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Abstract 

Magnetic bearings are capable of suspending shafts rotating at high speed without 

mechanical contact or lubrication, providing many advantages and opportunities in indus- 

trial and medical applications. A formidable control problem is presented by their fast, 

interactive and unstable multivariable dynamics. This thesis provides methods for design- 

ing controllers for magnetic bearings along with their experi mental evaluation. 

In a novel approach, the experimental apparatus was modeled using a parameter esti- 

mation method calculated from input and output data. An optimal controller and a discrete 

sliding mode controller with outer-loop integration were designed. A sliding mode con- 

troller was also implemented that changed the sliding surface depending on shaft position 

to more aggressively achieve the performance objective of preventing shaft mechanical 

touchdown. Experimental testing verified the tuning goal and showed that the sliding mode 

controllers with guaranteed robustness performed comparably in disturbance rejection to 

the optimal controllers. This work summarizes conditions for controller selection. 
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Chapter 1 
Introduction 

Active Magnetic Bean'ngs ( A m )  act to levitate a shaft and allow it to rotate without 

contact This feature creates advantages for many applications due to lower rotation fiction 

in bearings and the ability to achieve active vibration damping. Magnetic bearings are 

currently used in many applications with others under investigation, for example in natural 

gas compressors in remote locations where their higher rotating eficiency and reduced 

maintenance requirements make them ideal. 

A typical AMB consists of four electromagnets positioned equidistant around the 

shaft to be supported. Sensors adjacent to the electromagnets monitor the relative hori- 

zontal and vertical position of the shaft and a controller continuously adjusts the magnetic 

fields to maintain the required shaft positioning. This controller must have a very high re- 

sponse capability due to the potential high rotational speed of the shaft and its intrinsic 

instability. Usually one AMB is located at each end of the shaft 

The reduced losses allow faster rotation of the shaft resulting in increased efficiency 

in most applications. The ends of a shaft using AMBs can aiso be continuously realigned 

for such applications as a fast conveyor. A particular feature of an AMB is the ability to 

provide dynamic damping of vibrations caused by unavoidable shaft imbalances. This is 

due to the ability of the shaft to be rotated around its centre of mass within the magnetic 
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field of the bearing (as compared with a conventional bearing which restricts the shaft to 

rotate around its geometric centre). 

A shaft levitated by magnets, due to its operating principles, is unstable and the mag- 

netic fields must be continuously modified by a controller to keep the shaft in place. In 

principle this is similar to keeping a pen standing upright on the palm of your hand in that 

without active control, the pen will surely topple. High operating speeds and the fact that 

there are several magnets required to keep the shaft levitated make the control of magnetic 

bearings an interesting and formidable problem. 

The solution to this problem requires the measurement of the shaft position and an 

active controller. Ideally the controller should keep the shaft levitated at all times but this 

is not feasible since the controller must respond with a strength appropriate to the given 

conditions. If, for example, the mass of the shaft changes (due to deposits or parts breaking 

off) then a different actuation level is required for corrective action. If this mass change is 

not known then the controller may not be tuned appropriately. This can result in the shaft 

falling and hitting the supporting frame. A measure of how well a controller performs can 

be made by testing the conditions which cause it to fail. A more robust controller has a 

larger variation in conditions under which it is stable. 

In this work, controllers have been designed and tested for an AMB apparatus with 

particular interest in the system stability and the ability of the controller to maintain the 

shaft within certain deviation limits so as not to hit the bearing frame. In particular, a 

sliding mode controL approach was used. AMBs are currently being used in a number of 

practical applications and this development has the potential to increase the opportunity 
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for firrther such applications though the novel modeling method and robust control law 

application presented in this work. It is anticipated that the controller as developed could 

increase the potential range of applications of AMBs in industry. 

1.1 Contributions of this Thesis 

This thesis provides a method for designing and implementing digital controllers for 

magnetic bearing systems. Specifically the main contributions are: 

A model of a magnetic bearing was produced using the method of parameter 

estimation which is derived from data rather than physical principles. This appears to be a 

novel method of modeling a magnetic bearing. 

A Linear Quadratic Gaussian controller with three different tuning parameters 

was designed. Tests ve* the goal of the tuning. 

A Discrete Sliding Mode Controller was designed with an optimal sliding sur- 

face. This controIler was tested with three sliding surfaces and the tuning goal was verified. 

This control law has not been applied to a magnetic bearing in the literature. The controller 

was stable using a relatively slow sampling rate thus reduced computational load. 

A Propottiond-Integral controller was combined with the Discrete Sliding Mode 

Controller and the tracking performance was demonstrated. 

A Discrete Sliding Mode Controller was designed with a choice of sliding sur- 

face dependant on the position of the shaft. This appeared to be a novel and promising 

controller but the test results produced mixed performance. 
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Following a tap disturbance to the shaft, the Discrete Sliding Mode Controller 

retumed the shaft to its normal position faster than the Linear Quadratic Gaussian con- 

troller. 

This thesis provides guidelines for future applications of digital controllers to Active 

Magnetic Bearings. 

1.2 Organization of this Thesis 

The organization of the seven chapters of this thesis follows the sequence of experi- 

mental development. 

Chapter ' h o  explains the motivation for the use of magnetic bearings and illustrates 

some applications. The operation and available modeling methods are discussed. Several 

different control algorithms including sliding mode control are outlined along with their 

established performance results. 

Chapter Thm describes the apparatus and control hardware and software used for 

the experiments. 

Chapter Four presents the different methods attempted for producing a model of 

the apparatus. A physical principles analysis is first discussed followed by an attempt 

to derive a model fiom the closed loop frequency response. The method of least squares 

parameter estimation is explained and applied. The resulting model with a novel refinement 

for resonant mode enhancement is then presented. 
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Chapter Five details the design procedures for the controllers. Specifically, a Linear 

Quadratic Gaussian and a Discrete Sliding Mode Controller are designed and tuned for 

specific performance objectives. 

Chapter Si presents the experimental results of tests performed with the controllers 

designed in Chapter Five. Several different tests were performed using different tuning 

constants and the results were compared to evaluate the effect of the tuning. 

Chapter Seven contains a summary of the main results and some direction for future 

work. 



Chapter 2 
Background Information 

Magnetic bearings are capable of suspending rotating s h a h  at high speeds without 

mechanical contact with the supporting structure. They offer many advantages over con- 

ventional bearings including (Knospe & Collins, 1996): 

a lower rotating losses 

possibility of active vibration damping 

a higher speeds 

elimination of lubrication systems and lubricant contamination of the system 

a operation at temperature extremes and in a vacuum 

a longer lifetime 

They are presently used in many applications such as industrial, medical, military 

and space applications including pumps, compressors, flywheels, grinding and milling 

spindles, turbine engines and centrifiges (Bhospe & Collins, 1996). Turbomachines such 

as gas turbines, jet engines, pumps and compressors operate at high speeds to achieve 

desired efficiency but roller bearings have a relatively short lzespan and although fluid 

film bearings have a longer life-span they require an extensive oil supply system and seals 

(Humphris et al, 1986). In the futwe demand for greater speed, for example in an energy 
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storage flywheel (as in Ahrens et al, 1996), will likely lead to more demanding applications 

of magnetic bearings. 

Magnetic bearings require a solution to a difficult control problem due to their fast 

open loop unstable and interactive multiple input, multiple output (MIMO) nature. The 

dynamics of a shaft levitated with magnetic bearings inherently contain non-linearities and 

change with increasing rotational speeds especially near the critical frequencies of the shaft. 

All rotating machinery also has some residual imbalance which must be dealt with by the 

controller. The controller can offer the ability for shaft positioning and alignment as well 

as diagnostic and load measurement capabilities (Knospe & Collins, 1996). 

2.1 Operation of Active Magnetic Bearings 

The conventional design of a magnetic bearing consists of a separate magnetic actua- 

tor component shown in Figure 2.1 and a corresponding position sensor component located 

near the actuator. The horizontally opposed pair of horseshoe magnets attracts the shaft to 

the right by adding the current I, to a bias (or steady state level) currenq io, in the right 

magnet while reducing the bias current in the left magnet by i=. In an analogous way the 

shaft can be attracted in a vertical direction. The contact-fiee position sensor measures the 

horizontal and vertical gap width. The attractive force of the magnets is inversely propor- 

tional to the gap width squared resulting in an unstable plant 

The gap magnetic flux exerts a force on the shaft and is proportional to the current 

squared. W~th little cumfit flowing the force urnnot be changed quickiy due to a slow 

force to m e n t  slew rate (Bleder et al, 1994; Charera et al, 1996; Knospe & Cdlins, 19%; 



Figure 2.1 End Wew of One Magnetic Bearing (Lum et al, 1996) 

Mizuno et al, 1996). Thus a bias cument, io, equal to half ofthe rated curreng i,, is usu- 

ally run through the coils so changes to the flux are made around this operating point This 

provides a much larger force slew rate (Knospe & Collins, 1996) and allows a model of the 

plant to be linearized for small perturbations around the operating point (Lum et al, 1996; 

Matsumura & Yoshimoto, I986). The total current in each pair of magnets is always & 

( i T o ~  = &I + C + - il = 2i0 = &)- The bias current exerts no net force on the shaft 

but produces a constant magnetic field. A current is induced in the shaft due to its relative 

motion with the magnetic field of the bias current This results in a larger electromagnetic 
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drag than with no bias current when rotating. Experiments in Charara et al, 1996 without 

a bias c m n t  demonstrated that the rotor vibration and energy consumption of the bearing 

are lower using a non-linear control law. A magnetic bearing without a bias current has the 

potential for a greater operating efficiency at the cost of a slower force to cunent slew rate. 

Recently there has been research into selGsensing magnetic bearings that do not have 

a separate position sensor but deduce the gap width from the actuator currents and/or actu- 

ator gap flux measurements Pleuler et ai, 1994). This reduces the cost and complexity of 

the bearing and the actuator and sensor are inherently collocated. An estimator based on 

only the actuator current information is also presented. A full order and reduced order gap 

estimator was presented in Mimo et al, 1996. A gap parameter estimation method was 

developed in Noh & Maslea, 1997 and demonstrated stable experimental results. 

