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Abstract 

As the industrial adoption of machine learning systems continues to grow, there is incredible 

potential to use this technology to revolutionize how medical diagnostic imaging is performed. 

The ability to accurately classify the information contained within a medical image is of critical 

importance for clinical implementation. Successful application of machine learning classification 

algorithms has traditionally relied on the availability of copious amounts of labelled training data. 

Unfortunately, medical datasets are typically small due to privacy constraints and the large cost 

associated with annotating the data. To ameliorate this limitation, a training scheme is developed 

in this thesis which can operate on small-scale datasets by using a generative adversarial network 

to augment the dataset with synthetic images. Through quantifying the uncertainty in the 

classification network, training samples are selected to maximize the performance of the classifier 

while minimizing the amount of required data. Furthermore, privacy constraints are preserved as 

the images sampled from the generative adversarial network are inherently anonymized. The 

experimental results demonstrate the efficacy in this approach and viability for application in the 

medical domain.         
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Chapter One: Introduction 

 

Over the course of the last decade, machine learning algorithms have achieved unprecedented 

success in a wide spectrum of domains. Krizhevsky et al. (2012) released the first deep 

convolutional neural network to win the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). This seminal work created a paradigm shift towards the use of deep neural networks 

for computer vision tasks. Goodfellow et al. (2014) published the Generative Adversarial Network 

(GAN) architecture, a game theoretic approach for training a pair of deep neural networks in 

competition to generate realistic samples from a dataset. Current state of the art GAN architectures 

are capable of generating images of human faces that are virtually indistinguishable from real 

photos (Karras et al. 2018). Silver et al. (2016) released AlphaGo, the first Artificial Intelligence 

(AI) system to beat the human world champion in the game of Go. The success of such systems 

can be largely attributed to the following factors: 

• Network Architecture: Artificial neural networks have become the workhorse of the 

machine learning industry ultimately due to their incredible ability to learn which features 

to extract from data. Several key engineering innovations have been made to encourage 

convergence for deeper networks, enabling expressive hierarchical feature learning (Liu et 

al. 2017).   

• Computation: Advancements in graphics processing unit (GPU) technology has catalyzed 

the training of deep convolutional neural networks due to the highly parallel nature of the 

computation. The efficiency gain when training using a GPU over a central processing unit 

(CPU) can be greater than an order of magnitude (Lawrence et al. 2017). The ubiquity and 
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relative low cost of consumer GPUs has enabled high capacity networks to be trained in a 

timely manner. 

• Data: Having copious amounts of labelled training data is key for supervised learning 

tasks. The growth of the internet has stimulated the development of a global platform for 

hosting, collecting, and sharing data. Platforms for crowdsourced data labelling such as 

Amazon’s Mechanical Turk, have enabled large scale datasets consisting of millions of 

datapoints such as ImageNet to be constructed (Deng et al. 2009, Callison-Burch et al. 

2010). 

• Open-Source Initiative: There has been a fundamental shift in the way that tech giants 

such as Google or Facebook operate in the field of machine learning. Instead of keeping 

all models proprietary, these companies are releasing code under an open-source license 

(Abadi et al. 2016). Academic research development is now accelerated through 

accessibility to state-of-the-art models. 

 

1.1 Problem 

The purpose of image classification is to identify the different objects contained in an image. There 

are a vast number of applications which rely on this technology. These include the use of 

convolutional neural networks (CNNs) for image classification as a critical component of the 

computer vision systems for driverless cars (Bojarski et al. 2016) and for facial recognition on 

social media platforms (Taigman et al. 2014). Recently, deep neural network models have been 

applied for medical image classification. As millions of medical images are captured and analyzed 

by radiologists each year, integrating AI and machine learning into the medical system has the 

potential to greatly improve diagnosis efficiency. Organizations such as the Canadian Radiology 
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Association are pushing to incorporate increased utilization of machine learning for medical 

imaging (Tang et al. 2018). Machine learning systems are capable of radiologist level diagnostics 

as demonstrated by Rajpurkar et al. (2017) where a deep neural network was shown to achieve 

radiologist level performance for pneumonia detection.  

 

Despite the success of image classification using deep neural networks, several questions remain: 

• Data Privacy: One of the most pertinent questions in present day machine learning is how 

to deal with data privacy. In medicine, patient privacy and confidentiality have always been 

of utmost importance. Therefore, a critical question is how to handle medical data for 

machine learning in a way which preserves the privacy of the individual in question but 

provides the necessary information to successfully train diagnostic models. This question 

extends beyond medicine and into the general private sector. On May 25, 2018 the General 

Data Protection Regulation (GDPR) was implemented within the European Union which 

mandates several restrictions over how personal data must be treated within organizations 

to comply with privacy regulations (Kingston, 2017). While the practical implications of 

this policy as still being assessed, the global push towards data privacy may require 

machine learning algorithms to be modified to achieve compliance with such regulation.  

• Small Datasets: Empirically it has been observed that training deep neural networks 

requires a significant amount of data to avoid overfitting (Caruana et al. 2001). The mantra 

of the deep learning community has been to use as much data as possible for training neural 

networks. During the 2012 ILSVRC, there were roughly 1.2 million images used for 

training (Krizhevsky et al. 2012). Mahajan et al. (2018) demonstrated how a training set of 

roughly 3.5 billion images from Instagram could be used to achieve state-of-the-art 
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classification performance. To train neural networks with datasets at this scale requires a 

significant computational infrastructure likely beyond the capabilities of a standard 

academic institution. As the volume of global data continues to grow at a staggering rate, 

a pressing question is how to best organize this data into suitable datasets for machine 

learning training. Furthermore, application domains such as medical imaging have dataset 

sizes which are orders of magnitude smaller than the data captured by social media 

platforms. Therefore, image classification algorithms must be adapted to provide the 

necessary performance when only small datasets are available.  

• Unbalanced Datasets:  A common issue when training image classifiers on medical 

dataset is class imbalance. Most medical datasets have a large ratio of benign to malignant 

training examples. To achieve the required classification performance various 

oversampling and statistical weighting techniques have been applied (Rahman et. al 2013). 

This is especially important in the medical domain since false negatives are significantly 

more detrimental than false positives.    

 

1.2 Purpose  

In this thesis a classification framework is proposed and implemented that simultaneously 

addresses the questions of dataset privacy, small-scale, and imbalance when training a 

classification network. The core ideas behind this framework are 1) we train a GAN on the dataset 

to generate synthetic images that can augment the training dataset and 2) we quantify the classifier 

prediction uncertainty to sample the most informative GAN generated images for augmentation. 

These ideas form the basis of a feedback loop that cycles between training the classification 

network on the current training set and using the network prediction uncertainty to augment the 
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training set with new images. This feedback loop, and specifically the ability to select GAN 

samples which maximize classification performance, are the key innovative contributions 

provided by this thesis. 

 

Although the dataset used to train a GAN may be private, the samples generated by the GAN are 

largely anonymized. Beaulieu-Jones et al. (2017) demonstrated how GANs could be used as a 

privacy preserving mechanism for clinical data sharing. The level of anonymity within a dataset 

can be quantified through the notion of differential privacy (Abadi et al. 2016). Intuitively the 

definition of differential privacy states that if any data point from a dataset is removed, then the 

resulting statistics computed based off this dataset do not change significantly. This constraint 

insures that the private data of each individual data point in the dataset is sufficiently anonymized. 

As an application, consider a hospital working in collaboration with a research institute, where the 

research institute is training a diagnostic image classifier that requires the hospital data. Instead of 

the hospital sending the raw patient data, the hospital can deliver a GAN trained on the private 

data and capable of generating samples similar to the patient data but fully anonymized. In addition 

to the privacy benefits, the GAN architecture provides a natural way to augment a dataset by 

sampling synthetic images to either increase the dataset size or balance the amount of data between 

classes. As a point of notation, we shall refer to data from the underlying non-synthetic dataset as 

raw data. 
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The experimental work in this thesis aims to address the following research questions: 

1) What is the difference in classifier performance if we train using purely GAN synthesized 

data vs. raw data?  

2) What is the difference in classifier performance if we train using randomly chosen samples 

vs. samples chosen based off classifier prediction uncertainty? 

3) How is the capacity of the GAN used to generate training images correlated with the final 

classification performance?  

4) What overall performance gain can we achieve from using GAN augmentation? 

 

1.3 Qualitative Assessment of GAN Augmentation 

Naturally an important question is whether using a GAN to generate samples to augment a dataset 

has any benefit, or if it is simply insidiously self-referential. To address this question let us consider 

what data augmentation entails. If we have a data point x and are given the ground truth conditional 

distribution for the class label ( )P y x , then a proper augmentation of the data is an augmentation 

function of the data ( )f x , such that ( ) ( )( )P y P y f=x x . In other words, a proper augmentation 

does not change the underlying label of the data. Common augmentation functions include 

geometric transformations such as rotations, shifts, and flips as well as color transformations. It 

has been shown that using data augmentation during training can improve the performance of the 

classifier (Wang et al. 2017). We can explain the increase in classifier performance through 

recognizing that implicit constraints are imposed upon the data when we define an augmentation 

function as label preserving. For example, consider building a classifier to detect circles. We can 

rotate and translate the circle training images while preserving the ‘circle’ label, however if we 
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scale the image nonuniformly we will no longer have a circle, but an ellipse. Therefore, providing 

the classifier with augmented training data that implicitly emphasizes which transformations are 

label preserving helps the classifier to learn the structure of the data, resulting in improved 

classification performance. To prove that a GAN can provide valuable information for data 

augmentation, we must demonstrate that it is capable of learning transformations of the data which 

are label preserving. As a qualitative justification, consider Figure 1-1, where two images of the 

digit ‘1’ generated from a GAN trained on the MNIST handwritten digits dataset are shown. Each 

of these images was generated by passing a vector sampled from the GAN latent space through 

the generator network. We can interpolate between these vectors and generate the intermediate 

images shown in Figure 1-2. Notice how these images appear to be progressively rotating. This 

implies that the latent space for the GAN has learned to encode rotation. Therefore, we can 

qualitatively infer that the GAN is capable of generating images which are augmented by rotation. 

It is important to note that no other information was provided to the GAN during training other 

than the MNIST images. Hence, the rotation encoding in the latent space was learned directly from 

the structure of the data. This result provides a qualitative justification that a GAN is capable of 

implicitly learning appropriate augmentation functions such as rotation which have potential to 

benefit data augmentation strategies.   

 

 
Figure 1-1 Samples generated from a GAN trained on the MNIST dataset. 
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Figure 1-2 GAN samples generated from latent space interpolation. 

 

 

1.4 Objectives 

The main objectives for this thesis are the following: 

• Develop a classification framework using the TensorFlow (Abadi et al. 2016) and Keras 

(Chollet et al. 2015) Python libraries to experimentally address the research questions 

described in Section 1.2 using the following datasets: 

o MNIST: The Modified National Institute of Standards and Technology (MNIST) 

dataset consists of 60,000 training images and 10,000 testing images of handwritten 

digits (LeCun et al. 1998). The MNIST dataset has long served as a classic 

benchmark for computer vision and machine learning algorithms.  

o LSUN: The Large-scale Scene UNderstanding (LSUN) dataset consists of 

thousands of images from 10 different physical environments including dining 

rooms, living rooms, bedrooms, bridges, kitchens, classrooms, restaurants, church 

outdoors, towers, and conference rooms (Yu et al. 2015).  

o ISIC 2018: The International Skin Imaging Collaboration (ISIC) 2018 Challenge 

dataset consists of 10015 dermoscopic lesion images from seven different lesion 

categories consisting of melanoma, melanocytic nevus, basal cell carcinoma, 

actinic keratosis, benign keratosis, dermatofibroma, and vascular lesion (Codella 
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et al. 2017). The images in this dataset were originally taken from the “Human 

Against Machine with 10000 training images” (HAM10000) dataset (Tschandl et 

al. 2018). The ISIC 2018 Challenge was designed to encourage researchers to 

develop high performance classification algorithms on this dataset.   

• Demonstrate how the Progressive Growing of GAN (PGGAN) and the Deep Convolution 

GAN (DCGAN) architectures can be trained on the MNIST, LSUN, and ISIC 2018 

datasets. Investigate how the loss of the generator and discriminator networks converge. 

Show how the quality and diversity of the samples can be measured using the Inception 

Score (IS) and the Fréchet Inception Distance (FID) metric. Demonstrate how the IS and 

FID scores change as the capacity of the GAN is increased. 

