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ABSTRACT 

Flory-Huggins theory has been employed to successfully correlate various types 

of data pertaining to polymer-water systems. The data include binary and ternary water 

activities, binary closed-loop phase diagrams, ternary constant temperature and pressure 

liquid-liquid equilibrium diagrams, and protein partition coefficients in aqueous two-phase 

systems. Correlation was done with the original Flory-Huggins theory and variations of 

it which included treating the Flory-Huggins interaction parameter as a function of 

composition or temperature and treating the polymer chain length "r" as a parameter to 

fit the data or as a function of temperature. Preliminary results of correlation of protein 

partitioning in aqueous two-phase systems are encouraging. 

A scheme to characterise polymers using a pseudocomponent approach is 

demonstrated. This scheme is based on the log-normal distribution in the polymer molar 

mass. 

Owing to the nature of the model, computational difficulties were encountered 

with the conventional successive substitution flash calculation procedure. This work 

describes the use of two algorithms (i) damped successive substitution and (ii) 

Heidemann's algorithm (1974) for performing equilibrium calculations. Calculations were 

initiated with these algorithms and then switched to the Newton-Raphson procedure for 

faster convergence. 
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Nomenclature 

a activity; constant. 

A virial coefficient. 

b polydispersivity parameter; constant. 

C concentration; constant. 

d constant. 

DF damping factor. 

e constant. 

f error vector. 

f constant. 

F(M) molecular weight distributuion. 

H enthalpy. 

J jacobian. 

k ratio of weight fractions. 

K equilibrium constant. 

K protein partition coefficient. 

L phase fraction. 

M average molecular weight or molar mass. 

M molecular weight or molar mass. 

MN molecular weight or molar mass. 

M. constant of logarithmic-normal distribution. 



MW molecular weight or molar mass. 

n number of moles. 

P phase mole number. 

P vector containing parameters. 

P pressure. 

q phase mole number. 

r ratio of molar volumes; chain length. 

R gas constant. 

rn total number of moles. 

S entropy. 

t dummy variable; node. 

T temperature. 

tol tolerance. 

V partial specific volume. 

W interaction energy; weight fraction. 

x weight fraction; mole fraction. 

Y weight fraction; vector containing OF values. 

z coordination number. 

Superscripts 

I denotes phase. 

II denotes phase. 

j iteration count. 
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new refers to current value. 

o refers to standard state. 

old refers to the value in the previous iteration step. 

P exponent to modify combinatorial entropy of mixing. 

Subscripts 

C value at the critical point. 

caic calculated value. 

exp experimental value, 

hi maximum value, 

i component index. 

L refers to the lower critical solution temperature. 

lo minimum value. 

old value in the previous iteration step. 

P polymer. 

S solvent. 

U refers to the upper critical solution temperature. 

Greek symbols 

a constant; element of covariance matrix. 

13 constant. 

constant 

6 constant. 
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LIHM enthalpy of mixing. 

LSC combinatorial entropy of mixing. 

At increment in t. 

iXw12 change in interaction energy. 

8 transformed variable. 

chemical potential. 

constant in logarithmic normal distribution. 

volume fraction. 

Flory-Huggins interaction parameter. 
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CHAPTER 1 

INTRODUCTION 

This thesis is concerned with the correlation and/or prediction of the phase 

behaviour of aqueous solutions of certain water-soluble polymers. Water-soluble polymers 

have diverse applications. Molyneux (1991) points out that they are used in water 

treatment in oil recovery processes. They are also finding increasing use in paints and 

coatings (Klientjens, 1993). The two-phase aqueous systems obtained from different 

mixtures with two different water-soluble polymers have been used as an extraction 

medium for bioseparations (Albertsson, 1971) and are the main area of interest in this 

research. The focus is on mixtures involving polyethylene glycol and dextran, since these 

are the water soluble polymers that have received the most attention in the chemical 

engineering literature on aqueous two-phase systems. 

The polyethylene glycols, PEG, have a structural unit -[OCH2CH2]-. Molyneux 

(1991) refers to these polymers as poly(ethylene oxide) but PEG is the name used most 

commonly. Dextran is a polysaccharide (polyglucose) that results from certain natural 

processes with the apparent formula [C6H10O5}. 

Chapter 2 contains a literature review. The PEG and Dextran used in producing 

the data described in Chapter 2 came from various suppliers and had a range of molar 

masses. Table 1.1 presents the molar masses of some typical polymers. 

The data arise from several different kinds of phenomena. Some experimenters 

report the activity of water above solutions involving either PEG or Dextran (or both). 



Table I.I. Sources and molecular weights of some water-soluble polymers 

POLYMER SUPPLIER SOURCE MN 

PEG 3350 Union Carbide 
Carbowax 

Haymes et al. (1989) 3790 

PEG 8000 -do- -do- 9037 

DX T-70 Pharmacia -do- 29630 

DX T-500 -do- -do- 167000 

PEG 200 Hulls AG, Marl Gaube et al. (1993) 201 

PEG 600 -do- -do- 582 

PEG 1550 -do- -do- 1440 

PEG 3000 -do- -do- 2840 

PEG 6000 -do- -do- 7750 

DX 40000 Fluka Chemie AG, 
Buchs 

-do- 23600 

DX 70000 Pfeifer Langen, 
Dormagen 

-do- 46300 

DX 110000 -do- -do- 64800 

DX 500000 -do- -do- 101000 

t'J 
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Some researchers have measured the mutual solubility of PEG and water over a 

temperature range. The PEGs with lower average molar mass have closed solubility 

curves and exhibit complete miscibility at low and high temperatures but separate into 

two liquid phases at intermediate temperatures. A third kind of data relate to the phase 

separations that occur when a Dextran and a PEG are both dissolved in water in amounts 

greater than 5 to 10 mass percent. 

Chapter 3 presents a description of the Flory-Huggins model. This excess free 

energy expression was derived from a model of the fluid as a lattice (Flory, 1953) with 

a monomer of a size sufficient to occupy a lattice site and with the polymer pictured as 

connected monomer groups that therefore must lie at adjacent lattice positions. This is the 

principal model used for solvent-polymer systems and it has been used in this research 

to correlate the data of several kinds that were available for the water-soluble polymer 

mixtures. Molyneux (1991) has raised the question whether it is appropriate to regard 

water in the same way as the monomer in the monomer/polymer solutions that were the 

basis for the original derivation of the Flory model. He points out that hydrogen bonding 

between water and the certain sites on the PEG may be an important consideration. 

However, the results reported in Chapter 5 demonstrate that the flory model can be used 

with some success to describe water activity, liquid-liquid coexistence curves, closed-loop 

binary phase diagrams and protein partitioning in aqueous two-phase systems. 

In Chapter 4 are presented the numerical techniques used to correlate the 

parameters in the Flory-Huggins model and to perform the equilibrium calculations. 

Chapter 4 also contains a description of a new method for accounting for the fact that 
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each of the polymers is a mixture with molecules of many different chain lengths. The 

so-called polydispersivity of the polymers is potentially important in determining phase 

separations. 

The conclusions reached through this research are summarized in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter contains a review of the literature on polymer-water systems. It is 

divided into two sections. The first section covers the synthetic polymer(s)-water systems. 

The second section briefly covers some of the prominent studies of bioparticle or 

biopolymer partitioning in aqueous two phase systems. 

In the two sections, first the papers containing experimental data are dealt with in 

a chronological manner and then the modeling efforts are covered in a similar way. 

Whenever a paper contains both experimental data and theoretical modeling of data a 

joint survey of the two aspects is presented. 

The modeling efforts have primarily revolved around two models. These are 

(a) the virial equation and, 

(b) the Flory-Huggins lattice theory or some variation of it. 

The point to be noted about the majority of modeling efforts is that predictions of 

thermodynamic behaviour employing the two models have not been made from first 

principles, i.e. from the chemical structure of the components. Rather, the models involve 

empirical parameters that have been correlated to fit measured thermodynamic properties 

(Walter et al, 1991). 

The aqueous two polymer systems have application in bioseparations. As the name 

suggests, these are three-component solutions consisting of two polymers and water. 

Above critical concentrations of the polymers, an aqueous two-phase system separates into 
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two phases. One phase is rich in the first polymer and the other is rich in the second 

polymer. Biomolecules like proteins have a tendency to partition between the two phases 

and hence separation can be achieved. The phases are essentially aqueous, therefore, 

provide a mild environment for the labile biomaterials. 

2.1 Synthetic polymer(s)-water systems 

Malcolm and Rowlinson (1957) reported vapor pressure measurements over 

aqueous solutions of polyethylene glycols (PEG 300,3000 and 5000) and polypropylene 

glycol 400. The heats of mixing and densities were also reported. The temperature ranges 

from 30°C to 65°C. They have also presented mutual solubility curves for polyethylene 

glycols 3000 and 5000 and polypropylene glycol 400 in water. 

Albertsson (1971) reported phase equilibrium data for many polymer-polymer-

water and salt-polymer(s)-water systems at various temperatures. The two-phase systems 

studied by him were: 

dextran/polyethylene glycol (PEG)/water 

dextran/ucon/water 

dextran/pluronic/water 

dextran/tergitol/water 

dextran/ficoll/water 

ficolliPEG/water 

dextran/hydroxypropyldextran/water 

hyciroxypropyldextran/hydroxypropyldextran/water 
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hydroxypropyldextran/PEG/water 

dextran/methylcellulose/water 

dextran/polyvinylalcohol/water 

DEAE/dextran/PEG/lithium sulfate/water 

Na dextran sulfate/PEG/sodium chloride/water 

Na dextran sulfate/methylcellulose/sodium chloride/water 

Na dextran sulfate/polyvinylalcohol/water 

Na carboxymethyldextran/PEG/sodium chloride/water 

potassium phosphate/PEG/water 

potassium phosphate/methoxypolyethylene glycol/water 

potassium phosphate/polypropylene glycol/water 

ammonium sulfate/PEG/water 

magnesium sulfate/PEG/water 

Saeki et al. (1976) have reported the upper and lower critical solution temperatures 

for solutions of polyethylene glycol in t-butyl acetate and water over the molar mass 

range 2180 to 1020000. Temperature/weight fraction phase diagrams for polyethylene 

glycols 719000, 21200, 14400 and 8000 in t-butyl acetate are reported. The paper also 

contains temperature/weight fraction phase diagrams for polyethylene glycols 1020000, 

21200, 14400, 8000, 2290, 2270, 2180 in water. 

King et al. (1988) reported experimental ternary phase diagrams for 

polyethylene glycol (PEG)/dextran/water systems at 25 °C. The polymers studied were 

PEG 3350 and 8000 and dextran T-70 and T-500. Size-Exclusion-High-PerfOrmance-
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Chromatography (SEC) was employed for measuring phase compositions in ternary 

polymer/polymer/water systems. Low-angle-laser-light-scattering (LALLS) measurements 

were made to determine osmotic virial coefficients. Second virial coefficients, A1, were 

determined from LALLS measurements on binary polymer/water systems. Second cross 

virial coefficients, A, were determined from LALLS measurements on three component 

(polymer/polymer/water) systems. These coefficients are reported. The osmotic virial 

equation was employed for phase equilibrium calculations involving PEG 8000/dextran 

T-500/water and PEG 3350/dextran T-70/water systems at 25 °C. The agreement between 

experimental and calculated two-phase curves is good. However, a comparison of tie-lines 

is not shown. 

Haynes et al. (1989) reported vapor pressures for binary aqueous solutions 

containing 5-40% polyethylene glycol (PEG) or dextran. The polymers used were PEG 

3350 and 8000 and dextran T-70 and T-500. The measurements were made with a 

differential-vapor-pressure apparatus. The activity of water is related to the vapor pressure 

difference by 

a (P10-LP)/P1° (2.1) 

where, a1 is the activity of water and AP is the vapor pressure difference between pure 

water and polymer solution. P° is the vapor pressure of pure water at 25 °C and its value 

is 23.758 mm Hg. Their data show that LP is the greatest for the lowest molar mass 

polymer, PEG 3350. The vapor pressure lowering decreases with an increase in the molar 

mass of the polymer. This implies that the effect of the polymer on solvent activity 
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decreases with an increase in the polymer molar mass. 

Haynes et al. (1989) have used a virial expansion for expressing the chemical 

potential of the solvent (1), in this case water, given by 

R T M1C2 1000 
1000  M +A22C2+A222C+ ... ) (2.2) 

The second virial coefficients A22 were calculated from experimental water activity data 

using the expression for the chemical potential of the solvent. The second virial 

coefficients and number-average molar masses are reported for the four polymers. The 

osmotic second virial coefficients from this work are compared with those obtained from 

low-angle-laser-light-scattering (LALLS) data in an earlier work (King et al., 1988). The 

coefficients from vapor pressure data are consistently higher than those from LALLS data. 

The authors speculate that the difference could be because of errors induced in 

extrapolating semi-dilute (5-15%) solvent activity data to infinite dilution. They regard 

the osmotic coefficients from the vapor pressure data as "effective" second virial 

coefficients which may contain contributions from higher order interactions in addition 

to the two-body interactions. 

Haynes et al. (1989) compared experimental vapor pressure data with predictions 

from the osmotic virial expansion truncated after the second virial coefficient term for 

PEG 3350 in aqueous solution at 25 °C. The second virial coefficient from LALLS data 

were used. The comparison shows that higher order terms (third order or more) are 

necessary for accurate representation of experimental data at higher concentrations of the 
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polymer. In order to match the experimental data better, "effective" third virial 

coefficients were calculated using experimental vapor pressure data and second virial 

coefficients from LALLS data in the virial expression for the chemical potential of the 

solvent. These coefficients for the four polymers are reported. The match between 

experimental and predicted differential vapor pressure for PEG 3350/water system at 25 

°C was found to be very good with the inclusion of third order term in the virial 

expansion. 

Haynes et al. (1989) also reported results of ternary liquid-liquid equilibria (LLE) 

calculations for the PEG 3350/dextran T-70/water system at 25 °C with the osmotic virial 

equation (OVE) truncated after second order terms and after third order terms. The match 

between experimental data and the results of calculations is satisfactory for the former 

case and very good for the latter. The cross second virial coefficients (A,,) were obtained 

from LALLS measurements on three 'component (polymer/polymer/water) systems by 

King et al. (1988). The cross third viral coefficients (An,.) for the latter set Qf phase 

equilibrium calculations were obtained from the third order virial coefficients (A 11) 

assuming a geometric-mean combining rule. The authors recommend accounting for the 

polydispersivity of dextran in calculations for more accurate results. 

In a later section of the Haynes et al. (1989) paper, Flory-Huggins (F-H) 

interaction parameters for aqueous binary solutions of PEG 3350 and 8000 determined 

from differential vapor pressure data at 25 °C are reported. The parameters are shown to 

vary with the concentration of the polymer. The authors suggest that F-H theory is not 

applicable to PEG/water systems. 
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Diamond and Hsu (1989) reported phase diagram data at 4 °C for aqueous two 

phase systems composed of polyethylene glycol (PEG)/dextran/water. The systems studied 

were PEG 3400/dextran T-40, PEG 3400/dextran T-70, PEG 3400/dextran T-500, PEG 

8000/dextran T-40, PEG 8000/dextran T-70, PEG 8000/dextran T-500, PEG 20000/dextran 

T-40, PEG 20000/dextran T-70, and PEG 20000/dextran T-500 in water. The experimental 

phase compositions of the phases were determined through a combination of polarimetric 

and refractive index analyses. The dextran concentration was measured by polarimetry as 

it possesses optical activity. The PEG concentration was determined by refractive index 

measurements. 

