. This topic is also of current interest in various appli-

cations, e.g. in Control Theory (see [113, 125]), and various further developments 
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Van Dooren [61] gave a computational algorithm to find the canonical form, Atkinson 

[11] extended it to a special class of tensors and Thompson [162] studied it for pairs 

of self-adjoint matrices. The study of matrix and operator pencils AA + B and also 

multiparameter pencils E  AA1 + B motivated by multiparameter eigenvalue prob-

lems is found in several papers. For example, Blum [31], Fox, Hayes and Mayers [76] 

and Hadeler [98], considered numerical methods to find eigenvalues of these pencils, 

and Binding [22] gave a canonical form for self-adjoint operator pencils A..\ + B on 

Hilbert space. Also Bohte in [36] studied numerical methods to calculate eigenvalues 

of a two-parameter system of pencils. 

The matrix equation AXDT - BXCT = E has been studied for a long 

period of time (see [156, 157, 171]). The special cases XD  - BX = E and also 

AXDT - X = E have been thoroughly examined. See [128, Chapter VIII] for early 

references, some later works being [107, 142, 145, 173]. In [143] Roth gave conditions 

for existence of a solution of XDT—BX = E. Different proofs of his results were given 

later in [74, 102]. The authors in [100, 101, 120, 123, 124, 127] suggested different 

approaches to find explicit solutions of XD  - BX = E. This matrix equation is 

associated through Roth's results with extensions of block matrices [114, 174] and 

with the Kronecker sum 10 D - B ® I. The latter was already known to Sylvester 

(he calls it 'nivellateur') in [156], see also [13, 14, 126]. Eigenvectors and root vectors 

for the Kronecker sum were given by Trampus in [163]. See also [132, Section 1.2] for 

a thorough presentation. 

The applications of these matrix equations are diverse. Barnett and Storey 

in [14] discussed problems in stability theory where the equation XD  - BX = E 

arises. Epton [63] gives an example of a numerical method for implicit differential 

equations where solving the equation AXDT - BXCT = E is essential. See also 

[17, 127] for some other applications. The general equation AXDT - BXCT = E was 

studied in [54, 63, 103]. Chu [54, Theorem 1] gave conditions for existence of a unique 

solution. He also proposes a numerical algorithm to compute this solution. The idea 

to use the Kronecker canonical forms of two pairs of matrices (A, B) and (C, D), in 
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order to solve this matrix equation, was brought forward by Rózsa in [144]. 

Two-parameter spectral problems were considered since the early days of 

Multiparameter Spectral Theory. For example, two-parameter oscillation theorems 

were proved by Klein [117], Bôcher [32, 33, 34] and Richardson [141]. Dixon [59] 

studied expansions of functions in terms of eigenfunctions of a pair of coupled two-

parameter differential equations of Sturm-Liouville type. Also Camp [48, 49] and 

Doole [60] proved various two-parameter expansion theorems. Fell [138] studied a 

two-parameter system of integral equations of Fredholm type. In the 1950s Cordes 

[55, 56] developed an abstract Hubert space setting for a special class of two-parameter 

spectral problems (cf. also [131] for a modern presentation of Cordes's work). Later 

Arscott considered particular classes of two-parameter spectral problems in [5, 7]. 

Among recent publications we find work of Binding, Browne, Faiermau, Isaev, Sed-

dighi and many others. Most of the early references discuss the right definite case 

where eigenvectors alone are complete, while Binding and Browne [26] consider the 

dimensions of root subspaces for general eigenvalues of self-adjoint two-parameter 

systems. 
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Chapter 4 

Bases for Root Subspaces in 

Special Cases 

4.1 Introduction 

In this chapter we study the finite-dimensional completeness problem, i.e., 

the problem of finding a basis for root subspaces, for special cases of eigenvalues of 

multiparameter systems. 

In the second section of this chapter we consider nonderogatory eigenvalues. 

Theorem 4.4 is the main result in this case. The method used to prove this result is in 

part different from the method used to prove the completeness result for simple eigen-

values and can not be directly generalized. When an eigenvalue A is nonderogatory 

the restricted transformations Ai = (AI - r.) Ik(AI r) N i E_ , that are commuting 

and nilpotent, are assumed to be in upper Toeplitz form. With corresponding root 

vectors we associate monic matrix polynomials. It turns out that the n-tuples of the 

first row of the array A, consisting of matrices A•, i E n, form Jordan chains for these 

matrix polynomials. A chain of vectors x0, x1,. . . , x, is a Jordan chain for a matrix 

polynomial L () at an eigenvalue Po if 

for k=O,1, .... p. (4.1) 
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(For further definitions concerning matrix polynomials see [89, 90].) We also give an 

algorithm for the construction of a basis for a root subspace. As an application we 

consider self-adjoint multiparameter systems. We obtain a new result for the real 

simple eigenvalues of weakly-elliptic multiparameter systems. 

Our main results are Theorem 4.18 and Algorithm 4.19 in the third section. 

We use the same ideas as we did in Section 2.5 when we constructed a basis for the 

second root subspace. We use essentially one more important fact, that we can sep-

arate for all i the kernels of the matrices W (A) and subspaces spanned by vectors 

Xk, for k ≥ 1, that are used in the construction of root vectors in addition to the 

vectors x0 E ker W (A). We ensure this by choosing vectors xg from a direct com-

plement H C Hi of ker W (A). This fact is used along with relation (2.7) to obtain 

equalities of type (4.26). The matrix Sm plays a role similar to that of the matrices 

B0 and DOA before. It acts on a space isomorphic to the space spanned by matrices 

T(l,m_l), f E dm. These were the matrices introduced in Section 1.5. The matrices 

T7(hlm_l), f E dm are linearly independent and their isomorphic images are elements 

of the kernel of Sm. Next we can associate with every element in the kernel of 8m an 

m-th root vector that is not an (m - 1)-th root vector. Our proof that this vector is 

actually a root vector is technically very complicated. We do this in Lemma 4.17. We 

also prove that we can associate in the same fashion a set of linearly independent root 

vectors with a basis of the kernel of Sm. We prove by induction that this procedure 

gives a basis for the root subspace. In the first subsection we establish a basis for 

the third root subspace and in the second subsection we prove the inductive step. In 

the third subsection we give Algorithm 4.19 and consider the special case of simple, 

completely derogatory eigenvalues. Simple eigenvalues in the two-parameter case are 

always completely derogatory. We also discuss the relation between our expressions 

for the root vectors for simple eigenvalues of the two-parameter system and the con-

jecture of Faierman [69, Conjecture 6.1] on the structure of root functions for a class 

of Sturm-Liouville boundary value problems (0.1). 
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4.2 Nonderogatory Eigenvalues 

In this section we assume that A E o (W) is a nonderogatory eigenvalue. 

The next result is a well known biorthogonality property between right and left Jordan 

chains. We write it in the following form for future reference. We assume that index 

i is fixed. 

Definition. A Jordan chain z0, z1,. .. . z, (as in 0.2) is called maximal for a linear 

transformation V at an eigenvalue Ao if zp 7Z. (A01 - V). 

Lemma 4.1 Suppose that z0, z1,... , z, is a maximal Jordan chain for ri at the eigen-
value Ai and w is a left eigenvector at the same eigenvalue. Assume also that 

dim (ker (Ai I—r)) = 1. Then it follows that WO*L.OZk = 0 fork = O,l,...,p— 1 

and woz 54 0. 

Proof. For k < p - 1 we have 0 = w (A0 - j) zk+1 = w O*LOZk. Sup-

pose now that wJ.oz = 0. Then it follows that Loz E (ker (Ao - )*).L = 

7Z (Az0 - j) and so there is a vector such that (A11 - r) = zr,. This 

contradicts the assumption that z0, z1,... , z, is maximal Jordan chain. The proof is 

complete. 0 

In this section we will denote the family of multiindex sets 

{(i1i2...in); 0≤j, -ii = k} (4.2) 
i=1 

by Wk for k = 0,1,.. . ,p. Here p is a fixed nonnegative integer. 

Lemma 4.2 Let {. = {b]. ,k = 021,... 2P} be a set of matrices and assume 
13 2,21 

that rank(Bo) = n - 1. Choose a vector x0 E ker (B0) \ {0}. Then there exist vectors 
x,i = l,2, ... ,p such that Ej=o Bjxi-j = 0 for  = 1, 2,...,p if and only if 

jEWs 

b',', V1'2 b3 

b22 b22 22 21 22 V2n 

=0 (4.3) 

i..:in iJn i1fl 
t1nl Vn2 (P 
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for i=1,2,...,p. 

Proof. We construct a matrix polynomial 

L (1k) = Ip' + BppP + B_1p"' +• + Bo = [b ()] i,j=1 

Then 

L(k) (0)=k!.Bk, k=0,1, .... p (4.4) 

and because dim (ker L(0)) = 1 the polynomial L (p) has only one elementary divisor 

at p = 0. Then by [90, Corollary 1.14, p.35] it follows that p = 0 is a root of degree 
p + 1 for the scalar polynomial d (p) = det L (/2) if and only if matrix polynomial 

L (p) has a Jordan chain x0, x1, . .. , x, of length p + 1 at p = 0. That is, if and only 

if the vectors x0,x1,. . . ,x,, x0 0 0, are such that 

-L() (0) Xk_ = 0, 

or if we use (4.4), if and only if 

k 

= 0, 

for k=0,1, ... ,p, (4.5) 

for k=0,1,...,p. 
j=0 

If the polynomial d (p) hasp= 0 as aroot of degree p+1 then d(0) =d'(0)  

d" (0) = 0. Finally the relations 

d(k) (0) = , . 

jE'I'k ii• 32. in. 

=k! 
jE'I'k 

b 1) (0) b(0) (.1) 
01n (0) 

b2) (0) b) (0) '(22) O2 (0) 

bj (0) b;) no (0) (0) 

11 12 "in 

b32 b22 b22 21 22 2n 

ljn tin 1,.in 
'n1 -'n2 

hold and the result follows. 0 
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The above lemma is used in the proofs of the main results in this section 

concerning bases for root subspaces for nonderogatory eigenvalues. For the definition 

see page 78. Let us recall that H C Hi is a direct complement of the kernel of W (A). 

Proposition 4.3 Assume that the eigenvalue A E 3Y' is nonderogatory. Then the 

following statements are equivalent: 

(i) There exist n-tuples a1, a2,... , a, E C", a1 0 and vectors x1, x2,. .. , x1 € 

Hill i=l,2,...,n such that 

k-i 

E U (a,_) xij = W (A) Xik 
5=0 

for k=1,2,...,p; i=1,2,...,n. (4.6) 

(ii) There exist n-tuples ai,a2,...,ap E C", a1 34 0 and vectors 5i1,5i2, ..., xi, p..i E 

H, i = 1,2,...,n such that 

k-i 

EyoUi(ak_j)xij=O for k = 1,2,...,p; i=1,2,...,n. 
j=0 

(iii) There exists an index h such that dim ker (AhI - Th) = 1 and rh has a Jordan 
chain of length p + 1 at eigenvalue -Ah, 

(iv) There exists a set of linearly independent vectors {z0, zj,. . . , z} C H such that 

(AjI — FI)zk = Et'a1,k_5zJ fork = 0, 1,...,p; i = 1,2,...,n and not all 
ail = 0. 

Proof. If we multiply (i) by y, on the left then (ii) follows. Assume now that 

(ii) holds. In Proposition 2.15 we have already proved that (i) and (ii) are equivalent 

for k = 1. Suppose now that we have already found vectors xj, x2,. . . ,x, ki, where 

0 ≤ k <p, such that (4.6) holds. Then E:j U (ak_J) x; is orthogonal to the kernel 

ker W (A)* and so it follows from Lemma 2.12 that there exists a vector 5 1k E H 

such that E U (ak_J) xj = W (A) 5 ik. We can continue this procedure until k = p. 

Therefore (i) follows. 