• Develop the Convolutional Neural Network (CNN) architectures used for image 

classification. For the MNIST dataset, design a CNN with suitable capacity that can be 

trained efficiently from random weight initialization. For the LSUN and ISIC 2018 

datasets, utilize the MobileNet architecture (Howard et al. 2017) pretrained on the 

ImageNet dataset as a base model. Perform transfer learning to finetune the weights of the 

network and demonstrate the convergence of the network. Quantify the performance of the 

CNN architectures using balanced accuracy as well as the multiclass Receiver Operating 

Characteristic (ROC) metric. 

• Demonstrate how dropout layers can be used in the CNN architectures to model Bernoulli 

prior distributions over the CNN weights. Show how Monte Carlo (MC) samples can be 

acquired from the CNN to estimate the posterior uncertainty. Analyze the output of the 

GAN discriminator networks to determine appropriate thresholds to filter samples from the 

GAN based on the likelihood of being a representative sample from the underlying dataset. 
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Develop acquisition functions using random sampling, Bayesian Active Learning by 

Disagreement (BALD), and maximum entropy to sample the images which provide the 

greatest information gain for CNN training. 

• Perform experiments using the developed classification framework to address each of the 

research questions proposed in Section 1.2.  

 

1.5 Contributions 

The following describes the main contributions made by this thesis: 

• Designed an importance sampling mechanism to prioritize GAN samples based on the 

classification network uncertainty to maximize the final classification performance.  

• Demonstrated how a PGGAN architecture could be trained to synthesize high resolution 

medical images representing the ISIC 2018 dataset.  

• Developed an iterative feedback training loop to incrementally build up the training set 

from GAN generated images to maximize the final performance of the classifier. 

• Thesis work has been accepted for publication in the CVPR 2019 Workshop on Uncertainty 

and Robustness in Deep Visual Learning (Nielsen et al. 2019). 

 

 

1.6 Thesis Overview 

The remainder of the thesis is structured as follows. Chapter 2 provides a literature review and an 

overview of the machine learning technologies used for this thesis. Chapter 3 describes the 

classification framework developed in this thesis, provides an outline of the preprocessing 

operations applied to each dataset, and defines the architecture of the neural networks used for the 
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GAN and classification models. Chapter 4 presents the results of the experimental work conducted 

for this thesis. Specifically, the generated image quality is assessed for the trained GANs, a 

qualitative interpretation of the classification network uncertainty is reported, and the results from 

the classification experiments are used to address the thesis research questions. Chapter 5 

investigates possible applications for the developed technology. Chapter 6 provides concluding 

remarks, contributions made by the thesis, and a discussion of potential future developments. 
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Chapter Two: Background 

 

The purpose of this chapter is to provide a literature review of related work and an introductory 

overview of the machine learning techniques applied for this thesis. Section 2.1 will present a 

literature review of related work and describe the historical development of the applied machine 

learning models. Section 2.2 will discuss the algorithmic techniques behind each of the machine 

learning models used in this thesis. Section 2.3 will summarize the presented material and motivate 

the work proposed by this thesis. 

 

2.1 Related Work 

2.1.1 Image Classification 

Over the last 50 years, and specifically in the last decade, the development of deep neural networks 

for image classification has progressed from being an academic niche, to becoming a mainstream 

industrial technology. In 1957, Frank Rosenblatt of the Cornell Aeronautical Laboratory developed 

one of the first machine learning classifiers, called the perceptron (Rosenblatt 1957). The 

perceptron was a machine designed for image recognition and consisted of 400 photocells 

randomly connected to neurons whose weights were encoded in potentiometers. During the 

training procedure, the weights were updated by electric motors. At the time of release, the 

perceptron generated a large amount of public interest, however the expectations of its capabilities 

were highly exaggerated. In a 1958 press conference organized by the US Navy, it was reported 

that the perceptron was "the embryo of an electronic computer that [the Navy] expects will be able 

to walk, talk, see, write, reproduce itself and be conscious of its existence" (Olazaran 1996). As 

the perceptron was incapable of learning an XOR function, let alone being self aware, the hype 
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from this development eventually gave way into a downturn in AI research. It was not until 1986 

when the modern interpretation of neural networks was entrenched with the development of 

backpropagation (Rumelhart et al. 1986). In 1998, the MNIST dataset was released and the first 

CNN for image classification was developed (LeCun et al. 1998). A CNN is a neural network 

architecture that contains convolutional layers. Further details on the CNN architecture are 

presented in Section 2.2.1. A critical development, which catalyzed the development of machine 

learning over the last decade, was the release of the ImageNet dataset (Deng et al. 2009). The 

ImageNet dataset contains more than 14 million images from more than 20,000 categories that 

have been hand-annotated by humans using the Amazon Mechanical Turk crowdsourcing 

platform. Starting in 2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

was run where competitors could compete to build classifiers capable of the best performance on 

the dataset (Russakovsky et al. 2014). It was in 2012 that the first deep convolutional neural 

network called AlexNet competed in the ILSVRC (Krizhevsky et al. 2012). AlexNet not only won 

the competition but was able to achieve a 10.8 percentage point improvement over the next runner 

up for top-5 error performance. This unprecedented achievement catalyzed the development and 

research of deep convolutional neural networks for classification tasks. In 2014, the winner of the 

ILSVRC was the Inception network (Szegedy et al. 2015). The main innovation was the 

development of Inception modules which allowed for convolutions with different size kernels to 

be processed in parallel. In 2015, the winner of the ILSVRC was the ResNet network (He et al. 

2016). The main innovation provided by ResNet was the use of residual blocks which allowed for 

the networks to extend to unprecedented depths. The winning network had 152 layers. Huang et 

al. (2016) proposed the DenseNet architecture which uses dense blocks similar to the ResNet 

residual blocks to achieve trainable networks with over 200 layers. As most network architectures 
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consist of millions of parameters, they are difficult to use on low power devices such as mobile 

phones. Howard et al. (2017) released a network architecture called MobileNet which has far fewer 

parameters than AlexNet and achieves better performance on the ImageNet dataset.  

 

2.1.2 Generative Models 

Unsupervised learning is the process of extracting meaningful patterns from data that do not have 

given labels. An application of unsupervised learning is for estimating and generating samples 

from an underlying dataset distribution. Models of this type are called generative models. 

Salakhutdinov et al. (2007) proposed the restricted Boltzmann machine as a neural network 

architecture capable of learning a probability distribution over its set of inputs. Restricted 

Boltzmann machines can be trained using gradient descent and backpropagation. Another model 

variety capable of learning a representation of the underlying data distribution are variational 

autoencoders (VAEs). VAEs use an architecture consisting of an encoder and decoder neural 

network (Doersch 2016). The encoder network takes the input image and transforms it into a set 

of parameters describing an underlying latent space distribution. This latent distribution is than 

sampled and the resulting latent vector is passed through the decoder network which attempts to 

reconstruct the original image. VAEs are autoencoders since they learn to reconstruct the original 

image and are variational since they learn to approximate the underlying data distribution as a 

parameterized variational latent space. A VAE is trained by maximizing a lower bound on the log 

likelihood of the data called the Evidence Lower Bound (ELBO) (Kingma et al. 2013). The 

primary advantage of VAEs over other generative models is that the relationship between the data 

and the underlying latent space is directly modelled using the encoder and decoder networks. One 
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limitation of VAEs is that the ELBO loss function does not produce images which have the highest 

visual quality due to the averaging effects of maximizing the log likelihood.  

Another class of generative models are autoregressive models. The essence of an autoregressive 

model is to learn the conditional distribution of every pixel in an image conditioned on all 

previously sampled pixels. Synthetic images can be generated one pixel at a time using the 

likelihood function learnt by the network. Models such as the PixelRNN have had great success in 

generating high quality samples (van den Oord et al. 2016). However, the sampling process is 

inefficient and does not directly model a low dimension latent space for the data.  

 

A further variety of generative models are GANs. The develop of GAN architectures has been 

extremely rapid since their original conception in 2014. The initial paper on GANs was written by 

Goodfellow et al. (2014) and the focus of this original work was to describe the minimax 

competition between the discriminator and generator. Experimental verification of the technique 

was provided by qualitatively showing the quality of the generated images after training on the 

MNIST and the CIFAR-10 datasets. An extension was made by Mirza et al. (2014) to condition 

both the generator and discriminator model on the label of the training data, enabling samples to 

be generated from specific class labels. This work was expanded by Radford et al. (2015) when 

the DCGAN architecture was developed which used deep convolutional neural networks for both 

the generator and discriminator models. Additionally, it was shown how generated samples from 

the trained GANs could be used for semi-supervised learning, where the initial layers of the 

discriminator are used as a feature extractor to train a classification model. Denton et al. (2015) 

proposed the Laplacian GAN (LAPGAN) model where a cascade of discriminator and generator 

neural network models were trained at each level of a Laplacian pyramid to generate images in a 
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coarse to fine process. Odena et al. (2016) developed the auxiliary classifier GAN framework 

where in addition to predicting the validity of the given data, the discriminator was trained to 

classify the label of the real data. This addition to the discriminator was shown to provide better 

performance by teaching the discriminator to disentangle the features specific for different classes. 

Due to the instability of training GANs using original loss function presented by Goodfellow et al. 

(2014), Gulrajani et al. (2017) released an improved loss function based on the Wasserstein 

distance. Theoretically the Wasserstein loss has smoother gradients and greater stability over the 

loss function proposed by Goodfellow et al. (2014). The PGGAN architecture was released in 2017 

and provided an approach to train a GAN architecture by training the discriminator and generator 

models on lower resolution samples before progressively growing toward high resolution samples 

(Karras et al. 2017). Samples generated from the PGGAN architecture after being trained on a 

celebrity face dataset were the first photorealistic generated images of humans by a GAN at the 

resolution 1024x1024 pixels. In late 2018, the style-based generator architecture for GANs was 

released, demonstrating how the generator network can be improved through the use of synthesis 

networks to customize the style being generated by the GAN (Karras et al. 2018b). The 

experimental analysis of GAN behaviour led to a number of different techniques described by 

Salimans et al. (2016) to improve the stability and measure the quality of the samples produced by 

a GAN. It was in this paper that the Inception Score was proposed as a benchmark to measure the 

quality and diversity of the sample generated by a GAN. Heusel et al. (2017) proposed the FID 

metric as an improved benchmark over the Inception Score for assessing GAN quality. Wang et 

al. (2017) demonstrated how GAN samples can be used for data augmentation. However, the 

images were sampled randomly from the GAN latent space and provided minimal improvement 

for the final classification performance.  
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2.1.3 Uncertainty Analysis 

The question of how to quantify uncertainty has its roots in probability and estimation theory and 

has a rich history. During the 18th century Thomas Bayes proposed a mechanism now referred to 

as Bayes’ rule which describes the probability of an event given prior knowledge of factors that 

might influence the event. Although the original concept was defined by Bayes, the effort to 

develop the idea was performed by Laplace where he used the Bayesian approach to estimate the 

mass of Saturn with a high degree of accuracy (Sivia et al. 2011). Interestingly during much of the 

20th century, Bayesian statistical methods were much less popular compared to frequentist 

statistical methods due to the philosophical and practical concerns associated with choosing 

appropriate prior distributions and computation of the posterior. Bayesian methods gained 

significant popularity with the discovery of Markov Chain Monte Carlo (MCMC) methods which 

enabled sampling from complex posterior distributions (Andrieu et al. 2003). Development effort 

was directed toward transforming neural networks into Bayesian networks by placing prior 

distributions over the weight parameters in the network (Tishby et al. 1989). Radford (1996) 

demonstrated that a neural network with prior distributions over the weights and infinitely wide 

hidden layers corresponds to a Gaussian Process model. Recently an approximation approach was 

developed using dropout to learn the prior distribution over the weights of the network through a 

process called Bayes by Backprop (Blundell et al. 2015). The advantage of this method is that the 

prior distribution of each parameter is learned simultaneously as the network is trained. 

Additionally, computing samples of the posterior using this method is highly efficient. 
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2.2 Machine Learning Algorithms 

The purpose of this section is to present the machine learning techniques used to build the 

classification framework for this thesis. 