Rathbone et al. (1990) reported weight-average molar masses and osmotic second 

virial coefficients obtained from LALLS measurements on binary aqueous solutions of 

eight nonionic polymers at 25 T. The polymers studied were poly(vinylpyrrolidone) 

(PVP- 10,PVP-24,PVP-40,PVP-360), poly(vinyl alcohol) (PVA- 14, PVA-7 8, PVA- 108), 

methylcellulose (MC-4 1,MC-63 ,MC-86), methoxypoly(ethylene glycol) (MOPEG-0.5, 

MOPEG-2000, MOPEG-5000), dextran (T-10, T-40, T-70, T-500), aquaphase PPT, 

bermocoll E, Ficoll. In binary aqueous solutions the concentrations of optically active 

polymers were determined with polarimetry and those of nonoptically active polymers 

through size-exclusion-high-performance-liquid-chromatography (SE-HPLC). 

The following expression (osmotic virial expansion) was used for the chemical 

potential, p, of the solvent for dilute binary aqueous solutions 
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The second osmotic virial coefficients and weight-average molar masses of the polymers 

1 
U I 

= R T V'c + Ac. + A 2) 
(2.3) 

were calculated from LALLS data in combination with equation 2.3. The authors also 

report cross second osmotic virial coefficients for several ternary systems at 25 °C. 

LALLS measurements on ternary (polymer/polymer/water) aqueous systems were made 

for this purpose. 

Rathbone et al. (1990) have compared the accuracy of their LALLS data with that 

reported by Edsman et al. (1987) for dextran T-40 and T-70. Weight-average molar 

masses agree to within 13% and osmotic second virial coefficients to within 1%. They 

have also compared the measured solvent (water) vapor pressures for the dextran T-

70/water system at 25 °C with values calculated using the osmotic virial expansion 

truncated after second order terms. The deviations between calculated and experimental 

values are significant for higher polymer concentrations (approximately > 10 weight% 

polymer). The authors conclude that higher order terms are required for accurate 

representation of data at higher polymer concentrations. They also recommend the use of 

LALLS experiments for determining the weight-average molar mass and osmotic second 

virial coefficient of a nonionic water soluble polymer. 

Connemann et al. (1991) report tie-lines in the system poly(ethylene 

glycol)/dextran 500000/water at 0, 20 and 40 °C. The concentrations of the polymers were 

measured by size exclusion chromatography (SEC). The weight-average and the number-

average molar masses of the polymers are also reported. The average molar masses of 
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dextran in the phases (corresponding to tie-line length and temperature) are reported. 

Tables of the complete data set, including the molar mass distributions of dextran, are 

available in supplementary material. 

Grol3mann et al. (1993) have reported ternary phase equilibrium data for 

poly(ethylene glycol) (PEG)/dextran/water systems. The experimental water activities for 

binary aqueous solutions of PEG and dextran are also reported. The experimental data are 

presented in the form of graphs. The polymers studied were PEG 6000 and 35000 and 

dextran T-500 at 20 T. Vapor pressures for determining experimental water activities 

were measured by an isotonic method. Phase equilibrium measurements involved 

polarimetry for dextran and UV/VIS spectroscopy analysis for PEG. A virial equation like 

expression for the Gibbs free energy similar to Pitzer's equation for electrolyte solutions 

(Pitzer,1973) was utilised to correlate and predict the vapor pressure data and ternary 

liquid-liquid equilibria (LLE). The expression is given by 

G' 
nR T - EE  L A. i Ni in& . N. + E B.. k N 1n P in Nk Mk (2.4) 

where, N is the degree of polymerisation of component i, in1 is the molality of component 

i and n is the number of moles of water. The coefficients A11 and B11 were fitted to the 

binary vapor pressure data of PEG 6000 and dextran T-500 aqueous solutions. The model 

was able to correlate the experimental water activity data very well for these systems. It 

was also able to predict the activity of water for the system PEG 35000/water. The cross 

coefficients Aij, B11 and Bijj were fitted to LLE data. The calculated phase diagrams for the 
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aqueous polymer systems PEG/dextran/water match the experimental phase diagrams well. 

Gaube et al. (1993) reported measurements of water activity above various binary 

and ternary aqueous solutions of poly(ethylene glycol) (PEG) and dextran. The polymers 

used were PEG 200,600,1550,3000 and 6000 and dextran 40000, 70000, 110000 and 

500000. The water activity above the binary solutions was measured at 20, 40 and 60 °C 

by vapor pressure osmometry in all cases and by membrane osmometry for certain dilute 

dextran solutions. The data for the binary mixtures were correlated with high precision 

by equations of the form 

in a1 = -V1M1 (_ C __ + A c + Aiii c) 
nj 

(2.5) 

where the subscript (1) refers to water and (i) refers to the polymer. M j is the number 

average molar mass and ci is the concentration of component i. The original data are not 

presented in the paper but the coefficients A1 and A111 and the number average molar 

masses of the polymers, M 1, were fitted to the activity data and are tabulated at each of 

the three temperatures studied. Gaube et al. also presented values for the specific volumes 

of PEG and dextran (in units of cm3/g) that were used in calculating the mixture volumes 

that enter the concentration terms. The paper also reports that the measurements of water 

activity were made for the ternary system PEG 3000, dextran 110000 and water over the 

homogeneous liquid range up to a polymer weight fraction of 30 mass percent and at 20, 

40 and 60 °C. The water activity data were correlated with a ternary version of the 

osmotic virial equation with parameters A23, A223 and A233 being fitted to the ternary data. 
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The coefficients are given in the paper and the original data are available in 

supplementary material. 

The authors compared their water activity data for the system dextran 

500000/water at 20 °C with the data reported by Haynes et al. (1989) and by Zhu et al. 

(1992). The latter set of data covers a wider range of polymer concentration but within 

the range of overlap compares very well with the data of Gaube et al. However, the data 

of Haynes et al. show a significantly lower water activity than was measured by Gaube 

et al. 

Bae et al. (1993) reported LLE and VLE data for polystyrene (molar mass 

100,000)/cyclohexane and polyethylene glycol (molar mass 8000)/water systems. They 

have applied an extended version of the Flory-Huggins equation to both VLE and LLE 

calculations involving several polymer/solvent systems. In their work, the Flory-Huggins 

interaction parameter was given an empirical temperature and composition dependence 

in order to fit the experimental data. The parameters of the model are reported. The 

calculated results show very good agreement with the experimental data in most cases. 

As mentioned above, the modelling efforts in this area have primarily revolved 

around two approaches. The first approach has been the application of Flory-Huggins (F-

H) lattice theory [Flory (1953)] to polymer-water systems. The latter approach has utilized 

the osmotic virial equation (OVE) some examples of which have been discussed above. 

The original F-H theory is a classical statistical mechanical theory and accounts 

for the macroscopic behaviour of a solvent-polymer water system through interactions 

between solvent molecules and polymer segments and polymer-polymer segments. An 
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excellent qualitative analysis of the theory for polymerl-polymer2-water systems is 

available in the literature [Scott (1949)]. Scott has demonstrated the ability of the F-H 

theory to describe many qualitative features of polymer/polymer/solvent systems. In recent 

years the quantitative reliability of the theory for describing the thermodynamic behaviour 

of polymer-water has been tested by Gustafsson and Wennerstrom (1986) and by Kang 

and Sandler (1987). 

Gustafsson and Wennerstrom (1986) have investigated the molecular mechanism 

leading to phase separation in aqueous two-polymer systems. They have analyzed two 

explanations for describing the phase separation phenomenon in these systems- (i) from 

virial expansion and, (ii) from the Flory-Huggins (F-H) theory. 

The first explanation is due to Edmond and Ogston (1968). They employed a virial 

expansion (up to and including second order terms) for a thermodynamic description of 

phase separation. In their work the chemical potential of the solvent, in this case water, 

is given by the expression 

= 
RTM1 c 2 d 2 
  (in2 +m3 •_m2 +m3 +ani2m3) 
1000 

(2.6) 

where, 2 and 3 refer to the two polymers and c and d are the second virial coefficients 

of binary systems and a is the interaction coefficient for the two polymers. mi is the molal 

concentration. Gustafsson and Wennerstrom pointed out that though the approach is 

justified for dilute polymer solutions, its use is not appropriate at semi-dilute 

concentrations (5-15% (w/w) polymer) when the phase separation occurs. The "virial 
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coefficients" are properly viewed as empirical parameters fitted to experimental data. In 

their interpretation, Edmond and Ogston (1968) treated the phase separation phenomenon 

as a consequence of the size and shape of the polymer molecules by considering only the 

excluded volume contribution to virial coefficients. This interpretation is also questioned 

by Gustafsson and Wennerstrom (1986). 

The second explanation for the phase separation phenomenon (Flory-Huggins 

theory) describes the phenomenon in terms of interaction parameters Xjj. These can be 

related to enthalpic molecular interactions (segment-segment, solvent-segment 

interactions). The derivation of F-H theory takes into account the flexibility of polymers 

in the entropy of mixing term. Gustafsson and Wennerstrom (1986) used the F-H theory 

for correlating the phase equilibrium data of the PEG 6000iDl7/water system at 20 °C 

and obtained a reasonable quantitative fit. The experimental data of Albertsson (197 1) was 

used. Gustafsson and Wennerstrom point out that although the F-H theory gives a good 

qualitative description of polymer water systems and a satisfactory quantitative description 

of phase equilibrium of the system mentioned above there are problems associated with 

its application to these systems. The first one stems from the assumption of equality of 

volume of the water and a segment (monomer) of the polymer. The second problem is 

a consequence of the structural nature of water. The interaction parameter X would have 

to be interpreted differently for polymer-water systems. Its nature would be free energy 

type rather than enthalpic only because solvation of a monomer unit involves many 

solvent molecules with the accompanying changes in the degrees of freedom. 

At the end of their paper, Gustafsson and Wennerstrom (1986) conclude that 
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interactions between polymer units are more important than the excluded volume concept 

for a description of phase separation phenomenon. 

Kang and Sandier (1987) have employed the Flory-Huggins lattice theory for 

calculating phase diagrams involving PEG/dextran/water systems at 273 K and 293 K. 

The systems studied by them were PEG 6000/dextran(17,24,37)/water. The experimental 

data of Albertsson (1971) was used. The F-H interaction parameters for these systems are 

presented. Parameter estimation was done by two approaches (i) by treating all 

parameters as adjustable and fitting them to ternary equilibrium data and, (ii) by fixing 

one a priori and estimating others. Calculated phase diagrams with parameters obtained 

using the first approach for PEG 6000/dextran (17,24,37)/water systems at 293 K are 

shown. The match between experimental and calculated values is satisfactory. 

Although Flory-Huggins theory has been successful at describing thermodynamic 

properties of polymer-water systems, adaptations have been necessary to enable the 

description of lower critical solution temperature (LCST) behaviour of polymer solutions. 

There have been attempts at modifying the theory to overcome such limitations and there 

are successful efforts in literature. Two of the recent successful efforts are described 

briefly below. Yu et al. (1992) have presented a thermodynamic model to account for 

phase separation in binary aqueous solutions of polymers. Their model consists of two 

contributions - (i) a chemical contribution and, (ii) a physical contribution. T h e 

chemical contribution accounts for hydrogen bonding (orientation dependent effects) as 

well as the entropy of mixing. They assume a cross association or solvation reaction 

(through hydrogen bonds) between solvent and solute. It is further assumed that only one 
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polymer molecule associates with several solvent molecules. The equilibrium constant for 

the cross association reaction is related to standard enthalpy (iH°) and entropy of 

association (AS'). The excess entropy of mixing is accounted for by a modified F-H 

theory. The modification involves raising n (the ratio of the molecular volume of the 

solute to the solvent) to the power 0.75. This would give a lower entropy of mixing as 

effectively the chain length of the polymer is reduced. The physical contribution accounts 

for intermolecular interactions and for this purpose the NRTL equation (Renon et al., 

1968) was used. The parameters in the NRTL equation were given inverse temperature 

dependence. 

For each binary pair the model used by Yu et al. (1992) has six parameters, 

i.e.4H°, S°, two average association numbers (numbers of molecules involved in the 

cross association reaction), and two NRTL parameters. As mentioned above the 

association number for the polymer was fixed at one for this work. The remaining five 

parameters were estimated by fitting the model to the experimental data. The experimental 

data of Saeki et al. (1976) and Malcolm and Rowlinson (1957) were used. The agreement 

between calculated and experimental mutual solubility curves for binary aqueous solutions 

of polypropylene glycol and polyethylene glycol was found to be good. 

Cheluget et al. (1993) have modified the Flory-Huggins-Goldstein model to 

describe closed loop phase diagrams of fourteen binary aqueous systems (hydrogen 

bonded) containing solutes ranging from high molar mass polymers such as PEG to those 

having a moderate molar mass such as nicotine. The hydrogen bonding aspect has been 

incorporated into the model through the interaction parameter X. Following the work of 
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Goldstein (1984,1985) the interaction parameter has been assumed to have a free energy 

type nature and is taken to be temperature dependent. Cheluget at al. have employed three 

approaches to making X temperature dependent. 

The first approach (I) involves a single energetic level of hydrogen (H) bonding, 

the second (II) involves two energetically different levels of H-bonding in the solution. 

The third (III) employs a polynomial function for the temperature dependence of X. (I) 

requires determination of four parameters and the other two an additional two parameters 

i.e., six in all. An interesting feature of the work Cheluget et al. is the use of an effective 

r (ratio of molar volume of the polymer to the solvent) for accurate representation of 

experimental data. They have demonstrated two ways of calculating r - (i) from critical 

compositions and, (ii) from two points on the experimental coexistence curve. The 

appendix to the paper of Cheluget et al. (1993) contains a method for estimating 

temperature independent parameters. The parameters and effective r's for fourteen binary 

systems are contained in the paper. Comparisons between experimental and calculated 

phase diagrams and experimental and calculated values of (T) are shown for various 

systems. Model III (a fifth order polynomial function) was found to be superior in fitting 

(T) to temperature. For calculating saturation curves, models If and III are only 

marginally better than model I. An important conclusion of their work is the adequacy of 

the effective value of r over the whole temperature range between lower and upper 

critical consolute temperatures in view of the polydispersivity of polymers. There are, 

however, up to five parameters used to fit the mutual solubility data for a binary pair. The 

experimental data of Saeki et al. (1976) and Sorensen et al. (1980) were used in this 
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work. The osmotic virial equation (OVE) is also derived from statistical mechanical 

considerations. It was first employed by Edmond and Ogston (1968). Their approach has 

been discussed above. At this point, only their computational scheme will be highlighted. 

The condition of phase equilibrium is the equality of chemical potentials of components 

in the two phases and is given by 

I II 
P1 P1 :i=1,2,...,n. (2.7) 

where n refers to the number of components andl and II to the phases in equilibrium. For 

a three component two-polymer aqueous system there are three equations and four 

unknown quantities (molalities of the two polymers in the two equilibrium phases). By 

choosing a suitable value of, say, m21 the other three molalities can be calculated from the 

three equations. 

