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Abstract

Magnetic bearings are capable of suspending shafts rotating at high speed without
mechanical contact or lubrication, providing many advantages and opportunities in indus-
trial and medical applications. A formidable control problem is presented by their fast,
interactive and unstable multivariable dynamics. This thesis provides methods for design-
ing controllers for magnetic bearings along with their experimental evaluation.

In a novel approach, the experimental apparatus was modeled using a parameter esti-
mation method calculated from input and output data. An optimal controller and a discrete
sliding mode controller with outer-loop integration were designed. A sliding mode con-
troller was also implemented that changed the sliding surface depending on shaft position
to more aggressively achieve the performance objective of preventing shaft mechanical
touchdown. Experimental testing verified the tuning goal and showed that the sliding mode
controllers with guaranteed robustness performed comparably in disturbance rejection to

the optimal controllers. This work summarizes conditions for controller selection.
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Chapter 1
Introduction

Active Magnetic Bearings (AMB) act to levitate a shaft and allow it to rotate without
contact. This feature creates advantages for many applications due to lower rotation friction
in bearings and the ability to achieve active vibration damping. Magnetic bearings are
currently used in many applications with others under investigation, for example in natural
gas compressors in remote locations where their higher rotating efficiency and reduced
maintenance requirements make them ideal.

A typical AMB consists of four electromagnets positioned equidistant around the
shaft to be supported. Sensors adjacent to the electromagnets monitor the relative hori-
zontal and vertical position of the shaft and a controller continuously adjusts the magnetic
fields to maintain the required shaft positioning. This controller must have a very high re-
sponse capability due to the potential high rotational speed of the shaft and its intrinsic
instability. Usually one AMB is located at each end of the shaft.

The reduced losses allow faster rotation of the shaft resulting in increased efficiency
in most applications. The ends of a shaft using AMBSs can aiso be continuously realigned
for such applications as a fast conveyor. A particular feature of an AMB is the ability to
provide dynamic damping of vibrations caused by unavoidabie shaft imbalances. This is

due to the ability of the shaft to be rotated around its centre of mass within the magnetic
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field of the bearing (as compared with a conventional bearing which restricts the shaft to

rotate around its geometric centre).

A shaft levitated by magnets, due to its operating principles, is unstable and the mag-
netic fields must be continuocusly modified by a controller to keep the shaft in place. In
principle this is similar to keeping a pen standing upright on the palm of your hand in that
without active control, the pen will surely topple. High operating speeds and the fact that
there are several magnets required to keep the shaft levitated make the control of magnetic
bearings an interesting and formidable problem.

The solution to this problem requires the measurement of the shaft position and an
active controller. Ideally the controller should keep the shaft levitated at all times but this
is not feasible since the controller must respond with a strength appropriate to the given
conditions. If, for example, the mass of the shaft changes (due to deposits or parts breaking
off) then a different actuation level is required for corrective action. If this mass change is
not known then the controller may not be tuned appropriately. This can result in the shaft
falling and hitting the supporting frame. A measure of how well a controller performs can
be made by testing the conditions which cause it to fail. A more robust controller has a
larger variation in conditions under which it is stable.

In this work, controllers have been designed and tested for an AMB apparatus with
particular interest in the system stability and the ability of the controller to maintain the
shaft within certain deviation limits so as not to hit the bearing frame. In particular, a
sliding mode control approach was used. AMBs are currently being used in a number of

practical applications and this development has the potential to increase the opportunity
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for further such applications through the novel modeling method and robust control law
application presented in this work. It is anticipated that the controller as developed could

increase the potential range of applications of AMBs in industry.

1.1 Contributions of this Thesis

This thesis provides a method for designing and implementing digital controllers for
magnetic bearing systems. Specifically the main contributions are:

e A model of a magnetic bearing was produced using the method of parameter
estimation which is derived from data rather than physical principles. This appears to be a
novel method of modeling a magnetic bearing.

e A Linear Quadratic Gaussian controller with three different tuning parameters
was designed. Tests verify the goal of the tuning.

e A Discrete Sliding Mode Controller was designed with an optimal sliding sur-
face. This controller was tested with three sliding surfaces and the tuning goal was verified.
This control law has not been applied to a magnetic bearing in the literature. The controller
was stable using a relatively slow sampling rate thus reduced computational load.

e A Proportional-Integral controiler was combined with the Discrete Sliding Mode
Controller and the tracking performance was demonstrated.

e A Discrete Sliding Mode Controller was designed with a choice of sliding sur-
face dependant on the position of the shaft. This appeared to be a novel and promising

controller but the test results produced mixed performance.
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e Following a tap disturbance to the shaft, the Discrete Sliding Mode Controller
returned the shaft to its normal position faster than the Linear Quadratic Gaussian con-

troller.

This thesis provides guidelines for future applications of digital controllers to Active

Magnetic Bearings.

1.2 Organization of this Thesis

The organization of the seven chapters of this thesis follows the sequence of experi-
mental development.

Chapter Two explains the motivation for the use of magnetic bearings and illustrates
some applications. The operation and available modeling methods are discussed. Several
different control algorithms including sliding mode control are outlined along with their

established performance resuits.

Chapter Three describes the apparatus and control hardware and software used for
the experiments.

Chapter Four presents the different methods attempted for producing a model of
the apparatus. A physical principles analysis is first discussed followed by an attempt
to derive a model from the closed loop frequency response. The method of least squares

parameter estimation is explained and applied. The resulting model with a novel refinement

for resonant mode enhancement is then presented.
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Chapter Five details the design procedures for the controllers. Specifically, a Linear
Quadratic Gaussian and a Discrete Sliding Mode Controller are designed and tuned for
specific performance objectives.

Chapter Six presents the experimental results of tests performed with the controllers
designed in Chapter Five. Several different tests were performed using different tuning
constants and the results were compared to evaluate the effect of the tuning.

Chapter Seven contains a summary of the main results and some direction for future

work.



Chapter 2
Background Information

Magnetic bearings are capable of suspending rotating shafts at high speeds without
mechanical contact with the supporting structure. They offer many advantages over con-

ventional bearings including (Knospe & Collins, 1996):

lower rotating losses
e possibility of active vibration damping
¢ higher speeds

o elimination of lubrication systems and lubricant contamination of the system
e operation at temperature extremes and in a vacuum

¢ longer lifetime

They are presently used in many applications such as industrial, medical, military
and space applications including pumps, compressors, flywheels, grinding and milling
spindles, turbine engines and centrifuges (Knospe & Collins, 1996). Turbomachines such
as gas turbines, jet engines, pumps and compressors operate at high speeds to achieve
desired efficiency but roller bearings have a relatively short life-span and ailthough fluid
film bearings have a longer life-span they require an extensive oil supply system and seals

(Humphris et al, 1986). In the future demand for greater speed, for exampie in an energy
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storage flywheel (as in Ahrens et al, 1996), will likely lead to more demanding applications
of magnetic bearings.

Magnetic bearings require a solution to a difficult control problem due to their fast
open loop unstable and interactive multiple input, multiple output (MIMO) nature. The
dynamics of a shaft levitated with magnetic bearings inherently contain non-linearities and
change with increasing rotational speeds especially near the critical frequencies of the shaft.
All rotating machinery also has some residual imbalance which must be dealt with by the
controller. The controller can offer the ability for shaft positioning and alignment as well

as diagnostic and load measurement capabilities (Knospe & Collins, 1996).

2.1 Operation of Active Magnetic Bearings

The conventional design of a magnetic bearing consists of a separate magnetic actua-
tor component shown in Figure 2.1 and a corresponding position sensor component located
near the actuator. The horizontally opposed pair of horseshoe magnets attracts the shaft to
the right by adding the current I, to a bias (or steady state level) current, i, in the right
magnet while reducing the bias current in the left magnet by i,. In an analogous way the
shaft can be attracted in a vertical direction. The contact-free position sensor measures the
horizontal and vertical gap width. The attractive force of the magnets is inversely propor-
tional to the gap width squared resulting in an unstable plant.

The gap magnetic flux exerts a force on the shaft and is proportional to the current
squared. With little current flowing the force cannot be changed quickly due to a slow

force to current slew rate (Bleuler et al, 1994; Charara et al, 1996; Knospe & Coallins, 1996;
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Figure 2.1 End View of One Magnetic Bearing (Lum et al, 1996)

Mizuno et al, 1996). Thus a bias current, o, equal to half of the rated current, %z, is usu-
ally run through the coils so changes to the flux are made around this operating point. This
provides a much larger force slew rate (Knospe & Collins, 1996) and allows a model of the
plant to be linearized for smail perturbations around the operating point (Lum et al, 1996;
Matsumura & Yoshimoto, 1986). The total current in each pair of magnets is always %gax
(iTotat = o + 3z + 29 — iz = 26 = ima,). The bias current exerts no net force on the shaft
but produces a constant magnetic field. A current is induced in the shaft due to its relative

motion with the magnetic field of the bias current. This results in a larger electromagnetic
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drag than with no bias current when rotating. Experiments in Charara et al, 1996 without
a bias current demonstrated that the rotor vibration and energy consumption of the bearing
are lower using a non-linear control law. A magnetic bearing without a bias current has the
potential for a greater operating efficiency at the cost of a slower force to current slew rate.

Recently there has been research into self-sensing magnetic bearings that do not have
a separate position sensor but deduce the gap width from the actuator currents and/or actu-
ator gap flux measurements (Bleuler et al, 1994). This reduces the cost and complexity of
the bearing and the actuator and sensor are inherently collocated. An estimator based on
only the actuator current information is also presented. A full order and reduced order gap
estimator was presented in Mizuno et al, 1996. A gap parameter estimation method was
developed in Noh & Maslen, 1997 and demonstrated stable experimental results.