 

2.2.1 Image Classification 

The classification task can be defined in the following way: we have a dataset consisting of input 

data  1 2, , , N=X x x x and corresponding labels  1 2, , , Ny y y=Y and our goal is to model the 

conditional distribution ( )| , ,P y x X Y  such that we can make inferences on this distribution to 

find the optimal label y  to assign to a new data point x . One method to solve this problem is to 

approximate the discriminative distribution using a parameterized function. In this case we have a 

function ( ) ( )| , ,P y=ωf x x X Y where ω  is the set of parameters describing the function. Deep 

neural networks are one such functional form that have had tremendous success at approximating 

the discriminative distribution. The remainder of this section will describe the structure of deep 

neural networks and how they can be trained for the classification task. 

 

2.2.1.1 Neural Network Architecture 

The inspiration for neural networks initiated from attempting to model the biological neural 

structure in the human brain. At a high level, a biological neuron senses stimulus from dendritic 

connections, combines these signals, and if the combined signal surpasses an activation threshold, 

an output signal propagates down the axon towards other neurons. In a similar way, an artificial 

neuron receives input from the neurons in the previous layer, combines this input and passes the 



19 

 

combined signal through an activation function whose output it propagated to the next layer. A 

neural network is composed of layers of neurons typically connected in a directed acyclic fashion, 

known as a feedforward network. The inputs to a neuron are combined as an affine transformation. 

The activation function is a nonlinear function that takes the result of this affine transformation 

and passes forward the output to the next layer of neurons. The critical component that enables the 

functional approximation power of neural networks is the nonlinearity of the activation function. 

This gives the neural network the ability to model highly complex transformation. This is described 

formally by the universal approximation theorem (Csáji 2001). If the activation function was 

linear, then the entire neural network would collapse down into a single affine transformation.  

 

Let us consider a simple single layer neural network which maps an input vector 
4x into a 

scalar output 
1y . We can write the expression for this mapping as ( )y f= +Wx b  where ( )f  

is a nonlinear activation function, W is a weight matrix and b  is the bias vector. We can represent 

this network visually as seen in Figure 2-1. 

 

 
Figure 2-1 Simple single layer feedforward neural network. 
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We can extend this concept to networks with greater number of layers by simply taking the 

functional composition of neuron outputs. For example, consider modifying the neural network 

from Figure 2-1, by adding two hidden layers with sizes 10 and 3. We can now write the total 

composition of the neural network as follows ( )( )( )3 3 2 2 1 1 1 2 3y f f f= + + +W W W x b b b , where 

 1 2 3, ,W W W are the weight matrices,  1 2 3, ,b b b are the bias vectors, and ( ) ( ) ( ) 1 2 3, ,f f f

are the activation functions for the layers of the neural network. A graphical representation of this 

neural network is shown in Figure 2-2.   

 

 
Figure 2-2 Multilayer feedforward neural network. 
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A neural network layer of the form ( )y f= +Wx b  is called densely connected since every neuron 

from the previous layer contributes to the stimulus of each neuron in the next layer. As image data 

is very high dimensional, using densely connected layers quickly becomes computationally 

intractable due to the large number of required parameters. Since most images exhibit local spatial 

structure it is possible build a network layer which uses a relatively small spatial neighborhood of 

neurons to compute the stimulus for the next layer. Computationally this local neighborhood 

combination can be performed by convolving the image with a set of learned kernels. Similar to 

the densely connected layers, a nonlinear activation function is applied after the stimulus has been 

computed. To reduce the dimensionality of the data, pooling layers are used which reduce the 

output from a spatial neighborhood of neurons to a single value. Max-pooling is commonly used 

and is performed by outputting the maximum value within a spatial neighborhood of neurons. The 

standard structure of a CNN is to have a series of convolutional layer at the beginning followed by 

densely connected layers at the end. An example of a 5-layer CNN is shown in Figure 2-3. The 

input image size is 128x128 pixels with 3 color channels. The first convolutional layer consists of 

a stack of 8 kernels each with size 7x7 pixels and max-pooling is used to reduce the image to 

64x64 pixels. The second convolutional layer consists of a stack of 16 kernels each with size 5x5 

pixels and max-pooling is used to reduce the image size to 32x32 pixels. The third convolutional 

layer consists of a stack of 32 kernels each with size of 3x3 and max-pooling is used to reduce the 

image size to 16x16 pixels. The image is then flattened into a vector and sent through the fourth 

layer which is a densely connected layer with size of 256. The final fifth layer is a densely 

connected layer of size 128. 
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Figure 2-3 Convolutional neural network with 5 layers. 

 

A wide range of activation functions are used in practice. Five of the activation functions used for 

this thesis are described below: 

• Sigmoid: The sigmoid function is defined as ( )
1

1 x
f x

e−
=

+
and is a monotonically 

increasing function that maps a real value input into an output between 0 and 1. In neural 

network design, the sigmoid activation is commonly used for logistic regression to output 

a valid probability value.  

• Tanh: The tanh function is defined as ( )
( )
( )

x x

x x

e e
f x

e e

−

−

−
=

+
and is a monotonically increasing 

function that maps a real value input into an output between -1 and 1.  

• ReLU: The Rectified Linear Unit (ReLU) function is defined as ( ) ( )max 0,f x x= and is 

a piecewise linear function that is differentiable everywhere except at 0.  

• Leaky ReLU: The Leaky ReLU function is defined as ( )
0

0

x for x
f x

x for x

 
= 


and is a 

piecewise linear function similar to the ReLU with the difference being that when 0x 
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the function ‘leaks’ by having outputting the value x where  is typically a small 

number such as 0.01. 

• Softmax: The softmax activation function is slightly different in purpose to the activation 

functions described previously as it is a vector function rather than a scalar function. For 

a given vector of length N, the softmax function is defined as ( )
1

i

n

x

i N x

n

e
f

e
=

=


x . The 

softmax activation is used to normalize the output of a given layer into a valid probability 

distribution.   

 

A key feature of the activation functions described above is the computational simplicity. Figure 

2-4 displays a plot of these activation functions. 

 
Figure 2-4 Activation functions. 

 

Since the goal of a classification network is to produce an estimate of the conditional label 

distribution ( )| , ,P y x X Y , we must ensure that the output of the neural network is in fact a valid 
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probability function. A probability distribution is valid if all probabilities are between 0 and 1 

inclusive, and the sum of the probabilities of all possible outcomes is equal to 1. One commonly 

used method to achieve this is to have the final activation of the network be a softmax function. 

This ensures that the output is a valid distribution. After computing the output probability 

distribution, the next step is to have some metric which can assess the quality of the predictions 

such that we can train the network to improve its performance. The most common way to do this 

is to compare the network label predictions and ground truth label distribution using cross-entropy 

loss (Janocha et al. 2017). For the sake of brevity in our notation, let us define ŷ as the neural 

network output estimate of ( )| , ,P y x X Y , and y  as the ground truth label distribution for the 

sample. Suppose that we have N possible labels. The cross-entropy loss is defined as the cross-

entropy between the ground truth distribution y  and the estimated label distribution ŷ . We can 

write the cross-entropy loss as  

 ( ) ( )
1

0

ˆ ˆ, log
N

n n

n

H
−

=

= −y y y y   (2.1) 

Since the ground truth distribution will be 0 everywhere except at the actual label index cy  where 

it will be 1, we can simplify the cross-entropy loss as follows 

 ( ) ( ) ( )
1

0

ˆ ˆ ˆ, log log
N

n n c c

n

H
−

=

= − = −y y y y y y   (2.2) 

To understand the intuition behind the cross-entropy loss, we can write the expression in terms of 

the Kullback-Leibler (KL) divergence (Shlens 2014) as  

 ( ) ( ) ( )KL
ˆ ˆ,H H D= +y y y y y   (2.3) 
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Therefore, minimizing the cross-entropy loss with respect to ŷ  is equivalent to minimizing the KL 

divergence between the ground truth distribution and the estimated distribution. During training it 

is common practice to process multiple samples simultaneously in a batch, hence the total loss for 

the neural network is the average cross-entropy loss over all of the input samples in the batch.  

 

Before a neural network is trained, each parameter is typically assigned a starting value based on 

an initialization strategy (Hanin et al. 2018). One possible strategy is to use what is known as 

Xavier uniform initialization (Glorot et al. 2010). This technique initializes the parameters by 

randomly selecting values from the uniform distribution using a range that is inversely proportional 

to the number of neurons in the previous layer. Therefore, the larger the previous layer, the smaller 

the initialized values will be. The purpose of this approach is to assign initial values to parameters 

which would not cause the gradients to either explode or vanish at the start of training.      

 

Training a neural network boils down to an effective use of the chain rule from rudimentary 

calculus. The individual functions which make up a neural network each have analytical gradients 

that can be computed in an efficient manner. Computing the gradient of the loss function with 

respect to the parameters in the network is accomplished through preceding backwards through 

the network using the chain rule to compute the gradients at each layer of the network. This 

procedure of calculating the gradients in a neural network is called backpropagation. As 

feedforward networks are directed acyclic graphs, computing the gradients in very large networks 

can be done efficiently. Software packages such as TensorFlow have been released to automate 

the gradient calculation (Abadi et al. 2016). After the gradients have been computed, a numerical 

optimizer is used to determine how each weight in the network must be adjusted to reduce the 
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overall loss value. The simplest optimization method is known as Stochastic Gradient Descent 

(SGD) where each parameter is updated proportional to its gradient. The constant of 

proportionality is called the learning rate and is a hyperparameter that must be specified before the 

network is trained (Ruder 2016). More sophisticated optimization methods such as AdaDelta and 

Adaptive Moment Estimation (Adam) have been developed to provide benefits over basic SGD 

by using momentum and adaptive learning rates in the gradient update equation (Zeiler 2012). 

When a dataset is highly unbalanced, it may be necessary to train the classifier using a weighted 

loss function (Janocha et al. 2017). A weighted loss function is computed by weighing the 

contribution of each individual training image inversely proportional to the number of occurrences 

that the training image label category has in the training set. This has the effect of placing more 

importance on underrepresented label categories. During training, the loss function can be 

monitored to analyze how well the neural network is learning. An epoch is defined as the number 

of training iterations required to process each image in the training set. A network will typically 

be trained for a fixed number of epochs. Knowing how many epochs is necessary to achieve 

convergence depends on the data and the network design. 

 

Many techniques have been developed to improve the convergence of deep neural networks during 

training (Gu et al. 2015). A strategy known as batch normalization is often applied between the 

layers of a neural network to learn the statistics of the activation outputs (Ioffe et al. 2015). The 

activation statistics are then used to normalize the data such that the activations of the layer are 

uniformly scaled which improves the stability of the gradients during training. Another technique 

that is widely used is transfer learning. Training a large image classification network from scratch 

typically requires a lot of data. The goal of transfer learning is to combat this problem by 
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pretraining a network on a larger dataset and then finetuning the parameters on a smaller dataset. 

The reason why this is successful is that deep neural networks tend to learn a hierarchical 

representation of the data (Krizhevsky et al. 2012). As low-level geometric features such as lines 

and corners are common across a wide range of images, the features extractors learnt on larger 

datasets can be transferred for training classifiers on smaller datasets.  

 

There are several metrics commonly used to evaluate the performance of a classification network 

(Hossin et al. 2015). One of the simplest and most commonly used methods is to calculate the 

prediction accuracy. Prediction accuracy is defined as the ratio of correct predictions to the total 

number of predictions. For unbalanced datasets, the concept of prediction accuracy can be 

extended to form the balanced accuracy metric. Balanced accuracy is defined as the average of the 

prediction accuracies for each individual label category. Another approach to measure 

classification performance is to use the ROC curve. The ROC curve is defined for a binary 

classifier as curve describing the true positive rate as a function of the false positive rate. The area 

under the curve (AUC) of the ROC can be used as a metric to assess the performance of a binary 

classifier (Hajian-Tilaki 2013). This methodology can be extended to a multiclass classifier by 

computing the average ROC AUC for each individual label. 

 

2.2.2 Generative Networks 

A generative network is a neural network that can be trained using images from a dataset to learn 

a representation of the underlying dataset distribution ( )datap x . Once trained, a generative network 

can be used to generate synthetic images which closely resemble images from the underlying 
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dataset. By defining the representation of ( )datap x  in terms of a lower dimensional space called a 

latent space, it is possible to disentangle abstract visual features, allowing specialized samples to 

be generated by manipulating the latent vector space. Due to sampling efficiency and the high 

visual fidelity of the generated images, GANs will be used in this thesis as the underlying 

generative model. There are two GAN architectures used in this thesis, the DCGAN and the 

PGGAN. The remainder of this section will examine the details of these particular GAN 

architectures as well as the metrics used to evaluate the diversity and quality of the generated 

samples.    