In recent years OVE has been used by King et al. (1988), Cabezas et al. (1989, 

1990), Haynes et al. (1989) and Gaube et al. (1992). The first three groups have used a 

virial expansion truncated after the second order terms while the last group has taken the 

virial expansion up to the third order terms. The work of King et al. has been discussed 

above. 

Cabezas et al. (1989, 1990) have developed a model for calculating the phase 

diagrams of two-polymer aqueous two-phase systems from the solution theory of Hill 

(1957,1959). The model gives chemical potentials in terms of isobaric isothermal osmotic 

virial coefficients. The authors present predictive expressions for the dependence of these 

coefficients on molar mass and polydispersivity based on Renormalization Group theory. 
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For a two-polymer system their model contains three monomer interaction coefficients 

and two scaling exponents. The experimental data used was mainly taken from the works 

of Albertsson (1986) and King et al. (1988). The computation scheme employed was 

similar to that of Edmond and Ogston (1968). They report good results for calculated 

phase diagrams of four polymer/polymer/water systems. A statistical mechanical analysis 

was also offered by Forciniti and Hall (1990). 

Haynes et al. (1989) rationalize their model on the basis of McMillan-Mayer 

solution theory. They report good results for phase equilibrium calculations involving 

PEG 8000/Dextran T-500/water system containing 50 mM KH2PO4 at 25 T. Osmotic 

second virial coefficients used in their model were determined according to the protocol 

of King et al. (1988). 

Gaube et al. (1992) have employed their version of OVE for phase equilibrium 

calculations. They have presented results for PEG 3000/dextran 110000/water system at 

293.15 K with and without accounting for polydispersivity in their calculations. The 

match between experimental data and calculated values is good for the monodisperse case. 

The match is further improved on inclusion of the polydispersivity of dextran in 

calculations. This suggests that polydispersivity of polymers may be an important factor 

in treatments intended to be quantitative. The parameters of the model were determined 

from VLE measurements of Gaube et al. (1993). 

It is unquestionable that OVE has had significant success in predicting phase 

diagrams for ATPS. However, the claim of supporters of OVE as to the correct 

description of the mechanism of phase separation has to be treated with caution as the 
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virial coefficients may be no more than empirical parameters [Albertsson (1971), 

Gustafsson et al. (1986) and Baskir et al. (1987)]. 

Kang and Sandier (1987,1988) have employed the UNIQUAC equation for phase 

equilibrium calculations involving two-polymer aqueous two-phase systems. They report 

good results for the PEG/dextran/water systems studied.' They have also incorporated 

polydispersivity into phase equilibrium calculations (1988). Their approach for 

incorporating polydispersivity would be useful for other models as well. The experimental 

data of Albertsson (1971) was used in their work. 

2.2 Bioparticle partitioning in polymerl-polymer2-water systems 

King et al. (1988) reported experimental protein partition coefficients for albumin, 

lysozyme and cz-chymotrypsin in aqueous two phase systems (ATPS) containing dextran 

(T-70,T-500)/PEG (3350,8000)/water at 25 T. Osmotic second virial coefficients for 

aqueous mixtures containing proteins, salts (KC1, KH2PO4 and K2SO4 at concentrations 

50 and 100 mM) and several combinations of polymer-protein pairs are also reported. In 

addition to these data the paper contains data on the measured electrochemical potential 

difference between the two phases. LALLS measurements were made on binary and 

ternary aqueous systems to determine virial coefficients. Experimental protein partition 

coefficients were determined from ultraviolet spectrophotometry. Liquid scintillation and 

voltametry were employed to determine salt partition coefficients and the electric-potential 

difference between the phases respectively. The authors used the following expression for 
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the chemical potential of the protein (p) 

APP =RT(lnmP +app mp +a2p m2 +a3p m3 )+zp F4 (2.8) 

The last term represents the experimentally measured electric-potential difference between 

the two phases. The authors report that inclusion of this term was necessary for accurate 

representation of experimental protein partitioning data. Salt and water have been treated 

as a pseudosolvent in their development. They point out that this is not theoretically 

correct as salts partition between the phases and therefore the standard state is not the 

same between both the phases. The match between calculated and experimental protein 

partition coefficients is very good with their approach. 

Diamond and Hsu (1989) report experimental partition coefficients for several 

dipeptides and proteins in PEG/dextran/water systems at 4 T. The dipeptides studied by 

them were gly-gly, gly-ala, gly-oc and gly-Nval which differ from one another by the 

addition of a CH2 group on the c-terminal amino acid residue. Nine different proteins with 

a range of molar masses from 13000 to 145,000 were studied by them. These were 

cytochrome, lysozyme, ribonuclease, trypsin, a-amylase, BSA, transferrin, ovalbumin and 

alcohol dehydrogenase. The Flory-Huggins theory was used to correlate the partitioning 

of biomolecules in ATPS. The proteins and dipeptides were treated as linear polymers. 

The following expression for the natural logarithm of partition coefficient of the 

biomolecule (from F-H theory after certain simplifying assumptions) was used by them 

where 0,1,2 and 3 refer to water, PEG, dextran and biomolecule respectively. K3 is the 
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cx 
ln(K3) = 31 + _____ + (cx1 

m1 m2 

- cc1 X13 - cc2 (1) X23 ] 
* ( I I! Wi - w1 ) 

+ 0 2 ) (x - 1) 
(2.9) 

protein partition coefficient. mi is the molar volume ratio of species i to that of water. w 

is the weight fraction. I and II refer to the two phases. a is the product pV. p is the 

density and V is the partial molar volume. 1 is given by (w211-w21)/(w111-w11). For a 

biomolecule partitioned in the tie-line compositions of a particular phase diagram the 

preceding expression can be written as 

ln(K3) = A ( w1' - w1 II ) (2.10) 

since the term in the square brackets is constant. 

The authors report an interesting trend for dipeptide partitioning. The natural 

logarithm of the partition coefficient {ln(K3) vs (w11' - w11) plot] for a particular dipeptide 

converged on a single line regardless of the PEG/dextran/water system used. This 

combined with the fact that the line passes through the origin (corresponding to 

partitioning at the plait point) suggests that only one experimental data point is required 

to obtain the slope A. However, the author of this review is of the opinion that it is not 

advisable to rely on a single experimental measurement. Diamond et al. have utilised the 

results of dipeptide partitioning to present a hydrophobicity profile for PEG/dextran/water 

systems. The partitioning of low-molecular-weight proteins in a particular 

PEG/dextran/water system was observed to follow a linear relationship with the tie-line 
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compositions. However, the partitioning of high-molecular-weight proteins exhibited non-

linearities. 

Grof3mann et al. (1993) report partition coefficients of three amino acids (glycine 

(Gly), L-glutamic acid (Glu) and L-phenyl alanine (Phe)) and some of their peptides in 

PEG/dextran/water systems at 20°C. The partition coefficients were measured by coupling 

derivative spectroscopy and HPLC. The experimental data were correlated with an 

empirical excess Gibbs energy model similar to Pitzer' s equation for electrolyte solutions 

(Pitzer 1973) and similar to the similar to the osmotic virial equation. The partition 

coefficient calculations were done by assuming that all ternary interaction parameters 

involving amino acids and peptides as well as binary interactions between those 

compounds were negligible. Electrostatic interactions were neglected and the remaining 

binary parameters were fitted to experimental daia. The authors also studied the effect of 

pH on the partitioning of Gly. For this purpose the glycine parameters were treated as pH 

dependent. GroI3mann et al. report very good correlation of partition coefficients with 

their model. 
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CHAPTER 3 

MODELLING 

Flory-Huggins lattice theory for polymer solutions forms the basis for all 

modelling effort in this work. The theory was applied in the original form along with 

variations of it to the systems of interest. The chapter begins with a section describing the 

Flory-Huggins lattice theory. Subsequent sections deal with variations of the theory that 

were employed to correlate and/or predict experimental data. 

3.1 Flory-Huggins Lattice Theory 

The Flory-Huggins (F-H) Lattice theory for polymer solutions was proposed 

independently by Flory and Huggins in 1942. They visualised a polymer solution as being 

approximately represented by a lattice as shown in Figure 3.1. In this scheme a cell of 

the lattice can be occupied by either a solvent molecule or a polymer segment. The 

different ways of arranging the polymer and solvent molecules on the lattice give rise to 

the combinatorial or configurational entropy of the system. The total number of 

arrangements is determined from statistics. The polymer is assumed to be a randomly 

coiling molecule. The expression for the combinatorial entropy of mixing (,S) for a 

binary solution (solvent (1), solute (2 }) is given by 

ASC = -R (ii1 In + n2 In l2) 

where, 

(3.1) 
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Figure 3.1 

Representation of polymer and solvent molecules on the lattice 
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R = gas constant 

ni number of moles of component i 

= volume fraction of component i 

= 

r1 number of segments on a molecule of component i. r has a value 

of unity for the solvent monomer. ri can be taken as the ratio of the 

molar volume of the solute to that of the monomer solvent. 

It is to be noted that \S represents the entropy change on mixing because of the 

different ways available for arranging the molecules comprising the solution on the lattice. 

The interactions between neighbouring segments or molecules are not included in the 

expression. 

The intermolecular interactions in the solution are represented by the heat of 

mixing zHM. /HM  is a consequence of replacing some like contacts (i.e., contacts between 

like molecules or segments) by an equal number of unlike contacts (i.e., contacts between 

solvent molecules and polymer segments). In the development of the theory only the first 

or nearest neighbour contacts are assumed to be of importance. The expression for LHM 

of a binary polymer solution is 

LXHM = R T x n1 2 

where, 

T = temperature 

= Flory-Huggins interaction parameter 

(3.2) 
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The F-H parameter is given by the expression 

= (z zw12)/(RT) 

/w12 = w12 - (w 11+w22)/2 

z = coordination number or the number of nearest neighbours 

wij is the interaction energy associated with an i-j contact. 

The free energy of mixing (GM) for a binary polymer solution is obtained by 

combining equations 3.1.1 and 3.1.2 and is given by 

by 

GM 

RT 
= n1 in i+ 122 in +n142 (3.3) 

The free energy of mixing for a multicomponent solution from F-H theory is given 

M( nr 
RT E 

(3.4) 

where Xjj is the F-H interaction parameter for the th and jthl components. Xjj is equal to Xjj 

i.e., the interaction parameters are symmetric. 

3.2 Donohue's modification of ASc expression from Flory-Huggins lattice theory 

One of the assumptions of F-H theory is that the solute molecule is a random 

coiling molecule. Therefore the theory, in the strictest physical sense, is only appropriate 

for long chain molecules with very few constraints on the degrees of freedom. A segment 
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of the solute molecule when placed on the lattice can have at most one connection with 

already placed segments as shown in Figure 3.2. The development of the theory precludes 

the type of situation depicted schematically in the Figure 3.3. As a consequence, in 

physical terms, the theory is not applicable to rigid or bulky molecules which have 

constraints on degrees of freedom because of internal bonds. Also, the arrangement of 

segments is random. At lower concentrations of polymer it seems more probable that new 

segments of a polymer molecule added to the lattice would be found in the vicinity of the 

segments already present i.e., the polymer molecule would have a tendency to curl up to 

some extent. One is inclined to believe that in such a situation the F-H theory would 

overpredict the number of configurations or in other words the ASc obtained would be 

higher than what may actually be the case. 

Lichtenthaler et al. (1973) proposed an expression for the combinatorial entropy 

of mixing for molecules differing in size and shape with the purpose of overcoming the 

limitation mentioned above. Their work was based on lattice solution theory. However, 

their expression cannot be generalised to multicomponent mixtures (Lichtenthaler et al., 

1973; Donohue and Prausnitz, 1975). Donohue and Prausnitz (1975) suggested a simple 

modification of by inclusion of an exponent pi for obtaining the combinatorial 

entropy of mixing molecules that differ in size and shape. The exponent pi in their work 

was based on the work of Lichtenthaler et al, This approach is valid for both binary and 

multicomponent mixtures. The modified expression for the combinatorial entropy of 

mixing (AS) is given by 
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Figure 3.2 

Addition of a polymer segment to the lattice 
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Representation of a polymer molecule with internal hond ing 
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L\Sc 

R i=1 

n rp1 
nln(   ) 

P1 n. r 
I 

(3.5) 

Note that the quantity in the parenthesis of equation 3.5 is the modified volume fraction 

of component i. An upper limit of unity and a lower limit of, zero for the value of pi was 

suggested by them. With these limits, the expression for the combinatorial entropy of 

mixing interpolates between that for the ideal solution with 

LSc - n nl (  nz 
- -[ 1 in (  1 + 2 + in  1 + 

and the Flory-Huggins lattice solution with 

ASC 
= -[ n1 in Y, + n2 in Y. 

R 

(3.6) 

(3.7) 

This is in accordance with the observation of Hildebrand (1947) that equation 3.6 

gives a lower limit and equation 3.7 gives an upper limit for the combinatorial entropy 

of mixing. 

The modification essentially involves altering the value of r1. The dependence of 

ASc on r can be looked at in purely mathematical terms. The combinatorial entropy of 

mixing expression for a binary (solvent-polymer) system is 
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AS  n [ 1 1 
_=- n1 1n  1  +n n. 

2 r2 

1 2 r2 2 + n2 r2 ] R n +n  
(3.8) 

Note that r1(solvent) is unity. 

At a particular composition we can treat ASc as a function of r2 only. The 

derivative of z\Sc with respect to r2 is given by 

d L\S = n1n2 ( r2-1 ) 
dr2 R r2 (n1 + r2 n2) 

(3.9) 

The derivative is always greater than zero for r2 greater than or equal to 2. 

Therefore, ASc is a monotonically increasing function of r2. In other words the 

combinatorial entropy of mixing for a binary solution increases with an increase in r2 and 

vice versa. 

3.3 Composition dependent interaction parameter 

As can be seen from the discussion in Chapter 2, most of the data on polymer-

water phase behaviour is limited to relatively low concentrations of polymer. This is 

particularly true of the data taken on water activity in the solutions. However, the data 

of Malcolm and Rowlinson (1957) for PEG 5000 in water at 65°C, includes measurement 

of the water activity in solutions up to 99% polymer by weight. 

The Malcolm and Rowlinson data have been correlated in the past by Chen (1993) 

employing a model that combines Flory-Huggins model with the NRTL model [Renon 
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and Prausnitz (1968)]. The Flory-Huggins theory represents the configurational entropy 

of mixing in this model and the NRTL equation accounts for the local composition 

contribution from mixing solvents and polymer segments. Difficulties with matching these 

data and the observation of Flory (1953) regarding the compositional dependence of the 

interaction parameter have led to suggestions that the interaction parameter may be given 

a compositional dependence to match experimental data. Tompa (1956) has suggested 

a polynomial functional dependence of X on composition given by 

= a + b 0 2 + C 02 + 
(3.10) 

where, a,b,c..... are constants and 42 is the polymer volume fraction in the binary 

polymer/water mixture. 

For a linear composition dependence of X (retaining only the first two terms in 

equation 3.10) the expression for the activity of water is given by (after differentiating 

the Gibbs free energy of mixing expression with respect to the number of moles of water) 

In (water activity) = In (1 - 2) + (1 ) 2 

+ - b 

Here 2 refers to the polymer. 