The magnetic bearing controller must use the position measurements or estimates
to adjust the current in the magnets and keep the shaft at the required position. The ro-
tating shaft will always have some residual imbalance following a mechanical balancing
procedure. This can either be compensated for by electromagnetic forces in an attempt to
rotate the shaft about its geometric center or the shaft can rotate around its axis of inertia.
The latter control strategy referred to as automatic balancing is used in Herzog et al, 1996,
Lum et al, 1996; Mohamed & Busch-Vishniac, 1995. This strategy is not feasible in many
applications, such as milling or grinding, due to the desired goal of rotating a shaft about

its geometric center.
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2.2 Modeling Magnetic Bearing Dynamics

A mathematical model of the bearing is required before a controller can be designed.
There are many models developed in the literature from physical principles applied to the
system. All of the models require some approximations, assumptions and linearization of
the plant around its operating point. A model for a non-rotating but flexible shaft is de-
veloped in each of Magnetic Moments, 1997; Nonami & Yamaguchi, 1992; Suzuki, 1998;
Tian & Nonami, 1996 while a rotating and rigid shaft is modeled in Charara et al, 1996;
Mohamed & Busch-Vishniac, 1995; Rundell et al, 1996; Smith & Weldon, 1995. Lum et
al, 1996 presents a model of a planar spinning rotor. Complete models of the flexible, ro-
tating shaft are presented in Sivrioglu & Nonami, 1998 and using the dynamic theory of
flight in Matsumura & Yoshimoto, 1986.

The method presented in Lee et al, 1995 uses closed loop data from a magnetic bear-
ing excited with noise to estimate properties such as stiffness, damping and current stiffness
of an open loop physical model. This method overcomes the difficulty of accurately mea-
suring some features of the apparatus by using a physical model. The model will contain
approximations leading to inaccuracies that cannot be overcome using this method. AMB
systems often show discrepancies between the predicted and the measured dynamic be-
havior due to the inaccurate modeling associated with magnetic forces, frequency charac-
teristics of power amplifiers and electromagnets, leakage and fringing effects of magnetic
fluxes and eddy current effects (Lee et al, 1995).

Since the plant is open loop unstable it is impossible to record open loop data to

identify a model. The problem of identifying a MIMO closed loop plant is difficult and
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frequency methods such as in Li & Lee, 1996 rely on open and closed loop data. The
open loop dynamics of a closed loop plant with known discrete feedback dynamics can be
identified using the method provided in Phan & Longman, 1994. Using only SISO plant
input and output data, a discrete model with the least squared error can be estimated using
the method in Ljung, 1999 in either a recursive or a batch configuration. The least squares
estimation method can be easily extended to a multiple input, single output identification.
That is, models found from this type of identification are highly application specific.

The author was unable to find any published material that does not use a physical
principles model to design a controller for a magnetic bearing. Therefore the techniques
described in Chapter 4 showing experimentally based modeling represent a significant con-

tribution to the literature.

2.3 Control Strategies for a Magnetic Bearing

A controller used to [evitate the shaft must have some robustness or in other words
be able to operate under varying conditions. The controller must be robust to modeling
errors, disturbances, non-linearities and varying plant dynamics which are unavoidable in
any control application. The desire for greater robustness has lead to increased interest in

non-linear controllers with guaranteed robustness properties.

2.3.1 Analog controllers

Analog PID controllers were the first algorithms used to successfully levitate a shaft.

The tuning of these controllers was sometimes done by trial and error and produced a va-
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riety of closed loop dynamics (Humphris et ai, 1986). There is a trade-off in the tuning

between control saturation, system stiffness and prevention of bearing touchdown. Accel-
eration feedforward with a digital PID controller was shown to reduce the deviation of the
shaft due to ground motion in Suzuki, 1998 reducing the required level of trade-off. In a
complete design approach, Sheu et al, 1995 considers the PD feedback parameter tuning
and magnetic bearing location as one optimization problem.

The SISO nature of PID controllers reduces its effectiveness in an interactive MIMO
system and often has poor robustness. A sliding mode controller was shown to be very
effective and superior to a PID controller in Nonami & Yamaguchi, 1992 and Tian & Non-
ami, 1996. The application of sliding mode control to a magnetic bearing is desirable since

itis theoretically very robust to a class of system variations and disturbances.

232 Digital Controllers

The implementation of digital controllers for magnetic bearings is computationally
intensive and can only be achieved on a fast PC or DSP. The fast dynamics of the mag-
netic bearing require a fast sampling rate and complex controllers must be executed every
sample interval. For example, a sample rate of SkHz was chosen for the work done in this
thesis. Several different digital control strategies outlined below have been simulated and

experimentally tested in the literature.

The following implementations have been detailed:
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e Herzog et al, 1996 analysed the stability and inserted generalised notch filters in
conjunction with the existing controller in an industrial turboexpander to achieve automatic
balancing

e Automatic balancing was simulated using an on-line identification of physical
characteristics of the imbalance to tune the stabilizing controller in Lum et al, 1996.

e Imbalance compensation and automatic balancing was simulated in Mohamed
& Busch-Vishniac, 1995 using Q-parameterization theory.

e  Simulations of an integrator backstepping controiler for a planar rotor disk, mag-
netic bearing system was presented in Queiroz & Dawson, 1996.

e To achieve system robustness, H,, control strategy (Dahleh & Diaz-Bobillo,
1995) has been implemented to magnetic bearings. Using the loop shaping design proce-
dure, a gain scheduled H, controller for automatic balancing was simulated and experi-
mentally tested in Matsumura et al, 1996.

e In Sivrioglu & Nonami, 1998 a gain-scheduled H., controller was also imple-
mented using the linear parameter varying (LPV) approach where the time-varying param-
eter is the rotational speed of the shaft. The LPV method has received some attention in
other applications such as vehicle suspension (Fiaiho and Balas, 1998).

o The u synthesis design method (Skogestad & Postlethwaite, 1996) was evalu-
ated using simulations and experiments in Nonami & Ito, 1996. The results show a greater
robustness to mass variation in the shaft than the H,, controllers but the synthesis requires

a solution to an iterative and nonconvex numerical procedure.
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e A fuzzy controller was designed in Vidolov et al, 1996 and the simulated results

are comparable to a sliding mode controller.

2.3.3 Linear Quadratic Controllers

The optimal or linear quadratic (LQ) controller relies on linear state feedback to
minimize a designed cost function made up of the states and the control action. The LQ
controller has been applied to many systems and is a well documented control strategy
(Anderson & Moore, 1990; Skogestad & Postlethwaite, 1996). An optimal integral-type

controller for an AMB is implemented in Matsumura & Yoshimoto, 1986 including simu-

lation and experimental results.

234 Sliding Mode Controllers

Sliding mode control (SMC) theoretically features excellent robustness properties in
the face of parametric uncertainty (inaccuracies in the constants of a model and matched
exogenous disturbances) making it an attractive controller for a magnetic bearing. The
theory and design of continuous sliding mode controllers was well introduced and illus-
trated in DeCarlo et al, 1996; Slotine & Li, 1991; Utkin, 1977. A Discrete Sliding Mode
Controller (DSMC) for a discrete plant was presented in Pieper & Surgenor, 1993 along
with an application example showing DSMC robustness compared to an LQ controller and

in Furuta, 1990. Pieper & Surgenor, 1993 also provided methods for calculating optimal

sliding surfaces or constraining closed loop dynamics.
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Simulated results of a SMC for a magnetic bearing were presented in Lewis et al,
1998, Smith & Weldon, 1995 and with a sliding mode observer for a vertical shaft in
Rundell et al, 1996. Experimental results of a sliding mode controller were presented in
Nonami & Yamaguchi, 1992 , Tian & Nonami, 1996 and in a test rig with no bias current
in Charara et al, 1996. All of the sliding mode controllers found in the literature used a
single sliding surface.

A discrete time version of the sliding mode control law was implemented in Tian &
Nonami, 1996 with a different switching condition than in Pieper & Surgenor, 1993. All
the other implementations use a continuous time sliding mode control law with a discrete
implementation requiring a fast sampling rate. The SMC in Nonami & Yamaguchi, 1992
used a 4kHz sampling rate for a first critical frequency of SSHz while in Sivrioglu & Non-
ami, 1998 a rate of 3.6kHz was used for the 100 Hz first critical frequency. The DSMC in
Tian & Nonsami, 1996 sampled relatively slower at SkHz for a first critical frequency of
340Hz. The apparatus used for the work in this thesis has a first critical frequency of about
800Hz (Magnetic Moments, 1997) and a relatively slow sampling rate of SkHz was stable
using the DSMC given in Pieper & Surgenor, 1993.

A combined digital DSMC and digital PI controller for a motor speed controller was
presented in DeSantis, 1989 giving good disturbance rejection and tracking performance.
These features are desirable for a magnetic bearing application.

DSMC is a good choice of controller for a magnetic bearing due to its robustness to

uncertainty and disturbances shown in Pieper & Surgenor, 1993 and Furuta, 1990.
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2.3.5 Observers

Many control algorithms rely on state information for feedback control. Models of
magnetic bearings contain more states than outputs so an estimator is required to esti-
mate the states from the available outputs. A Kalman filter provides a least squares state
estimate from the outputs of the system for given noise and disturbance variances (see
Anderson & Moore, 1990; Skogestad & Postlethwaite, 1996).

A sliding mode observer potentially offers advantages similar to those of sliding con-
trollers, in particular inherent robustness to parametric uncertainty. The chattering in a
sliding mode observer is just a numerical feature unlike the hard mechanical chattering
in the sliding mode controller. The potential use of sliding observers v=s discussed in
Slotine et al, 1987. A sliding observer was proposed in Walcott & Zak, 1987 with a numer-
ically tractable solution to the observer design presented in Edwards and Spurgeon, 1994.
The design example in Edwards and Spurgeon, 1994 was duplicated and compared to a
Kalman filter for non-zero initial states. The Kalman filter was found to match the ac-
tual states more quickly than the sliding mode observer. The initial condition of a magnetic
bearing when itis ready to lift off from its mechanical supports has non-zero states so based
on this comparison a Kalman filter may perform better than a sliding mode observer. For

this reason, a Kalman filter was chosen to estimate the states of the magnetic bearing.
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2.4 Summary

In this chapter some applications for magnetic bearings along with their basic oper-
ation was discussed. The current state of research in controllers for magnetic bearings as
well as some control strategy background was presented. It was noted in the review of the
literature that only a physical analysis of a magnetic bearing has been used to produce a

model even though there exists several experimental approaches to modeling.
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Chapter 3
Apparatus

3.1 Introduction

In this chapter the magnetic bearing apparatus and the controller implementation
hardware and software are described. The bearing apparatus is laboratory scale but is
typical of industrial applications such as for natural gas compressor stations.

The proposed external controller implementation consists of a PC with an analog
to digital (ADC) and digital to analog (DAC) conversion board. The software to run the
control algorithm and the communication board is Matlab {( Math Works, 1996) with the

Simulink toolbox and the WinCon ( Qanser Consulting, 1998) real time execution software

package.