It is easy to observe that (iv) implies (iii). 
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Suppose now that (i) holds. We define vectors 

Zk = EX1j1 0 X2j2 & 0 Xflj 

jEWk 

for k = 0, 1,. . . ,p. It follows then from (i) and Lemma 2.1 

= 
jE1Ik 

n 3q1 
= E E E aj,_i 

j€Wk q,r1 'q=° 

= 

•ri•t 
V11 

TTt 
"21 

V1,i—lxljl 

V2,1_1x252 

Vn,i-lxnin 

V11_1 W1(A)t V11 

V_1 W2 (A) V21+1 

V_1 W (A)t Vt ... Vt z+1 fin 

il — i 

E U1 (a12 _i) a.; 111 
li=O 
22-1 
Fa U2 (a 2_,2) x212 
12=0 

Vi,1+1x111 

V2,+ix2a2 

in - 1 
E U, (a1 _i) x,a, Vn,j+ixnj, 
in =0 

V1,i-1x111 

Vq_i,i_iXq...i,jq_i 

Vq,i_ixqjq 

Vq+1,i._1Xq+i,jqi 

Vn,i-lxnjn 

0 Vi,+ixi11 

0 

Zk = 

Vq_i,i+ixq....i,jq_1 

Vqrx gig 'l/,i+1X QIq 

h1'q+1,i+1Xq+1,jq1 0 

0 

0 
Vlnxljl 

V2 x212 

Vflnxnjn 

(4.7) 
0 

(4.8) 

In the displayed determinant (4.8) the first i - 1 and the last n - i - 1 columns 

are the same as in the determinant displayed in (4.7). The vectors VqrXqjq , r = 

1,. .. , i - 1, i + 1,. . . , n, in (4.8) can be substituted for Vgrxqiq without changing the 
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determinant. The sum (4.8) is then equal to 

Vli,i_i 0 V11 1 ... Vltn 

fl 

>i: E E a_i9,, 
jEWk q,r=l 1q° 

u 
'nti 

t A Vt Vt 
n,i+l • nfl 

xljl 0 •• ® Xq_l,jq_lXqlq 0 0 • 0 (4.9) 

For every multiindex j E 1Ji, where 1 < k, the vector x1j, 0 x22 0 0 x1 appears 

exactly n times in the summation (4.9), once for every q = 1,2, . . . , n. Then we sum 

in (4.9) over q and because a determinant with two equal columns is zero it follows 

that the sum (4.9) equals 

k-i 

ak_I, 

I=OjEW 

Vix11 V12x111 

V21x22 V22X2J2 

V1 x111 

V2 x252 

0 

k-i 

= E ak._1,1I.oz1. 
j=O 

This establishes (iv). 

To complete the proof we will show that (iii) implies (ii). This implication 

was proven in Proposition 2.15 for k = 1. Assume now that we have already found 

a1,a2,. . . ,ak_i and . . i = 1,2,... ,n where k ≤p such that 

i-i 

l=1,2,...,k-1. (4.10) 
j=o 

It remains to show that we can also find ak and Xi,k.i, i = 1,2,. .. , n such that 

k-i 

= 0-
j=0 

Since (i) and (ii) are equivalent we can find Xi,k_i, j = 1,2,.. . , n such that 

k-2 

E U (ak_2) xij = Wj (A) 
j=o 
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Next we build the vectors z1 = EJEW, x1j1 0 x2j2 0 ... 0 x,,, 1 = 0, 1,. .. 'k- 1. In 

the proof of Proposition 2.15 we showed that 

z1 E ker(AI—T)2/ker (Al —T). 

In the Remark following that proof we pointed out that alh 0 0 for some h E 11. The 

same calculation used to show that (i) implies (iv) also proves that (A11 - r) zi = 
E'0ai_j,z3 1= 0,1,...,k-1. Then the vectors ur = r lrzk_l, r = 0,1,...,k-1 

form a Jordan chain for rh of length k (<p + 1). Because dim ker (AhI - rh) = 1, 

every Jordan chain can be extended to a maximal one (cf.[92, Theorem 2.9.2(b), p. 

85]). Lemma 4.1 implies that wL.0u1 = 0,1 = 0,1,— , k - 1 and then, because 

£({ui; 1= 0,i,...,k—i}) = £({zj; l=0,1,...,k-1}) = ker(AhI—rh)', it also 

implies that 

WO* ozi — , 1 = 0,j.,...,k - 

Next we form the n x n matrices B1 = 1 = 0, 1,.. . , k—i where = yV11x11. 

-7 ij=11The relations (4.10) are equivalent to E'O Baj_1 = 0 for 1 = 1, 2,. . . , k - 1 and the 

relations (4.11) are equivalent to 

=0, for l=0,1,...,lc-1. 
JEW, 

Since A is nonderogatory rank B0 = n - 1 and then Lemma 4.2 implies that there 

exists an n-tuple ak such that E1 BJak_ = 0 or, equivalently, such that 

k-i 

yj*O Ui (aA;-j) Xij =0 
j=0 

for i=1,2, ... ,n. 0 

Remark. Suppose that the conditions of Proposition 4.3 hold. Then for every index 

h such that aih 0 0 (there is always at least one such h because a1 0) the vectors 

UI = (AI - rh) 1 zp, 1 = 0, 1,. . . ,p form a Jordan chain for rh at eigenvalue Ak. 
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This implies that the vectors z0, z1,. . . , z, are linearly independent and they span 

fl 1 ker (A,I - 0 

As an immediate consequence of Proposition 4.3 we have 

Theorem 4.4 Suppose A E C is a nondevogatory eigenvalue for a multiparameter 

system W such that dim (n1 ker I - r) N) = p+ 1. Then there exist a1, a2,. .. , a.? 

E C,a1 54 0, and . . ,x, E H, i = 1,2,.. .,n such that 

k-i 

for k=1,2,...,p; i=1,2, ... ,n. 
j=0 

Moreover the vectors 

Zk = E X1j1 ®X2j2 0" ®Xj, 
jEWk 

where W, is defined in (4.2), are such that 

k=O,1,...,p 

k-i 

(A11 - r) Zk = E ak_J,zJ 
1=0 

and they are a basis for the root subspace fl 1 ker (AI - 

Algorithm to Construct a Basis for the Root Subspace of a Nonderogatory 

Eigenvalue 

In the proof of Proposition 4.3 we can also find an algorithm for the con-

struction of vectors Zk, k = 0, 1,. . . ,p that form a basis for the root subspace of a 

nonderogatory eigenvalue. The construction uses only data from the multiparameter 

system W. 

Algorithm 4.5 Step I. For i = 1,2,. .. , n find x0 54 0 and yjo 54 0 such that 

W(A)x 0=0 and yW1(A)=O. 

Choose a direct complement H of ker W (A) for all i. Form z0 = x10 0 x20 ®. . .0 x, 

and set k = 0. 
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Step-11. Find a matrix polynomial Lk () = I/1''+Bkp!--• +Bo and its determinant 
dk(a) =detLk(1a). If 

dj (0) = 0 (4.12) 

then set k = k + 1 and go to Step III, otherwise quit the algorithm. 

Step III. Find ak E C', a1 54 0, such that 

k 

E  BA:_jaj = 0 
1=1 

where B1 = For i = 1, 2,. . . , n find vectors Xik E H such that 

k-i 

U x1 = W (A) Xik. 
1=0 

Form zk = E x1j1 0 x22 0... 0 Xnjn. Repeat Step II. 
JEWk 

It follows from Corollary 4.6 that the vectors z0, zi, .. . , zj, obtained in the 

above algorithm form a basis for the root subspace ker (Al - F)N, i.e., they satisfy 

the relations 
1-1 

(Ail —r)zi=>2ai...a,1za for l=0,1,...,k. 
j=0 

Definition. The smallest integer k such that the sum on the left-hand side of the 

condition (4.12) is not 0 is called the ascent of r at the eigenvalue A. 

The next result is the immediate consequence of Lemmas 4.1 and 4.2. 

Corollary 4.6 The ascent of r at the eigenvalue A is equal to 

dim (ñ ker (AI - 
Let us now demonstrate Algorithm 4.5 with an example : 

Example 4.7 We consider a multiparameter system 

Wi(A)= 

100 

010 

Oil 

100 

1 _1 
2 2 

011 

A2 - 

0 —1 0 

000 

000 
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and 

W2(A)= 

100 

000 

001 

000 

011 

010 

A2 - 

1 0 —1 

—1 —1 —1 

0 —1 —3 

Because AO is invertible it is nonsingular. The spectrum is 

(W) v/-2 (" (_,,12-, \/T'T)'TT) 

We consider the eigenvalue Ao = (1, —1). Then we have 

lo 1 0 
W, (AO) I 0 

22 

0 0 0 

001 

and W2(Ao)= 1 0 0 

004 

We observe that dim ker W1 (A0) = dim kerW2 (A0) = 1. To complete Step 1, of 

Algorithm 4.5 we choose 

x1O = 

We also set H = 

1 

0 

0 

X20 = 

0 

1 

0 

0 

,Yio 0 and y20 = 

1 

4 

0 

—1 

aj a,b E C and H = j - a,b E C}. The matrix 

00 
B0 = 0 has rank 1 and therefore A0 is a nonderogatory eigenvalue. We have 

1 

zo=0® 

0 

0 

1 

0 

Then we go to Step III. We choose a1 = 

a;11 = 

0 

1 and X21 

—1 

0 

0 

0 

I 1 

0 
and 
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since Yiio = W1 (AO) x1l and V21x2o = W2 (A0) X21. Then it follows that z1 = 

0 0 

I dL 1 01 an 0 p2 +1 
0 01 = [ 2 0 ] ,sodi() = 2 ( 2 +1). 

—1 0 

Because d'1 (0) = 0 we repeat Step III. Now we choose a2 = [ ° ] and vectors 

X12 = 

0 

0 

2 

and x22 = 

0 

0 

0 

0 

so that V11x11 = W1 (A0) X12 and V21x21 = W2 (A0) X22- We have z2 = 0 

2 

0 

0 

1 

0 

2 2 3 +2 2 2 
and B2 = . The matrix polynomial L2 () = has deter-

0 0 0 

minant d2 () = 2 (z +2) (i3 + 1). Because d'2' (0) 54 0 we quit the algorithm. The 

root subspace at the eigenvalue A0 is three-dimensional and has a basis {zo, z1, z2}. 

0 

4.3 Self- adj oint Multiparameter Systems 

4.3.1 Elementary Properties 

Definition. A multiparameter system W is called self-adjoint if all the transforma-

tionsVj, i=1,2,...,n, j=0,1,...,n axe self-acljoint,i.e. 'j=V. 

In this section we study self-adjoint multiparameter systems. It is an easy 

consequence of the definition that also all the associated transformations Aj, i = 

0, 1, . . , n are self-adjoint in H with (.,.). The scalar product (.,.) is defined on page 
8. For a self-adjoint multiparameter system W we define a new bilinear form on H by 

[x, y] = ( 0x, y) for all x, y E H. The bilinear form [•, .] is an indefinite nondegenerate 
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scalar product because L.0 is invertible. 

Definition. An operator T € £ (H) is A-self-adjoint if [Tx, y] = [x, Ty] for all 

x,y e H. 

Lemma 4.8 The associated transformations r, i = 1,2,... , n are Io-self-adjoint. 

Proof. For any two x, y E H it follows that 

[rx,y] = (Aix, y) = (x,I jy) = [x,r1y]. 

0 

Lemma 4.9 Suppose that A E cr (W) and that Ai ER for an index i. Then A EJR. 

Proof. Assume that x E H is an eigenvector for r at A. Consider now a 

subspace Y = fl1 ker (Au - r1)N. Because H is invariant for ri and F1 is 0-self-

adjoint it follows from [91, Theorem 3.3] (see also [91, Section 3.4, pp. 37-38]) that Al 

is nondegenerate for [., .]. Now suppose that Aj EC/IR for some j 54 i. Then it follows 
from [91, Corollary 2.6] that H is neutral in [.,.]. This contradicts the assertion that 
A1 is nondegenerate for [., .]. Hence it follows that Aj ER for all j. 0 

Definition. A self-adjoint multiparameter system W is called right-definite if AO is 

a positive (or negative) definite matrix in H. 

Definition. An eigenvalue A E 0 (W) is called semisimple if 

n 

dim ker (AI —F)2 =lldim kerWj(A) 

or equivalently, if the eigenvectors span the root subspace at A. 

When W is right-definite the bilinear form [.,.] (or - [., ]) is actually a defi-
nite scalar product and therefore r (W) dR'2 and each F, has a basis of eigenvectors. 

Then we have the following completeness result (see [10, Theorem 10.6.1]). We state 

it to make this dissertation more complete. 



131 

Theorem 4.10 Assume that W is right-definite. Then the spectrum o (W) is real. 

Furthermore all the eigenvalues are semisimple and there exists a basis for H consist-

ing of decomposable eigenvectors for F. 

Proof. Because AO is a positive (or negative) definite operator the scalar 

product [.,.] (or - [.,.]) is definite. The transformations r1 are self-adjoint in [.,.] and 
hence JPJ D o (F) = 0 (W). Also all the eigenvalues of r, are semisimple. Therefore 
it follows from Theorem 2.11 that there exists a basis of decomposable tensors for 

n  ker (AI - r) for all A E o (W) and so for 

H=(D (ker (Ail _ri)). 
AEi(W) i=1 

0 

4.3.2 Weakly-elliptic Case 

Definition. A self-adjoint multiparameter system is called weakly-elliptic if there 

exists a cofactor 'Oij of AO that is a positive definite operator on H. 