 

2.2.2.1 GAN Architecture 

As described in Section 2.1.2, a GAN consists of two networks called a generator and a 

discriminator which are trained competitively against each other. The generator attempts to 

generate samples indistinguishable from an underlying dataset, and the discriminator attempts to 

infer whether an image is synthesized by the generator or from the underlying dataset. A relevant 

analogy to the GAN architecture is to consider the competition between a counterfeiter and a bank. 

The counterfeiter attempts to generate fake currency which closely resembles real currency, while 

the bank develops the means to discriminate between real and fake currency. As this game is 

played, both the counterfeiter and the bank continue to improve their ability to generate and 

discriminate currency respectively. In game theory this is known as a zero-sum non-cooperative 

game, where the optimal convergence point is the Nash equilibrium (Mescheder et al. 2018).  
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To describe this formally, let us denote the generator and discriminator networks as G  and D  

respectively. The goal of the generator is to take an input vector z , which has been sampled from 

the generator’s latent space ( )pzz z  and to produce an image ( )G z which closely resembles a 

sample from the data distribution ( )datap x . Let the distribution of samples from ( )G z  be 

described as the generator distribution ( )generatorp x . The goal of the discriminator is to differentiate 

for a given sample x  whether it was more likely to have been produced by ( )datap x  or     

( )generatorp x . If the discriminator believes that ( )datapx x , then it will output a value close to 1, 

likewise if the discriminator believes that ( )generatorpx x , then it will output a value close to 0.  

We can now define the minimax loss function for a GAN as follows: 

 ( ) ( ) ( ) ( ) ( )( )( )min max , log log 1
datap p

G D
V D G D D G = + −    zx x z z

x z   (2.4) 

Where ( ),V D G is called the value function and  represents the expectation operator. Therefore, 

the term ( ) ( )log
datap

D  x x
x can be interpreted as the expected value of ( )log D x where 

( )datapx x . The intuition behind why the loss function uses the log function is to heavily penalize 

the discriminator for being incorrect. To understand what this loss function is trying to achieve we 

can look at each component separately.  

• ( ) ( )log
datap

D  x x
x : Intuitively this quantity describes how much the discriminator 

believes that samples from the dataset distribution are real. This quantity has no 

dependence on G . 

• ( ) ( )( )( )log 1
p

D G −
 zz z

z : This quantity describes how much the discriminator believes 

that the samples from the generator are fake. During the minimax game, D  will attempt to 
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maximize this quantity by classifying the generator samples as fake, while G  will attempt 

to minimize this quantity by generating samples which fool the discriminator.  

 

2.2.2.2 DCGAN 

When Goodfellow et al. (2014) released the original GAN architecture, only dense feedforward 

neural networks were used for the discriminator and generator models. The key innovation in the 

DCGAN architecture was to use convolutional layers in both the discriminator and generator 

models (Radford et al. 2015). To generate the final image dimensions, fractionally-strided 

convolutions were used in the generator. A fractionally-strided convolution is performed by first 

inserting zero padding between the pixels in the image and then performing the convolution 

operation. The purpose of using a fractionally-strided convolution is to increase the output image 

size relative to the input image size. As the loss function for the DCGAN is the same as the original 

GAN, the training procedure is similar. The original architecture for the DCGAN generator can be 

seen in Figure 2-5. Starting from the left in Figure 2-5, we see that a latent vector with 100 

dimensions is processed by a dense layer and then reshaped to form an image of size 4x4x1024. 

Afterwards, 4 fractionally-strided convolutional layers are used to gradually increase the image 

size up to the final output size of 64x64x3.    
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Figure 2-5 Original architecture for DCGAN generator network (Radford et al. 2015). 

 

 

2.2.2.3 PGGAN 

The key innovation in the PGGAN architecture is that the generator and discriminator networks 

are trained starting from low image resolution and progressively growing to the final large image 

resolution (Karras et al. 2017). This process is demonstrated in Figure 2-6. As the networks 

transition to train at higher resolution, linear interpolation between layer outputs is used to smooth 

the transition. Each time the PGGAN transitions to a higher resolution, the width and height of the 

images are doubled. Therefore, an important consideration when training a PGGAN is that width 

and height of the training images must be a power of 2. The PGGAN loss function is largely based 

off the improved Wasserstein metric (Arjovsky et al. 2017). Intuitively, the Wasserstein distance 

can be thought of as the minimum cost of transporting mass in the generator image distribution to 

form the dataset distribution. In addition to the Wasserstein metric, the PGGAN also utilizes labels 

on the dataset to incorporate an auxiliary classifier in the discriminator (Odena et al. 2016). In 

addition to predicting whether the data is real or fake, the discriminator is trained to maximize the 



32 

 

log likelihood of the correct class label. The auxiliary classifier loss encourages the discriminator 

to learn the image features which distinguish different classes.  

 
 

Figure 2-6 Visualization of the PGGAN training procedure, progressively growing the GAN 

from low resolution up to the final image resolution of 1024x1024 (Karras et al. 2017). On the 
upper half of the figure we see the generator network taking in a latent vector and producing an 

image output. On the lower half of the figure we see the discriminator processing the generated 

images together with raw images from the dataset (denoted in the figure as Reals). 

 

2.2.2.4 Evaluation 

After a GAN has finished training, it is important to have some metric which can measure the 

quality and diversity of the samples produced. Two commonly used metrics for this purpose are 

the Inception Score (IS) and the Fréchet Inception Distance (FID). Both the Inception Score and 

the FID will be used to evaluate the quality and diversity of GANs trained for this thesis.  

 

The IS is based on using the output of the Inception classification network that has been pretrained 

on the ImageNet dataset. If the GAN produces good quality samples, then the conditional 

distribution ( )|p y x  of the output label y given a generated sample x  would be expected to have 

high predictability and hence low entropy. On the other hand, if the generated distribution is 
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diverse, then the marginal distribution ( ) ( ) ( )|
generatorp

p y p y=   x x
x  should have high entropy. 

Using these intuitions, the IS forms the scoring metric based on the KL divergence between the 

conditional distribution ( )|p y x  and the marginal distribution ( )p y  as follows 

 ( )( ) ( ) ( ) ( )( )( )IS exp |
generator

generator KLp
p D p y p y =

 x x
x x   (2.5)  

A larger IS indicates a better generator distribution. One of the limitations of the IS metric is that 

it does not compare the generated images against the real images from the dataset. Therefore, the 

IS metric does not provide any information regarding how well the generator distribution matches 

the dataset distribution. 

 

The FID metric improves upon the IS metric by comparing the distribution of Inception layer 

activations for both the synthetic generated data and the raw dataset. A multivariate Gaussian is 

used to model the distribution for the Inception layer activations. The FID is calculated by the 

following expression 

 

( ) ( )( )

( )
1

2
2

2

FID ,

Tr 2

dataset generator

dataset generator dataset generator dataset generator

p p

 
 

= − +  + −   
 

x x

  (2.6) 

Where  generator  and  dataset  denote the mean vectors of the Gaussian model for the generator and 

dataset Inception layer activations respectively, while generator  and dataset  denote the covariance 

matrices for the generator and dataset Inception layer activations respectively. Smaller FID values 

indicate better quality and diversity of the generator distribution.  
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2.2.3 Uncertainty Analysis 

Suppose that we have a dataset consisting of input data  1 2, , , N=X x x x and corresponding 

outputs  1 2, , , Ny y y=Y  and we have trained a neural network classifier to estimate the 

discriminative distribution ( )| , ,P y x X Y  such that we can make inferences on this distribution to 

find the optimal label to assign to a new data point x . A pertinent question is how we can assess 

the uncertainty that the classifier has about the estimates it makes so that we can assign a 

confidence level to the assigned classification label. One metric commonly used to measure the 

amount of uncertainty in a probability distribution is entropy. Entropy measures the average 

information content in a distribution and is defined as: 

 ( ) ( )( )H log PX X = −    (2.7) 

Where ( )P X  is the probability mass function. A possible approach to measure the uncertainty 

that a classifier has about a new data point x  is to calculate the entropy of the discriminative 

distribution: 

 ( ) ( )( )H | , , log | , ,y P y = − x X Y x X Y   (2.8) 

Where ( )| , ,P y x X Y  is the predictive probability mass function of the neural network conditioned 

on the new data point x  and the dataset used to train the network ,X Y . To compute the predictive 

probability mass function ( )| , ,P y x X Y , the classification network is first trained using ,X Y  and 

then the new data point x  is passed through the network as input. The resulting output of the 

neural network is a vector describing ( )| , ,P y x X Y . ( )H | , ,y x X Y  can be calculated by 

computing the entropy of this output vector. Unfortunately, Gal (2016) demonstrated that simply 
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using a point estimate of the classifier output distribution is not sufficient to properly model the 

uncertainty. This is due to the softmax activation function exaggerating the prediction confidence. 

Hence, while the output probabilities of the softmax activation are good for prediction, they must 

be calibrated to represent the true probabilities (Guo et. al 2017). A solution to this problem is to 

form a better estimate of the uncertainty by placing prior distributions on the parameters of the 

network such that a larger number of samples can be used to estimate the uncertainty. We can 

write the predictive distribution as a function of the neural network parameters ω  such that

( ) ( )| , ,P y = ωx X Y f x . Now using Bayes’ Rule, we can expand this distribution as follows: 

 

( )

( )

( ) ( )

| , ,

, | , ,

| , , , | , ,

P y

P y d

P y P d

=

=





ω

ω

x X Y

ω x X Y ω

x X Y ω ω x X Y ω

  (2.9) 

The first step follows from expanding the marginal distribution in terms of the joint distribution, 

and the second step follows directly from the definition of conditional probability. In the final 

expression, we have two terms in the integral. Let us examine what these terms represent. 

The first term ( )| , , ,P y x X Y ω  is the output of the neural network and describes the probability 

of each classification label. The second term ( )| , ,P ω x X Y  describes the distribution over all 

possible network parameters given the training data. As the network parameters ω are initialized 

randomly and the neural network is trained using stochastic gradient descent, the final parameters 

values of the trained network will also vary stochastically, and this is described by the distribution

( )| , ,P ω x X Y . As a large deep neural network can easily have millions of parameters, calculating 

( )| , ,P ω x X Y  directly is computationally intractable. To mitigate this problem, we can use the 

methods of variational inference to develop a distribution which closely approximates 
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( )| , ,P ω x X Y . Kendall et al. (2017) and Gal et al. (2015) show how dropout can be used as 

technique of sampling from a distribution which approximates ( )| , ,P ω x X Y  by assuming 

Bernoulli prior distributions for the weights. Dropout is a technique which was proposed originally 

to regularize a neural network for prevention of overfitting (Srivastava et al. 2014). The basic 

premise is that during training, a Bernoulli random variable is sampled for each network parameter 

where dropout is used. This sampled value acts as a multiplicative mask for the parameter. In other 

words, when the sampled value is 1, the parameter keeps its value, otherwise the parameter is 

dropped for the training iteration (assigned a value of 0). The motivation behind this technique is 

to stochastically create subnetworks within the larger network, such that the network must learn 

redundancy which combats overfitting. For Bayesian uncertainty analysis, when we use dropout, 

we can consider each parameter to be sampled from a scaled Bernoulli distribution.  Kendall et al. 

(2017) show how by using this formulation, we can develop a Monte Carlo method using dropout 

for sampling from the desired distribution ( )| , ,P ω x X Y . The final calculation is given as follows 

 ( ) ( )
1

1
ˆ| , , | , , ,

N

n

n

P y P y
N =

 x X Y ω x X Y   (2.10) 

Where ˆ
nω  are the parameters of the network sampled in the nth Monte Carlo dropout sample. We 

will refer to this sampling technique as MC dropout. We can use this approximation of the 

predictive distribution to better estimate the network uncertainty. To rank samples by their 

uncertainty we use a scoring metric called an acquisition function. The Bayesian Active Learning 

by Disagreement (BALD) acquisition function proposed by Houlsby et al. (2011) is defined as 

follows 

 ( ) ( ) ( ) ( )| ,
| , , | ,

P
U H P y H P y = −       ω X Y

x x X Y x ω   (2.11) 
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Computationally, this can be approximated using the MC dropout samples as  

 ( ) ( ) ( )
1 1

1 1
| , | ,

N N

n n

n n

U H P y H P y
N N= =

 
 −    

 
 x x ω x ω   (2.12) 

where N is the number of MC samples, and nω  are the parameters of the network sampled for the 

nth MC dropout sample. Data points with high entropy for the average predictive distribution of 

the MC dropout samples, but low average entropy for the entropy of each of the sampled predictive 

distribution will have a high BALD score indicating that the network is uncertainty about the 

prediction. The intuition behind this metric is that if the dropout sampling of the weights causes 

the network to change its prediction, then the network is considered uncertain about the sample 

prediction. 