3.2 Magnetic Bearing Research Equipment

The magnetic bearing apparatus is a laboratory-scale system manufactured by Mag-
netic Moments (Magnetic Moments, 1997) shown in Figure 3.1. The system consists of a
shaft 0.269m long weighing 0.262kg that can be levitated at both ends by electromagnets
in both horizontal and vertical directions. When the shaft is levitated, it can be rotated by

hand and spins without contact with the supporting structure.
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Figure 3.1 Magnetic Bearing Apparatus

The faceplate of the apparatus is shown in Figure 3.2. Through this faceplate, the
following connections are available:

e  Four outputs which provide position measurements (A). One horizontal and one
vertical output at each end of the shaft at a nominal scale of 1Volt/0.1mm. The shaft touches
the housing at a position measurement of about £2.3V.

e  Four outputs which provide a measurement of the input to the current amplifiers
(B). The current amplifiers produce 0.25A/Volit.

¢  Four inputs which can be added to the compensator feedback (C).

e  Four buttons which close the feedback loops of the built-in compensators (D).
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e  Built-in compensators (E) can be used if buttons (D) are closed. If buttons (D)

are open external control can be effected by measuring (A) and applying control inputs to

©.
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Figure 3.2 Magnetic Bearing Apparatus Faceplate (Magnetic Moments, 1997)

At each end of the shaft there are electromagnets to move the shaft in horizontal
and vertical directions as well as position sensors for horizontal and vertical displacements
located as in Figure 3.3. There are a pair of horseshoe-shaped electromagnets horizontally
opposed and a pair vertically opposed with the same layout as in Figure 2.1 at each end of
the shaft. The two magnets in each pair operate together by simultaneously increasing and
decreasing the current about the bias current (or the nominal level).

Active control of the apparatus uses the four measured displacement signals to adjust
the current in each of the electromagnet pairs. The four feedback compensators built-in to

the apparatus are analog devices predesigned by the manufacturer with nominal dynamics

(Magnetic Moments, 1997):
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Figure 3.3 Active Magnetic Bearing Apparatus ( Magnetic Moments, 1997)

3.3 Digital Controller Implementation

A schematic diagram of the control signal flow is shown in Figure 3.4. The four
position outputs from the apparatus were connected to an ADC in a PC where they were
sampled. The control algorithm was implemented in Simulink and the outputs from the
controller were connected to the DAC and then to the apparatus inputs. The built-in com-

pensators were disconnected using the push buttons on the front of the apparatus.

33.1 Hardware

The PC used to run the control algorithm was a Pentium II 350 with 96MB of RAM
running Windows 95. The computational speed of this computer was the limiting factor

in choosing the sample period of the controller. A faster sampling rate provides better



22

Out In

Analog Controller

e
‘—_’_(‘___’Im Qutput In Out

Intemal/ Sz Sample
Extemal Bearing

Controller

[ o N

Zero-Order -
Hold PC Digital Controller

Figure 3.4 Digital Controller Signal Flow

resolution of the analog inputs and allows the controller to make control actions more often.
The first critical frequency of the shaft is approximately 800Hz (Magnetic Moments, 1997)
and a control systems rule of thumb states that the sampling should be at least five times
faster than all frequencies of interest. A sampling rate of SkHz was chosen to meet this
rule with the first critical frequency while not exceeding the computational speed of the

computer. This is a relatively slow sampling frequency compared to other applications (for

example Nonami & Yamaguchi, 1992; Sivrioglu & Nonami, 1998).
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The MultIQ I/O board from Quanser Consulting Inc was used to perform all of the

data acquisition and analog outputs for the controllers. This board allows eight 13 bit
bipolar analog inputs in the range of £5V along with eight 12 bit analog outputs in the
range of :£5V. From the analog frequency measurements in Section 4.3 it was found that
the analog output signals were very small above 2.5kHz so with the sample rate chosen to

be SkHz, anti-aliasing filters were unnecessary.

3.3.2 Software

The Matlab/Simulink v5.2 software package (Math Works, 1996) was used to design
and implement all of the digital controllers. Matlab provided all of the mathematical cal-
culations and Simulink was used to connect the control signal flow to the I/O board using
the Quanser Consulting Inc (Qanser Consulting, 1998) I/O Simulink blocks. The Simulink
controller diagram was compiled to an executable using WinCon 3.0 to speed up the com-
putations. The controllers were run using the WinCon interface which enabled graphing

and data logging.

3.4 Summary

This chapter described the magnetic bearing apparatus and the equipment that was
used to implement and test the digital controllers. The shaft of the laboratory scale mag-
netic bearing apparatus was levitated by the built-in analog compensators and by digital

controllers implemented in Matlab, Simulink and WinCon on a PC.
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Chapter 4
System Identification

4.1 Introduction

In this chapter the details of the procedure and results of modeling the magnetic
bearing are presented. To implement a control strategy for any plant it is essential to have
a model. The large majority of control strategies require a linear model. This model must
be sufficiently accurate so that controllers designed based on the model will result in a
closed loop system which meets the control objectives. The main objective of the magnetic
bearing controller is to be able to levitate the shaft from its supports and maintain this
levitation in the presence of all reasonable disturbances. This chapter discusses the three
methods that were used to try and produce a model that was accurate enough to be used as

a basis for designing a stable controller for the magnetic bearing apparatus.

4.2 Physical Analysis

A linear two input (ux and up,), two output (yy,; and y,.) model of the magnetic bear-
ing horizontal dynamics was made using the outline in Magnetic Moments, 1997 which
took into account the physics of the major components of the system. The same model can
be used for the vertical dynamics ( %y, t%ur, Y and y,,) since the apparatus is constructed
symmetrically. This approach uses Newtons Laws of motion. The operating point of the

system under closed loop should be horizontally and vertically centered at each end of the
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shaft. The model was calculated using small deviation linear approximations around this
point. This model did not take into account any dynamics related to a rotating shaft but did

include:

e The rigid shaft properties as well as the flexible dynamics.

e A linear approximation of the force on the shaft exerted by the current in the coils of

the electromagnets.
e The dynamics of the current amplifier that regulate the current to the cails.

e A linear approximation of the displacement sensors.

The poles of the analytical model are shown in Figure 4.1 with the frequency response
shown in Figure 4.2. The frequency response uses mirror image maps of the unstable poles
with an appropriate phase shift to generate the response. The system is symmetric so that
the response of yni/us, is the same as yn, /un and ya, /up, is the same as yn;/un and the
vertical axes responds similarly so this model can be extended to a four input, four output
model of the whole plant assuming that there is no coupling between the axes.

The right half poles in Figure 4.1 show that, as expected, the plant is unstable. It also
shows that there are two lightly damped resonant modes at 780Hz and 2,150Hz which can
also be seen by the sharp peaks in Figure 4.2,

This model was used to design an LQG controller for the horizontal axis with the
built-in compensators maintaining the vertical position. It was not possible to produce a

closed loop stable system with this LQG controller. Many different controller and observer
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Figure 4.1 Open Loop Poles of the Analytical Model of One Axis

tuning choices were made and in the end the instabilities were attributed to modelling

inaccuracies.

4.3 Frequency Response Analysis

4.3.1 Closed Loop Frequency Response

This method of producing a model of the plant involved adding a sine wave to one of
the inputs then measuring the relative amplitude and relative phase of each of the outputs.
These measurements were done using analog instruments and were recorded using the

ADC. The frequency was swept over a range and the result was the linear approximation of
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Figure 4.3 Closed Loop Frequency Response Measurement Connections for Uy Input

the frequency response of the closed loop system from each input to each output. The low
frequency limit of 20Hz was caused by the range of the available amplitude RMS meters
and the upper limit of the range was chosen to be close to the Nyquist frequency of the
digital controller to be implemented. The measured signals are shown in Figure 4.3.

The measured output was not a pure sine wave and contained some other frequencies
indicating that the plant is not linear. The measured frequency response of the horizontal
outputs to uy; are shown in Figure 4.4. There is a strong resonance at 780Hz which is

the same as the analytical model in Section 4.2 although the resonance at 2,150Hz was



29
not observed. There was negligible coupling between the two axes and the response was
virtually identical from the left or right ends except for a small gain difference. The vertical
axis was also found to be almost identical to the horizontal axis. The resonant peak is very
sharp indicating that it is very lightly damped. Measurement noise limited the magnitude

data to a minimum of -40dB.

43.2 Model Synthesis from Frequency Response Data

A transfer function was fitted to the frequency response data. Figure 4.5 shows the
frequency response of the transfer functions as well as the data it was designed to match.
The magnitude and phase match very closely. These transfer functions were fitted using
the “fitsys’ and ‘magfit’ Matlab commands which uses a least squares fitting criteria and
required careful choice of the fitting weighting function as well as manual placement of
some of the poles into the right half plane to match the measured phase response. The

Yne/un; model was a sixth order transfer function and the yy, /ux, model was fourth order.

43.3 Modeling Results

Using the two transfer functions shown in Figure 4.5 and assuming that the plant is
symmetrical in both the left to right and horizontal to vertical comparisons, then it is math-
ematically possible to determine the open loop plant from these closed loop models if the
built-in compensator dynamics are accurately known. In practice, this was numerically dif-
ficult and heavily sensitive to variations in some of the transfer function coefficients. Also,

the built-in compensator dynamics from equation 5.22 are not accurately known since each
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compensator was individually tuned by the manufacturer. The dynamics of the compen-
sators could not be measured without dismantling the apparatus. This method of identifica-
tion yielded no useful plant model since the solution is parametric in the controller. If the

controller was known then this method could be useful in identifying the plant.

4.4 Parameter Estimation

Parameter estimation was used to identify the coefficients of difference equations to
model the plant. This method of identifying a discrete model uses input and output data
and produces a least squares estimate of the plant parameters. The order of the plant must

be specified as must the pure delay from the input to the output.

4.4.1 Least Squares Batch Parameter Estimation Method

The following algorithm for batch parameter estimation is from Ljung, 1999 with an

extra input added to the equations. The plant is modeled by Equation 4.2.