The magnetic bem*ng controller must use the position measurements or estimates 

to adjust the current in the magnets and keep the shaft at the required position. The ro- 

tating shaft will always have some residual imbalance following a mechanical balancing 

procedure. This can either be compensated for by electromagnetic forces in an attempt to 

rotate the shaft about its geometric center or the shafk can rotate around its axis of inertia 

The latter control strategy referred to as automatic balancing is used in Henog et al, 1996; 

Lum et al, 1996; Mohamed & Busch-Vishniac, 1995. This strategy is not feasible in many 

applications, such as milling or grinding, due to the desired goal of rotating a shaft about 

its geometric center. 



2.2 Modeling Magnetic Bearing Dynamics 

A mathematical model of the bearing is required before a controller can be designed. 

There are many models developed in the literature from physical principles applied to the 

system. All of the models require some approximations, assumptions and linearization of 

the plant around its operating point. A model for a non-rotating but flexible shaft is de- 

veloped in each of Magnetic Moments, 1997; Nonarni & Ymaguchi, 1992; Suzuki, 1998; 

Tian & Nonami, 1996 while a rotating and rigid shaft is modeled in Charara et al, 1996; 

Moharned & Busch-Vishniac, 1995; Rundell et al, 1996; Smith & Weldon, 1995. Lum et 

al, 1996 presents a model of a planar spinning rotor. Complete models of the flexible, ro- 

tating shaft are presented in Sivrioglu & Nonami, 1998 and using the dynamic theory of 

flight in Matsumura & Yoshimoto, 1986. 

The method presented in Lee et al, 1995 uses closed loop data from a magnetic bear- 

ing excited with noise to estimate properties such as stiffness damping and current stiffness 

of an open loop physical model. This method overcomes the difficulty of accurately mea- 

suring some features of the apparatus by using a physical model. The model will contain 

approximations leading to inaccuracies that m o t  be overcome using this method. AMB 

systems often show discrepancies between the predicted and the measured dynamic be- 

havior due to the inaccurate modeling associated with magnetic forces, frequency charac- 

teristics of power amplifiers and electromagnets, leakage and fringing effects of magnetic 

fluxes and eddy current effects (Lee et al, 1995). 

Since the plant is open loop unstable it is impossibIe to record open loop data to 

identi@ a model. The problem of identifying a MIMO dosed loop plant is difkult and 
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frequency methods such as in Li & Lee, 1996 rely on open and closed loop data. The 

open loop dynamics of a closed loop plant with known discrete feedback dynamics can be 

identified using the method provided in Phan d Longman, 1994. Using only SISO plant 

input and output data, a discrete model with the least squared error can be estimated using 

the method in Ljung, 1999 in either a recursive or a batch configuration. The least squares 

estimation method can be easily extended to a multiple input, single output identification. 

That is, models found from this type of identification are highly application specific. 

The author was unable to find any published material that does not use a physical 

principles model to design a controller for a magnetic bearing. Therefore the techniques 

desaibed in Chapter 4 showing experimentally based modeling represent a significant con- 

tribution to the literature. 

2.3 Control Strategies for a Magnetic Bearing 

A controller used to levitate the shafk must have some robustness or in other words 

be able to operate under varying conditions. The controller must be robust to modeling 

errors, disturbances, non-linearities and varying plant dynamics which are unavoidable in 

any control application. The desire for greater robustness has lead to increased interest in 

non-linear controllers with guaranteed robustness properties. 

2.3.1 Analog controllers 

Analog PID controllers were the first algorithms used to successfully levitate a shaft- 

The tuning of these controllers was sometimes done by trial and error and produced a va- 



I2  

riety of closed loop dynamics (Humphris et ai, 1986). There is a trade-off in the tuning 

between control saturation, system stiffness and prevention of bearing touchdown. Accel- 

eration feedfornard with a digital PID controller was shown to reduce the deviation of the 

shaft due to ground motion in Suzuki, 1998 reducing the required level of trade-off. In a 

complete design approach, Sheu et d, 1995 considers the PD feedback parameter tuning 

and magnetic bearing location as one optimization problem. 

The SISO name of PID controllers reduces its effectiveness in an interactive MlMO 

system and often has poor robustness. A sliding mode controller was shawn to be very 

effective and superior to a PID controller in Nonarni & Yamaguchi, 1992 and Tian & Non- 

ami, 1996. The application of sliding mode control to a magnetic bearing is desirable since 

it is theoretically very robust to a class of system variations and disturbances. 

2.3.2 Digital Controllers 

The implementation of digital controllers for magnetic bearings is cornputationally 

intensive and can only be achieved on a fast PC or DSP. The fast dynamics of the mag- 

netic bearing require a fast sampling rate and complex controllers must be executed every 

sample interval. For example, a sample rate of 5kHz was chosen for the work done in this 

thesis. Several different digital control strategies outlined below have been simulated and 

experimentally tested in the literature. 

The following implementations have been detailed: 
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Kerzog et al, 1996 analysed the stability and inserted generalised notch filters in 

conjunction with the existing controller in an industrial turb -pander to achieve automatic 

balancing 

Automatic balancing was simulated using an on-line identification of physical 

characteristics of the imbalance to tune the stabilizing controller in Lurn et al, 1996. 

Imbalance compensation and automatic balancing was simulated in Mohamed 

& Busch-Vishniac, 1995 using Q-parameterization theory. 

Simulations of an integrator backstepping controller for a planar rotor disk mag- 

netic bearing system was presented in Queiroz & Dawson, 1996. 

a To achieve system robustness, H, control strategy (Dahleh & Diar-Bobillo, 

1995) has been implemented to magnetic bearings. Using the loop shaping design proce- 

dure, a gain scheduled H, controller for automatic balancing was simulated and experi- 

mentally tested in Matsumura et al, 1996. 

In Sivrioglu & Nonami, 1998 a gain-scheduled H, controller was also imple- 

mented using the linear parameter varying (LPV) approach where the time-varying param- 

eter is the rotational speed of the shaft The LPV method has received some attention in 

other applications such as vehicle suspension (Fialho and Balas, 1998). 

The p synthesis design method (Skogestad & Postlethwaite, 1996) was evalu- 

ated using simulations and experiments in Nonami & Ito, 1996. The results show a greater 

robustness to mass variation in the shaft than the H, controllers but the synthesis requires 

a solution to an iterative and nonconvex numerical procedure. 
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A furry controller was designed in Vidolov et al, 1996 and the simulated results 

are comparable to a sliding mode controller. 

2.3.3 Linear Quadratic Controllers 

The optimal or linear quadratic 0) controller relies on linear state feedback to 

minimize a designed cost fbnction made up of the states and the control action. The LQ 

controller has been applied to many systems and is a well documented control strategy 

(Anderson & Moore, 1990; Skogestad & Postlethwaite, 1996). An optimal integral-type 

controller for an AMB is implemented in Matsumura & Yoshimoto, 1986 including sirnu- 

lati on and experimental results. 

2.3.4 Sliding Mode Controllers 

Sliding mode control (SMC) theoretically features excellent robustness properties in 

the face of parametric uncertainty (inaccuracies in the constants of a model and matched 

exogenous disturbances) making it an attractive controller for a magnetic bearing. The 

theory and design of continuous sliding mode controllers was well introduced and illus- 

trated in DeCarlo et al, 1996; Slotine & Li, 199 1; Utkin, 1977. A Discrete Sliding Mode 

Controller (DSMC) for a discrete plant was presented in Pieper & Surgenor, 1993 along 

with an application example showing DSMC robustness compared to an LQ controller and 

in Funrta, 1990. Pieper & Surgenor, 1993 also provided methods for calculating optimal 

sliding surfaces or constraining closed loop dynamics. 
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Simulated results of a SMC for a magnetic bearing were presented in Lewis et al, 

1998, Smith & Weldon, 1995 and with a sliding mode observer for a vertical shaft in 

Rundell et aI, 1996. Experimental results of a sliding mode controller were presented in 

Nonami & Yamagucbi, 1992, Tian & Nonami, 1996 and in a test rig with no bias current 

in Charara et d, 1996. All o f  the sliding mode controllers found in the literature used a 

single sliding surface. 

A discrete time version of the sliding mode control law was implemented in Tian & 

Nonami, 1996 with a different switching condition than in Pieper & Surgenor, 1993. All 

the other implementations use a continuous time sliding mode control law with a discrete 

implementation requiring a fast sampling rate. The SMC in Nonami & Yamaguchi, 1992 

used a 4kHz sampling rate for a first critical frwluency of 55Hz while in Sivrioglu & Non- 

ami, 1998 a rate o f  3.6kHz was used for the LOO Hz first critical frequency. The DSMC in 

Tlan & Nonsami, 1996 sampled relatively slower at 5kHz for a first critical frequency of 

340Hz. The apparatus used for the work in this thesis has a first critical fiequency of about 

800Hz (Magnetic Moments, 1997) and a relatively slow sampling rate of SkHz was stable 

using the DSMC given in Pieper & Surgenor, 1993. 

A combined digital DSMC and digita PI controlIer for a motor speed controller was 

presented in DeSantis, 1989 giving good disturbance rejection and tracking performance. 

These features are desirabIe for a magnetic bearing application. 

DSMC is a good choice of controller for a magnetic bearing due to its robustness to 

uncertainty and disturbances shown in Pieper & Surgenor, 1993 and Furuta, 1990. 



2.3.5 Observers 

Many control algorithms rely on state information for feedback control. Models of 

magnetic bearings contain more states than outputs so an estimator is required to esti- 

mate the states from the available outputs. A Kalman filter provides a least squares state 

estimate from the outputs of the system for given noise and disturbance variances (see 

Anderson & Moore, 1990; Skogestad & Postlethwaite, 1996). 

A sliding mode observer potentially offers advantages similar to those of sliding con- 

trollers, in particular inherent robustness to parametric uncertainty. The chattering in a 

sliding mode observer is just a numerical feature unlike the hard mechanical chattering 

in the sliding mode controller. The potential use of sliding observers ve.-s discussed in 

Slotine et al, 1987. A sliding observer was proposed in Walcott & Zak, 1987 with a numer- 

ically tractable solution to the observer design presented in Edwards and Spurgeon, 1994. 

The design example in Edwards and Spurgeon, 1994 was duplicated and compared to a 

Kalman filter for non-zero initial states. The Kalman filter was found to match the ac- 

tual states more quickly than the sliding mode observer. The initial condition of a magnetic 

bearing when it is ready to lift &from its mechanical supports has non-zero states so based 

on this comparison a Kalman filter may perform better than a sliding mode observer. For 

this reason, a KaIman filter was chosen to estimate the states of the magnetic bearing. 