As an immediate consequence of Theorem 4.4 we have 

Theorem 4.11 Assume that A is a real eigenvalue for a weakly-elliptic mztltiparam-

eter system W and that dim ker W (A) = 1 for all i. Then A is nonderogatory and 

there exist n-tuples a1, a2,... , a,, a1 54 0 and vectors Xjj E H ) i = 1,2,. .. , n, j = 
0,1, ... . p such that 

1-i 

W(A)x 1= for 1= 0, 1,...,p. 
j=1 

The vectors Zj = xij1 0 x22 ® ® Xnj. are such that 

1-1 

(AI - r1) z1 =E akzk. 
k=O 

Moreover, if p ± 1 is the ascent of A then the vectors z1, 1 = 0, 1,. . . ,p form a basis 
for a root subspace of W at A. 
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Proof. Suppose that x10 E ker W1 (A) are nonzero vectors. Then we only 

need to show that 

rank 

* TI 
iii 

x0V21x20 

* XJOV 12X10 

x0V22x20 

* TI 
1n5 10 

* 
2O VTI 2nX20 

* TI * TI * 
5 n0 "n1nO 5 n0 Vn2Xn0 5 n0 VTi• XØ 

The result then follows from Theorem 4.4. By definition of a weakly-elliptic multipa-

rameter system it follows that zIo1zo 0 0 for some i and j. Since 

* A * I•-I\ A I 

ZoL.OjjZO = Xio Xjç ) i.01jZ0 

where 5' = Xio 0 •øx_i,oøx1+i,oø ... øx,2, it follows that the cofactor of xio Vx10 

in the matrix 

B0= 

*  XJOVIIX10 * 1210 * 1n5 10 

x0V21x20 x0V22x20 ... x0V2 x20 

* 
5 n0 n15 n0 

is nonzero and so rank B0 ≥ n - 1. 

* 
XnO n25 n0 

* 
5 n0 nn5n0 - 

0 

Remark. A special case of the weakly-elliptic case is the elliptic case. A multipa-

rameter system is called elliptic if Aoij, i = 1,2,. . . , n are positive definite operators 

on H for some j. A special case of Theorem 4.11 for the latter case was first proved 

by Binding [23, Theorem 3.1] in a more general setting with a different method. We 

remark that we do not generalize his main result [23, Theorem 3.2]. 

4.4 Simple Eigenvalues 

4.4.1 A Basis for the Third Root Subspace 

Suppose that A is a simple eigenvalue and that a?', ar,. . . , a form a basis 

for ker Bo and b I boll. ? ',b',. .. ,b a basis for ker B. We write b0 = [b?',b',. .. 

We restrict our attention to the root subspace M = ker (Al - F)N and we bring the 
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restricted transformations (Aj - F) g, that are commuting and nilpotent, to the 

form (1.2). We refer to (1.3), (1.5) and (1.6) for the definitions of the arrays A'1 and 

their row and column cross-sections, respectively. It follows from Theorem 1.12 that 

for every CJ2, k E d2 there exists a unique symmetric matrix Tk such that R?1Tk = 

C, 2. We choose vectors 4, k = 1,2, . . . , d1 such that Z = {z0, z11, z?,.. . , z di 

is a basis for ker (Al - F)2 and (A21 - r1) 4 = aki z0. Further we have that z0 = 
X10 0 x20 0 ... 0 x71, and we showed in Proposition 2.17 that there exist vectors 

x € H, where H C Hi is a direct summand of the kernel ker W (A), such that 

4 = 1x10 (D ... 0 x1 0 x o and Uj(a2')xo = W (A)41. 

Now we define matrices Bik E C' >< ', k E c11 by 

B1k = 

*TT k *11 k *TT k 
yj0 v11X 11 y10v12X11 YiOY1nXii 

y0V2ix 1 y0V22x1 •.. 

* k * k * kl'nO fllXnl YnO n2Xnj Yno nnni 

and then we define a matrix S € C (di+1)di/2 as follows : for p E we can 

uniquely choose numbers k and 1 so that Ic ≥ 1 ≥ 1 and = (/c;1)k + 1 . Then the 

p-th column of S is equal to B1,ka?1 + Bi,1a2' if k 0 1 and to B1,ka' otherwise. The 

matrix S is called a symmetrization of the array All. We also write 82 = WS. 

Further we identify the subspace ® of symmetric dl x dl matrices with the 

space C((1+1)dh/2. Note that ® is a vector subspace over the complex numbers because 

aT2' = (aT)T if a EC and T is symmetric. The isomorphism 1': ® —+ C(d1+1)(h/2 is 

defined by 

where T = 

42 t22 t13 t23 t33 

tll t12 ... tin 

t12 t22 ... t2n 

tnn 

E®. 

t1d1 t2d1 td1d1 (4.13) 
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Theorem 4.12 Suppose that t E ker S2  {O} and T = 1r' (t). Then there exists an 

n-tuple a02 E Cn such that 

d, 

tB,a 1 + B0a°2 = 0. 
k,l=1 

Furthermore there exist vectors x2 E H, for i = 1,2,. . . , n, such that 

d1 

U (a° ) xo + u (ar) = w (A) x2 
k=i 

where aj2 = E'!1 tk:a,°'. Then the vector , 

(4.14) 

(4.15) 

n d1 n—i n 

= XiOø"øXs2ø"®Xn0+ E tkl : xioø• .0xk310 ... (9 X't, 0 .. •øxo 
s=1 k,1=i s=i t=s+1 

is in ker (Al - F)3 / ker (Al - F)2 and 

d1 

(AJ - r1) z2 = az + a2 z0. 
k=i 

(4.16) 

(4.17) 

Conversely, if z2 E ker (Al - F)3 / ker (Al - F)2 and (4.17) holds then if T 

is the unique symmetric matrix such that C12 = [a12 42 ... a ] = R?'T it 
follows that 0 (T) E ker 82 and there exist vectors x2 E H, 

(4.15) and (4.16) hold. 

Proof. Because t E ker 82 and T = ' (t) it follows that 

d1 d1 

tk1bBlla' = 0. 
k=i 1=1 

i = 1, 2, . . . , n, such that 

Hence E d, Ed, E 1 tklBlza2' € (ker B)1 and therefore there exists a02 E C such that 

the equality (4.14) holds. By definition of the matrices B0 and Bik it follows that 

d1 di n 

tkl + yV2xoa = 0 
k=i 1=1 j=1 j=1 

for i = 1,2,. .. , n. Then U (a°2) xo + U (a)2) 4 E (ker W (A)*) J- and so it 
follows from Lemma 2.12 that there exist vectors x2 E H such that (4.15) hold for 

a3 2 = 1!i tkla?'. Next we form the vector z2 as in (4.16) and we have 

(A1i.0 - /.hj) z2 = 
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V11x10 • V1,..1x10 

d1 n—i n 

+tk1 

k,1=1 a=i t=s--i 

• • • vB_1,i_1x8_1,O 0 V8_1,4.1x8_1,0 

Vs,iX82 VT/8 ()L) X82 ',I+iXs2 

• • • v8+1,i_ixs+1,O 0 

vn ,i—ixno 

V11x10 • • • V1,1..1x10 

vsixi vs,i_ixi 

V1Xh •.. Vt,i_1xi 

0 

vnixno •.. vn ,i_ixno 

/ 

d1 

+tk1 

lc,l=i 

02 a 

0 

W3 (A) Xi 

W (A) Xi v, +ixh 

0 

• •• vs_1,nxs_i3O 

VsnXs2 

v$+i,nxs+i,o 

vnnxno 

vi,i+ixlo •.. vinxlo 

s,i+1x k31 vsnxi 

VxL 

vn,i+ixno •.. vnnxno 

0 
V11x10 V12x10 • V1 x10 

V21x20 V22x2o ••. V2 x20 

vnixno vn2xn0 

V11x10 

vnnxno 

+ 

0 ••• V1,x10 

V31x1 ••• U3(a?1)x1 ••• V8 x1 

vnixno 

0 

+ 

0 

0 

+ 
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n—i n 

+E2 
s=i t=s+1 

+ 

/ V11x,0 

V81x1 

0 
0 V1 x, 0 

Vtlxto • •• U (a?') XtO 

VniXn 

V11x,0 • 0 ••• VinXno 

V3jx80 ••• U8 (a2') X80 V3 X90 

vt1x i •.. 0 ••• Vx 1 

vnixno •.. 0 ••• Vx, 0 

d1 n 

a2/oz0 + E tkl E 
k,l=1 8=1 

0 ••• VnnXno 

0 \ \ 

II 

+ 

V,1x,o • • U1 (a?') x10 ••. V1,x,o 

V81x, U8 (a?') xi v8nx1 

V,,ix,,o • U, (a?') XnO VnnXn 

di 

= a?2zozo + > 
k=1 

0 

Conversely, suppose that z2 E ker (Al - i') / ker (Al - I)2. Then there 

exist a symmetric matrix T = 

such that 

tjj t12 tJ4 

t12 t22 tj 

- t,d1 t2d, •.. td1d1 

d, 

- T1) z2 = > a)34 + a?2z0 
k=1 

xd1 and a vector a02 E C' 

(4.18) 
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for all i and 
d2 

12 _ 01 
ak - tklal 

1=1 

(4.19) 

Relation (4.19) is a consequence of Theorem 1.12. Next it follows from (2.7) that 

and from (4.18) 

v(Ai—r)z2 = W1(A)t z2 

n di 

Viit (>az+a?2zo) =W1(A)tz2. 
j=1 \k=1 

(4.20) 

For i = 1,2,. . . , n we choose vectors vi E H1 so that vx10 = 1 and v'x = 0 for 

k E c11. This is possible because £ {x10} fl H = {0}. After multiplying (4.20) by 

v 0- 0 v 1 0 y 0 v 1 0... 0 v on the left-hand side we get 

n d1 n 

> Yo Vi a 4  x 1 + E yoVija2xjo = 0 (4.21) 
j=1 k=1 

for all i and therefore there exist vectors x12 E H such that (4.15) hold. Now we 

form the vector 

n d1 n—i n 

4 = X10®. •OX,,0+ t E E Xio0• •0x 1Ø. . 
s=1 kj=1 s1 ts+1 

The same calculation as above shows that 

di 

(A11 - 1) 4 = ajz + a2 z0. 
k=1 

Hence it follows that 4 - z2 E ker (Al - ) and so there exists a number 6 €C such 
that z2 = 4 + özo. Without loss we can use the vector x12 + 8x10 in place of x12. 

Then it follows that 

n d2 n—i n 

= X0 (9 ®X82®" .0x0+ E tk1 E E x100 . 0X310 . .oxh®. 
s=1 k,1=i s=1 t=8+i 

It remains to be shown that & (T) E kerS2. The equalities (4.21) can be written in 

matrix form as 
d1 

Bika) 2 + B0a°2 = 0. 
k=1 
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Multiplication on the left-hand side by the matrix b yields 

d1 

b*Bika 12 = 0 
k=1 

and then also 
d1 d1 

bBi,a " t,i = 0. 
k=1 1=1 

Finally, we note that the relation (4.22) is equivalent to O(T) E ker 82. 

(4.22) 

0 

Corollary 4.13 Suppose that T = {t1, t2, ... , td} is a basis for ker 82 and that vec-

tors z, 4,. . . , 4 are associated with t1, t2,. . . , td, respectively, as described in the 
first paragraph of Theorem 4.12. Then 

{zo;z' ,z,. . . ..4} (4.23) 

is a basis for ker (Al - )3. We can choose a basis 7 so that the nonzero n-tuples, 

associated with basis (4.23), in the set {a, k = 1,2, g E d,,} are linearly indepen-

dent. 

Conversely, if z, 4,... ,42 are such that {zo; z, 4,... ,41; z, 4,.. . , z} 
is a basis for ker (Al — P)3 and Ti, 2'2,.. . , T2 are symmetric matrices such that C 2 = 

Ri°'Tk, k E d2 then {'' (Ti) , 0(7'2) ,. .. , 'ci' (T 2)} is a basis for ker S2. In particular, 

it follows that d = d2. 

Proof. The corollary follows using the correspondence between h and z2 as 

described in Theorem 4.12 and the fact that .4 are linearly independent if and only 
if Tk are linearly independent. We only need to show that the n-tuples a2 can be 

Ok chosen so that the nonzero n-tuples in the set {a, k = 11 2) g E d,} are linearly 

independent. Suppose that ' = {t, t,. . . , t} is a basis for the kernel of bS1. 

Then there exist n-tuples a 21, g E d, so that S1t +Boag°2' = 0. Because a1 E ker B0, 

k E d1 we can substitute basis Y' for a basis T' = {t1, t2,. . . , td} such that the n-tuples 

a 2, satisfying relations S1t9 + B0a2 = 0, are as required. 0 

Let us now consider an example. 
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Example 4.14 Suppose that 

and 

Wi (A) = 

W2(A)= 

100 

010 

011 

100 

' 1 1 
2 2 

011 

A2 - 

010 100 

1 1 0 A1+ 0 0 0 A2-

0 0 0 0 0 

0 

1 

0 

—1 0 0 

—1 0 0 

000 

20 

10 

—1 —1 

Because the matrix Lo is invertible W is nonsingular. We consider the eigenvalue 

A0 = (1,—i). The matrices 

W1 (\o) = 

100 
111 
' 22 

000 

both have rank 2. We choose vectors 

X10 = 

0 

1 

—1 

We also assume that H = 

we have z0 

We take a?' 

0 

1 

—1 

1 

0 
,a201 

0 

0 

1 

1_ 2_ 
S11 - ii - 

2O = 

a 

b 

b 

]and Bo=[0 0 

0 and bo= [1 0 ] 
1 

and W2 (AO) = 

Yio = 

—1 —1 0 

000 

010 

0 

0 and y20 = 

1 

,a,bEC and H= I 
a 

b 

0 

0 

1 

0 

,a,bEC .Then 

So the eigenvalue AO is simple. 