Alq )y =q°B1(¢7") tae +q7*Ba (q7") ug +wi (4.2)
where:

U, and u, x are the inputs at time step k&

Y. is the output at time step &

wy, is white Gaussian noise at time step k&

d is the number of time steps of pure delay

q~! is the unit delay operator
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AlgY)Y=14a1g '+ ---+a.,g"
Bi(g7") =bwo+bugt+--- +bimg™
By(q7') = bso+bng '+ +bamg™
n is the order of the output difference equation
m is the order of the input difference equations
andm<n

Equation 4.2 can be rewritten in matrix form as:

Yr-1
Yk-n
U1,k~d
e = [—a1 -+ —Gn b0 -+ bim b - bom | : + we(4.3)
Uy k-d-m
U k—d
| Y2k-d-m |
Ye = $p0+wi (4.4)
where:
g7 = [-a1 - —@n bio -+ bim b --- bom ] 4.5)
$r = [ - Yk-n UVip-d - Ulk-d-m U2k—d " Upk-d-m | (4.6)
Let
T
Y = [n - Ykmaz | 4.7

& = [¢7 - B ] @438)
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where £ = 1,....,kmax is the time interval. The least squares estimate of 6 is given by

(Ljung, 1999):

b (k)= (278) " 8TY (4.9)

4.4.2 Modeling Results

Noise was added to an input while the shaft was levitated using the built-in compen-
sators. The noise source was a white noise generator along with a sine wave at the same
frequency as the first resonant mode of the plant (as found by the measurements in Section
4.3). The noise was produced by a Simulink program at a 5kHz rate and the two outputs
on the same axis as where the noise was added were recorded at the same sample rate.
The test was repeated at the other end of the same axis and on each end of the other axis.
The data was collected for about five seconds and a window of the data was used for the
model identification after removing the D.C. component. The horizontal and the vertical
model identifications followed the same method and had almost identical results. In each
case, a two input, two output model was produced. For brevity, only the horizontal model

is discussed. Equation 4.9 was used to identify 2 sub-systems:
A{g Yy = ¢°Bi(a") un+q*Ba(q7") unr (4.10)
Ay (g Dy = ¢ Ba(q ") un+q*Ba(q7") tnr (4.11)
The estimation was performed withn = 8, m = 7, d = 1, and kpa, = 6000. The

choice of the plant order, n, was very important since low values of n gave large variations

in the frequency response of the identified plant. Further increases in the value of n beyond
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Figure 4.6 Poles of Horizontal Subsystems Identified Through Parameter Estimation.
(Left: Roots of A;(g™*). Right: Roots of A3(g™1))

eight had little effect on the identified plant. The amount of data used in the identification
algorithm, ky,,, also had a large effect on the outcome of the identification but increas-
ing values of k... appeared to converge towards one model. The other two parameters,
time delay d and the order of the input equations m, did not impact the modeling resuits
significantly so were set to match the order of the output equation.

The poles of the identified subsystems given by the roots of the identified polynomials
A; (g7!) and A, (¢!) were found to be almost identical as shown in Figure 4.6. This is
consistent with the previous identification methods in Sections 4.2 and 4.3 and is to be
expected since the apparatus was constructed symmetrically.

The roots of A; (g7!) and A, (g~!) were arithmetically averaged to produce a poly-
nomial Az (¢~!) so that equations 4.10 and 4.11 could be rewritten as equations 4.12 and

4.13.
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A ym = ¢ (Bi(g7") uu+ Ba(g7}) unr) 4.12)

A (@) e = ¢ (Bs(g7") um + Ba(q7") unr) (4.13)

This pair of two input, one output equations can be combined and rewritten in state

space form as two sets of one input, two output systems:

Triksr = AnTuk + Butnk 4.14)
Yne = HuTnx (4.15)
Thrktl = AnZark + Bhrtank (4.16)
Yne = HprZpep (4.17)
where (see Appendix A):

Zn are the states of the left subsystem at time step &
Zhr are the states of the right subsystem at time step &
unyx is the left horizontal input at time step &

Unr 18 the right horizontal input at time step &

Ynix
yhr,k

Ap; and A, are 8x8 matrices

Yk = [ ] are the outputs at time step k.

By, and Bj,, are 8x1 matrices
Hj; and Hp.are 2x8 matrices

The two systems can be combined to give the two input, two output system

_ AM 08x8 Bhl 0le
Theet = [Ost Anr ]“"‘*"* [om Bar ]”"*" “.18)
Yne = [ Hu Hu | zap (4.19)
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where:

Thik
hr.k
Unt k ]

and Upk =
Upr i

Equations 4.18 and 4.19 are the final identified horizontal model which has two in-
puts, two outputs and 16 states and was verified as completely controllable and observable.

It can be rewritten as:

Thrtr = PaZng + Cating (4.20)

Ynk Hyzp i 4.21)

Figure 4.7 shows the frequency response of the horizontal model to the left horizontal
input with a resonance at 782Hz. The phase response is quite different from the analytical
model in Figure 4.2 but the magnitude shape is similar with a sharp resonance at 780Hz.
The discrete poles in Figure 4.6 map quite closely after conversion to the continuous time
poles of the analytical model in Figure 4.1 up to about 1kHz.

The parameter estimation method of identifying a model for a magnetic bearing pro-
duced good results. This method of system identification was not used in any published

literature for a magnetic bearing.

4.5 Model Resonant Mode Refinement

A stable controller was built based on the parameter estimated model but the shaft
resonated at the first resonant mode with all of the controller tunings tested. The resonant

peaks are more heavily damped than the closed loop measurements which can be seen by
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comparing Figure 4.7 with a resonant peak of about 15dB to Figure 4.4 with a peak of

about 35dB at a frequency of 780Hz.

4.5.1 Model Refinement

The model was modified by moving the resonant poles closer to the unit circle (from
aradial distance of 0.945 to 0.996) to decrease the effective damping in the resonance while
maintaining the resonant frequency. The modified frequency response for the left horizontal
input is shown in Figure 4.8 along with the original response. A controller design based on
this model was stable and did not resonate.

The model with the relocated poles has a DC gain that is about 5% lower than the
original model but this error is small and compensated for by the feedback controllers. The
simulation in the following section was designed to shed some light on the performance of
the parameter estimation method for a resonant pole.

There will be some bias in the estimation since the plant input noise is coloured
rather than a white noise source (Ljung, 1999) which could account for the error in the
model identification. The colouring of the plant input noise comes from the addition of the

external excitation noise to the compensator feedback to produce the plant input.

4.5.2 Simulation of System Resonant Mode Identification

A numerical simulation was performed to investigate the identification of a linear
plant with a resonant peak. Discrete white noise (in the range of +1 at SkHz) with a sine

wave (amplitude 1) at the resonant frequency was used as input to a continuous transfer
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function with a resonance at 800Hz and damping of about 0.004 (similar to the final pa-
rameter estimation model). The output data was recorded and the plant was identified using
the parameter estimation method and then Gaussian noise (mean: 0, variance: 0.05) was
added to the output and the identification procedure was repeated. Figure 4.9 shows the
frequency response of the original plant and the two identification results. It is clear from
this simulation that with noise in the measurement, the ability to identify this resonant peak
is reduced (peak of 5dB compared to 40dB).

Figure 4.9 shows that the DC gain of the identified model with noise in the mea-
surement is significantly higher than the model identified without noise. From this brief
simulation it appears that the identified model with a higher damping is accompanied with
a higher DC gain and for this reason the DC gain of the magnetic bearing model with

modified resonant pole was not adjusted.

4.6 Summary

This chapter presented the attempted methods to model the magnetic bearing system.
The physical analysis model was not accurate enough in this case to be used as a basis to
design a stable controller. The sine wave response of the closed loop system with built-in
compensators was measured then transfer functions were matched to the response. It was
not possible to calculate an open loop model from this data due to numerical difficulties
and inaccurate knowledge of the built-in compensators.

An open loop model was identified using the discrete parameter estimation method

to identify subsystems from closed loop input/output data. The subsystems were then com-
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bined to produce a two input, two output, 16 state open loop model for each of the horizon-
tal and vertical axes. The models are open loop unstable and have a resonance at 782Hz.
The resonance of the mode! was found to be too heavily damped to be used as a basis to
design a controller so the resonant poles were modified to be more lightly damped. A nu-

merical simulation was performed to investigate the misidentification of a sharp resonant

peak with a noise corrupted measurement.
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Chapter 5
Control Law Development and
Implementation

5.1 Introduction

In this chapter, details of the design and implementation of controllers for the mag-
netic bearing apparatus are presented. Firstly, the built-in compensators of the apparatus
are discussed then several digital controllers are designed. The digital controller design is
centered around the model identified in Section 4.4 and uses the equipment described in
Chapter 3. Each digital controller consists of a separate horizontal and vertical component.

A state estimator for each axis was designed and state feedback controllers were im-
plemented using the state estimates. An LQG controller was designed based on a selected
cost function for each of the two axes. A modification to the plant model was made so that
a DSMC could be implemented. The sliding surface for the DSMC was designed using a
cost function to weight the control action and the output regulation objectives. An outer
loop PI controller was added to the DSMC to improve its reference tracking ability. The
DSMC was also modified to slide on different surfaces depending on the position of the
ends of the shaft.

This chapter discusses the different controller tunings that were found to be stable
as well as some tuning difficuities. The test results of these controllers and as well as the

built-in compensators are detailed in Chapter 6.
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5.2 Built-In Feedback Compensators

The magnetic bearing apparatus contains built-in feedback compensators as discussed
in Section 3.2 which can be used to levitate the shaft. There are four single input, single
output compensators which all use a position measurement and adjust the corresponding
current in the electromagnet. There is reasonably strong coupling from one end of the shaft
to the other on each axis of the shaft as seen in the identified model in Section 4.4. This
means that there is significant dynamic coupling between the two control loops on each
axis. With the single input, single output controllers there will be some interaction and
possibly fighting between controllers on each axis which could result in oscillations in the
closed loop dynamics.

The nominal compensator dynamics for each channel are given in Magnetic Mo-

ments, 1997 as:

1.45 (1 +0.9 x 10-%s)
(1+3.3x10743)(1+ 1.5 x 10-%s)

V(S )control = V(S )aeme (5 -22)

This has a frequency response shown in Figure 5.1.