 

2.3 Summary 

The purpose of this chapter was to present a background summary regarding prior related work 

and machine learning techniques relevant for this thesis. A thorough description of image 

classification, generative networks, and uncertainty analysis was provided. Traditional GAN 

augmentation methods do not take the classification uncertainty into account when sampling the 

synthetic images, limiting the resulting classification performance (Wang et al. 2017). The key 

innovation in this thesis was to combat this limitation through the development of an image 

classification system that is capable of augmenting the training set using samples selected from a 

GAN based on analysis of the classification network uncertainty. The following chapter will 

describe the overall design for this system.    
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Chapter Three: System Design 

 

The purpose of this chapter is to present the overall system design for the classification framework 

developed in this thesis. Section 3.1 presents a high-level overview of the system design. Section 

3.2 describes the operations performed for dataset preprocessing. Section 3.3 defines the 

architecture of each GAN, the training procedure, and the metrics used for performance evaluation. 

Section 3.4 presents the classifier architecture and describes the processing for each iteration of 

the training feedback loop. Section 3.5 summarizes the details presented in this chapter. 

      

3.1 System Overview 

The overall structure for the classification framework developed in this thesis is shown in Figure 

3-1 and will be described in the subsequent sections. The high-level operation of each component 

is as follows: 

• Dataset: For the purposes of this thesis, all raw data points are acquired from the MNIST, 

LSUN, and ISIC 2018 datasets. Each raw data point is an image with a corresponding class 

label. To improve the stability of the algorithms, preprocessing is applied to each of the 

images before training (Tabik et al. 2017). Further preprocessing details are provided in 

Section 3.2. 

• GAN: The GAN is trained on the raw data in the dataset and consists of two networks, the 

generator and the discriminator. The generator network is used to synthesize image samples 

for data augmentation. The discriminator network is used by the importance sampling 

mechanism to determine which samples from the GAN have a high probability of being 
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realistic. The architecture design for each GAN and a description of the training procedure 

and metrics used for performance evaluation is provided in Section 3.3. 

• Importance Sampling: The importance sampling mechanism developed in this thesis 

determines which data samples are to be acquired for the next iteration of the training loop. 

The samples could come from the GAN or from the raw dataset. Details of the importance 

sampling mechanism are given in Section 3.4.2. 

• Training Loop: During each iteration of the training loop, samples selected by the 

importance sampling mechanism are used to train the image classifier. After the training 

iteration has completed, the trained classifier is then used by the importance sampling 

mechanism to pick the best samples for the next iteration. This process continues until the 

final dataset size is reached, upon which the resulting network is outputted as the Final 

Classification Network. Further details regarding the training loop operation are provided 

in Section 3.4.2. 

 

Figure 3-1 Overall design for the classification framework developed in this thesis.  

The direction of each line indicates the flow of data. 
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3.2 Dataset Preprocessing 

A description of how each dataset was preprocessed is given below:  

• MNIST: Each image in the original MNIST dataset has a resolution of 28x28 pixels. The 

preprocessed MNIST dataset for this thesis was formed by resizing the images to a 

resolution of 32x32 pixels using cubic interpolation. The motivation for resizing each 

image to 32x32 pixels was to enforce that the width and height of the images are powers 

of 2 which is required for training a PGGAN. The images were then normalized such that 

each pixel had a value range between -1 and 1. The resulting dataset consisted of 60,000 

training images with ~6,000 images per category and 10,000 test images with ~1,000 per 

category. Example images from the MNIST dataset after preprocessing are shown in Figure 

3-2. 

• LSUN: Each image in the original LSUN dataset has a resolution where the image short 

edge had 256 pixels (Yu et al. 2015). The preprocessed LSUN dataset for this thesis was 

formed by first randomly sampling 10,000 images from each category to form the training 

set. Then each image was cropped such that the resulting resolution was 256x256 pixels. 

The motivation for resizing each image to 256x256 pixels was to enforce that the width 

and height of the images are powers of 2 which is required for training a PGGAN. For 

GAN training the images were normalized such that each pixel had a value range between 

-1 and 1. For classifier training the preprocessing method proposed by Howard et al. (2017) 

was used. The resulting dataset consisted of 100,000 images, with 10,000 images from 

each category and 3,000 test images, comprising 300 images from each category. Example 

images from the LSUN dataset after preprocessing are shown in Figure 3-3. 
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• ISIC 2018: Each of the images in the original ISIC 2018 dataset has a resolution of 

600x450 pixels. The preprocessed ISIC 2018 dataset developed for this thesis was formed 

by first randomly sampling 500 images from the 10,015 training images to form the test 

set. All images were scaled to a resolution of 256x256 pixels using cubic interpolation. The 

motivation for resizing each image to 256x256 pixels was to enforce that the width and 

height of the images are powers of 2 which is required for training a PGGAN. As the 

images were not cropped before scaling, the aspect ratio of the images was not preserved. 

The motivation behind this preprocessing decision was that the skin lesions in the images 

were not centered, therefore cropping the image might have removed important details 

relating to the classification of the lesion. For GAN training the images were normalized 

such that each pixel had a value range between -1 and 1. For classifier training the 

preprocessing method proposed by Howard et al. (2017) was used. The resulting dataset 

consisted of 9,515 training images and 500 test images. The label distribution for the ISIC 

2018 dataset is highly nonuniform as shown in Figure 3-5.  Example images from the ISIC 

2018 dataset after preprocessing are shown in Figure 3-4.  
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Figure 3-2 Example images from the preprocessed MNIST dataset. 

 

 

 
Figure 3-3 Example images from the preprocessed LSUN dataset. 
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Figure 3-4 Example images from the preprocessed ISIC 2018 dataset. 

 

 
Figure 3-5 Distribution of class labels for the ISIC 2018 dataset. 
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3.3 GAN Training 

3.3.1 GAN Architectures 

There are three GAN architectures used for this thesis: Small-DCGAN, Large-DCGAN, and 

PGGAN. The Small-DCGAN and Large-DCGAN architectures are adaptations of the original 

DCGAN model (Radford et al. 2015) with small and large capacities respectively. Due to the lower 

capacity relative to the PGGAN, the Small-DCGAN and Large-DCGAN were only trained using 

the MNIST dataset. Let us describe the terminology used in the following tables: 

• Layer Number: As the architectures for the networks developed in this thesis are 

feedforward, all layers are processed sequentially and the number referencing the given 

layer describes the processing order. 

• Operation: There are different layer types used for the construction of the network 

architectures. Linear refers to a densely connected layer. Convolution refers to a 

convolutional layer. Upsample + Convolution consists of an upsampling operation 

followed by a convolutional layer. The upsampling operation uses interpolation to scale 

the width and height of the image by 2. The Max Pool layer performs downsampling on 

the activation outputs by only outputting the maximum value activation for a small 

neighborhood of surrounding pixels.   

• Kernel: The width and height of the convolution kernel. 

• Strides: For convolution layers, Strides refers to the step size taken by the convolution 

operation. For max pool layers, Strides refers to the neighborhood size which is pooled. 

• Feature Maps: For densely connected layers, Feature Maps describes the number of 

neurons in the layer. For convolutional layers, Feature Maps describes the number of 

kernels in the layer. 
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• Dropout: The probability of dropping each output activation in the layer. 

• Use Batch Normalization: Whether batch normalization was used after the layer 

activation. 

• Activation Function: The type of activation function used by the layer.  

 

The network architecture for the Small-DCGAN generator and discriminator are seen in Table 3-

1 and Table 3-2 respectively. The total number of trainable parameters for the Small-DCGAN is 

369,762 where the generator and discriminator each respectively contain 270,113 and 99,649 

trainable parameters. The training parameters used for the Small-DCGAN are shown in Table 3-

3.  

 

Table 3-1 Generator layer architecture for Small-DCGAN 

(100-dimensional latent space with 270,113 total trainable parameters) 

Layer 

Number 

Operation Kernel Strides Feature 

Maps 

Dropout Use Batch 

Normalization 

Activation 

Function 

L1 Linear N/A N/A 1568 0.0 Yes ReLU 

L2 Upsample + 

Convolution 

3x3 1x1 128 0.0 Yes ReLU 

L3 Upsample + 

Convolution 

3x3 1x1 64 0.0 Yes ReLU 

L4 Convolution 3x3 1x1 1 0.0 No Tanh 
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Table 3-2 Discriminator architecture for Small-DCGAN (99,649 total trainable parameters) 

Layer 

Number 

Operation Kernel Strides Feature 

Maps 

Dropout Use Batch 

Normalization 

Activation 

Function 

L1 Convolution 3x3 2x2 16 0.25 No Leaky ReLU 

L2 Convolution 3x3 2x2 32 0.25 Yes Leaky ReLU 

L3 Convolution 3x3 2x2 64 0.25 Yes Leaky ReLU 

L4 Convolution 3x3 1x1 128 0.25 No Leaky ReLU 

L5 Linear from 

L4 

N/A N/A 1 0.0 No Sigmoid 

 

 

Table 3-3 Training hyperparameters for Small-DCGAN and Large-DCGAN 

Training Parameter Value 

Generator Optimizer Adam 

Discriminator Optimizer Adam 

Batch Size 32 

Iterations 50000 

Leaky ReLU Slope Alpha = 0.2 

Weight, Bias Initialization Xavier Uniform Initializer 

 

The network architecture for the Large-DCGAN generator and discriminator are seen in Table 3-

4 and Table 3-5 respectively. The structure of the Large-DCGAN has more layers than the Small-

DCGAN and the total number of trainable parameters for the Large -DCGAN is 1,627,682 where 

the generator and discriminator each respectively contain 1,040,705 and 586,977 trainable 

parameters. The training parameters used for the Large-DCGAN are identical to those used for the 

Small-DCGAN and are shown in Table 3-3. 
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Table 3-4 Generator layer architecture for Large-DCGAN 

(100-dimensional latent space with 1,040,705 total trainable parameters) 

Layer 

Number 

Operation Kernel Strides Feature 

Maps 

Dropout Use Batch 

Normalization 

Activation 

Function 

L1 Linear N/A N/A 6272 0.0 Yes ReLU 

L2 Convolution 3x3 1x1 128 0.0 Yes ReLU 

L3 Upsample + 

Convolution 

3x3 1x1 128 0.0 Yes ReLU 

L4 Convolution 3x3 1x1 64 0.0 Yes ReLU 

L5 Upsample + 

Convolution 

3x3 1x1 64 0.0 Yes ReLU 

L6 Convolution 3x3 1x1 1 0.0 No Tanh 

 

 

Table 3-5 Discriminator architecture for Large-DCGAN (586,977 total trainable parameters) 

Layer 

Number 

Operation Kernel Strides Feature 

Maps 

Dropout Use Batch 

Normalization 

Activation 

Function 

L1 Convolution 3x3 1x1 32 0.25 No Leaky ReLU 

L2 Convolution 3x3 2x2 32 0.25 No Leaky ReLU 

L3 Convolution 3x3 1x1 64 0.25 Yes Leaky ReLU 

L4 Convolution 3x3 2x2 64 0.25 Yes Leaky ReLU 

L5 Convolution 3x3 1x1 128 0.25 Yes Leaky ReLU 

L6 Convolution 3x3 2x2 128 0.25 Yes Leaky ReLU 

L7 Convolution 3x3 1x1 256 0.25 Yes Leaky ReLU 

L8 Linear N/A N/A 1 0.0 No Sigmoid 

 

The PGGAN model used for this thesis was based off the implementation provided by Karras et 

al. (2017). The PGGAN architecture is significantly larger than the Small-DCGAN and Large-

DCGAN with over 20 million parameters used in each of the generator and discriminator networks. 

One key advantage of the PGGAN architecture is the ability to progressively scale the model to 
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train on images of various sizes. The ISIC 2018 and LSUN dataset images were each 256x256 

pixels and the MNIST dataset images were 32x32 pixels, yet the PGGAN could train on both 

resolutions due to the progressively growing nature of the model.   