Next we choose vectors 

0 0 

1 ,x= 0 an d4= 

1 0 

—1 

1 

0 I 
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such that U2 (a') x10 = W1 (A0) x(1 for i, f = 1, 2. Then we have 

and also 

0 0 

1 0 0 and z= 

1 1 

0 

1 

—1 

0 

—1 

1 

0 

+ 

22  B1, B12 and S2 =242 
00 000 

Hence d2 = dim ker 82 = 2. We choose 0 1 for a basis of ker 82. 

0 

1 

1 

0 

0 

0 

1 

Then it follows that T12  1 0  0 and T = 
—1 

A'2 = 

1 —1 
and so 

-1 1 

) 
) 

Next we have to find vectors xf2 E H, for i, f = 1, 2, so that 

- V2x2 = W (A0) Xt2 

and 

They are 

Then the vectors 

0 

1 

1 

0 

1 

—1 

V2) + (—V21 + V22) x = W1 (AO) 

0 —1 

00 + 

0 

1 

1 

0 

—1 

0 

0 

0 0 

0— 

1 

1 

1 

0 

2 

0 

0 

—1 

1 

0 

I 
I 
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and 

2_ z2-

2 

0 

0 

0 —1 

—101 

1 0 

+ 

0 

1 

1 

0 

—1 

1 

0 

together with z0, z11 and zi2 form a basis for the third root subspace ker (AT - r)3. 0 

4.4.2 A Basis for the Root Subspace 

By Theorem 1.18 we can conclude that the root subspace at a simple eigen-

value A, and the action of the n-tuple of matrices r on it, is completely described by 

vectors z, m = 0, 1,. . . , M for f E d,, corresponding n-tuples am, m = 17 2,. . . , M 

for j E rm and symmetric matrices T7, m = 2) 3,. . . , M, for f E dm that satisfy the 

regularity and matching conditions. For m = 0,1,2 we have already seen in Theorem 

4.12 that we can describe the vectors z( using vectors x0, x, x, jl E d1, 32 E d2, 

where i E n, and matrices T, j1 E d1. Our aim is to find an inductive procedure, 

i.e., an algorithm, to construct the vectors z for all m and f. 

In what follows we again use the sets of multiindices m,q and xi as defined 
on page 48. The symbol 1q, 1 ≤ q ≤ n, stands for the set of all multiindices 

U = (ui,u2,... ,uq) such that 1 ≤ u1 <a2 <" <aq ≤ n. Now we state the inductive 

assumptions. We suppose-that we have vectors x0, x E H, i E A, 1 E m - 1; h E d1, 

n-tuples ag', 1 E m - 1; h € d, and symmetric matrices Th € Xd1_1 in the form 

(1.29), where = E d and l = 2,3,. . . , m - 1, h E di, such that 

(i) the matrices h E d1 are linearly independent for all 1 and the matrices 

T, satisfy the matching conditions (1.25), i.e., 

113 dk  d,, 

E 

.1c(111) .1(12k) 
L.s 9(h,h2)r 'c-' h(h39) = L. 1g(hjh3) 1h(h2g) 

k=11+12 91 k=12+13 g=1 

where 1 = (li, 12,13) E -(P1,3 and h = (h1, h2, h3) E xi. 

(4.24) 

(ii) the n-tuples a, 1 = 1,2,... , m - 1; h € ri are linearly independent and a1 = 0 

for l=2,3,...,m—1 and h=r,+1,r,+2,...,di. 
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(iii) if we define 
i—k Di 

a = tJ(gg) 

31e1 

for l=2,3,...,m-1;hEdj; kEl — landgEdk then the relations 

(4.25) 

1-14 

U,  4j + U (a') xo = W (A) x (4.26) 
k=1 9=1 

hold for all i, 1 and h. 

(iv) the vectors z0, z11, z12,.. . , z1 di together with the vectors z, z 227 . . . , d2 , . .. , 
2 dm_i  Zm_li••• ,Z,n_l that are defined by 

min{k,n} 
kl ® g_ 0 

Z'  S9 - X E > X 

q=2 lE q hEX1 

form a basis for the kernel ker (Al - r),. Here the numbers s are defined as in 

(1.37) fork = 2,3,...,m-1; q= 2,3,..., min {k,n}; g E dk; 1E Ikq, h  XI. 

A vector XIh, for! E (I)m-1,q, h E xi, q = 1,2,.. . ,min{m - 1, n} (here k,1 = 

and xi = ç) and u e Qq, is a decomposable tensor 41h = X1 0 x2 0... 0 x 

where xi = x hi if i = u1 for some j and x1 = x0 otherwise. Then we write 

0 
X1h Xu 1h 

UE q 

for! E ''m-1,q, h EXt and q= 1,2,...,min{m— 1,n}. We also write 

1 1 2 d1 1 2 dm_i 
Bm_1_jZO; Z1,Z1, .... Z1 ; ... ;zm _1,zm _1,...,zm_1 

(4.27) 

By Corollary 4.13 it follows that there exist vectors x10, 4, n-tuples a and 
matrices T for 1 = 1, 2, h E di such that the conditions (i) to (iv) are satisfied. Now 

we assume that the above conditions are satisfied for 1 = 1,2,.. . IM - 1  (m >3) and 

we will prove that we can find vectors x, i E a, f E dm, n-tuples am, f E dm and SM 

symmetric matrices T7, f E dm, so that (i) to (iv) hold. We first introduce some 

notation. 
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For k = 1,2,. . . , m - 1 and g E dk we define an n x n matrix 

Bk9 = 

*17 9 *17 9 *17 9 
Y1ov11Xlk Y1ov12X1k Yiovini 

*17 9 *17 9 *17 g 
Y20 1(21X2k Y2Ov22X2k 

*,r g *,r g *tr g 
YnO 'n12 nk YnO Yn2Xnk Yno vnnXnk 

For the purpose of calculation we write T.m for unknown symmetric matrices T in the 

form (1.29) and a2m for unknown n-tuples am. The entries of the cLi x cL_i matrix 

T, where lm_i = j' d1, are written They must satisfy the matching 

conditions 
M-13 4 m-12 dk 

'ç ,k(1112) .m(lak) - ç ,k(1i13) .m(12k) = 
Li Vg(hih2) V(h39) L..i Vg(h1h3) (h2g) 

k=11+12 g=1 k=li+13 g=1 

for 1 E m,3 and Ii E Xi• We write the d1 x dm _i matrix 

(4.28) 

Tm(l,m_l) = 

also as a column 

tm(1,m-1) ,tn(1,m-1) .m(1,m-1) - 

(11) (12) (1dm_i) 

tm(lm_l) tm(l,m_i) tm(l,m_i) 
(21) (22) (2dm...i) 

m(1,m—l) m(1,m-1) tm(1,m-1) 
t'(djl) "(d12) 

tm= 

(4.29) 

(4.30) 

The matrix T.m is in the form (1.29). For every column we define a column vector 

t, k Em - 1, g E dk of the size u = min{E': d + g, E7Z d} by taking the first 
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ii entries in the (E: d3 + g)-th column of T. Note that t are defined so that kg 

they consist of all the entries above and including the main diagonal of Tom that are 

not 0 in the form (1.29). We define a column vector im as 

trn = (4:31) 

. M 
"m-2,dm _2 

We split the entries of a matrix Tfm into two column vectors tm and 7. The 
mapping Ti ± (, I) is a generalization of the transformation & defined by 
(4.13). It is bijective and therefore it has an inverse. The inverse maps two vectors 

tm and i into a matrix Ti in the form (1.29). We use this inverse mapping in 
Lemma 4.16. 

Now we write the system of equations (4.29) in matrix form as 

sim + srn = 0 (4.32) 

where the entries of the matrices Sm21 and St are determined by the system (4.29). 

These entries are given because we assumed that the matrices T k were given for 

k < m - 1. Further we want the entries of the matrix T and the n-tuple ao.m = 

[a?m am aom IT to satisfy the scalar relations 

n fm-i dk rn-k rg \ 
> ( >: m(1k) ahi YoVix + yoVjxioa2m) = 0 (4.33) 
j=i \k=i g=i 1=1 h=1 / 

for all i. These can be written equivalently in matrix form 

sEEm + s2Im + Boa2m =0. (4.34) 
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Again the entries of the matrices S' and S.12 are determined by the equations (4.33). 

We multiply the equation (4.34) by the matrix b on the left-hand side and we obtain 

bS + bS = 0. (4.35) 

We choose a matrix bm so that its columns form a basis for the kernel 

* 

b* 
ker 0Ql2m 

S.22 

Then we define a matrix 
1bS] Inl 

SrnbI q12 
L'rn 

The equations (4.32) and (4.35) then yield Sm m = 0. 

We now choose vectors z.f E H, f E dm so that 5zn-i U {z(, f € dm  is a 
basis for the space ker (Al - r)m+i. By Corollary 1.18 there exist n-tuples am and 

symmetric matrices Ti in the form (1.29) for f E dm such that (i) holds and for all 
i E n we have 

rn-i dk 

(AI - Fi) z = a 4 + ar ZO 
k=i g=i 

where a7 are given by 
rn—k rj 

km - 'c' 'ç-' 4m(kl) 01 
ag1 - L L.d bf(gh) ah 

1=1 h=i 

for k E m - 1 and g E dk. Next we prove three auxiliary results. 

Lemma 4.15 In the above setting it follows that dim ker Sm ≥ dm. 

(4.36) 

(4.37) 

Proof. By Theorem 1.17 it follows that the entries of the matrices Ti 

satisfy the matching conditions (4.29). We put the entries of these matrices into two 

columns iTand as in (4.30) and (4.31) via the isomorphism 'O,.,,. Then we have 

S'7 - = 0. Relation (2.7) implies 

VA (AI— r) z( = W (A)tz( 
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for all i and then it follows from relations (4.36) that 

rn-i 4 
u (a7 )z + u (a ZO = W (A) z. 

k=i g=1 
(4.38) 

Because we assumed x E H and H fl £ {x 0} = {0} it follows that there exist 

vectors vi EH such that vx 0 = 1 andvx=0 for kEm-1 and gEd,. We ik 

multiply the equality (4.38) by a vector v 0 0 v 1 & y & v 1 ® ••. & v on 

the left-hand side. Then it follows, using the structure of vectors z, k ≤ m - 1, in 

condition (iv), that 

rn-i 4 
yU (a7) X'k + yoUj (ar)xio = 0 

k=i g=1 

for all i and all f. Now we apply the relations (4.37) to obtain 

n (m-1 4 rn-k rgg 01 rn(kl) E YoVijXk ahl tf(gh) + y0V1x0 47 =0 
j=i k=1 g=i 1=1 h=i 

(4.39) 

and then it follows that the vectors i7, i7 and the n-tuple a01m are such that equation 

(4.34) holds for all f. Therefore the vectors i7, f E dm are elements of the kernel of 

the matrix 5m and because they are linearly independent we have dm ≤ dim ker 8m• 

0 

Lemma 4.16 Suppose that im, is an element of the kernel ker Sm. Then there exist 

a vector jrn and an n-tuple a?m such that (4.32) and (4.34) hold. Furthermore there 

exist vectors Xtm E H, i E n such that 

m-idk 

U, Xk + U (a?m ) = W1 (A) Xm 1 (4.40) 
k=1 g=i 

where ar are given by (4.37) for f = 1 and TIm = ,0;1 (, fr). 

Proof. From the structure of the matrix 5rn it follows that for an element 

E kerSm there exist a vector and a n-tuple am such that relations (4.32) and 

(4.34) hold. We associate with the pair of vectors im, and iml, using the inverse of 
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the isomorphism 'ç', a symmetric matrix T1'. The relations (4.34) can be written 

equivalently in the form (4.39) for f = 1. Then it follows for every i that 

rn-i dk 
U1 (ar) x + u (a?m) x E (kerW1 (A)*)l 

k=i g=1 

and hence it follows from Lemma 2.12 that there exists a vector Xtm such that (4.40) 

holds. 0 

Lemma 4.17 Suppose that we have the same setting as in the previous Lemma. We 

construct a vector 
min{n,rn} 

ZXi+ : Esx?h 
q=2 lE4'mq hEX1 

where the numbers smi 1h are defined in (1.37) and the vectors xO are defined in (4.27). Ih 

Then it follows that 

rn-i dk 
(A1I—r1)z= 

for all i. 

k=i g=i 

a 4 + arzo (4.41) 

Because the proof of this lemma is long and technically complicated we 

include it in Appendix B. Next we state and prove our main result. 

Theorem 4.18 Suppose that {7, f e dj is a basis for the kernel of Srn where d = 

dimkerSrn. Then there exist vectors X(m, matrices T7 and n-tuples a01m so that 

conditions (i) to (iv), on page 141, hold also for 1 = m. In particular the union of the 

set of vectors 
min{n,rn} i= + : f E dM 

q=2 IC-4k,hEX1 

and the set Bmi forms a basis for the (m + 1) -th root subspace ker (Al - r) m+'. 