5.3 Observer Design

An observer is required to estimate the states of the models identified in Section 4.4
for the LQ controller and DSMC to be implemented. For each of the axes, an observer
is required that uses the two plant inputs and the two plant outputs to estimate the 16

states of the model. A Kalman filter was designed using the ‘kalman’ Matlab function (see
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Math Works, 1996). The structure of the horizontal system with matched white state noise

(w) and measurement noise (v) is given by:

Thp+r = PnZnx+ Ca(ung + wni) (5.23)
Ynk = HrTag + vng (5.29)
Where:
ol ={ & terurn

E

B [onsn;] = { ﬁ" Otheruins
E [wnzvli] =0, Vk, j

E

E [uni] =02 Vk

@n, R, Diagonal (i.e. the elements of wy and vy, are independent.

The estimator that minimizes the steady-state error covariance:

P = klim E [(-’1’:: — &) (zx — 53k)T] (5.25)
is given by:
Tnk+1 = Padng + Dnung + L (ynx — HaZnk) (5.26)

Qn and R, were roughly estimated to be 0.001 x I, from collected data while under
closed loop control by the built-in compensators.
The ‘kalman’ Matlab function returns a state space system with four inputs (the two

plant outputs and the two plant inputs), two filtered plant outputs and16 state estimates.
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The estimator produces a least squares estimate of the states and the plant outputs without

noise.

5.4 Linear Quadratic Gaussian Controller

S5.4.1 Controller Synthesis

Two LQG controllers {one for the horizontal axis and one for the vertical axis) were
designed using the identified models from Section 4.4 and the observer designed in Section
5.3. The controller was designed using the ‘dlqr’ Matlab function then combined with the
observer using the ‘Iqgreg’ function (Math Works, 1996). The control for the horizontal
axis is unx = KhZnx which acts on the plant in equations 5.23 and 5.24. The ‘diqr’

function calculates the optimal gain matrix, K (2 % 16), that minimizes a cost function, J,

given by:

J= Zﬂ,‘{kah,x + UZ,kR’Uh,k (5.27)
k=0

The matrix Q weights the deviation in the states while the R matrix provides the
relative control action weighting. The cost function should reflect the goal of regulating the
position of the shaft rather than directly regulating the states of the model which have no

physical interpretation. The cost function was chosen to be:

T =Y avstns +upsune = Y qzhcHi Haonp +up cunk (5.28)
k=0 k=0
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So Q = qHT Hy and R = [. The design parameter, q, determines the relative weight-
ing between the outputs and the inputs in the cost function. The two outputs have an equal
weight as do the two inputs. If a large value of g is chosen then the states will be tightly
regulated at the cost of large control action which may saturate the actuators.

Figure 5.2 shows the frequency response of a horizontal axis LQG controlier designed
with the above method. The left plots show the response of un; to yx while the right plots
show the response of u;, to ¥, The response at the right end of the shaft is very similar
to the left end and the vertical controller is similar to the horizontal controller. These
plots show that the controllers are multivariable in that they take control action at both
horizontal plant inputs in response to a plant output change at only the left end. This is in
contrast to the single input, single output built-in compensators described in Section 5.2.
The frequency response of the built-in compensators is similar to the us; /yn; LQG response
except that the LQG response has a deep notch at the resonant frequency. This notch should
effectively damp out the large resonant peak in the plant as found in the modeling in Chapter
4 and shown in Figure 4.5 and Figure 4.7.

Stable horizontal and vertical controllers were designed with g set to 2.5, 1000 and

4 x 10°. The test results are presented in Chapter 6.

5.5 Discrete Sliding Mode Controller

The DSMC (see DeCarlo et al, 1996; Pieper & Surgenor, 1993; Rundell et al, 1996;
Slotine & Li, 1991; Utkin, 1977) requires an estimate of the current states, £, to produce a

control action u;. The Kalman filter discussed in Section 5.3 uses the current plant output,
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¥k, and the current plant input, uy, to produce the estimate Z;. The LQ controller and the
Kalman filter were merged to produce a two input, two output LQG controller but this is
not possible with the non-linearities in the DSMC. The Kalman filter and the DSMC cannot
be connected in their present form since the state estimate, £x, would depend on the control
action u; while u; would depend on %, producing an algebraic loop in the calculations.

To remove the algebraic loop, a delay must be inserted into the signal flow as shown
in Figure 5.3. The control action, uy, is delayed one sample interval before it is sent to the
plant and to the Kalman filter. With this delay inserted the DSMC is controlling a plant
with different dynamics which must be reflected in the model. The identified horizontal
model was given in equations 4.18 and 4.19.

The input to the model is delayed through the two new states, z;, that have been

added in the following equations

Zhk+1 = Unk (5.29)
Thie+r = PaTar +Thzng (5.30)
Yne = HpZng (5.31)

Equations 5.29 to 5.31 can be merged into a new state space model given by:

zp ®, T Tp O16x2
= 5.32
S R ol 1 g R b ul E

Ynk = [ Hn Oz | [:’: ] (5.33)
k
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Figure 5.3 DSMC Control Signal Flow

Equations 5.32 and 5.33 delay the input to the original states, z,, by one sampie
which is equivalent to using a delayed input, us—;, to the model. The controller and
estimator based on this new model can be connected as shown in Figure 5.3. The Kalman
filter is as designed in Section 5.3. The DSMC can be designed using this delayed input

model and implemented using the signal flow in Figure 5.3.
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5.5.1 Control Law

The DSMC law for a single control is given by Pieper & Surgenor, 1993:

ur = (Keg+ Kow)Zk (5.34)
Kq = —[CT|'C[®- L] (5.35)
Kw = (15" bnp) (5.36)

0 otherwise (5.37)

b = {"¢-8‘ign(8k$i,k) |sk|>%(¢+ﬁ)cr]|xk”1}

Where:
n is the order of the plant
K., is the equivalent control matrix (1 x n)
Ky is the switching control matrix (1 x n)
C is the sliding surface matrix (1 x n)
T is the system input matrix (n x 1)
s, is the distance to the sliding surface, s, = Czy, (scalar)
¥ is the maximum perturbation (scalar)
lzell, = f:l | x|, the first norm of the states (scalar)
¢ is the sv;itching strength subject to ¥ < ¢ < | Z| — ¥ (scalar)
The switching control forces the states of the plant onto the sliding surface defined
by C while the equivalent control moves the states along the surface towards the origin.

The above control law ensures that the switching control is not too strong to overshoot the

sliding sector but also sufficient to cause the system to move towards the sliding sector



54

in the face of disturbances. The DSMC takes into account the sampling rate whereas the
robustness of the continuous time sliding mode controller is not guaranteed with a discrete
implementation. This is especially important in this application since the sampling rate
is slow relative to the first critical frequency of the shaft. The following section details a

sliding surface design method to ensure that the sliding surface is stable and the states slide

towards the origin.

5.5.2  Sliding Surface Design

The sliding surface was designed to minimize a cost function with relative weighting

of the states of the model in equations 5.32 and 5.33. The cost function is written as:

oo T
— Zh Qu Q2 Ty
r-xlnlla ) e

k=0

[= <]
z Th  QuTng + T Qu22nk + 28 £ QuThk + Zn Q20 (5.39)
k=0

The off-diagonal terms Q12 = Q7, = 0 since they have no physical significance. The

J

other terms were chosen so that:

J= Z q:r{kH,'fH ATk + rz,{kz,,'k (5.40)
k=0
which is equivalent to:
©co
Jd = Z qy{kyh.k + ru{kuh,k (541)
k=0

The sliding surface design is reduced to choosing the relative weight of the output, g,

and the weight on the control, r.
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The sliding surface matrix is given by:

C=[—-(K+QnQn) b ] (5.42)

® is partitioned as in equation 5.43 so that the &2, matrix is 2 x 2 and the other

elements of the partition conform in size.

_| ®u ®a
¢ = [ By B ] (5.43)
The matrix K is given by:
K = (Qu + 35,5%,) ' @758 (5.44)
and
0 = S—0TSd* + 3 TSP, ,R 91,58 - Q" (5.45)
where
3" = &1 — 312Q3Qn (5.47)

Q" = Qu — Q12Q% Qn (5.48)
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5.5.3 Controller Synthesis

The control law in Section 5.5.1 was implemented for each of the plant inputs for
both axes. The sliding surface design parameters ¢ and r were chosen and the sliding
surface matrix C was calculated for each axis using the models from Section 4.4 modified
to equations 5.32 and 5.33 to account for the introduced delay. The DSMC law in equations
5.34 to 5.37 is for a single control so for each axis the sliding surface matrix, C, was
partitioned into two row vectors (one for each control input). The model input matrix, Ty,
was partitioned into two column vectors so that the control law in equations 5.34 to 5.37
could be implemented for both of the plant inputs for both of the models.

The tuning of the controllers was done by choosing ¥ to be 0.005 and ¢ to be 0.01
followed by choosing the cost function parameters ¢ and r. It was found that a closed
loop stable system was more easily tuned with a lower switching strength, ¢. The relative
magnitude of ¢ and r determines the level of regulation versus the amount of control action
taken. The control action weight, r, was set to 50. If g was chosen to be too large then the
control action would often saturate leading to instabilities. Lower values of g would result

in the closed loop plant resonating at the first resonant frequency. A value of g between 50
and 500 was found to produce good results.
5.54  Proportional-Integral Control

A PI controller was added to the DSMC to improve the reference tracking perfor-

mance of the closed loop system. The reference inputs and the PI controllers were con-
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Figure 5.4 Control Flow of DSMC and PI Controller for One Axis

nected in the configuration shown in Figure 5.4 for each of the horizontal and vertical
controllers.

The dynamics of the plant were measured by stepping one of the reference inputs
with the PI controller in open loop and the DSMC levitating the shaft. The left horizontal
step test is shown in Figure 5.5. From the step tests, the time constant and steady state
gain of the response can be measured to approximate the DSMC closed loop system as first

order with the model:
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where:

K, is the process gain (K = 2 for the left horizontal)

and 7 is the time constant (7 ~ 0.005secs for the left horizontal)
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(5.49)

The PI controller was then tuned using the Lambda tuning method (Astrom & Hig-

glund, 1995) to produce a designed closed loop time constant, A. The PI controller has the

transfer function:
_ K. (T.s+1)
Cls) = T.s
where:
K. is the proportional control gain
and 7T'r is the reset time of the integrating action

With the following tuning:

r
pA

=
[
s‘

the closed loop transfer function is:

GC 1

Gals) =170 ~ 7t 1

(5.50)

(5.51)

(5.52)

(5.53)

This allows the PI controller to be tuned significantly slower than the DSMC so

that there is negligible interaction and fighting between the two controllers. All of the
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PI controllers were tuned with the same closed loop time constant of A = 0.015secs.
Reference steps were made with the tuned PI controllers and the left horizontal response
is shown in Figure 5.6. With the PI controllers in closed loop, the steady state output
tracks the reference with no offset. The response also reaches the steady state value at
about 0.06secs after the reference change was made indicating that the tuning produced the

desired closed loop time constant, that is a settling time of four time constants.