2.4 Summary 

In this chapter some applications for magnetic bearings along with their basic oper- 

ation was discussed. The current state of research in controllers for magnetic bearings as 

well as some control strategy background was presented. It was noted in the review of the 

literature that only a physical analysis of a magnetic bearing has been used to produce a 

model even though there exists several experimental approaches to modeling. 
I 



Chapter 3 
Apparatus 

3.1 Introduction 

In this chapter the magnetic bearing apparatus and the controller implementation 

hardware and software are descnied. The bearing apparatus is laboratory scale but is 

typical of industrial applications such as for natural gas compressor stations. 

The proposed external controller implementation consists of a PC with an analog 

to digital (ADC) and digital to analog PAC) conversion board. The software to run the 

control algorithm and the communication board is Matlab ( Math Works, 1996) with the 

Simulink toolbox and the WnCon ( Qanser Consulting, 1998) real time execution software 

package. 

3.2 Magnetic Bearing Research Equipment 

The magnetic beaxing apparatus is a laboratory-scale system manufactured by Mag- 

netic Moments (Magnetic Moments, 1997) shown in Figure 3.1. The system consists of a 

shaft 0.269m long weighing 0.262kg that can be levitated at both ends by electromagnets 

in both horizontal and vertical directions. When the shaft is Levitated, it can be rotated by 

hand and spins without contact with the supporting structure. 



Figure 3.1 Magnetic Bearing Apparatus 

The faceplate of the apparatus is shown in Figure 3.2. Through this faceplate, the 

following connections are available: 

Four outputs which provide position measurements (A). One horizontal and one 

vertical output at each end of the shaft at a nominal scale of 1VoltO. lmm. The shaft touches 

the housing at a position measurement of about k2.3V. 

Four outputs which provide a measurement of the input to the current amplifiers 

(B). The current amplifiers produce 0.25ANolt. 

Four inputs which can be added to the compensator feedback (C). 

Four buttons which close the feedback loops of the built-in compensators @). 



Built-in compensators Q can be used if buttons @) are closed. If buttons @) 

are open external control can be effected by measuring (A) and applying control inputs to 

Figure 3 2 Magnetic Bearing Apparatus Faceplate (Magnetic Moments, 1997) 

At each end of the shaft there are electromagnets to move the shaft in horizontal 

and vertical directions as well as position sensors for horizontal and vertical displacements 

located as in Figure 3 -3. There are a pair of horseshoe-shaped electromagnets horizontally 

opposed and a pair vertically opposed with the same layout as in Figure 2.1 at each end of 

the shaft The two magnets in each pair operate together by simultaneously increasing and 

decreasing the current about the bias current (or the nominal level). 

Active control of the apparatus uses the four measured displacement signals to adjust 

the current in each of the electromagnet pairs. The four feedback compensators built-in to 

the apparatus are analog devices predesigned by the manufacturer with nomind dynamics 

(Magnetic Moments, 1997): 



Figure 3 -3 Active Magnetic Bearing Apparatus ( Magnetic Moments, 1997) 

3.3 Digital Controller Implementation 

A schematic diagram of the control signal flow is shown in Figure 3.4. The four 

position outputs from the apparatus were co~ected to an ADC in a PC where they were 

sampled. The control algorithm was implemented in Sirnulink and the outputs from the 

controller were connected to the DAC and then to the apparatus inputs. The built-in com- 

pensators were disconnected using the push buttons on the fkont of the apparatus. 

3.3.1 Hardware 

The PC used to run the controI algorithm was a Pentium I1 350 with 96MB of RAM 

running Wtndows 95. The computationaI speed of this computer was the limiting factor 

in choosing the sample period of the c011trolIe~ A f- sampling rate provides better 



Figure 3.4 Digital Controller Signal Flow 

In 

rdution ofthe analog inputs and allows the controller to make control actions more often. 

The first critical frequency of the shaft is approximately 800Hz (Magnetic Moments, 1997) 

and a control systems rule of thumb states that the sampling should be at least five times 

faster than all frequencies of interest. A sampling rate of 5kH.z was chosen to meet this 

rule with the first critical frequency while not exceeding the computational speed of the 

computer. This is a relatively slow sampling frequency compared to other applications (for 

example Nonami & Yarnaguchi, 1992; Sivrioglu & Nonami, 1998). 
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The MultIQ I/0 board from Quanser Consulting Inc was used to perform all of the 

data acquisition and analog outputs for the controllers. This board allows eight 13 bit 

bipolar analog inputs in the range of f 5 V  along with eight 12 bit analog outputs in the 

range of f 5V. From the analog fieqyency measurements in Section 4.3 it was found that 

the analog output signals were very small above 2.5kHz so with the sample rate chosen to 

be SkHz, anti-aliasing filters were unnecessary. 

3.3.2 Software 

The Matlab/Simulink v5.2 software package (Math Works, 1996) was used to design 

and implement all of the digital controllers. Matlab provided all of the mathematical cal- 

culations and Simulink was used to connect the control signal flow to the UO board using 

the Quanser Consulting hc (Qanser Consulting, 1998) V0 Simulink blocks. The Simulink 

controller diagram was compiled to an executable using WinCon 3.0 to speed up the com- 

putations. The controllers were run using the W~nCon interface which enabled graphing 

and data logging. 

3.4 Summary 

This chapter described the magnetic bearing apparatus and the equipment that was 

used to implement and test the digital controllers. The shaft of the laboratory scale mag- 

netic bearing apparatus was levitated by the built-in analog compensators and by digital 

coatdlen implemented in Matlab, Sirnulink and WrnCon on a PC. 



Chapter 4 
System Identification 

4.1 Introduction 

In this chapter the details of the procedure and results of modeling the magnetic 

bearing are presented. To implement a control strategy for any plant it is essential to have 

a model. The large majority of control strategies require a linear model. This model must 

be sufficiently accurate so that controllers designed based on the model will result in a 

closed loop system which meets the control objectives. The main objective of the magnetic 

bearing controller is to be able to levitate the shaft from its supports and maintain this 

levitation in the presence of all reasonable disturbances. This chapter discusses the three 

methods that were used to try and produce a model that was accurate enough to be used as 

a basis for designing a stable controller for the magnetic bearing apparatus. 

4.2 Physical Analysis 

A linear two input (uM and uhr), two output (yN and yhr) model of the magnetic bear- 

ing horizontal dynamics was made using the outline in Magnetic Moments, 1997 which 

took into account the physics ofthe major components of the system. The same model can 

be used for the vertical dynamics ( ~ 1 ,  .UYT, yVl and y,) since the apparatus is constructed 

symmetrically. This approach uses Newtons Laws of motion. The operating point of the 

system lmder closed loop should be horizontally and vertically centered at each end of the 
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shaft. The model was calculated using small deviation linear approximations around this 

point. This model did not take into account any dynamics related to a rotating shaft but did 

include: 

The rigid shaft properties as well as the flexible dynamics. 

A linear approximation ofthe force on the shaft exerted by the current in the coils of 

the electromagnets. 

a The dynamics of the current amplifier that regulate the current to the coils. 

A linear approximation of the displacement sensors. 

The poles of  the analytical model are shown in Figure 4.1 with the frequency response 

shown in Figure 4.2. The frequency response uses mirror image maps of the unstable poles 

with an appropriate phase shift to generate the response. The system is symmetric so that 

the response of Y M / u ~ ~  is the same as yhr/uhl and ynr/unr is the same as yhf/uY and the 

vertical axes responds similarly so this model can be extended to a four input, four output 

model of the whole plant assuming that there is no coupling between the axes. 

The right half poles in Figure 4.1 show that, as expected, the plant is unstable. It also 

shows that there are two lightly damped resonant modes at 780Hz and 2, I SoHz which can 

also be seen by the sharp peaks in Figure 42. 

This model was used to design an LQG controller for the horizontal axis with the 

built-in compensators maintaining the vertical position. It was not possible to produce a 

closed loop stable system with this LQG controller, Many different controller and observer 



Figure 4.1 Open Loop Poles of the Analytical Model of One Axis 

tuning choices were made and in the end the instabilities were attributed to modelling 

inaccuracies. 

4.3 Frequency Response Analysis 

4.3.1 Closed Loop Frequency Response 

This method of producing a model of the plant involved adding a sine wave to one of 

the inputs then measuring the relative amplitude and relative phase of each of the outputs. 

These measurements were done using analog instruments and were recorded using the 

A X .  The frequency was swept over a range and the result was the linear approximation of 



Figure 4.2 Frequency Response of Open Loop Analytical Model of One Input to Out- 
puts on Same Axis 



I 
I 1 

Frequency I 
I Meter I 

r In Out 

Compensator Uvl l-,~,,,- 

-LIZ 
3 

Phase Meter 

t 

Output 
RMS 

Compensator Uhr 

Out In 

Compenmtor Uhl 

To ADC 

Figure 4.3 Closed Loop Frequency Response Measurement Connections for UM Input 

the frequency response of the closed loop system from each input to each output. The low 

frequency limit of 20Hz was caused by the range of the available amplitude RMS meters 

and the upper limit of the range was chosen to be close to the Nyquist frequency of the 

digital controller to be implemented. The measured signals are shown in Figure 4.3. 

The measured output was not a pure sine wave and contained some other frequencies 

indicating that the plant is not linear. The measured frequency response of the horizontal 

outputs to uhl are shown in Figure 4.4. There is a strong resonance at 780Ht which is 

the same as the andytical model in Section 4.2 although the resonance at 2,150EIr was 
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not observed. There was negligible coupling between the two axes and the response was 

virtually identical from the left or right ends except for a small gain difference. The vertical 

axis was aiso found to be almost identical to the horizontal axis. The resonant peak is very 

sharp indicating that it is very lightly damped. Measurement noise limited the magnitude 

data to a minimum of -40dB. 

4.3.2 Model Synthesis fmm Frequency Response Data 

A trader kction was fitted to the frequency response data. Figure 4.5 shows the 

Frequency response of the transfer hctions as well as the data it was designed to match. 

The magnitude and phase match very closely. These transfer functions were fitted using 

the 'fitsys' and 'magfit' Matlab commands which uses a least squares fitting criteria and 

required carem choice of the fitting weighting function as well as manual placement of 

some of the poles into the right half plane to match the m-ed phase response. The 

yM/uM model was a sixth order transfer fimction and the ghr/uN model was fourth order. 

