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Abstract  

 

Among the most important factors in wireless base-stations design are link speed and power 

efficiency. For a faster wireless connection, the MIMO beamforming technology, higher-order 

QAM signals, and wider bandwidth signals are used. To increase the power efficiency in 

transmitters, the PAs are pushed to operate in nonlinear regions where they present their highest 

power efficiency.  These techniques increase in-band and out-of-band distortions of the MIMO 

wireless transmitters, resulting in signal quality degradation. To mitigate the introduced distortions 

to the transmitted signal, Digital Pre-Distortion (DPD) is used. However, the conventional DPD 

techniques cannot meet the strict timing requirements of 5G and 6G wireless connections.  The 

transmitter nonlinearities are a function of various parameters such as input signal average power 

and ambient temperature and steering angle in the case of beamforming.  

This thesis studies the effect of ambient temperature and signal’s average power on high-power 

PAs and proposes a novel DPD technique to mitigate the effect of those parameters on the PA 

behaviour. In another research, the effect of beamforming on the transmitter performance in terms 

of signal quality and out-of-band distortions are studied. A novel angle inclusive DPD for 

beamforming application is introduced to remove beamforming-related distortions and enhance 

the signal quality. This technique provides an uninterrupted linearization at any beam direction. 

The developed algorithms are verified using a realistic MIMO beamforming setup designed in the 

laboratory. The measurement results have shown that by using the proposed technique, the signal 

quality is substantially improved when compared to state-of-the-art techniques.   
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1 Chapter 1: Motivations and Introduction 
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1.1 Motivations and Introduction  

The need for higher-speed wireless communication systems has led researchers and 

scientists to develop new techniques to increase link speed and reliability. One way to increase the 

connection speed is to increase the spectral efficiency, i.e., sending more bits per hertz. To increase 

spectral efficiency, different modulation schemes like Orthogonal Frequency Division 

Multiplexing (OFDM) are used in WiMAX and Long-Term Evolution (LTE) applications, and 

Filtered Orthogonal Frequency Division Multiplexing (FOFDM) for in 5th Generation (5G) 

applications are developed [1]. Using higher-order Quadrature Amplitude Modulation (QAM) in 

5G applications also improves the connection speed; however, it increases the Peak-to-Average 

Power Ratio (PAPR). High PAPR reduces the Power Amplifier’s (PA) power consumption 

efficiency in wireless transmitters. To mitigate the PA nonlinearities, Digital Pre-distortion (DPD) 

is used. DPD is the inverse model of the nonlinearities in such a way that when it is cascaded with 

the PA, the output of the PA has a linear relation with the input signal. This improves the signal 

quality and reduces out-of-band distortions.  

 To further increase the spectral efficiency, beamforming transmitters are developed. 

Beamforming transmitters steer the beam toward the users located at different special locations. 

Beamforming and Multi Input Multi Output (MIMO) transmitters are prone to be noisier and more 

distorted since crosstalk and coupling effects exist between the RF channels which degrade the 

signal quality. The DPD design for MIMO beamforming transmitter is more challenging compared 

to Single Input Single Output (SISO) DPDs as the nonlinearities and distortion are direction 

dependant i.e. varying versus steering angle. The DPD convergence time is another bottleneck in 

MIMO beamforming DPD design. The linearizer should be able to achieve the required 
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linearization performance within a limited time span (~ 1ms). Moreover, the base stations are 

supposed to operate at different environmental locations at different transmitting power. The 

environmental and transmitter setting parameters also influence the transmitter behavior, making 

them vital to be considered in DPD design.  These challenges make the beamforming DPD design 

more difficult compared to the SISO DPDs.  

1.2 Research Objectives and Contributions 

Considering the challenges ahead of beamforming DPD design, this thesis focuses on 

introducing a smart DPD technique for both SISO and MIMO beamforming transmitters for 5G 

applications. More specifically, this work aims for three main objectives listed as follows: 

1. MIMO beamforming wireless transmitter platform design procedure 

To validate a beamforming DPD algorithm for practical applications, a reliable 

beamforming setup is essential. This thesis provides a detailed procedure to design and 

implement a MIMO beamforming platform using off-the-shelf products. Moreover, a 

systematic procedure to calibrate and test the MIMO platform is proposed.   

 

2. Angle Inclusive Beamforming DPD for phased array transmitters  

Direction dependency of the distortions in beamforming transmitters requires the DPD 

coefficients to be updated at each steering direction. DPD identification is time-consuming, 

and the transmitter might not be able to meet the timing requirements. 5G wireless 

transmitters are supposed to have lower than 1ms latency. This latency is the time between 

transmitting and receiving information. Therefore, the DPD convergence time need to fast 
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so that it transmits high quality signal while meeting the ACPR mask for the operating 

frequency [51]. This thesis proposes an Angle Inclusive DPD (AI-DPD) architecture that 

includes the beam steering direction in the DPD model. The AI-DPD provides 

uninterrupted linearization across the steering range and reduces the hardware complexity 

by eliminating the need for a dedicated linearization performance for each subarray.   

 

3.   Effect of ambient temperature and signal’s average on the PA’s performance 

Wireless base stations are supposed to operate in different environments with a large span 

of temperature variation. The Signal’s average power also affects the PA’s junction 

temperature and alters the behavior of the PA. This thesis studies the effect of both ambient 

temperature and signal’s average power on the PA’s behavior jointly and proposes a DPD 

technique that includes both factors in the DPD model. The proposed Power-Temperature 

Inclusive DPD (PTI-DPD) provides uninterrupted linearization performance at any 

combination of DPD parameters and reduces the training complexity as it requires few 

training conditions. 

 

1.3 Thesis outline  

Chapter II studies the state-of-the-arts DPD techniques for both SISO and MIMO 

beamforming applications. This chapter provides a deep insight into work that has been done by 

other researchers and studies the advantages and disadvantages of these techniques.   
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Chapter III provides the design, implementation, and calibration details of MIMO phased 

array antenna transmitters. The platform design is described in three sections. The first section 

discusses the digital tools and the FPGA design for MIMO beamforming platforms. Then, system 

interconnections are discussed. Section 2 discusses the frequency coherence and phased array 

antenna and provides a calibration procedure for MIMO wireless systems. This section discusses 

the calibration to remove any DC offset, IQ imbalances, and any phase variation in RF channels. 

Moreover, a validation test is proposed to observe the quality of the calibration.  

Chapter IV proposes an angle-inclusive DPD for beamforming applications using the 

Convolutional Neural Network (CNN). For the NN or CNN model to be able to provide the best 

modeling performance, as well as lower complexity, it should be fed with the right information. 

This chapter studies the important parameters affecting the beamforming transmitter and proposes 

an input image with pre-processed data to increase the modeling performance.  

Chapter V studies the effect of the ambient temperature and the signal’s average power on 

the PA performance. The performance of a high-power Doherty PA under different ambient 

temperatures and signal’s average power has been studied. It has been observed that the ambient 

temperature and the signal’s average power variation have a destructive effect on the linearization 

performance. To address this issue, a novel PTI-DPD is developed to compensate for the 

distortions under varying ambient temperature and the signal’s average power conditions.  

The final chapter summarizes this thesis and discusses future works and recommendations.  
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2.1 Background and SISO DPDs  

Power amplifiers are the most power-hungry parts of wireless systems and it is important 

to operate them in high-energy efficiency regions. Figure 2.1 shows the Power Amplifier Added 

Efficiency (PAE) of a custom PA as a function of input power. The PAE is calculated as follows:  

𝑃𝐴𝐸 =
𝑃𝐴𝑅𝐹𝑜𝑢𝑡−𝑃𝐴𝑅𝐹𝑖𝑛

𝑃𝐷𝐶
                                                                (2.1) 

Here the 𝑃𝐴𝑅𝐹𝑜𝑢𝑡 and 𝑃𝐴𝑅𝐹𝑖𝑛 are the RF output power and RF input power, respectively. 

The 𝑃𝐷𝐶   is the drawn DC power from the power source. The closer to the saturation region (higher 

output power), the higher the efficiency of a PA. Higher PAPR signals force average power to 

operate at power back-off regions with low power efficiency. To increase the power efficiency, 

the PA is pushed to operate closer to saturation regions. However, the PA presents a highly 

nonlinear behaviour in these regions.  

 

Figure 2.1 Power Added Efficiency of a custom designed PA versus output power at different 

frequencies [2]. 

 

Power Added Efficiency of a custom designed PA versus output power at different frequencies 

[2]. 

There are no sources in the current document. 
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The nonlinear behaviour of the PA reduces the signal quality presented in the term of 

Normalized Mean Square Error (NMSE) and increases the Adjacent Channel Power Ratio 

(ACPR). The NMSE and ACPR are calculated as follows:  

𝑁𝑀𝑆𝐸 =  10. 𝑙𝑜𝑔 (

1

𝑁
∑ [(𝐼(𝑛)−𝐼′(𝑛))

2
+(𝑄(𝑛)−𝑄′(𝑛))

2
]𝑛=𝑁

𝑛=1

1

𝑁
∑ [(𝐼(𝑛))

2
+(𝑄(𝑛))

2
]𝑛=𝑁

𝑛=1

)                         (2.2) 

𝐴𝐶𝑃𝑅 =
𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙
                                 (2.3) 

 Where N is the number of samples. 𝐼′, 𝑄′, 𝐼 and 𝑄 are the modeled and measured I and Q data, 

respectively.  

The ACPR and signal quality are very important, and they are determined by the regulatory 

organizations. Higher ACPR causes interferences with adjacent channels and reduces the 

sensitivity or may even block other receivers. Therefore, it is crucial for a transmitter to meet the 

ACPR standards.  

In order to understand the effect of nonlinear behaviour of the PA on the ACPR of the 

transmitter, let us assume the PA output can be described using 5 order polynomials as follows: 

𝑃𝑜𝑢𝑡 = 𝑎0 + 𝑎1. 𝑥 + 𝑎2. 𝑥
2 + 𝑎3. 𝑥

3 + 𝑎4. 𝑥
4 + 𝑎5. 𝑥

5                         (2.4) 

Where the 𝑎𝑛 is the polynomial coefficient for 𝑛𝑡ℎ order term and 𝑥 is the input signal to the PA.   

And input 𝑥 is: 

𝑥 = 𝐴𝑒(𝑤1.𝑡+𝜌1)𝑗 + 𝐵𝑒(−𝑤2.𝑡+𝜌2)                                            (2.5) 
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 Using two tone excitation technique, the PA output inter-modulation products can be 

predicted. The 𝑃𝑜𝑢𝑡 contains the frequencies presented in TABLE 2.1. The main culprits for 

increased ACPR in the adjacent channels are the  2𝑤1 ∓ 𝑤2 , 𝑤1 ∓ 2𝑤2  called third order inter-

modulations and for the raised ACPR in alternate channel are  3𝑤1 ∓ 2𝑤2 ,  2𝑤1 ∓ 3𝑤2 called 

fifth order inter-modulations. Generally speaking, odd order inter-modulations are closer to the 

main frequency band, more difficult to filter out and they increase the ACPR.  

To compensate for the introduced nonlinearity to the transmitted signal, Digital Pre-

Distortion (DPD) technique is used [2]. Figure 2.2 illustrates the basic operation of the DPD.  DPD 

is the inverse model of the transmitter nonlinearities in way that when it is cascaded with the 

transmitter, the final output has a linear relation compared to the input signal. Using DPD 

technique, the PA can operate in higher efficiency regions with a good linearization performance 

across the steering range. 

Table 2-1 Inter-modulation products using two tone excitation signals 

Nonlinearity order Inter-modulations frequency 

First order 𝑤1, 𝑤2 - - 

Second order 2𝑤1, 2𝑤2 𝑤1 ∓ 𝑤2 - 

Third order  3𝑤1, 3𝑤2 2𝑤1 ∓ 𝑤2 
𝑤1 ∓ 2𝑤2 

- 

Forth order 4𝑤1, 4𝑤2 2𝑤1 ∓ 2 𝑤2 

 

𝑤1 ∓ 3𝑤2 
3𝑤1 ∓ 𝑤2 

 

Fifth order 5𝑤1, 5𝑤2 4𝑤1 ∓ 𝑤2 
𝑤1 ∓ 4𝑤2 

3𝑤1 ∓ 2𝑤2 

2𝑤1 ∓ 3𝑤2 
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2.1.1 State-of-the-art SISO DPD  

So far, different DPD techniques are proposed for Single Input Single Output (SISO) Radio 

Frequency (RF) transmitters. Look-Up Table (LUT) DPD is the simplest architecture to linearize 

a wireless transmitter. In this technique, the signal power is quantized into N points and a complex 

number is multiplied to signal in each level [4]. Volterra series [5] is the most accurate and complex 

way of modeling the PA behaviour. Equation (2.6) presents the estimated PA output 𝑦 using 

𝑝𝑡ℎ Volterra Kernels order ℎ𝑝, applied to input signal 𝑥(𝑛) with 𝑚𝑝 memory depth.  

𝑦(𝑛) = ℎ0 + ∑ ∑ …∑ ℎ𝑝(𝑚1,𝑚2, …𝑚𝑝)
𝑚𝑝=𝑏

𝑚𝑝=𝑎
𝑚1=𝑏
𝑚1=𝑎 . ∏ 𝑥(𝑛 − 𝑚𝑘)

𝑘=𝑝
𝑘=1

𝑝=𝑃
𝑝=1              (2.6) 

 Due to the excessive complexity of Volterra series, it is not a suitable model for practical 

application. Memory polynomial is a simplified version of Volterra series which is widely used 

for PA modeling and DPD design [6]. The output a PA modeled using memory polynomial is 

calculated as follow:  

y(𝑛) = ∑ ∑ 𝑎𝑘,𝑚 ·  𝑥(𝑛 −  𝑚)  ·  |𝑥(𝑛 −  𝑚)|𝑘−1𝐾−1
𝑘=1

𝑀−1
𝑚=0                           (2.7) 

 

 

Figure 2.2 Basic DPD concept for a SISO system 

 

 

 

Figure 2.  
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Here the 𝑦(𝑛) and 𝑥(𝑛) are the PA output and input samples respectively. The 𝑎𝑘,𝑚 is the 

coefficient corresponding to the 𝑚𝑡ℎ memory depth and 𝑘𝑡ℎ nonlinearity order. A more accurate 

way to describe the PA behaviour is using Generalized memory polynomial. The Generalized 

memory polynomial is an augmented version of memory polynomial with cross-terms that 

increases the modeling accuracy. Generalized memory polynomial has been widely used for DPD 

architecture in both academy [7] and industry.  Some other approaches adopt more advanced 

techniques like Neural Network (NN) [8][9][10] or Convolutional Neural Network (CNN) [11]. 

As illustrated in Figure 2.3, the authors in [11] have used the CNN to linearize wideband signals. 

The input IQ signal with 𝑀 delays and 𝐾 nonlinearity order are organized into a 2-D array, and 

used to train the DPD model. The CNN is composed of layer of convolutional layer cascaded with 

a shallow neural network to generate the DPD signal. They have shown the proposed DPD in [11] 

is able to show a better performance in comparison to the other techniques. However, their 

technique is a very primitive application of the CNN and they were not able to benefit from all 
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Figure 2.3 The architecture of the developed DPD for wideband signal linearization [11] 
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aspects of the CNN. The authors have not provided the DPD model with information about the 

signal or PA conditions; therefore, all the feature extraction burdens are on the CNN model which 

substantially increases the model complexity. In similar research in [12], the CNN is used to train 

a direct and indirect learning DPD to linearize high baud-rate signals transmitted over fiber. They 

have used three layers of CNN to pre-distort the signal as it is shown in Figure 2.4. The section A 

and C shown in Figure 2.4 are the convolving layers which are linear operations, and the section 

B is a fully connected NN which models the nonlinear behaviour of the system. They have shown 

how using the architecture shown in Figure 2.4 substantially improves the performance in 

comparison to other techniques.  