§.5.5 Switched Sliding Surface Controller

To reduce the chance of the shaft touching the housing, a DSMC was designed to
take more aggressive control action when a position measurement deviated a large distance
from the zero position. A cut-off band of 0.5 Volts was used to determine which controller
tuning should be used. The operation of the horizontal controller had three tunings of the
cost function but used the same choices of the other parameter as in Section 5.5.3. The cost

function in equation 5.40 was modified to the form:

J = Z qlzi,,H;rleh,k + qz.’B{‘kH;Hg:Bh,k + TZ,{,:Z).,,]; (5.54)
k=0
oQ

J =) qis+ OUn, + UL Unk (5.55)
k=0

where:

Hy = [ g; ] are the two rows of the model output equation.

and qi, ¢o, and r are the tuning parameters
Three different sets of parameters were used in the cost function shown in Table 5.1.

The tuning choices in Table 5.1 were made so that if one end of one axis move out of the
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Yh Yhr QU 92 T
<405 <+05 100 100 50
>+05 <405 100 1 50
<#05 >#+05 1 100 50
<+05 <+05 100 100 50

Table 5.1 DSMC Switched Surface Tunings and Conditions for Each Tuning Use

0.5 band then a tuning with a larger relative weight on output deviation associated with that
end is used. This will attempt to use more control action to move that end back into the
band possibly at the expense of the position of the other end. When both outputs are within
the band then the equally weighted tuning is used. When both ends of the shaft are out of
the band, which would happen at lift-off, the equally weighted tuning is also used. This
was done because it was found that the control signal saturated on lift off with the normal
tuning and more aggressive tuning would not help this condition.

The values of ¢; and g» when one end is out of the band were chosen to be between
saturating the control and the original central level. With too large a difference between ¢;
and g», the controller would get into a cycle where a large control action was used to move
one end back into the band while the opposite end fell out of the band repeating the cycle.

This controller was difficult to tune since there are many parameter choices that must be
made.
5.6 Summary

This chapter presented the nominal design of the built-in compensators. Two discrete

control algorithms were designed using the parameter estimated model with a modified
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resonant pole developed in the previous chapter. A Kalman filter was designed to estimate
the states of the plant since both of the discrete controllers rely on state feedback.

An LQ controiler was designed using a cost function which reflected the goal of regu-
lating the shaft position without saturating the control input. The controller was combined
with a Kalman filter to form an LQG controller and was found to be stable with several
different tuning choices.

In the design of the DSMC the interconnection between the DSMC and the Kalman
filter caused an algebraic loop that was removed by an inserted delay but meant that the
model of the plant had to be modified to include a unit delay in the control action input.
The DSMC was designed using this modified model and a cost function which reflected
the same goals as the LQG controller. The DSMC was difficuit to tune since there were
several parameter choices to be made. A range of cost functions were found to produce a
stable controller.

PI controllers were added to the DSMC to improve the reference tracking perfor-
mance of the closed loop system. The PI controllers were tuned to be significantly slower
than the DSMC controller to avoid the controllers interacting. The DSMC was also mod-
ified to use a more aggressive control action when one end of the shaft moved away from

the zero position. This controller was difficult to tune since it has more parameters.
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Chapter 6
Experimental Results

6.1 Introduction

In this chapter the operating performance of the closed loop systems with the control
laws developed in Chapter 5 are evaluated experimentally. First there is a brief discussion
on the evaluation criteria for the controllers as well as a discussion on the need to scale the

recorded voltage data. The following controllers were tested:

e The built-in compensators discussed in Section 5.2.
e The LQG controller developed in Section 5.4.
¢ The DSMC-PI controller developed in Section 5.5.

e The DSMC-PI controller with a switching sliding surface developed in Section
5.5.5.

Three different sets of tuning parameters were tested with the LQG and the DSMC-PI
controllers. The DSMC-PI controller with variable surfaces was also tested with one set
of tuning parameters. The test results were compared to evaluate the performance of the
different controlled systems. The design and implementation of the controllers can also be

verified by observing the effect of different tuning choices on the controller performance.
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Each controller was tested under the following conditions:

A. The left horizontal end of the shaft was tapped with a metal pendulum and the
integration of the squared plant outputs and inputs were recorded.

B. A mass was added to the shaft and test A was repeated.

C. White noise was added to the control signal and the variance of the plant outputs
and control action were calculated.

D. The shaft was imbalanced with a mass then spun at about 10,000 rpm while the

variance of the plant outputs and control action were recorded.

6.2 Closed Loop System Evaluation Criteria

With the experimental test apparatus used in this research there is no final indus-
trial implementation and hence no precise control objectives. The main requirement of this
controller is that it levitates the shaft under varying operating conditions. The shaft mo-
tion should not meet the hard limits imposed by the bearing sizes. That is, the shaft should
stay within the frame without hitting the walls of the bearing. The final application would
determine what operating conditions are important and how to quantify how well the shaft
is levitated. For example, is the operation of the bearing with a varying shaft mass impor-
tant? [s preventing shaft touchdown more important than reducing just the shaft position
variance? Is the actuator power consumption important compared to position regulation?
Is reference tracking important?

There are other considerations in evaluating a control strategy not directly related to

controller performance. These would include controller complexity, tuning difficulty, and



66

hardware requirements. The experimental results presented in this chapter are aimed at
demonstrating how the designed controllers can be tuned for different closed loop perfor-
mance. The tuning values were chosen to demonstrate the large variation in performance
that can be achieved by the controllers. Actual implementations can then use this data to

guide tuning for given environments.

6.3 Signal Scaling

The voltage signals of the apparatus are in the range of 0V to £5V for the inputs
and £5V for the outputs. The signals were scaled to have more physical significance in
the data analysis. Each input to the apparatus controls the corresponding electromagnet
current to a scale of 0.25A4/V. The inputs to the apparatus were multiplied by 0.25 to
reflect this scaling. The scaling of the output signals were chosen to reflect a possible
control objective. Each output was multiplied by 1/0.4/0.1 so that an output of 0.5 would
correspond to a squared value of 10 (i.e. (0.5 x «./(ﬂ/O.l)2 = 10) reflecting a higher
concern for this large deviation. An output of approximately 0.158 scaled and squared

would result in a value of 1. Any value below 0.158 scaled and squared would be reduced

reflecting a lower concern for small deviations.

6.4 Shaft Taps

The shaft was tapped with a metal pendulum near the left end of the shaft in approx-

imately a horizontal direction. The results show that there was some vertical component to
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the tap. The pendulum was drawn back to a fixed position on each tap by means of a jig
to keep the taps consistent for all controllers. Each controller was tapped 75 times and the
plant inputs and outputs were recorded and scaled.

The integration of the deviation of the inputs and outputs due to the tap was calculated
by taking a window of data surrounding the tap time. For each recorded signal, the data
leading up to the tap was averaged to find the steady state shaft position and this value was
subtracted from all data in the window. The squared integration of the window of data was
then calculated by summing the squared values of the scaled data over the whole window
multiplied by the sample period. The mean of the integration of the 75 taps along with their
standard deviations are presented in Sections 6.4.1 to 6.4.4.

The time plots of the tap response shown in Figure 6.1 to Figure 6.11 are for illus-
trative purposes and are not the actual data windows used to integrate the response. The
data is shown in its recorded form of volts with the vertical axis span constant for all input
plots and constant for all output plots. The time span for all plots are the same. In all cases,
the four control actions (horizontal left, horizontal right, vertical left and vertical right) are
shown down the left side of the sets of plots while the outputs (horizontal left, horizontal

right, vertical left and vertical right) are shown down the right side.

6.4.1 Built-In Compensators

The plots in Figure 6.1 show a large response at the right end of the shaft to the tap
at the left end which can also be seen in the integration of yx; and yy. in Table 6.1. The

SISO nature of the compensators means that the control action taken at the left horizontal
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actuator in response to the tap affected the right horizontal output via the shaft dynamics.
The right horizontal actuator response in turn affected the left horizontal output with the

net result of oscillations in the two horizontal outputs.

6.4.2 LQG Controller

Three LQG controllers were designed with the tuning parameter g (from Section 5.4)
set to 2.5, 1000 and 4 x 10° corresponding to an increasing cost on output deviation. The
measured output integration in Table 6.2 decreases with increasing q. The responses in
Figure 6.2 to Figure 6.4 also show that a controller with an increasing value of ¢ has a
smaller initial peak in the left horizontal output due to a stronger control action. This is
consistent with the desired effect of the tuning.

The controller with g set to 2.5 did not respond very quickly to the taps and slowly
returned the shaft back to the steady state position. With ¢ set to 4 x 10%, the control
action is fast and noisy as the more aggressive tuning tried to react quickly to all of the
smaller deviations in the position measurement. There is no performance increase when g
is increased from 1000 to 4 x 10° but the control action is more aggressive as seen in Figure
6.3 and Figure 6.4 and more control energy is used as shown in Table 6.2.