4.3.3 Modeling Results 

Using the two transfer bctions shown in Figure 4.5 and assuming that the plant is 

symmetrical in both the Ieft to right and horizontal to vertical comparisons, then it is math- 

ematically possible to determine the open loop plant fiom these closed Ioop models if the 

built-in compensator dynamics are accurately known- In ptactice, this was numerically dif- 

ficult and heavily sensitive to wiations in some ofthe transfer function coefficients. Also, 

the buiIt-in compensator dynamics from equation 5.22 are not accurately known since each 



Figure 4-4 Measured Fmpency Response of Horizontal Axis to Left FIorizontaI Input 
with Built-In Compensator Feedback 
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compensator was individually tuned by the manufacturer. The dynamics of the compen- 

sators could not be measured without dismantling the apparatus. This method ofidentifica- 

tion yielded no useful plant model since the solution is parametric in the controller. If the 

controller was known then this method could be useM in identifying the plant. 

4.4 Parameter Estimation 

Parameter estimation was used to identify the coefficients of difference equations to 

model the plant. This method of identifying a discrete model uses input and output data 

and produces a least squares estimate of the plant parameters. The order of the plant must 

be specified as must the pure delay from the input to the output 

4.4.1 Least Squares Batch Parameter Estimation Method 

The following algorithm for batch parameter estimation is from Ljung, 1999 with an 

extra input added to the equations. The plant is modeled by Equation 4.2. 

where: 

u1.k and ~ , k  are the inputs at time step k 

yk is the output at time step k 

wk is white Gaussian noise at time step k 

d is the number of time steps of pure delay 

q - I  is the unit delay operator 



A (q-') = 1 + alq-' + - + kq-" 

B1 (q-') = bl0 + h1q-' + - * + q,q-m 

B2 (q-') = bS0 + qlq-'+ - - + b ? m ~ - ~  

n is the order ofthe output difference equation 

rn is the order of the input difference equations 

andm <_ n 

Equation 4.2 can be rewritten in matrix form as: 

where: 

or = [ - -& blo . = . blm • • • bzm ] (4.5) 

Yk-n U1,k-d " *  ul,k-d-m U2,k-d " u2,k-d-m ] (4-6) 

Let 
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where k = 1, ...., k,, is the time interval. The least squares estimate of 8 is given by 

(Ljung, 1 999): 

a (k) = (a=@)-' a?=y 

Noise was added to an input while the shaft was levitated using the built-in compen- 

sators. The noise source was a white noise generator along with a sine wave at the same 

frequency as the first resonant mode of the plant (as found by the measurements in Section 

4.3). The noise was produced by a Sirnulink program at a 5kHz rate and the two outputs 

on the same axis as where the noise was added were recorded at the same sample rate. 

The test was repeated at the other end of the same axis and on each end of the other axis. 

The data was collected for about five seconds and a window of the data was used for the 

model identification after removing the D.C. component. The horizontal and the vertical 

model identifications followed the same method and had almost identical results. In each 

case, a two input, two output model was produced. For brevity, only the horizontal model 

is discussed. Equation 4.9 was used to identify 2 sub-systems: 

A1 (q-') 3h.f = Q - ~ B I  (q-l)  % t l +  Q - ~ B ~  (9-I)  Zlhr (4.10) 

A2 (9-') yrn = Q - ~ B ~  (Q-') u h ~ +  Q-~BI  (Q-I) u h ~  (4.1 1) 

The estimation was performed with n = 8, rn = '7, d = 1, and & = 6000. The 

choice o f  the plant order, n, was very important since low values of n gave large variations 

in the frequency response of the identified plant. Further increases in the value o f n  beyond 



Figure 4.6 Poles of Horizontal Subsystems Identified Through Parameter Estimation. 
(Left: Roots of Al (q- I) .  Right: Roots of Az (q- I)) 

eight had little effect on the identified plant The amount of data used in the identification 

algorithm, &, also had a large effect on the outcome of the identification but increas- 

ing values of k, appeared to converge towards one model. The other two parameters, 

time delay d and the order of the input equations m, did not impact the modeling results 

significantly so were set to match the order of the output equation. 

The poles of the identified subsystems given by the roots of the identified poIynomids 

Al (q-') and A2 (q- l )  were found to be almost identical as shown in Figure 4.6. This is 

consistent with the previous identification methods in Sections 4.2 and 4.3 and is to be 

expected since the apparatus was constructed symmetrically. 

The roots of Al (q-I) and A2 (q-l) were arithmetically averaged to produce a poIy- 

nomid A3 (q-l)  so that equations 4.10 and 4.1 1 cwld be rewritten as equations 4.12 and 

4.13. 



This pair of two input, one output equations can be combined and rewritten in state 

space form as two sets of one input, two output systems: 

where (see Appendix A): 

X U , ~  are the states ofthe left subsystem at time step k 

xhr,k are the states of the right subsystem at time step k 

u ~ , k  is the left horizontal input at time step k 

uhrVk is the right horizontal input at time step k 

yh,, = [ zk ] i a  athe outputs at time step k. 

AN and Ahr are 8x8 matrices 

Bhl andBhr are 8x1 matrices 

HN and Hh,are 2x8 matrices 

The two systems can be combined to give the two input, two output system 



where: 

Equations 4.18 and 4.19 are the final identified horizontal model which has two in- 

puts, two outputs and 16 states and was verified as completely controllable and observable. 

It can be rewritten as: 

Figure 4.7 shows the frequency response of the horizontal model to the left horizontal 

input with a resonance at 782Hz. The phase response is quite different from the analytical 

model in Figure 4.2 but the magnitude shape is similar with a sharp resonance at 780%. 

The discrete poles in Figure 4.6 map quite closely after conversion to the continuous time 

poles of the analytical model in Figure 4.1 up to about 1lrHz. 

The parameter estimation method of identifying a model for a magnetic bearing pro- 

duced good results. This method of system identification was not used in any published 

literature for a magnetic bearing. 

4.5 Model Resonant Mode Refinement 

A stable controller was built based on the parameter estimated model but the shaft 

resonated at the first resonant mode with all of the controller hlnings tested. The resonant 

peaks are more heavily damped tham the closed loop rnmements which can be seen by 



Figure 4.7 Frequency Response of Open Loop Horizontal Parameter Estimation Model 
to Left Horizontal Input 
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comparing Figure 4.7 with a resonant peak of about lSdB to Figure 4.4 with a peak of 

about 35dB at a frequency of 780Hz 

4.5.1 Model Refinement 

The model was modified by moving the resonant poles closer to the unit circle (From 

a radial distance of 0.945 to 0.996) to decrease the e f ' v e  damping in the resonance while 

maintaining the resonant frequency. The modified frequency response for the left horizontal 

input is shown in Figure 4.8 dong with the original response. A controller design based on 

this model was stable and did not resonate. 

The model with the relocated poles has a DC gain that is about 5% lower than the 

original model but this error is small and compensated for by the feedback controllers. The 

simulation in the following section was designed to shed some light on the performance of 

the parameter estimation method for a resonant pole. 

There will be some bias in the estimation since the plant input noise is coloured 

rather than a white noise source (Ljung, 1999) which could account for the error in the 

model identification. The colouring of the plant input noise comes from the addition of the 

external excitation noise to the compensator feedback to produce the plant input. 

4.5.2 Simulation of System Resonant Mode Identification 

A numerical simulation was performed to investigate the identification of a linear 

plant with a resonant peak Discrete white noise (in the range of &I at SlrHz) with a sine 

wave (amplitude I) at the resonant frequency was used as input to a continuous transfer 



Figure 4.8 Frequency Response of the Open Loop Modified Parameter Estimation 
Model Horizontal Outputs to the Left Horizontal Input (Original Model (-), Modified Res- 
onance (. - -)) 
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finction with a resonance at 800Hz and damping of about 0.004 (similar to the final pa- 

rameter estimation model). The output data was recorded and the plant was identified using 

the parameter estimation method and then Gaussian noise (mean: 0, variance: 0.05) was 

added to the output and the identification procedure was repeated. Figure 4.9 shows the 

frequency response of the original plant and the two identification results. It is clear from 

this simulation that with noise in the measurement, the ability to identify this resonant peak 

is reduced (peak of 5dB compared to 40dB). 

Figure 4.9 shows that the DC gain of the identified model with noise in the mea- 

surement is significantly higher than the model identified without noise. From this brief 

simulation it appears that the identified model with a higher damping is accompanied with 

a higher DC gain and for this reason the DC gain of the magnetic bearing model with 

modified resonant pole was not adjusted. 

4.6 Summary 

This chapter presented the attempted methods to model the magnetic bearing system. 

The physical analysis model was not accurate enough in this case to be used as a basis to 

design a stable controller. The sine wave response of the closed loop system with built-in 

compensators was measured then transfer fUnctions were matched to the response. It was 

not possible to calculate an open loop model from this data due to numerical difficulties 

and inaccurate knowledge of the built-in compensators. 

An open loop model was identified using the discrete parameter estimation method 

to identify subsystems from closed loop inptdoutput data. The subsystems were then corn- 
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bined to produce a two input, two outpuf 16 state open loop model for each of the horizon- 

tal and vertical axes. The models are open loop unstable and have a resonance at 782Hz. 

The resonance of the model was found to be too heavily damped to be used as a basis to 

design a controller so the resonant poles were modified to be more lightly damped. A nu- 

merical simulation was performed to investigate the misidentification of a sharp resonant 

peak with a noise corrupted measurement. 



Figure 4.9 Frequency Response ofparameter Estimation Identification of a System with 
Sham Resonance (Top) with Noise in the Measurement (Middle) and No Noise in the 



Chapter 5 
Control Law Development and 

Implementation 

5.1 Introduction 

In this chapter, details of the design and implementation of controllers for the mag- 

netic bearing apparatus are presented. Firstly, the built-in compensators of the apparatus 

are discussed then several digital controllers are designed. The digital controller design is 

centered around the model identified in Section 4.4 and uses the equipment described in 

Chapter 3. Each digital controller consists of a separate horizontal and vertical component. 

A state estimator for each axis was designed and state feedback controllers were im- 

plemented using the state estimates. An LQG controller was designed based on a selected 

cost function for each of the two axes. A modification to the plant model was made so that 

a DSMC could be implemented. The sliding surface for the DSMC was designed using a 

cost fbnction to weight the control action and the output regulation objectives. An outer 

loop PI controller was added to the DSMC to improve its reference tracking ability. The 

DSMC was also modified to slide on different surfaces depending on the position of the 

ends of the shaft. 

This chapter discusses the different controller tunings that were found to be stable 

as well as some tuning difficulties. The test results of these controllers and as well as the 

built-in compensators are detailed in Chapter 6. 