 Figure 2.5 shows the architecture of the DNN SISO DPD developed in [10]. The inputs to the 

system are the delayed version of the modulated signal.  The main disadvantage of these techniques 

is that their models do not consider other important factors like signal’s average power, reflection 

coefficients, and ambient temperature that manipulate the PA behavior. To address this issue, the 

authors in [13] have proposed a reflection coefficient-aware DPD model using a cross-over [14] 

 

© 2022 IEEE 

Figure 2.4 The architecture of the proposed CNN-DPD in [12]. 
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memory polynomial. In this technique, the DPD coefficients are updated based on the reflection 

coefficients under mutual coupling. The output 𝑦(𝑛) of the first PA in the presence of cross-talk 

due to input signal 𝑥1and 𝑥2  of is calculated as follows [13]: 

𝑦(𝑛) =  ∑ ∑ 𝑎𝑚1,𝑝1
(Γ). 𝑥1(𝑛 − 𝑚1). |𝑥1(𝑛 − 𝑚1)|

𝑘1 ×

𝐾1

𝑘1=0

𝑀1

𝑚1=0

|𝑥2(𝑛 − 𝑚1)|
𝑘1

+ ∑ ∑ 𝑎𝑚2,𝑝2
(Γ). 𝑥2(𝑛 − 𝑚2). |𝑥2(𝑛 − 𝑚2)|

𝑘2 ×

𝐾2

𝑘=0

𝑀2

𝑚2=0

|𝑥1(𝑛 − 𝑚2)|
𝑘2 (2.7) 

Where Γ is the coefficient reflection, 𝑎𝑚1,𝑘1
(Γ) denotes the reflection dependant model 

coefficients with 𝑘1 nonlinearity other and 𝑚1 memory depth. They have observed that the 

reflection-aware DPD is able to significantly improve the ACPR and NMSE of the error between 

the original and received signal.  

 

© 2020 IEEE 

Figure 2.5 Deep Neural Network DPD for SISO applications [10]. 
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The PAs behaviour is also a function of signal’s average power. A power adaptive DPD 

model based on memory polynomial is proposed in [15] where the model coefficients are selected 

based on the signal’s average power. Figure 2.6 illustrates the principle of the [15] model 

operation. In this technique, a reference DPD is extracted at a certain power in parallel to linear 

and nonlinear corrections to model the PA at different power levels.  

In another work [16], a two-box parallel DPD architecture is proposed to mitigate the effect 

of signal’s average power. Figure 2.7 shows the architecture of the proposed technique in [16]. 

They have shown that PA behavior can be classified into static and dynamic behavior. The 

dynamic behaviour is a function of signal’s bandwidth, and it is modeled using a memory 

polynomial. The static behaviour is a function signal’s average power, and a LUT is provided to 

compensate for any variation in PA behaviour due to signal’s average power. 

 

© 2015 IEEE 

Figure 2.6 The principle of the power adaptive model operation [15]. 
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In very recent research in [17] (this paper has been published contemporary to the work 

done in this thesis), the authors have proposed an intelligent sensing technique that considers the 

signal’s average power, bandwidth and modulation scheme to pre-distort the signal accordingly. 

To reduce the complexity of the neural network, a self-sensing module is designed. The self-

sensing module is composed of different functions extracting bandwidth, signal power and PAPR 

of the signal. The outputs of the self-sensing module are used to model the proposed DPD 

architecture [17]. Moreover, the model in [17] contains static polynomial block to capture the static 

features. The architecture of the proposed DPD is shown in Figure 2.8. The final output of the 

model is a NN fed with inputs from self-sensing module, static polynomial kernels and the input 

modulated signal.   

 

 

© 2013 IEEE 

Figure 2.7 The architecture of the proposed power scalable DPD in [16]. 
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In addition to the aforementioned factors affecting the PA behaviour, there are other 

environmental parameters such as ambient temperature. The cellular base stations are supposed to 

operate in environments where the ambient temperature can range from -40° Celsius to +50°. To 

maintain the signal quality, the effect of ambient temperature on the PA behaviour should be 

compensated. So far, no existing DPD architecture has considered the ambient temperature in their 

DPD architecture.  

 The previously established DPD architectures consider up to one important factor 

affecting the PA’s behavior (i.e. input signal and one factor) and they ignore the rest of the 

parameters. This thesis bridges this gap and introduces a novel DPD model that includes the 

modulated signal, ambient temperature, and signal’s average power to pre-distort the signal using 

Artificial Intelligence (AI).  

 

© 2022 IEEE 

Figure 2.8 The architecture of self-sensing DPD [17]. 
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2.2 MIMO beamforming DPD 

The upcoming generations of internet connections are expected to support an enormous 

number of users with increasing demand for faster connection speed. Considering the limitations 

in the available frequency spectrum, Multi Input Multi Output (MIMO) beamforming transmitters 

are developed for further improvement in spectral efficiency. As shown in Figure 2.9, in MIMO 

beamforming the same frequency band can be used, but in different directions. The narrower the 

steered beam, the more the number of supported users in the same frequency band and the greater 

the spectral efficiency. Beamforming transmitters benefit from phased array antennas to steer the 

beam toward the users. Generally, there are three types of beamforming: digital beamforming, 

analog beamforming, and hybrid beamforming [18].  In digital beamforming, the weights of 

antenna elements are applied in the digital domain to the base-band signal. Digital beamforming 

is more accurate and has been deployed in many satellite applications [19], but it is more expensive 

and bulkier compared to the other techniques. However, it is suitable for satellite and military 

applications. Analog beamforming uses lens or analog phase shifters to concentrate the beam 

toward the users [20]. The hybrid beamforming uses digitally controlled analog phase shifters [21]. 

Due to quantization error in analog phase shifters, there is always an error in hybrid beamformers. 

Nevertheless, hybrid beamformers are suitable for commercial massive MIMO beamforming 

transmitters as they reduce the hardware complexity. 
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In addition to the aforementioned challenges in SISO wireless transmitters, by increasing 

the number of RF channels in the MIMO beamforming, the crosstalk and coupling effect between 

the antenna elements increases. Coupling effect is the electromagnetic leakage of the adjacent RF 

channels to other channels. The coupling effect changes impedance matching of the antenna and 

causes a reflection in the RF transmission path, thereby degrading the signal quality. More 

importantly, the coupling effect is a function of steering angle, and it varies as the beam is steered 

toward the different directions [22]. As depicted in Figure 2.10, if the crosstalk happens before the 

nonlinear component like PA, it is nonlinear. If crosstalk happens after PA, between antennae, it 

is linear crosstalk. The more compact the antenna elements, the greater the coupling effect. In 

 

Figure 2.9 Operation of MIMO beamforming wireless transmitter. 
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industrial applications, the RF front ends target a trade-off between the antenna size and the 

coupling effect.  

There are many challenges ahead of deploying massive MIMO beamforming DPDs for 5G 

applications. The first challenge is the strict timing requirement for the DPD to converge. Radio 

base stations are supposed to operate at variable average power, ambient temperature, different 

steering direction and other varying conditions. At different conditions, the transmitter’s behavior 

changes and the DPD coefficient should be updated.  For 5G applications, the latency between the 

transmitted signal and received one is expected to be 1 milliseconds [23]. This latency is the time 

between transmitting and receiving information. Therefore, the DPD convergence time-DPD 

reidentification time- need to fast so that it transmits high quality signal while meeting the ACPR 

mask for the operating frequency [23]. Such a strict timing requirement is difficult to satisfy. The 

other challenge is hardware complexity; having one dedicated observation path per subarray 

increases the hardware complexity, power consumption, and price of 5G cellular base stations. 

 

Figure 2.10 coupling effect between the antenna elements, nonlinear and linear crosstalk. 
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Many research groups have focused on introducing new techniques to address the linearization 

challenges for wireless transmitters. The following section studies the relevant state-of-the-art 

beamforming DPD techniques.  

2.2.1 State-of-the-art MIMO beamforming DPDs 

The DPD design for beamforming and MIMO transmitter is even more challenging than 

SISO DPD. As mentioned earlier, the direction dependency of the distortion, strict timing 

requirements for 5G, and the hardware complexity are the main challenges ahead of MIMO 

beamforming DPD design. The state-of-the-arts can be studied from two perspectives: feedback 

signal acquisition and beamforming DPD architecture. 

 As depicted in Figure 2.11, three techniques have been proposed to acquire the feedback 

signal. The first one shown in Figure 2.11 (a), is the far-field signal which is commonly used 

among researchers [24]. The second approach is the embedded receiver feedback path proposed 

in [25]. In the architecture shown in Figure 2.11 (b), the feedback paths are four antenna elements 

embedded in the antenna array operating a in time multiplexing method to collect data.  They have 

shown that a symmetric receiver antenna around the Tx array can provide enough data to 

reconstruct the main beam. The authors have used the fact that coupling effect between antennas 

can be expressed as amplitude and phase. In the first step, the coupling model is extracted and used 

to estimate the far-field signal using the feedback antenna from the radiated signal of each TX 

path. Using this technique and repeating the processes for all antenna elements, while eliminating 

the uncorrelated data (coming from other subarrays), the main beam is estimated. The authors 

assume the identical behaviour of PAs in each channel; this assumption is inaccurate as the RF 

chains do not behave similarly. Moreover, they have assumed that the signal is repeated to 

reconstruct the beam throughout the observed channels, while in base stations, the signal is not 
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repeated. Such objections question the credibility of the proposed method in [25] for commercial 

applications. The third feedback signal acquisition is using near-field fixed antenna [26] shown in 

Figure 2.11 (c). The authors in [26] have used a fixed antenna element to capture the main beam 

 
© 2018 IEEE 

 

(a) 

 
© 2019 IEEE 

 

(b) 

 
© 2019 IEEE 

 

(c) 

Figure 2.11.feedback signal acquisition using (a) far-field [24]; (b) near field embedded antenna 

elements [25]; (c) near field fixed antenna [26]. 
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and characterize the PAs. They have tried to simplify their technique to make it more practical by 

eliminating the need for couplers or switches while providing continuous transmission of data. It 

has been observed that in practical scenarios, for specific beam direction, the feedback signal can 

have a very low dynamic range and consequently, most of the nonlinear information falls below 

the noise floor. As a result, the DPD can not compensate for them. Therefore, using a fixed antenna 

for DPD identification is not able to linearize the beam across the whole steering range. 

The state-of-the-art beamforming DPDs can be divided into three classes of architecture. 

The following paragraphs study each DPD architecture and discuss the advantages and 

disadvantages of each technique. 

A.  Beam oriented Bo-DPD [24]: the far-field received signal is used to characterize the 

beamforming transmitter in the Bo-DPD. Figure 2.11 (a) and (b) depict the architecture 

of the Bo-DPD. Here, instead of linearizing each PA, the virtual far-field signal toward 

the desired direction is constructed and used to model the transmitter. The virtual beam 

is the sum of the PAs' signals in each sub-array. In Figure 2.11 (a) each RF channel is 

connected to couplers to monitor the signal. An RF observation path transfers the 

output of couplers to the PC in a time-multiplexing manner. This approach is not 

practical for applications where the number of RF channels is large. The second 

approach uses the embedded feedback receivers as shown in Figure 2.11 (b). Here, the 

couplers are removed but the observation path continues to work in a time-multiplexing 

manner to capture the output of RF channels. Equation (8) estimates the far-field virtual 

beam using the feedback signal through coupler [24] or embedded receivers [25].  

 

𝑦𝜃 (𝑛) = ∑ 𝑒𝑗(𝑖−1).𝜓 × ∑ ∑ 𝑎𝑘,𝑚 · 𝑥(𝑛 −  𝑚) · |𝑥(𝑛 −  𝑚)|𝑘−1𝐾−1
𝑘=1

𝑀−1
𝑚=0

𝑖=𝐼
𝑖=1    (2.8) 
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Here  𝜓 is a constant phase offset added to each RF channel for beamforming purposes, 

and the rest of the terms present a memory polynomial describing the PA behaviour in 

each RF channel. For the sake of simplicity, the PAs in RF channels are considered 

identical. In the case of MIMO beamforming transmitters, they have suggested an 

iterative approach to remove the uncorrelated signal from the observation path. Then, 

a memory polynomial is extracted to linearize the virtual beam at each direction. It has 

been observed that the beam behavior varies versus steering angle. This is mainly due 

to coupling effect variation related to beamforming weights. Therefore, the DPD 

coefficients need to be updated as the beam is steered toward the different directions. 

This requires the DPD identification to be fast enough to meet the 5G timing 

requirements. Moreover, Bo-DPD required an independent observation path for each 

subarray to monitor the transmitted signal for DPD coefficient re-identification as the 

beam is steered toward different directions. This makes the base station system bulkier 

and more expensive, and it is not practical for massive MIMO applications where a 

limited number of observation paths are available.  

 

B. Full angle DPD [27]: this technique is only applicable to a fully digital beamforming 

transmitter where for each RF channel, there is a digital path. Figure 2.12 shows the 

architecture of the proposed full angle DPD in [27]. In this technique, each PA is 

linearized individually by capturing the output signal from each channel. The DPD 

model is a two-box cascade DPD where a common DPD is extracted to model the 

common features and one fine-tuning box is considered per digital/RF channel to 

compensate for the difference in PA behaviour in each RF channel. The proposed 
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technique presents an acceptable linearization (≈20 dBc improvement) across the 

steering range without the need to update the DPD coefficients. However, this 

architecture requires a fully digital beamformer and a dedicated observation path for 

each element which makes this approach impractical for industrial applications. 

Moreover, the reason that the proposed technique in [27] is able to provide full range 

linearization is that the coupling between antenna elements are reported to be -19 dB 

which is too low to alter the behavior of the PA; while in practical scenarios, the 

coupling between antennae is stronger.   

C. Neural Network-based beamforming DPD [28]: Figure 2.13 shows the architecture 

of the DNN-DPD proposed in [28]. Here, the far-field sum of the PAs in each 

subarray is acquired to estimate the weight of a Deep Neural Network (DNN) that 

models the inverse behaviour of the transmitter. The DNN is trained using 17 angles 

across the steering range and generates a single pre-distorted signal that linearizes 

the signal across the steering range. The DNN-DPD is trained to minimize the Mean 

Square Error (MSE) over the steering range, and as a result, it can not provide the 

 

© 2019 IEEE 

Figure 2.12 The architecture of the full angle DPD proposed in [27]. 
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maximum achievable performance at each steering range. As the PA’s behaviour 

varies during the beamforming, the pre-distorted signal at each direction must be 

different from the other directions, otherwise, the maximum linearization is not 

achieved. This approach is very similar to SISO DNN [9][10] or CNN DPD [11] 

and the only difference is that the [28] is trained over 17 sets of data. 

The previously established beamforming techniques do not provide a practical DPD 

solution for 5G and other upcoming generations of internet connections as they either violate the 

timing requirements or increase the transmitter hardware complexity. This thesis addresses these 

issues by introducing a novel AI-based MIMO beamforming DPD that provides a low latency 

DPD and reduces the transmitter’s hardware complexity while offering a good linearization 

performance. 

 

© 2020 IEEE 

Figure 2.13 DNN-DPD for active array antenna linearization [28]. 