 

3.3.2 Training and Performance Evaluation 

During training, multiple iterations of gradient descent were taken to decrease the loss function of 

the generator and discriminator. The details for each of the trained GAN networks are shown in 

Table 3-6. Label conditioning refers to the GAN being trained to model the conditional distribution 

of the data for a given label. This is beneficial as it allows the entire dataset to be represented using 

a single GAN. However, it was experimentally determined that the Small-DCGAN and Large-

DCGAN suffered from mode collapse when modelling the conditional distribution. Mode collapse 

is a common issue when training GANs where the generator network collapses onto a single mode 

of the data distribution (Che et al. 2016). To compensate for this problem, an ensemble of GANs 

was used, each trained to generate images representing a specific label from the dataset. 

 

 The GANs used to generate the LSUN samples were pretrained by Karras et al. (2017).  All other 

models were trained on a local machine that contained two Nvidia 1080 Ti GPUs. The time 

required to train the GANs varied with the capacity of the architectures. The simplest model 

(MNIST Small-DCGAN) took 30 minutes to train, while the most complex model (ISIC 2018 

PGGAN) took 10 days to train.   
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Table 3-6 Overview of trained GAN architectures  

Dataset Type GAN Architecture Use Label 

Conditioning 
Training 

Location 

Training Time 

MNIST Small-DCGAN No Local Machine 30 Minutes 

MNIST Large-DCGAN No Local Machine 1 Hour 

MNIST PGGAN Yes Local Machine 1 Day 

LSUN PGGAN No Pretrained (Karras 

et al. 2017) 

N/A 

ISIC 2018 PGGAN Yes Local Machine ~10 Days 

 

To evaluate the performance of the trained GANs, the IS and FID scores were computed for each 

GAN. The IS is computed using samples from the GAN, while the FID is computed using samples 

from both the GAN and the dataset. 5000 images were sampled from each class label for the metric 

computation. 

 

 

3.4 Classification Training Loop: 

3.4.1 Classifier Architecture 

The classifier architecture used for the MNIST dataset is described in Table 3-7. The developed 

CNN has 5 layers and has 1,199,882 trainable parameters.  The specifications of the training 

environment are described in Table 3-8.  
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Table 3-7 Classifier Architecture for MNIST (1,199,882 total trainable parameters) 

Layer 

Number 

Operation Kernel Strides Feature 

Maps 

Dropout Use Batch 

Normalization 

Activation 

Function 

L1 Convolution 3x3 1x1 32 0.0 No ReLU 

L2 Convolution 3x3 1x1 64 0.0 No ReLU 

L3 Max Pool N/A 2x2 N/A 0.25 No None 

L4 Linear from 

L3 

N/A N/A 128 0.5 No ReLU 

L5 Linear from 

L4 

N/A N/A 10 0.0 No Softmax 

 

 

Table 3-8 Training hyperparameters for MNIST Classifier 

Training Parameter Value 

Optimizer Adadelta 

Batch Size 32 

Epochs 100 

Weight, Bias Initialization Xavier Uniform Initializer 

Loss Function Cross-Entropy 

 

 

As the images in the LSUN and ISIC 2018 datasets are much higher resolution than the MNIST 

data, a classification network with greater capacity must be used. Training high resolution 

classification models from scratch typically requires a large amount of data. To mitigate this 

problem, we used a classification network that has been pretrained on the ImageNet dataset. The 

pretrained network used for the transfer learning is based on the MobileNet architecture developed 

by Howard et al. (2017). The top layers of the network were stripped off and replaced by a 128-

dimension dense layer with dropout of 0.5. A final dense layer was placed on the network with the 
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dimensions equal to the number of classes in the dataset (7 for ISIC 2018 and 10 for LSUN). 

Furthermore, a weighted loss function was used to compensate for the imbalance in the ISIC 2018 

dataset. The hyperparameters used for training the classification network are shown in Table 3-9. 

 

Table 3-9 Training hyperparameters for LSUN and ISIC 2018 Classifier 

Training Parameter Value 

Optimizer SGD 

Batch Size 32 

Epochs 30 

Weight, Bias Initialization Xavier Uniform Initializer 

Loss Function Cross-Entropy 

 

 

3.4.2 Training Feedback Loop 

The algorithm for the processing performed during each iteration of the training loop is shown in 

Figure 3-6. We start iteration step N in possession of the current trained classifier network and the 

current training set. To perform an iteration of the training loop, samples from the data source are 

used to compute the classifier network posterior estimates through MC dropout. Next, an 

acquisition function is used to process the posterior estimates and assign each image sample a 

score. The samples with the highest scores are added to the training set for iteration step 1N +  and 

used to train the resulting classifier for iteration step 1N + . This process repeats until desired 

convergence is met or the predefined number of iterations are completed. For the base case when 

0N = , the classifier network is initialized with random parameter values. The data sources used 

for this thesis consist of images from the raw dataset, and images sampled from the Small-
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DCGAN, Large-DCGAN, and PGGAN. When a GAN data source is used, the discriminator output 

is computed to filter the data such that only generated images with a discriminator output greater 

than one standard deviation above the mean output value will be considered for acquisition 

function scoring. This thresholding has the effect of filtering out images that the discriminator 

believes are not representative of the dataset. The acquisition functions used for this thesis are 

random sampling, BALD, and max entropy. Random sampling simply involves selecting random 

images from the data source to become part of the training set for the next iteration. BALD 

acquisition involves computing the following score for each of the assets in the data 

sourceEquation Chapter (Next) Section 3  

 ( ) ( ) ( )
1 1

1 1
| , | ,

N N

BALD n n

n n

S H P y H P y
N N= =

 
= −    

 
 x x ω x ω   (3.1) 

After the scores are computed, they are sorted and the images with the highest scores are sampled 

and added to the training set for the next iteration. Max entropy acquisition involves computing 

the following score for each of the assets in the data source  

 ( ) ( )
1

1
| ,

N

Max Entropy n

n

S H P y
N =

=   x x ω  (3.2) 

Similar to BALD acquisition, after the scores are computed, they are sorted and the images with 

the highest scores are sampled and added to the training set for the next iteration.  
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Figure 3-6 Overview of the classification training loop. 

 

 
3.5 Summary 

The purpose of this chapter was to describe the overall system structure for the classification 

training loop. A detailed description was provided regarding the preprocessing operations applied 

for each of the datasets. The neural network architecture and training hyperparameters were 

presented for each of the GAN and classifier models. Finally, the algorithmic processing 

operations performed at each iteration of the training loop were presented.   
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Chapter Four: Experimental Results 

 

4.1 Introduction 

The purpose of this chapter is to present the experimental results for the developed classification 

system. In Section 4.2, the outcome of the GAN training will be discussed. The output of the GAN 

loss functions will be analyzed, and a set of sample images generated by each GAN will be visually 

inspected for a qualitative assessment of image quality. Furthermore, the statistics of the output 

range for each discriminator will be presented, and the IS and FID metrics will be used to 

quantitatively measure the diversity and quality of images synthesized by each GAN. Section 4.3 

will present a qualitative interpretation of the classifier network uncertainty by comparing the 

difference between images with low and high BALD scores. Section 4.4 will describe the 

experiments that were conducted for the classification framework using the MNIST, LSUN, and 

ISIC 2018 datasets. Section 4.5 addresses each of the research questions proposed in Section 1.2 

through analysis of the experimental results. Finally, Section 4.6 will present a summary of the 

findings in this chapter.   

 

4.2 GAN Training 

4.2.1 Loss Function Analysis  

During the training of the GAN architectures, the classification accuracy of the discriminator and 

the loss functions for the discriminator and generator networks were recorded. Figure 4-1 shows 

the discriminator training accuracy for the Small-DCGAN and Large-DCGAN models while being 

trained on the MNIST dataset. A key point to illustrate is that a larger prediction accuracy does 

not imply better GAN samples, it simply describes the relative strength of the discriminator to the 
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generator. Notice how the prediction accuracy seems to stabilize for the Small-DCGAN around 

0.70. This is due to the balanced competition between the capacities of the generator and 

discriminator networks. If the discriminator network was much stronger than the generator, the 

prediction accuracy would be closer to 1, and the generator would be unable to compete with the 

discriminator, preventing the GAN from converging. Therefore, by observing the stability of the 

prediction accuracy, we are made aware that the capacity of the generator and discriminator 

networks are well matched. On the other hand, we notice that the prediction accuracy for the Large-

DCGAN seems to be decreasing gradually over time. To explain this result, we must examine the 

loss functions for the generator and discriminator networks.  

 

Figure 4-1 DCGAN discriminator training accuracy on the MNIST dataset. 
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Figure 4-2 shows the generator and discriminator loss functions for both the Small-DCGAN and 

Large-DCGAN models while being trained on the MNIST dataset. Examining the loss for the 

Large-DCGAN we see that the loss for both the discriminator and generator is increasing at the 

end of the training iterations. This result can be explained by looking back at the GAN optimization 

problemEquation Chapter (Next) Section 4 

 ( ) ( ) ( ) ( ) ( )( )( )min max , log log 1
datap p

G D
V D G D D G = + −    zx x z z

x z   (4.1) 

If the generator and discriminator loss are simultaneously increasing then it follows that 

discriminator is getting better at discriminating images produced by the generator such that 

( ) ( )( )( )log 1
p

D G −
 zz z

z  is increasing, but worse at discriminator real images such that

( ) ( )log
datap

D  x x
x is decreasing. This explains why the classification accuracy in Figure 4-1 was 

decreasing over time.   

 
Figure 4-2 DCGAN training loss for discriminator and generator on the MNIST dataset. 
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4.2.2 Qualitative Visual Assessment of Samples   

To qualitatively assess the generator quality of the trained GANs, images from each GAN 

architecture were sampled and visually inspected.  

 

4.2.2.1 GAN Image Quality During Training  

Figure 4-3 shows samples taken during the training of the MNIST PGGAN architecture. Each 

column displays the generated images for a fixed latent vector over the course of the training 

iterations. Notice how during the early iterations the images are quite pixelated, this is due to the 

progressive growing nature of the PGGAN.  

 
                 Figure 4-3 PGGAN samples during training on the MNIST dataset. 
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Figure 4-4 shows samples taken during the training of the ISIC 2018 PGGAN architecture. Each 

column displays the generated image for a fixed latent vector over the course of the training 

iterations. Notice how some columns exhibit a significant amount of variation between training 

iterations. The relative variation seems to be correlated with class imbalance between the training 

labels. Impressively, the GAN architecture is capable of learning to represent specialized details 

such as hair in the images. 

 
                           Figure 4-4 PGGAN samples during training on the ISIC 2018 dataset. 
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4.2.2.2 Final GAN Image Quality 

Figure 4-5 shows samples generated from the trained PGGAN for each category of the LSUN 

dataset. The GAN generates near photorealistic images of environments composed of static objects 

such as chairs and beds. Specifically, the images from the dining room category exhibit a high 

degree of photorealism. Examining the images from the classroom category, we see that the faces 

generated by the GAN are distorted. This is due in part to the high variance in facial structure that 

is difficult for the GAN to capture, but there is also a psychological explanation of this observation. 

The visual cortex of a human observer has been evolutionarily trained to recognize human faces, 

making it is easier for the observer to detect facial distortion in GAN generated images than the 

distortion of inanimate objects such as couches (Tsao et al. 2008). Therefore, although the 

distortion of the human faces in the classroom category is perceived to be worse than the distortion 

of the desks, this perception is heavily biased by evolutionary preconditioning. 
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                            Figure 4-5 PGGAN samples from LSUN dataset categories. 

 

Figure 4-6 shows samples generated from the trained PGGAN for each category of the ISIC 2018 

dataset. Examining the generated images, we see that the GAN was capable of modelling specific 

details of the skin such as wrinkles and hair. We also notice that the GAN models the artifacts of 

the original image capturing device such as the black border around the perimeter of some of the 

generated images. To quantitatively describe the realism of these images it would be necessary to 

have them examined by a trained radiologist. However, by comparing the high-level characteristics 
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of the generated images to the samples from raw data set (shown in Figure 3-4) we can infer by 

visual inspection that the images are highly similar.  

 

 
                Figure 4-6 PGGAN samples from ISIC 2018 dataset categories. 

 

Figure 4-7 shows samples generated from the GAN architectures trained on the MNIST dataset. 