5.2 Built-In Feedback Compensators 

The magnetic bearing apparatus contains built-in feedback compensators as discussed 

in Section 3.2 which can be used to levitate the shaft There are four single input, single 

output compensators which all use a position measurement and adjust the corresponding 

current in the electromagnet. There is reasonably strong coupling from one end of the shaft 

to the other on each axis of the shaft as seen in the identified model in Section 4.4, This 

means that there is significant dynamic coupling between the two control loops on each 

axis. With the single input, single output controllers there will be some interaction and 

possibly fighting between controllers on each axis which could result in oscillations in the 

closed loop dynamics. 

The nominal compensator dynamics for each channel are given in Magnetic Mo- 

ments, 1997 as: 

This has a frequency response shown in Figure 5.1. 

Observer Design 

An observer is required to estimate the states of the models identified in Section 4.4 

for the LQ controller and DSMC to be implemented. For each of the axes, an observer 

is required that uses the two plant inputs and the two plant outputs to estimate the 16 

states ofthe model. AKaIman filter was designed using the 'kdman' Matlab fimction (see 
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Math Works, 1996). The structure of the horizontal system with matched white state noise 

(u) and measurement noise (u) is given by: 

Where: 

Q,, R,, Diagonal 0.e. the elements ofvh and vh are independent. 

The estimator that minimizes the steady-state error covariance: 

is given by: 

5h,k+1 = @h2h,k + rhuh,k + L (yh,k - Hh%rs) (5 -26) 

Q, and R, were roughly estimated to be 0.001 x 4 from collected data while under 

ciosed loop control by the built-in compensators. 

The 'kalman' Matlab function returns a state space system with four inputs (the two 

plant outputs and the two plant inputs), two filtered plant outputs and16 state estimates. 
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The estimator produces a least squares estimate of the states and the plant outputs without 

noise, 

5.4 Linear Quadratic Gaussian Controller 

5.4.1 Controller Synthesis 

Two LQG controllers (one for the horizontal axis and one for the vertical axis) were 

designed using the identified models from Section 4.4 and the observer designed in Section 

5.3. The controller was designed using the 'dlqr' Matlab knction then combined with the 

observer using the 'Iqgreg' function (Math Works, 1996). The control for the horizontal 

axis is u b k  = KhZh,k which acts on the plant in equations 5.23 and 5.24. The 'dlqr' 

function calculates the optimal gain matrix, Kh (2 x 16), that minimizes a cost fbnction, J ,  

given by: 

The matrix Q weights the deviation in the states while the R matrix provides the 

relative control action weighting. The cost f i n d o n  should reflect the goal of regulating the 

position of the shaft rather than directly regulating the states of the model which have no 

physical interpretation. The cost firnction was chosen to be: 
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So Q = q c H h  and R = I. The design parameter, q, determines the relative weight- 

ing between the outputs and the inputs in the cost findon. The two outputs have an equal 

weight as do the two inputs. If a large value of q is chosen then the states will be tightly 

regulated at the cost of large control action which may saturate the actuators. 

Figure 5.2 shows the frequency response of a horizontal axis LQG controller designed 

with the above method. The left plots show the response of U M  to yhl while the right plots 

show the response of uh, to yw. The response at the right end of the shaft is very similar 

to the left end and the vertical controller is similar to the horizontal controller. These 

plots show that the controllers are m~ltiva~able in that they take control action at both 

horizontal plant inputs in response to a plant output change at only the left end. This is in 

contrast to the single input, single output built-in compensators desaibed in Section 5.2. 

The frequency response of the built-in compensators is similar to the uhl/yhl LQG response 

except that the LQG response has a deep notch at the resonant frequency. This notch should 

effectively damp out the large resonant peak in the plant as found in the modeling in Chapter 

4 and shown in Figure 4.5 and Figure 4.7. 

Stabie horizontal and vertical controllers were designed with q set to 2.5, 1000 and 

4 x lo5. The test results are presented in Chapter 6. 

5.5 Discrete Sliding Mode Controller 

The DSMC (see DeCarlo et al, 1996; Pieper 8r Surgenor, 1993; Rundell et al, 1996; 

Slotine & Li, 1991; Utkin, 1977) requires an estimate ofthe current states, 4, to produce a 

control action uk. The Kalman filter discussed in Section 5.3 uses the cunent plant output, 



Figure 5.2 Frequency Response of LQG Controller (q = 1000) for Horizontal Axis 
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yk, and the m e n t  plant input, uk, to produce the estimate gr. The LQ controller and the 

Kalrnan filter were merged to produce a two input, two output LQG controller but this is 

not possible with the non-linearities in the DSMC. The Kalman filter and the DSMC cannot 

be connected in their present form since the state estimate, 4, would depend on the control 

action Z L ~  while ur would depend on & producing an algebraic loop in the calculations. 

To remove the algebraic loop, a delay must be inserted into the signal flow as shown 

in Figure 5.3. The control action, uk, is delayed one sample interval before it is sent to the 

plant and to the Kalman filter. With this delay inserted the DSMC is controlling a plant 

with different dynamics which must be reflected in the model. The identified horizontal 

model was given in equations 4.18 and 4.1 9. 

The input to the model is delayed through the two new states, zh, that have been 

added in the following equations 

Equations 529 to 5.3 1 can be merged into a new state space model given by: 



Figure5.3 DSMC Control Signal Flow 

Equations 5.32 and 5.33 delay the input to the original states, xh, by one sample 

which is equivalent to using a delayed input, uh,r- 1, to the model. The controller and 

estimator based on this new model can be connected as shown in Figure 5.3. The Kalman 

filter is as designed in Section 5.3. The DSMC can be designed using this delayed input 

model and implemented using the signal flow in Figure 5.3. 
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5.5.1 Control Law 

The DSMC law for a single control is given by Pieper & Surgenor, 1993 : 

Where: 

la is the order of the plant 

K, is the equivalent control matrix (1 x n) 

K, is the switching control matrix (1 x n) 

C is the sliding surface matrix (1 x n) 

I' is the system input matrix (n x 1) 

sk is the distance to the sliding surface, sk = Cxk (scalm) 

fj is the maximum perturbation (scalar) 
n 

11 x k  11, = Ixic 1, the first norm of the states (scalar) 
i=l 

c$ is the switching strength subject to fi < 4 < I &I - (scalar) 

The switching control forces the states of the plant onto the sliding surface defined 

by C while the equivalent control moves the states along the surface towards the origin. 

The above control law ensures that the switching control is not too strong to overshoot the 

sliding sector but also sufficient to cause the system to move towards the sliding sector 



54 

in the face of disturbances. The DSMC takes into account the sampling rate whereas the 

robustness of the continuous time sliding mode controller is not guaranteed with a discrete 

implementation. This is especially important in this application since the sampling rate 

is slow relative to the first critical Frequency of the shaft. The following section details a 

sliding surface design method to ensure that the sliding surface is stable and the states slide 

towards the origin. 

5.5.2 Sliding Surface Design 

The sliding surface was designed to minimize a cost function with relative weighting 

of the states of the model in equations 5.32 and 5.33. The cost function is written as: 

The off-diagonal terms Qlz = Q& = 0 since they have no physical significance. The 

other terms were chosen so that 

which is equivalent to: 

The sliding d a c e  design is reduced to choosing the relative weight of the output, p, 

and the weight on the control, r. 



The sliding surface matrix is given by: 

iP is partitioned as in equation 5.43 so that the i P p  matrix is 2 x 2 and the other 

elements of the partition conform in size. 

The matrix K is given by: 

and 

where 



5.5.3 Controller Synthesis 

The control law in Section 5.5.1 was implemented for each of the plant inputs for 

both axes. The sliding surface design parameters q and T were chosen and the sliding 

surface matrix C was calculated for each axis using the models from Section 4.4 modified 

to equations 5.32 and 5.33 to account for the introduced delay. The DSMC law in equations 

5.34 to 5.37 is for a single control so for each axis the sliding surface matrix, C, was 

partitioned into two row vectors (one for each control input). The model input matrix, rh, 

was partitioned into two column vectors so that the control law in equations 5.34 to 5.37 

could be implemented for both of the plant inputs for both of the models. 

The tuning of the controllers was done by choosing G to be 0.005 and q5 to be 0.0 1 

followed by choosing the cost function parameters q and r. It was found that a closed 

loop stable system was more easily tuned with a lower switching strength, 4. The relative 

magnitude of q and r determines the level of regulation versus the amount of control action 

taken. The control action weight, r, was set to 50. If q was chosen to be too large then the 

control action would often saturate leading to instabilities. Lower values of q would result 

in the closed loop plant resonating at the first resonant frequency. A value of q between SO 

and 500 was found to produce good results. 

5.5.4 Proportional-Integral Control 

A PI controller was added to the DSMC to improve the reference tracking perfor- 

mance of the closed loop system. The reference inputs and the PI controllers were con- 
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Figure 5.4 Control Flow of DSMC and PI Controller for One Axis 

nected in the configuration shown in Figure 5.4 for each of the horizontal and vertical 

controllers . 

The dynamics of the plant were measured by stepping one of the reference inputs 

with the PI controller in open loop and the DSMC levitating the shaft. The left horizontal 

step test is shown in Figure 5.5. From the step tests, the time constant and steady state 

gain of the response can be measured to approximate the DSMC closed loop system as first 

order with the model: 



Figure 5.5 Reference Step Response of Left HorizontaI DSMC (Top: Reference, Mid- 
dle: Input, Bottom: Output) 



where: 

K, is the process gain (Kp = 2 for the left horizontal) 

and r is the time constant (T N- O.OO5secs for the left horizontal) 

The PI controller was then tuned using the Lambda tuning method ( k 6 m  & Wig- 

glund, 1995) to produce a designed closed loop time constant, A. The PI controller has the 

transfer hction: 

where: 

Kc is the proportional control gain 

and Tr is the reset time of the integrating action 

W~th the following tuning: 

the closed Loop transfer function is: 

This allows the PI controller to be tuned significantly slower than the DSMC so 

that there is negligible interaction and fighting b a e e n  the two controllers. All of the 
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PI controllers were tuned with the same closed loop time constant of X = 0.015secs. 

Reference steps were made with the tuned PI controllers and the left horizontal response 

is shown in Figure 5.6. W~th the PI controllers in closed loop, the steady state output 

tracks the reference with no offset. The response also reaches the steady state value at 

about 0.06secs after the reference change was made indicating that the tuning produced the 

desired closed loop time constant, that is a settling time of four time constants. 