 

 



37 

 

2.3 Conclusion  

The DPD design is a very important part of the communication system to provide a higher 

quality stream of data to the users. The DPD design presents more challenges for upcoming 

generations of wireless connections as better signal quality as well as higher data rates are in 

demand. With increasing the signal bandwidth and stricter timing requirements, the conventional 

DPD techniques are not able to meet the standard requirements. The DPD design trend is now 

moving toward the artificial intelligence-based one as AI is more flexible and can provide higher 

quality signals compared to conventional techniques.  
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3 Chapter 3: MIMO beamforming platform design and calibration 
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3.1 MIMO beamforming platform  

The increasing need for higher internet speed and an enormous number of simultaneous 

users led to developing massive MIMO beamforming transmitters. The task of designing massive 

MIMO beamforming transmitters involves many challenges as they are composed of several RF 

channels in a compact area that increases the crosstalk and coupling effect. Moreover, commercial 

products used to design MIMO platforms have imperfections causing error and unexpected 

behaviour of the platform. Therefore, a systematic approach to calibrate and validate the 

performance of MIMO beamforming platforms is vital. Having a calibrated MIMO beamforming 

platform is also of great importance for proper functioning of the MIMO system. Indeed, due to 

the complexity of the system and the interaction and coupling between the different elements in 

MIMO beamforming transmitters, signal processing algorithms DPD and other algorithms are not 

reliable. 

 Generally, there are three techniques to develop MIMO beamforming platforms: using 

instruments, commercially available or custom design circuit boards for active phased array 

antenna or using commercial Software Defined Radio platforms. Designing a MIMO beamforming 

platform using signal generators is very expensive and impractical. In addition, it is hard to 

synchronize these instruments in time and frequency domain. On the other hand, using integrated 

options such as active array antenna may be cheaper, but it does not offer enough flexibility and 

re-configurability. The other approach is designing a MIMO wireless system using the commercial 

SDR platforms and components. Designing a MIMO beamforming DPD using commercial SDR 
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platforms and processing units is more challenging compared to other solutions and requires 

system calibration. The authors in [29] have tried to provide the design steps of an integrated 

MIMO platform. However, they have not used the available commercial products. There are other 

works trying to introduce a calibration procedure or design techniques [30][31], but none provide 

a systematic design and calibration procedure. The absence of a comprehensive procedure to 

design and calibrate MIMO beamforming platforms is the main motivation of this chapter. To 

address this gap, this chapter discusses a detailed procedure to design MIMO beamforming 

platforms using SDR solutions.  

The wireless MIMO beamforming platform design is discussed in four sections: section 1 

discusses an overview of the designed MIMO beamforming platform and the FPGA design, 

section 2 discusses the calibration steps and phased array antenna, and the last section presents the 

implemented MIMO beamforming platform.  
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3.2 5G Massive MIMO Transceiver Platform 

Figure 3.1 shows an overview of the designed MIMO beamforming setup. The platform is 

comprised of 4 MEGA BeeCubes. MegaBeecube is an SDR platform designed by National 

Instruments for research purposes. Each MEGA BeeCube includes 2 AD9361 Software Defined 

Radio (SDR) [32] platforms and 2 Zynq 7000 series. AD9361 is a 2×2 transceiver with 12-bit 

resolution Digital to Analog Converter (DACs) and Analog to Digital Converter (ADCs) and it is 

able to support a frequency range between 70MHz to 6GHz [32]. Each AD9361 is controlled using 

Zynq 7000 series [33] and can be configured as a receiver or transmitter. Zynq offers both the fast-

processing capabilities of the FPGA and software processing of ARMs. Using the Zynqs and 

AD9361 boards, all the RF paths are digitally controlled providing an ideal platform for algorithm 

verification. 

 

Figure 3.1 A top view of the designed MIMO beamforming architecture. 
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3.2.1 FPGA implementation of the transceiver 

The signal processing algorithms for RF systems are usually implemented on FPGA. Due 

to the high sampling frequency of base-band data, usually the signal processing algorithms are 

pipelined and processed sample-by-sample. This makes these designs to be delay-sensitive. Often, 

even one sample misalignment in processed data results in system failure. The FPGA designs for 

RF systems are usually implemented using System Generator- MATLAB tool [34]. This tool 

provides the users with pre-designed signal processing blocks with specific path delays. This 

feature helps when implementing the signal processing algorithms, even without a deep knowledge 

of FPGA architecture.  

 The designed MIMO beamforming FPGA platform is developed using the System 

Generator and it is composed of four independent FPGA designs with synchronization ports. In 

addition, each FPGA design contains an AD9361 control block, which is responsible to interface 

with the AD9361 transceiver and signal processing blocks.   

 



43 

 

3.2.1.1 FPGA design flow 

Figure 3.2 shows an overview of the digital system interfacing AD9361 SDR, ARM, 

FPGA, and PC. The PC can directly send and receive information from the ARM processor in 

Zynq. A Linux operating system is running on the ARM processor and the user can use Putty [35] 

or any other software to send commands to the Linux operating system. The AD9361 is connected 

to the ARM processor through an SPI connection and the user is able to configure the AD9361 

using Putty. The ARM processor acts as a gateway between the PC and FPGA to configure, 

transmit and receive data from the AD9361 SDR.  

To communicate with the AD9361 SDR, a series of dedicated blocks are developed by 

Beecube. The control units in these blocks are directly connected to the AD9361 control registers 

which help the developer to control the SDR platform using the Simulink blocks. The rest of the 

Xilinx blocks used in the FPGA design are described in [34]. 

  

Figure 3.2 A system overview of the digital system used to develop MIMO beamforming platform. 
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FMC112 Control:  this block is a control interface to AD9361, and it is directly connected to the 

transceiver physical pins. Using this block RF port can by dynamically configured as input or 

output.  

FMC112 RX: this is an interface with two channels configured as receiver. This block outputs the 

raw data captured by the ADC. The output format is a 12-bit two’s complement integer, and it is 

valid every four cycles. 

FMC112 TX: this is an interface with two 12-bit DAC i.e. transmitters channel. The input to this 

block is a 12-bit two’s complement integer.  

Read-Write Software Register: this is a 32-bit readable-writeable register. The software can read 

or write this register, but the hardware can only read it.  

 GPIO: this is General Pin In-Out (GPIO) that can be configured either as an input or output and 

it is directly connected to the FPGA. This is a one-bit port and can provide trigger or enable-disable 

signal for the FPGA board.  

Shared BRAM: this block creates a partition of block RAMs on FPGA, and it is accessible by both 

FPGA and software. The input data is 32-bit and maximum size of the BRAM is 216 rows of data. 

Figure 3.3 shows the block diagram of the FPGA design to interface with the AD9361 

SDR. In each FPGA design 2 FMC112-TX and FMC112-RX blocks are responsible to control the 

transmission and reception of the signal process using AD9361 and to transfer the data to FPGA. 

The Synchronization port is an input port to trigger the TX channels to operate simultaneously 

when it is set high. As illustrated in Figure 3.4, the trigger signal is generated in one arbitrary 

FPGA and it is divided into four channels to be fed to the other boards. Using this configuration, 
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all the channels start the transmission at the desired instance. Without this configuration, the 

beamforming transmitter will not operate correctly as the channels are not time-synchronized. 

 

Figure 3.4 Physical interconnection between the boards for time synchronization. 

 

 

 

 

Figure 3.3 The developed FPGA design to interface the AD9361 SDR. 
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3.2.2 System interconnections 

 For beamforming applications, two sets of phased array antenna are used to transmit 

signals at 2.35 GHz and 3.5 GHz. The designed platform is scalable either by adding more digital 

paths or connecting each digital path to a hybrid beamformer. In hybrid beamforming, each digital 

path is connected to a subarray and the elements in subarray are controlled using analog phase 

shifters. Moreover, the designed platform can operate in a multi-band beamforming scenario where 

each subarray transmits at a different frequency band. The final price of the designed platform 

using off-the-shelf products is cheaper than instruments such as vector signal generators; however, 

it requires calibration and impairment mitigation, which will be discussed later in this chapter.  

 The designed platform benefits from two observation paths: direct connection from each 

PA to receiver using SMA cables and a dipole far-field receiver. The far-field receiver is mainly 

used for DPD identification and beamforming analysis. The baseband signal is loaded from FPGA, 

and then pre-calculated beamforming weights are multiplied to the signal in the transmission chain. 

Next, the signal is up-converted, amplified, and transmitted through the phased array antenna. On 

the other end, the dipole receiver antenna captures the far-field signal; then it is down-converted 

and passed to the FPGA and PC for further analysis. The transmitted and received signal are used 

to extract the DPD model used to enhance the signal quality.  
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Figure 3.5 shows the different components of the transmission and receiver chain in detail. 

The original signal passes through a complex conjugate filter to remove the IQ imbalances and DC 

offset. Then, the signal is phase corrected to compensate for phase difference between the RF 

chains. There is a power control unit to set the output power to the desired value. Afterward, digital 

weights are introduced to the signal for beamforming purposes. Next, the signal is converted to 

analog, up-converted, amplified and transmitted through the phased array antenna. The receiver 

path is composed of a Low Noise Amplifier (LNA), Automatic Gain Controller (AGC), down 

converter and an ADC to send the signal to the FPGA. In FPGA, the signal is phased and time-

aligned with a reference signal, filtered and passed to PC for further analysis. 

 

Figure 3.5 Detailed view of the transmission and receiver chain of the designed MIMO beamforming 

architecture. 
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3.3 Platform Calibration 

For the MIMO beamforming platform to operate as expected, it needs to be calibrated. 

Figure 3.6. briefly summarizes the required calibration steps for the designed MIMO beamforming 

platform. The first step is to develop the FPGA design; then, the PA output power should be set to 

the desired value. The commercial IQ modulators contain imperfections and as a result, they 

introduce IQ imbalance and DC offset. For a higher signal quality, the IQ imbalances of the RF 

boards are removed using a complex conjugate filter. For a beamforming transmitter to operate 

properly, the RF channels must be frequency coherent. Since the RF boards use different Phase 

Locked Loop (PLL) to generate the RF frequencies, the phase of the generated frequencies are 

random. Therefore, there will be a constant phase offset between the output RF signals. To have 

identical RF outputs or, in another word, to have two coherent RF outputs from the transceivers, 

this phase offset should be compensated. The other aspect of frequency coherence is the frequency 

stability. For the two RF signals to be coherent, the center frequencies should be stable and 

identical during the time. There are two ways to have beamforming transmitters coherent: using 

an external Local Oscillator (LO) or using a common reference clock and feeding to the RF boards 

to generate their own LOs. Finally, to validate the quality of the calibration and frequency 

coherence of the transmitter, the phase offset compensation and cancellation test is carried out. In 

addition to validating the calibration, the cancellation test achieves phase coherence. You need to 

tune the phase difference between the paths to have a good cancellation result. When using a 



49 

 

common reference clock, frequency coherence only guarantees that LOs have the same frequency, 

but not necessarily the same phase. In the following sections, each of the MIMO beamforming 

design and calibration steps are discussed. 

 

 

 

Figure 3.6 Flowchart summarizing the required calibration steps for MIMO wireless systems with 

active antenna array. 

 

 



50 

 

3.3.1  IQ imbalances and DC offset 

As massive MIMO systems are designed using a commercial RF up-converter and down-

converter, they suffer from manufacturing imperfections causing IQ imbalance and DC offset. IQ 

imbalance can degrade the signal quality and beamforming accuracy [36]. The IQ imbalance is 

expressed as follows: 

𝑥𝑜𝑢𝑡−𝑚𝑖𝑥𝑒𝑟 = £. x + ¥. x∗                                                (3.1) 

where £ and ¥ are scaler numbers function of the amount of IQ imbalance, x is the complex 

envelope of the baseband I and Q input signals to the IQ modulator, x∗ represents the conjugate of  

x and 𝑥𝑚𝑖𝑥𝑒𝑟−𝑜𝑢𝑡 is the complex envelope of the mixer output. [37].  

 A first-order complex conjugate filter with 𝑀 memory taps is used to remove the 𝐼𝑄 

imbalances. The memory depth of the complex conjugate filter is determined based on the 

behaviour of the system. In beamforming setup, there are two ways to extract the complex 

conjugate filter coefficients, either using direct measurement or the subarray technique. Figure 

3.7 (a) shows the architecture of 𝐼𝑄 imbalance direct measurement technique. In the direct 

measurement, the RF output of each channel is directly connected to the receiver, and the 

received signal is used to extract a complex conjugate filter to remove the imbalances in that 

chain. This is the most accurate way; however, it is only applicable to fully digital platforms. The 

other technique is receiving the far-field signal and extracting a complex conjugate filter per 

subarray. Figure 3.7. (b) shows the architecture used to identify one 𝐼𝑄 imbalance filter per 

subarray. In this technique, the far-field signal, which is the sum of all PAs in one direction, is 

received and used to identify the 𝐼𝑄 imbalance filter. Table 3-1 reports the quality of a signal 

before and after applying the complex conjugate filter for different techniques operating in linear 
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region. The results show that using one complex conjugate filter per subarray can offer a 

relatively close performance to the case where each RF channel is 𝐼𝑄 imbalanced using an 

independent filter.  

 

Table 3-1 Effect of the complex conjugate filter on the IQ imbalances compensation. 

Filter  memory (M)  NMSE(dB) 

No filter -26.1 

Filter per channel M=3 -30.2 

Filter per channel M=5 -28.3 

One per subarray M=3 -29.1 

One per subarray M=5 -28.1 
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(a) 

 

(b) 

Figure 3.7 (a) IQ imbalance filter identification using direct calculation one filter per RF channel, (b)IQ 

imbalance filter identification using the far-field signal one filter per subarray. 
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3.3.2 Multi path synchronization  

3.3.2.1 Frequency offset 

Commercial transceivers suffer from imperfections and frequency offset between the 

desired and actual carrier frequency. To mitigate this frequency offset, a 50 kHz single tone signal 

is transmitted at the desired center frequency and the difference between the actual output 

frequency and the desired one is used to tune the center frequency to the desired one.  

3.3.2.2 Local oscillator phase calibration  

The Local Oscillator (LO) directly affects the signal quality as it converts the signal from 

base-band to radio frequency or vice versa. There are four aspects about the LO that need to be 

considered: the quality of the LO signal, the frequency stability, frequency offset, and the phase 

coherence of two LOs. Frequency stability means that the frequency does not drift over time. Phase 

coherence means that LOs have the same phase. As shown in Figure 3.8, there are two ways to 

design a phase-coherent system. Using an external LO generator is the most straightforward way; 

however, it makes the system bulkier and more expensive. Moreover, by increasing the number of 

boards, higher output power from the LO circuit is needed which increases the LO phase noise and 

reduces the signal quality. The other way to design a phase-coherent transmitter is using a common 

reference clock and feeding it to the PLL inside the RF boards to generate their own LOs. This 

technique is more practical for industrial applications; however, it requires more calibrations. As 

each transceiver has an internal Phased Locked Loop (PLL) to generate the LO signal, each LO 

signal has a different phase. In order to have two coherent RF transmitters, the phase offset between 
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them should be estimated and compensated. The phase difference ∆∅̃ between two RF transmitters, 

x1 and x2 is calculated as follows: 

x1 = xi
1. cos(2πfLOt + €1) + xq

1 . sin(2πfLOt + €1)                                            (3.2) 

x2 = xi
2. cos(2πfLOt + €2)…+ xq

2. sin(2πfLOt + €2)                                         (3.3) 

∆∅̃ = mean(phase (
x2

x1
))                                                                            (3.4) 

 

 
(a) (b) 

Figure 3.8 Typical techniques for Clock distribution in RF boards a): external LO, b): external reference 

clock. 
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Where 𝑥𝑖 and 𝑥𝑞 are the in phase and quadrature part of the original signal 𝑥, €1 and €2 are the 

phase offset of LO of the transmitter 1 and 2. 