Proof. Suppose that we are given a basis Y = {, f E 4. Then by Lemma 
4.16 it follows that we can find vectors X(m , symmetric matrices Ti and n-tuples ar 
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such that (i) and (iii) hold for 1 = m. We define rm as the difference between 

the number of linearly independent n-tuples in the set {aglk , k E , y E dk} and 

the number of linearly independent elements in the set {a901c, k E m - 1, g E 

By a change of a basis T, similar to the one in the proof of Corollary 4.13, we 

can assume that a basis T is chosen so that the corresponding n-tuples am, f € 
Ok rm are such that a, k E , g E rj, are linearly independent and a01m = 0 for 

f = r + 1, r,- + 2,... , dm. So condition (ii) holds. From Lemma 4.17 it follows 

that the vectors zf E ker (Al - r)m+l / ker (Al - )m for f E d. They are linearly 

independent because tm are linearly independent. It follows that d ≤ dm and, because 

d ≥ dm by Lemma 4.15, we have d = dm. Then also (iv) holds for m. 0 

4.5 Further Discussions 

4.5.1 Algorithm to Construct a Basis for the Root Subspace 

of a Simple Eigenvalue 

From the above lengthy discussion we can extract an algorithm which ex-

plains how to construct a basis for the root subspace of a simple eigenvalue of a 

multiparameter system W. It follows from Theorem 4.18 that for every m we have 

dim ker Sm = dm. When dim ker Sm' = 0 but dim ker Sm'_i 54 0 for some m' it follows 

that M = m' -  1 and the vectors z( constructed for m = 0, 1,2,. .. , M, f Ed,,, area 

basis for the root subspace. This is used in the following algorithm. We assume that 

A E 01 (W) is such that dim ker W1 (A) = 1 for all i. 

Algorithm 4.19 Step I. For i e 11 find vectors xo, YiO E H\ {0} such that 

W1(A)x 0=0 and yW(A)=0. 
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Find subspaces H C H1 so that H1 = ker W (A) H. Form z0 = xio 0 x20 0.. 0 xo 

and 

B0= 

* TI * TI * y10v11X10 Yio'i2xiO Yio'TI 1nX10 

y0V2ix2o y0V22x2o y0V2 x2o 

- yoVn1xno y:;0v2x , •.. ynovnnxno - 

If rank B0 = n then set M = 0 and quit the algorithm, if rank B0 = n - 1 then go 

to Step II, Algorithm 4.5 (for nonderogatory eigenvalues), else write d1 = dim ker lb 

and go to Step II. 

Step II. Find bases {a 1, f E d1} for ker B0 and {b0, f E d1} for ker B. For all i 

find vectors xf E H, f E d1 such that 

U1 (a')xo =W1(A)x(j. 

Form vectors = xio 0 0 x1_1,0 0 xi, 0 0 x11 ,o •.• 0 xo and matrices 

y0V,,xj, y0Vi2x', y0V1 x(1 

y0V2ix 1 y0V22x1 

y0V 1x 1 y0V2x, •• 

and 82 = bS, where b0 [ b' b' ... b ] and S is the symmetrization of 
A°' [a?' a 1 •.. a J as defined on page 133. Write d2 = dim ker S2. If 

d2 = 0 then set M = 1 and quit the algorithm else set m = 2 and go to Step III. 

Step III. Find a basis {t1, t2,. .. , 021 for ker 82, symmetric matrices TJ (via the 

isomorphism ') and n-tuples a?2, a2,. . . , a such that 

d1 
(a) B19a + Boa 2 = 0, where 

g=1 

d1 
- .2(11) 01 ag'f - tf(gj)ah, g E d1, f E d2 

h=1 

and 
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(b) the nonzero n-tuples in the set {ag°', k = 1, 2, g E d} are linearly independent. 

Next find vectors x( E H such that 

d1 

>2 u (an) X 'i + u (ar) = Wj (A) xi2-
g=1 

Form vectors 

n d2 n-i n Z2 

ExioØ ... ®x(20.. •®x,,o+>2 t ' >2 >2 x10®. •Øx1®• . •Ox 1Ø• . 
i=i g,h=i i=i j=i+i 

and matrices B21, S', S 2, S 2 and b3 as in the displayed formula (4.28) and the 

discussion that follows it. Note that S 1 = 0. Then we find a matrix 83 and write 

d3 = dim ker 83. If d3 = 0 then set M = 2 and quit the algorithm else set in = 3 and 

go to Step IV. 

Step IV. Find a basis {r, ,. . . , ildn } for ker Sm, associated symmetric matrices TT 

and n-tuples a01m, as described in Lemma 4.16, so that 

rn-i dk 
(a) E E Bk9a' + Boao1m = 0, where 

k'=i g=i 

rn-k d1 
m(k1) 01 

NT = >2 
l=i h=i 

and 

Ok (b) the nonzero n-tuples in the set {a, k E m, g E cii} are linearly independent. 

Then find the numbers s7, defined by the recursive relation (1.38), for 1 E ,,,,q, q = 

2,3,...,m and hEj and vectors X(rn EH so that 

rn—i 4 
>2 >2Eli (a7)x+Uj(a m) xjo=Wj(A)x(m. 
k=i g=i 

Next form vectors z( as described in (iv), page 142, and matrices Bmi, S+1., j,j = 

11 2) bm+i and Sm+i as in the displayed formula (4.28) and the discussion that follows 

it. Write dm+i = dim ker 8m+,• If dm+i = 0 then set M = m and quit the algorithm 

else set m = m + 1 and repeat Step IV. 
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To shed some light on Algorithm 4.19 we consider an example. 

Example 4.20 The two-parameter system 

1000 1000 

0100 01 1 0 
W, (,X) A1+ 2 2 A2-

0110 0111 

0001 0002 

and 

010 

W2(A)= 1 1 0 

000 

is nonsingular because matrix 

100 

000 

001 

A2 - 

1 —1 0 0 0 0 0 0 

—1 —1 0 0 0 0 0 0 

0 010 000 0 

0 0 0 1 1 u 0 1 
2 2 

0 0 0 1 1 0 1 1 
2 2 2 2 

—1 0 0 0 

—1 0 0 —1 

0000 

0 0 0 —1_ 

020 

110 

0 —1 —1 

0 0 0 0-

0 0 0 0 

00 00 

00 00 

00 00 

0 000 010 000 00 

0 0 0 1 —1 0 1 —1 0 0 —1 0 

0 0• 0 —1 —1 0 —1 —1 0 —1 —1 0 

0 000 010 010 00 

0 0 0 0. 0 0 0 0 0 1 —2 0 

0 0 0 0 0 0 0 0 0 —2 —2 0 

0 0 0 0 0 0 0 0 0 0 0 1_ 

is invertible. Here we identify the tensor space C4gC3 with the vector space C'2 via 

the Kronecker product. (See page 75.) The spectrum is 

(wr) {(o —1), (, _)  

We will find a basis for the root subspace at the eigenvalue A0 = (1,—i). 
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We begin with Step I of Algorithm 4.19. It follows from above that 

W1 (AO) = 

1000 

1 11 
22 

0 0 0 —1 

0 0 0 - 

and W2 (Ao)= 

—1 —1 0 

000 

010 

Observe that dim ker W1 (\o) = dim ker W2 (A0) = 1 and therefore d0 = 1. Then we 

choose 

and Hl' 

= { 
2;10 = 

a 

b 

b 

C 

0 

0 and B0 = 

1 

simple. 

0 

1 

—1 

0 

1110 = 

a,b,cEC 

00 

00 

0 

0 

0 

1 

,X20 = 

and H={[b abEC}.So z0= 

0 

0 and y20 = 

1 

0 

1 

0 

0 

0 

1 

—1 

0 

0 

Hence it follows that d1 = 2 and the eigenvalue A0 is 

We proceed with Step II. We choose all = [ 1 ] and a021  We also 

choose b0 = 1 0 and, because it does not influence further calculations, we will 
01 

omit it. Vectors xf ii E H, i, f = 1, 2, such that u (a') xo = W (A0) x(1 are 

1_ 2_ 
xli - Sll - 

0 

1 

1 

0 

0 

,x i = 0 

0 

and x1 = 
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Then 

zi= 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

and z? = 

0 

0 

0 

—1 

1 

1 

1 

—1 

1 

0 

0 

0 

00 000 
and we find B = B,2 = . So 82 = and therefore d2 = 3. 

00 000 

We continue with Step III choosing matrices 

Then 

2 I. 

0 

00 

A'2 = 

10 T=L 0] and T3 
1 = 

(0 

(1 ) 
(o 
0 

(0 

while A°2 = 0. Vectors x( E H, f = 1,2,3 and i = 1, 2, such that U (a)x, + 

Xj2 = 

are 

0 

3 

3 

—2 

2_ X12 - 

0 

5 

5 

—4 

3-
2;12 - 

0 

2 

2 

—2 
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and 

X22 = 
Next we find vectors 

and matrices 

0 

0 

0 

0 

0 

0 

0 

0 

3 

0 

0 

3 

0 

0 

—2 

2_ X22 - 

2_ z2 - 

—1 

0 

0 

0 

0 

0 

—2 

1 

5 

0 

1 

5 

0 

0 

—4 

and x2 = 

and 4 = 

1 

0 

0 

0 

0 

0 

0 

1 

2 

—2 

1 

2 

0 

0 

—2 

B21 ,B22 
—2 - 1 —4 _8] and B23 = —2 —4 1 =[ o ][ 0 Li oj • 

We now write TQ3'2 = 
S' = 0. Then 

tl t2 t3 

t4 t5 t6 

ml(3).. 1 1 0 ol 
I1R_L J 010 

Because B11 = B12 = 0 it follows that 

and T21_ o 0 i 0 1 01 

JJ 
and the matrices T11,('2 (T03(12)) T , g = 1, 2, are symmetric if t2 = t4 and t3 = t5. Next 

it follows that 

s3= 

244824 

0 0 —i 0 1 0 

0 1 —1 0 0 0 

0 0 0 1 —1 0 
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and then we have d3 = 2. Therefore we continue with the Step IV. 

We choose a basis for the kernel of 83 so that 

rr3(12) 
- 

12 0 0 1 3(12) r_1 1 1 [00_1jandT = 
2 1 1-4 

11 
We can also choose T" = T23" 0 0 = I I . 0 0 Then the array 

11 

A23 = 

0 1 

—1 —4 

I. 

and the arrays A'3 and A°3 are 0. Vectors xi3 E H, i, f = 1, 2, such that 

are 

U,  X2 + U1 (a) X2 + U (a) X2 = W1 (.Xo) xj 

0 

16 

16 

—10 -

2 
, X 13 - 

0 

14 

14 

—10 

1 
, x23 - 

1 

0 

0 

5 

and x3= 0 

0 
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Next we find vectors 

and matrices 

z= 

0 

0 

0 

0 

2 

16 

—2 

2 

16 

2 

—2 

—10 

and 4 = 

0 

0 

0 

0 

0 

14 

—10 

0 

14 

—2 

2 

—10 

B31 - —10 _20] and B32 = [ —10 —20 ] 
— [ 1 0 L 5 

Now we will find the matrix 84. We are looking for a symmetric matrix 

Because B11 = B12 = 

V1 V2 Ui U3 U5 tj t3 

V2 V3 U2 U4 U6 t2 t4 

U1 U2 W1 W2 W4 0 0 

U3 U4 W2 W3 w5 0 0 

U5 U6 Wj W5 W6 0 0 

tl t2 0 0 0 0 0 

t3 t4 0 0 0 0 0 

and there is no symmetry condition on the entries of 

the matrix T'1 = V1 V2 1 we can assume that (11) 
= 

LV2 V3] 

r0 1 t j. So we omit 
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the entries vj and write 

U' 

U2 

Wi 

tl 

t2 

t3 

t4 

and = 

U3 

U4 

W2 

W3 

U5 

U6 

W4 

W5 

W6 

Matrices T24 1T4(2) T for g = 1, 2,3, and ;' (T04(1))T, for g = 1, 2, are symmetric 
o ) 

if 2t2 - t3 - = 0, t3 - = 0, t, + 4t3 + t4 = 0, V2 - = 0, 2t, - t3 -  Wl  = 0, 

t3 —w4 = 0, 2t —t4 —w = 0, t—w3 = 0, t4 —w5 = 0, u4—u5 = 0, t3 —w3 = 0, 

21 t1 + 4t3 + w5 = 0, t4 - = 0 and t2 + 44 + w6 = 0, and so we find matrices 

and S 2 such that S' + S 2 = 0. Next, the matrices S' and S412 such that 

S' + S412j4 = 0 are 

and 

S412 - - 

11 = [ —10 —20 —10 —20 ] 
1 0 5 0 

—2 —4 0 —4 —8 0 0 —2 —4 0 0 0 

0 0 0 —1 0 0 0 1 0 0 0 0 
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We find that 

84= 

1041 

0 0 1 —1 

0 2 —1 —1 

0 0 1 —1 

1041 

0 0 1 —1 

0 0 —1 1 

0 —2 1 1 

0 2 —1 —1 

Because d4 = dim ker 84 = 1 we have to repeat Step IV. First we choose an element 

in the kernel ker 84 so that i'3 5 1 , and then we find that the matrix 
11 

T14 = 

Therefore we have 

0 0 0 0 0 —5 1 

00000 11 

0 0 11 —1 —1 0 0 

0 0 —1 —1 —1 0 0 

0 0 —1 —1 5 0 0 

—5 1 0 0 0 0 0 

1100000 

and the arrays A24, A'4 and A°4 are 0. It also follows that 

T35  
- 1 ] and T35 = [1] 

We write T05'4 =t 1 Then the matrices (T05(14))T are symmetric if t1 - t2 = 
t2 

0 and t, + 5t2 = 0. The only solution of this system of equations is t1 = t2 = 0. This 
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implies that kerS5 = {0} and therefore d5 = 0. So we will quit the algorithm after 

completing Step IV for m = 4. It remains to find vectors x E H, i = 1,2, such that 

U (an) X 3 + U (an) x = W (AO) xt4. 