5.5.5 Switched Sliding Surface Controller 

To reduce the chance of the shaft touching the housing, a DSMC was designed to 

take more aggressive control action when a position measurement deviated a large distance 

from the zero position. A cut-off band of 0.5 Volts was used to determine which controller 

tuning should be used. The operation of the horizontal controller had three tunings of the 

cost function but used the same choices of the other parameter as in Section 5.5.3. The cost 

function in equation 5.40 was modified to the fonn: 

where: 

Hh = [ 2 ] are the two rows ofthe model output equation. 

and ql, q2, and r are the tuning parameters 

Three different sets of parameters were used in the cost hnction shown in Table 5.1. 

The tuning choices in Table 5.1 were made so that if one end of one axis move out of the 



Figure 5.6 Left Horizontal Reference Step Response of DSMC with PI (Top: Reference, 
Middle: Input, Bottom: Output) 



Yhl Yhr q1 q!2 '1. 

CM.5 C H . 5  LOO LOO 50 
> a h 5  ( 3 9 - 5  L O O  1 50 
< H . 5  > M.5 L 100 50 
cH.5 cM.5 L O O  100 50 

Table 5.1 DSMC Switched Surface Tunings and Conditions for Each Tuning Use 

0.5 band then a tuning with a larger relative weight on output deviation associated with that 

end is used. This will attempt to use more control action to move that end back into the 

band possibly at the expense of the position of the other end. When both outputs are within 

the band then the equally weighted tuning is used. When both ends of the shaft are out of 

the band, which would happen at lift-off, the equally weighted tuning is also used. This 

was done because it was found that the control signal saturated on lift off with the normal 

tuning and more aggressive tuning would not help this condition. 

The values of q~ and q2 when one end is out of the band were chosen to be between 

saturating the control and the original central level. With too large a difference between ql 

and qz, the controller would get into a cycle where a large control action was used to move 

one end back into the band while the opposite end fell out of the band repeating the cycle. 

This controller was difficult to tune since there are many parameter choices that must be 

made. 

5.6 Summary 

This chapter presented the nominal design of the built-in compensators. Two discrete 

control algorithms were designed using the parameter estimated model with a modified 
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resonant pole developed in the previous chapter. A Kalman filter was designed to estimate 

the states of the plant since both of the discrete controllers rely on state feedback. 

An LQ controller was designed using a cost function which reflected the goal of regu- 

lating the shaft position without saturating the control input The controller was combined 

with a Kalman filter to form an LQG controller and was found to be stable with several 

different tuning choices. 

Ia the design of the DSMC the intercomection between the DSMC and the Kalman 

filter caused an algebraic loop that was removed by an inserted delay but meant that the 

model of the plant had to be modified to include a unit delay in the control action input. 

The DSMC was designed using this modified model and a cost hction which rdected 

the same goals as the LQG controller. The DSMC was difficult to tune since there were 

seved parameter choices to be made. A range of cost hctions were found to produce a 

stable controller. 

PI controllers were added to the DSMC to improve the reference tracking perfor- 

mance of the closed loop system. The PI controllers were tuned to be significantly slower 

than the DSMC controller to avoid the controllers interacting. The DSMC was also mod- 

ified to use a more aggressive control action when one end ofthe shaft moved away from 

the zero position. This controller was difficult to tune since it has more parameters. 



Chapter 6 
Experimental Results 

6.1 Introduction 

In this chapter the operating performance of the closed loop systems with the control 

laws developed in Chapter 5 are evaluated experimentally. First there is a brief discussion 

on the evaluation criteria for the controllers as well as a discussion on the need to scale the 

recorded voltage data. The following controllers were tested: 

The built-in compensators discussed in Section 5.2. 

The LQG contr01ler developed in Section 5.4. 

a The DSMC-PI controller developed in Section 5 -5. 

The DSMC-PI controller with a switching sliding surface developed in Section 

Three different sets of tuning parameters were tested with the LQG and the DSMC-PI 

controllers- The DSMC-PI controller with variable surfaces was aIso tested with one set 

of t u ~ n g  parameters. The test results were compared to evaluate the performance of the 

different controlled systems. The design and implementation ofthe controllers can also be 

verified by observing the effect of different tuning choices on the controller performance. 



Each controller was tested under the following conditions: 

A. The left horizontal end of the shaft was tapped with a metal pendulum and the 

integration of the squared piant outputs and inputs were recorded. 

B. A mass was added to the shaft and test A was repeated. 

C. White noise was added to the control signal and the variance ofthe plant outputs 

and control action were calculated. 

D. The shaft was imbalanced with a mass then spun at about 10,000 rpm while the 

variance of the plant outputs and control action were recorded. 

6.2 Closed Loop System Evaluation Criteria 

With the experimental test apparatus used in this research there is no final indus- 

trial implementation and hence no precise control objectives. The main requirement of this 

controller is that it levitates the shaft under vazying operating conditions. The shaft mo- 

tion should not meet the hard limits imposed by the bearing sizes. That is, the shaft should 

stay within the h m e  without hitting the walls of the bearing. The find application would 

determine what operating conditions are important and how to quantify how well the shaft 

is ievitated. For example, is the operation of the bearing with a varying shaft mass impor- 

tant? Is preventing shaft touchdown more important than reducing just the shaft position 

variance? Is the actuator power consumption important compared to position regulation? 

Is reference tracking important? 

There are other considerations in evaluating a control strategy not diredy related to 

contr01ler performance. These would include controller complexity, tuning difficulty, and 
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hardware requirements. The experimental results presented in this chapter are aimed at 

demonstrating how the designed controllers can be tuned for different closed loop perfor- 

mance. The tuning values were chosen to demonstrate the large variation in performance 

that can be achieved by the controllers. Actual implementations can then use this data to 

guide tuning for given environments. 

6.3 Signal Scaling 

The voltage signals of the apparatus are in the range of OV to f 5V for the inputs 

and &5V for the outputs. The signals were scaled to have more physical significance in 

the data analysis. Each input to the apparatus controls the corresponding electromagnet 

current to a scale of 0.25AIV. The inputs to the apparatus were multiplied by 0.25 to 

reflect this scaling. The scaling of the output signals were chosen to redect a possible 

control objective. Each output was multiplied by &/0.1 so that an output of0.5 would 

correspond to a squared value of 10 0.e. (0.5 x a / 0 . 1 ) ~  = 10) reflecting a higher 

concern for this large deviation. An output of approximately 0.158 scaled and squared 

would result in a value of 1. Any value below 0.158 scaled and squared would be reduced 

reflecting a tower concern for small deviations. 

6.4 Shaft Taps 

The shaft was tapped with a metal pendulum near the Left end of the shaft in approx- 

imateIy a horizontal direction. The results show that there was some verticaI component to 
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the tap. The pendulum was drawn back to a fixed position on each tap by means of a jig 

to keep the taps consistent for d l  controllers. Each controller was tapped 75 times and the 

plant inputs and outputs were recorded and scaled. 

The integration of the deviation of the inputs and outputs due to the tap was calculated 

by taking a window of data surrounding the tap time. For each recorded signal, the data 

leading up to the tap was averaged to find the steady state shaft position and this value was 

subtracted from all data in the window. The squared integration of the window of data was 

then calculated by summing the squared values ofthe s d e d  data over the whoie window 

multiplied by the sample period. The mean of the integration of the 75 taps along with their 

standard deviations are presented in Sections 6.4.1 to 6 -4.4. 

The time pIots of the tap response shown in Figure 6.1 to Figure 6.1 1 are for illus- 

trative purposes and are not the actual data windows used to integrate the response. The 

data is shown in its recorded form of volts with the vertical axis span constant for all input 

plots and constant for dl output plots. The time span for all plots are the same. In all cases, 

the four control actions (horizontal left, horizontal righg vertical left and vertical right) are 

shown down the left side of the sets of plots while the outputs (horizontal left, horizontal 

right, vertical left and vertical right) are shown down the right side. 

6.4.1 Buiit-In Compensators 

The plots in Figure 6.1 show a large response at the right end of the shaft to the tap 

at the Left end which can also be seen in the integration of yM and y b  in Table 6.1. The 

SISO nature of the compensators means that the contml action taken at the left horizontal 
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actuator in response to the tap affected the right horizontal output via the shaft dynamics. 

The right horizontal actuator response in turn affected the left horizontal output with the 

net result of oscillations in the two horizontal outputs. 

6.4.2 LQG Controller 

Three LQG controllers were designed with the tuning parameter q (from Section 5.4) 

set to 2.5, 1000 and 4 x lo5 corresponding to an increasing cost on output deviation. The 

measured output integration in Table 6.2 decreases with increasing q. The responses in 

Figure 6.2 to Figure 6.4 also show that a controller with an increasing value of q has a 

smaller initial peak in the left horizontal output due to a stronger control action. This is 

consistent with the desired effect of the tuning. 

The controller with q set to 2.5 did not respond very quickly to the taps and slowly 

retuned the shaft back to the steady state position. W~th q set to 4 x lo5, the control 

action is fast and noisy as the more aggressive tuning tried to react quickly to dl of the 

smaller deviations in the position measurement. There is no performance increase when q 

is increased fiom 1000 to 4 x lo5 but the control action is more aggressive as seen in Figure 

6.3 and Figure 6.4 and more control energy is used as shown in Table 6.2. 

The steady position ofthe shaft is not usually at zero since there is no integrating 

action in the controller. A constant bias must be added to the inputs to move the outputs to 

a near-zero steady position. 