There are two ways to estimate the phase difference between RF channels; direct 

measurement and over-the-air measurements. In the direct measurement technique, the output of 

each RF channel is directly connected to the receiver through an SMA cable. Then, the phase offset 

between the original signal and the received one is estimated using equation (3.4) and loaded into 

the transmission path. Direct measurement is the most accurate way, but not the only way. If the 

RF channels are not directly accessible, over the air measurement can be used. In this technique, 

only one radiating element is turned on at a time, and the far-field received signal is acquired. It is 

important to note here, that due to different physical distances between each element and the far-

field received signal, a phase offset is introduced to the received signal. The phase offset for the 

element in 𝑚𝑡ℎrow and 𝑛𝑡ℎ column relative to the reference element shown in Figure 3.9 is 

estimated as follows [38]:  

Wm,n = ∑ ∑ e
+j.(2π.

dx
λ

.(m−1).sin(θ) cos(ϕ))+j.(2π.
dy

λ
.(n−1).sin(θ) sin(ϕ))

     

N

n=1

               (3.5)

M

m=1

 

The λ is the signal wavelength, ϕ  is the elevation angle and θ is the azimuth angle. dx, dy are the 

distances between the adjacent elements in x-axis, y-axis, respectively.  
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First, the phase offset estimated using equation (3.5) should be excluded from the received signal 

and then the phase offset between the RF chain and the reference channel (which is the receiver) 

is calculated. It is worth noting that all the RF channels are phase-aligned relative to the receiver 

chain. The estimated phase offset is then loaded to the phase corrector register in the FPGA design 

shown in Figure 3.5.   

3.3.2.3 Phase offset compensation and Cancellation test  

In order to verify the coherence of the beamforming transmitter, it should be tested using 

a cancellation test.  All the RF channels in a subarray should be aligned in power, and coherent in 

frequency and in time. The time coherence means that all the RF channels transmit the same data 

at the same moment. As mentioned earlier, a time synchronization port has been developed and 

 

© 2002 IEEE 

Figure 3.9 Phased array antenna with 𝑑𝑥 , 𝑑𝑦  distance between the element is x and y direction, 

respectively. 
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used to trigger the transmitter simultaneously. The following instructions describe the cancellation 

test: 

1. The PAs are tuned to output the same power 

2. One signal is shifted by 180° and the other is transmitted without any change 

3. Two signals are summed in a combiner  

4. The output spectrum is displayed on a spectrum analyzer  

Figure 3.10 shows the output spectrum of the combined signal for two scenarios. If the RF 

front-ends are on the same board, they use the same phase locked loop (PLL). In this case, phase 

and frequency are coherent between the RF front-ends and the output spectrum is flat.  Ideally, the 

combined signal should be close to the noise floor but due to the controllability of the PAs and 

LOs, an average result of -15 dB cancellation is acceptable. 

 

Figure 3.10 Cancellation test results acquired from two RF port mounted on the same RF board and 

two RF ports mounted on different RF boards. 
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3.4  Phased array antenna 

The Beamforming technique is used to steer the transmitted signal in the direction of the 

receiver. Using this technique, the interference is reduced, the link security is improved, and 

spectral efficiency is enhanced. In beamforming, the data is transmitted using a phased array 

antenna. Figure 3.11 shows a phased array antenna used to transmit data at 3.5 GHz. A phased 

array antenna can be divided into groups of elements called subarrays. Each subarray can transmit 

the data independently from the other subarrays. There are three common beamforming 

techniques: analog beamforming, hybrid beamforming, and digital beamforming. Figure 3.11 

shows the architecture of the analog beamforming. In analog beamforming, an analog phase shifter 

is used to introduce a phase offset to each RF path. The other technique is called hybrid 

beamforming. Figure 3.12 illustrates the architecture of the hybrid beamforming. In hybrid 

 

Figure 3.11 Phased array antenna design to operate at 3.5 GHz center frequency. 
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beamforming, the phase offset to each RF path is introduced using a digitally controlled analog 

phase shifter. The beamforming can also be done using fully digital transmitters too. As shown in 

Figure 3.13, in fully digital beamforming, each RF path is connected to a digital path and the 

appropriate phase offset is introduced on the baseband signal. Currently, hybrid beamforming [39] 

and digital beamforming have drawn attention from both academy and industry. However, the 

digital beamforming is more accurate and suitable for deployment as it provides more 

controllability. This chapter focuses on the digital beamforming.  

 

Figure 3.12 Architecture of the analog beamforming transmitter. 
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3.4.1  Beamforming   

The basic concept behind the operation of beamforming is that the distance between each 

element and the receiver is different and this causes a phase offset between the received signal 

from each radiating element. The received signal from the element in the 𝑚𝑡ℎ row and 𝑛𝑡ℎ column 

is calculated as follows [38]: 

x̃m,n(t)

= x(t). ∑ ∑ e
j(2π.

dx
λ

.(m−1).sin(θ) cos(ϕ)+(m−1).θ)
  × e

j(2π.
dy
λ

.(n−1).sin(θ) sin(ϕ)+(n−1).ψ)

 

N

n=1

 

M

m=1

       (3.6) 

with  

 

Figure 3.13 Architecture of the hybrid beamforming transmitter. 
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−2π.
dx

λ
. sin(θ) cos(ϕ) = θ                                                    (3.7) 

and  

−2π.
dx

λ
. sin(θ) sin(ϕ) = ψ                                                        (3.8) 

The λ is the signal wavelength, ϕ  is the elevation angle and θ is the azimuth angle. dx, dy are the 

distances between the adjacent element in x-axis, y-axis, respectively.  

Equation (3.7) estimates the phase offset between two signal paths. The first path is from 

the reference antenna element of the antenna array, which is the element in the first row and first 

column to the receiving antenna, to the receiving antenna. The second is from another antenna 

element to the receiving antenna. To steer the beam in a given direction, the received signals from 

 

Figure 3.14 Architecture of the digital beamforming transmitter. 
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all the transmitting antenna array elements should be in-phase. To do so, the transmitted signal in 

the second path is shifted by the opposite of the phase difference obtained by equation (3.7). There 

are different beamforming algorithms and techniques [40] [41] to increase the accuracy of the 

beam steering, which are not the focus of this thesis. 

3.4.2  Phased array antenna specifications 

The developed MIMO beamforming setup transmits data using two 5×4-element phased 

array antenna operating at 3.5 GHz and 2.35 GHz center frequency using two different antenna 

arrays. The 3.5 GHz phased array antenna has a gain of 17 dB and beamwidth of 27°. The 2.35 

GHz phased array antenna gain is equal to 12 dB and beamwidth is 34°. Figure 3.15 shows the 

measured radiation pattern of the 2.35 GHz phased array antenna when it is steered toward the 0° 

and -30°. The phased array antenna should be tested and calibrated for any phase or gain offset 

between the different paths of the transmitted signal. The RF signals in the phased array antenna 

used in the developed MIMO beamforming platform are directly connected to the back of the 

radiating element to eliminate any phase or gain variation of the transmitted signal. However, the 

phase and gain offset can be generated from different sources such as cables, connectors, and RF 

circuitry. Therefore, phase and gain calibration are important to increase the beamforming quality.  

3.5  Designed MIMO beamforming platform 

Figure 3.16 (a) shows the architecture of the designed MIMO platform. A 19.2 MHz 

reference clock generate from one RF board is power divided and fed to other boards. The RF 
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boards use this reference clock to generate their own LO using the built-in PLL. A time trigger 

signal is also generated in one board and fed to the other three to synchronize them.  

The phased array antenna is connected to the AD9361 boards. To reduce the reflections 

and acquire repeatable results, the far-field receiver is fixed in an absorber cage and the transmitter 

 
(a) 

 
(b) 

Figure 3.15 Azimuth cut of 4x4 phased array antenna for both simulation results and measured 

value at; a) 0°,b) 30°. 
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is rotated in the inverse direction of the beamforming using a computer-controlled rotary. The 

receiver is set 3 meters away to capture the far-field signal. Figure 3.16 (b) shows the implemented 

setup in the laboratory. 

The system is calibrated based on the instructions given in Section 3.3. In the first attempt to 

analyze the performance of the signal, the signal is transmitted toward 25°angle and the far-field 

 
(a) 

 

 

(b) 

Figure 3.16 (a): Schematic of the 16-channel MIMO digital beamforming with over the air signal 

acquisition. (b): Implemented version of the MIMO digital beamforming platform. 
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signal is received with the horn antenna. The received signal is then used to identify a DPD with 

3 memory taps and a nonlinearity order equal to 12. The power spectrum of the calibrated and 

noncalibrated transmitted signal are shown in Figure 3.17. The results show that the calibration 

increases the dynamic range and quality of the signal. The DPD extracted using a calibrated system 

achieves a linearization performance with -48 dBc Adjacent Channel Power Ratio (ACPR) while 

only -45 dBc ACPR is obtained with a noncalibrated system. One way to observe the impact of 

calibration on the signal quality is by plotting the spectrum of the error signal, which is the 

difference between the original signal and the output of the transmitter. The results show that the 

calibrated system offers better performance. The Normalized Mean Square Error (NMSE) of the 

difference between the original signal and the received one for calibrated and uncalibrated systems 

are -34.3 dB and -26.7.  The NMSE of the difference between the transmitted signal and the 

received one is calculated using equation (2.2) presented in chapter 2. 

  

 

Figure 3.17 Spectral power of the received signal with and without calibration received using power 

spectral analyzer. 
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3.6 Conclusion  

The need for a detailed procedure to design MIMO beamforming platform motivated this 

chapter. This chapter proposed a detailed calibration and design procedure to develop MIMO 

beamforming platforms using off-the-shelf commercial products. The FPGA design and blocks to 

interface the SDR platform, and PC are discussed. Two techniques to mitigate the IQ imbalances 

and the DC offset were introduced. The system interconnections, including the LO connections 

and synchronization signals are developed. Finally, the cancellation test to observe the system 

coherence in time and frequency is carried out. The measurement results using the developed 

MIMO beamforming platform shows that the platform can provide an acceptable performance in 

terms of NSME and ACPR of the transmitter signal. This developed and calibrated MIMO 

platform will be used in the remainder of the thesis to test and validate signal processing algorithms 

to improve the linearization performance in MIMO and beamforming transmitters.    
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4 Chapter 4: Angle inclusive beamforming DPD for phased array 
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4.1 Introduction 

Massive MIMO beamforming platforms suffer from nonlinear distortion that varies as a 

function of the transmission direction in addition to the severe crosstalk between the radiating 

elements. Moreover, the bulkiness of the base stations is an issue that needs to be addressed. To 

reduce the number of digital chains in beamforming transmitters, hybrid beamforming is used. 

Using this technique, only one digital chain is used per subarray. There are two remaining 

bottlenecks, the hardware complexity and the online identification of the DPD coefficients. To 

address this issue, this chapter proposes a novel Angle-Inclusive Digital Pre-Distortion (AI-DPD) 

that models the beamforming transmitter and provides uninterrupted linearization across the 

steering range.  Moreover, it reduces the hardware complexity by eliminating the need for an 

independent observation path for each subarray. The proposed AI-DPD is implementable using 

Artificial Intelligence (AI) to model the behaviour of the beamforming transmitter across the 

steering range. The main novelty of the AI-DPD is the ability to include and capture the effect of 

steering the beam angle on the transmitter’s nonlinear behaviour. 

 AI has shown to be a very powerful and handy technique when it comes to problems where 

scientists cannot devise a solid mathematical representation to describe the problem or when the 

mathematical representation is too complex for practical applications. Despite the common belief 

that AI algorithms increase the system complexity, in this chapter we will prove that AI algorithms 

can reduce the complexity in massive MIMO, if it is designed for the right application. With the 

increasing applications of AI in the modern world, many vendors are providing open-source code 

and libraries as well as hardware to carry out the AI computations faster and more efficiently [42]. 

There are different types of AI models and studying them is out of the scope of this thesis. This 
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chapter focuses on designing the AI-DPD using Convolutional Neural Network (CNN). CNN has 

proven to be able to provide strong modeling capabilities while reducing the complexity compared 

to other artificial intelligence models. It also reduces the model identification complexity by 

reusing the parameters of the convolutional layer in different operating conditions. To review the 

CNN model, the following sections discusses the CNN architecture and its operation concepts in 

details. 

4.2 Convolutional Neural Network  

The primary application of the CNN is to categorize the images that a machine receives. 

CNN reduces the gap between human and machines by enabling the computer to distinguish 

different objects. The CNN is famous for its capability to extract image features and categorize the 

image features which is widely used in autonomous car and other image processing applications. 

However, its application is not limited to image processing, and it can be used in variety of 

applications. 

 

Figure 4.1 Top view of a typical convolutional neural network architecture. 
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  Figure 4.1 depicts the general architecture of a typical CNN model. The CNN layers are 

similar to deep neural networks. The main differences are convolutional layer and pooling layer. 

Convolutional layer is composed of a series of convolving filters responsible for extracting image 

features. The pooling layer is responsible for down sampling the data and reducing the data size.  

The output of the last pooling layer is passed to a fully connected neural network to generate the 

output data. The output data can be used either for classification or generating an output number.  

CNN is trained using input-output pairs of the system to train the filter coefficients, biases 

and Neural Network (NN) weights. One of the main advantages of the CNN over the other 

techniques, is the possibility of using the already trained convolutional layer for re-training the 

CNN network which is called transfer technique [43]. The other important feature of the CNN is 

called shared parameter in which the output of the feature maps (output of convolutional filters) 

use the same weight to feed the data to the fully connected neural network layer [44].  

4.2.1 Input image 

The input image contains the input data information in 2-D format as it is illustrated in 

Figure 4.2. The input image could be an image captured by a camera or another information which 

are organized into a 2-D array.  

4.2.2 Convolutional layer 

  Figure 4.2 illustrates the basic concept operation of the convolutional layer. This layer is 

responsible for extracting the image features and passing them to the pooling layer. The 

convolutional layer is composed of several filters called feature extractors. In CNN convolutional 

layer, each filter slides over the input image, performs a dot operation on each input pixel, sums 

the results, and projects it to another pixel in the next layer. Figure 4.3 presents an example 
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showing the operating concept of the convolutional layer. An example of the input volume is 

shown in Figure 4.3 as an image of size 5×4. Three convolutional filters with size 3×3 are used in 

this example as shown in the figure. Each filter slides over the input volume and in each position, 

it generates one element of the output volume. For example, when the filter W0 is in the position 

 

Figure 4.2 The operation concept of the convolutional layer [47]. 

 

 

 

IEEE @ 2021 

Figure 4.3 An example showing the convolutional filter operation [11]. 
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shown in the figure, the output consists of the activation function 𝑓𝑐 applied to the sum of the 

result of the convolution added to the bias as follows: 

f c  ( (-0.5) ˑ 0 + (-0.77) ˑ (-1)  + (-0.9 ) ˑ 0 + 0.65 ˑ 0 + 0.78 ˑ 0 + 0.75 ˑ (-1) + 0.82 ˑ 1 + 1.1 ˑ 1 + 

1.17 ˑ 1 + 0.5 ) = 3.61 

4.2.3 Activation function  

As it is shown in Figure 4.3 the output of each filtering iteration is passed through an 

activation function to generate the output pixels. Activation function is a nonlinear function that 

generates the data for the next layer. There are different types of activation functions. The most 

common activation functions as given below: 

Relu: max (𝑥, 0)                                                 (4.1) 

LeakyRelu : max (𝛼𝑥, 𝑥)                                         (4.2) 

Sigmoid: 
1

1+𝑒−𝑥.                                                  (4.3) 

ELU:{
𝑥 ;  𝑥 > 0
𝛽(𝑒𝑥 − 1)

                                                    (4.4) 

Relu activation function is among the most used one as it reduces the complexity and also doesn’t 

trigger all the neurons at the same time. This reduces the hardware and computational complexity 

compared to the other functions.  

4.2.4 Pooling Layer 

Pooling layer is responsible for reducing the data size for the downstream layers and 

removing the unimportant features in the feature map.  The pooling layer can be either max-pooling 

or average-pooling function. In max-pooling techniques, the volume is divided into portions and 
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the maximum value of pixels in that portion is projected to the output volume. In the same manner, 

the average-pooling kernel maps the average value of each portion into the output volume. 