The steady position of the shaft is not usually at zero since there is no integrating

action in the controller. A constant bias must be added to the inputs to move the outputs to

a near-zero steady position.
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Mean (x1073) Standard Deviation (x10~9) Mean Standard Deviation
Uht 0.51 0.02 Yhit 0.28 0.01
Upy 0.28 0.01 Y 014 0.006
Uyt 0.017 0.001 Yot 0.0086 0.0005
Uy 0.012 0.002 Yor 0.0068 0.001

Table 6.1 Integration of Scaled Squared Signal of Built-In Compensator Response to
Horizontal Taps at Left End of Shaft

q=25
Mean(x107%) Standard Deviation(x10~3) Mean Standard Deviation
Upt 1.11 0.05 Yht 1.12 0.05
Unr 0.10 0.004 yi 070 0.003
Uyt 0.070 0.003 Yo 0.083 0.004
Uy 0.0028 0.0005 Yor 0.0040 0.0007
q = 1000
Mean(x10~3) Standard Deviation(x10~3) Mean  Standard Deviation
Upt 0.74 0.06 Yht 0.19 0.02
Upy 0.091 0.007 Ynr 0.010 0.0008
Uyt 0.16 0.001 Yo 0.0057 0.0004
Uyr 0.0071 0.001 Yur  0.00069 0.0001
q=4x10°
Mean(x10~3) Standard Deviation(x10~3) Mean Standard Deviation
Ukt 0.95 0.1 yu 0.19 0.03
Unpr 0.23 0.03 Yar 0.011 0.002
Ut 0.038 0.007 yur  0.0052 0.0007
Uyr 0.030 0.009 Yor 0.0010 0.0004

Table 6.2 Integration of Scaled Squared Signal of LQG Controllers Response to a Hor-
izontal Tap at Left End of Shaft
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Figure 6.1 Built-In Compensator Response to a Horizontal Tap at Left End of Shaft
(Verical Axes in Volts, Horizontal Axes in Milliseconds)
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Figure 6.2 LQG Controller (g = 2.5) Response to a Horizontal Tap at Left End of Shaft
(Verical Axes in Volts, Horizontal Axes in Milliseconds)
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Figure 6.3 LQG Controller (3 = 1000) Response to a Horizontal Tap at Left End of
Shaft (Verical Axes in Volts, Horizontal Axes in Milliseconds)
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6.43 DSMC-PI Controller

The results of three DSMC-PI controllers with the tuning parameters ¢ set to 50,
100 and 500 and r set to 50 (as in Section 5.5.1) are shown in Table 6.3 and Figure 6.5,
Figure 6.7 and Figure 6.8. These values of g correspond to an increasing weight on output
deviation. The tabulated resuits show that the output deviation decreases and the control
action increases with an increasing ¢ while the plots of the responses show an increasing
amount of control used and a shorter settling time.

Shown in Figure 6.6 and Figure 6.9 are the two horizontal outputs and the control
action of the components of the DSMC-PI controller. These are included to show the dif-
ference in control action in the two extremes of tuning as well as the contribution of the
different control components. In both cases the PI compensator (the second row of figures)
makes only a small contribution due to the relatively siow tuning chosen. Stabilization of
the shaft is done by the DSMC and predominantly by the equivalent control component
(the fourth row). The switching control action (the third row ) could be strengthened by in-
creasing the tuning constant ¢ (see Section 5.5.1) but it was found that it was more difficult
to produce a stable or non-oscillating controller with larger values of ¢.

With g set to 500 the control action becomes more aggressive and although the plant
is stable, the response does not settle down as quickly as with the lower values of g. The
results with g set to 500 show the lowest deviation of all of the DSMC-PI and LQG con-
trollers for y;,;. With ¢ = 100, the results are very comparable to the LQG controller with

g = 1000 and g = 4 x 10° although the DSMC-PI controller used more control energy.
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Figure 6.5 DSMC-PI (g = 50) Response to a Horizontal Tap at Left End of Shaft (Veri-
cal Axes in Volts, Horizontal Axes in Milliseconds)
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Figure 6.6 DSMC-PI (¢ = 50) Control Action Response to a Horizontal Tap at Left End
of Shaft (Verical Axes in Volts, Horizontal Axes in Milliseconds)
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Figure 6.7 DSMC-PI (¢ = 100) Response to a Horizontal Tap at Left End of Shaft
(Verical Axes in Volts, Horizontal Axes in Milliseconds)
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Figure 6.8 DSMC-PI (¢ = 500) Response to a Horizontal Tap at Left End of Shaft
(Verical Axes in Volts, Horizontal Axes in Milliseconds)
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Figure 6.9 DSMC-PI (¢ = 500) Control Action Response to a Horizontal Tap at Left
End of Shaft (Verical Axes in Volts, Horizontal Axes in Milliseconds)
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644 DSMC Controller with Switched Surface
The DSMC controller discussed in Section 5.5.5 was tested and the results are shown
in Table 6.4, Figure 6.10 and Figure 6.11. In response to a tap, the switched surface design
caused the controller to use a stronger control action to move y;; back towards the zero
position at the expense of allowing v, to deviate more than in the case of the DSMC-PI
controller with a tuning of ¢ = 100 and r = 50 (see Figure 6.7 and Figure 6.10). The result
is a larger deviation in y, and some oscillations in the response with a small improvement
in the maximum deviation in y, compared to the DSMC-PI controller with a tuning of
q =100 and r = 50.
This controller was difficult to tune since there are several more tuning parameters

than the DSMC-PI controller with one sliding surface and care was needed to reduce the

chance of saturating the actuators.

6.5 Shaft with Added Mass Taps

The mass of the shaft was approximately doubled by taping 235g of lead to it. The
mass was located to the left side of center. The shaft was then tapped with the same pendu-
lum setup as in Section 6.4. The same data analysis was performed to measure the deviation
of the shaft and the results are presented in Table 6.5 to Table 6.8.

The results cannot be directly compared to Section 6.4 since the added mass acts as
a damper to the tap. All of the controllers that were tested were stable with the added mass

and the relative performance of the controllers is similar to the results in Section 6.4 with



q =50

Uht 0.93
Upy 0.22
Ut 0.024
Uy 0.011
q =100

Uk 1.09
Upy 0.35
Ut 0.023
Uy 0.017
q = 500

Upg 1.77
Uhe 1.24
Uy 0.039
Uyy 0.073

Mean(x10~3) Standard Deviation(x1073)
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0.01
0.002
0.002

Mean(x10~3) Standard Deviation(x1073)
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0.02
0.002
0.002

Mean(x10™3%) Standard Deviation(x10~3)

0.2
0.09
0.006
0.01

Yn
Yhr
Yul
Yor
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Yhr
Yul
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Ynt
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Mean Standard Deviation

0.23 0.02
0.027 0.002
0.0087 0.0006
0.0019 0.0002

Mean Standard Deviation

0.20 0.02
0.029 0.002
0.0058 0.0005
0.0018 0.0002

Mean Standard Deviation

0.16 0.02
0.046 0.004
0.0032 0.0004
0.0036 0.0006

Table 6.3 Integration of Scaled Squared Signal of DSMC Controller Response to a Hor-

izontal Tap at Left End of Shaft

Unt
Uhr
Uyt
Uyy

Mean(x10~%) St andard Deviation(x10~3)

1.19
0.66
0.022
0.014

0.1

0.06
0.001
0.002

Yht
Yhr
Yot
Yur

Mean Standard Deviation

0.23 0.02
0.080 0.005
0.0061 0.0004
0.0017 0.0002

Table 6.4 Integration of Scaled Squared Signal of DSMC Controller with Switched Sur-

face Response to a Horizontal Tap at Left End of Shaft
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Figure 6.10 DSMC (g = 100) with a Switched Sliding Surface Response to a Horizontal
Tap at Left End of Shaft (Verical Axes in Volts, Horizontal Axes in Milliseconds)
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two exceptions. The LQG controller with ¢ = 2.5 had a tendency for the outputs to drift
during normal operation. Without the added mass, y;; for the built-in compensator was 0.28
compared to 0.20 for the DSMC controller with ¢ = 100 but with the added mass y;; was
0.38 and 0.24 for the same controllers. The yy; output deviation with the added mass was
significantly larger for the built-in compensators relative to the other controllers compared
to the tests without the added mass. The performance of the built-in compensators degraded

considerably more than the other controllers with the added mass.

6.6 Matched Noise

A matched noise test was performed to evaluate the robustness of the controllers
in the presence of large amounts of noise. Uncorrelated Gaussian noise sources (mean:0,
variance:0.5) were added to each of the control signals using the Simulink ‘Gaussian Noise’
block at an output rate of SkHz. The control inputs and position outputs were recorded for
one second and the data was scaled as in Section 6.3. The variances of the input and output
data were then calculated and are shown in Table 6.9.

The built-in compensators and the LQG controller with ¢ = 2.5 allowed the shaft
to touch the bearing housing many times during the test giving an artificially low output
variance. From the test results it can be seen the that LQG controllers with larger values of
q had the lowest variance of all of the controllers indicating better noise rejection. All of
the DSMC-PI controllers kept the shaft from hitting the housing. The DSMC-PI controller

with ¢ = 500 appeared to use a lot of control action in an attempt to regulate the outputs
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Mean (x10~3) Standard Deviation (x10~3) Mean Standard Deviation
Ux! 0.65 0.03 Yht 0.38 0.02
Upy 0.41 0.02 Yre 0.22 0.009
Uyt 0.031 0.003 yu 0.014 0.001
Uyy 0.069 0.03 Yor 0.029 0.01

Table 6.5 Integration of ScaledSquared Signal of Built In Compensator Response to
Horizontal Taps at Left End of Shaft with Added Mass

q=2.5
Mean (x1073) Standard Deviation (x10~3) Mean Standard Deviation
Un 0.92 0.06 ya 112 0.08
Upy 0.15 0.05 yar 0.13 0.08
Uyt 0.52 0.2 Yul 0.84 04
Uy 0.74 0.8 Yor 1.1 1.2
q = 1000
Mean (x10~3) Standard Deviation (x1073) Mean Standard Deviation
Upy 0.68 0.05 yu 022 0.02
Upy 0.15 0.2 yae 0.020 0.002
Uyt 0.040 0.003 Yu  0.011 0.0006
Uyr 0.017 0.003 Yor 0.0043 0.001
q=4x10°%
Mean (x1073) Standard Deviation (x10~3) Mean Standard Deviation
Upg 091 0.1 yn 023 0.03
Upy 0.26 0.04 yre 0.021 0.003
Uy 0.056 0.006 Yor 0.0091 0.001
Uy 0.031 0.006 Yur 0.0024 0.0007

Table 6.6 Integration of Scaled Squared Signal of LQG Controllers Response to a Hor-
izontal Tap at Left End of Shaft with Added Mass
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q=>50
Mean (x1073) Standard Deviation (x10~3) Mean Standard Deviation
Upt 0.95 0.05 yu 029 0.02
Upy 0.31 0.03 yrne 0.043 0.003
Uyl 0.056 0.003 yu 0.019 0.001
Uyr 0.044 0.005 Yur 0.013 0.002
q = 100
Mean (x1073) Standard Deviation (x1073) Mean Standard Deviation
Ukt 1.0 0.06 yu 024 0.02
Upy 0.36 0.04 yre 0.038 0.003
Uy 0.052 0.004 yut  0.012 0.0009
Uyy 0.036 0.005 % 0.0070 0.001
q =500
Mean(x1073) Standard Deviation (x10~3) Mean Standard Deviation
Upt 1.5 0.2 Yhi 0.17 0.02
Upe 0.97 0.3 Yar 0.044 0.01
Uyl 0.080 0.01 Yo 0.0067 0.0008
Uyr 0.10 0.02 Yur 0.0057 0.001