(3.11) 



37 

3.4 Modelling of closed-loop phase diagrams 

A limitation of the Flory-Huggins lattice theory with the enthalpic term given by 

equation 3.2 is its inability to describe closed loop phase diagrams or in other words the 

inability of the theory to describe the phase behaviour of systems showing both lower 

critical solution temperature (LCST) and upper critical solution temperature (UCST). 

Earlier studies [Hirschfelder et al. (1937); Barker and Fock (1953)] suggest that this kind 

of behaviour is because of the presence of strong orientation dependent effects such as 

hydrogen bonding in aqueous solutions. Qian and co-workers (1991) have made X an 

empirical function of temperature and composition to fit closed-loop solubility curves. Bae 

et al. (1993) have simplified Qian's model by using a different composition functionality. 

Cheluget et al. (1993) have employed a temperature dependent X to describe behaviour 

of systems showing simultaneous LCST and UCST. 

In this section an alternative approach is presented to model the phenomenon 

mentioned in the preceding paragraph. It is proposed that r (chain length) be made an 

empirical function of temperature given by 

r(T) = d + e T +fT2 

and, following Qian et al., X be given the following temperature functionality 

(1) = a + b- + c in T 
T 

(3.12) 

(3.13) 

This method requires a knowledge of six parameters (a,b,c,d,e andf for a binary 
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system consisting of a long-chain solute and a monomer solvent. At least three of these 

can be determined from critical conditions. The other three can be treated as adjustable 

parameters for a binary system. Details of parameter estimation are contained in a later 

Section (4.2). 

3.5 Correlation of protein partitioning 

Protein partitioning in aqueous two phase systems (polymer l-po1ymer2-water) can 

be correlated with Flory-Huggins lattice theory. However, one objection to its use for this 

purpose is that proteins are globular molecules rather than random coiling polymers to 

which F-H theory is applicable. An approximate method for overcoming this objection 

to some extent is described in Section (3.2) where the use of an r (chain length) other 

than the ratio of the molar volume of the solute to the solvent is suggested. The details 

concerning the parameter estimation are contained in Section (4.3). Results of correlation 

for the partitioning of two proteins are contained in Section (5.4). 
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CHAPTER 4 

PARAMETER ESTIMATION AND COMPUTATIONAL TECHNIQUES 

This chapter contains details of techniques of parameter estimation employed for 

fitting various sets of experimental data. Section 4.5 of this chapter deals with the 

computational techniques employed for liquid-liquid equilibrium calculations. Section 4.6 

describes a method for characterising polydisperse polymers. 

The types of experimental data involved in parameter estimation were: 

(a) Water activities for binary polymer water systems. These could be experimental 

values or those from the virial equation. The virial coefficients were obtained from 

experimental measurements such as LALLS and ostnometric methods. 

(b) LLE data for binary (polymer-water) and ternary (polymer-polymer-water) 

systems. 

(c) Protein partition coefficients in aqueous two-phase systems. 

The parameter estimation techniques corresponding to the various types of data 

are covered in separate sections. The results of calculations with the estimated parameters 

are presented in chapter 5. 

4.1 Fitting water activity data 

When the data were measurements of the water activity in single-phase polymer-

water solutions, the objective function used was 
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O.F. = ndata ( In aexp In aal, )2 (4.1) 

where, a is the solvent (water) activity, exp refers to the experimental value and caic 

refers to the value calculated from the Flory-Huggins equation. The number of data points 

is ndata. 

4.1.1 Solutions with one polymer 

The activity in a solution with a single polymer is given by (assuming constant 

X) 

In a=In (1 2) +( 1 —!)2 
r 

(4.2) 

where, r is the ratio of the molar volumes of the solute to that of the solvent and is the 

polymer volume fraction. The value of r could be obtained from an apparent specific 

volume of the polymer as it exists in solution (Vs, cm/g) and its number average molar 

mass (Me, g/niol) 

VM r=  p p 
V1, M, 

(4.3) 

where, V is the water specific volume (1.00 cm3/g) and M is the water molar mass (M 

= 18.0 g/mol). 

In the original Flory-Huggins theory, the solvent was expected to be the monomer 

from which the polymer was composed. Then r was the "degree of polymerisation", i.e., 
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the number of monomers per polymer molecule. 

As was discussed in Chapter 3, in some cases r was treated as a fitting parameter 

available, along with X, to minimize the objective function in (4.1). 

In the attempt to fit the data of Malcolm and Rowlinson (1957), the interaction 

parameter was treated as linear in the polymer volume fraction 

= a + b 2 

Then equation (4.2) has to be modified to give 

(4.4) 

1 
In a1 =In (1 2) + (1 ) 22X b (4.5) 

4.1.2 Water activity in polymer-polymer-water solutions 

The data of Gaube et al. (1993) include measurements of water activity in 

polymer-polymer-water systems. In fitting these data the objective function (4.1) was also 

used. 

The equation for calculating the activity of a component (including the solvent) 

in a solution with several polymers in the same solvent is given in Appendix A3. 

4.2 Fitting liquid-liquid equilibrium data 

Liquid-liquid equilibrium (LLE) data are available for binary-polymer systems. 

Some of these systems show closed-loop phase diagrams with a lower critical solubility 

temperature and an upper critical solubility temperature bounding the interval where two 
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liquid phases can exist. A number of ternary polymer-polymer-water binodal curves have 

also been reported. 

Two objective functions (OF) were used for parameter estimation involving LLE 

data. These were 

and 

OF(1) = : i II:: (X!cXexP)2 

x +x caic exp 

OF(I1) = EE2 (XcajcXexp)2 
ndata 

(4.6) 

(4.7) 

ndata refers to the number of points. The summation is for all the components and phases 

over all the data points. OF(I) has been recommended by Kang and Sandier (1987) who 

estimated parameters for some ternary polymer-polymer-water systems. OF(II) was found 

to fit the experimental data better for systems containing higher molar mass dextrans such 

as dextrans 110000 and 500000. 

4.2.1 Binary systems with closed-loop phase diagrams 

Recall that in section 3.4 it was proposed that r be given the following temperature 

dependence 

r(T) = d + e T + f T2 

and X be given by 

(4.8) 
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= a + 4 + c In T (4.9) 

Two features of the Flory-Huggins theory reduce the number of adjustable 

parameters to three. The critical X is given by 

Xc = - (1 + r 

where c refers to the critical state. The critical r is given by 

3 
. (w1/w2) 

= 

(M1/M2) 

(4.10) 

(4.11) 

where wi and Mi are the weight fraction and the molar mass respectively [Cheluget et al. 

(1993)]. In equation (4.11) 1 refers to the solvent and 2 to the polymer or the long-chain 

molecule. Assuming that the LCST (TL), the UCST (Ta) and the two critical compositions 

are known, Xc and rc can be calculated. 

Let, 

Xc = a + - + C In TL 
TL 

and 

(4.12) 
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c a+ 4 -+cInTu (4.13) 

Using a guess for "a't the previous two equations can be solved to give 

and 

( XC - a) ( T -Ta) 
TL In TL - Tu In T 

b ( - a) TL - TL In TL 

Treating e and f as adjustable parameters we get 

d = r - e TL + I T 2 

(4.14) 

(4.15) 

(4.16) 

Three parameters (a,e and D are available to match compositions in coexisting phases. 

The others (c,b and d) are found from equations (4.14)-(4.16). 

A disadvantage of this approach is that the mutual solubility curve is very flat in 

the critical region and the critical compositions are known only approximately. Objective 

function I (equation 4.6) was employed for parameter estimation. 

4.2.2 Ternary systems (polymerl-po1ymer2-water) at constant T and P 

The LLE (liquid-liquid equilibrium) data of King et al. (1988), Connemann et al. 

(1991) and Gaube et al. (1993) have been correlated in this study. 
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Correlation and/or prediction of ternary LLE data requires estimation of at least 

three parameters; i.e., two water-polymer interaction parameters and one polymerl-

polymer2 interaction parameter. All three parameters can be fitted to ternary LLE data. 

Alternatively, the polymer-water parameters can be obtained from binary data e.g., binary 

water activity data (refer section 4.1) and then the polymer l-po1ymer2 interaction 

parameter () can be obtained from ternary LLE data. The ratios of polymer molar 

volumes to the water molar volume (r1 and r2) can be assumed known from the number 

average molar mass and the apparent liquid molar volumes of the polymers. In later 

discussions, correlations obtained by taking r1 and r2 as known are referred to as 1FHP 

theory (one Flory-Huggins parameter). 

An alternative is to treat r1 and r2 as free parameters, as well as the three X values. 

There are, in the procedure, two parameters (r and ) per binary pair. This approach is 

referred to, in what follows, as 2FHP theory. 

Both objective functions, (4.6) and (4.7) have been used in correlating data. 

4.3 Protein partitioning 

The efficacy of Flory-Huggins theory in correlating the partitioning of proteins in 

aqueous two-phase systems was tested. The experimental data of King et al. (1988) was 

used for this purpose. 

Neglecting electrostatic forces (note that the experimental data involved the 

presence of small concentrations of salts in the solution) and using molar volume ratios 

as r's for the two polymers values of the following parameters are required to calculate 
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protein partition coefficients: 

(i) Three interaction parameters corresponding to the two polymers and water. 

These were obtained by fitting the F-H theory to ternary (polymerl-po1ymer2-water) two-

phase data. 

(ii) Interaction parameters to represent interactions between ions and molecular 

species. These were set equal to zero. 

(iii) r parameter for the protein and three interaction parameters to represent the 

interaction between proteins and water and the two polymers. 

King et al. (1988) did not present data for the water-protein equilibria but rather 

correlated data with a virial type equation. For water with one dissolved polymer (protein) 

the solvent (water) activity is given by 

in as = -V c1 ( 1 + A11 a,) (4.17) 
M N 1 

where i refers to the solute. M vi is the molar mass of the solute. c, is the concentration of 

the solute. V refers to the molar volume. A,, is the virial coefficient. 

The values of Ina were obtained from the previous equation (4.17) using the virial 

coefficient (A,) presented by King et al. Equation 4.2 for water activity (Flory-Huggins 

theory) in a polymer-solvent system was then fitted to Ina treating both r and X (protein-

water) as parameters. The objective function given by equation 4.1 was employed for 

parameter estimation. V was fixed at 18 cm3/mol. The partial specific volume of water 

was assumed to be unity and that of the proteins was assumed to be 0.7 cm3/g (since the 
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partial specific volumes of proteins are in the vicinity of 0.7 cm3/g). The partial specific 

volumes are required for the conversion of ci to weight fraction and vice versa. 

The remaining two interaction parameters (corresponding to the interactions of the 

proteins with the two polymers) were obtained from experimental protein partition 

coefficient data. The parameter estimation procedure is described below. 

Experimental data were available for polymerl -po1ymer2-water-protein-salt 

systems for the estimation of protein-polymer interaction parameters. The amounts of 

protein and salts in the system were very small (0.5-2.5 mg/ml for the protein and 50 mM 

for the salt). The experimental data were in terms of tie-line lengths and corresponding 

protein partition coefficients. The equilibrium phase compositions of polymers and water 

can be obtained from tie-line lengths as the compositions are not significantly different 

from those in ternary polymerl-polymer2-water systems because of the low concentrations 

of other solutes. The equilibrium phase compositions of polymers and water are required 

for the estimation of protein-polymer interaction parameters. 

The following objective function was employed for parameter estimation 

OF = ( In K ca/c - In K exp (4.18) 

where Kp is the protein partition coefficient. In order to obtain Kpcajc a feed corresponding 

to the experimental tie-line was flashed. Instead of using the feed compositions provided 

by King et al., feed compositions lying on a line passing through the origin and the 

calculated plait point and cutting across the experimental tie-lines was chosen. This is 

illustrated in figure 4.1. 
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y 

x 

Figure 4.1 

Calculation of feed compositions 
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Let the desired line be 

= k (4.19) 

where, 

k= 
Wi6 

and where c refers to the calculated plait point. w is the weight fraction. 

and 

Now for a particular tie-line 

w1 = L x1 + (1 - L ) y1 

w2 = L x2 + (1 - L) y2 

(4.20) 

(4.21) 

(4.22) 

where the x; and the yj are experimental equilibrium phase compositions (weight fractions) 

and the wi are the feed compositions. L is the phase fraction. Subscripts 1 and 2 refer to 

the phase forming polymers. 

Equations 4.19, 4.20, 4.21 and 4.22 can be solved to give the phase fraction L 

which is given by 
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y2 -ky1 
L =   (4.23) 

k(x1 - y1 ) +(y2 -x) 

The w1's can now be calculated from equations 4.21 and 4.22. The feed compositions so 

calculated along with the small amounts of other solutes were flashed to estimate protein-

polymer interaction parameters. 

Note that this does not alter the computational results in any way as any feed on 

a tie-line will give two phases whose compositions are given by the ends of the tie-line. 

The partition of the protein is governed by the composition of equilibrium phases. This 

also facilitates the comparison of calculated and experimental protein partition coefficients 

based on the total amount of polymers in the feed in a consistent way. 

4.4 Minimization algorithm 

4.4.1 Method of Nelder and Mead (1965) 

The minimization algorithm of Nelder and Mead (1965) was employed for 

parameter estimation. This "downhill simplex method" requires function evaluations only. 

This method is slower as compared to some other minimization algorithms. However, this 

was not a drawback for this research effort as the computational load was not very large 

and the algorithm was found to be robust and reliable. The subroutine given in Numerical 

Recipes (pages 292-293, 1990) was used as is except when single parameter estimation 

was done. For the latter purpose it had to be modified. 

A simplex is geometrical figure the dimension of which is equal to the number of 
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parameters to be estimated. When there is a two parameter search the operating simplex 

is a triangle. The objective function is evaluated at the vertices of the simplex. The 

tolerance for estimation is given by 

to! = 2(yhj I - I10I) 
I(YhI + 

(4.24) 

where yhi is the highest value of the objective function and Yi0 is the lowest value of the 

function. For correlating binary water activities tol=10 12 was used. For estimation 

involving flash calculations tol=10 6 was used. 

4.4.2 Confidence limits 

Confidence ellipses were calculated according to the scheme outlined in Numerical 

Recipes (page 537, 1990). 

The objective function employed is given by 

OF =Endata In a, exp - In a1 calc]2 

Gi 

ai was fixed at 0.02. Variance-covariance matrix had elements 

a = 12(OF) 
kl 2 apkap, 

(4.25) 

(4.26) 

The parameters (for two parameter estimation) are pl=X and p2=r. The derivatives 

of 1na1 caic were found analytically. 
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The equation for the confidence ellipse is 

L =pT[alp (4.27) 

where p is the vector containing the parameters and A=6.17 for the 95.4% confidence 

ellipse. 

4.5 Liquid-Liquid equilibrium calculations 

The liquid phase compositions in the objective functions of (4.6) and (4.7) had to 

be computed repeatedly during the parameter estimation process. For each trial set of 

parameters "flash" calculations had to be performed at each of the compositions where 

data were to be fitted. 