However, since the input image and feature maps in the AI-DPD are small, the pooling layer is 

omitted in AI-DPD.  

4.2.5 Fully Connected Neural Network layer 

 Fully connected neural network is a straightforward way to convert the extracted features 

into a physical or classified interpretation. The output of the convolutional layer or pooling layer 

is flattened into a vector and passed to the fully connected layer to generate the output data.  

 

4.3 Angle Inclusive Digital Pre-distortion  

Beamforming transmitters suffer from direction dependency of the distortions. This requires 

DPD re-identification as the beam is steered toward the different directions. However, the DPD 

re-identification requires both a dedicated observation path to monitor the nonlinearity and a strong 

processing unit to identify the DPD coefficient fast enough. The online updating of the DPD 

coefficients is time consuming and might prevent a transmitter to meet timing requirements. 

Moreover, during the DPD re-identification, the transmitter might violate the Adjacent Channel 

Power Ratio (ACPR) regulations and blocks the other receivers. To both provide an uninterrupted 

linearization-eliminates the need for online readaptation of the DPD coefficients-and eliminates 

the need for a dedicated observation path, the AI-DPD is introduced in this chapter.  The proposed 
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AI-DPD models the beamforming transmitter considering the directional behaviour of the 

beamforming transmitter. Figure 4.4 shows the basic operation concept of the AI-DPD. It takes 

the steering angle as well as the modulated signal as the inputs, and pre-distorts the signal 

accordingly. One way to include other parameters other than the modulated signal into the DPD 

model is using AI, as the inputs to the AI model can be easily augmented to encompass more 

parameters.  The proposed AI-DPD is composed of the basic layers described in section II. 

However, the input image and other layers are customized for the AI-DPD application. The 

following section discusses each AI-DPD layer in details.  

4.3.1 Input layer 

The AI-DPD input layer is an input image that contains the transmitter information. The 

input information to the model should be provided and organized in a way to both increase the 

modeling accuracy and reduce the model complexity. Equation (4.5) expresses the input image to 

 

Figure 4.4 Block Diagram of a beamforming transmitter using the proposed AI-DPD. 
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the AI-DPD model. The first input is 𝐼(𝑛 − 𝑚)    and 𝑄(𝑛 − 𝑚),  which are the in-phase and 

quadrature part of the input signal. The |𝑥(𝑛 − 𝑚)|𝑞 is the 𝑞𝑡ℎ order of 𝑚𝑡ℎ delayed version of 

the modulated input signal complex envelope.   

𝐼𝑚𝑎𝑔𝑒𝑖 =

[
 
 
 
 
 
 
 

𝐼(𝑛)          𝐼(𝑛 − 1)  𝐼(𝑛 − 2)  …  𝐼(𝑛 − 𝑚)

  𝑄(𝑛)         𝑄(𝑛 − 1) 𝑄(𝑛 − 2) …  𝑄(𝑛 − 𝑚)

sin (𝜃(𝑛))  cos(𝜃(𝑛)) 0                 …     0         

|𝑥(𝑛)|    |𝑥(𝑛 − 1)|     |𝑥(𝑛 − 2)|     … |𝑥(𝑛 − 𝑚)|

  |𝑥(𝑛)|2 |𝑥(𝑛 − 1)|2 |𝑥(𝑛 − 2)|2 … |𝑥(𝑛 − 𝑚)|2

⋮
|𝑥(𝑛)|𝑞 |𝑥(𝑛 − 1)|𝑞 |𝑥(𝑛 − 2)|𝑞 … |𝑥(𝑛 − 𝑚)|𝑞 ]

 
 
 
 
 
 
 

                          (4.5) 

   

To provide information about the steering angle, sin (𝜃(𝑛)) and cos(𝜃(𝑛)) of the beam steering 

angle θ are provided to the system. The angle information is The reason for using the pre-processed 

data in the model is to help reduce the model complexity while providing enough information to 

the CNN model. To understand the reason for using sin (𝜃(𝑛)) and cos(𝜃(𝑛)) in the input image 

matrix to the convolutional layer, the effect of beamforming weights on the transmitted signal 

needs to be studied. To simplify the mathematical analysis and without loss of generality, the 

following analysis considers 1D beamforming, to steer the beam toward the direction  𝜃.  Figure 

 

Figure 4.5  1D beamforming toward the direction θ. 
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4.5 shows the 1D beamforming toward the direction θ using P radiating elements. To steer the 

beam toward the direction θ, the 𝑝𝑡ℎ  radiating element is phase rotated using the following 

equation: 

𝛼 = (𝑝 − 1). 2𝜋.
𝑑𝑥

𝜆
. cos(θ)                                         (4.6) 

In a generic form the 𝑤𝑠 is introduced to element 𝑝 of the linear array antenna: [38]: 

𝑤𝑠 = { 1, 𝑒𝑗.2𝜋.
𝑑𝑥

𝜆
.cos(θ)

, 𝑒2.𝑗.2𝜋.
𝑑𝑥

𝜆
.cos(θ)

, . . . , 𝑒
(𝑃−1).𝑗.2𝜋.

𝑑𝑥

𝜆
.cos(θ)

}                    (4.7) 

 

Here  θ is the steering angle, 𝑑𝑥 is the distance between two antenna elements and 𝜆 is the 

wavelength. Using equation (4.7), the 𝑝𝑡ℎ antenna element, the signal driving the (𝑝 + 1)𝑡ℎ PA is 

described as: 

𝑥𝑝(𝑡) = 𝑥(𝑡) 𝑒𝑗𝑝𝛼 = 𝑥(𝑡) 𝑒−𝑗2𝜋.
𝑑𝑥

𝜆
.p.cos(θ)

                                  (4.8) 

Equation (4.8) has the Jacobian form of   𝑥(𝑡) 𝑒𝑗𝑧.cos(θ), with  𝑧 = −2𝜋.
𝑑𝑥

𝜆
. 𝑝 . Using Jacobi-

Anger expansion [46], 𝑒𝑗𝑧.cos(θ) can be described as follows: 

𝑒𝑗𝑧.cos(θ) = ∑ 𝑗𝑘 𝐽𝑘(𝑧)
∞
𝑘=−∞  . 𝑒𝑗𝑘θ                                               (4.9) 

where 𝐽𝑘(𝑧) is the kth Bessel function of the first kind. Now using equation (4.8) and (4.9), the 

input signal to the PA can be re-written as follows: 

𝑥𝑝(𝑡) = 𝑥(𝑡) . ∑ 𝑗𝑘 𝐽𝑘(𝑧)
∞
𝑘=−∞  . 𝑒𝑗𝑘θ                   (4.10) 

Using the Bessel function property,  𝐽−𝑘(𝑧) = (−1)𝑘 . 𝐽𝑘(𝑧) , equation (4.10) can be re-written as 

follows: 
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𝑥𝑝(𝑡) = 𝑥(𝑡) . (𝐽0(𝑧) + 2. ∑ 𝑗𝑘 𝐽𝑘(𝑧)
∞
𝑘=1  . 𝑐𝑜𝑠(kθ))                              (4.11) 

 

Using the Binomial Expansion, 𝑐𝑜𝑠(kθ) can be written as a linear combination of terms of the 

form cos𝑘−2𝑟(𝜃) × sin2𝑟(𝜃) as follows:  

𝑐𝑜𝑠(kθ) = ∑ (−1)𝑟 (
𝑘
2𝑟

) cos𝑘−2𝑟(𝜃) × sin2𝑟(𝜃)2𝑟≤𝑘
𝑟=0                         (4.12) 

Using equations (4.11) and (4.12), the signal driving the 𝑝𝑡ℎ PA can be written as follows:  

𝑥𝑝(𝑡) = 𝑥(𝑡) . (𝐽0(𝑧) + 2. ∑ 𝑗𝑘 𝐽𝑘(𝑧)
∞
𝑘=1 (∑ (−1)𝑟 (

𝑘
2𝑟

) cos𝑘−2𝑟(𝜃) × sin2𝑟(𝜃)2𝑟≤𝑘
𝑟=0 )  (4.13)                                                                                            

To simplify the calculations and without loss of generality, we will consider in the following 

analysis only the terms up to the third order Bessel function (𝐽𝑘(𝑧), where 𝑘 < 4. The signal 

driving the 𝑝𝑡ℎ PA can be re-written as shown in equation (4.14).  

𝑥𝑝(𝑡) = 𝑥(𝑡) . (𝐽0(𝑧) − 2. 𝐽1(𝑧). cos(𝜃) + ⋯2𝑗. 𝐽2(𝑧). (cos2(𝜃) − sin2(𝜃)) −

2. 𝐽3(𝑧). (4. cos3 𝜃 − 3. cos (𝜃))                                                                                             (4.14) 

Also for the sake of simplicity and without loss of generality, we consider a PA that can be modeled 

using a 3rd order memoryless polynomial, where the PA output is given by:  

𝑦𝑝(𝑡) = 𝑎0 + 𝑎1. 𝑥𝑝
1(𝑡)+ 𝑎2. 𝑥𝑝

2(𝑡) + 𝑎3. 𝑥𝑝
3(𝑡)                               (4.15) 

Using equations (4.14) and (4.15), the final PA output is given by: 

𝑦𝑝(𝑡) = 𝑎0 + 𝑎1. (𝑥(𝑡) . (𝐽0(𝑧) − 2. 𝐽1(𝑧). cos(𝜃) + 2𝑗. 𝐽2(𝑧). (cos2(𝜃) − sin2(𝜃)) −

2. 𝐽3(𝑧). (4. cos3 𝜃 − 3. cos(𝜃))) + 𝑎2. 𝑥
2(𝑡)((𝐽0(𝑧)

2 + 4. 𝐽1(𝑧)
2. cos2(𝜃) −

4𝑗. 𝐽2(𝑧)
2. (cos2(𝜃) − sin2(𝜃))2 + 4𝐽3(𝑧)

2 . (4. cos3 𝜃 − 3. cos(𝜃))2) − 4𝐽0(𝑧). 𝐽1(𝑧). cos(𝜃) +
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4𝑗. 𝐽0(𝑧). 𝐽2(𝑧). (cos2(𝜃) − 𝑆𝑖𝑛2(𝜃)) − 4. 𝐽0(𝑧). 𝐽3(𝑧). ((4. cos3 𝜃 − 3. cos(𝜃)) −

8𝑗. 𝐽1(𝑧). 𝐽2(𝑧). (cos3(𝜃) − sin2(𝜃) . cos(𝜃)) − 8𝑗𝐽2(𝑧). 𝐽3(𝑧). ((4 cos5(𝜃) − 3 cos3(𝜃) −

4 sin2(𝜃). cos3(𝜃) + 3 sin2(𝜃). cos(𝜃)))) + 𝑎3. 𝑥
3(𝑡)…                                    (4.16 ) 

The far-field received signal in the direction of 𝜃, is the sum of all radiating element and the effect 

of channel and distance for each element. Equation (4.16) is the transmitted signal from each PA 

in a beamforming setup which is too complex to be used for modeling in practical applications as 

it contains different parameters. As discussed earlier, AI-based models are suitable for modelling 

complex mathematical representations. It is worth mentioning that, if it is not trained with the right 

information, AI model can not provide a competitive performance to other techniques. For AI 

model to offer good performance it should use the adequate information and a proper model with 

optimum number of neurons, filters and biases. As presented in equation (4.16), the PA model in 

beamforming is function of orders of  sin (𝜃(𝑛)) and cos(𝜃(𝑛)) as well as the input signal. 

Thereby, to increase the modeling performance, sin (𝜃(𝑛)) and cos(𝜃(𝑛)) are added to the input 

image entries. 

4.3.2 Convolutional Layer 

The convolutional layer is composed of several digital filters. Figure 4.6 shows 

convolutional layer of the proposed AI-DPD architecture. The convolutional layer extracts the 

useful correlations between the input data. In the case of AI-DPD, it extracts the correlation 

between the beam direction and signal amplitude and phase.  Equation (4.17) expresses the output 

of the 𝑑𝑡ℎ filter 𝐶𝐾_𝑜𝑢𝑡𝑑  as a function of 𝑓𝑑 activation function, 𝑖𝑡ℎ input image 𝐼𝑚𝑎𝑔𝑒𝑖, filter 

coefficients 𝐹𝑖𝑙𝑡𝑒𝑟𝑑 and filter biases 𝐵𝑖𝑎𝑠_𝑓𝑖𝑙𝑡𝑒𝑟𝑑 of the 𝑑𝑡ℎ filter. Here the 𝐶𝐾_𝑜𝑢𝑡𝑑 is a matrix 

of size 𝑊𝑐𝑘 × 𝐿𝑐𝑘, 𝐼𝑚𝑎𝑔𝑒𝑖 is a matrix of size 𝑊𝑖𝑛 × 𝐿𝑖𝑛 , 𝐹𝑖𝑙𝑡𝑒𝑟𝑑 is a matrix of size 𝐿𝐹 × 𝑊𝐹 and 
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𝐵𝑖𝑎𝑠_𝑓𝑖𝑙𝑡𝑒𝑟𝑑  is a scaler number. The operator ⊗ in equation (4.17) presents the convolution 

operation. In convolution operation, the filter slides over the input image and complete a dot 

operation and projects the result to the output pixel. 

𝐶𝐾_𝑜𝑢𝑡𝑑  = 𝑓𝑑 (𝐼𝑚𝑎𝑔𝑒𝑖 ⊗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑑 + 𝐵𝑖𝑎𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑑
  )                          (4.17) 

The size and number of filters are system dependant, and they are determined using simulations. 

The designer should establish a trade-off between complexity and performance.  

4.3.3 Fully connected layer 

As illustrated in Figure 4.6, the output of the convolutional layer is connected to a fully 

connected neural network layer. The fully connected neural network is responsible for generating 

the pre-distorted signal. As expressed in equation (4.18), the feature maps (output of convolving 

filters) 𝐶𝐾_𝑜𝑢𝑡𝑑(𝑖, 𝑗) are multiplied to connecting weights  𝑊𝑖,𝑗
𝑑,𝑔

 in the first layer. The important 

point here is that 𝑊𝑖,𝑗
𝑑,𝑔

 for 𝑑 = 1:𝐷 are equal, meaning the feature maps share the same weights 

 

Figure 4.6 Architecture of the adopted CNN used in the developed AI-DPD. 
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to connect to the fully connected layer [44]. This helps reducing the identification complexity. 

Equation (4.18) expresses the output of the 𝑔𝑡ℎ neuron in the first layer of the fully connected 

layer. The equations (4.19) and (4.20) express the pre-distorted signal 𝐼𝑜𝑢𝑡(𝑛) and 𝑄𝑜𝑢𝑡(𝑛). Here, 

𝐵𝑖𝑎𝑠_𝐹𝐶𝑔
1 is the bias corresponding to the 𝑔𝑡ℎ neuron in the first NN layer,  𝐵𝑖𝑎𝑠_𝐹𝐶1

2 and 

𝐵𝑖𝑎𝑠_𝐹𝐶2
2 are the biases for the first and second neuron in the output layer of the NN. 𝑊1,𝑔 and 

𝑊2,𝑔 are the connecting weights between the 𝑔𝑡ℎ neuron in the first layer and two output neurons 

in the fully connect neural network layer.  