Table 6.7 Integration of Scaled Squared Signal of DSMC Controller Response to a Hor-
izontal Tap at Left End of Shaft with Added Mass

Mean (x107%) Standard Deviation (x10~%) Mean Standard Deviation
U 1.14 0.06 yne 025 0.02
Upr 0.58 0.03 Y 012 0.009
Uyl 0.054 0.004 Yt 0014 0.001
Uyr 0.029 0.004 Yor 0.0056 0.0007

Table 6.8 Integration of Squared Signal of DSMC Controller with Switched Surface
Response to a Horizontal Tap at Left End of Shaft with Added Mass
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Ukt Uhr Wy Wy
Built-In Compensators 00796 0.153 0.207 0.169
LQG (g=2.5) 0.0115 0.0188 0.0174 0.0211
LQG (g = 1000) 0.00603 0.0145 0.00979 0.00969
LQG (g=4x 105) 0.0110 0.0206 0.0102 0.0104

DSMC-PI (¢ =50, r=50) 0.00823 0.0165 0.0189 0.0157
DSMC-PI (¢ =100, r =50) 0.00948 0.0197 0.0227 0.0178
DSMC-PI (¢ =500, r=50) 0.137 0.267 0.176 0.179

Yhi Yar Yu Yur
Built-In Compensators 21.8 26.5 49.3 55.4
LQG (g=2.5) 13.2 147 187 22.8
LQG (g = 1000) 1.40 192 311 3.33
LQG (g = 4 x 10°) 1.20 171 276 2.55

DSMC-PI (¢=50,r=50) 221 270 579 5.0
DSMC-PI (=100, r=50) 1.73 217 4.88 413
DSMC-PI (g = 500, r =50) 11.8 162 217 223

Table 6.9 Variance of Control Action (Top) and Outputs (Bottom) with Matched Noise
Disturbance

precisely but was too aggressive and the output variance was higher than with the lower
values of q.

The DSMC-PI controller with a switched sliding surface for both the horizontal and
vertical controllers could not be run on the hardware available since the computations that

were required between each sample could not be performed in time.

6.7 Rotating Shaft

A strip of lead weighing 235g was wrapped around the shaft at a position left of
centre approximately doubling the mass of the shaft. This produced an imbalance in the
shaft in both the left to right sense and circumferentially as well as added mass to the shaft.
A DC motor was used to spin the shaft using a rubber band around the center of the shaft

to a pulley on the motor. A friction drive pulled the shaft in an approximate horizontal
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direction and a variable voltage supply was used to control the motor speed. A strobe light
was used to measure the speed of the shaft and the DC voltage was adjusted to produce a
speed of 10,000 rpm. Once the speed was reached, the inputs and outputs of the plant were
recorded for a few seconds. This process was repeated for each of the controllers. The data
was scaled and the variance of a one second window of data is shown in Table 6.10.

The imbalancing mass and simple drive method was used to produce repeatable dis-
turbances as well as test the performance under a rotating condition. The rotation causes
some dynamic coupling between the horizontal and vertical axes due to the gyroscopic ef-
fect so a control action taken in one axis will result in a position change in both axes. The
model identified in Chapter 4 and used to design the LQG and DSMC controllers assumes
that there is no coupling between the axes.

The results show that the LQG controllers with g set to 1000 or 4 x 10° have a lower
variance than all of the other controllers. The DSMC-PI controllers used more control

action than the other controllers but did not perform as well.

6.8 Test Results Summary

This chapter presented the results of tests performed on the magnetic bearing appara-
tus with the buiit-in compensators, three tunings of the LQG controller, three tunings of the
DSMC-PI controller and a switched surface DSMC-PI controller. The tests verify the tun-
ing design of the LQG and DSMC-PI controllers showing that there is a trade-off between

the amount of output deviation due to a disturbance versus the amount of control action

used.
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Wpt QUhye Wyt Uyr
Built-In Compensators 0.000935 0.00207 0.00102 0.001425
LQG (g=2.5) 0.00136 0.00364 0.00113 0.00359
LQG (g = 1000) 0.00237 0.00729 0.00339 0.00519
LQG (g =4 x 10°) 0.00267 0.00721 0.00290 0.00522

DSMC-PI (g=50,r=50) 000471 00162 0.00510 0.00429
DSMC-PI (g =100, r =50) 0.00352 0.0123 0.00713 0.00455
DSMC-PI {g=500, »=50) 000813 00147 00104 00107

Yn Yhar Yuit Your
Built-In Compensators 0.467 0.975 0418 1.04
LQG (g=2.5) 0.477 2.25 0448 148
LQG (g = 1000) 0.271 0456 0531  0.704
LQG (g =4 x 10°) 0.195 0377 0420 0.710

DSMC-PI (¢ =50, r =50)  0.652 1.39 0.891 0.875
DSMC-PI (¢ = 100, »r = 50) 0.430 0.864 1.00 0.718
DSMC-PI (¢ = 500, r = 50) 0.414 0.516 0.832 0.713

Table 6.10 Variance of Control Action (Top) and Outputs (Bottom) with a Rotating
Shaft

In general, the two digital controllers performed better than the built-in compensators
in terms of the amount of output deviation measured due to disturbances. The LQG con-
troller with ¢ = 2.5 responded slowly to disturbances while tunings with ¢ = 1000 and
g = 4 x 10° responded quite similar to each other. There was little gain in performance for
the increase in control action used by the ¢ = 4 x 10° tuning. The three DSMC-PI con-
trollers generally did not perform quite as well as the LQG controllers. The tuning with
g = 500 seemed to be too aggressive since there was a degradation in the performance with
the increase in control action used when compared to the ¢ = 100 tuning. The DSMC-PI
controller reduced the deviation of the shaft due to a tap disturbance better than the other
controllers. The DSMC-PI controller generally used more controi energy. The DSMC-PI
controller, however, may prove to be more robust in the presence of specific disturbances

than the LQG controller.
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One explanation for the relatively lower performance of the DSMC controller is that
there is a one sample delay from the controller to the input to the apparatus which must
degrade the performance since the controller must wait for one sample before it can respond
to a measured disturbance. All of the controllers showed good robustness to changes in the
plant dynamics shown by the taps on the shaft with added mass and rotating the shaft with
an added mass. The PI component of the DSMC-PI controller did not have a significant

effect in rejecting disturbances but served to attain a zero steady state error.
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Chapter 7
Summary and Recommendations

7.1 Summary

This thesis provided methods for designing digital controllers for magnetic bearing
systems. The designed controllers were experimentally tested and compared.

The controllers were designed for a laboratory scale magnetic bearing apparatus
which operates on the same principles and has the same characteristics as industrial ap-
plications such as in compressor stations. Several different methods of modeling the ap-
paratus were attempted. An analysis of the physical principles of the apparatus yielded an
unreliable open loop model. The apparatus contains built-in compensators to levitate the
shaft that were utilized to measure a closed loop frequency response. The response was
modeled but the open loop model derived was parametric in the compensators and thus
unsuitable for controller design.

An accurate model was produced using the parameter estimation method. This used
input and output data to identify a model of the plant with the lowest error in a least squares
sense. The resonance of the identified model was modified to reduce the damping and
reflect the true apparatus more accurately. A simulation demonstrating this difficulty in
identifying a resonance was presented. The result of the modeling was a two input, two
output 16 state model for each of the horizontal and vertical axes. This method of modeling

a magnetic bearing appears to be novel.
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Two digital controllers were designed based on these models. A cost function was
formulated to weight the output variation versus the control action in the design of an LQG
controller. In a similar manner, an optimal sliding surface for a DSMC was designed based
on a trade-off between the output variation and the level of control action. This is a new
implementation for this control law and it was stable with the relatively slow sampling rate.
A Kalman filter was designed to estimate the system states. These state estimates were
used for both the DSMC and LQG controllers. The implementation of the DSMC with
a Kalman filter for estimating the states produced an algebraic loop requiring a delay to
be inserted into the controller. A PI controller was added to the DSMC to improve the
tracking performance. As a final modification, a DSMC controller was designed with a
choice of sliding surface dependant on the shaft position. The intention was to apply a
more aggressive control action when one end of the shaft had a large deviation from the
zero-position. The large number of parameters made this controller difficult to tune and
due to computational speed, the computer could not execute this controller for both axes
at the same time. This switched sliding surface design for a magnetic bearing is a novel
approach.

The designed controllers as well as the built-in compensators were tested by tapping
the shaft with a pendulum, adding mass to the shaft and tapping it with a pendulum, adding
noise to the control inputs, and rotating the shaft with an imbalance. All of these tests
examined the performance of the controllers and verified the tuning intentions. It was found
that the LQG controllers with the more aggressive tuning generally performed the best in

reducing shaft deviations. The built-in compensators tended to oscillate while the DSMC-
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PI controllers performed almost as well as the LQG controllers. The DSMC-PI controller
had the lowest shaft deviation following a tap disturbance to the shaft. The switched surface
controller used a more aggressive control action but tended to oscillate. The PI component
of the DSMC-PI controller produced accurate tracking performance.

The delay in the DSMC must degrade the performance of the controller since the
control action is delayed one sample in response to a measured output change. A faster
sampling rate would reduce this effect and presumably enhance the performance of the
controller. One benefit of this delay is that the optimal sliding surface can be easily designed

with a relative weight between output variation and control action.

7.2 Recommendations

The work presented in this thesis was based on a fixed model of a non-rotating sys-
tem. An extension of this work would be an adaptive controller operating on a rotating

system. The following items are of research interest:

¢ A four input, four output model would be identified using the parameter estimation

method in the same way as the modeling in this thesis.
e A controller would be designed using this model.

e A recursive least squares estimation algorithm would be implemented to update
the model while the controller is active. This would model all of the changes in

dynamics due to rotation.
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e The controller would be redesigned on-line using the updated model.

A fast computer would be required to perform all of the required computations. A
faster sampling rate would also provide better input resolution and presumable better con-

trol performance.
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