The flash calculations proved to be difficult for several reasons. Care had to be 

taken at every step with machine precision and round off error since mole fractions of the 

polymers were always very small (since the molar masses are very large) and the 

activities and activity coefficients were extremely large or small. The equilibrium ratio 

of mole fractions of a component in the two phases is given by 

xjfXII K1 ', y / 4' (4.28) 

where the subscripts I and II refer to the phase and y, is the activity coefficient of 

component i. These K1 equilibrium ratios also ranged over many orders of magnitude. 

In addition to these precision problems, problems arose with use of conventional 
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flash calculation procedures. 

4.5.1 Damped successive substitution 

In flash calculations a mixture with known mole fractions, ;, is assumed to 

separate into two equilibrium phases with mole fractions x/ and x/'. The fraction of moles 

in phase II is P. 

At equilibrium, the ratio of the mole fractions in the two phases must be given by 

equation (4.28), which requires 

a,' = x,"y = a/' = Xi//y ' (4.29) 

The "successive substitution" procedure for solving the combined mass balance 

and equilibrium equations has been shown to converge to a minimum in the Gibbs free 

energy (when it converges) and generally only suffers from slow convergence near the 

critical points in calculations on hydrocarbon mixtures where it is most widely used (see 

Heidemann, 1983). 

The procedure involves estimating the K1 equilibrium ratios. From the estimated 

values, the mole fractions in the phases can be calculated in terms of the phase amounts. 

The fraction in phase II is found as the solution to the equation 

E, (x111-x,' z 1 (K , —1) 
) = = E1  (1 -13) + Kip 

which is solved assuming constant K1. 

The mole fractions are given by 

(4.30) 
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zi 

(1-13) + Kip 
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(4.31) 

= K, x,' (4.32) 

where the K1 are the estimated values. 

Given the mole fractions, the activity coefficients in the phases can be found and 

new values of the K1 equilibrium ratios can be calculated from equation (4.28). With new 

K1 values equations (4.30)-(4.32) can' be solved again for updated phase amounts and mole 

fractions. 

The iterative procedure is equivalent to taking 

a1' 
K;. = K;(OICJ) 

af 
(4.33) 

where old refers to the value of K1 in the previous iteration. 

Surprisingly, this procedure simply did not work when the activity coefficients 

were obtained from the Flory-Huggins model. No matter how close to the converged 

solution the K1 values are initiated, the successive iterations tend towards an oscillatory 

state where first the whole mixture is in phase I and then, in the next iteration, in phase 

II. 
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An analysis of the equations by Michelsen (1993) demonstrates that successive 

substitution simply cannot work for the Flory-Huggins model with the parameters needed 

to describe the aqueous two-phase polymer systems. No matter what initiation strategy 

is used, the procedure will show oscillatory divergence. 

On Michelsen's (1993) suggestion a "damped" version of the procedure was 

implemented and was made to work. The working equation employed is 

= (al)DF K 

Till 

where DF is the damping factor with a value less than unity. A DF=O.07 was used as the 

damping factor. This value is quite arbitrary. It was observed that with an increase in the 

molar mass of the polymer the value of the damping factor decreased for carrying out 

equilibrium calculations successfully. This modification enabled successful convergence 

of successive substitution by stabilising the flash calculations. The modified procedure can 

be and was used with the incorporation of an acceleration technique (Crowe and Nishio, 

1975) to give faster convergence. However, convergence was sometimes very slow and 

unpredictable. Convergence was taken to be 

(In a11' - In a,' )2≤c 

where c was 1012. 

(4.35) 
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4.5.2 Free energy minimization (Heidemann, 1974) 

An alternative to the successive substitution flash calculation procedure is the flash 

calculation procedure of Heidemann (1974). Heidemann's algorithm can be used for 

multi-phase flash calculations also. This algorithm was also employed to perform 

equilibrium calculations with Flory-Huggins theory. The scheme was robust, since for any 

initial guess it always moved towards a Gibbs free energy minimum. However, the 

convergence became extremely slow as the equilibrium compositions were approached. 

The mode of implementation of Heidemann's algorithm is described below. 

Let the two phases be represented by I and II. Let pt's and q1's be the 

corresponding mole numbers. Let rn's be the total mole numbers of component i. The 

Gibbs free energy of mixing of the systems was calculated as 

AG 
.ITT , ( p, Iha, + q1 ma,") (4.36) 

The calculation of new mole numbers depended on the values of the activities (a). 

If a' was greater than a,", pi's were treated as independent variables and were updated as 

p !+l = p,i ( 
a,' 

(4.37) 

where j refers to the iteration count and At is the dummy variable in the algorithm. 

In this case the new q,'s were calculated as 
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q/ 1 = rn1 - p/1 (4.38) 

However, if a/' was grater than al, the q' s were treated as independent variables and the 

new q1's were calculated as 

and the new pi's were calculated as 

= q1' ( 
a1 ll 

j+1 
P =rn,-q/ 

(4.39) 

(4.40) 

The value of At was varied as suggested by Heidemann and was permitted to 

increase so long as G decreased. For each iteration step, the calculated value AG was 

stored for the calculation of change in AG only if the current value was less than the 

previous value. This insured that the calculations moved towards a minimum of the Gibbs 

free energy. The calculations were begun with a small value of At, it being 0.002 or 

smaller. The value of At was never allowed to increase beyond 0.2. 

In some cases, the mole numbers were found to change extremely little between 

iterations and very many iterations were required to reach convergence. This procedure, 

however, was very useful early in the research before the difficulties with successive 

substitution were resolved. 
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4.5.3 Newton iteration 

Both the damped successive substitution method and Heidemann's method showed 

unpredictable or extremely slow convergence. Ultimately, convergence was obtainable by 

switching to the Newton-Raphson procedure when the convergence criterion of (4.35) was 

less than 1O-. 

Let I and II represent the two equilibrium phases. Let pi and q1 be the 

corresponding mole numbers in the two phases. The total number of moles of the jth 

component are given by rn. 

Conservation of mass gives for each component i, 

p, + q1 = rn1 = constant (4.41) 

Therefore, 

dpi = - dq1 (4.42) 

Let p the independent mole numbers. 

At equilibrium, 

AG ') I A!' 

7=V( )-V('r' )=O 
RT RT 

(4.43) 

f is the error vector. AG is the Gibbs free energy of mixing. V is the gradient vector. We 

solve for pi's in order to reduce the error vector to zero. 
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The Jacobian is given by 

2 AG' 2 
[ J11 = V(_RT + V(  R  (4.44) 

The alterations in pi given by Api can be found by solving the following set of 

equations 

[ J11 Inc x no [ ip1 Inc  1 [ fi Inc x 1= - 

The updated pi's are 

The updated q1's are 

P 
new =Pi old 

new q, =rn,-p1 new 

(4.45) 

(4.46) 

(4.47) 

The iterative procedure is continued until the elements of the error vector approach 

a preset tolerance. 

The Jacobian elements involve derivatives of Ina, with respect to the mole 

numbers. The required expressions are given in appendix A3. 

4.6 Characterising polydisperse polymers 

So far in all calculations involving polymers the polymers were treated as 
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monodisperse i.e., having a single molar mass. Number average molar masses of the 

polymers were used whenever available. Polydispersivity of polymers and its effect on 

phase equilibrium calculations has been the subject of some previous studies. Two recent 

works are those of Kang et al. (1988) and Gaube et al. (1992). Kang et al. represented 

polymer molar mass distribution through psuedocomponents and showed the effect of 

polydispersivity of polymers on the two phase equilibrium curve qualitatively. They 

employed the UNIQUAC equation for phase equilibrium calculations. Gaube et al. also 

used psuedocomponents to represent polydispersivity of polymers in phase equilibrium 

calculations with the virial equation. Their results show a quantitative improvement in the 

two phase equilibrium curve. The objective of the work pertaining to this section was to 

study the effect of polydispersivity of polymers on phase equilibrium calculations with 

Flory-Huggins theory using a pseudocomponent approach. The scheme for determining 

psuedocomponents is outlined below. 

4.6.1 Log-Normal distribution 

Logarithmic-normal (L-N) distribution is employed to represent the molar mass 

distribution of the polymer. L-N distribution is given by 

F(M)= 1  exp( 1 In  M  
(27U) 0.5 

(4.48) 

where, (F(M)/M)dM is the fraction with molar mass between M and M+dM, and M0 and 

are the parameters of the distribution. Sometimes in the subsequent discussion 2° will 
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be referred to as P. 

The number average molar mass (MN) and the weight average molar mass (Mm) 

are given by the following equations (after integration) 

and, 

=. fF(fv))dM 

r .iF(M dM = 1 

M0 exp( 132.._) 

M =   = M. exo(!132) 

Jo 

f-MF("dM 

F(M)dM ) ''4 
(4.50) 

From equations 4.49 and 4.50 the so called "polydispersivity parameter" b can be obtained 

as 

b = !M w = exp(.P_) 
MN 2 

(4.51) 

4.6.2 Determination of pseudocomponents 

Frequently experimental values of MN and M, are given, then the two parameters 

M0 and (Y or 13 can be found. 

Now F(M) has been used in this research to find pseudocomponents as follows: 

F(M) can be expressed as 
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1 92 
F(M)  exp(-_) (4.52) 

= (2it)°5 2 

where, 

= In(M/M0) (4.53) 

Note that equation (4.52) is the normal distribution for 0. F(M)dln(M) represents the mole 

fraction of the polymer between In(M) and ln(M)+dln(M). The mole fraction xi between 

In(M) and ln(M 1) is given by 

x = fm"'F("d1n(" (4.54) 

On a plot of F(M) vs dln(M) x1 is the area between In(M) and ln(M11). 

The variable in equation 4.54 can be transformed to give 

= 101 °"F(1cI9 (4.55) 

The xi's or areas for intervals on 0 can be found from the tables of the normal 

distribution. The average molar mass M for the interval In(M) to ln'Mj can be 

calculated as 



JnM = mM1 + tnM 1 
2 

or, 

Vi = (M1M 1)° 5 

M corresponds to x. 
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(4.56) 

(4.57) 

EXAMPLE 4.5.1  

Consider dextran 110000 with MN and Mjv equal to 64800 and 110000 respectively 

[Gaube et al. (1993)]. MN and M, along with equations 4.49 and 4.50 give M0 and a as 

49737 and 1.0288 respectively. Let us take 8 to extend from -3 to 3 i.e., from -3a to +3(F. 

Also, let the desired number of psuedocomponents be six. 

Now, 

M1 = M0 exp(-tp) (4.58) 

where, tj = -3, -2, -1, 0, 1, 2, 3. t represents to 8. 

The six xi's read from the tables of normal distribution (Handbook of tables for 

Mathematics, fourth edition, The Chemical Rubber Co., 1970) are (after normalising) 

0.0214, 0.136, 0.3413, 0.3413, 0.136, 0.0214. The corresponding average molar masses 

(M1) are 8069, 16702, 34571, 71556, 148110, 306564. The number average molar mass 
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for the polymer is given by 

MN = 'xMi (4.59) 

where n is the number of pseudocomponents. The calculated number average molar mass 

is 65539. The error in calculated MN is 1.14%. Hence, the number of pseudocomponents 

is sufficient. Also, the success of the proposed scheme in representing MN with a 

reasonable number of pseudocomponents is demonstrated. The weight fractions wi are 

given by 

(4.60) 

The w1's are 0.0026, 0,0347, 0.1805, 0.3736, 0.3081 and 0.1004. The calculated weight 

average molar mass is 109886 which is in excellent agreement with the experimental 

value of 110000. 

Once the pseudocomponents are determined the phase equilibrium calculations can 

be performed. To simplify the calculation procedure it can be assumed that for all 

pseudocomponents corresponding to a particular polymer same values of interaction 

parameters can be used or in other words the interaction parameters are assumed to be 

independent of chain length. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

The Flory-Huggins model has been used to correlate polymer-water phase 

equilibrium data of the several different kinds that were discussed in the previous 

Chapters. Following the pattern of Chapter 4, the results corresponding to different types 

of data are presented in separate sections. 

5.1 Fitting water activity data 

Water activity data of Gaube et al. (1993), Grossmann et al. (1993), Haynes et al. 

(1989) and Malcolm and Rowlinson (1957) have been correlated. The data are mainly for 

binary mixtures of one polymer (either PEG or dextran) in water but Gaube et al. also 

report water activity data for one ternary mixture. The data generally cover a limited 

range of polymer weight fraction in the solution with the exception of the Malcolm and 

Rowlinson (1957) data, which are is discussed in a separate section. 

5.1.1 Solutions with one polymer 

Gaube et al. (1993) studied solutions of several PEG and dextran polymers over 

a range of temperatures. The data they produced were obtained as "supplementary 

material" to their paper and have been reproduced in Tables A. 1 and A.2 in the Appendix. 

Gaube et al. (1993) correlated their own data with a version of the "osmotic virial 

equation" as was discussed in Chapter 2. (Their two virial coefficients are given in Table 

5.1 and 5.2). The data have been recorrelated with the Flory-Huggins model in two 



Table 5.1. Interaction parameters of PEG-water systems (Gaube et ai,1993). 

polymer T 
(°C) 

Mn Mn(eff) Aii* 

iO 

Aiii* 
102 

X(1FHP) (2FHP) err (1FHP) 
* io 

err (2FHP) 
*108 

PEG200 20 201 214.0 7.16 1.78 0.2752 0.3066 1.38 12.90 

40 174.0 5.64 1.61 0.3563 0.2938 0.707 0.944 

60 176.0 4.89 1.59 0.3816 0.3319 0.387 0.858 

PEG600 20 582 584.0 4.26 1.62 0.3747 0.3761 0.0201 0.207 

40 512.0 2.99 1.55 0.4375 0.3860 1.25 0.927 

60 440.0 2.92 0.88 0.4821 0.4073 0.676 0.152 

PEGI55O 20 1440 1480.0 3.10 1.54 0.4034 0.4133 0.0214 0.113 

40 1195.0 2.42 1.16 0.4568 0.4026 0.346 0.0706 

60 1038.0 1.46 0.91 0.5060 0.4250 1.037 0.9550 

PEG3000 20 2840 3238.0 2.72 1.63 0.4135 0.4438 0.0088 0.0378 

40 2307.0 2.37 1.00 0.4606 0.4053 0.101 0.0072 

60 1885.0 1.20 0.81 0.5172 0.4167 1.306 0.109 

PEG6000 20 7750 6957.0 2.60 1.26 0.4361 0.3974 0.137 0.207 

40 5534.0 2.25 0.97 0.4828 0.3688 1.18 0.024 

60 4081.0 1.53 0.54 0.5142 0.3533 0.661 0.043 

= F-H interaction parameter 
eff = estimated value. 
(1FHP) = estimation of x with M fixed at author's value. 
err = value of the objective function at the minima. 

M = number average molecular weight. 
A's = virial coefficients of Gaube et al. (1993). 
(2FHP) = estimation of both X and M. 