𝐹𝐶_𝑜𝑢𝑡𝑔
1 = 𝜓 (∑ ∑ ∑ 𝐶𝐾_𝑜𝑢𝑡𝑑(𝑖, 𝑗) × 𝑊𝑖,𝑗

𝑑,𝑔
𝐼

𝑖=1
+ 𝐵𝑖𝑎𝑠_𝐹𝐶𝑔

1
𝐽

𝑗=1

𝐷

𝑑=1
)          (4.18) 

𝐼𝑜𝑢𝑡(𝑛) = ∑ 𝐹𝐶_𝑜𝑢𝑡𝑔
1 × 𝑊1,𝑔

𝐺

𝑔=1
+ 𝐵𝑖𝑎𝑠_𝐹𝐶1

2                               (4.19) 

𝑄𝑜𝑢𝑡(𝑛) = ∑ 𝐹𝐶_𝑜𝑢𝑡𝑔
1 × 𝑊2,𝑔 + 𝐵𝑖𝑎𝑠_𝐹𝐶2

2
𝐺

𝑔=1
                               (4.20) 

 

4.4 Optimization  

In order for the CNN model to offer the best modeling performance, it should be trained 

using adequate optimization settings. The used optimizer cost function is the Mean Square Error 

(MSE). The MSE at the iteration 𝑟 is calculated as:  

 

𝑀𝑆𝐸(𝑟) =
1

𝑁
∑ [(𝐼(𝑛) − 𝐼′(𝑛))

2
+ (𝑄(𝑛) − 𝑄′(𝑛))

2
]

𝑁

𝑛=1

                                            (4.21) 
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 Here 𝐼′, 𝑄′, 𝐼 and 𝑄 are the modeled and measured I and Q data, respectively. N is the number of 

samples used to calculate the MSE. Gradient decay is an optimization algorithm that is widely 

used in artificial intelligence learning with different parameters. The modeling accuracy depends 

on how well a model is trained. There are different parameters affecting the identified model 

coefficients such as learning rate, number of Max Epochs, sample size, gradient decay factor and 

momentum. Learning rate and momentum determine how fast the algorithm converges toward the 

optimum parameter. MaxEpochs is the dataset size used in forward and backward training of the 

network. The dataset can’t be used in training at once, it is divided to the number of batches with 

a defined sample size.  To obtain the best modeling accuracy, the learning rate, number of 

MaxEpochs, sample size, gradient decay factor, and the momentum are swapped while modeling 

performance is recorded. The model is trained to minimize the MSE cost function. The MSE is 

calculated using equation (4.21). After the model is trained, the modeling performance is measured 

using the NMSE of the error between the desired value and model output. The NMSE is calculated 

using equation (2.2). The modeling performance for swapped parameters expressed in terms of 

NMSE are reported in Table 4.1. Table 4.1 reports the effect of the different training parameters 

on the modeling performance. Based on the results, the learning rate is selected to be 2.3e-3, 

MaxEpochs is 50, sample size is 550, gradient decay factor is 0.94 and momentum is 0.6. The 

other important parameter is the activation function. Table 4.2 reports the modeling accuracy of 

the CNN for different activation functions. According to the results, using Leakly ReLU activation 

function results in a 1.4 dB improvement in modeling performance compared to other activation 

functions.  
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4.5 Parameter selection  

Here, the three important parameters are the number of convolution filters, the size of each 

filter, and the number of neurons in the fully connected layer. By increasing the number of neurons 

and filters, the modeling accuracy increases; however, the system is at the risk of over-

 Table 4-1 The modeling performance trained using different training parameters value. 

Learning 

Rate  
MAxEpochs 

Sample 

Size 

Gradient 

Decay 

factor  

Momentum Modeling 

Accuracy 

NMSE 

(dB) 

2.3e-2 50 1000 0.91 0.50 -35.1 

2.3e-2 40 550 0.94 0.60 -35.2 

2e-2 35 400 0.95 0.65 -34.9 

5e-3 50 1000 0.90 0.50 -35.0 

5e-3 40 550 0.92 0.60 -34.9 

5e-3 30 400 0.94 0.65 -34.1 

1.8e-3 50 1000 0.90 0.50 -34.0 

1.8e-3 40 550 0.93 0.60 -34.7 

1.8e-3 30 400 0.95 0.65 -33.6 

1.8e-3 25 250 0.93 0.67 -33.9 

1e-3 50 1000 0.90 0.50 -33.7 

1e-3 40 550 0.95 0.60 -34.1 

5e-4 40 1000 0.91 0.55 -34.9 

5e-4 30 550 0.93 0.60 -34.7 

5e-4 25 250 0.95 0.68 -34.1 

 

 

Table 4-2 The modeling performance of different activation functions. 

Activation function  
Modeling Accuracy 

NMSE (dB) 

Relu -34.8 

elu -34.2 

Leakly ReLU -35.2 

Sigmoid -33.8 

Tanh -34.4 
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parameterization. Thereby it is important to find the optimum number of the CNN parameters. To 

do so, a series of MATLAB simulations have been carried out to determine the optimum value for 

the parameters identified earlier. Figure 4.7 shows the inverse modeling accuracy of the CNN 

versus the number of filters and neurons. Here, to establish a trade-off between complexity and 

performance, the number of filters and neurons are selected to be 17 and 6, respectively.  

4.6 Complexity Analysis 

The total number of learnable coefficients is an important factor to study any model’s 

complexity. Suppose that the 𝐿𝐹 is the length and 𝑊𝐹 is the width of the convolution filters (CK), 

𝐹 is the number of filters in a single convolutional layer. The total number of filter coefficients, 𝑄, 

is calculated as follows:  

𝑄 = (𝐿𝐹 .  𝑊𝐹) .  𝐹 + 𝐹                                                  (4.22) 

 

Figure 4.7 Inverse Modeling Accuracy of the proposed AI-DPD. 
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Here, the second 𝐹 is added to account for the number of bias weights at the output of each filter. 

The size of the output image of the convolution filter is a function of the padding size, input image 

size, and convolutional filter size. The 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑟𝑜𝑤𝑠 and 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑟𝑜𝑤𝑠 are extra columns and 

rows of zeros added around the data matrix. The size of the output image of the convolution layer 

is calculated as follows: 

[𝑊, 𝐿] = 

[(𝑊𝑖𝑛 − 𝑊𝐹 + 1 + 2. 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑟𝑜𝑤𝑠) , (𝐿𝑖𝑛 − 𝐿𝐹 + 1 + 2. 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑐𝑜𝑙𝑢𝑚𝑛)]                   (4.23) 

Where the 𝑊𝑖𝑛 𝑎𝑛𝑑 𝐿𝑖𝑛 are the input image size, width and length. The final outputs of CK layers 

are passed to a fully connected neural network to calculate the pre-distorted signal. The total 

number of learnable parameters in the fully connected neural network layer  𝑍𝐹𝐶  is computed as 

follows:  

𝑍𝐹𝐶 = (𝑊 × 𝐿) × 𝑁1 + 𝑁1 + 𝑁1 × 𝑁2 + 𝑁2                                 (4.24) 

Here, 𝑁1and 𝑁2  are the numbers of neurons in the first and second layer, respectively, of the 

fully connected neural network. In summary, the total number of learnable coefficients for the 

used CNN, including the parameters for the convolutional layer and fully connected neural 

network layer, are calculated as follows: 

𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝑠 = 𝑍𝐹𝐶 + 𝑄                                                                  (4.25) 

The model complexity is studied from two perspectives: the number of coefficients and 

number of Floating-point Operations (FLOPs). Each FLOP is considered as one single floating-

point operation like division, multiplication, subtraction, addition, exponentiation, etc. Although 

it takes the processor a different time to complete each task, they are considered as one FLOP.  
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Thereby, to roughly estimate the FLOPs, the number of required mathematical operations per 

sample should be estimated. In CNN, the total number of FLOPS are the sum of FLOPs in the 

convolutional layer and the fully connected layer. Figure 4.8 presents the operation concept of the 

convolutional filters. The filter slides over the input pixels and performs 𝐿𝐹 .  𝑊𝐹 dot operation, 

and projects the results to the output pixels. Same operation is repeated to generate all the output 

pixels. Therefore, the number of multiplications in convolutional layer 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝐶𝐾 is 

calculated as follows: 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝐶𝐾 = 𝐿𝐹  .  𝑊𝐹 . (𝑊 .  𝐿) .  𝐹                                               (4.26) 

Every time the filter slides over the input 𝐿𝐹  .  𝑊𝐹 − 1 addition and a bias added to this 

value is performed in the activation layer. The same operation is repeated to generate the output 

 

Figure 4.8 Convolutional filter operation process. 
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volume. Therefore, the number of addition operation in the convolutional layer is calculated as 

follows: 

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝐶𝐾 = (𝐿𝐹 .  𝑊𝐹) .  (𝑊 .  𝐿) .  F                                                    (4.27) 

The output of each filtering iteration passes through an activation function, as a result, the 

number of FLOP required for activation functions are estimated as: 

                                                             𝐴𝐹𝑐𝑘 = 𝐹 .  (𝑊 .  𝐿)                                                    (4.28) 

 

Here, 𝐹 is the number of convolution filters. Similarly, the number of multiplications and 

additions in the fully connected neural network layer is estimated using the following equations: 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝐹𝐶 = 𝑁1 .  (𝑊 .  𝐿) + 𝑁1 .  𝑁2                            (4.29) 

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝐹𝐶 = (𝑊 .  𝐿 + 1)  .  𝑁1 + (𝑁1 + 1)  .  𝑁2                           (4.30) 

The activation functions also take up processor time and they need to be accounted for the in 

FLOPS calculation. The number of activation functions in the fully connected neural network layer 

are calculated as follows: 

𝐴𝐹𝐹𝐶 = 𝑁1 + 𝑁2                                                (4.31) 

Using equations (26) to (31), one is able to estimate the total number of FLOPs per sample in the 

CNN including the convolutional layer, the FC layer and the output layer. 

𝐹𝐿𝑂𝑃𝑠 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝐶𝐾 + 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝐹𝐶 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝐶𝐾 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝐹𝐶 + (𝐴𝐹𝐶𝐾 +

𝐴𝐹𝐹𝐶) × 𝐻                                                                                                                                (4.28) 

Here 𝐻 is the number of required FLOPs per activation function.  
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4.7 Measurement Results 

Figure 4.9 shows the block diagram of the developed AI-DPD verification setup. Different 

components of the setup are thoroughly described in chapter 3. Figure 4.10 shows a photograph of 

the setup used for AI-DPD algorithm verification. The input data-steering angle and modulated 

data- are processed and organized in a 2D format and passed to the AI-DPD actuator. The DPD 

coefficients are calculated offline using MATLAB.  Then the data passes through the transmission 

path and is transmitted using the 16-element phased array antenna at the 3.5GHz center frequency. 

The far-field signal is received 3 meters away and then it is phase and time-aligned for further 

analysis. As discussed earlier, the transmitter is a MEGAbeecube composed of 4 AD9361 SDR 

transceivers and Zynq 7000 series, frequency and time-synchronized using the techniques 

described in Chapter 3.  

To gain a better understanding of the transmitter behaviour, the beam is steered across a 

steering range from -50° to 50°  with 5° steps while the PAs are transmitting at average power of 

21 dBm, operating in room temperature and at the center frequency of 3.5 GHz. The far-field 

received signal is sent to PC for further analysis. For AI-DPD training 5 angles at {-50°, -24°, 0°, 

29°, 58°} are selected to train the model. At each angle 10k data samples are used in the training 

matrix. Therefore, 50k data samples are used in one epoch to train the network. A total of 40 

epochs are used to train the model which achieves to -36.3 dB NMSE.  To validate the model 5 

different angles at {-35°, -14°, 7°, 37°, 47°} are used. The validation accuracy described in the 

term of NMSE is -35 dB.  To compare the complexity and modeling accuracy of different DPD 

models described in Chapter 2, different models are used to linearize the developed beamforming 

transmitter. Table 4.3 describes each DPD model architecture. The Bo-DPD [24] is a directional 
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DPD requiring the DPD coefficients to be updated at each steering angle. Bo-DPD coefficients are 

extracted at a specific direction so they can linearize the transmitter within a limited angle width 

around the extracted point; this range is called a cluster. This technique is used in [45] to reduce 

computational complexity. 

 In [45] the steering range is divided into a number of clusters and a memory polynomial is 

extracted to linearize the beam in that direction. The number of clusters depends on various 

 

Figure 4.9 Proposed CNN-DPD architecture using 4x4 phased array transmitter antenna and far-field over the 

air signal acquisition antenna. 

 

 

Figure 4.10 Experimental setup developed for MIMO digital beamforming and algorithms verification. 
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parameters such as beam width and frequency. In our case, the steering range is divided into 9 

Table 4-3 Different DPD architecture models used for comparison. 

DPD Model Settings 

CNN- With sinθ and 

cosθ 

 

CNN 

Model CNN 

Image size 4x4 

Convolving 

 Filter 
3x3 

Kernel size 17 

FC neurons 6-2 

Activation Function LeakyReLu 

Memory 

 depth 
2 

 

CNN- With  

θ 
 

Model CNN 

Image size 4x4 

Convolving 

 Filter 
3x3 

Kernel size 22 

FC neurons 9-2 

Activation Function LeakyReLu 

Memory 

 depth 
2 

 

CNN-no angle CNN 

Model CNN 

Image size 3x4 

Convolving 

 Filter 
2x3 

Kernel size 20 

FC neurons 8-2 

Activation Function LeakyReLu 

Memory 

 depth 
2 

 

RVTDNN 

With sinθ and cosθ 

 

DNN 

Neurons in each layer (14-37-12-2) 

Activation function Tanh 

Memory  2 previous data 
 

RVTDNN 

with 

θ 

DNN 

Neurons in each layer (13-49-18-2) 

Activation function Tanh 

Memory  2 previous data 
 

DNN [28] 

No angle 
DNN 

Neurons in each layer (12-30-10-2) 

Activation function Tanh 

Memory  2 previous data 
 

BO-DPD [24] 
Memory 

polynomial 

Order=14, memory tap=2, 

Least square to estimate the coefficients using 

15000 samples 

[45] 
Memory 

polynomial 

Order=15, memory tap=2 Least square to estimate the coefficients 

using 

15000 samples 
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clusters and the DPD coefficients are calculated within each cluster. For a fair comparison between 

the different DPD techniques, NN and CNN are used to model the transmitter using steering angle 

θ, sin(θ) and cos(θ), and without any angle information. Table 4.4 describes each model’s 

complexity analysis with respect to model parameters. These equations are used to estimate the 

DPD models complexity reported in Table 4.5. Table 4.5 compares each DPD architecture 

modeling accuracy and their features. According to the results reported in Table 4.5, the inclusion 

of sin(θ) and cos(θ) reduces the system complexity while increasing the modeling performance. 

Moreover, the CNN-based DPD offers 1.2 dB improvement in modeling performance in 

comparison to DNN. 