They are 

0 

and so 

—42 

—42 

92 

and X24 = 

0 

0 

0 

—18 

30 

1 —42 
Z4= 

—6 

30 

—42 

8 

—20 

92 

The root subspace at A0 has dimension 9 and its basis is 

—6 

0 

0 

B= {z0, z, 4,44,4,44, Z41  

0 

4.5.2 Completely Derogatory Case 

A special case of a simple eigenvalue is a completely derogatory eigenvalue. 
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Definition. A simple eigenvalue A of a multiparameter system is called completely 

derogatory if B0 = 0. The matrix B0 is defined by (2.18). 

We write {ek; k E n} for the standard basis of 1J'. Then the next observa-

tion follows: 

Proposition 4.21 Suppose that A E o• (W) is completely derogatory. Then d1 = n, 

Tm = 0 for m ≥ 2 and we can choose a1 = ek for k €. 

Proof. It follows from Proposition 2.17 that d1 = n and we can choose 

a2' =el,. In the previous subsection we established property (ii), page 141. Thus it 

also follows that Tm = 0 for m ≥ 2. 0 

Note that it follows from the above proposition that we can assume Rm = 

[i 0 •. O] and then 

T7'1 [a7 a7 •.. dif a] 

for 1 E in — I. 

4.5.3 Two-parameter Simple Case 

For n = 2 an eigenvalue A E o(W) such that dim kerW1 (A) = 1, for i = 1, 2, 

is either nonderogatory if B0 i4 0 or completely derogatory if B0 = 0, i.e., a simple 

eigenvalue is completely derogatory. The basis constructed in Algorithm 4.19 has 

simpler form for n = 2. It consists of vectors 

[T] rn-k ('k d, 

ZL ' M(k1) 
= (m  0 X20 + X10 ® X rn + 7 tf(gh) (4k O X  + X 1 0 4k) 

k=1 1=k g=lh=1 

(4.42) 

for m = 0, 1,. . . , M and f E dm. Faierman conjectured [69, Conjecture 6.1, p. 122] 
the structure of root functions for nonreal eigenvalues of a two-parameter eigenvalue 

problem arising from class of Sturm-Liouville boundary value problems (0.1). The set-

ting of these problems implies that all the eigenvalues are such that dim ker W (A) = 1 
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for both i. Therefore the eigenvalues are either nonderogatory or simple. Our formu-

lae (4.42) for simple case are finite-dimensional simplified versions of his expressions 

for root functions. Our constants Sm(lk) lqrs f(gh), that are a counter-part of the constants Cjjk 

in the expressions for the root functions Ujk in [69, Conjecture 6.1], carry further 

structure that, when used in conjunction with the construction in [69], might lead to 

a solution of Faierman's conjecture. 

4.6 Final Comments 

Completeness results form an essential part of Multiparameter Spectral The-

ory. They were studied since the beginning of the theory. In 1968, in a modern revival 

of the theory, Atkinson [9] posed a completeness question in terms of the structure 

of root subspaces. This problem remains unsolved to this day, although partial so-

lutions can be found in the literature cited below, and in this dissertation. (See also 

Comments to the previous two chapters.) 

A basis for the first root subspace (that is the subspace of joint eigenvectors) 

and a theorem on the decomposition of the space H into a direct sum of root subspaces 

was given by Atkinson in [10, Chapter 6]. Isaev [109] discussed a general relation 

that holds for root vectors, similar to the relation (2.7). He also stated the problem 

of describing root subspaces of the associated system in terms of the underlying 

multiparameter system [112, Lecture 6, Problem 4]. 

In [93, Section V.9] Gohberg and Krein proved that a vector function x (t) 

xk is a solution of a differential equation L () x (t) = 0, where L is an dt 

operator polynomial, A its eigenvalue and x0, x1,. .. , x, is a Jordan chain at A, Jordan 

chains for an operator polynomial being defined by (4.1). (One can find a version 

of this result for matrix polynomials in [122] and a version for holomorphic operator 

functions in [133].) Gadzhiev in [83] and also [84, Chapter 3] studied a multiparameter 

generalization of this setting. He found a set of linearly independent vectors in a root 

subspace, but he did not discuss completeness. 
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Binding [23] proved an important completeness result for real eigenvalues of 

elliptic multiparameter systems. A special case of his result in finite-dimensions is 

generalized in Subsection 4.3.2, but we do not recover his full result. The structure 

of root vectors he gave remains the same as for nonderogatory eigenvalues in our 

presentation. 

In this chapter we prove completeness results for nonderogatory and simple 

eigenvalues of finite-dimensional multiparameter systems, i.e., eigenvalues A such that 

dim ker W2(A) = 1 

for all i. We also give a method for constructing a basis for the second root subspace 

in Subsection 2.5.2. The general completeness problem, i.e., the problem of finding 

bases for root subspaces for eigenvalues A when 

dim ker W (A) ≥ 2 (4.43) 

for at least one of i, still remains unsolved. We see no immediate obstacle, as fax as 

the overall reasoning is concerned, to generalizing our method to (4.43). On the other 

hand, it seems technically very complicated and it would require an extensive amount 

of calculation, as already exhibited in the case of simple eigenvalues. So, we would 

suggest considering use of other algebraic constructions to model multiparameter 

eigenvalue problems in order to understand the structure of root vectors better. The 

paper of Atkinson [9] could be used as the sign-post for the possible directions of 

research. 

There are other immediate questions awaiting to be answered. For exam-

ple, we already mentioned open problems of representations by tensor products and 

by multiparameter systems in the Comments section of Chapter 1. Another exam-

ple is the question of the relation between the root subspaces ker (Al - r)N and 

ker (XI - r .) N, where I is the n-tuple of complex conjugate numbers 3,. This ques-

tion is of special interest in connection with non-real eigenvalues for self-adjoint mul-

tiparameter systems. And finally, certainly the most important question for applica-
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tions is to generalizing finite-dimensional completeness results to infinite-dimensional 

multiparameter eigenvalue problems. 
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Appendix A 

Proof of Theorem 1.18 

Theorem 1.18 Suppose that an array A is in the form (1.2), d0 = 1 and the nonzero 

elements in the set {am, m E M, f E dm} are linearly independent. Then there exist 

symmetric matrices Ti, m = 2, 3,. . . , M, f E dm in the form (1.29) such that the 
relations 

rn-li rj2 

urn - E tm(1112 ah11 - f(h1h2) ah: 
121 h2=1 

hold, where li E m - 1, h1 E d11, and also 

M-13 4 m-12 4 
V't11 tm(13 k) ç ,k(1113) •rn(12k) 
L..i g(h1h2) f(h3g) - L..i 1g(h1h3) 1f(h2g) 

k=li+12 g=1 k=11+13 g1 

(Ad) 

(A.2) 

where 1 E h € Xi, k € m - 2 and g E 4. Moreover the matrices T2(ltm_l), f E 

drn are linearly independent for m = 2,3,.. . , M. 

Proof. The matrices Ti of Proposition 1.17 are such that relations (A.1) 

hold and matrices of (1.27) are symmetric. We construct matrices Ti induc-

tively as described on pages 36-38. To prove the theorem we need to establish three 

properties of matrices Ti', m' = 2,3,... , M, f E dm '. These are 

(i) the matrices Ti' are symmetric, i.e. 

= (Ty 112h1)) T 

for all 11 and 12 such that l + 12 ≤ m', 
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(ii) the products 

Tm'(I) (T1(m1)\T 
IC gR ) ' 

ml(m' where ) is defined from (1.33) and 

rpm'fC (I) - 

£ - 

rrim'(1,1+1) T7'(151+2) 
.1 

m'(21+1) 

- T7'(m_I+1 t+1) 0 

are symmetric for all l E m - 2 and g E d1, and 

(iii) the matrix T7''hl2) coincides with the matrix 

T•MI (1112) T mfl'(hhl2) 

(,(1211)) T 

Tm'(l,m_l) 
I 

0 

0 

(A.3) 

in the entries other than ones denoted by *, for all 11 and 12 such that 11+12 ≤ m'. 

First note that condition (i) holds for 11 and 12 such that 11 54 12 and all 

m' and f from the definition of matrices T7'(Ihl2). Condition (ii) is equivalent to the 

condition 

M(111213) - m(111312) 
Sf(h1h2h3) Sf(h2h3h2) 

for 1 E 'm and h E XI. From Proposition 1.17 it follows that the matrices 

T"2 (T3(12)\T 
gR '¼1 ) 

3(11) are symmetric for g E d1 and f E d3. Because we also have that T1 are symmetric 

and T'2 = 7(12) = (j;(2i))T the conditions (i) - (iii) hold form' = 2, 3. We proceed 

by induction on m'. Suppose that (i) through (iii) hold for m' = 2,3,.. . , m - 1. We 

want to prove them also for m' = m. By Proposition 1.17 and definition (1.32) we 

have 

dm -1 
'ç' m(1,m-1) 4m-.1(1,m-2) 

L. 'h(ig) bf(jh) - Sf(jgj) - 81(jgi) - L 'f(ih) 'h(jg) 
h=1 h=1 



182 

for all i,j E d1 and therefore the matrix 2(1,m1) (Ty(1m_1))T is symmetric for all 

g E dm-2. Now we proceed with backwards induction on k' to prove that products 

Tk'(m) 1Tm(11) T 
gR fC ) (A.4) 

are symmetric matrices for all g E d. We suppose then that matrices (A.4) are 

symmetric for k' = m - 2, m - 3,. . . , k + 1, (k ≥ 1) and we prove that they are 

symmetric also for k' = k. Consider first the product 

T k(7Ir) (Tm(m_r,1c+r)\ T 
I 

for r E 1m—k] It is equal to 

(A.5) 

d1 
f ,71(m—k—r-1 I' (l(+rIk+r+l)Tm(m_k_r_l,k+r+l))T h1 R m _k_r))T (A.6) 

h1=1 

By the inductive assumption for m' < m - 1 we have 

dk+r dk+j 
4k+r(rk) k+r+1(k+r,1) - k+r+1(rkl) - k+r+1(lkr) - k+1(1k) k+r+1(k+r,r) 
'h2(ig) 'j(h2hi) - 85(ighi) - Sj(higi) - 'h2(hjg) 'j(h2i) 

h2=1 h2=1 

and therefore the product (A.6) is equal to 

di dk+1 
,71k—r-1 

h2 (h19) 1 h2R T 7n_k_r))T rr,1(k+r,k+r+1) /(m— 

hi=1 h2=1 

Next we use the inductive assumption for k' ≥ k + 1 to show that (A.6) is equal to 

d1 dk+1 
p7 Tm(k+rm_k_t) f,nk+l(m_k_r_l,m..r)'\) (T I 1(m—k—r 1 m - k - r) )T = 

h2(hig) I (h2R "i1 
h1=1 h2=1 

4 
t 1(1k) (rrtk+1(m_k_r_1m_r))T Zh1 I 1(m—k—r-1 m _k_r))T 

= h(hig) Vh2R 
hi=1 h2=1 

(A.7) 

We use again the inductive assumption on m' < m - 1 to show that 

.jc+1(1k)  

1'h2(h19) i(jh2) - Si(higj) - 

h2=1 
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dm _k...r 
•m—r(rn—k---r,k) 4m—k—r(1,rn—k—r-1) 

- Sj(hijg) - 'i(h2g) 'h2(hij) 
h2=1 

Then it follows that (A.7) equals to 

di 
(T  h 1 k(m_1._km_r))T 

rrik(m—r—k ' = Ty (1,m_lc_r) gR( m _r))T (A.8) 

So the products (A.5) and (A.8) are equal and therefore the product of the r-th 
k(m) m(k) (block) row of the matrix T9R and q-th (q = m - r) column of the matrix T1 

is the transpose of the product of the q-th row of the matrix and r-th column gR 

of the matrix T7Z. Now we proceed by backward induction on q to prove that the 

above is true also for the products of the other rows and columns. Suppose now that 

for every r E and q' = m - r, in - r - 1, ... , q + 1 (where q> [z]) we have 
rn-q' rn-i' T 

p (T7(1P))T = L T7(i') (T(1P) E T ) (A.9) 
p=k+r 

We want to prove the relation (A.9) for q' = q. By the definition of the matrices 