Mean (xIo-~) Standard Deviation (xIo-~) Mean Standard Deviation 
UM 0.5 f 0.02 Yhl 0.28 0.01 
uhr 0.28 0.01 ~ h r  0.14 ~.006 
%I 0.017 0.001 y,r 0.0086 0 . 0 5  
%r 0.012 0.002 Yvr 0.0068 0.001 

Table 6.1 Integration of Scaled Squared Signal of Built-In Compensator Response to 
Horizontal Taps at Left End of Shaft 

q = 2.5 
Mean( x Standard Deviation( x 10- 3, Mean Standard Deviation 

U M  1.11 0.05 yi,l 1.12 0.05 
u h t  0.10 0.004 yhr 0.70 0.003 
2tui 0.070 0.003 l / ~ t  0,083 0.004 
% 0.0028 0.0005 y, 0.00QO O.OQ07 

q = 1000 
Mean( x Standard Deviation(x Mean Standard Deviation 

Uht 0.74 0.06 Yhl 0.19 0.02 
Uht 0.091 0.007 ghr 0.010 0.0008 
21U1 0.16 0.01 yvt 0.0057 0.0004 
% 0-mn 0.001 YV, CUMXI69 0.0001 

q=4x105 
Mean( x loa3) Standard Deviation( x Mean Standard Deviation 

uh~ 0.95 0.1 yu 0.19 0.03 
uhr 0.23 0.03 yh, 0,011 0.002 
llvr 0.038 0.007 yvt 0.0052 0.oOCn 
u, 0.030 0.009 y, 0.0010 0.0004 

Table 6.2 htegration of Scaled Sqyared Signal of LQG Controllers Response to a Hor- 
izontal Tap at Left End of Shaft 





Figure 62 LQG Controller (q = 2.5) Response to a Horizontal Tap at Left End of Shaft 
(Merical Axes in Volts, Horizontal Axes in Milliseconds) 



Figure 6.3 LQG Controller (q = 1000) Response to a Horizontal Tap at Left End of 
Shaft (Verid Axes in Volts, Horizontal Axes in Milliseconds) 



Figure 6.4 LQG Controller (q = 4 x 10) Response to a Horizontal Tap at Left End of 
Shaft (Vend Axes in Volts, Horizontal Axes in Milliseconds) 



6.4.3 DSMC-PI Controller 

The results of three DSMC-PI controllers with the tuning parameters q set to 50, 

100 and 500 and r set to 50 (as in Section 5.5.1) are shown in Table 6.3 and Figure 6.5, 

Figure 6.7 and Figure 6.8. These values of q correspond to an increasing weight on output 

deviation. The tabulated results show that the output deviation decreases and the control 

action increases with an increasing q while the plots of the responses show an increasing 

amount of control used and a shorter settling time. 

Shown in Figure 6.6 and Figure 6.9 are the two horizontal outputs and the control 

action of the components of the DSMC-PI controller. These are included to show the dif- 

ference in control action in the two extremes of tuning as well as the contribution of the 

different control components. In both cases the PI compensator (the second row offigures) 

makes onfy a small contribution due to the relatively slow tuning chosen. Stabilization of 

the shaft is done by the DSMC and predominantly by the equivalent control component 

(the fourth row). The switching control action (the third row ) could be strengthened by in- 

creasing the tuning constant $ (see Section 5.5.1) but it was found that it was more difficult 

to produce a stable or non-oscillating controller with larger values of 4. 

W~th q set to 500 the control action becomes more aggressive and although the plant 

is stable, the response does not settle down as quickly as with the lower values of q. The 

resuits with q set to 500 show the lowest deviation of dl of the DSMC-PI and LQG con- 

trollers for y ~ .  With q = 100, the results are very comparable to the LQG controller with 

q = 1000 and p = 4 x lo5 although the DSMC-PI controller used more control energy. 



Figure 6.5 DSMC-PI (q = 50) Response to a Horizontal Tap at Left End of Shaft (Veri- 
cal Axes in Volts, Horizontal Axes in Milliseconds) 



figure 6.6 DSMC-PI (q = 50) Control Action Response to a Horizontal Tap at Left End 
of Shaft (VericaI Axes in Volts, Horizontal Axes in Milliseconds) 



Figure 6.7 DSMC-PI (q = 100) Response to a Horizontal Tap at Left End of Shaft 
(Verical Axes in Volts, Horizontal Axes in Milliseconds) 



Figure 6.8 DSMC-PI (q = 500) Response to a Horizontal Tap at Left End of Shaft 
(VericaI Axes in Volts, Horizontal Axes in Milliseconds) 



Figure 6.9 DSMC-PI (q = 500) Control Action Response to a Horizontal Tap at Left 
End of Shaft (Verical Axes in Volts, Horizontal Axes in MilIiseconds) 



6.4.4 DSMC Controller with Switched Surface 

The DSMC controller discussed in Section 5.5.5 was tested and the results are shown 

in Table 6.4, Figure 6.10 and Figure 6.1 1. In response to a tap, the switched surface design 

caused the conlroller to use a stronger control action to move yhl back towards the zero 

position at the expense of allowing yh, to deviate more than in the case of the DSMC-PI 

controller with a tuning of q = 100 and r = 50 (see Figure 6.7 and Figure 6.10). The result 

is a Larger deviation in yh, and some oscillations in the response with a small improvement 

in the maximum deviation in yu compared to the DSMC-PI controller with a hlning of 

q =  100 andr = 50. 

This controller was difficult to tune since there are several more tuning parameters 

than the DSMC-PI controller with one sliding surface and care was needed to reduce the 

chance of saturating the actuators. 

6.5 Shaf't with Added Mass Taps 

The mass of the shaft was approximately doubled by taping 235g of lead to it. The 

mass was located to the left side of center. The shaft was then tapped with the same pendu- 

lum setup as in Section 6.4. The same data analysis was performed to measure the deviation 

of the shaft and the results are presented in Table 6.5 to Table 6.8. 

The results cannot be directly compared to Section 6.4 since the added mass acts as 

a damper to the tap. All of the controllers that were tested were stable with the added mass 

and the relative performance of the controllers is similar to the results in Section 6.4 with 



q=50  
~ e a n ( x l ~ - ~ )  Standard Deviation(x Mean Standard Deviation 

Utth( 0.93 0.06 yhl 0.23 0.02 
uhr 0.22 0.01 yhr 0.027 0.m 
4 1  0.024 0.002 Y,L 0.0087 0.0006 
24rr 0.011 0.002 y, 0.0019 0.0002 

q = LOO 
Mean(x Standard ~&ation(x Mean Standard Deviation 

uht 1.09 0.09 YM 0.20 0.02 
Uhr 0.35 0.02 yhr 0.029 0.002 
%L 0.023 0.002 y,l 0.0058 0.0005 
%T 0.017 0.002 y, 0.0018 0.0002 

q = 500 
~ e a n ( x  Standard Deviation(x Mean Standard Deviation 

uhl 1-77 0.2 y 0.16 0.02 
Uhr 1.24 0.09 Yhr 0-046 0.004 
%l 0.039 0.006 y,~ 0.0032 0.0004 
%r 0.073 0.01 yw 0.0036 0.0006 

Table 6.3 Integration of Scaled Squared Signal of DSMC Controller Response to a Hor- 
izontal Tap at Lefk End of Shaft 

Mean(x St andard ~ ~ a t i o n ( x  Mean Standard Deviation 
UM 1.19 0.1 Yh[ 0.23 0.02 
Uhr 0.66 0.06 Yhr 0-080 0 -005 
%I1 0.022 0.00 1 YvL 0.0061 0.0004 
2tM 0-014 0.002 yw 0.001'7 0.0002 

Table 6.4 Integration of Scaled Squared Signal of DSMC Controlla with Switched Sur- 
face Response to a Horizontal Tap at Left End of Shaft 



Figure 6.10 DSMC (q = 100) with a Switched Sliding SUTface Response to a Horizontal 
Tap at Left End of Shaft (Verical Axes in Volts, Horizontal Axes in MilIiseconds) 



Figure 6-11 DSMC (q = 100) with a Switched Sliding Surface Control Action Re- 
sponse to a Horizontal Tap at Left End of Shaf? (Verical Axes in Volts, Horizontal Axes in 
Milliseconds) 
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two exceptions. The LQG controller with q = 2.5 had a tendency for the outputs to drift 

during normal operation. Wlthout the added mass, ym for the built-in compensator was 0.28 

compared to 0.20 for the DSMC controller with q = 100 but with the added mass yhl was 

0.38 and 0.24 for the same controllers. The y,,l output deviation with the added mass was 

significantly larger for the built-in compensators relative to the other controllers compared 

to the tests without the added mass. The performance ofthe built-in compensators degraded 

considerably more than the other controllers with the added mass. 

6.6 Matched Noise 

A matched noise test was performed to evaluate the robustness of the controllers 

in the presence of large amounts of noise. Uncomelated Gaussian noise sources (memo, 

variance:0.5) were added to each ofthe control signals using the Sirnulink 'Gaussian Noise' 

block at an output rate of 5kHi. The controi inputs and position outputs were recorded for 

one second and the data was scaled as in Section 6.3. The variances of the input and output 

data were then calculated and are shown in Table 6.9. 

The built-in compensators and the LQG controller with q = 2.5 allowed the shaft 

to touch the bearing housing many times during the test giving an artificially low output 

variance. From the test results it can be seen the that LQG controllers with larger values of 

q had the lowest variance of all of the controllers indicating better noise rejection. All of 

the DSMC-PI controllers kept the shaft from hitting the housing. The DSMC-PI controller 

with q = 500 appeared to use a lot of control action in an attempt to regulate the outputs 



Mean ( x  Standard Deviation (x Mean Standard Deviation 
U~LL 0.65 0.03 YM 0.38 0.02 
Uhr 0.41 0.02 Yhr 0-22 0.m 
&t 0.031 0.003 pvf 0.014 0,001 
2tur 0.069 0.03 vyr 0.029 0.01 

Table 6.5 Integration of ScaledSquared Signal of Built In Compensator Response to 
Horizontal Taps at Left End of Shaft with Added Mass 

q = 2.5 
Mean ( x  Standard Deviation ( x  Mean Standard Deviation 

utdh~ 0.92 0.06 y u  1.12 0.08 
Uht 0.15 0.05 Yhr 0.13 0.08 
Ztuc 0.52 0.2 Yvt 0-84 0.4 
U, 0.74 0.8 Y w  1-1 1.2 

q = 1000 
Mean ( x  lod3) Standard Deviation ( x  Mean Standard Deviation 

UM 0.68 0.05 Yhl 0.22 0.02 
uhr 0,15 02 y b  0.020 0.002 
-1 0.040 0.003 yvt 0.011 0.0006 
Ztur 0.017 0.003 y, 0.0043 0.001 

q=4x106 
Mean ( x  standard Deviation ( x Mean Standard Deviation 

ulrl 0.9 1 0.1 Yhl 0.23 0.03 
uhr 0.26 0.04 .yhr 0.021 0.003 
' k t  0.056 0.006 y,l 0.0091 0.001 
% 0.031 0.006 y, 0.0024 0.0007 