Table 4-4 complexity Analysis of different techniques 

                                         

Characteristic 

                       Model   

Number of coefficients Flops/sample 

BO-DPD [24] 

 

(𝑀 + 1).𝐾 8. ((𝑀 + 1).𝐾)−2 

M: memory depth, K: nonlinearity order 

Full Angle DPD [27] 

 

(𝑆. (𝑀 + 1). 𝐾) + 𝑛𝑓. ((𝑆. (𝑀𝑓 + 1).𝐾𝑓)) 8. ((𝑀 + 1).𝐾)−2 + 𝑛𝑓(8. ((𝑀𝑓 +

1). 𝐾𝐹)−2) 

M: memory depth, K: nonlinearity order, 𝑛𝑓 number of fine-tuning boxes, 𝑀𝑓:memory 

depth and 𝐾𝑓: nonlinearity order of 𝑓𝑡ℎ fine tuning box 

Shallow Neural Network [8] 

 

(𝑁𝑖 + 1).𝑁1 + (𝑁1 + 1).𝑁𝑜 2.𝑁𝑖 . 𝑁1 + 2.𝑁1. 𝑁𝑜 + 13𝑁1 

𝑁𝑖 , 𝑁1, 𝑁𝑜: number of neurons in input, middle and output layer 

Deep Neural Network [28] 

 
(𝑁𝑖 + 1). 𝑁1 + ∑ (𝑁𝑓 + 1)

𝐹

𝑓=2
. 𝑁𝑓 + (𝑁𝐹 + 1). 𝑁0 

2.𝑁𝑖 . 𝑁1 + 2.𝑁𝐹𝑁0

+ 2.∑ 𝑁𝐹−1

𝐹

𝑓=2
. 𝑁𝑓

+ 15.∑ 𝑁𝑓

𝐹

𝑓=1
 

𝑁𝑓: number of neurons in𝑓𝑡ℎ layer 

CNN 

 

Without 

transfer 

technique 

𝐿𝐹 .𝑊𝐹 . 𝐹 + 𝑊. 𝐿. 𝑁1 + 𝑁1

+ 𝑁1.𝑁2 + 𝑁2 

Using 

Transfer 

technique 

(𝑁1 + 1). 𝑁1 + (𝑁1 + 1).𝑁2 

 

𝐹.𝑊. 𝐿. 𝑁1 + 𝑁1.𝑁2.𝑁1 + ⋯  

+(𝑊. 𝐿). 𝑁1 + (𝑁1 + 1). 𝑁2 +
⋯   

+(𝐹.𝑊. 𝐿 + 𝑁1 + 𝑁2).𝐻  

W,L: width and length of the output image of the convolving layer, 𝑊𝐹 , 𝐿𝐹: Width and 

Length of the convolutional filter, F: number of convolving filter, N1 and N2: neurons in 

the first and second layer of NN, 𝑁𝑖  and 𝑁𝑜:  neurons in the input and output layer of NN 

H: flops for activation function. 
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  The model complexity is studied in terms of FLOPS and number coefficients. Depending 

on the implementation platform, the complexity can be translated into processing unit. In the next 

step, the performance of each DPD model is verified using the designed MIMO beamforming 

platforms. Figure 4.11 compares the AM/AM and Power Spectral Density (PSD) of the transmitted 

signal linearized using different techniques. The transmitted signal with no-DPD is compressed by 

4 dB with an average NMSE of -21 dB, average ACPR of -31 dBc across the steering range. As 

shown in Figure 4.11, the Bo-DPD and the AI-DPD are both able to linearize and compensate for 

 

Table 4-5  The architecture, performance, and complexity analysis of different techniques. 

 

AI-DPD 

Using sin(θ) and 

cos(θ) 

AI-DPD 

Using θ 

CNN without 

steering angle 

information 

RVTDNN 

Using 

sin(θ) and 

cos(θ) 

RVTDNN 

Using θ 

DNN 

[28] 

BO-DPD 

[24] 
DPD [45] 

Direction 

dependency 

compensation 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

𝐼/𝑄 

imbalance 

compensation 

✓ ✓ ✓ ✓ ✓ ✓ × × 

Number of 

training angles 

per subarray 

5 5 17 5 5 17 13** 9 clusters 

Average 

Modeling 

Accuracy 

(NMSE-dB) 

-35. 3 -34.2 -32.9 -34.3 -33.5 -32.7* -35.8 -32.9 

Complexity 

(learnable 

parameters) 

598 1041 806 726 1066 522* 
39×13=507 

** 
45×9=405*** 

FLOPs/sample 1268 1940 1442 2107 2999 1560* 334** 358*** 

 

*Implemented using the model presented in [28]  

** Implemented using approach presented in [24]  

*** Implemented using approach presented in [45]  
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distortions in a similar manner. Figure 4.11 (d) (e) and (f) shows the AM /AM of the transmitted 

signal. The results show that AI-DPD and Bo-DPD can both substantially reduce the dispersion 

while there is more dispersion left when using other techniques. Figure 4.12  shows the ACPR and 

NMSE of the transmitted signal using different techniques across the steering range.  

Again, the Bo-DPD is extracted at each steering direction. As the direction changes, the Bo-

DPD coefficients should be updated. This approach provides the best-case scenario in terms of 

linearization performance since a dedicated DPD is used for each direction. The proposed AI-DPD 

offers a close linearization performance in terms of ACPR and NMSE when compared to the Bo-

DPD. Indeed, its average of 48.6 dBc ACPR across the steering range is close to the -49.1 dBc 

ACPR for the Bo-DPD. Similarly, the AI-DPD achieved an average NMSE equal to -34.3 dB 

which is close to the Bo-DPD NMSE of -35.5 dB. It is worth noting that the DPD in [45] offers a 

close linearization performance to the DNN DPD. The reason is that both DPD architectures use 

the averaging technique, which sacrifices the performance to reduce the computational complexity.  

 

Figure 4.11 PSD of the received signal at: (a). 30°, (b). 10°, (c). -30°, AM/AM at: (d). 30°, (e). 10°, (f). -30°. 
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4.8 Conclusion 

It was shown that the AI-DPD linearizes the beamforming transmitter based on the steering 

angle using a limited number of training angles. The AI-DPD provides a good linearization 

performance across the steering range and eliminates the need for a dedicated observation path. 

Removing the observation pass substantially reduces the hardware complexity and manufacturing 

cost in the massive MIMO base stations. The measurement results show that the proposed AI-DPD 
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provides similar linearization performance in comparison to the Bo-DPD while not requiring the 

DPD adaption at each steering angle. 

 

 

 

 

 

 
(a) 

  
(b) 

Figure 4.12 ACPR of the received signal linearized using different methods, (b) NMSE of 

the received signal. 
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5 Chapter 5: Power and Temperature Inclusive Digital Pre-
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5.1 Introduction  

The power amplifiers in the base stations are often pushed to operate near saturation 

regions to improve the base station’s power efficiency. However, operating near saturation region 

introduces nonlinearities and distortions to the original signal that needs to be compensated using 

DPD. 

Normally, the base stations are expected to operate at different signal’s average power for 

different purposes like beamforming or when the user’s distance from the base station is changing. 

Different operating power can significantly affect the PA nonlinear behaviour. The PA behaviour 

can be described using static and dynamic distortions. The static distortion is mainly influenced 

by a signal’s power level and the base plate temperature. The dynamic behaviour is affected by 

the signal bandwidth and instantaneous temperature variation of the transistor’s junction [48].  

There are three main sources of the thermal variation: base plate temperature [49], signal’s 

average power [49] and self-heating phenomena [50]. Self-heating is problematic in narrow band 

signals in the range of Kilohertz. The rate of signal amplitude change in a narrow bandwidth signal 

is slower than in a wider bandwidth signal. Therefore, the transistor operating point varies slower 

when compared to a wide bandwidth signal. This causes the transistor operating point as well as 

the transistor junction temperature to constantly fluctuate. This is a serious problem in narrow band 

signal used in 2G, and an in-depth study of this issue is out of the scope of this thesis. On the other 

hand, the rate of amplitude change in wide bandwidth signals (>1 MHz) are fast enough that 

transistor junction temperature is a function of the signal’s average power which is the main focus 

of this chapter.   



99 

 

Radio base stations are installed in different geolocations where the ambient temperature 

may vary from -40° to +50° Celsius. Such a wide range of the ambient temperature variation 

negatively affects the PA behaviour and the DPD performance used to mitigate these distortions.  

    Normally, high power PAs are connected to a heat sink to increase the heat dissipation 

rate.  The heat dissipation itself depends on the base plate temperature. Therefore, base plate 

temperature is another important factor that needs to be considered in DPD design.  

In summary, the PA behaviour is a function of transistor junction temperature. However, 

the junction temperature is not accessible. For wideband signals, the junction temperature is a 

function of signal’s average power and base plate temperature. Therefore, these two parameters 

must be taken into account when designing a robust DPD architecture for practical applications. 

To maintain the signal quality using conventional DPD techniques, the DPD coefficients need to 

be re-identified with any variation in the signal’s average power or base plate temperature. In this 

case, a dedicated observation path is required to monitor the signal quality during the runtime, 

which increases the hardware complexity. In addition, the DPD coefficients re-identification needs 

to be fast enough to meet the timing requirements. Since the maximum allowable latency is 1 ms, 

the DPD should be adapt itself with new condition in less than 1 ms [23]. To address these issues, 

this chapter introduces a novel Power Temperature Inclusive DPD (PTI-DPD) to provide 

continuous linearization under the signal’s average power and base plate temperature’s varying 

conditions. The PTI-DPD is implemented using CNN to provide the best modeling performance. 

The proposed technique is extendible to cover more parameters like reflection coefficients, 

operating frequency, bandwidth, etc. However, this chapter only focuses on the signal’s average 

power and base plate temperature. The rest of the chapter is organized into 3 sections. Section 2 

introduces the PTI-DPD architecture. Section 3 studies the architecture modeling performance. 
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Section 4 outlines the effect that signal’s average power and base plate temperature variation have 

on the transmitter’s behaviour.  

In summary, the main contributions of this chapter are: 

1. Studying the effect of base plate temperature on the PA’s behavior 

2. Studying the effect of signal’s average power on the PA’s behavior 

3. Introducing a novel DPD behavioral model for compensation of the PA nonlinearities in 

the presence of varying signal’s average power and base plate temperature 

5.2 Power and Temperature Inclusive Digital Pre-distortion  

Traditionally, the PA behaviour is described using an independent memory polynomial at 

each PA’s operating conditions. A general representation of the PA output 𝑦(𝑛) under a given 

base plate temperature, T, and a signal’s average power, P, is as follows: 

𝑦(𝑛) = ∑ ∑ 𝑎𝑚,𝑘
𝑇,𝑃

𝐾

𝑘=1

𝑀

𝑚=1

𝑥(𝑛 − 𝑚). |𝑥(𝑛 − 𝑚)|𝑘−1                                               (5.1)    

 

Here 𝑥(𝑛 − 𝑚) is the 𝑚𝑡ℎ delay version of the input signal to the PA 𝑥(𝑛),  the 𝑎𝑚,𝑘
𝑇,𝑃

 are the DPD 

coefficients for the 𝑚𝑡ℎ memory order and 𝑘𝑡ℎ nonlinearity at the base plate temperature 𝑇 and 

the signal’s average power 𝑃. To model the transmitter using equation (5.1), the 𝑎𝑚,𝑘
𝑇,𝑃

 coefficients 

need to be identified for each power level and base plate temperature. DPD coefficients’ 

identification should be repeat at different base plate temperature and power levels.  Next section 
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lists the problems and possible solutions for wireless transmitters operating at different signal’s 

average power and base plate temperature.  

5.2.1 Problem Definition 

1. The IQ imbalance are an inevitable imperfection in the commercial RF transceivers and 

have been discussed in chapter 3. IQ imbalance negatively impacts the signal quality. To 

compensate for the IQ imbalances, any model must be extracted using the input signal, 

complex conjugate of the input signal, and the output signal.  

2. The PA behavior varies at different signal’s average power and base plate temperature. 

Here, we assume that if a signal is wide enough, then the self-heating phenomena is 

negligible and only signal’s average power and base plate temperature are the important 

factors here. 

3. By increasing the number of transmitter settings and environmental parameters affecting 

the PA behavior, it is difficult to model the system for all possible scenarios using equation-

based behavioral models.  

Considering the issues detailed above, this chapter introduces a PTI-DPD implemented using 

CNN. The proposed PTI-DPD considers the base plate temperature and signal’s average power 

and compensate for distortions added due to any variation of the parameters outlined previously. 

In addition, the PTI-DPD is modeled using a limited number of training conditions to reduce the 

training complexity. Since the input image contains in-phase and quadrature parts of the input 

signal, it can model the complex conjugate and compensate for the IQ imbalance. As it is shown 
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in [49] the CNN can also compensate for IQ imbalance in the transmitter. Figure 5.1 depicts a top 

view of the proposed DPD architecture. The inputs to the system are the modulated signal, base 

plate temperature captured as close as possible to the PA substrate, and the signal’s average power.  

5.3 PTI-DPD architecture 

Figure 5.2  illustrates the architecture of the CNN model used in PTI-DPD. The PTI-DPD 

model is composed of the input image layer, convolutional layer and a fully connected NN layer. 

The following paragraphs introduces CNN layers used in PTI-DPD.   

5.3.1 Input image layer 

The inputs are the signal’s average power  𝑃(𝑛)̅̅ ̅̅ ̅̅
  and base plate temperature 𝑇(𝑛) to cover 

one transmitter setting and one environmental factor in the input image. The input image also 

contains in-phase I(n), quadrature Q(n) of the input modulated signal and as well as the 𝑚 delayed 

 

@2021 IEEE 

Figure 5.1 Top view of the proposed PTI-DPD [51]. 

 

z 



103 

 

version and 𝑘 order of the input signal envelope 𝑥(𝑛). The 𝑃(𝑛)̅̅ ̅̅ ̅̅  and 𝑇(𝑛) are located in the middle 

of the input image so that their effect is captured in more feature maps. 

 

𝐼𝑚𝑎𝑔𝑒𝑖 =

[
 
 
 
 
 
 
 

𝐼(𝑛)      𝐼(𝑛 − 1)     𝐼(𝑛 − 2)  …    𝐼(𝑛 − 𝑚)

   𝑄(𝑛)       𝑄(𝑛 − 1)   𝑄(𝑛 − 2) …  𝑄(𝑛 − 𝑚)      

𝑃(𝑛) ̅̅ ̅̅ ̅̅ ̅              𝑇(𝑛)        0        …      0           
 |𝑥(𝑛)|    |𝑥(𝑛 − 1)|  |𝑥(𝑛 − 2)|   … |𝑥(𝑛 − 𝑚)|

 |𝑥(𝑛)|2 |𝑥(𝑛 − 1)|2 |𝑥(𝑛 − 2)|2 … |𝑥(𝑛 − 𝑚)|2

⋮
|𝑥(𝑛)|𝑘 |𝑥(𝑛 − 1)|𝑘 |𝑥(𝑛 − 2)|𝑘 … |𝑥(𝑛 − 𝑚)|𝑘 ]

 
 
 
 
 
 
 

                                         (5.2) 

 

5.3.2 Convolutional layer 

This layer is responsible for extracting the input image features using a set of convolution 

filters applied to the input image. The output of the filters is passed to the fully connected layer. 

The size and number of the convolution filters are determined using MATLAB simulations to 

achieve a trade-off between complexity and model performance.  

 

@2021 IEEE 

Figure 5.2 The architecture of the proposed RVTDCNN to implement PTI-DPD [51]. 
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5.3.3 Fully connected layer  

The data at the output of convolution filters are converted into a 1-D array and passed to 

the fully connected layer. This layer is responsible for generating the pre-distorted signal.  

5.3.4 Model extraction and training  

The model parameters including the filter coefficients, and the neurons’ biases and weights 

of the fully connected layer are trained to minimize the Mean Square Error (MSE) as expressed 

below: 

𝑀𝑆𝐸 =
1

𝑁
∑ [(𝐼(𝑛) − 𝐼′(𝑛))

2
+ (𝑄(𝑛) − 𝑄′(𝑛))

2
]

𝑁

𝑛=1

                                   (5.3) 

And the modeling accuracy is analyzed in terms of NMSE as described in equation (2.2). Here, 

𝐼(𝑛), 𝐼′(𝑛) are the in-phase components of the desired signal and the modeled one, respectively. 

Similarly, 𝑄(𝑛) and 𝑄′(𝑠) are the quadrature components of the desired signal and the modeled 

one, respectively. To select the best optimizer parameters, learning rate, Maxepochs, sample size, 

gradient decay factor, and momentum have been given different numbers while monitoring the 

modeling performance. The mentioned optimizer parameters are defined in chapter 4.4. Table 5.1 

reports the DPD modeling accuracy in term of NMSE for different model parameter settings. 

Based on the results, the DPD model with a gradient decay factor of 0.93, an initial learning rate 

of 1e-3, momentum rate of 0.6, and Maxepochs size of 25 provides the best modeling performance. 
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5.3.5 Data preparation 

For the CNN to be able to extract the transmitter behaviour, it should be trained using the 

data that contains enough information describing the system behaviour. To do so, both signal’s 

average power and base plate temperature have been swept and the system’s behaviour is recorded. 