T7') it follows that 

rn-q rn-q dl 
E (T7) T = L 1h1R 

p=k+r pk+r h11 

(T7(_1P+1))T 

(T7(1_1P+2)) T 

(T(1+1))T 

(T7(_1m_ +1))T 

d1 rn—q 

=L E TgR [o 
h1=1 p=k+r 

(T7(_1k+1.+1))T 

(T7(_1+2))T 

T 
7  

rr,l(p,p+2) 
hiR 

(Ty(m_P_1P+1)) T - 

0 

0 •.. 0 

,pl(p,rn-q+1) 
Lh1a 

( 1(q1,q)\T 

h1R ) N( 1(q1,q)\T 
h1R ) 

( 1(q_1,m_p)\T 

h1R ) 

• • 0 ,-nl(p,p+2) ml(p,m—q+1) ] 
1h1R 1h1R 2h1R 

(T (k+11))T 

(Ty (h'+2))T 

(T(m_k_r_1t 1)) T - 

0 

0 ••• 0 
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1 1(q_1,q)\T - 

hiR I 
( 1(q_1,q)\T 

hiR ) 

(h1( i q_1,m_1_t.)\ ) T 
R - 

Next we have 

n q-4(p,p+l) ,7-tl(p,p+2) 
'-' 

p=k+r 

rj,l(p,m-q+1) - 

.LhiR - 

- gR 1 hiR E T T 2Tk(rp)T1 - T k(+r) 1(c+ lc+,+1) k+r+1 .' P1 l(P I+ 2) k ,k+f+3) 
h1R Fa gil h1R 

p=k+r p=k+r 

E 9; m-q T k( ),-,-,1(p,m-q+1) h1R  I 
and by the inductive assumption for m' ≤ in - 1 it follows that 

k+r+l d 

> .k+r+1+1(pl) k+r+1+1(rkl) - 

h2(ig) j(h2hj) - Sj(j9h1) - 

p=k+r h2=1 

k+r+1+1(lkr) k+l+1 d,, 
- .p(lk) .k+r+1+1(pr) 

= 8j(higi) - Vh2(hig)71(h21) 
p=k+1 h2=1 

Therefore the expression (A.11) is equal to 

I k+1(1k) Tl h l '' h2 (r,+l) k+2 d (1k) rr,p(r,k+r+2) R EEt 2(hig) 1 h211 L  

m-q--r+1 d p(lk) p(r,m-q+1) = 
E E th(h 9)Th2R 

p=k+1 h2=1 

m-q-r+1 d 

= >2 
pk+1 h2=1 

(A.10) 

o rrip(r,r+p) rrp(r,r+p+1) P(rm+l) ] 
1h2R 1 h2R h2R 

(A.11) 

Using this last calculation and the inductive assumption for m' < rn—i, respectively, 

we'show that the expression (A.1O) is equal to 

d1 m-q-r+1 d 

>2 e( 1k) [o 0 T,r+P) h2 (hig) ...  
hi=1 p=k+1 h2=1 

,-r,p(r,r+p+1) P 2R (r-_+l) ] 
1 h h211 
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(T7(1 +r+1))T 

(T (1c+r+2))T 

0 

(1(q_1,m_1_t.)\T 

h1R ) 

(T7(m__t._11c+t.+1)) T 

0 

0 

d1 m—q—r+1 d 

= >2 >2 >2 t (/9) [ 7(r+l) rn(r+k+l) 

h1=1 p=k+1 h2=1 

0 

0 
(rpp(q_1 ,q_1+p))T 

h2R ) 
(ppp(q ...1 ,q+p))T 

U2  ) 

0 

0 

0 
(rrp(q,q+p)\T 
'h2R ) 

(rpp(q_1,m_r)\T (r,.,p(q,m_r))T 
h2R ) n2   

0 

0 

0 

0 

(p p(mr p,m —r)\T 

'h2R I 

(p1(q_1,q)s\ ) T 
'-h1R  
(q l(q l,q)\)T 
''-'hjR  

(p7 k - - 1(q-1,m r) )T 

hIR 

By the assumption for m' < m - 1 it follows that 

and therefore 

rpm(r,m—r) 

p d 
u(lk) _l+P(_ltt) - q-1+p(1,k,q-1) 

t&=k+1 ha=1 - 

> t/(/jg) i(jh2) - Si(higj) - 

q-1+p(q-1,1,k) - >2 .q-1+p(uk) = S q-1+p—k di(jhig) - ti(h2g) h2(jh1) 

u=q h3=1 

d 

>: >2 bh (hig) 
p=k+1 h2=1 

0...0 

0 0 

0...0 

0...0 

(A.12) 
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Since 

0 

0 
(rpp(q_1,q_1+p)\T 

.Lh2R ) 
(pp(q1,q+p)\T 

h2R ) 

(q ,p(q l,mr)'\T 
Lh2R ) 

0 

0 

0 
(pp(q,q+p)T 

Lh2R ) 

(rpp(q,m—r) 
h2R 

gR ) 
(rpk(q,q+k+ 1) \T 
tLgR 

(rpk(q,m .r)T 
.LgR 

(,p l(q_1,q)'\T 

h1R ) 
(rpl(q_1 ,q+1)\T 

th1R ) 

(rpl(q_1,m _r_k)'\T 

- h1R ) 

z 1(m) R 

0 

0 

0 

0...0 

(rpp(mrp,mr)\T 

h2R I 

0 
(rpk(q+1,q+k+ 1) \T 

gR ) 

(p k(q+1,m_r)\T 

I 

0 
(rpl(q,q+1))T 

hiR 

0 

0 

1Tk(m_l ,m_1) T 
I 

1T' (q,m._r_k)\T 
h1R ) hiR 

is a left inverse of T1(m) it follows that 

d1 

hi1 

0 
(qil(q,q+1)\T 
Lh1R I 

(rpl(q,m_r_k)\T 

h1R ) 

(1(q_1 ,q)\T 

hiR I 
(r,1(q_1,q)'\T 

'-'h1R ) 

(1(q 1,m 1 r)\T 

h1R ) 

0 

0 

0 

0 

rpl(mrk1,rnrk) 
hi R 

0 

0 

(A.13) 

(A.14) 
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Now we use the equalities (A.13) and (A.14) to show that the expression (A.12) is 

equal to 

F m(r+k+l) q ,m(r,m—r) 
L/ / 

- (k(q,q+1T - 

gR ) 
1T +/+1) \T 
gR I 

T 

gR ) 

= T7" (pk())T 
gR 

p=q+k 

Thus we proved that the relation (A.9) holds also for q' = q. We proceed with 

the induction until q = ['v]. Then it follows that the matrix T72 (Tm))T is 

symmetric for all g E dk. Hence we proved the inductive step for k' = k. We stop the 

induction process when k = 1. Then it follows that the products (A.3) are symmetric 

and this proves condition (ii) for m' M. 

It remains to prove that the matrices T7"1 are symmetric for 1 = 2,3.... 

[i} and condition (iii) for m' = m. First we prove by backwards induction on 1 that 

the matrices T7 " are symmetric. Suppose first that m is even and write 1 = 

Then we define for every g, h E d1 a matrix 

UIh = T7'1'1' (T R hl 
1(11+1))T (T_10) T . 

For every i e di+i and j e d1_1 we have 

Edi 41+1(11) 41(1-1,1) 1+1(1-1,1,1) d, - 1+1(1-1,1,1) - 41+1(11) 41(l-1,1) 
t'i(h2g) "h2(jh) - Sj(jhg) - 8i(jgh) - 'i(h2h) h2(jg) 

h2=l h2=1 

and therefore 

Uf ml 
- 

Next it follows from condition (ii) for m' = m proven above that 

(A.15) 

d,+j d1 d, d, 
tm(ll,l+l) tl+l(hl) t11 "  - 

f(ih3) ha(h2g) h2(jh) - S/ (h291) h2(jh) - Sf(jh29) Vh2(jh) - 

h3=1 h h2=1 h2=1 

dm.1 d1 dm_i 
v m(m-1,1) tml(l_l,l) .1(1-1,1) - .m(m-1,1) 

= L tf(/g) h3(ih2) h2(jh) - f(h3g) Sh3(jhi) 
h3=1 h2=1 h3=1 
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Similarly we show that 

dz+i d1 dm_i 
t1_1'11 t1+111 t'"1 - 4m(m-.1,1) m-1(1-1,1,1-1) 
f(jh3) h3(h29) h2(ih) - tf(h39) 8h3(ihj) 

h3=1 h h3=1 

and then because we assumed (ii) for m' = m - 1 it follows that Sh3 (ihj) - 

8h3(jhi) and therefore every matrix Ut9 is symmetric. This fact together with 

(A.15) imply that the sum 

d1 d1 
1,71(1-1 

V1 = Z,'j"1U4 N R 

h=1 g=1 

is a symmetric matrix, but 

di / hR q l(11 V1 = z 1'1)T7('1"') (Ti:l+1))T E l)-di T = T71hl) 
h=1 9=1 

and hence T7('1) is symmetric. 

Next we assume that m is odd. For every g, h E d1 we define matrices 

= I T7'"') 
Uf L T7("'' c A rnm(1-1,l+2) I 

0 

(rpl(l,l+1)\ T 
gR ) 

T (1(1+11+2)\ T 
.L9R ) gri) 

lml(1_1,1)\T 
VhR ) 0 

1T1(1_hh1+1)T j1(1,1+1)\T 

hl ) hR ) 

where 21 + 1 = m. Similarly to the case of even m we show that Uh = U 9 and that 

the matrices UIh are symmetric. Thus also the matrix 

d1 d1 

V1 = > E I. I , ''.hR1(1-1,1) 

h=1 g=1 
z11"1 ] u4 [ N 1(1_1)T R 

(,7 1(11 l+l))T I 
is symmetric and because V1 = T7('1) also the latter matrix is symmetric. 

Now we proceed by backward induction on 1 until 1 = 1. For every g, h E d1 

we define matrices 

rrf(l) - 

"gh - 

rpm(I-1,I+l) pm(1-1,1+2) rpm(l-1,m-1+1) - 

.Lf if 

rr,m(1,1+1) ,r,m(l,l+2) 0 2, .Lf  

r,-,m(m1+1,11) 
2/ 0 ... 0 
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T (T1(1+1,m_1)\  
gR I 

0 
(rnl(1,1+1)\T 
1hR ) 

0 

0 

f1(rn-I (LgR rn_I+1))t 

0 

0 

(rnl(I,m_I_1))T * . 

)T 

As before in the case of even m we show that = and by the same method 

using also the inductive assumption on 1 we prove that the matrices are sym-gh 

metric. Finally the matrix 

di d1 
= I ,,1(l- 1,I) zl(11t1+l) ,.1(I-1,m-I) ] 

'-'hR hR hR hg 
h-19=1 

is symmetric and since VAO = T7(") also the latter matrix is symmetric. 

To complete the proof of the inductive step for in it remains to prove con-

dition (iii) for m' = m. We write 

where T7hul2) E cr11 xd,2 

TT(1112) 212) 
- 2 fN 

rpm(1112) 
£f5 

and 11,12 E m - 1, and 

r7-IM(l) - 

r-7-im(11) ,pm(1,I+1) ,prn(1,rn-1) 
-'-IN •'-fN 

rprn(21) ,-prn(2,I+1) 
.LfN 

rprn(m1,l) 
.L fiv 0 

for 1 E m - 1. Similarly we have 

,-1-7k("' 2) 
k(1112) -  .L gRN 

'-gR - ,-k(11I2) 
.1. yRS 
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where 1jf2) E Cr,1 Id 12 By Proposition 1.17 we have 

k(1p) ( m (P))T = p) ((qp))T 

pk+1 p=k+q 

for all k E m - 2, q E m - k - 1 and g E dk. Let us recall that the matrices y1(i1i2) 

are given (cf. the beginning of this proof). Because we already showed that condition 

(ii) holds for m' = m it follows that 

T" (TP))T = T7" 
gR gNR) 

p=k+i p=k+q 

Because T7") = and because we assumed that condition (iii) holds for m' 

m - 1 it follows that 

rn-i rn-i 
T7 (1p) frnk(qp)\)T = E rn(ip) (1c(qp))T 

gNR 
p=k+q p=k+q 

and therefore 

;kip) (rn(P))T = E '-'' ( n(P))T = '3' ( Nf T". 
pk+i p=/c+l p=lc+l gR 

Next we define for every k e m - 2 a (didk) x (E d1) matrix 

,-,,k(rn) - 

.LRA - 

,-,-1k(i,k+i) k(i,k+2) r7ik(i,m1) 
Lift Lift •• -1R 

,-k(i,k+i) k(1,k+2) q-tk(i,rn1) 
2 2R .L2R 2 2R 

k(i,k+i) ,-k(i,k+2) : q-,k(i,rn-i) 
- L dkft Ld2R LdR 

and a (di E1=12 di) x (F- M-1 di) matrix 

T(m) - RA 

(A.16) 
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where the sizes of the 0 blocks are determined by the sizes of matrices Tm). The RA 

matrix T is left invertible because the columns of the matrix 

k(i,k+i) 
- dkR 

are linearly independent for k E m - 2. From the equalities (A.16) it follows that 

(m) 1m(l)\T T(m) (mm(1))T 
TRA T1 ) = RA JN  

(m). invertible . m(1) m(1) and because is left invertible it follows that T1 = TIN . Because we showed 

that the matrices Ti are symmetric it follows then that the matrix T7 hh'2) coincides 

with the matrix 
,fm(l112) 
Lf 

jrrn(I2l1) 
.Lf * 

in the entries other than *. Therefore condition (iii) holds also for m' = m and so the 

proof of the inductive step for m' is done. We proceed by induction until m = M, 

and this completes the proof. 0 
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Appendix B 

Proof of Lemma 4.17 

Lemma 4.17 Suppose that we have the same setting as in Lemma 4.16. We construct 

a vector 
min{n,m} MI 0 

ZX+ E E E SXh 
q=2 lE'mq hEX1 

where the numbers s are defined in (1.37) and the vectors x& are defined in (4.27). Ih 

Then it follows that 

rn—i dk 

for alli. 