Table 6.6 Integration of Scaled Squared Signal of LQG Controllers Response to a Hor- 
izontal Tap at Left End of Shaft with Added Mass 



q =  50 
Mean ( x Standard Deviation ( x Mean Standard Deviation 

%I 0.95 0.05 Y M  0-29 0.02 
Uht 0.3 1 0.03 Yht 0-043 0.003 
'Ltul 0.056 0.003 yvi 0.019 0.001 
%r 0.044 0.005 y,, 0.013 0.002 

q = 100 
Mean ( x  Standard Deviation (x Mean Standard Deviation 

Uhl L .o 0.06 yhl 0.24 0.02 
uhr 0.36 0.04 yhr 0.038 0.003 
UUL 0.052 0.004 yVr 0.012 0.0009 
tLur 0.036 0,005 VVT O*m70 0.01 

q = 500 
Mean(x Standard Deviation (x Mean Standard Deviation 

uhl 1.55 0.2 Yhl 0.17 0.02 
uhr 0.97 0.3 Yhr 0,044 0.01 
-1 0,080 0.01 y,l 0.0067 0.0008 
21w 0.10 0.02 y, 0.0057 0.001 

Table 6.7 Integration of Scaled Squared Signal of DSMC Controller Response to a Hor- 
izontal Tap at Left End of Shaft with Added Mass 

Mean (x Standard Deviation (X Mean Standard Deviation 
UM 1-14 0.06 Yhl 0.25 0.02 
ahr 0.58 0.03 Yhr 0-12 0.009 
%L 0.054 0.04 y,~ 0.014 0.01 
%r 0.029 0.004 ym 0.0056 0.0007 

Table 6.8 Integration of Squared Signal of DSMC Controller with Switched Surface 
Response to a Horizontal Tap at Left End of Shaft with Added Mass 



uhf 
Built -In Compensators 0.0796 
LQG (q = 2.5) 0.0115 
LQG (q = 1000) 0.00603 
LQG (q = 4 x 106) 0.0110 
DsMGPI (q = 50, r = 50) 0.00823 
DSMGPI (q = 100, r = 50) 0.00948 
DSMGPI (q = 500, r = 50) 0.137 

Y hl 
Built-In Compensators 21.8 
LQG (q = 2.5) 13.2 
LQG (q = 1000) 1.40 
LQG (q = 4 x 106) 1.20 
DSMGPI (q = 50, r = 50) 2.21 
DSMGPI (q = 100, r = 50) 1.73 
DSMC-PI (q = 500, r = 50) 11.8 

Table 6.9 Variance of Control Action (Top) and Outputs (Bottom) with Matched Noise 
Disturbance 

precisely but was too aggressive and the output variance was higher than with the lower 

values of q. 

The DSMC-PI controller with a switched sliding surface for both the horizontai and 

vertical controllers couId not be run on the hardware available since the computations that 

were required between each sample could not be performed in time. 

6.7 Rotating Shdt 

A strip of lead weighing 2358 was wrapped around the shaft at a position left of 

centre approximateiy doubling the mass of the shaft This produced an imbalance in the 

shafk in both the lefk to right sense and cirderentidly as well as added mass to the shaft. 

A DC motor was used to spin the shaft using a rubber band around the center of the shaft 

to a pulley on the motor. A friction drive pulled the shaft in an approximate horizontal 
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direction and a variable voltage supply was used to control the motor speed. A strobe light 

was used to measure the speed of the shaft and the DC voltage was adjusted to produce a 

speed of 10,000 rpm. Once the speed was reached, the inputs and outputs of the plant were 

recorded for a few seconds. This process was repeated for each ofthe controllers. The data 

was scaled and the variance of a one second window of data is shown in Table 6.10. 

The imbalancing mass and simple drive method was used to produce repeatable dis- 

turbances as well as test the performance under a rotating condition. The rotation causes 

some dynamic coupling between the horizontal and vertical axes due to the gyroscopic ef- 

fect so a control action taken in one axis will result in a position change in both axes. The 

model identified in Chapter 4 and used to design the LQG and DSMC controllers assumes 

that there is no coupling between the axes. 

The results show that the LQG controllers with q set to 1000 or 4 x lo5 have a lower 

variance than all of the other controllers. The DSMC-PI controllers used more control 

action than the other controllers but did not perform as well. 

6.8 Test Results Summary 

This chapter presented the results of tests performed on the magnetic bearing appara- 

tus with the built-in compensators, three tunings of the LQG controller, three tunings of the 

DSMC-PI controller and a switched surface DSMC-PI controller- The tests verify the tun- 

ing design of the LQG and DSMC-PI controllers showing that there is a trade-off between 

the amount of output deviation due to a disturbance versus the amount of control action 

used, 



uhl 
Built-In Compensators 0.000935 
LQG (q = 2.5) 0.00136 
LQG (q = 1000) 0.00237 
LQG (q = 4 x lo5) 0.00267 
DSMGPI (q = 50, r = 50) 0.00411 
DSMGPI (q = 100, r = 50) 0.00352 
DSMGPI (q = 500, r = 50) 0.00813 

Y hl 
Bu ilt-In Compensators 0.467 
LQG (q = 2.5) 0.477 
LQG (q  = lorn) o.nl 
LQG (q = 4 x id) 0.195 
DSMCPI (q = 50, r = 50) 0.652 
DSMGPI (q = 100, r = 50) 0.430 
DSMGPI (q = 500, r = 50) 0.414 

Yvl 
0.4 18 
0.448 
0.53 1 
0.420 
0.89 1 
1.00 
0.832 

Table 6.10 Van'ance of Control Action (Top) and Outputs (Bottom) with a Rotating 
Shaft 

In general, the two digital controllers performed better than the built-in compensators 

in terns of the amount of output deviation measured due to disturbances. The LQG con- 

troller with q = 2.5 responded sIowly to disturbances whiIe tunings with q = 1000 and 

q = 4 x lo5 responded quite similar to each other. There was little gain in performance for 

the increase in control action used by the q = 4 x 10' tuning. The three DSMC-PI con- 

trollers generally did not perfonn quite as well as the LQG controllers. The tuning with 

q = 500 seemed to be too aggressive since there was a degradation in the performance with 

the increase in control action used when compared to the q = 100 tuning. The DSMCPI 

controller reduced the deviation of the shaft due to a tap disturbance better than the other 

controIlers. The DSMC-PI contr01Ier generally used more controi energy. The DSMC-PI 

controller, however, may prove to be more robust in the presence of specific disturbances 

than the LQG controller. 
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One explanation for the relatively lower performance of the DSMC controller is that 

there is a one sample delay From the controller to the input to the apparatus which must 

degrade the performance since the controller must wait for one sample before it can respond 

to a measured disturbance. All of the controllers showed good robustness to changes in the 

plant dynamics shown by the taps on the shaft with added mass and rotating the shaft with 

an added mass. The PI component of the DSMC-PI controller did not have a significant 

e E i  in rejecting disturbances but served to attain a zero steady state error. 



Chapter 7 
Summary and Recommendations 

7.1 Summary 

This thesis provided methods for designing digital controllers for magnetic bearing 

systems. The designed controllers were experimentally tested and compared. 

The controllers were designed for a laboratory scale magnetic bearing apparatus 

which operates on the same principles and has the same characteristics as industrial ap- 

plications such as in compressor stations. Several different methods of modeling the ap- 

paratus were attempted. An analysis of the physical principles of the apparatus yielded an 

unreliable open loop model. The apparatus contains built-in compensators to levitate the 

shaft that were utilized to measure a closed loop frequency response. The response was 

modeled but the open loop model derived was parametric in the compensators and thus 

unsuitable for controller design. 

An accurate model was produced using the parameter estimation method. This used 

input and output data to identify a model of the plant with the lowest error in a least squares 

sense. The resonance of the identified mode1 was modified to reduce the damping and 

reflect the true apparatus more accurately. A simulation demonstrating this difficulty in 

identiwng a resonance was presented. The result of the modeling was a two input, two 

output 16 state model for each ofthe horizontal and vertical axes- This method of modeling 

a magnetic bearing appears to be novel. 



92 

Two digital controllers were designed based on these models. A cost hnction was 

formulated to weight the output variation versus the control action in the design of an LQG 

controller. In a similar manner, an optimal sliding surface for a DSMC was designed based 

on a trade-off between the output variation and the level of control action. This is a new 

implementation for this control law and it was stable with the relatively slow sampling rate. 

A Kalman filter was designed to estimate the system states. These state estimates were 

used for both the DSMC and LQG controllers. The implementation of the DSMC with 

a Kalman filter for estimating the states produced an algebraic loop requiring a delay to 

be inserted into the controller. A PI controller was added to the DSMC to improve the 

tracking performance. As a final modification, a DSMC controller was designed with a 

choice of sliding surface dependant on the shaft position. The intention was to apply a 

more aggressive control action when one end of the shaft had a large deviation from the 

zero-position. The large number of parameters made this controller difficult to tune and 

due to computational speed, the computer could not execute this controller for both axes 

at the same time. This switched sliding surface design for a magnetic bearing is a novel 

approach. 

The designed controllers as well as the built-in compensators were tested by tapping 

the shaft with a pendulum, adding mass to the shaft and tapping it with a pendulum, adding 

noise to the control inputs, and rotating the shaft with an imbalance. All of these tests 

examined the performance of the controllers and verified the tuning intentions. It was found 

that the LQG controllers with the more aggressive tuning generally performed the best in 

reducing shaft deviations. The built-in compensators tended to oscillate while the DSMC- 
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PI controllers performed almost as well as the LQG controllers. The DSMC-PI controller 

had the lowest shaft deviation following a tap disturbance to the shaft. The switched surface 

controller used a more aggressive control action but tended to oscillate. The PI component 

of the DSMC-PI controller produced accurate tracking performance. 

The delay in the DSMC must degrade the performance of the controller since the 

control action is delayed one sample in response to a measured output change. A fwer 

sampling rate would reduce this d e c t  and presumably enhance the performance of the 

controller. One benefit of this delay is that the optimal sliding surface can be easily designed 

with a relative weight between output variation and control action. 

7.2 Recommendations 

The work presented in this thesis was based on a fixed model of a non-rotating sys- 

tem. An extension of this work would be an adaptive controller operating on a rotating 

system. The following items are of research interest: 

A four i n p a  four output model would be identified using the parameter estimation 

method in the same way as the modeling in this thesis. 

A controller would be designed using this model. 

A recursive least squares estimation algorithm would be implemented to upcia* 

the model while the controller is active. This would model all of the changes in 

dynamics due to rotation. 



The controller would be redesigned on-line using the updated model. 

A fast computer would be required to perform all of the required computations. A 

faster sampling rate would also provide better input resolution and presumable better con- 

trol performance. 
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