By examining the images, it is clear that the sample quality increases as we move from the Small-

DCGAN to the Large-DCGAN and finally to the PGGAN. This is understandable since the 

capacity of the Small-DCGAN is significantly smaller than that of the PGGAN. Notice how the 

GANs are able to generate digits with the same label, for example ‘2’, but with unique styles.  
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                 Figure 4-7 Samples from the GAN architectures trained on the MNIST dataset. 

 
 

4.2.3 Modeling the Discriminator Output 

To perform the importance sampling it was necessary to evaluate the statistical properties of the 

discriminator output for each GAN architecture to determine the cutoff thresholds. 3200 random 

samples were generated for each category modelled by the GAN architecture. These samples were 

fed into the discriminator and used to compute the output response. Note that for the Small-

DCGAN and Large-DCGAN architectures the output response is the raw probability, while for the 
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PGGAN the output response is a score value. The larger the value of the discriminator output, the 

more confidence it has that the sample is a good representative of the raw dataset. The mean and 

variance of the discriminator outputs was calculated and the average values across the image 

categories are presented in Table 4-1. We observe that for the Small-DCGAN and Large-DCGAN, 

that the average output values are less than 0.5, and with very small variance. This indicates that 

for a random GAN sample, the discriminator is consistently more likely to believe that the samples 

are fake. Considering the relative scores of the PGGANs, we see that the ISIC 2018 GAN has the 

greatest uncertainty regarding the discriminator output. This can be explained by recognizing that 

the ISIC 2018 dataset is highly unbalanced, and some categories had less than 200 images. 

Therefore, the resulting variance in the discriminator output is larger.  

 

Table 4-1 Statistical description of discriminator output 

Model 

Architecture 

Dataset Average  

Discriminator Output 

Average  

Discriminator Variance 

 

Small-DCGAN MNIST 0.47 2.64e-05 

Large-DCGAN MNIST 0.46 4.47e-05 

PGGAN MNIST 1.26 1.60 

PGGAN LSUN -14.42 190.10 

PGGAN ISIC 2018 -59.69 357.14 
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4.2.4 Assessing the GAN Sample Quality 

To evaluate the quality and diversity of the samples produced by the GANs, the IS and the FID 

were calculated for each of the GANs. Additionally, the IS score for the raw dataset images was 

calculated to provide a baseline. For the MNIST and LSUN datasets, 1000 images were sampled 

from each image category to evaluate the metrics. As the ISIC 2018 dataset is highly imbalanced, 

an equal number of GAN and raw samples were drawn from the different categories. The result is 

shown in Table 4-2. Examining the results in this table, we see that the IS for the MNIST dataset 

provided very little information, in fact the metric stated that the score for the GAN generated data 

was actually better than the score for the raw data. This demonstrates a limitation of the IS. We 

are only able to get relevant inception scores for images which resemble the data from the 

ImageNet dataset that the Inception network was trained using. Therefore, as the MNIST dataset, 

and to some extent, the ISIC 2018 dataset are far removed from the content in the ImageNet 

dataset, the validity of the metric diminishes. However, for the LSUN dataset, the resulting IS 

values are close to results stated in prior literature (Karras et al. 2017). Notice how the FID score 

for the MNIST dataset decreases as we progress from the Small-DCGAN model to the PGGAN. 

This can be explained as the number of parameters of the Small-DCGAN is less than that of the 

Large-DCGAN which in turn is less than the PGGAN. Therefore, we see that as the capacity of 

the GAN increases, the FID score decreases as would be expected. 
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Table 4-2 IS and FID calculated for different GAN architectures.  

Note that larger Inception score values indicate better generated results  

and smaller FID scores indicate better generated results. 

Model 

Architecture 

Dataset Inception 

Score  

(Raw Data) 

 

Inception Score 

(GAN) 

FID Score 

Small-DCGAN MNIST 2.07 2.10 135.06 

Large-DCGAN MNIST 2.07 2.27 92.27 

PGGAN MNIST 2.07 2.10 14.09 

PGGAN LSUN 9.60 8.17 10.28 

PGGAN ISIC 2018 3.51 3.12 78.83 

 

 

4.3 Interpreting Network Uncertainty 

To qualitatively understand how uncertainty manifests itself in the network, the following 

experiment was performed. A classifier was trained on the MNIST dataset. Then the BALD 

acquisition function was evaluated for all the real training images as well as 10,000 images 

sampled from the PGGAN. The real images with high and low BALD scores are shown in Figure 

4-8. Likewise, the PGGAN generated images with high and low BALD scores are shown in Figure 

4-9. A high BALD score represents that the network is uncertain about the label of the sample. 

Notice how many of the high BALD score samples are visually challenging to interpret and there 

are some which are ambiguous. Likewise, the images with low BALD scores are very discernable. 

Therefore, we can qualitatively infer that the network uncertainty described by the BALD score 

relates to our human interpretation of visual uncertainty.    
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Figure 4-8 Raw MNIST images with high BALD scores (top) and low BALD scores (bottom). 
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Figure 4-9 PGGAN generated MNIST images with high BALD scores (top)  

and low BALD scores (bottom). 
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4.4 Classification Experiments 

The fundamental goal of the classification experiments was to address the core research questions 

stated in Section 1.2. As the time required to train a classifier for the LSUN and ISIC 2018 datasets 

was roughly two orders of magnitude larger than the time required to train a classifier for MNIST, 

the majority of experiments were performed using the MNIST dataset. To maximize the 

cohesiveness in the presentation of the experimental results, all analysis and discussion of the 

results will be reported in Section 4.5. 

  

4.4.1 Experiments with MNIST 

The purpose of the MNIST dataset experiments was to determine the relative performance when 

training a classifier using different data sources and acquisition functions. The Small-DCGAN, 

Large-DCGAN, and PGGAN training datasets each had 10,000 images where 1,000 images were 

sampled from each of the 10 categories. The raw MNIST training dataset consisted of 60,000 

images with roughly 6,000 in each category. To measure classification performance, a test set was 

built using 1,000 raw images with 100 from each category. The experiments on the MNIST dataset 

were performed in the following way: 

• At the start of each iteration, the classification network was initialized with a set of new 

random weights. During each iteration the chosen acquisition function was used to sample 

10 images from the given data source. These new images were added to the training dataset. 

The classification network was then trained using this dataset for 100 epochs. The resulting 

final balanced accuracy was then computed and stored for each iteration. This process 

continued for 50 iterations. At this point the training set size had reached 500 images. 
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• The first set of experiments examined the performance when each data source was used 

independently i.e. (the classifier was only trained on data from one of the four possible data 

sources: raw MNIST dataset, Small-DCGAN, Large-DCGAN, and PGGAN).  

• The second set of experiments examined the performance when the GAN data sources were 

used to augment the raw dataset i.e. (the classifier was trained on a dataset consisting of 

the raw MNIST dataset combined with data from one of the three possible GAN data 

sources: Small-DCGAN, Large-DCGAN, and PGGAN).  

• For all experiments, classification performance was measured using each combination of 

data source and acquisition function. Additionally, each experiment was repeated 4 times 

to establish a confidence interval for the accuracy estimate. 

 

 

4.4.2 Experiments with LSUN and ISIC 2018 

The goal of the experiments performed using the LSUN and ISIC 2018 datasets was to compare 

the classification performance when training using raw data and data generated from the PGGAN. 

The classifiers were trained under random sampling or BALD acquisition. The experimental 

procedure can be described as follows:  

• Each experiment used either random sampling or BALD acquisition as the chosen 

acquisition function.  

• During each experiment, 100 images were randomly selected from the raw dataset to form 

the initial training set. Every 5 epochs as the classification network was trained, 10 new 

images for each category were selected either using the chosen acquisition function and 

added to the training set.   
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• Each experiment was repeated 10 times to establish a confidence interval for the accuracy 

estimate. 

 

 

4.5 Assessment of Research Questions using Experimental Observations 

This section addresses each of the research questions proposed in Section 1.2 through analysis of 

the experimental results. 

  

4.5.1 What Is the Difference in Classifier Performance If We Train Using Purely 

GAN Synthesized Data vs. Raw Data? 

Examining the results for the first set of MNIST experiments shown in Figure 4-10 we observe 

that under random acquisition the performance of the raw data source is optimal, however under 

BALD or max entropy acquisition, the PGGAN data source is optimal. The fact that a classifier 

trained on purely synthetic data can outperform a classifier trained on raw data is quite fascinating.  

This implies that the images sampled from the GAN are more informative for training the classifier 

than the images from the raw dataset. A possible explanation for this observation is that while the 

distribution of samples from the GAN has less diversity than the raw dataset, the GAN is capable 

of generating samples which are highly informative for classification. Therefore, under an 

appropriate acquisition function these informative samples can be selected by the importance 

sampling mechanism and added to the training set, resulting in increased classification 

performance.  
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Figure 4-10 MNIST classification performance under various acquisition functions. The plots on 

the left show the balanced accuracy for all 50 iterations, while the plots on the right show the 

balanced accuracy for the final 20 iterations. The shaded area around each line signifies a 

confidence interval of one standard deviation.   
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For the ISIC 2018 dataset we notice a significant difference in classification performance between 

the purely GAN synthesized data and the raw data as indicated in Figure 4-11 with the classifiers 

trained on raw data achieving a 10 percentage point improvement in balanced accuracy over the 

classifiers trained on purely synthetic data. With this said, the classifiers trained on purely synthetic 

GAN data still performed reasonably well given the complexity of the classification task, resulting 

in balanced accuracy across the 7 classes of 0.52 and a ROC AUC score of 0.7.  

 

The results provided by the LSUN experiments in Figure 4-12 were rather intriguing as the 

performance of the classifiers trained on purely synthetic data was nearly identical to the 

performance of the classifiers trained using raw data. This implies that the images sampled from 

the GAN are equally informative for training the classifier as the images from the raw dataset.  

 

In summary, the experimental results have demonstrated that training a classification network 

using synthetic data from a GAN is not only feasible, but under an appropriate acquisition function 

can surpass the performance of a classifier trained using raw data. It was observed that the final 

classification performance is dependent on the quality of the GAN used to synthesize the training 

images.   
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Figure 4-11 ISIC 2018 classification performance. The plot on the top shows the balanced 

accuracy and the plot on the bottom shows the ROC AUC score. The shaded area around each 

line signifies a confidence interval of one standard deviation.   
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Figure 4-12 LSUN classification performance. The plot on the top shows the balanced accuracy 

and the plot on the bottom shows the ROC AUC score. The shaded area around each line 

signifies a confidence interval of one standard deviation.   
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4.5.2 What Is the Difference in Classifier Performance If We Train Using Random 

Chosen Samples vs. Samples Chosen Based off Classifier Prediction Uncertainty? 

The results of the MNIST experiments displayed in Figure 4-13 show that classifiers trained under 

BALD acquisition performed consistently better than classifiers trained under random sampling 

or max entropy acquisition. Intuitively it is understandable that BALD acquisition should perform 

better than random sampling, however the consistent performance gain over max entropy 

acquisition is intriguing. To develop an explanation for this behavior, let us consider the definition 

of the BALD acquisition function shown below 

 ( ) ( ) ( )
1 1

1 1
| , | ,

N N

n n

n n

U H P y H P y
N N= =

 
 −    

 
 x x ω x ω   (4.2) 

The key difference between this expression and max entropy acquisition is the term 

( )
1

1
| ,

N

n

n

H P y
N =

 
 
 
 x ω .  This term will be large if the network prediction fluctuates between the 

MC samples. A possible explanation for why BALD acquisition outperforms max entropy 

acquisition is due to the properties of the softmax activation function used in the classification 

network. As described by (Guo et. al 2017), the softmax activation has been shown to overestimate 

the network prediction certainty, causing the term ( )
1

1
| ,

N

n

n

H P y
N =

   x ω  to be smaller than we 

would expect. Hence, by measuring how much the network predictions change between MC 

samples given by ( )
1

1
| ,

N

n

n

H P y
N =

 
 
 
 x ω  we get a better estimate of the uncertainty. The addition 

of this extra term is what makes the BALD acquisition function a better estimator for network 

uncertainty.  
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The classification results for the ISIC 2018 and LSUN datasets are shown in Figures 4-11 and 4-

12 respectively. Notice how the classifiers trained under BALD acquisition are very similar in 

performance to the classifiers trained under random acquisition. This implies that BALD 

acquisition is not providing information gain during training. A possible explanation for this 

observation is that given the complexity of the classification network, too few MC samples are 

used to accurately estimate of the classifier uncertainty. 