Table 5.2. Interaction parameters of dextran-water systems (Gaube et al., 1993) 

polymer T 
(°C) 

Mn Mn(eff) Aii* 
10-3 

Aiii* 
10 2 

X(1FHP) (2FHP) err (1FHP) 
*108 

err (2FHP) 
*109 

Dx40000 20 23600 30039 1.31 0.81 0.3918 0.4573 0.2887 0.6190 

40 26593 1.24 0.69 0.4235 0.45 19 0.235 0.0019 

60 25547 0.93 0.67 0.4449 0.4618 0.036 0.1950 

Dx70000 20 46300 42434 0.99 0.40 0.4550 0.4346 0.0683 0.3960 

40 33408 0.94 0.30 0.4852 0.4042 1.029 0.2540 

60 33122 0.72 0.28 0.4945 0.4297 0.795 3.720 

Dxl 10000 20 64800 46410 0.65 0.26 0.4969 0.4246 1.62 0.8560 

40 39667 0.76 0.24 0.5088 0.3863 6.430 0.3410 

60 46261 0.45 0.24 0.5188 0.4618 1.951 0.6880 

Dx500000 20 101000 74035 0.64 0.25 0.4994 0.4328 1.33 0.2840 

40 66922 0.57 0.23 0.5136 0.4316 1.882 0.1720 

60 58935 0.39 0.18 0.5197 0.4411 0.631 0.0107 

X 
M 
err 
eff 
A's 
(1FHP) 
(2FHP) 

= Flory-Huggins interaction parameter. 
= number average molecular weight. 
= value of the objective function at the minima 
= estimated value. 

virial coefficients of Gaube et al. (1993). 
= estimation of X with M fixed at author's value. 
= estimation of both X and M. 
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different ways, as was discussed in Chapter 4. 

In the first instance, the r parameter in the Flory-Huggins equation was taken as 

given by the apparent number average molar mass reported by Gaube et al. (1993) for the 

given polymer and by the polymer apparent liquid volume. The r parameter, in this case, 

is calculated from 

r = MN V/(18.01 cm 3/mol) (5.1) 

Gaube et al. (1993) give polymer liquid volumes as 0.8302, 0.8573 and 0.8711 cm3/g for 

PEG and 0.5959, 0.6203, 0.6322 cm3/g for dextran at temperature of, 20, 40 and 60 °C, 

respectively. The number average molar masses used by Gaube et al. are in Tables 5.1 

and 5.2. With the r parameter fixed, only the Flory-Huggins X parameter was available 

to fit the data. The objective function employed is given in equation 4.1. The results of 

the one parameter Flory-Huggins theory (1FHP) are tabulated in Tables 5.1 and 5.2. 

The second approach treated r as a free parameter available to fit the data in 

addition to X. These two parameter Flory-Huggins theory results (2FHP) are also tabulated 

in Tables 5.1 and 5.2. (The numerical procedure for performing the minimization was 

discussed in Chapter 4.) Instead of reporting the r value in the Table, an effective number 

average molar mass has been presented. The number is calculated from 

M,v,ff = r (18.01 cm 3/mol)/ V. (5.2) 

Figures 5.1-5.3 compare the experimental PEG activities with those calculated 
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from 1FHP and 2FHP models. The Figures show the water activity in the 5 different PEG 

solutions at temperatures of 20, 40 and 60 °C, respectively. In each Figure, the water 

activity is lowest at a given polymer weight fraction when the polymer has the lowest 

molar mass. (This follows from the fact that the mole fraction of water is lower at a given 

weight fraction of polymer if the molar mass of the polymer is lower.) 

Figures 5.4-5.6 contain the comparison between experiments and models for the 

dextran solutions. 

Figures 5.7-5. 14 repeat some of the curves that appear in the first six Figures but 

for one polymer at one temperature in each. These are presented so that some of the 

details can be seen more clearly. 

The correlations obtained using X as the single correlating parameter (1FHP) gave 

excellent results in some instances, particularly for the PEG polymers at 20°C (as can be 

seen in Figure 5.1). The correlations with the PEG polymers at the two higher 

temperatures and with the dextran polymers at all three temperatures are satisfactory but 

do show errors increasing with polymer molar mass and with temperature. 

When r was treated as a correlating parameter in addition to X (2FHP theory), the 

results are excellent for all polymers at all temperatures. In many cases, there is a 

reduction of an order of magnitude in the minimum value of the objective function used 

in correlating data. These values are shown in the last two columns of Tables 5.1 and 5.2. 

It is interesting to note that the optimal values of r parameter correspond to effective 

molar masses that are reasonable when compared to the number average molar masses 

that Gaube et al. report for the polymers. 
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The publication of Grol3mann et al. (1993) contains a figure showing water 

activities in two PEG and one dextran polymer systems. The data points were digitised 

and the resulting numbers are presented in table A.4. The publication of Haynes et al. 

(1989) contains tables of differential vapor pressure measurements in binary polymer-

water solutions for two PEG and two dextran polymers. These data have also been 

correlated with the 1FHP approach and the 2FHP approach with results that are presented 

in Table 5.3. The results for the three systems measured by GroI3mann et al. (1993) are 

shown in Figure 5.15 for 2FHP theory. 

Gromann et al. did not measure the number average molar mass of their polymer 

samples and the r value based on the nominal molar mass of the polymer as indicated by 

the supplier is uncertain. The effective molar mass that is obtained when both the r 

parameter and X are used in correlating the data (the 2FHP) approach is somewhat 

different from the nominal value but is still reasonable. The fit of the data with the 2FHP 

approach is excellent, as is shown in Figure 5.15. 

The Haynes et al. (1989) data are rather scattered and proved to be very difficult 

to correlate. When r was left free to vary, it tended to zero as is shown in Table 5.3. This 

signifies the absence of enthalpic interactions between the polymer and the solvent which 

does not seem a correct representation. The correlation obtained was, in general, 

unsatisfactory. Gaube et al. (1993) commented on the differences between their 

measurements and those of Haynes et al. (1989) on similar systems. 

The correlation between the estimated r and X was also studied for the data of 

Gaube et al. (1993). The correlation matrix for the dextran 500000/water system at 20°C 
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Table 5.3. Interaction parameters of PEG or dextran-water systems. 

polymer T(°C) M(au.) M(eff) X (1FHP) X (2FHP) 

PEG 60001 20 6000 8629.2 0.3693 0.5014 

PEG 35000' 20 35000 46355 0.36 0.4726 

PEG 33502 25 3790 1583 0.4613 0 

PEG 80002 25 9037 4380 0.4995 0.1859 

Dx 500000' 20 174000 95428 0.5432 0.2937 

Dx T-702 25 29630 9394 0.571 0 

Dx T-5002 25 167000 43678 0.5498 0 

1 
2 
M n 

au. 
eff 

x 
(1FHP) 
(2FHP) 

= data of Grol3mann et al. (1993) 
= data of Haynes et al. (1989). 
= number average molecular weight. 
= author's value. 
= estimated value. 
= F-H interaction parameter. 
= only X estimated. 
= both X and r or M n estimated. 
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is shown below. 

1 0.99 

0.99 1 

The off-diagonal terms are very close to unity and hence r and X are very 

strongly positively correlated. This fact is also evident from figure 5.16. To generate this 

Figure, r was fixed at the values shown and corresponding 's were estimated. The values 

of the objective function at the minima varied only between 0.28x10 9 and 0.49x 9. The 

sets of parameters fall almost along a straight line. Similar results show high correlation 

between the parameters that were obtained for PEG 3000/water system at 20°C. 

The equation of 95% confidence ellipse for r and x corresponding to PEG 

3000/water system at 20°C is 

2.9586 x2 - 8.372*10 r + 0.5988 *10-5 r2 = 6.17 (5.3) 

The ellipse covers a large r and X space and the estimated parameters fall within 

the ellipse. Although calculations are for only one system, similar results are expected for 

all others. 

The pattern involving effective MNs reported in table 5.1 raises an important point 

regarding the nature of PEG-water solutions. For all PEGs, the effective MN or the related 

quantity r (chain length) decreases with an increase in temperature (only a few exceptions 

appear in the table). This might be interpreted as "curling up" of the polymer chain. This 
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kind of behaviour could be attributed to breaking of hydrogen bonds with an increase in 

temperature. There is evidence that PEG forms hydrogen bonds in aqueous solutions 

(Molyneux, 1991). This curling up of the polymer is possibly the reason for the inability 

of the 1FHP theory to correlate binary water activities as well as the 2FHP theory at 

higher temperatures. 

5.1.2 Data of Malcolm and Rowlinson 

The data of Malcolm and Rowlinson (1957) for the PEG 5000/water system at 

65°C was difficult to correlate because of the range of polymer concentrations involved. 

The concentration range of the polymer was very wide for this set of data, extending from 

0.5 to nearly 0.99 weight fraction polymer. In the objective function that was minimised 

in the parameter estimation, the low values of water activity are given more weight. 

Hence, sometimes it would be expedient to use some carefully chosen data points rather 

than the whole set of data points, particularly if higher accuracy for the middle range of 

concentrations is required. 

Several different fitting procedures were attempted. 

Procedure 1: The value of r was fixed at r=1 14. Chen (1993) used this value in his 

correlation of the Malcolm and Rowlinson data with a modified NRTL equation. The 

value is obtained as the "degree of polymerisation" by dividing the nominal number 

average molar mass of 5000 by the molar mass of the PEG unit element (44 g/mol) and 

rounding to the nearest integer. With the value of r fixed a priori in this manner the 

parameter was obtained by minimizing the objective function in equation (4.1). The 

minimum of the objective function was obtained with =8.l54. 
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The results of the fitting are shown in Figure 5.17, along with similar results to 

be described shortly. With the parameters obtained in this procedure, the activity of water 

shows inflection points and a positive slope in an interval of the polymer weight fraction. 

These features indicate a thermodynamically unstable liquid phase and a phase separation 

that is not supported experimentally. As a result, the data fit is unsatisfactory. 

The quality of the fit could be measured by an "average deviation" defined as 

N data 

Using procedure 1, the average deviation for the fit is 8.154. 

Procedure 2: As discussed in Chapters 3 and 4, the r parameter in the Flory-Huggins 

model has been considered by others to be an empirical parameter available for fitting. 

When the objective function is minimized with respect to both r and X simultaneously, 

the optimal parameters found are r=37,828 and X very small, essentially zero. The average 

deviation for this fit is 4.432 and should be'compared with the value 8.152 obtained when 

r was held constant at 114. However, the zero value for X is unexpected and the curve 

of activity against polymer mole fraction, which can be seen in Figure 5.17 is not 

satisfactory. 

Procedure 3: In this procedure, the Flory-Huggins interaction parameter was assumed to 

have a linear dependence on the polymer volume fraction; i.e., 
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(5.4) 

where a and b are constants. The activity of the water in the solution is given by; 

in a1 = in (1 - 2) + (1 - + x - b (5.5) 

The three parameters (r,a and b) were fitted to the data by minimizing the 

objective function of equation 4.1. The values obtained were r=61.8, a0.015 and 

b=0.628. The average deviation using these parameters was reduced to 0.296. The 

corresponding curve in Figure 5.17 shows an excellent fit of the data. 

Procedure 4: The liquid instability that resulted in Procedure 1 can be eliminated if the 

x parameter is kept small enough. If <O.5 liquid instability is impossible for any value 

of r (Scott, 1949). In this case X was fixed at 0.4 and the optimal r was found to be 106. 

Only five data points corresponding to the lower concentrations of the.polymer were used 

for parameter estimation. The resulting curve of activity versus polymer weight fraction, 

shown in Figure 5.17, is not acceptable although the liquid-liquid separation is not found. 

The average deviation calculated using all the data points was 7.283. 

Procedure 5: Cheluget et al. (1993) fitted the liquid-liquid equilibrium data for PEG-water 

systems and reported temperature dependent X values. Their correlation for PEG 2290-

water at 65°C gives =0.235. This value has been used for PEG 5000-water. Three 

different approaches were used to examine the effect of the data correlated on the quality 

of the results obtained. 
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(a) When all the data points were used, the optimal r was 48.66 with an average 

deviation of 4.66. 

(b) When six points at the lowest polymer concentrations were used, the optimal 

r was 83.88 and the average deviation was 4.7 (based on the whole data set). 

(c) When the five data points at the lowest polymer concentrations were used, the 

optimal r was 83,88 and the average deviation was 4.83 (based on the whole data set). 

The water activity versus polymer weight fraction curves for these cases are shown 

in Figure 5.18. 

Procedure 5 is preferable to Procedure 2 in spite of a slightly higher average 

deviation as an extremely small value of X was produced in Procedure 2, implying the 

absence of enthalpic interaction between water and the PEG. However, only by using 

Procedure 3, in which the interaction parameter was taken as composition dependent, was 

it possible to get a good quantitative match of the data over the whole composition range. 

5.1.3 polymer-polymer-water systems 

The supplementary material accompanying the Gaube et al. (1993) manuscript 

contains very extensive data for water activity above water-PEG 3000-dextran 110000 

solutions at 20,40 and 60°C. These tables have been reproduced in the Appendix Al. 

The data at 20°C have been correlated by taking the water-polymer parameters for 

the two binary mixtures, as given. The values are shown in Tables 5.1 and 5.2. There was 

then a single parameter available to correlate the ternary data; i.e., x2 where the 

subscripts refer to the two polymers. 

The fit of the data had a minimum value of the objective function as 1.01x10 8 and 
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with the optimized %I2 as 0.0787. 

5.2 Closed-loop phase diagrams 

Saeki et al. (1976) published curves showing closed-loop phase diagrams for 

several PEG-water binary systems. These polymers, above a minimum molar mass, show 

a lower critical solubility temperature and an upper critical solubility temperature with 

liquid-liquid phase separations at intermediate temperatures. The curves in the Saeki et 

al. (1976) paper show the data points. These points for the system PEG 2290-water have 

been digitized and the resulting values are shown in Table A.6.a in the Appendix. The 

points do not in general correspond to compositions in coexisting phases. In order to 

expedite parameter estimation, the smooth curves drawn by Saeki et al. through their data 

were used to estimate compositions of coexisting phases at several temperatures. These 

digitised coexisting weight fractions are given in Table A.6.b. 

The lowest data point and the highest temperature data point were taken as the two 

critical points that were needed in the model. 

The model employed in correlating the data assumes that both r and X are 

temperature dependent with three empirical constants in each expression. Three of the 

constants were eliminated using the two critical points, leaving only three parameters 

available for fitting the coexisting phase compositions. The expressions for X and r are: 

= a + NT + c in T 

and 

(5.6) 
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r = d + e T + f T (5.7) 

The discussion and the equations that apply at the critical points were given in Section 

4.2.1. The objective function minimized was given in equation 4.6. Flash calculations 

were necessary at each of the pairs of coexisting compositions. The composition of the 

feed material in the flash calculation was obtained by mixing together equal amounts of 

the two experimental (i.e, digitized) coexisting phases. The value of the coefficients in 

the equations for the parameters are 

a = 97.313, b -6348.7398, c = -13.5118, 

d = 1691.5618, e = -6.9859, f = 0.7471e-2. 

Figure 5.19 contains the experimental and calculated mutual solubility curves for 

the system PEG 2290/water. The success of the model in correlating experimental data 

is evident from Figure 5.19. Cheluget et al. (1993) had a similar (but not superior) success 

in correlating these same data. The number of adjustable parameters in their work varied 

from two to four (their paper contains three temperature dependent X expressions). The 

proposed approach offers a semi-empirical alternative for correlating closed-loop phase 

diagrams for binary systems. 