(A1I—r)z = az+arzo 
k=1 g=1 

Proof. We use a direct calculation to show (B.1). First we have 

(B.1) 

min{m,n} 

(A 0 - z) z = (A1zo - zi) x 1 + - I) SjjX. 

q=2 uQq lEtn.q hEX1 

From the basic properties of the operator determinants it follows that 

(Az 0 - = 

Vi 

V21 

vi,i._i w1. (A) V1, 1 .... V1 

• •. V2,i_1 W2 (A) V2,+1 •.. V2,, 

vni •.. Vn,i_i Wn (A) V +1 ... V 

(B.2) 
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and hence (A 0 - z) x 1 = 

t= l 

n rn-i 4 

=:: 
u=1 k=1 g=1 

v1,i—ixio 0 

V_i,_ix_i,o 0 

V,i_iX Wu Zurn 

V+i,+ix+i,o 0 

vn,i—lxno 

V11x10 

0 

0 V7x10 

0 Uk  0 

0 ... V0 xo 

+ /0 OM a z0 (B.3) 

by virtue of (4.40). 

Next we consider the right most summation in (B.2). The relations (4.26) 

and (4.37) show that 

V11 

MI 0 q i,i 4 l-ki rk2 
mltlp(klk2) 

OiAO - L) Sihxulh = E E > E E 81h hp(g192) 
p=1k1=lgi=1 k2=1 g21 

v1,i.._1 0 Vi,+i •.. V1. 

V,_1,1 V9_17 _1 0 VL,_i,fl 

0 0 Uup (a 2) 0 •.. 0 

vuP +i,i V+i,_i 0 V+i,+i vup+i, 

vni Vn,i_i 0 V,1+i vnn 

Xe - - + 
u,1PUkj ,hPug1 

(B.4) 
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0 V1,+1 

0 V, +1 

yin 

VlL _1,fl 

0 

(B.5) 

Here we use the symbols i, Iii' and uI' to denote omission of the component with the 
index p in multiindices 1, h and u respectively. The symbols P U,, k1 and U,, g 

indicate the replacement of the component 1, in 1 with k1 and the replacement of 

the component h,, in li with g1 respectively. For 1 E m,q we write L = EL 1i and 

Lp = The symbol L,, is well defined also for  

For q = 2 the sum of terms (B.5) over u E 22, 1 E 'm,2 and h E xi equals 

2 

E .m(1112) EV1(h1h2) 

UEQ2 lE'm,2 hEx1 P 1 

V11 ... 0 

O1\ 
0 U (ah) 

V 1 •.. 0 Vnn 

Xø, 

In the following calculation we use the relation (4.37) and the definitions of the sets 

of multiindices. Note that EIE m2 = E J' E 12=11 = EI E 2. Then the above 

expression is equal to 

rn—i d,1 

uEQ2 l=l hi=i 

V11 ... 0 

lim\ 0 •.. u 2 (ah1l) 0 

Vni... 0 

0 
'tz ,11h1 



lGWm,q WZX1 lEm-1,q-1 hPEX1 

In the summation E1E m _I,q EL 

that have L <k'. Thus 
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rn-i d12 

+2>2E 
UE≤2 12=1 h2=i 

V11 ... 0 •••V1, 

12rn\ 0 •.. U", (a 21, 0 

vni." 

n n m-1 di 

tL1i1L2.1,U2Ul 1=1 h=i 

V11 ... 

0 ... V nn 

0 

0 - 

XU2 ,12h2 - 

lrn\ 0 U 2 (ahi) 0 

vni ... 0 

Now we add the expressions (B.3) and the above one. The sum is 

n rn-i d1 

IL=1 l=i h=i 

V11 

V12 

vni 

Vi,i_i Ui (at) vi,i+i •.. V1 
v2,1_i U2 (at) v2,+i •.. V2 n 

vn,_i (IM a) 

= E E 1oalm h1ix + /oa?rzo. 

0 

1=1 h=i 

From the definition of the sets of multiindices it follows that 

m-Lp d, 

:= 
I-- -- l=i h,=i 

a value k = k' appears exactly for those 1 E 'm—i,q 

rn-i rn-i 

(B.8) 
lE''m-i,q k=L k=q lE'k,q 

Applying relation (B.7), Corollary 1.24, (i) and relation (B.8), respectively, it follows 

that 
lk1 rk2 

E rnl .l(k1k2) 
= 1En,qhEX1kii91i k2=1 92=1 Sih t h (gigs) 

(B.9) 
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rn-L-1 dk1 m-L-ki rk2 m-L d1,, 

= E 
l"E'i m i,q i IEX k1=1 gj=1 k2=i 92=1 1=ki+k2 h=i 

lv 

MI 1(/c,k2) - 
Sihth(9192) - 

rn-L rk2 rn-k2 4 3 
k31 .m(k2k3) 

= E > S9 h 1 (9293) - 

lEm-i,q hEX1 k2=i 921 k3=L 931 

rn-i 4 3 rn-k3 rk2 
k31 .rn(k2k3) 

= E > s9 1(gg,) 
k3=P93=ilEk3,9 hEX1 k2=1 921 

In the step (B.1O) of the above calculation we wrote l, instead of k1 and hp  

of gi. Next we sum the terms (B.4) over 1 E 'm,q and h E X1. From the result of the 

previous calculation it follows that the sum is equal to 

rn-i dk3 rn-k3 r2 
k31 .rn(k2k3) 

S9 'i(gg) 

k3=p931 iEk3q hEX1 k2 1 921 

V11 ... 0 yin 

U(a 2) ... 0 

vni... 0 

Xu ,l,h. 

Here we write l, instead of k1 and 1i instead of g1 as in (B.10). Using the relation 

(4.37) it follows that the above sum is equal to 

rn-i dk3 

k3=p931 iEk3,q hEX1 

k31 
S9 h 

V11 ... 0 •••V1, 

k3 0 0 u,, (a  j) ...  

Vnl ... 

Xu ,l,h. (B.12) 

Similarly to when we showed that (B.9) equals (B.11) we now show, using 

Corollary 1.24 and relation (B.8), that for any index p E q (q ≥ 3), 

m-1 4 3 

Mi k31v - 

ih = S- h P1(93hp) - 
lE q hEX1 lEm,q hEx1 k3L 93=1 

rn-i 4 3 rn-k3 "lp 

= k3 1P tm (3lp) - 

k3=L 931 1p1 h=i S i(93h) - 

l'E'vn_i,q_i hPEXj-
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rn-i dk3 - k3 rip 

= 8k31P > .m(k31,) 
g3 —h Vi(93h) 

k3=q93r1 hl'EX1 1,,=l h,,=i 

We use this equality to show that the sum over 1 E 1 ,,,,q and h E xi for q ≥ 3 of the 
terms (B.5) is equal to 

rn-i dk3 k3 rip 

E 1(g3h) 
k3=qg3=ij I1PEXr 

rn-i dk3 

V11 ... 0 

0 u (ar") •.. 0 

k31 
= 
k3=q93=i IEk3,q-1 hEX1 

V11 ... 0 

k3rn\ 0 U (a3 ) 

uP,IP ,hP 

Vnn 

(B.13) 

Next the sum of the expressions (B.13) over q = 3, 4,. . . , min {m, n} and u E fq is 

min{m,n} rn-i 43 
k31 E > 

q=3 UE q k3=q931 lEk3,q...i hEX1 

vu ... 0 

k3 0 UtL (a) ... 0 

Vni... 0 ...Vnn 

= 
uP,1,h 

min{rn,n}-i n rn—i 4 3 

= 

q=2 UE q v=i,vuk3=qg3i tEk3,q_1 hEx1 
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V11... 0 

o •.. Uv(ak3m\ •.. 0 g31 ) 
0 
Xu1h. 

Vni... 0 

If we reverse the order of summation over q and k3 we have 

min{m,n} rn—i rn—i min{k3,n} min{m,n}—i rn—i rn—i min{k3,n-1j 

LL=LL and E E = E E 
q=2 k3=q k3=2 q=2 q=2 k3=q k3=2 q=2 

(B.14) 

From (13.12), (B.14) and the last relation it follows that the sum of terms (B.4) for 

q ≥ 2 and terms (B.5) for q ≥ 3 over u E q, 1 E q,m and h E Xi is 

rn—i 43 min{k3,n} q 

EL L LLs 
k3=2g3=1 q=2 uEqP=ilEk3,q hEx1 

rn—i dk3 min{k3,n-1j 

V11 ... 0 

0 •.. Up (ar) 0 

vni ... 0 

L ELEL 
k3=293=1 q=2 UEflq Vl,VUIEk3,q hEX1 

V11 ... 0 

0 U(a) •.. 0 

Vni... 0 

rn—i 43 min{k31n} 

...Vnn 

k31 
S9 h 

0 
Xu1h - 

=EE E LEE 
k3=2 93=1 q=2 UE≥qlEk3,qhEX1 

V11 vi,_i Ui (ar) v1,+1 
V1  V2,_1 U2 (ar) v2,+1 

vi v,_i u (ar) v,1+1 

k31 
Sg3 h• 

yin 

V2  

Vnn 

0 
Xu1h - 

0 
'u,1,h 
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rn—i dk3 min{k3,n} 
k3m 0 

sIog3h a9311xlh. 
k3=2g3=1 q=2 lEk,q hEX1 

(B.15) 

Then it follows from the equality (B.2) and the calculations that followed it that 

(Az0 - z is equal to the sum of the expressions (B.6) and (B.15), and thus 

rn—i 4 rn—i dk min{k,n} 

= I oaglix km + Loazo + > soagli4 

k=i g=i k=2 g=i q=2 lEk,q hEX1 

rn—i d1 (Xk mn{k,n} \ 
km g+ ghlhli ski x +zoazo= 

k=1 g=i kq=2 l€cI k,q hExi 

rn—i d1 
= /0 km OM az + Aoa li  

k=i g=1 

0 
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Index 

A decomposable tensor, 8 

admissible set, 23 
E 

array 

commutative, 9 eigenspace 

reduced commutative, 12 of a commutative array, 10 

arrays of a multiparameter system, 71 

similar commutative, 9 eigenvalue 

ascent 
completely derogatory, of a multi-

of an eigenvalue, 127 parameter system, 160 

associated system 
nonderogatory, 14 

of a multiparameter system, 62 nonderogatory of a multiparameter 

system, 78 

C nonderogatory, of a multiparameter 

change of basis system, 70 

admissible, 11 of a commutative array, 10 

commutative array, 9 of a multiparameter system, 68 

reduced, 12 semisimple, 130 

commutative arrays, 9 simple, 31 

similar, 9 simple of a multiparameter system, 

cross-section 79 

column, 9, 12 eigenvector, 71 

row, 9, 12 of a commutative array, 10 

D I 

decomposability set, 63 invariant, 94 
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J determinantal, 61 

Jordan chain induced, 8 

of a matrix, 2 

of a matrix polynomial, 118 pair of matrices 

maximal, 120 equivalent, 92 

K R 
Kronecker basis, 96 

regularity conditions, 32 
Kronecker canonical form, 93-94 

representation by a multiparameter 
Kronecker chain, 96 

system, 67 
Kronecker product, 75 

representation by tensor products, 51 

M dimension, 53 

matching conditions, 32 minimal dimension, 53 

matrix root subspace 

blockwise connected, 54 of a commutative array, 10 

connected, 53 of a multiparameter system, 71 

self-adjoint, 9 root vector, 71 

symmetric, 9 for a commutative array, 10 

multiparameter system, 60 

diagonal, 60 
scalar product, 8 

elliptic, 132 
on a tensor product space, 8 

nonsingular, 62 
set 

right-definite, 130 
decomposability, 63 

self-adjoint, 129 
set of invariants, 94 

upper-triagonal, 60 
of the kernel kerL, 104 

weakly-elliptic, 131 
a-shift of a Kronecker chain, 97 

o spectrum 

operator of a commutative array, 10 

Lo-self-adjoint, 130 of a multiparameter system, 68 
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structure triple, 24 

subspace 

marked invariant, 106 

symmetrization 

of the array A°', 133 

system 

associated of a multiparameter sys-

tem, 62 

multiparameter (see also multipa-

rameter system), 60 

T 

tensor 

decomposable, 8 

tensor product space, 8 

transformation 

induced linear, 8 

U 

upper Toeplitz form, 15 