 

In summary, the results for the MNIST dataset have shown that the classifier performance 

improved significantly under the BALD and max entropy acquisition. However, for the ISIC 2018 

and LSUN dataset, BALD acquisition had no significant effect. Further investigation will be 

needed to evaluate the effective use of BALD acquisition for higher dimensional classification 

tasks.     
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Figure 4-13 MNIST classification performance using pure GAN data. The plots on the left show 

the balanced accuracy for all 50 iterations, while the plots on the right show the balanced 

accuracy for the final 20 iterations. The shaded area around each line signifies a confidence 

interval of one standard deviation.   
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4.5.3 How Is the Capacity of the GAN Used to Generate Training Images Correlated 

with the Final Classification Performance? 

To address this question, we can examine the results of the MNIST experiments in Figure 4-10. 

We see that the ordering of the GANs in terms of final classification performance is PGGAN > 

Large-DCGAN > Small-DCGAN. This is the same order as the capacity of the networks. 

Therefore, we have experimental evidence to infer that the classification performance is positively 

correlated with the capacity of the GAN. This makes intuitive sense since a higher capacity GAN 

will be able to generate results which are higher quality, more representative of the dataset, and 

hence better fit for training a classifier.  

 

 

4.5.4 What Overall Performance Gain Can We Achieve from Using GAN 

Augmentation? 

To determine the impact of GAN data augmentation on classifier performance, let us examine the 

results provided by the second set of MNIST experiments whose primary results are shown in 

Figure 4-14. Figure 4-15 shows the resulting classifier performance under random acquisition 

when data augmentation was performed. We see that augmentation using the PGGAN samples 

achieved the best overall accuracy by a small margin and surpassed the accuracy of the classifier 

trained on the raw dataset. We also notice that the Large-DCGAN augmented dataset performed 

on par with the raw dataset, and that the Small-DCGAN augmented dataset performed worse. This 

demonstrates that GAN augmentation has the potential to improve the classifier performance. 

However, if the GAN does not have sufficient capacity, then the classifier performance can 

decrease.       
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Figure 4-14 MNIST classification performance using augmented GAN data. The plots on the left 
show the balanced accuracy for all 50 iterations, while the plots on the right show the balanced 

accuracy for the final 20 iterations. The shaded area around each line signifies a confidence 

interval of one standard deviation.   
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Figure 4-15 MNIST classification performance for GAN data augmentation under random 

acquisition. The plot on the left shows the balanced accuracy for all 50 iterations, while the plot 

on the right shows the balanced accuracy for the final 20 iterations. The shaded area around each 

line signifies a confidence interval of one standard deviation.   

 

Examining the data from Figure 4-14 we see that BALD acquisition had the best performance for 

all classifiers. In Figure 4-16 the results of training the classifiers under BALD acquisition are 

shown together with the performance of the raw data classifier trained under random sampling 

added as a baseline. The final test accuracy for each of the trained classifiers are shown in Table 

4-3. We see that the performance of the classifiers trained using augmentation by BALD 

acquisition outperformed the classifiers trained on the raw datasets. From the final test accuracies, 

we see that the BALD PGGAN augmented dataset had an increase of 3.82 percentage points over 

the Random Raw dataset, and an increase of 0.86 percentage points over the BALD Raw dataset. 
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These results indicate that GAN data augmentation using the developed classification framework 

can considerably improve the classification performance.     

 
Figure 4-16 Plot of the best performing classifiers trained using GAN augmented MNIST data. 
The plot on the left shows the balanced accuracy for all 50 iterations, while the plot on the right 

shows the balanced accuracy for the final 20 iterations. The shaded area around each line 

signifies a confidence interval of one standard deviation.   

 

Table 4-3 Final test accuracy for best performing classifiers on MNIST using GAN data 

augmentation.  

MNIST Classifier 

Training Type 

 

Final Test Accuracy 

Random Raw 0.9251 

BALD Raw 0.9547 

BALD Small-DCGAN 0.9630 

BALD Large-DCGAN 0.9620 

BALD PGGAN 0.9633 
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Through the experimental results we have seen that training a classification network using a dataset 

augmented with synthetic GAN samples can improve the overall performance of the classifier. 

Additionally, the importance sampling mechanism was shown to the further improve the classifier 

performance, especially for the GANs with lower capacity.  

 

 

4.6 Summary 

In this chapter the results were presented for the experimental work conducted in this thesis. By 

means of visual inspection and computation of the IS and FID metrics, the quality and diversity of 

the generated GAN images were assessed. Qualitatively it was observed that the GAN samples 

closely resembled the raw images from the dataset. Furthermore, it was shown that the quality of 

the GAN samples was dependent on the capacity of the GAN. Through grouping images by BALD 

acquisition score, it was qualitatively demonstrated that the images with the largest prediction 

uncertainty were visually harder to identify due to ambiguity in the shape, or lack of geometric 

detail, while the images with the smallest prediction uncertainty were highly distinguishable and 

unambiguous. Two sets of classification experiments were conducted using the MNIST dataset. 

The first set examined the classification performance using training data sampled from a single 

data source, while the second set examined the classification performance using augmented 

training data consisting of samples from the original dataset and a GAN. Additional classification 

experiments were performed using the LSUN and ISIC 2018 to assess the performance when 

training on an augmented dataset. Thorough analysis of these results was provided and all of the 

research questions from Section 1.2 were addressed. 
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Chapter Five: Applications  

 

The purpose of this chapter is to explore possible applications for the technology developed in this 

thesis. Section 5.1 discusses the potential of using the GAN trained on the ISIC 2018 dataset as a 

mechanism to investigate potential disease progressions. Section 5.2 describes how the developed 

classification framework could be used for active learning. Section 5.3 presents the possibility of 

using the importance sampling mechanism developed in this thesis to improve training efficiency 

for reinforcement learning. Section 5.4 summarizes the presented material.  

 

5.1 Disease Progression Analysis 

Monitoring disease progression is a critical component of optimal medical treatment planning 

(Manley 2007). A mechanism to generate images describing the potential progression of a disease 

could be useful for physicians to evaluate intervention strategies. One application of the GAN 

architecture is the ability to smoothly transition between two images by generating samples using 

latent space interpolation. Specifically, for GANs trained on medical images, such as the PGGAN 

trained for this thesis on the ISIC 2018 dataset, latent space interpolation can be used to generate 

images describing a possible disease progression. As an example, consider a latent space vector 

representing a melanoma skin lesion. By extrapolating along different latent dimensions, we can 

transform the image to visualize the progressive change. Figure 5-1 demonstrates how the 

melanoma latent vector can be transformed to generate images describing possible disease 

trajectories.  
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The progressions visualized in Figure 5-1 were randomly generated and have no specific medical 

significance. However, by providing actual disease progression data or including additional labels 

on the data describing features such as disease severity, we can train a classifier on the latent space 

to identify how the different latent space axis correspond to different disease progression 

trajectories. This would enable a physician to use the GAN latent space as an exploratory tool to 

investigate realistic disease progressions.       

 

 
Figure 5-1 Using the PGGAN trained on the ISIC 2018 dataset to synthesize possible melanoma 

disease progressions. The top row shows the starting image. A possible disease progression is 

represented by each column. Note that the progressions in this figure were randomly generated 

and have no specific medical significance. 
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5.2 Active learning  

Although augmentation strategies can be used to improve classification accuracy, there comes a 

point when additional raw data is necessary. Labelling data can be very expensive for specialized 

domains such as medical radiology. As such, it is critical that the labelling is prioritized for data 

which can significantly improve classification performance. The process of prioritizing the data 

for labelling and then using this newly labelled data to train a classifier is called active learning 

(Settles 2011). The work performed in this thesis demonstrated how the BALD and max entropy 

acquisition functions could assess which GAN images to sample for the biggest impact in 

classification performance. The developed techniques could be adapted to form an active learning 

framework where the acquisition functions were applied to unlabelled data. In fact, the BALD 

acquisition function was originally developed for active learning purposes (Houlsby et al. 2011). 

The benefit of this approach would be to minimize the amount of labelled data required to achieve 

the desired classification performance.   

 

5.3 Reinforcement Learning 

Reinforcement learning (RL) is the domain of machine learning where an agent is trained to make 

optimal decisions for a given environment (Gosavi 2009). RL is used heavily in robotics for tasks 

such as driverless cars or automated surgery (Wang et al. 2018). A key challenge with RL is the 

vast number of training samples typically needed for models to converge. This is due to the large 

number of uninformative samples typically encountered during training. For example, the vast 

majority of driving data consists of standard road conditions, however a driverless car must know 

how to respond to the critical rare occurrence incidents such as car accidents. One possible way to 

improve RL training is to use a GAN to generate training examples representing important 
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environmental edge cases. The mechanism proposed in this thesis for importance sampling from 

GANs has the potential to be applied for RL tasks to sample training examples which can improve 

the training efficiency.     

 

5.4 Summary 

This chapter presented several possible applications of the technology developed in this thesis.  

The ability to generate highly realistic synthetic medical images has great potential to assist 

physicians with treatment planning through providing tools capable of visualizing and predicting 

how various disease trajectories may progress. Additionally, the ability to model the uncertainty 

in a classification network has beneficial ramifications for the training of active learning and 

reinforcement learning systems. 
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Chapter Six: Conclusions  

 

6.1 Thesis Summary 

The work presented in this thesis demonstrated that it is possible to train an image classification 

network using purely synthetic images from a GAN and that the classifier performance is 

correlated with the capacity of the GAN. Furthermore, it was shown that using an appropriate 

acquisition function, the performance of the classification network could be improved. An 

interesting result was that the performance of a MNIST classifier trained under BALD acquisition 

using images synthesized from a PGGAN was superior to an equivalent classifier trained using 

raw data.  The performance gain from augmenting a raw dataset with GAN synthesized images 

was shown to be measurable but dependent on the capacity of the GAN. In conclusion, the 

experimental results of this thesis demonstrate that GAN augmentation using importance sampling 

is advantageous for image classification. Overall, the developed technology has potential for 

application in medical image classification as well as other applications in the domains of active 

learning and RL. 

 

 

6.2 Contributions 

Through the process of addressing the research questions stated in Section 1.2, the following 

contributions were made: 

• It was demonstrated how a GAN could be trained to synthesize high resolution medical 

images representing the ISIC 2018 dataset. The quality and diversity of the generated 
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samples was advocated for by the observation that the generated synthetic images could 

improve classification performance. 

• An iterative training loop algorithm was developed to incrementally build up the training 

set from GAN generated images to maximize the final performance of the classifier. 

Custom neural network architectures were designed for the Small-DCGAN and Large-

DCGAN, and the CNN classifiers. 

• An importance sampling mechanism was developed to prioritize samples based on the 

impact they would have on classification performance. The mechanism was shown to 

provide substantial performance improvement for the MNIST dataset. 

• The potential positive impact of using GAN synthesized data augmentation was validated 

by means of the experimental results. By thorough analysis, all research questions posed 

for this thesis were answered. 

• Published developed work in the CVPR 2019 Workshop on Uncertainty and Robustness 

in Deep Visual Learning (Nielsen et al. 2019). 

 

6.3 Future Work 

• Recent work has been directed towards the challenge of insuring that a neural network 

complies with the definition of differential privacy (Abadi et al. 2016). A next step for the 

work developed in this thesis would be to incorporate differential privacy training 

mechanisms into the construction of the GAN and classifier networks. This would further 

enforce the anonymity of the GAN synthesized data. 

• With the current GAN architecture, there is no direct way to infer the latent vector from a 

given image. This functionality would be beneficial to generate additional training images 
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by manipulating the latent vectors for specific images that the network is uncertain about. 

One GAN architecture that addresses this issue is called the Bidirectional GAN (BIGAN) 

(Donahue et al. 2016). The network modifies the discriminator by adding an encoder that 

is trained to predict the latent vector for a given image. Once the network is trained, this 

encoder network can be used to encode the image into its latent space representation. A 

next step for the work in this thesis would be to utilize a BIGAN architecture such that 

latent space manipulation could be used to improve the sample quality used for 

augmentation.  

• In the experimental results it was shown that classifier performance is positively correlated 

with the capacity of the GAN used to augment the dataset. Currently the FID and IS are 

applied as metrics to assess the capacity of the GAN.  In future work it would be valuable 

to quantify the relationship between the FID and IS output and the performance of the 

classifier trained using GAN augmented data, such that a metric could be developed to 

predict the potential benefit an arbitrary GAN would provide for data augmentation.  
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