5.3 Ternary liquid-liquid equilibrium 

Four systems showing ternary liquid-liquid separations were correlated. PEG 

3350/dextran T-70/water and PEG 8000/dextran T-500/water were studied by King et al. 

(1988). PEG 3000/dextran 500000/water was studied by Connemann et al. (1991). Data 
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for the compositions of the two coexisting phases and of the overall mixture were given 

in the two papers. PEG 3000/dextran 110000/water data are presented in a figure in the 

manuscript by Gaube et al. (1993). The data points in the figure have been digitized and 

are tabulated in Appendix A2, Table A.5. 

5.3.1 Coefficients from water activity 

The paper by Gaube et al. (1993) also contained the extensive water activity data 

that were correlated as described in Section 5.1. The parameters obtained from the 1FHP 

approach were used to produce Figure 5.20. 

5.3.2 Direct correlation of data 

Figures 5.21 to 5,24 contain results of ternary LLE calculations with 1FHP and 

2FHP theories. Parameter estimation procedures were described in section 4.2. Tables 5. 1, 

5.2 and 5.4 contain the values of parameters employed for equilibrium calculations. 

Figures 5.21 and 5.22 show the results of ternary LLE calculations with 1F.HP 

theory for systems PEG 3350/dextran T-70/water at 25°C and PEG 8000/dextran T-

500/water at 25°C. The experimental data were taken from the paper of King et al. (1988). 

All three interaction parameters were treated as adjustable parameters or in this context 

were fitted to ternary LLE data. OF(I) (equation 4.6) was employed for parameter 

estimation and the parameters are given in the Table 5.4. The fit is satisfactory for the 

two systems studied. 

Figures 5.23 and 5.24 contain results of ternary LLE calculations with 1FHP and 

2FHP theories. The experimental data was taken from the papers of Connemann et al. 

(1991) and Gaube et al. (1993). The polymer-water parameters (X in the case of 1FHP 
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Table 5.4. Interaction parameters of PEG-dextran-water systems. 

System T(°C) X13 
(1FHP) 

X23 

(1FHP) 
X12 

(1FHP) 
X12 

(2FHP) 

Dx T-70(1)/PEG 3350(2)11.120(3)1 25 0.5171 0.4714 0.04238 - 

Dx T-500(1)/PEG 8000(2)11.120(3)1 25 0.4713 0.3886 0.0135 - 

Dx 110000(1)/PEG 3000(2)/H20(3)2 20 * * 0.05073 0.0738 

Dx 500000(1)/PEG 3000(2)/H20(3)3 40 * * 0.04155 0.0895 

= data of King et al. (1988). 
2 = data of Gaube etal. (1993). 
3 = data of Connemann et al. (1991). 
x = F-H interaction parameter. 
* = polymer water parameters for these systems are contained in tables 5.1.1 and 5.1.2. 
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theory and, r and X in the case of 2FHP theory) were obtained from the binary water 

activity data of Gaube et al. (1993), given in Tables 5.1 and 5.2. The polymerl-p01ymer2 

interaction parameters were obtained from ternary LLE data. OF(I)I (equation 4.7) was 

employed for parameter estimation and the parameters are given in the Table 5.4. A 

comparison of the slopes of the tie-lines for the 1FHP theory and 2FHP theory shows that 

for the latter the match with the experimental tie-lines is better. Also, the two phase 

envelope is better represented. This is not surprising as the 2FHP theory was able to fit 

water activities for binary systems (polymer-water) better. 

Figure 5.25 provides the rationale for the choice of objective function OF(II) for 

estimation of the polymer l-polymer2 interaction parameter (%p1p2) for systems containing 

higher molar mass dextrans (dextrans 110000 and 500000). The system studied was 

dextran 1 10000/PEG 3000/water at 293 K (Gaube et al., 1993). 1FHP theory was 

employed for phase equilibrium calculations. The polymer-water interaction parameters 

were determined from binary water activity data. %12 was determined using OF(I) and 

OF(H) from LLE data. A comparison of the two sets of results shows that although OF(I) 

related calculations match the two phase envelope better on the PEG rich phase side and 

the slopes of the tie-lines are comparable, the two phase envelope is better represented 

on the dextran rich side for OF(fl) related calculations. The overall picture is better for 

the OF(II) related calculations. 

5.3.3 Effect of polydispersivity 

The system studied was dextran 110000/PEG 3000/water at 293 K [Gaube et al. 

(1993)]. A pseudocomponent approach was employed for representing the polydispersivity 
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of dextran. Six pseudocomponents were chosen for dextran. PEG was treated as 

monodisperse as PEG 3000 molar mass distribution has a sharp peak [Gaube et al. 

(1992)]. The details regarding the determination of pseudocomponents are covered in 

Section 4.6. As was shown in Section 4.6, the dextran 110000 used by Gaube et al. 

(1993) with MN=64,800 and M,=110000 can be represented by six components with mole 

fractions 0.0214, 0.136, 0.3413, 0.3413, 0.1360 and 0.0214 and molar masses 8069, 

16702, 34571,71556, 148110 and 306564 respectively. For the sake of simplicity, for all 

pseudocomponents corresponding to dextran, the same values of interaction parameters 

were used in phase equilibrium, calculations. The PEG 3000/water and dextran 

110000/water parameters in Tables 5.1 and 5.2 were used. The PEG/dextran parameter 

was regressed to be 0.04998. 

Figure 5.26 contains a comparison of phase equilibrium calculations for the 

monodisperse and polydisperse cases. As can be seen from the Figure, the tie-lines in the 

two cases are not significantly different. However, for the PEG rich phase, there is a 

slight shift in the two-phase equilibrium curve towards the right. This is probably due to 

the fractionation of dextran i.e., the lower molar mass pseudocomponents have a tendency 

to go into the PEG rich or lighter phase and the heavier molar mass components have a 

tendency to stay in the heavier (dextran rich) phase. 

5.4 Correlation of protein partitioning 

The reader is referred to Sections 3.5 and 4.3 for details regarding the model and 

parameter estimation procedures, respectively. Gupta (1991) presented tables of protein 
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partition coefficients obtained by digitizing data points on figures in the paper by King 

et al. (1988). 

Figures 5.27 and 5.28 contain the results of calculations for partitioning of 

lysozyme and albumin in PEG 3350/Dextran T-70/water/KC1 system, respectively. The 

three polymer-water parameters were estimated from ternary LLE data and are given in 

Table 5.4. The protein water parameters (r and ) were obtained from second order virial 

equation using virial coefficients estimated by King et al. as discussed in Section 4.3. The 

values of lysozyme-water and albumin-water parameters (r and x) were 0.6488 and 212, 

and 0.0843 and 407, respectively. The two protein-polymer interaction parameters were 

fitted to the protein partition coefficient data of King et al. The values of lysozyme-PEG 

3350/dextran T-70 and albumin-PEG 3350/dextran T-70 were 0.1647 and 0.1521, and 

-0.3061 and -0.1363, respectively. Figures 5.27 and 5.28 demonstrate the success of the 

model in correlating protein partition coefficient data in terms of the total feed 

concentration. 

The protein interaction parameters are empirical as for the sake of simplicity, 

electrostatic effects due to the presence of low concentration of salts (50mM) were 

neglected. This was necessary as otherwise the model would have had an inordinate 

number of parameters with respect to the number of data points available for parameter 

estimation. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The conclusions of this research effort are as follows: 

1) The binary water activities for polymer-water systems have been correlated with 

a fair measure of accuracy with one parameter Flory-Huggins (1FHP) theory. The 

correlation results are excellent with two parameter Flory-Huggins (2FHP) theory. This 

applies for approximately up to forty weight percent polymer. If correlation for the entire 

concentration range (up to and above 90 wt % polymer) is required, it was found that the 

interaction parameter has to be made concentration dependent. 

2) Binary closed-loop phase diagrams can be successfully correlated by a variation 

of Flory-Huggins theory. The variation involved making r and X temperature dependent. 

Parameter r has been treated as a constant in related correlation efforts. This new semi-

empirical approach (with three adjustable, parameters) proposed in this work offers an 

alternative to those reported in the literature. 

3) The ternary (polymer l-po1ymer2-water) phase equilibria at constant T and P can 

be satisfactorily correlated with 1FHP theory i.e., the approach involving three 
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parameters with the r' s determined from molar volumes. The correlation is improved by 

the use of 2FHP theory i.e., by letting the two r's to be fitting parameters in addition to 

the three X parameters. However, it is to be noted that in both cases one parameter, 

polymer-polymer interaction parameter, needs to be fitted to the LLE data. The others can 

be determined from binary VLE data. 

4) Preliminary results of the correlation of protein partitioning in aqueous two-phase 

systems are encouraging. However, the, approach followed in this work was not 

theoretically rigorous. As a consequence, the protein interaction parameters were treated 

as empirical parameters. 

5) The number average and weight average molecular weights of polymers can be 

accurately represented using the new pseudocomponent approach proposed in this work. 

This approach is based on the log-normal distribution. 

6) Contrary to the results reported in the literature for other thermodynamic models, 

there was not a significant difference in the two-phase equilibrium curves, calculated from 

Flory-Huggins theory, for monodisperse and polydisperse systems using the 

pseudocomponent approach proposed in this work. 

7) The successive substitution algorithm incorporating Rachford-Rice scheme was 

unsuccessful in performing phase equilibrium calculations with Flory-Huggins theory. The 
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algorithm had to be damped for these calculations. The rate of convergence of flash 

calculations was improved by switching to a Newton scheme after a sufficient degree of 

convergence was achieved. 

The flash calculation algorithm of Heidemann (1974) in conjunction with Newton 

scheme offers an alternative to the modified successive substitution algorithm. 

8) The Flory-Huggins lattice theory, although simplistic, provides a theoretical basis 

for modelling the thermodynamic behaviour of polymer-water systems. In the course of 

this work, the theory along with its modifications was remarkably successful at correlating 

the various types of thermodynamic behaviour of polymer-water systems. Flory-Huggins 

theory should provide a basis for more elaborate models in future. 

6.2 Recommendations 

The author makes the following recommendations regarding the thermodynamic 

modelling of polymer water systems: 

1) A generalised model is needed for at least correlating the various types of 

thermodynamic behaviour exhibited by polymer-water systems. The author is of the 

opinion that this would require a complete experimental data set (covering various types 

of thermodynamic behaviour) from one source. Possibly a modified Flory-Huggins theory 

can be used as a generalised model. 
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2) This work along with related efforts in this area raises an important issue 

regarding the role of hydrogen-bonding in aqueous solutions containing polymers. Water 

is capable of forming hydrogen bonds with the solutes. The hydrogen bonding aspect of 

modelling has been treated through empirical models. It would be desirable to have a 

model that treats hydrogen bonding in aqueous solutions in a fundamental way. 

3) The modelling of protein partitioning in this work leaves a lot to be desired in 

terms of theoretical satisfaction. The salt interactions ought to be treated in a more 

elaborate way. One way of doing this is by the incorporation of electrolyte models. Also, 

the model would have to take into account the rigid structure of many biopolymers. An 

approximate way of dealing with this issue is described in this work as far as Flory-

Huggins theory is concerned. However, it would be more satisfactory to employ a 

sophisticated approach which entails modifications in the derivation of the Flory-Huggins 

theory. In any case, prgress will also depend on the availability of more and better data. 
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APPENDIX Al. 

Experimental data of Gaube et al. (1993). 
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Table A.1.a 
Water Activity a1 in Water (1) - PEG 200 (2) Solutions 

293.15 K 313.15 K 333.15 K 

W2 a1 W2 a1 

0.0289 0.997267 0.0344 0.996725 0.0229 0.997897 

0.0473 0.995385 0.0664 0.993370 0.0352 0.996748 

0.0908 0.990597 0.0944 0.990140 0.0564 0.994590 

0.1071 0.988566 0.1473 0.983229 0.0927 0.990686 

0.1871 0.976320 0.2200 0.971211 0.1418 0.984503 

0.2529 0.961546 0.2900 0.956826 0.2001 0.975630 

0.3659 0.929081 0.3833 0.930084 0.2723 0.961875 

0.3457 0.944029 

Table A.1.b 

Water Activity a1 in Water (1) - PEG 600 (2) Solutions 

293.15 K 313.15 K 333.15 K 

a1 W2 a1 W2 a1 

0.0202 0.999355 0.0138 0.999591 0.0282 0.999105 

0.0442 0.998495 0.0223 0.999309 0.0507 0.998308 

0.0737 0.997139 0.0244 0,999256 0.0769 0.997274 

0.1183 0.994568 0.0516 0.998229 0.1001 0.996323 

0.2021 0.987853 0.0517 0.998243 0.1514 0.993670 

0.2945 0.975367 0.0800 0.997032 0.2234 0.988642 

0.3920 0.953604 0.0928 0.996368 0.3000 0.981109 

0.1446 0.993482 

0.1873 0.990407 

0.2337 0.986034 

0.2509 0.983766 

0.2952 0.978133 

0.4196 0.952463 
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Table A.1.c 

Water Activity a1 in Water (1) - PEG 1550 (2) Solutions 

293.15 K 313.15 K 333.15 K 

W2 a1 w2 a1 w2 a1 

0.0200 0.999721 0.0182 0.999770 0.0420 0.999443 
0.0248 0.999650 0.0268 0.999643 0.0594 0.999133 
0.0347 0.999471 0.0473 0.999280 0.0736 0.998814 
0.0490 0.999192 0.0665 0.998900 0.0888 0.998574 
0.0501 0.999181 0.0815 0.998563 0.0890 0.998576 
0.0536 0.999119 0.0861 0.998410 0.1332 0.997469 
0.0729 0.998636 0.0861 0.998443 0.1428 0.997289 
0.0999 0.997861 0.1170 0.997511 0.1502 0.996988 
0.1003 0.997782 0.1179 0.997480 0.2225 0.993681 
0.1077 0.997573 0.1292 0.997116 0.2987 0.988857 
0.1183 0.997191 0.1484 0.996371 
0.1208 0.997112 0.1484 0.996350 
0.1251 0.996895 0.1484 0.996382 

0.1318 0.996573 0.1548 0.996110 

0.1405 0.996296 0.1622 0.995846 

0.1458 0.996003 0.1692 0.995485 

0.1518 0.995778 0.1881 0.994578 

0.1997 0.992701 0.1881 0.994553 

0.2516 0.988018 0.1881 0.994530 
0.3191 0.979046 0.1881 0.994520 

0.1881 0.994563 

0.2025 0.993694 

0.2540 0.989977 

0.3029 0.985199 
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Table A.1.d 