The input power has been backed-off from 0 to 8 dB to change the signal’s average power. The 

Input Back-Off Power (IPBO) is calculated as follows: 

𝐼𝑃𝐵𝑂 = 𝑃𝑖𝑛,𝑆𝑎𝑡 − 𝑃𝑖𝑛,𝑝𝑒𝑎𝑘                                              (5.4) 

  Here the 𝑃𝑖𝑛,𝑆𝑎𝑡 is the input saturation power of the power amplifier and the 𝑃𝑖𝑛,𝑝𝑒𝑎𝑘is the input 

signal peak power. Similarly, the temperature has been swept from 26° to 70° Celsius at different 

power levels and the transmitter behaviour is recorded. As previously mentioned, one of the main 

 

Table 5-1 Effect of optimizer parameters on the modeling performance  [51] 

Learning 

Rate 
MaxEpochs Sample 

size 

Gradient 

decay 

factor 

Momentum Modeling 

Accuracy 

(NMSE-

dB) 

1e-2 40 1000 0.93 0.6 -37.8 

1e-2 20 500 0.91 0.5 -36.8 

1e-3 25 500 0.93 0.6 -37.7 

1e-3 25 1000 0.93 0.6 -38.5 

1e-3 25 2000 0.93 0.6 -38.2 

1e-3 20 1000 0.93 0.6 -38.1 

1e-3 25 1000 0.89 0.6 -38.2 

5e-2 20 500 0.93 0.5 -37.2 

5e-3 25 500 0.93 0.6 -36.7 

5e-3 30 1000 0.93 0.5 -38.1 

5e-3 20 2000 0.93 0.4 -37.5 

5e-3 25 1000 0.93 0.6 -36.7 

1e-4 25 1000 0.93 0.63 -38.1 

@2021 IEEE 
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advantages of the PTI-DPD over other techniques is that it does not need to be trained using all 

the possible combinations of the model inputs, which are the signal’s average power, base plate 

temperature and input modulated signal. Here, a 3×3 matrix of data representing 3 base plate 

temperature levels at {24° ,48° ,70°} Celsius each captured at 3 input back-off levels: {0, 3.5, 7.5} 

dB back-off is used for PTI-DPD training. A total of 90 K samples are used to train the model in 

50 epochs. The model achieves the modeling accuracy of -39.5 dB. To validate the model a total 

of 90 K samples captured at {0.5 2.5 6} back of level and at {27° ,38° ,69°} are used. The model 

achieves a training accuracy of -38.7 dB. It is worth mentioning that, to provide the model with 

adequate information, the input data used for training should cover the full range of the input 

parameters. In other words, it should include the maximum and minimum values of the input 

parameters.  
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5.4 Measurement setup 

Figure 5.3 shows the experimental setup used for DPD model verification. The RF data is 

generated using AD9361 SDR platform. The SDR operates as 61.44 MHz sampling frequency and 

operating frequency of 2.14 GHz. The RF input signal is amplified using ZHL-42X driver to 

increase the power of the signal to the desired value to drive the main Doherty PA. The ZHL-42X 

has a gain of 38 dB and the Doherty PA has a 54.7 dBm saturation power at the operating frequency 

of 2.14 GHz. The 15 MHz signal is wide enough to trigger both dynamic and static behaviour. It 

is worth mentioning that, the power dependant parameters of the PA are considered as static 

characteristics, which can be extracted using narrow band signals, and further increase of the signal 

bandwidth does not affect the static behaviour.   

The proposed PTI-DPD is compared with three other DPD configurations. The first 

configuration is called in this thesis AP-DPD. In this technique, the CNN model coefficients are 

calculated over the data captured at all average power and ambient temperature conditions. The 

only input to the AP-DPD model are the IQ signals with the same memory depth and nonlinearity 
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Figure 5.3 Experimental setup used to validate the DPD techniques [51] 
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order as PTI-DPD. There is no information in regard of the average power and ambient temperature 

in AP-DPD. The other configuration is called in this thesis Max-P DPD. In this configuration, the 

CNN model coefficients are extracted using the data captured at the maximum output power 

corresponding to IPBO=0 and base plate temperature of 27° Celsius. The third configuration is 

using the reference DPD in [15]. The reference DPD [15] is a power adaptive DPD implemented 

using power adaptive memory polynomial. In this technique, a memory polynomial is extracted in 

parallel with linear and nonlinear correction based on the signal power as described in chapter 2.1.  

 

5.5 Modeling performance 

The CNN model is trained using the 3×3 data matrix. The input image to the system is a 

4 × 3 pixel data that includes signal’s average power, base plate temperature, and input IQ signal 

with 2 memory depth. To select the optimum number of neurons and filters, the number of neurons 

and filters are swept from 1 to 40 while monitoring the modeling performance. The optimum 

performance was obtained for 7 neurons is 7 and 12 filters with size of 3×2. To choose the best 

activation function, the best achievable modeling accuracy of PTI-DPD using different activation 

functions is calculated and shown in Table 5.2. The results show that Tanh, LeakyReLu and ReLu 

offer relatively similar performance. Since ReLu has the lowest implementation complexity 

compared to others, it is used as the activation function in the PTI-DPD. 
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 Figure 5.4 shows the inverse modeling performance of the PTI-DPD versus IPBO and 

base plate temperature. The IPBO ranges from 0 to 10 dB and base plate temperature is swept from 

27° to 69° Celsius. The results show that, on average, the PTI-DPD offers -37.2 dB modeling 

accuracy across the swept parameters.  
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Figure 5.4 Inverse modeling performance of the developed PTI-DPD [51] 
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Different DPD models are analyzed in term of complexity, modeling performance and their 

capabilities in Table 5.3.  The complexity is studied in terms of FLOPs and learnable coefficients 

using the relations described in chapter 4. The PTI-DPD and reference [15] are valid for different 

average power level, while AP-DPD and Max-P DPD are not. The PTI-DPD is valid for different 

base plate temperature without the need to re-identify the DPD when the base plate temperature 

 

Table 5-2. Modeling performance of the activation functions [51]. 

 

Activation function Tanh ReLu Sigmoid Leaky Relu 

Modeling Accuracy 

(NMSE-dB) 

-38.8 -38.6 -37.3 -38.2 
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Table 5-3.Performance and complexity analysis for different DPD architecture [51]. 

Model 

property 
PTI-DPD Maxp-DPD AP-DPD 

Reference 

[15] 

Power adaptation ✓ × × ✓ 

Temperature adaptation ✓ × × × 

𝐼/𝑄 imbalance 

compensation 
✓ ✓ ✓ × 

Best Modeling 

Accuracy 

(NMSE-dB) 

IQI= 

0°, 0 dB 
-38.5 -38.6 -33.5 -36.1 

IQI= 

3°, 1 dB 
-38.3 38.1 -33.8 -33.7 

Worst Modeling Accuracy 

(NMSE-dB) 
-36.3 - -28.4 - 

Average Modeling 

Accuracy (NMSE-dB) 
-37.2 - -30.6 - 

Learnable Coefficients     443 
 

233 689 180 

FLOPs/sample    840 
 

500 1238 602 

Image size 5×3 4×3 4×3 - 

Convolution Filter 12 8 17 - 

Kernel size 3×2 3×2 3×2 - 

FC neurons 7 5 8 - 

Activation Function ReLu ReLu ReLu - 

@ 2021 IEEE 
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changes. However, the other DPD techniques do not possess such capability. In terms of modeling 

accuracy, the PTI-DPD provides a modeling accuracy equal to -38.5 dB while the AP-DPD 

provides only -33.8 dB. The reference DPD from [15] has a modeling accuracy of -36.1 dB.  

In the following sections, the PTI-DPD behaviour is studied in three steps. The first step is 

to vary the average power only without changing the ambient temperature and measure the base 

plate temperature. In this case the temperature information is not feed to the PTI-DPD. The second 

step is to emulate the ambient temperature change by changing the fan speed. In the third step, 

both the average power and base plate temperature are varied and the performance of different 

DPD techniques are studied.  

 

5.5.1 Signal’s average power and PA behaviour 

The Signal’s average power affects the junction temperature and, consequently, the PA 

behaviour. To observe the effect of the signal’s average power on the transmitter behaviour, the 

signal is transmitted at different IPBO values while the transmitter’s signal quality and ACPR of 

the transmitted signal has been recorded. Figure 5.5 (a)-(b)-(c) shows the power spectral density 

of the transmitted signal at 0, 2 and 4 dB IPBO. The signal is linearized using PTI-DPD, AP-DPD, 

Maxp-DPD and reference [15]. Figure 5.6 presents the ACPR of the transmitted signal versus 

signal back-off power using different techniques. The results show that the PTI-DPD provides a 

close performance to reference [15] when operating at room temperature. The Maxp-DPD is 

extracted at maximum output power, and as expected, it shows its best linearization performance 

at the maximum output power, 0 dB IPBO. The AP-DPD presents a consistently poor performance 

across the power range. For further analysis, the measured AM/AM and AM/PM of the PA output 
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without DPD (no-DPD) and linearized using PTI-DPD, when driven at 0 dB IPBO, are presented 

in Figure 5.7, respectively. The results show that the PTI-DPD is able to successfully compensate 

 

 
(a) 

 
(b) 

 
(c) 
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Figure 5.5 Average power dependency analysis of linearization methods in the term of (a) PSD at 

0 dB, (b) PSD at  2 dB, (c) PSD at  4 dB IPBO  [51] 
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Figure 5.6 The ACPR of the transmitted signal at different power levels using different DPD 

techniques. 
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for most of the nonlinearities and dispersions on the AM/AM and AM/PM of the transmitted signal 

at 0 dB IPBO.  

5.5.2 Measurement of the joint effect of base plate temperature and signal’s average 

power variations on PA behaviour 

To study the effect of base plate temperature on the PA’s behaviour, the base plate 

temperature is swept from 27° to 69° Celsius while monitoring the PA’s behaviour. In the first 

experiment, the signal is linearized at 0 IPBO and 27° Celsius using the Reference [15] and 

transmitted through the PA. In the next step, the base plate temperature is increased slowly while 

the output signal is monitored. The results reported in Figure 5.8 shows that the model of reference 

[15] is not able to compensate for the distortions added to the signal due to temperature variation. 

As a result, the model of reference [15] loses almost 8 dB of its performance at 69° Celsius. The 

same experiment is repeated for the signal linearized using PTI-DPD. The results show that the 

 
(a) 

 
 

(b) 
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Figure 5.7 (a) AM/AM (b) AM/PM of the received signal using PTI-DPD [51] 
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PTI-DPD successfully compensates for any extra distortion added to the PA due to temperature 

variation.  

To observe the effect of base plate temperature and signal’s average power jointly, base 

plate temperature is swept from 27° to 69°, meanwhile, the signal’s average power is varied from 

0 to 8 dB IPBO with one 1 dB steps. Figure 5.9  shows the ACPR of the transmitted linearized 

using different DPD techniques signal under test conditions. The results show that the Maxp-DPD 

is not able to cope with temperature variation and it loses a part of its linearization performance 

due to temperature variation. Moreover, the effects of base plate temperature increment are more 

severe in higher power output signals. As the signal’s average power levels down, the destructive 

effect of the base plate temperature on the PA’s behaviour is reduced too. The same experiment is 

 
(a) 

 
 

(b) 
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Figure 5.8 Temperature dependency analysis of the linearized transmitter (a): PSD at 0 dB IPBO 

using ref [15], (b): PSD at 0 dB IPBO using PTI-DPD [51]. 
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repeated for AP-DPD, PTI-DPD and reference [15] while the PA behaviour is recorded. Figure 

5.9 (b) shows the AP-DPD under the testing conditions. The results show that for a higher power 

signal with the highest base plate temperature, the AP-DPD presents the poorest linearization 

performance. Similarly, the performance of the DPD model in reference [15] degrades as the 

temperature increases and it is not able to adapt itself to temperature variation. On the other hand, 

the PTI-DPD monitors both base plate temperature and signal’s average power and compensates 

for the extra distortions added to the system. Figure 5.9 (c) shows the transmitter’s behaviour 

linearized using the PTI-DPD. The results show that, contrary to the other techniques, the PTI-

DPD provides a stable linearization performance with maximum 2 dB fluctuation in the ACPR. 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 
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 Figure 5.9 Temperature dependency analysis of the linearized transmitter (a): ACPR of Maxp-

DPD, (b) ACPR of AP-DPD, (c) ACPR of PTI-DPD, (d) ACPR of ref [15] across IPBO and base 

plate temperature variation [51]. 
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5.6 Conclusion 

The radio base stations are supposed to operate in various geographical locations where the 

base plate temperature can range from -40° in North America to 50° in the Middle East. In addition, 

based on the users’ locations, the transmitters are required to operate at different output power 

levels. The base plate temperature and signal’s average power both influence the PA behaviour. 

The results showed that when not compensating for base plate temperature and signal’s average 

power variation, the transmitted signal quality will substantially degrade. To address this issue, 

this chapter introduced PTI-DPD where the signal’s average power, base plate temperature and 

modulated signal are the model input. The proposed PTI-DPD provides continuous linearization 

when the ambient temperature and signal’s average power are varied.  
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6 Conclusion 
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An increasing need to design high-speed internet connections with limited available 

frequency spectrum has led wireless standards to use high-density modulations and multiple access 

techniques that generate signals with high peak-to-average power ratios along with MIMO and 

beamforming transmitter architectures. The high peak-to-average power ratios puts stringent 

requirements on the power consumption of the base station, which is a big design challenge that 

needs to be considered carefully. Indeed, power efficiency is a very important goal for any wireless 

system design as it reduces the design and maintenance cost and, in the case of battery-powered 

systems, increases the battery’s lifetime. To achieve the power efficiency goal, the PAs are pushed 

to operate as close as possible to the saturation. Operating in this efficient but highly nonlinear 

region increases the distortions introduced to the signal. Moreover, MIMO and beamforming 

transmitters suffer from strong nonlinearities and crosstalk between the RF channels that are 

direction dependent. To compensate for these destructive effects of direction dependency of the 

distortions, crosstalk between the RF channels and PA nonlinearities, Digital Pre-Distortion (DPD) 

is used.  In some applications, the wireless transmitter is supposed to operate at different 

environmental conditions and operating power. It has been observed that baseplate temperature 

and signal’s average power can change the PA behaviour. Therefore, these parameters need to be 

considered in DPD design too.  

The complexity of distortions results in complex mathematical equations for equation-

based modeling. This makes it very computationally expensive to implement such models for 

practical applications.  In contrast to equation-based modeling, artificial intelligence-based DPD 

can offer a solution with improved performance in scenarios where the number of modeling 

parameters are more than one. The main advantage of AI over conventional techniques is that it 
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can include various environmental and transmitter setting parameters without the need for a closed-

form expression relating them. 

In conclusion, the artificial intelligence based DPD provides a robust and adaptable 

linearization performance in different environmental and transmitter settings conditions. AI can 

help reduce the hardware complexity in massive MIMO beamforming transmitters where hundreds 

of RF channels are squeezed into a compact area. Moreover, the AI based DPDs eliminate the need 

for a dedicated observation path for each subarray and consequently reduce the cost and hardware 

complexity. The strong modeling capability of artificial neural networks and the advancement in 

customized AI processing units make it feasible to benefit from AI in DPD design for massive 

MIMO applications. 

The AI is able to help designing more compact and accurate beamforming transmitters. AI 

can include various parameters into the DPD model making the transmitter performance more 

robust in different operating conditions.  Contemporary to this work, the researchers have come 

up with a similar solution to DPD design. They have used AI to provide continuous linearization 

at different frequency bandwidth and output power. It is expected that more research groups will 

focus on this emerging area in DPD design. To come up with more innovative ways of using AI 

in DPD design more research need to be done in this area. One of the important areas is reducing 

the AI model identification complexity hardware implementation for commercial applications. 
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