Water Activity c' in Water (1) - PEG 3000 (2) Solutions 

293.15 K 313.15 K 333.15 K 

a1 W2 a1 W2 a1 

0.0253 0.999784 0.0231 0.999822 0.0463 0.999650 

0.0413 0.999629 0.0299 0.999760 0.0489 0.999654 

0.0490 0.999536 0.0402 0.999654 0.0788 0.999300 

0.0571 0.999409 0.0571 0.999447 0.0801 0.999280 

0.0767 0.999081 0.0830 0.999047 0.0998 0.998991 

0.0780 0.999043 .0.0935 0.998864 0.1144 0.998741 

0.0871 0.998858 0.1010 0.998709 0.1472 0.998074 

0.0944 0.998647 0.1037 0.998659 0.1748 0.997332 

0.0953 0.998650 0.1117 0.998480 0.2257 0.995517 

0.1070 0.998372 0.1189 0.998300 0.2993 0.991573 

0.1174 0.998075 0.1213 0.998213 

0.1280 0.997709 0.1417 0.997664 

0.1521 0.996684 0.1537 0.997263 

0.1728 0.996574 

0.2145 0.994607 

0.2389 0.993113 

Table A.1.e 

Water Activity a1 in Water (1) - PEG 6000 (2) Solutions 

293.15 K 313.15 K 333.15 K 

W2 a1 W2 a1 w2 a1 

0.0335 

0.0502 

0.0804 

0.1267 

0.1888 

0.2523 

0.3072 

0.999835 

0.999702 

0.999344 

0.998325 

0.996 18 1 

0.992024 

0.986702 

0.0159 

0.0328 

0.0644 

0.0920 

0.1212 

0.1715 

0.2022 

0.3192 

0.999949 

0.999880 

0.999625 

0.999277 

0.998764 

0.997408 

0.996205 

0.988253 

0.0155 

0.0399 

0.0727 

0.1224 

0.1690 

0.2044 

0.2522 

0.999950 

0.999845 

0.999615 

0.999076 

0.998321 

0.997388 

0.995809 
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Table A.2.a 
Water Activity a1 in Water (1) - Dextran 40000 (3) Solutions 

293.15 K 313.15 K 333.15 K 

W3 a1 w3 a1 a1 

00023 0.99999751 0.0023 0.99999784 0.0021 0.99999801 
0.0061 0.99999298 0.0061 0.99999363 0.0064 0.99999307 
0.0108 0.99998644 0.0108 0.99998813 0.0103 0.99998797 
0.0153 0.99997934 0.0153 0.99998188 0.0196 0.99997411 
0.0201 '1.99997104 0.0201 0.99997345 0.0528 0.999889 
0.0443 0.999887 0.0417 0.999921 0.0872 0.999675 
0.0974 0.999494 0.0804 0.999711 0.1322 0.999275 
0.1456 0.998764 0.1503 0.998814 0.2033 0.997755 
0.1923 0.997561 0.2006 0.997522 
0.2212 0.996311 

Table A.2.b 

Water Activity a1 in Water (1) - Dextran 70000 (3) Solutions 

293.15 K 313.15 K 333.15 K 

W2 a1 W2 a1 W2 a1 

0.0015 0.99999919 0.0021 0.99999907 0.0030 0.99999831 
0.0048 0.99999726 0.01.17 0.99999362 0.0060 0.99999641 
0.0112 0.99999258 0.0199 0.99998699 0.0099 0.99999302 
0.0189 0.99998497 0.0287 0.99997751 0.0522 0.999929 
0.0579 0.999901 0.0412 0.999955 0.0884 0.999812 
0.0923 0.999734 0.0540 0.999931 0.1225 0.999615 
0.1616 0.999064 0.0826 0.999814 0.1284 0.999632 
(1.2029 0.998227 0.0890 0.999790 0.1966 0.998729 
0.2441 0.997175 0.1419 0.999359 0.2131 0.998729 

0.1442 0.999343 0.2444 0.997958 
0.1866 0.998808 

0.2283 0.998024 

0.2632 0.997062 

0.2732 0.996750 

- 0.2925 0.996127 
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Table A.2.c 

Water Activity a1 in Water (1) - Dextran 110000 (3) Solutions 

293.15 K 313.15 K 333.15 K 

W3 a1 w3 a1 W3 

0.0022 0.99999920 0.0020 0.99999923 0.0050 0.99999854 
0.0046 0.99999835 0.0052 0.99999787 0.0073 0.99999720 
0.0083 0.99999627 0.0099 0.99999517 0.0129 0.99999466 
0.0181 0.99999026 0.0204 0.99998766 0.0269 0.99998594 
0.0392 0.99996944 0.0441 0.999942 0.0886 0.999898 
0.0453 0.999941 0.0504 0.99994009 0.0903 0.999895 
0.0967 0.999791 0.0755 0.999858 0.1301 0.999706 
0.0982 0.999791 0.0983 0.999775 0.1426 0.999656 
C 1049 0.999731 0.0990 0.999786 0.1449 0.999653 
0.1204 0.999663 0.1049 0.999740 0.1728 0.999429 
0.1242 0.999642 0.1249 0.999619 0.1922 0.999204 
0.1332 0.999608 0.1295 0.999589 0.2092 0.999095 

0.1676 0.999333 0.1545 0.999394 0.2221 0.998917 
0.1697 0.999296 0.1853 0.999077 0.2636 0.998116 
0.1760 0.999230 0.2158 0.998624 0.2768 0.997858 
0.1959 0.998963 0.2158 0.998629 0.2893 0.997613 
0.2219 0.998567 0.2158 0.99809 

0.2250 0.998541 0.2168 0.998575 

0.2299 0.998508 0.2697 0.997499 

0.2577 0.997818 0.2811 0.997152 

0.2596 0.997783 0.3356 0.995361 

0.2799 0.997238 0.3355 0.995403 
0.2992 0.996772 

0.3003 0.996729 
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Table A.2.d 

Water Activity a1 in Water (1) - Dextran 500000 (3) Solutions 

293.15 K 313.15 K 333.15 K 

a1 w3 a1 W3 a1 

0.0028 0.99999957 0.0019 0.99999967 0.0041 0.99999934 
0.0068 0.99999887-'0.0021 0.99999961 0.0078 0.99999862 
0.0096 0.99999800 0.0034 0.99999942 0.0153 0.99999691 
0.0136 0.99999671 , .0.0041 0.99999918 0.0382 0.99998542 
0.0221 0.99999419 0.0082 0.99999843 0.0638 0.999948 
0.0555 0.999949 0.0132 0.99999716 0.1237 0.999795 
0.0971 0.999811 0.0222 0.99999380 0.1814 0.999469 
0.1201 0.999694 0.0363 0.99998397 0.1936 0.999380 
0.1532 0.999487 0.0468 0.999966 0.2385 0.998918 
0.2251 0.998533 0.0522 0.99996238 
0.2333 0.998434 0.0622 0.999936 
0.2373 0.998389 0.0634 0.999936 
0.2566 0.997983 0.0634 0.99993487 
0.2830 0.997310 0.0806 0.999897 
0.3101 0.996437 0.0901 0.999864 

0.0952 0.999851 

0.1074 0.999810 

0.1087 0.999787 

0.1311 0.999691 

0.1596 0.999501 

0.1618 0.999483 

0.1791 0.999307 

0.1970 0.999079 

0.2169 0.998837 

0.2521 0.998254 

0.2745 0.997791 

0.2912 0.997385 

0.3055 0.997003 
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Table A.3 

Water Activity a1 in Water (1) - PEG 3000 (2) - Dextran 110000 (3) Solutions 

293.15 K 313.15 K 333.15 K 
W3 a1 W2 W3 a1 W2 W3 a1 

0.0490 0.0000 0:999536 0.0935 0.0000 0.998864 0.0489 0.0000 0.999654 
0.0323 0.0411 0.999552 0.0742 0.0205 0.998999 0.0389 0.0184 0.999670 
0.0237 0.0620 0.999574 0.0637 0.0316 0.999100 0.0294 0.0359 0.999675 
0.0147 0.0840 0.999593 0.0544 0.0414 0.999191 0.0190 0.0552 0.999731 
0.0078 0.1010 0.999620 0.0381 0.0586 0.999337 0.0087 0.0743 0.999808 
0.0000 0.1204 0.999663 0.0299 0.0673 0.999418 0.0000 0.0903 0.999895 

0.0185 0.0794 0.999549 

0.0000 0.0990 0.999786 
0.0767 0.0000 0.999081 0.1037 0.0000 0.998659 0.0801 0.0000 0.999280 
0.0624 0.0312 0.999095 0.0865 0.0307 0.998659 0.0640 0.0286 0.999290 
0.0474 0.0639 0.999114 0.0713 0.0579 0.998681 0.0537 0.0470 0.999336 
0.0332 0.0949 0.999142 0.0575 0.0825 0.998701 0.0337 0.0826 0.999396 
0.0197 0.1245 0.999198 0.0368 0.1195 0.998770 0.0177 0.1112 0.999493 
0.0097 0.1463 0.999268 0.0284 0.1345 0.998808 0.0000 0.1426 0.999656 
0.0000 0.1676 0.999333 0.0196 0.1502 0.998875 

0.0085 0.1702 0.998949 

0.0000 0.1853 0.999077 
0.0871 0.0000 0.998858 0.1189 0.0000 0.998300 0.1144 0.0000 0.998741 
0.0725 0.0294 0.998864 0.1175 0.0025 0.998280 0.0460 0.1252 0.998745 
0.0571 0.0606 0.998872 0.1161 0.0050 0.998260 0.0452 0.1266 0.998753 
0.0430 0.0892 0.998897 0.0353 0.1524 0.998352 0.0345 0.1462 0.998778 
0.0292 0.1 70 0.998964 0.0296 0.1628 0.998376 0.0276 0.1588 0.998794 
0.0145 0.1467 0.999076 0.0247 0.1718 0.998391 0.0229 0.1673 0.998850 
0.0000 0.1760 0.999230 0.0169 0.1859 0.998444 0.0158 0.1802 0.998916 

0.0127 0.1936 0.998483 0.0000 0.2092 0.999095 
0.0064 0.2052 0.998523 

0.0000 0.2168 0.998575 
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(continued) 

293.15 K 313.15 K 333.15 K 
a1 102 W3 a1 W2 w3 a1 W2 W3 

0.0953 0.0000 0.998650 0.1537 0.0000 0.997263 0.1748 0.0000 0.997332 
0.0808 0.0298 0.998660 0.1520 0.0029 0.997245 0.0227 0.2408 0.997530 
0.0662 0.0598 0.998636 0.1511 0.0045 0.997227 0.0177 0.2488 0.997573 
0.0522 0.0887 0.998650 0.0502 0.1817 0.997136 0.0131 0.2560 0.997653 
0.0434 0.1068 0.998681 0.0436 0.1931 0.997166 0.0078 0.2644 0.997744 
0.0192 0.1564 0.998797 0.0381 0.2029 0.997201 0.0033 0.2715 0.997799 
0.0000 0.1959 0.998963 0.0363 0.2060 0.997210 0.0000 0.2768 0.997858 

0.0264 0.2233 0.997274 

0.0144 0.2445 0.997360 

0.0097 0.2527 0.997416 

0.0000 0.2697 0.997499 
0.1070 0.0000 0.998372 
0.0261 0.1702 0.998329 
0.0170 0.1892 0.998387 

0.0105 0.2030 0.998420 
0.0000 0.2250 0.998541 

0.1280 0.0000 0.997709 
0.0174 0.2218 0.997737 
0.0139 0.2290 0.997748 
0.0070 0.2433 0.997772 

0.0000 0.2577 0.997818 

0.1521 0.0000 0.996684 

0.0086 0.2820 0.996693 

0.0056 0.2883 0.996710 
0.0031 0.2929 0.996733 
0.0000 0.2992 0.996772 
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APPENDIX A2. 

Digitised sets of data. 
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Table A.4 

System PEG/water solutions at 20°C. 
Data type Weight fraction polymer vs activity of water. 
Source Grol3mann et al. (1993). 

Table A.4.a 

wt fm (PEG 6000) acty (water) 

0.117 0.9988 
0.136 0.9980 
0.164 0.9972 
0,173 0.9967 
0.175 0.9957 
0.194 0.9956 
0.195 0.9951 
0.199 0.9940 
0.222 0.9933 
0.228 0.9918 
0.251 0.9890 
0.273 0.9865 
0.282 0.9850 
0.291 0.9836 
0.300 0.9821 
0.308 0.9802 
0.318 0.9786 

Table A.4.b 
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System Dextran (Dx) 500000/water at 20 °C. 
Data type Weight fraction polymer vs activity of water. 
Source Grol3mann et al. (1993). 

Table A.4.c 

wt fm (Dx 500000) acty (water) 

0.197 
0.249 
0.285 
0.307 
0.320 
0.338 
0.351 
0.369 
0.388 
0.437 
0.465 
0.474 
0.487 
0.499 
0.504 
0.515 
0.520 
0.539 
0.553 
0.571 

0.9983 
0.9977 
0.9968 
0.9961 
0.9953 
0.9947 
0.9935 
0.9930 
0.9917 
0.9888 
0.9863 
0.9847 
0.9833 
0.9819 
0.9800 
0.9791 
0.9785 
0.9753 
0.9746 
0.9685 
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Table A.5 

System Dextran (Dx) 1 10000/PEG 3000/ Water at 293 K. 
Data type Binodal. 
Source Gaube et al. (1993). 

Phase I (wt fm) Phase II (wt frn) 

Dx PEG Dx PEG 

0.16236 
0.18976 
0.21970 
0.23574 
0.25430 
0.28194 

Table A.6 

0.03250 
0.02734 
0.02183 
0.01879 
0.01639 
0,01236 

0.01440 
0.00977 
0.00408 
0.00263 
0.00167 
0.00106 

0.1053 
0.11273 
0.12844 
0.13633 
0.14410 
0.15834 

System PEG 2290/water 
Data type Temperature-concentration two-phase curve. 
Source Saeki et al. (1976). 

Table A,6,a 

wt frn(PEG) T (K) 

0.19034 436.4 
0.23593 436.5 
0.29492 437.9 
0.37682 444.8 
0.39902 451.3 
0.39763 489.9 
0.37508 496.7 
0.29679 506.1 
0.23868 508.2 
0.19197 508.6 
0.11200 505.9 
0.07113 495.6 
0.07068 488.4 
0.07135 454.7 
0.07242 447.6 
0.11662 438.2 
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Table A.6.b 

wt fm' wt fm" T(K) 

0.11732 0.29585 437.8 
0.0810 0.37516 444.0 
0.07234 0.40025 450.0 
0.06789 0.41172 457.4 
0.06645 0.42181 470.0 
0.06757 0.41263 483.6 
0.07431 0.37825 496.7 
0.08912 0.32578 503.3 
0.11252 0.28432 506.4 
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APPENDIX A3. 

Derivatives of Flory-Huggins model. 
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Derivatives of Flory-Huggins model: 

The first partial derivative of Gibbs free energy of mixing with respect to the 

number of moles of a component is given by 

where, 

/pi 

RT 
In . + 1 - rE 

m. 

+ r.E . .. . - _..r.Ek E 

n.J r.i 
h-  

D 

Xj k 

D = n r1 

(A.1) 

(A.2) 

The first partial derivative of the chemical potential of a component with respect 

to the number of moles of a component is given by 

(L\p/RT) = 1{ • (r. • r.) r. r. 
if - I 

n x. D D2 

r. r. 
+ I J  (x1, + xi,) 
D 

+ E , E xi  

(A.3) 

The second partial derivative of the chemical potential with respect to the number 

of moles is given by 
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a2(L)./RT) = 1 6j J k + (r r3 + r rk 

k al•- D2 

2 r. r. r + r. r. rk + Xi  + Xi k) - Li 

D3 D2 

+ 2 E1 (xi, + ,J1 + Xk ) l - 3 >.:: E, x, ) ] 

+ r rd 

(A.4) 


